The command `debug zebra kernel msgdump is netlink specific.
There is no point at all to allow this to be configed on non
netlink platforms.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
There were a bunch of places where we converted the
route node to a prefix string via srcdest_rnode2str when
we should have been using %pRN in zebra_rib.c. Just
convert over the ones we should to use it.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
When we are calling rib_process and the route_node
in question has no dest, there is no work to do here
at all. As such we should just return before
attempting to do any other work. This is just a tiny bit
of simplification being done.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
There exists a call path where the nhlfe_alloc can return NULL
for blackhole nexthops. In this case we were still trying
to save the nhlfe pointer causing a crash when we attempted
to add it to a self-contained list.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Do not use the `default` case when switching over an enumerated
type. This allows the code to fail to compile when we add a
new enumeration. Thus allowing us developers to know all
the places in the code we'll need to touch.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
1. This check is absolutely useless. Nothing keeps user from deleting
the address right after this check.
2. This check prevents zebra from correctly reading the user config with
"set src" because of a race with interface startup (see #4249).
3. NO OPERATIONAL DATA USAGE ON VALIDATION STAGE.
Fixes#7319.
Signed-off-by: Igor Ryzhov <iryzhov@nfware.com>
v4 and v6 host/refernce prefixes need to be setup separately for
[RMAC, VTEP] entries as the VTEP is always normalized to a v4 addr.
Signed-off-by: Anuradha Karuppiah <anuradhak@nvidia.com>
The only difference in daemons' interface node definition is the config
write function. No need to define the node in every daemon, just pass
the callback as an argument to a library function and define the node
there.
Signed-off-by: Igor Ryzhov <iryzhov@nfware.com>
There exists some rare situations where fpm will attempt
to send a route update with no valid nexthops. In that
case an assert would be hit. This is not good for
trying to keep your routing daemons up and running
when we can safely just recover the situation.
Fixes#7588
Signed-off-by: batmancn <batmanustc@gmail.com>
<fixed commit message, and used zlog_err>
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Currently 'show evpn rmac vni .. mac .. json' includes fields for
localSequence and remoteSequence, which are misleading since they
aren't applicable to a macs in the IP-VRF mac table (RMAC).
This removes the localSequence + remoteSequence fields from the output.
Signed-off-by: Trey Aspelund <taspelund@nvidia.com>
like the other automake variables, setting `xyz_LDFLAGS` causes
`AM_LDFLAGS` to be ignored for `xyz`. For some reason I had in my mind
that automake doesn't do this for LDFLAGS, but... it does. (Which is
consistent with `_CFLAGS` and co.)
So, all the libraries and modules have been ignoring `AM_LDFLAGS` (which
includes `SAN_FLAGS` too). Set up new `LIB_LDFLAGS` and
`MODULE_LDFLAGS` to handle all of this correctly (and move these bits to
a central location.)
Fixes: #9034
Fixes: 0c4285d77e ("build: properly split CFLAGS from AC_CFLAGS")
Signed-off-by: David Lamparter <equinox@opensourcerouting.org>
Notice when a ip address on a bsd interface is considered
an alias, let's mark the connected prefix we generate as
a SECONDARY.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
When port was removed from last access vlan, the linux kernel
won't send any vlan info in the netlink message, it might affact
the evpn mh not withdraw EAD-EVI routes.
Signed-off-by: Gord Chen <gord_chen@edge-core.com>
Current code was allowing redistribution of kernel routes from
the non-default non vrf tables once FRR was already up and running.
In the case where we add `redistribute kernel` in an upper level
protocol we never consider the non-default vrf or non-vrf tables
so it is never accepted.
In the case where a kernel route is added after `redistribute kernel`
is already in place we were never looking at the fact that the
route was in a non-default non-vrf table. This code fixes
that issue.
Fixes: #9073
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Move remote VTEP updates from immediate, inline processing
in their ZAPI message handlers to the main workqueue.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
Enqueue incoming vxlan remote macip updates on the main
workqueue, instead of performing the updates immediately,
in-line.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
Add workqueue subqueue for EVPN/VxLAN updates; migrate the
evpn route and remote ES processing from their ZAPI handlers
to the workqueue.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
At some point we broke the ifp pointer for nhe->ifp such
that it was pointing to an interface even in groups/recurisve
instances.
Add checks here to make it again so that we only set the ifp
pointer if it is a fully resolved singleton NHE.
Signed-off-by: Stephen Worley <sworley@nvidia.com>
In the reachability code we auto pass back the fully resolved
nexthops. Modify the ZEBRA_IPV4_NEXTHOP_LOOKUP_MRIB code
to do the exact same thing so that the zclient_lookup_nexthop
code does not need to recursively look for the data that
zebra already has.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Basically, this is handled by JSON-C library. I've compiled with the
latest release of json-c and it works well.
Didn't test with various distribution versions, but this change is kinda
dependend from the json-c lib version the distra has.
Before:
```
"192.168.100.1\/32":[
{
"prefix":"192.168.100.1\/32",
```
After:
```
"192.168.100.1/32":[
{
"prefix":"192.168.100.1/32",
```
Signed-off-by: Donatas Abraitis <donatas.abraitis@gmail.com>
There are a few places in the code where we use PREFIX_COPY(_IPV4/IPV6)
macro to copy a prefix. Let's always use prefix_copy function for this.
This should fix CID 1482142 and 1504610.
Signed-off-by: Igor Ryzhov <iryzhov@nfware.com>
when sending nexthop information. We do not need to reset the
last_write_cmd since that is taken care of in the send routine.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Include the complete set of primary and backup nexthops from
the resolving route for a pseudowire. Add accessors for that
info. Modify the logic that creates the fib set of pw nexthops
so that only installed, labelled nexthops are included.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
Modify the pseudowire reachability logic so that it returns
success if there is at least one installed labelled nexthop for
the route resolving the pw destination. We also check for
valid backup nexthops if necessary, in case there's been a
switchover event.
Only OpenBSD requires that _all_ nexthops be labelled, so we
have a more strict version of the logic also.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
When processing bulk messages we need more space to handle more
mroutes. In this case we are doubling the stream size from
16k -> 32k, which should roughly double the number of mroutes
we can handle in one go.
Additionally. If we cannot parse the passed message into
the stream to pass up to pimd then gracefully stop processing
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Add a show command so we can easily get info on
what interfaces are turned on per ver and in
which list.
Signed-off-by: Stephen Worley <sworley@nvidia.com>
Rework RA handling for vrf-lite scenarios.
Before we were using a single FD descriptor for polling
across multiple zvrf's. This would cause us to hit this
assert() in some bgp unnumbered and vrrp configs:
```
/*
* What happens if we have a thread already
* created for this event?
*/
if (thread_array[fd])
assert(!"Thread already scheduled for file descriptor");
```
We were scheduling a thread_read on the same FD for every zvrf.
With vrf-lite, RAs and ARPs are not vrf-bound, so we can just use one
rtadv instance to manage them for all VRFs. We will choose the default
VRF for this.
This patch removes the rtadv_sock altogether for zrouter and moves the
functionality this represented to the default VRF. All RAs will be
handled in the default VRF under vrf-lite configs with only one poll
thread started for it.
This patch also extends how we track subscribed interfaces (s or msec)
to use an actual sorted list by interface names rather than just a
counter. With multiple daemons turning interfaces/on/off these counters
can get very wrong during ifup/down events. Making them a sorted list
prevents this from happening by preventing duplicates.
With netns-vrf's nothing should change other than the interface list.
Signed-off-by: Stephen Worley <sworley@nvidia.com>
FPM sends VNI to the data plane with the EVPN prefix. For pure type-5 EVPN
route, nexthop interface of EVPN prefix is L3VNI SVI. Thus, we encode L3VNI
corresponding to the nexthop vrf with rtmsg for this prefix.
For EVPN type-5 route with gateway IP overlay index, we supporting
asymmetric IRB. Thus, nexthop interface is L2VNI SVI. So, instead of fetching
vrf VNI, fetch VNI corresponding to the nexthop SVI and encode it in the rtmsg
for EVPN prefix.
Signed-off-by: Ameya Dharkar <adharkar@vmware.com>
SVI ifindex for L2VNI is required in BGP to perform EVPN type-5 to type-2
recusrsive resolution using gateway IP overlay index.
Program this svi_ifindex in struct zebra_vni_t as well as in struct bgpevpn
Changes include:
1. Add svi_if field to struct zebra_evpn_t
2. Add svi_ifindex field to struct bgpevpn
3. When SVI (bridge or VLAN) is bound to a VxLAN interface, store it in the
zebra_evpn_t structure.
4. Add this SVI ifindex to ZEBRA_VNI_ADD
5. Store svi_ifindex in struct bgpevpn
Signed-off-by: Ameya Dharkar <adharkar@vmware.com>
When the VRF node is exited using "exit" or "quit", there's still a VRF
pointer stored in the vty context. If you try to configure some router
related command, it will be applied to the previous VRF instead of the
default VRF. For example:
```
(config)# vrf test
(config-vrf)# ip router-id 1.1.1.1
(config-vrf)# do show run
...
!
vrf test
ip router-id 1.1.1.1
exit-vrf
!
...
(config-vrf)# exit
(config)# ip router-id 2.2.2.2
(config)# do show run
...
!
vrf test
ip router-id 2.2.2.2
exit-vrf
!
...
```
`vrf-exit` works correctly, because it stores a pointer to the default
VRF into the vty context (but weirdly keeping the VRF_NODE instead of
changing it to CONFIG_NODE).
Instead of relying on the behavior of exit function, always use the
default VRF when in CONFIG_NODE.
Another problem is missing `VTY_CHECK_CONTEXT`. If someone deletes the
VRF in which node the user enters the command, then zebra applies the
command to the default VRF instead of throwing an error.
Signed-off-by: Igor Ryzhov <iryzhov@nfware.com>
https://github.com/FRRouting/frr/pull/5865#discussion_r597670225
As this comment says. ZEBRA_FLAG_XXX should not have been used.
To communicate SRv6 Route Information. A simple Nexthop Flag would
have been sufficient for SRv6 information. And I fixed the whole
thing that way.
Signed-off-by: Hiroki Shirokura <slank.dev@gmail.com>
FRRouting operator can install seg6 route via ZAPI,
But linux kernel operator also can install seg6 route
via Netlink directry (i.e. iproute2)
This commit make zebra to parse non-frr seg6 route
configuration via netlink and audit Zebra's RIB.
Signed-off-by: Hiroki Shirokura <slank.dev@gmail.com>
With this patch, zclient can intall seg6 rotues when
they set properties "nh_seg6_segs" on struct nexthop
and set ZEBRA_FLAG_SEG6_ROUTE on zapi_route's flag.
Signed-off-by: Hiroki Shirokura <slank.dev@gmail.com>
This commit is a part of #5853 works that add new clis to
configure SRv6 locator and its show commands.
Following clis are added on this commit.
vtysh -c 'conf te' \
-c 'segment-routing' \
-c ' srv6' \
-c ' locators' \
-c ' locator LOC1' \
-c ' prefix A::/64'
- "show segment-routing srv6 sid [json]"
- "show segment-routing srv6 locator [json]"
- "show segment-routing srv6 locator NAME detail [json]"
- "show runnning-config" (make it to print srv6 configuration)
Signed-off-by: Hiroki Shirokura <slank.dev@gmail.com>
This commit is a part of #5853 works that add new ZAPI to
configure SRv6 locator which manages chunk prefix for
SRv6 SID IPv6 address for each routing protocol daemons.
NEW-ZAPIs:
* ZEBRA_SRV6_LOCATOR_ADD
* ZEBRA_SRV6_LOCATOR_DELETE
* ZEBRA_SRV6_MANAGER_CONNECT
* ZEBRA_SRV6_MANAGER_GET_LOCATOR_CHUNK
* ZEBRA_SRV6_MANAGER_RELEASE_LOCATOR_CHUNK
Zclient can connect to zebra's srv6-manager with
ZEBRA_SRV6_MANAGER_CONNECT api like a label-manager.
Then zclient uses ZEBRA_SRV6_MANAGER_GET_LOCATOR_CHUNK to
allocated dedicated locator chunk for it's routing protocol.
Zebra works for only prefix reservation and distribute
the ownership of the locator chunks for zcliens.
Then, zclient installs SRv6 function with
ZEBRA_ROUTE_ADD api with nh_seg6local_* fields.
This feature is already implemented by another PR(#7680).
Signed-off-by: Hiroki Shirokura <slank.dev@gmail.com>
This commit is a part of #5853 that add new cmd-node for SRv6 configuration.
This commit just add cmd-node and moving node cli only, acutual SRv6 config
command isn't added. (that is added later commit. of this branch)
new cli nodes:
* SRv6
* SRv6-locators
* SRv6-locator
Signed-off-by: Hiroki Shirokura <slank.dev@gmail.com>
FRRouting operator can install seg6local route via ZAPI,
But linux kernel operator also can install seg6local route
via Netlink directry (i.e. iproute2)
This commit make zebra to parse non-frr seg6local
route configuration via netlink and audit Zebra's RIB.
Signed-off-by: Hiroki Shirokura <slank.dev@gmail.com>
With this patch, zclient can intall seg6local rotues whem
they set properties nh_seg6local_{action,ctx} on struct nexthop
and set ZEBRA_FLAG_SEG6LOCAL_ROUTE on zapi_route's flag.
Signed-off-by: Hiroki Shirokura <slank.dev@gmail.com>
This includes community and large-community data.
```
exit1-debian-9# show ip route 172.16.16.1/32
Routing entry for 172.16.16.1/32
Known via "bgp", distance 20, metric 0, best
Last update 00:00:23 ago
* 192.168.0.2, via eth1, weight 1
AS-Path : 65030
Communities : 65001:1 65001:2 65001:3 65001:4 65001:5 65001:6
Large-Communities: 65001:123:1 65001:123:2
```
Signed-off-by: Donatas Abraitis <donatas.abraitis@gmail.com>
Track 'down' state of connected addresses with a new flag. We
may have multiple addresses on an interface that share a prefix;
in those cases, we need to determine when the first address
is valid, to install a connected route, and similarly detect
when the last address goes 'down', to remove the connected
route.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
if_netlink.c created it's on nested parsing #define which
is identical to netlink_parse_rtattr_nested. Consolidate
on one instead of having this duality.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
In order to parse the netlink message into the
`struct rtattr *tb[size]` it is assumed that the buffer is
memset to 0 before the parsing. As such if you attempt
to read a value that was not returned in the message
you will not crash when you test for it.
The code has places were we memset it and places where we don't.
This *will* lead to crashes when the kernel changes. In
our parsing routines let's have them memset instead of having
to remember to do it pre pass in to the parser.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
When clagd is stopped on secondary device,
all vxlan interfaces (vnis) are kept in protodown state.
FRR treats protodown vxlan interfaces (vnis) as interface down
and sends vni delete to bgpd.
In the event of clagd down, SVIs are flapping as underlying
bridge is going through churn.
When FRR receives SVI up notification do not trigger event to bgpd
if vnis are operationaly down.
Ticket:#2600210 CM-22929
Reviewed By:CCR-11544
Testing Done:
Performed CLAG stop/start on secondary device, all vxlan devices
remained in protodown along with this validated the vnis are cleaned up
and added back in bgpd.
Signed-off-by: Chirag Shah <chirag@nvidia.com>
Description:
Added a new show command("show ip zebra route dump") to dump all routes
with detailed information including nexthops,flags, status ..etc.
This helps for dubugging and added to support_bundle_command.conf.
Defined this command as a hidden command.
Signed-off-by: Rajesh Girada <rgirada@vmware.com>
When creating a large number of vrf's we are creating a fairly
large number of hash tables per vrf. Reduce memory usage on
startup as well as let us identify the table these things come
from.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
We are creating 2 hash tables per vni in zebra. Once we start to
scale the number of vni's we start to see some serious memory
usage in zebra. Let's reduce the memory usage at startup
for scale of vni's.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Current code has an inconsistent behavior with redistribute routes.
Suppose you have a kernel route that is being read w/ a distance
of 255:
eva# show ip route kernel
Codes: K - kernel route, C - connected, S - static, R - RIP,
O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
F - PBR, f - OpenFabric,
> - selected route, * - FIB route, q - queued, r - rejected, b - backup
t - trapped, o - offload failure
K>* 0.0.0.0/0 [0/100] via 192.168.161.1, enp39s0, 00:06:39
K>* 4.4.4.4/32 [255/8192] via 192.168.161.1, enp39s0, 00:01:26
eva#
If you have redistribution already turned on for kernel routes
you will be notified of the 4.4.4.4/32 route. If you turn
on kernel route redistribution watching after the 4.4.4.4/32 route
has been read by zebra you will never learn of it.
There is no need to look for infinite distance in the redistribution
code. Either we are selected or not. In other words non kernel routes
with an 255 distance are never installed so the checks were pointless.
So let's just remove the distance checking and tell interested parties
about the 255 kernel route if it exists.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Currently FRR reads the kernel for interface state and FRR
creates a connected route per address on an interface. If
you are in a situation where you have multiple addresses
on an interface just create 1 connected route for them:
sharpd@eva:/tmp/topotests$ vtysh -c "show int dummy302"
Interface dummy302 is up, line protocol is up
Link ups: 0 last: (never)
Link downs: 0 last: (never)
vrf: default
index 3279 metric 0 mtu 1500 speed 0
flags: <UP,BROADCAST,RUNNING,NOARP>
Type: Ethernet
HWaddr: aa:4a:ed:95:9f:18
inet 10.4.1.1/24
inet 10.4.1.2/24 secondary
inet 10.4.1.3/24 secondary
inet 10.4.1.4/24 secondary
inet 10.4.1.5/24 secondary
inet6 fe80::a84a:edff:fe95:9f18/64
Interface Type Other
Interface Slave Type None
protodown: off
sharpd@eva:/tmp/topotests$ vtysh -c "show ip route connected"
Codes: K - kernel route, C - connected, S - static, R - RIP,
O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
F - PBR, f - OpenFabric,
> - selected route, * - FIB route, q - queued, r - rejected, b - backup
t - trapped, o - offload failure
C>* 10.4.1.0/24 is directly connected, dummy302, 00:10:03
C>* 192.168.161.0/24 is directly connected, enp39s0, 00:10:03
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Since _rnode_zlog was wrapping zlog(), these messages weren't getting an
unique ID assigned through the xref mechanism. Replace macro with a
small extension that prints (almost) the same thing.
Signed-off-by: David Lamparter <equinox@opensourcerouting.org>
Initially the reading of the speed of an interface happened
upon interface creation and happened until the speed of a link
settled down to a single value. The speed of an interface
can also change as that a new optic can be inserted that
changes the speed, in which case FRR would see a interface
down (optic removal) and then a interface up (optic insertion).
In this case FRR would not treat this as an event that changed
the speed. Let's expand the checking a bit more.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
- gre keys are collected and stored locally.
- when gre source set is requested, and the link interface
configured is different, the gre information collected is
pushed in the query, namely source ip or gre keys if present.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
preserve mtu upon interface flapping and tunnel source change.
Signed-off-by:Reuben Dowle <reuben.dowle@4rf.com>
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
This action is initiated by nhrp and has been stubbed when
moving to zebra. Now, a netlink request is forged to set
the link interface of a gre interface if that gre interface
does not have already a link interface.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
zebra is able to get information about gre tunnels.
zebra_gre file is created to handle hooks, but is not yet used.
also, debug zebra gre command is done to add gre traces.
A zebra_gre file is used for complementary actions that may be needed.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
when zebra has vrf backend mapped to namespaces, the polling
of interfaces leads to fix all linkages of interfaces. This
was not done on non default namespace. do it for other namespaces.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
There are cases where either link information is not present at
interface creation or link information changed. handle this
situation.
Signed-off-by: Philippe.Guibert <philippe.guibert@6wind.com>
zebra dd link
a) `debug zebra kernel` turns off `debug zebra kernel msgdump....`
this is odd and bad
b) `debug zebra kernel msgdump send` turns off receive and vice versa
this is counter intuitive as well
c) `no zebra kernel msgdump ...` turns off all kernel level debugging
we should only turn off msgdump specific debugs
d) `no debug zebra kernel` turns off all kernel level debugging
we should leave msgdump on.
e) Fix `show run` and show debug output
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
encoding signed int as unsigned is bad practice; since we want to do
it here lets at least be explicit about it
Signed-off-by: Quentin Young <qlyoung@nvidia.com>
Use unsigned value for all RA requests to Zebra
- encoding signed int as unsigned is bad practice
- RA interval is never, and should never be, negative
Signed-off-by: Quentin Young <qlyoung@nvidia.com>
This is always a 16 bit unsigned value.
- signed int is the wrong type to use
- encoding a signed int as a uint32 is bad practice
- decoding a signed int encoded as a uint32 into a uint16 is bad
practice
Signed-off-by: Quentin Young <qlyoung@nvidia.com>
We're firing an event debug log for zebra_redistribute_add, but not one
for zebra_redistribute_delete. Let's make it symmetric.
Signed-off-by: Emanuele Di Pascale <emanuele@voltanet.io>
`config.h` has all the defines from autoconf, which may include things
that switch behavior of other included headers (e.g. _GNU_SOURCE
enabling prototypes for additional functions.)
So, the first include in any `.c` file must be either `config.h` (with
the appropriate guard) or `zebra.h` (which includes `config.h` first
thing.)
Signed-off-by: David Lamparter <equinox@opensourcerouting.org>
Properly handle refcounting of Proto-owned NHGs when
zebra is operating under graceful restart and retain
conditions.
We have an extra refcnt of 1 we keep for proto-owned NHGs to
indicate the upper level proto has created and owns it.
When we are reading these in from the kernel, we need to set them
to 1 as appropriate. Without this, we fail in the assert() during
zebra_nhg_proto_add() after the owning daemons resends the NHG
and the refcnts are off by one.
Also add in the same logic we use for routes when sweeping with
respect to uptimes.
Signed-off-by: Stephen Worley <sworley@nvidia.com>
Add uptime for use with NHEs to keep track of how
long we have had this NHE in our rib without an update.
This is treated exactly the same as the re->uptime for
routes. When we get an update for a route, we reset the
uptime.
Signed-off-by: Stephen Worley <sworley@nvidia.com>
Add a PROTO_OWNED macro for code readability when checking
ID bounds for whether a NHG is proto owned.
Signed-off-by: Stephen Worley <sworley@nvidia.com>
Handle SR-TE policy changes in the LSP async notification
handler, as we do in the normal LSP dplane results handler.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
When capturing backup nexthops with recursive resolution,
ensure that inner labels from the recursive nexthop are
included in each backup (as they are with the resolving
primary nexthops).
Signed-off-by: Mark Stapp <mjs@voltanet.io>
`CFLAGS` is a "user variable", not intended to be controlled by
configure itself. Let's put all the "important" stuff in AC_CFLAGS and
only leave debug/optimization controls in CFLAGS.
Signed-off-by: David Lamparter <equinox@opensourcerouting.org>
... by referencing all autogenerated headers relative to the root
directory. (90% of the changes here is `version.h`.)
Signed-off-by: David Lamparter <equinox@opensourcerouting.org>
Use the main zebra workqueue for daemon-owned NHGs, in addition
to processing kernel-owned NHGs. The zapi message processing
creates a temporary object that's enqueued to the workqueue,
then processed/installed as part of the workqueue processing.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
do not add a new route type, and consider 0 as a value meaning
that zebra should be the owner.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
zapi_nbr structure is renamed to zapi_neigh_ip.
Initially used to set a neighbor ip entry for gre interfaces, this
structure is used to get events from the zebra layer to nhrp layer.
The ndm state has been added, as it is needed on both sides.
The zebra dplane layer is slightly modified.
Also, to clarify what ZEBRA_NEIGH_ADD/DEL means, a rename is done:
it is called now ZEBRA_NEIGH_IP_ADD/DEL, and it signified that this
zapi interface permits to set link operations by associating ip
addresses to link addresses.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
The first change in this commit is the processing of the VRF termination.
When we terminate the VRF, we should not delete the underlying interfaces,
because there may be pointers to them in the northbound configuration. We
should move them to the default VRF instead.
Because of the first change, the VRF interface itself is also not deleted
when deleting the VRF. It should be handled in netlink_link_change. This
is done by the second change.
Signed-off-by: Igor Ryzhov <iryzhov@nfware.com>
Most of these are many, many years out of date. All of them vary
randomly in quality. They show up by default in packages where they
aren't really useful now that we use integrated config. Remove them.
The useful ones have been moved to the docs.
Signed-off-by: Quentin Young <qlyoung@nvidia.com>
Instead of directly configuring the neighbor table after read from zapi
interface, a zebra dplane context is prepared to host the interface and
the family where the neighbor table is updated. Also, some other fields
are hosted: app_probes, ucast_probes, and mcast_probes. More information
on those fields can be found on ip-ntable configuration.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
EVPN neighbor operations were already done in the zebra dataplane
framework. Now that NHRP is able to use zebra to perform neighbor IP
operations (by programming link IP operations), handle this operation
under dataplane framework:
- assign two new operations NEIGH_IP_INSTALL and NEIGH_IP_DELETE; this
is reserved for GRE like interfaces:
example: ip neigh add A.B.C.D lladdr E.F.G.H
- use 'struct ipaddr' to store and encode the link ip address
- reuse dplane_neigh_info, and create an union with mac address
- reuse the protocol type and use it for neighbor operations; this
permits to store the daemon originating this neighbor operation.
a new route type is created: ZEBRA_ROUTE_NEIGH.
- the netlink level functions will handle a pointer, and a type; the
type indicates the family of the pointer: AF_INET or AF_INET6 if the
link type is an ip address, mac address otherwise.
- to keep backward compatibility with old queries, as no extension was
done, an option NEIGH_NO_EXTENSION has been put in place
- also, 2 new state flags are used: NUD_PERMANENT and NUD_FAILED.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
neighbor table api in zebra is added. a netlink api is created for that.
the handler is called from the api defined in the previous commit.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
When netlink_neigh_update() is called, the link registration was
failing, due to bad request length.
Also, the query was failing if NDA_DST was an ipv6 address.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
a zebra api is extended to offer ability to add or remove neighbor
entry from daemon. Also this extension makes possible to add neigh
entry, not only between IPs and macs, but also between IPs and NBMA IPs.
This API supports configuring ipv6/ipv4 entries with ipv4/ipv6 lladdr.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
zebra implements zebra api for configuring link layer information. that
can be an arp entry (for ipv4) or ipv6 neighbor discovery entry. This
can also be an ipv4/ipv6 entry associated to an underlay ipv4 address,
as it is used in gre point to multipoint interfaces.
this api will also be used as monitoring. an hash list is instantiated
into zebra (this is the vrf bitmap). each client interested in those entries
in a specific vrf, will listen for following messages: entries added, removed,
or who-has messages.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
Optionally hide route changes that only involve backup nexthop
activation/deactivation. The goal is to avoid route churn during
backup nexthop switchover events, before the resolving routes
re-converge. A UI config enables this 'hiding' behavior.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
Description:
After FRR restart, routes are not getting redistributed;
when routes added first and then 'redistribute static' cmd is issued.
During the frr restart, vrf_id will be unknown,
so irrespective of redistribution, we set the redistribute vrf bitmap.
Later, when we add a route and then issue 'redistribute' cmd,
we check the redistribute vrf bitmap and return CMD_WARNING;
zebra_redistribute_add also checks the redistribute vrf bitmap and returns.
Instead of checking the redistribute vrf bitmap, always set it anyways.
Co-authored-by: Santosh P K <sapk@vmware.com>
Co-authored-by: Kantesh Mundaragi <kmundaragi@vmware.com>
Signed-off-by: Abhinay Ramesh <rabhinay@vmware.com>
When certain events occur (connected route changes e.g.)
zebra examines LSPs to see if they might have been affected. For
LSPs with backup nhlfes, skip this immediate processing and
wait for the owning protocol daemon to react.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
This commit introduces the implementation for the north-bound
callbacks for the zebra-specific route-map match and set clauses.
Signed-off-by: NaveenThanikachalam <nthanikachal@vmware.com>
Signed-off-by: Sarita Patra <saritap@vmware.com>
This is to fix the crash reproduced by the following steps:
* ip link add red type vrf table 1
Creates VRF.
* vtysh -c "conf" -c "vrf red"
Creates VRF NB node and marks VRF as configured.
* ip route 1.1.1.0/24 2.2.2.2 vrf red
* no ip route 1.1.1.0/24 2.2.2.2 vrf red
(or similar l3vni set/unset in zebra)
Marks VRF as NOT configured.
* ip link del red
VRF is deleted, because it is marked as not configured, but NB node
stays.
Subsequent attempt to configure something in the VRF leads to a crash
because of the stale pointer in NB layer.
Fixes#8357.
Signed-off-by: Igor Ryzhov <iryzhov@nfware.com>
EVPN nexthops are installed as remote neighs by zebra. This was earlier
done only via VRF IPvX uni routes imported from EVPN routes.
With EVPN-MH these VRF routes now reference a L3NHG which is setup based
on the EAD and doesn't include the RMAC. To workaround that BGP now
consolidates and maintains EVPN nexthops which are then sent to zebra.
zebra sets up these nexthops as L3-VNI nh entries using a dummy type-1
route as reference.
Ticket: CM-31398
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
This one also needed a bit of shuffling around, but MTYPE_RE is the only
one left used across file boundaries now.
Signed-off-by: David Lamparter <equinox@diac24.net>
Back when I put this together in 2015, ISO C11 was still reasonably new
and we couldn't require it just yet. Without ISO C11, there is no
"good" way (only bad hacks) to require a semicolon after a macro that
ends with a function definition. And if you added one anyway, you'd get
"spurious semicolon" warnings on some compilers...
With C11, `_Static_assert()` at the end of a macro will make it so that
the semicolon is properly required, consumed, and not warned about.
Consistently requiring semicolons after "file-level" macros matches
Linux kernel coding style and helps some editors against mis-syntax'ing
these macros.
Signed-off-by: David Lamparter <equinox@diac24.net>
The point of the `-std=gnu99` was to override a `-std=c99` that may be
coming in from net-snmp. However, we want C11, not C99.
Signed-off-by: David Lamparter <equinox@diac24.net>
Add a control and api for the use of backup nexthops in
recursive resolution. With 'no', we won't try to use installed
backup nexthops when resolving a recursive route.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
Zebra routing tables are not controlled by the user and can not be
created/deleted manually. Current NB create/destroy callbacks are
incorrectly implemented because instead of creating/deleting the RIB
they are only checking for it's existence. YANG model should reflect
the real situation.
Signed-off-by: Igor Ryzhov <iryzhov@nfware.com>
There are places in the code where function nb_running_get_entry is used
with abort_if_not_found set to true during the config validation stage.
This is incorrect because when used in transactional CLI, the running
entry won't be set until the apply stage, and such usage leads to crash.
Signed-off-by: Igor Ryzhov <iryzhov@nfware.com>
like it has been done for iptable contexts, a zebra dplane context is
created for each ipset/ipset entry event. The zebra_dplane_ctx job is
then enqueued and processed by separate thread. Like it has been done
for zebra_pbr_iptable context, the ipset and ipset entry contexts are
encapsulated into an union of structures in zebra_dplane_ctx.
There is a specificity in that when storing ipset_entry structure, there
was a backpointer pointer to the ipset structure that is necessary
to get some complementary information before calling the hook. The
proposal is to use an ipset_entry_info structure next to the ipset_entry,
in the zebra_dplane context. That information is used for ipset_entry
processing. The ipset name and the ipset type are the only fields
necessary.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
The iptable processing was not handled in remote dataplane, and was
directly processed by the thread in charge of zapi calls. Now that call
can be handled in the zebra_dplane separate thread. once a
zebra_dplane_ctx is allocated for iptable handling, the hook call is
performed later. Subsequently, a return code may be triggered to zclient
interface if any problem occurs when calling the hook call.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
This was caused because of uninitialized netlint attrs in the bond-member
netlink parse API.
PS: It was caught by the upstream topotests on ARM8 (passed everywhere
else).
Signed-off-by: Anuradha Karuppiah <anuradhak@nvidia.com>
This is needed as kernel currently doesn't allow a mac replace if the dst
changes from a L2NHG to a single-VTEP and viceversa.
Ticket: CM-31561
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
When a ES-bond is in bypass state MACs learnt on it are linked to the
access port instead of the ES. When LACP converges on the bond it moves
out of bypass and the MACs previously learnt on it are flushed to force
a re-learn on new traffic.
Ticket: CM-31326
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
When an ES-bond comes out of bypass FRR needs to flush the local MACs learnt
while the bond was in bypass. To do that efficiently local MACs are linked
to the dest-access port. This only happens if the access-port is in
LACP-bypass or if it is non-ES.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
Feature overview:
=================
A 802.3ad bond can be setup to allow lacp-bypass. This is done to enable
servers to pxe boot without a LACP license i.e. allows the bond to go oper
up (with a single link) without LACP converging.
If an ES-bond is oper-up in an "LACP-bypass" state MH treats it as a non-ES
bond. This involves the following special handling -
1. If the bond is in a bypass-state the associated ES is placed in a
bypass state.
2. If an ES is in a bypass state -
a. DF election is disabled (i.e. assumed DF)
b. SPH filter is not installed.
3. MACs learnt via the host bond are advertised with a zero ESI.
When the ES moves out of "bypass" the MACs are moved from a zero-ESI to
the correct non-zero id. This is treated as a local station move.
Implementation:
===============
When (a) an ES is detached from a hostbond or (b) an ES-bond goes into
LACP bypass zebra deletes all the local macs (with that ES as destination)
in the kernel and its local db. BGP re-sends any imported MAC-IP routes
that may exist with this ES destination as remote routes i.e. zebra can
end up programming a MAC that was perviously local as remote pointing
to a VTEP-ECMP group.
When an ES is attached to a hostbond or an ES-bond goes
LACP-up (out of bypss) zebra again deletes all the local macs in the
kernel and its local db. At this point BGP resends any imported MAC-IP
routes that may exist with this ES destination as sync routes i.e.
zebra can end up programming a MAC that was perviously remote
as local pointing to an access port.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
VNI configuration is done without NB layer in default VRF. It leads to
the following problems:
```
vtysh -c "conf" -c "vni 1"
vtysh -c "conf" -c "vrf default" -c "no vni"
```
Second command does nothing, because the NB node is not created by the
first command.
```
vtysh -c "conf" -c "vrf default" -c "vni 1"
vtysh -c "conf" -c "no vni 1"
```
Second command doesn't delete the NB node created by the first command.
Signed-off-by: Igor Ryzhov <iryzhov@nfware.com>
This is causing problems with VM move i.e. transition from remote
neigh to local neigh. This transition involves changing the NUD_STATE
NUD_NOARP to NUD_STALE. And the weak override flag prevents changing
the state from connected (REACHABLE, NOARP, PERMANENT) to STALE.
PS: Weak-override was originally used to prevent race conditions where
FRR can end up making a REACHABLE neigh STALE. We may need to revisit
and address that case at a later point.
Ticket: CM-30273
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
Start reorg of zebra nexthop-resolution so that we can use the
resolution logic for nexthop-groups as well as routes. Change
the signature of the core nexthop_active() api so that it does
not require a route-entry or route-node. Move some of the logic
around so that nexthop-specific logic is in nexthop_active(),
while route-oriented logic is in nexthop_active_check().
Signed-off-by: Mark Stapp <mjs@voltanet.io>
For MH the SVI MAC is advertised to prevent flooding of ARP replies.
But because of a bug the SVI MAC was being added to the zebra database
but not sent to bgpd for advertising.
Ticket: CM-33329
Signed-off-by: Anuradha Karuppiah <anuradhak@nvidia.com>
As a part of FRR shutdown interfaces are force flushed (in an arbitary
order). Interfaces are already down at that point i.e. resources like
SVI-MAC have already been released. Attempting to clean it up again
as a part of the force-flush was resulting in access of freed up memory -
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
==26457== Thread 1:
==26457== Invalid read of size 8
==26457== at 0x1AE6B0: zebra_evpn_acc_bd_svi_set (zebra_evpn_mh.c:606)
==26457== by 0x1B1460: zebra_evpn_if_cleanup (zebra_evpn_mh.c:1040)
==26457== by 0x13CA69: if_zebra_delete_hook (interface.c:244)
==26457== by 0x48A0E34: hook_call_if_del (if.c:59)
==26457== by 0x48A0E34: if_delete_retain (if.c:290)
==26457== by 0x48A2F94: if_delete (if.c:313)
==26457== by 0x48A3169: if_terminate (if.c:1217)
==26457== by 0x48E0024: vrf_delete (vrf.c:254)
==26457== by 0x48E0024: vrf_delete (vrf.c:225)
==26457== by 0x48E02FE: vrf_terminate (vrf.c:551)
==26457== by 0x1442E1: sigint (main.c:203)
==26457== by 0x1442E1: sigint (main.c:141)
==26457== by 0x48CF862: quagga_sigevent_process (sigevent.c:103)
==26457== by 0x48DD324: thread_fetch (thread.c:1404)
==26457== by 0x48A926A: frr_run (libfrr.c:1122)
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
(gdb) bt
(gdb) fr 5
1037 zebra/zebra_evpn_mh.c: No such file or directory.
(gdb) p zif->ifp->name
$2 = "vlan131", '\000' <repeats 12 times>
(gdb) p zif->link->info
$5 = (void *) 0x1
(gdb) p/x zif->ifp->flags
$7 = 0x1002
(gdb)
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Ticket: CM-32435
Signed-off-by: Anuradha Karuppiah <anuradhak@nvidia.com>
zebra crash is seen while cleaning up evpn interface
during shutdown event.
evpn interface clean up is called from vrf_delete callback
(gdb) frame 4
(is_up=false, br_zif=0x0, vlan_zif=0x557f31fb36f0) at zebra/zebra_evpn_mh.c:614
614 zebra/zebra_evpn_mh.c: No such file or directory.
(gdb) p tmp_br_zif
$1 = (struct zebra_if *) 0x0
(gdb) p vlan_zif->link
$2 = (struct interface *) 0x557f31fb2d40
(gdb) p vlan_zif->link->info
$3 = (void *) 0x0
(gdb) p zebra_if->ifp->name
No symbol "zebra_if" in current context.
(gdb) p vlan_zif->ifp->name
$4 = "peerlink-3.4094\000\000\000\000"
Ticket:CM-32435
Reviewed By:CCR-10957
Testing Done:
Signed-off-by: Chirag Shah <chirag@nvidia.com>
Added support for advertising SVI MAC if EVPN-MH is enabled.
In the case of EVPN MH arp replies from an attached server can be sent to
the ES-peer. To prevent flooding of the reply the SVI MAC needs to be
advertised by default.
Note:
advertise-svi-ip could have been used as an alternate way to advertise
SVI MAC. However that config cannot be turned on if SVI IPs are
re-used (which is done to avoid wasting IP addresses in a subnet).
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
SVI IP is being advertised unconditionally i.e. even if disabled (and
that is the default config). This can be problematic when the SVI address
is re-used across racks.
Added the user config condition in all the relevant places where the
SVI advertisement is triggered.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
When looking up the conversion from kernel protocol to
internal protocol family make sure we use the correct
AF_INET( what the kernel uses ) instead of AFI_IP (which
is what FRR uses ).
Routes from OSPF will show up from the kernel as OSPF6 instead of
OSPF. Which will cause mayhem
Ticket: CM-33306
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Neither tabs nor newlines are acceptable in syslog messages. They also
break line-based parsing of file logs.
Signed-off-by: David Lamparter <equinox@diac24.net>
the old VXLAN function for local MAC deletion was still in
existence and being called from the VXLAN code whilst the new
generic function was not being called at all. Resolve this so
the generic function matches the old function and is called
exclusively.
Signed-off-by: Pat Ruddy <pat@voltanet.io>
Move the pbr hash creation to be after the update release
and dplane install. Now that rules are installed in a separate
dplane pthread, we can have scenarios where we have an interface
flapping and we install/remove rules sufficiently fast enough we
could issue what we think is an update for an identical rule and
end up releasing the rule right after we created it and sent it to
the dplane. This solves the problem of recving duplicate rules
during interface flapping.
Signed-off-by: Stephen Worley <sworley@nvidia.com>
Disallow the resolution to nexthops that are marked duplicate.
When we are resolving to an ecmp group, it's possible this
group has duplicates.
I found this when I hit a bug where we can have groups resolving
to each other and cause the resolved->next->next pointer to increase
exponentially. Sufficiently large ecmp and zebra will grind to a hault.
Like so:
```
D> 4.4.4.14/32 [150/0] via 1.1.1.1 (recursive), weight 1, 00:00:02
* via 1.1.1.1, dummy1 onlink, weight 1, 00:00:02
via 4.4.4.1 (recursive), weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 4.4.4.2 (recursive), weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 4.4.4.3 (recursive), weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 4.4.4.4 (recursive), weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 4.4.4.5 (recursive), weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 4.4.4.6 (recursive), weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 4.4.4.7 (recursive), weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 4.4.4.8 (recursive), weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 4.4.4.9 (recursive), weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 4.4.4.10 (recursive), weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 4.4.4.11 (recursive), weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 4.4.4.12 (recursive), weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 4.4.4.13 (recursive), weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 4.4.4.15 (recursive), weight 1, 00:00:02
via 1.1.1.1, dummy1 onlink, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1 onlink, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 4.4.4.16 (recursive), weight 1, 00:00:02
via 1.1.1.1, dummy1 onlink, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
via 1.1.1.1, dummy1, weight 1, 00:00:02
D> 4.4.4.15/32 [150/0] via 1.1.1.1 (recursive), weight 1, 00:00:09
* via 1.1.1.1, dummy1 onlink, weight 1, 00:00:09
via 4.4.4.1 (recursive), weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 4.4.4.2 (recursive), weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 4.4.4.3 (recursive), weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 4.4.4.4 (recursive), weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 4.4.4.5 (recursive), weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 4.4.4.6 (recursive), weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 4.4.4.7 (recursive), weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 4.4.4.8 (recursive), weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 4.4.4.9 (recursive), weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 4.4.4.10 (recursive), weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 4.4.4.11 (recursive), weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 4.4.4.12 (recursive), weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 4.4.4.13 (recursive), weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 4.4.4.14 (recursive), weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 4.4.4.16 (recursive), weight 1, 00:00:09
via 1.1.1.1, dummy1 onlink, weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
via 1.1.1.1, dummy1, weight 1, 00:00:09
D> 4.4.4.16/32 [150/0] via 1.1.1.1 (recursive), weight 1, 00:00:19
* via 1.1.1.1, dummy1 onlink, weight 1, 00:00:19
via 4.4.4.1 (recursive), weight 1, 00:00:19
via 1.1.1.1, dummy1, weight 1, 00:00:19
via 4.4.4.2 (recursive), weight 1, 00:00:19
...............
................
and on...
```
You can repro the above via:
```
kernel routes:
1.1.1.1 dev dummy1 scope link
4.4.4.0/24 via 1.1.1.1 dev dummy1
==============================
config:
nexthop-group doof
nexthop 1.1.1.1
nexthop 4.4.4.1
nexthop 4.4.4.10
nexthop 4.4.4.11
nexthop 4.4.4.12
nexthop 4.4.4.13
nexthop 4.4.4.14
nexthop 4.4.4.15
nexthop 4.4.4.16
nexthop 4.4.4.2
nexthop 4.4.4.3
nexthop 4.4.4.4
nexthop 4.4.4.5
nexthop 4.4.4.6
nexthop 4.4.4.7
nexthop 4.4.4.8
nexthop 4.4.4.9
!
===========================
Then use sharpd to install 4.4.4.16 -> 4.4.4.1 pointing to that nexthop
group in decending order.
```
With these changes it prevents the growing ecmp above by disallowing
duplicates to be in the resolution decision. These nexthops are not
installed anyways so why should we be resolving to them?
Signed-off-by: Stephen Worley <sworley@nvidia.com>
Description: When we get a new vrf add and vrf with same name, but different vrf-id already
exists in the database, we should treat vrf add as update.
This happens mostly when there are lots of vrf and other configuration being replayed.
There may be a stale vrf delete followed by new vrf add. This
can cause timing race condition where vrf delete could be missed and
further same vrf add would get rejected instead of treating last arrived
vrf add as update.
Treat vrf add for existing vrf as update.
Implicitly disable this VRF to cleanup routes and other functions as part of vrf disable.
Update vrf_id for the vrf and update vrf_id tree.
Re-enable VRF so that all routes are freshly installed.
Above 3 steps are mandatory since it can happen that with config reload
stale routes which are installed in vrf-1 table might contain routes from
older vrf-0 table which might have got deleted due to missing vrf-0 in new configuration.
Signed-off-by: sudhanshukumar22 <sudhanshu.kumar@broadcom.com>
valgrind is reporting:
2448137-==2448137== Thread 5 zebra_apic:
2448137-==2448137== Syscall param writev(vector[...]) points to uninitialised byte(s)
2448137:==2448137== at 0x4D6FDDD: __writev (writev.c:26)
2448137-==2448137== by 0x4D6FDDD: writev (writev.c:24)
2448137-==2448137== by 0x48A35F5: buffer_flush_available (buffer.c:431)
2448137-==2448137== by 0x48A3504: buffer_flush_all (buffer.c:237)
2448137-==2448137== by 0x495948: zserv_write (zserv.c:263)
2448137-==2448137== by 0x4904B7E: thread_call (thread.c:1681)
2448137-==2448137== by 0x48BD3E5: fpt_run (frr_pthread.c:308)
2448137-==2448137== by 0x4C61EA6: start_thread (pthread_create.c:477)
2448137-==2448137== by 0x4D78DEE: clone (clone.S:95)
2448137-==2448137== Address 0x720c3ce is 62 bytes inside a block of size 4,120 alloc'd
2448137:==2448137== at 0x483877F: malloc (vg_replace_malloc.c:307)
2448137-==2448137== by 0x48D2977: qmalloc (memory.c:110)
2448137-==2448137== by 0x48A30E3: buffer_add (buffer.c:135)
2448137-==2448137== by 0x48A30E3: buffer_put (buffer.c:161)
2448137-==2448137== by 0x49591B: zserv_write (zserv.c:256)
2448137-==2448137== by 0x4904B7E: thread_call (thread.c:1681)
2448137-==2448137== by 0x48BD3E5: fpt_run (frr_pthread.c:308)
2448137-==2448137== by 0x4C61EA6: start_thread (pthread_create.c:477)
2448137-==2448137== by 0x4D78DEE: clone (clone.S:95)
2448137-==2448137== Uninitialised value was created by a stack allocation
2448137:==2448137== at 0x43E490: zserv_encode_vrf (zapi_msg.c:103)
Effectively we are sending `struct vrf_data` without ensuring
data has been properly initialized.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Send the results of daemons' nhg updates asynchronously,
after the update has actually completed. Capture additional
info about the source daemon in order to locate the correct
zapi session. Simplify the result types considered by the
zebra_nhg module.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
The raw zapi apis to encode and decode NHGs don't need to be
public; also add a little more validity-checking.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
Calling fpm_nl_enqueue we should expect a it fit or not
return value on the outgoing stream. This is not necessary
to check here because the while loop where we are checking this
already has ensured that the data being written will fit.
CID -> 1499854
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Setting `zebra route-map delay-timer 0` completely turns of any
route-map processing in zebra. Which is completely wrong. A timer
of 0 means `do it now`.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
If we are running with a delayed timer to handle route-map changes
in zebra, if another route-map change is made to the cli, push
out the timer instead of not modifying the timer. This will
allow a large set of route-maps to be possibly be read in by
the system and we don't have a state where new route-map
changes are being read in and having the timer pop in
the middle of it.
Additionally convert to use THREAD_OFF, preventing a possible
use after free as well as aligning the thread api usage
with what we consider correct.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Current code when a route map changes schedules a rerun of all routes in the
particular table. So if you modify the `ip protocol XX route-map FOO`
route-map `FOO` all routes will be rechecked. This is extremely expensive.
Modify zebra to only update the routes associated with the route-map. So
if we have 800k bgp routes and 50 ospf routes and we are route-map'ing
the ospf routes we'll only look at 50 routes.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
When we need to cause a reprocessing of data the code currently
marks all routes as needing to be looked at. Modify the
rib_update_table code to allow us to specify a specific route
type we only want to reprocess. At this point none
of the code is behaving differently this is just setup
for a future code change.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Use nl_pid from the netlink socket used for programming the kernel
(netlink_dplane) in netlink route messages sent by the 'fpm' module.
This makes 'fpm' consistent with 'dplane_fpm_nl' which already
behaves this way, and allows FPM server implementations to determine
route origin via nlmsg_pid.
Signed-off-by: Duncan Eastoe <duncan.eastoe@att.com>
Create a function that can dump the mac->flags in human readable
output and convert all debugs to use it.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
The re->flags and re->status in debugs were being dumped as hex values.
I can never quickly decode this. Here is an idea. Let's let FRR do
it for me.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
In the case where a routes nexthops cannot be resolved as part
of route processing, immmediately notify the upper level protocol
that their routes failed to install if they are interested in
being informed about this issue.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
The zebra route-map delay timer value is a global value
not a per vrf change. As such we should only print it
out one time.
We are seeing this:
zebra route-map delay-timer 33
exit-vrf
zebra route-map delay-timer 33
When we have 2 vrf's configured.
Fix the code to only write it out for the default vrf
Ticket: CM-32888
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
when checking if there is a "hole" behind the current reservation
marker the calculation of whether the hole is big enough to satisfy
the requested chunk is out by 1. This could result in returning a label
which has already been allocated.
Signed-off-by: Pat Ruddy <pat@voltanet.io>
if the requested chunk size was less than 16 then a chunk
within the reserved block would be returned. Make sure that
we never return labels that are below MPLS_LABEL_UNRESERVED_MIN
Signed-off-by: Pat Ruddy <pat@voltanet.io>
When dplane_fpm_nl is used the "Please add this protocol(n) to proper
rt_netlink.c handling" debug message is emitted for any route of type
kernel or connected.
This severely reduces performance of dplane_fpm_nl when large numbers
of these routes are present in the RIB.
The messages are not observed when using the original fpm module since
this uses a custom function, netlink_proto_from_route_type().
zebra2proto() now returns RTPROT_KERNEL for ZEBRA_ROUTE_CONNECT and
ZEBRA_ROUTE_KERNEL. This should only impact dplane_fpm_nl's use of
the common netlink routines since these routes generally ignored via
checking of RSYSTEM_ROUTE().
Signed-off-by: Duncan Eastoe <duncan.eastoe@att.com>
fpm_nl_process() now ensures that the dataplane thread is rescheduled
if it hits the work limit while processing its incoming work queue.
This would probably already occur due to some other event, such as
fpm_process_queue() enqueuing completed work to the output queue,
however it does no harm to add this explicit reschedule.
Signed-off-by: Duncan Eastoe <duncan.eastoe@att.com>
If the dataplane thread hits the work limit while processing the
output queue for any given provider, we now explicitly reschedule
the thread.
Otherwise, if the number of items in the output queue is greater than
the work limit, draining of that output queue is dependent on new
dataplane work.
Routes which are not drained from the output queue are stuck with
the 'q' flag, so this is a similar issue to that observed in
164d8e8608.
Signed-off-by: Duncan Eastoe <duncan.eastoe@att.com>
zebra maintains pseudo interface for hanging off user config after
the interface is deleted in the kernel. If an user tried to config
an ES against such an interface zebra would crash with the following
call stack -
at zebra/zebra_evpn_mh.c:2095
sysmac=sysmac@entry=0x55cfbadd3160) at zebra/zebra_evpn_mh.c:2258
at zebra/zebra_evpn_mh.c:3222
argv=<optimized out>, es_lid_str=<optimized out>, es_lid=1, no=0x0, vty=0x55cfbaf4c7b0)
at zebra/zebra_evpn_mh.c:3222
argv=<optimized out>) at ./zebra/zebra_evpn_mh_clippy.c:202
vty=vty@entry=0x55cfbaf4c7b0, cmd=cmd@entry=0x0, filter=FILTER_RELAXED)
at lib/command.c:1073
Ticket: CM-31702
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
If a local-MAC or local-neigh is not active locally it is not sent to BGP.
At this point if BGP rxes a remote route it accepts it and installs in
zebra. Zebra was rejecting BGP's update if it had a higher seq local (inactive)
entry. This would result in bgp and zebra falling out of sync.
In some cases zebra would delete the local-inactive entries in sometime (as
a part of the dplane/kernel garbage collection). This would leave zebra
with missing remote entries (which were still present in bgpd).
This change allows lower-seq BGP updates to overwrite zebra's local entry if
that entry happens to be local-inactive.
Note: This logic was already in use for sync-mac-ip updates. Extended the
same logic to remote-mac-ip updates.
Ticket: CM-31626
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
When an VNI was deleted as a part of FRR/zebra shutdown the zevpn entry
was being freed without removing its reference in the access vlan
entry (i.e. without clearing the VLAN->VNI mapping) used by MH.
Ticket: CM-31197
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
If a netlink/dp notification is rxed for a neigh without the peer-sync
flag FRR re-installs the entry with the right flags. This change is
needed to handle cases where the dataplane and FRR may fall out of
sync because of neigh learning on the network ports (i.e. via
the VxLAN).
Ticket: CM-30693
The problem was found during VM mobility "torture" tests where 100s
of extended VM moves were done.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
If a remote MAC update is rxed from BGP with a lower sequence number than
the local one zebra ignores the MAC update. This typically happens if
there is a race condition (where updates are in flight from zebra to BGP).
There was a bug in zebra because of which the dest ES was being updated
before this check. This left the local MAC pointing to a remote ES.
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Relevant Dumps:
===============
root@leaf21:mgmt:~# net show evpn mac vni 101101 mac 00:93:00:00:00:01
MAC: 00:93:00:00:00:01
ESI: 03:00:00:00:77:01:03:00:00:0d
Intf: - VLAN: 101
Sync-info: neigh#: 1 peer-proxy
Local Seq: 3 Remote Seq: 0
Neighbors:
21.1.13.1 Active
root@leaf21:mgmt:~# net sho evpn es
Type: L local, R remote, N non-DF
ESI Type ES-IF VTEPs
03:00:00:00:77:01:02:00:00:0c R - 6.0.0.10,6.0.0.11
03:00:00:00:77:01:03:00:00:0d R - 6.0.0.10,6.0.0.11,6.0.0.12
03:00:00:00:77:01:04:00:00:0e R - 6.0.0.10,6.0.0.11,6.0.0.12,6.0.0.13
03:00:00:00:77:02:02:00:00:16 LR bondP2-H2 6.0.0.15
03:00:00:00:77:02:03:00:00:17 LR bondP2-H3 6.0.0.15,6.0.0.16
03:00:00:00:77:02:04:00:00:18 LR bondP2-H4 6.0.0.15,6.0.0.16,6.0.0.17
root@leaf21:mgmt:~#
Relevant logs:
===============
2020/07/29 15:41:27.110846 ZEBRA: Recv MACIP ADD VNI 101101 MAC 00:93:00:00:00:01 IP 21.1.13.1 flags 0x0 seq 2 VTEP 0.0.0.0 ESI 03:00:00:00:77:01:03:00:00:0d from bgp
2020/07/29 15:41:27.110867 ZEBRA: Ignore remote MACIP ADD VNI 101101 MAC 00:93:00:00:00:01 IP 21.1.13.1 as existing MAC has higher seq 3 flags 0x401
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Ticket: CM-30273
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
With EVPN-MH, Type-2 routes are also used for MAC-IP syncing between
ES peers so a change was done to only treat REACHABLE local neigh
entries as local-active and advertise them as Type-2 routes i.e. STALE
neigh entries are no longer advertised as Type-2s.
This however exposed some unexpected problems with MLAG where a
secondary reboot followed by a primary reboot left a lot of neighs
in STALE state (on the primary) resulting in them not being
advertised. And remote routed traffic to those hosts being
blackholed in a sym-IRB setup.
This commit is a workaround to fix the regression (it doesn't fix
the underlying problems with entries not becoming REACHABLE; which
maybe a day-1 problem). The workaround is to continue advertising
STALE neighbors if EVPN-MH is not enabled.
Ticket: CM-30303
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
zebra was crashing when the command was run on a non-existent VNI.
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
root@torm-12:mgmt:~# net show evpn es-evi vni 16777215
VNI 16777215 doesn't exist
root@torm-12:mgmt:~# net show evpn es-evi vni 16777215 detail
VNI 16777215 doesn't exist
root@torm-12:mgmt:~# net show evpn es-evi vni 16777215 json
[
]
root@torm-12:mgmt:~# net show evpn es-evi vni 16777215 detail json
[
]
root@torm-12:mgmt:~#
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Ticket: CM-30232
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
in rib_handle_nhg_replace, do not use new as a parameter name to
allow compilation of c++ code including zebra headers.
Signed-off-by: Emanuele Di Pascale <emanuele@voltanet.io>
The way a couple of clauses were placed in a loop meant that
some info might not be collected - re-order things just a bit.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
Derive the rule family from src if available, otherwise
dst if available, otherwise assume ipv4. We only support
ipv4/ipv6 currently so it we cant tell from the src/dst
it must be ipv4 and likely a dsfield match.
Signed-off-by: Stephen Worley <sworley@nvidia.com>
Maintain the count of contexts which have been processed in a local
variable, and perform a single atomic update after we have consumed
all queued contexts.
Generally this results in at least one less atomic operation per
context.
Signed-off-by: Duncan Eastoe <duncan.eastoe@att.com>
Don't use an atomic operation to determine whether fpm_process_queue()
needs to be re-scheduled. Instead we can simply use a local variable
to determine if we stopped processing because we ran out of buffers.
In the case where we would have re-scheduled due to new context objects
in the queue (enqueued after we stopped processing), fpm_nl_process()
will schedule us (or will have done already).
Signed-off-by: Duncan Eastoe <duncan.eastoe@att.com>
Maintain the peak ctxqueue length in a local variable, and perform
a single atomic update after processing all contexts.
Generally this results in at least one less atomic operation per
context.
Signed-off-by: Duncan Eastoe <duncan.eastoe@att.com>
Reduce code in the critical sections of fpm_nl_process() and
fpm_process_queue() to the bare minimum - basically only enqueue
and dequeue operations on the shared ctxqueue.
Signed-off-by: Duncan Eastoe <duncan.eastoe@att.com>
We don't need to use the 'force' flag when processing the
resolve-via-default clis for ip and ipv6: we can just do normal
nht processing.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
After removal of L3VNI config, the VNI should become an L2VNI if a VxLAN
interface is present for the VNI. This case is not handled in the code.
Changes:
1. After unconfiguring L3VNI, create an L2VNI if VxLAN interface is present
for the VNI.
2. Trigger an update to BGP.
3. Read MAC and ARP entries from kernel.
This PR fixes the issue only for route type-2, 3 and 5. This PR does not address
states regarding route type-1, 4 and multicast group for VxLAN interface.
Signed-off-by: Ameya Dharkar <adharkar@vmware.com>
When a new ES is created it is held in a non-DF state for 3 seconds
as specified by RFC7432. This allows the switch time to import
the Type-4 routes from the peers. And the peers time to rx the new
Type-4 route.
root@torm-11:mgmt:~# vtysh -c "show evpn es 03:44:38:39:ff:ff:01:00:00:01"|grep DF
DF status: non-df
DF delay: 00:00:01
DF preference: 50000
root@torm-11:mgmt:~# vtysh -c "show evpn es 03:44:38:39:ff:ff:01:00:00:01"|grep DF
DF status: df
DF preference: 50000
root@torm-11:mgmt:~#
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
When all the uplinks go down the VTEP is disconnected from the
VxLAN overlay and this was handled by proto-downing the ES bonds. When
the uplinks come up again we need to re-enable the ES bonds but that
needs to be done after a delay to allow the EVPN network to converge.
And that is done by firing off the startup-delay timer on first
uplink-up.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
1. When a bond is associated with an ES we may need to re-sync
the dplane protodown state (which maybe stale/set by some other
app).
2. Also change the uplink state display to avoid confusion with
protodown reason code (both used to show uplink-up).
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
protodown state is a combination of the dplane and zebra states.
protodown reason is maintained exclusively by zebra. Display this
information on two separate lines to make that ownership clearer.
Also display n/a for bonds as the dplane doesn't support protodowning
the bond device.
Sample output -
==============
root@torm-11:mgmt:~# vtysh -c "show interface hostbond1"|grep -i protodown
protodown: off (n/a)
protodown reasons: (uplinks-down)
root@torm-11:mgmt:~# vtysh -c "show interface swp5"|grep -i protodown
protodown: on
protodown reasons: (uplinks-down)
root@torm-11:mgmt:~#
PS: Cosmetic changes only, no functional change.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
The code for this was already there but was not kicking in because of a
zebra local reason-code dup check. Even if the reason-code is the same,
if the dplane and zebra disagree about the protodown state zebra will
need to re-program the dplane.
Fixed a couple of spelling errors in the protodown logs to make greps
easy.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
Use the new nested NDA_FDB_EXT_ATTRS attribute to control per-fdb
notifications.
PS: The attributes where updated as a part of the kernel upstreaming
hence the change.
Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com>
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
New work enqueued to the dplane_fpm_nl provider is initially de-queued
and re-enqueued, in fpm_nl_process(), to be processed by the provider's
own thread.
After performing this initial de-queue/enqueue we return to
dplane_thread_loop() and check the dplane_fpm_nl output queue for any
work which has been completed.
Since this work is being processed in another thread it is very likely
that there will be some (or all) work still outstanding at this point.
The dataplane thread finishes up any other tasks and then waits until
it is next scheduled. In the meantime the dplane_fpm_nl thread is
processing its work queue until completion.
The issue arises here as the dataplane thread is not explicitly
re-scheduled once dplane_fpm_nl has drained its work queue and
populated its output queue with completed work.
This completed work can sit in the output queue for an indeterminate
period of time, depending upon when the dataplane thread is next
scheduled for other work. If the RIB has reached a stable state then
this could be a significant period of time. During this period zebra
marks these routes as queued, even though they have actually been
processed by all dataplane providers.
An un-related RIB change which triggers a FIB update will result in
the dataplane thread being scheduled and this completed work then
being processed. At this point the routes will then no longer be
marked as queued by zebra. However this new FIB update might itself
then fall victim to the same scenario!
We can observe the above behaviour in these detailed dplane logs.
11:24:47 zebra[7282]: dplane: incoming new work counter: 2
11:24:47 zebra[7282]: dplane enqueues 2 new work to provider 'Kernel'
11:24:47 zebra[7282]: dplane provider 'Kernel': processing
11:24:47 zebra[7282]: Dplane NEIGH_DISCOVER, ip 192.168.2.2, ifindex 9
11:24:47 zebra[7282]: Dplane NEIGH_DISCOVER, ip 192.168.2.2, ifindex 9
11:24:47 zebra[7282]: dplane dequeues 2 completed work from provider Kernel
11:24:47 zebra[7282]: dplane enqueues 2 new work to provider 'dplane_fpm_nl'
11:24:47 zebra[7282]: dplane dequeues 1 completed work from provider dplane_fpm_nl
11:24:47 zebra[7282]: dplane has 1 completed, 0 errors, for zebra main
2 contexts (all incoming work) have been queued to dplane_fpm_nl - all good.
1 completed context was de-queued, so there is outstanding work.
11:24:58 zebra[7282]: dplane: incoming new work counter: 2
11:24:58 zebra[7282]: dplane enqueues 2 new work to provider 'Kernel'
11:24:58 zebra[7282]: dplane provider 'Kernel': processing
11:24:58 zebra[7282]: ID (193) Dplane nexthop update ctx 0x55c429b6fed0 op NH_INSTALL
11:24:58 zebra[7282]: 0:5.5.5.5/32 Dplane route update ctx 0x55c429b79690 op ROUTE_INSTALL
11:24:58 zebra[7282]: dplane dequeues 2 completed work from provider Kernel
11:24:58 zebra[7282]: dplane enqueues 2 new work to provider 'dplane_fpm_nl'
11:24:58 zebra[7282]: dplane dequeues 2 completed work from provider dplane_fpm_nl
11:24:58 zebra[7282]: dplane has 2 completed, 0 errors, for zebra main
A further 2 contexts (all incoming work) have been queued to dplane_fpm_nl - all good.
2 completed contexts were de-queued, which sounds good as that is what we en-queued.
However, there is an outstanding context from earlier, so there is still outstanding
work.
Indeed the new 5.5.5.5/32 route is marked as queued:
O>q 5.5.5.5/32 [110/10] via 192.168.2.2, dp0p1s3, weight 1, 00:01:19
This remains the case until we trigger a FIB update by installation of the
(eg.) 10.10.10.10/32 route:
11:26:41 zebra[7282]: dplane: incoming new work counter: 2
11:26:41 zebra[7282]: dplane enqueues 2 new work to provider 'Kernel'
11:26:41 zebra[7282]: dplane provider 'Kernel': processing
11:26:41 zebra[7282]: ID (195) Dplane nexthop update ctx 0x55c429b78ce0 op NH_INSTALL
11:26:41 zebra[7282]: 0:10.10.10.10/32 Dplane route update ctx 0x55c429b7a040 op ROUTE_INSTALL
11:26:41 zebra[7282]: dplane dequeues 2 completed work from provider Kernel
11:26:41 zebra[7282]: dplane enqueues 2 new work to provider 'dplane_fpm_nl'
11:26:41 zebra[7282]: dplane dequeues 2 completed work from provider dplane_fpm_nl
11:26:41 zebra[7282]: dplane has 2 completed, 0 errors, for zebra main
11:26:41 zebra[7282]: zebra2proto: Please add this protocol(2) to proper rt_netlink.c handling
11:26:41 zebra[7282]: Nexthop dplane ctx 0x55c429b6fed0, op NH_INSTALL, nexthop ID (193), result SUCCESS
11:26:41 zebra[7282]: default(0:254):5.5.5.5/32 Processing dplane result ctx 0x55c429b79690, op ROUTE_INSTALL result SUCCESS
We observe the same 2 enqueues and 2 dequeues as before, which again suggests
that there is outstanding work.
As expected, the 5.5.5.5/32 route is no longer marked as queued:
O>* 5.5.5.5/32 [110/10] via 192.168.2.2, dp0p1s3, weight 1, 00:02:06
But the 10.10.10.10/32 route is, as we have not yet processed the completed
context:
C>q 10.10.10.10/32 is directly connected, lo, 00:26:05
Signed-off-by: Duncan Eastoe <duncan.eastoe@att.com>
Returns the current number of (completed) contexts in the provider's
output queue (dp_ctx_out_q), allowing access to this data from the
provider itself.
Signed-off-by: Duncan Eastoe <duncan.eastoe@att.com>
Following functions which is a piece of label-maanager implementation
isn't called from out side of its file. And all lines of label-manager
are coded on zebra/label_manager.c at this time. So these functions
should be unexposed.
Functions:
- create_label_chunk
- assign_label_chunk
- delete_label_chunk
- release_label_chunk
Signed-off-by: Hiroki Shirokura <slank.dev@gmail.com>
in the case the namespace pointer is already available, feed it at vrf
creation. this prevents from crashing if the netlink parsing already
began, and the vrf-lite is not enabled yet.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
Following functions is using writen to dispatch message
into socket, but another function uses zserv_send_message.
This commit does tiny unification for zapi's socket messaging.
Funcs:
- zsend_assign_label_chunk_response()
- zsend_label_manager_connect_response()
Signed-off-by: Hiroki Shirokura <slank.dev@gmail.com>
The `show ip nht` and `show ipv6 nht` commands were broken.
This is because recent code commit: 0154d8ce45
assumed that p must not be NULL and this is not the case.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Add a bit of code to allow bgp to send the AS-Path associated with
the route being installed to zebra so it can be displayed and
used as part of the `show ip route A` command in zebra.
eva# show ip route 20.0.0.0/11
Routing entry for 20.0.0.0/11
Known via "bgp", distance 20, metric 0, best
Last update 00:00:00 ago
* 192.168.161.1, via enp39s0, weight 1
AS-Path: 60000 64539 15096 6939 8075
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Just gather the opaque data into the route entry. Later
commits will display this data for end users as well as
to send it down.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Add the current queue depths for each plugin to the
'show dplane providers' output. Maintain the out-bound queue
max counter properly, that was being ignored.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
Zebra accumulates route-entry objects and then processes them
as a group. If that rib processing is delayed, because the
dataplane/fib programming has built up a queue e.g., zebra can
hold multiple deleted route objects in memory. At scale, this can
be a problem. Delete unneeded route entries promptly, if they
can't contribute to rib processing.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
Don't attempt to walk data structures while not connected so we can
save some CPU usage when FPM server is offline.
Signed-off-by: Rafael Zalamena <rzalamena@opensourcerouting.org>
Instead of checking for next group reset, always do it and skip sending
if next hop group support is disabled.
Also remove unused `*_complete` variables.
Signed-off-by: Rafael Zalamena <rzalamena@opensourcerouting.org>
A MAC entry cannot be deleted while a neigh is referencing it. It seems
there is some race condition where this may be happening. The log is
to help identify those cases.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
It is now 4bits of type and 28bits of value -
1. type=0 is for L3 NHG
2. type=1 is for L2 NH
3. type=2 is for L2 NHG
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
This is an optimization to reduce the number of L2 nexthops. A
l2 or fdb nexthop simply provides the dataplane with a nexthop ip-
torm-12:mgmt:~# ip nexthop
id 268435461 via 27.0.0.20 scope link fdb
id 268435463 via 27.0.0.20 scope link fdb
id 268435465 via 27.0.0.20 scope link fdb
So there is no need to allocate a nexthop per-ES/per-VTEP. There
can be 100+ ESs per-VTEP so this change cuts the scale down by a
factor of 100.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
When a local ES flaps there are two modes in which the local
MACs are failed over -
1. Fast failover - A backup NHG (ES-peer group) is programmed in the
dataplane per-access port. When a local ES flaps the MAC entries
are left unaltered i.e. pointing to the down access port. And the
dataplane redirects traffic destined to the oper-down access port
via the backup NHG.
2. Slow failover - This mode needs to be turned on to allow dataplanes
not capable of re-directing traffic. In this mode local MAC entries
on a down local ES are re-programmed to point to the ES-peers'
NHG. And vice-versa i.e. when the ES comes up the MAC entries
are re-programmed with the access port as dest.
Fast failover is on by default. Slow failover can be enabled via the
following config -
evpn mh redirect-off
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
As a part of extended MM handing a MAC can be updated from local
to remote while being referenced by SYNC neighs (this is really a
temporary/small window). During this window if the MAC transitions
back to local again we need to re-inforce the previous SYNC flags
(based on the sync-neigh count) as subsequent SYNC updates to the
MAC will be de-duped and ignored.
Ticket: CM-29636
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
When a local mac is deleted by the dataplane zebra can re-install it
if the MAC is a SYNC MAC (learned from ES peers). The "local_inactive"
bit must be set as a part of the re-install to prevent zebra turning
around and advertising the MAC as locally active.
Also fixed up some debug logs in the slow-fail path to include the VNI.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
NHG and DST (VTEP-IP) are mutually exclusive attributes. If DST is
present the kernel ignores NHG.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
NHG is activated i.e. programmed in the dataplane only if there
are active-VTEPs associated with it. When a NHG is de-activated
all the remote-mac entries associated with it need to be removed
before the NHG is removed.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
The lookup for non default VRFs was always using a tableId; if not
provided, we were defaulting to RT_TABLE_MAIN. This is fine for the
default VRF but not for others. As a result, the command was silently
failing for non-default VRFs unless we also specified the correct tableId.
Fix this by only performing the lookup using the tableId if it is
provided; else use zebra_vrf_table.
Signed-off-by: Emanuele Di Pascale <emanuele@voltanet.io>
A couple NHG messages we were logging as errors are a bit spammy
in usecases where you routinely add/remove interfaces (VM heavy
deployments). Its not really an error a user cares about and
more for a developer to know what went wrong after the fact so
it makes more sense for these to be under a debug rather than
an error since seeing them does not implicitly mean error during
those usecases.
Signed-off-by: Stephen Worley <sworley@nvidia.com>
During times of network trauma and when we are at large network scale
the process_remote_macip_add function can issue a zlog_warn for
a common occurrence. Modify the code to be a debug statement.
This behavior is the same now as the process_remote_macip_del function
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Add an api that allows a caller in the zebra main pthread to
process the queue of pending dplane updates. The caller supplies
a function to call to test each pending context. Selected
contexts are dequeued, and freed without being processed.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
There are two fixes in this commit -
1. Prevent implicit deletion of (*,G) entries during (S,G) cleanup.
This is done by creating a dummy reference on all (*,G) entries.
This is needed for a hash-walk based table cleanup.
2. Free up the SG hash table when the VRF is deleted.
Ticket: CM-30151
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
Earlier type-3 ESI was the only format supported for evpn-mh. Updated the
CLI to allow a 10-byte type-0 ESI.
Both type-0 and type-3 ESIs are statically configured; just in two different
ways -
1. type-0 is configured as a complete 10-byte string
2. type-3 is configured as a 6-byte es-sys-mac and a 3-byte
local-discriminator.
Sample config -
!
interface hostbond1
evpn mh es-id 00:44:38:39:ff:ff:01:00:00:01
!
This is a CLI-only change and has no functional impact.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
Add routines to walk the LSP table and generate FPM updates for all
entries. A walk of the LSP table is triggered when (re-)connecting
to an FPM.
Signed-off-by: Duncan Eastoe <duncan.eastoe@att.com>
Export netlink_lsp_msg_encoder() and use it to encode and send netlink
messages concerning LSP updates to connected FPMs.
Signed-off-by: Duncan Eastoe <duncan.eastoe@att.com>
Dataplane/kernel prints the NHG and NH ids as decimal. Zebra
was printing it as hex (to display type vs. val). This became a
debugging hassle hence normalizing the format.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
DAD is not supported currently with EVPN-MH so we turn it off internally
when the first ES config is detected.
PS: Note that when all local ESs are deleted DAD will stay off and
will need to be cleared via a daemon restart.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
The function was originally implemented for zebra data plane FPM plugin,
but another code places could use it.
Signed-off-by: Rafael Zalamena <rzalamena@opensourcerouting.org>
The return from sockunion2hostprefix tells us if the conversion
succeeded or not. There are places in the code where we
always assume that it just `works`, since it can fail
notice and try to do the right thing.
Please note that failure of this function for most cases
of sockunion2hostprefix is highly highly unlikely as that
the sockunion was already created and tested elsewhere
it's just that this function can fail.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Add a command that allows FRR to know it's being used with
an underlying asic offload, from the linux kernel perspective.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
The linux kernel is getting RTM_F_OFFLOAD_FAILED for kernel routes
that have failed to offload. Write the code
to receive these notifications from the linux kernel
and store that data for display about the routes.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
If we have `ip protocol <proto> route-map FOO` and FOO has
not been defined in any way shape fashion or form, we
should deny the match instead of permitting it.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
The route_map_object_t was being used to track what protocol we were
being called against. But each protocol was only ever calling itself.
So we had a variable that was only ever being passed in from route_map_apply
that had to be carried against and everyone was testing if that variable
was for their own stack.
Clean up this route_map_object_t from the entire system. We should
speed some stuff up. Yes I know not a bunch but this will add up.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
If a route-map in zebra has `set src X` and the interface
X is on has not been configured yet, we are rejecting the command
outright. This is a problem on boot up especially( and where I
found this issue ) in that interfaces *can* and *will* be slow
on startup and config can easily be read in *before* the
interface has an ip address.
Let's modify zebra to just warn to the user we may have a problem
and let the chips fall where they may.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
(ndm_state & NUD_NOARP) - prevents the entry from expiring
(ndm_flags & NTF_STICKY) - prevents station moves on the entry
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
Issue:
The bgp routes learnt from peers which are not installed in kernel are
advertised to peers. This can cause routers to send traffic to these
destinations only to get dropped. The fix is to provide a configurable
option "bgp suppress-fib-pending". When the option is enabled, bgp will
advertise routes only if it these are successfully installed in kernel.
Fix (Part1) :
* Added message ZEBRA_ROUTE_NOTIFY_REQUEST used by client to request
FIB install status for routes
* Added AFI/SAFI to ZAPI messages
* Modified the functions zapi_route_notify_decode(), zsend_route_notify_owner()
and route_notify_internal() to include AFI, SAFI as parameters
Signed-off-by: kssoman <somanks@gmail.com>
Clan SA was saying:
./zebra/zebra_vty_clippy.c: In function ‘show_route’:
zebra/zebra_vty.c:1775:4: warning: ‘zvrf’ may be used uninitialized in this function [-Wmaybe-uninitialized]
do_show_ip_route_all(vty, zvrf, afi, !!fib, !!json, tag,
^
I do not see a way that zvrf could ever be uninited in the code path
but rearrange the code a tiny bit to make it happier.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Add extra data about the interfaces used in route updates'
nexthops - some consumers of route updates may want additional
data, but dataplane plugins running in the dplane pthread
cannot safely access the normal zebra data structures. Capturing
this info is optional - a plugin must request it (via an api).
Signed-off-by: Mark Stapp <mjs@voltanet.io>
When we get a route for installation via any method we should
consolidate on 32 bits as the flag size, since we have
actually more than 8 bits of data to bass around.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Local ethernet segments are held in a protodown or error-disabled state
if access to the VxLAN overlay is not ready -
1. When FRR comes up the local-ESs/access-port are kept protodown
for the startup-delay duration. During this time the underlay and
EVPN routes via it are expected to converge.
2. When all the uplinks/core-links attached to the underlay go down
the access-ports are similarly protodowned.
The ES-bond protodown state is propagated to each ES-bond member
and programmed in the dataplane/kernel (per-bond-member).
Configuring uplinks -
vtysh -c "conf t" vtysh -c "interface swp4" vtysh -c "evpn mh uplink"
Configuring startup delay -
vtysh -c "conf t" vtysh -c "evpn mh startup-delay 100"
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
EVPN protodown display -
========================
root@torm-11:mgmt:~# vtysh -c "show evpn"
L2 VNIs: 10
L3 VNIs: 3
Advertise gateway mac-ip: No
Advertise svi mac-ip: No
Duplicate address detection: Disable
Detection max-moves 5, time 180
EVPN MH:
mac-holdtime: 60s, neigh-holdtime: 60s
startup-delay: 180s, start-delay-timer: 00:01:14 <<<<<<<<<<<<
uplink-cfg-cnt: 4, uplink-active-cnt: 4
protodown: startup-delay <<<<<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
ES-bond protodown display -
===========================
root@torm-11:mgmt:~# vtysh -c "show interface hostbond1"
Interface hostbond1 is up, line protocol is down
Link ups: 0 last: (never)
Link downs: 1 last: 2020/04/26 20:38:03.53
PTM status: disabled
vrf: default
OS Description: Local Node/s torm-11 and Ports swp5 <==> Remote Node/s hostd-11 and Ports swp1
index 58 metric 0 mtu 9152 speed 4294967295
flags: <UP,BROADCAST,MULTICAST>
Type: Ethernet
HWaddr: 00:02:00:00:00:35
Interface Type bond
Master interface: bridge
EVPN-MH: ES id 1 ES sysmac 00:00:00:00:01:11
protodown: off rc: startup-delay <<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
ES-bond member protodown display -
==================================
root@torm-11:mgmt:~# vtysh -c "show interface swp5"
Interface swp5 is up, line protocol is down
Link ups: 0 last: (never)
Link downs: 3 last: 2020/04/26 20:38:03.52
PTM status: disabled
vrf: default
index 7 metric 0 mtu 9152 speed 10000
flags: <UP,BROADCAST,MULTICAST>
Type: Ethernet
HWaddr: 00:02:00:00:00:35
Interface Type Other
Master interface: hostbond1
protodown: on rc: startup-delay <<<<<<<<<<<<<<<<
root@torm-11:mgmt:~#
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
Add a type specifier to the `show nexthop-group` command
so we can easily filter by type when using proto created
nexthop groups.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
A local ES can be added or removed to a bridge after it is created.
When it becomes a bridge port member the dataplane attributes need
to be programmed.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
split horizon filter, non-DF block filter and backup nexthop group
are passed as bridge port attributes to the dataplane.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
This includes -
1. non-DF block filter
2. List of es-peers that need to be blocked per-access port (for
split horizon filtering)
3. Backup nexthop group to failover local-es via the VxLAN overlay
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
1. DF preference is configurable per-ES
!
interface hostbond1
evpn mh es-df-pref 100 >>>>>>>>>>>
evpn mh es-id 1
evpn mh es-sys-mac 00:00:00:00:01:11
!
2. This parameter is sent to BGP and advertised via the ESR.
3. The peer-ESs' DF params are sent to zebra (by BGP) and used
for running the DF election.
4. If the local VTEP becomes non-DF on an ES a block filter is
programmed in the dataplane to drop de-capsulated BUM packets
destined to that ES.
Sample output
=============
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
torm-11# sh evpn es
Type: L local, R remote, N non-DF
ESI Type ES-IF VTEPs
03:00:00:00:00:01:11:00:00:01 LRN hostbond1 27.0.0.16
03:00:00:00:00:01:22:00:00:02 LR hostbond2 27.0.0.16
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
torm-11# sh evpn es 03:00:00:00:00:01:11:00:00:01
ESI: 03:00:00:00:00:01:11:00:00:01
Type: Local,Remote
Interface: hostbond1
State: up
Ready for BGP: yes
VNI Count: 10
MAC Count: 2
DF: status: non-df preference: 100 >>>>>>>>
Nexthop group: 0x2000001
VTEPs:
27.0.0.16 df_alg: preference df_pref: 32767 nh: 0x100000d >>>>
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
There are several places where prefix2str was used to convert
a prefix but they were debug guarded and the buffer was
used for flog_err/warn. This would lead to corrupt data
being output in the failure cases if debugs were not turned
on.
Modify the code in zebra_mpls.c to not use prefix2str
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
We are loading a buffer with the prefix2str results then
using it in the debugs throughout functions. Replace
with just using %pFX and remove the buffer.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Fixes the valgrind error we were seeing on startup due to
initializing the msg header struct:
```
==2534283== Thread 3 zebra_dplane:
==2534283== Syscall param recvmsg(msg) points to uninitialised byte(s)
==2534283== at 0x4D616DD: recvmsg (in /usr/lib64/libpthread-2.31.so)
==2534283== by 0x43107C: netlink_recv_msg (kernel_netlink.c:744)
==2534283== by 0x4330E4: nl_batch_read_resp (kernel_netlink.c:1070)
==2534283== by 0x431D12: nl_batch_send (kernel_netlink.c:1201)
==2534283== by 0x431E8B: kernel_update_multi (kernel_netlink.c:1369)
==2534283== by 0x46019B: kernel_dplane_process_func (zebra_dplane.c:3979)
==2534283== by 0x45EB7F: dplane_thread_loop (zebra_dplane.c:4368)
==2534283== by 0x493F5CC: thread_call (thread.c:1585)
==2534283== by 0x48D3450: fpt_run (frr_pthread.c:303)
==2534283== by 0x48D3D41: frr_pthread_inner (frr_pthread.c:156)
==2534283== by 0x4D56431: start_thread (in /usr/lib64/libpthread-2.31.so)
==2534283== by 0x4E709D2: clone (in /usr/lib64/libc-2.31.so)
==2534283== Address 0x85cd850 is on thread 3's stack
==2534283== in frame #2, created by nl_batch_read_resp (kernel_netlink.c:1051)
==2534283==
==2534283== Syscall param recvmsg(msg.msg_control) points to unaddressable byte(s)
==2534283== at 0x4D616DD: recvmsg (in /usr/lib64/libpthread-2.31.so)
==2534283== by 0x43107C: netlink_recv_msg (kernel_netlink.c:744)
==2534283== by 0x4330E4: nl_batch_read_resp (kernel_netlink.c:1070)
==2534283== by 0x431D12: nl_batch_send (kernel_netlink.c:1201)
==2534283== by 0x431E8B: kernel_update_multi (kernel_netlink.c:1369)
==2534283== by 0x46019B: kernel_dplane_process_func (zebra_dplane.c:3979)
==2534283== by 0x45EB7F: dplane_thread_loop (zebra_dplane.c:4368)
==2534283== by 0x493F5CC: thread_call (thread.c:1585)
==2534283== by 0x48D3450: fpt_run (frr_pthread.c:303)
==2534283== by 0x48D3D41: frr_pthread_inner (frr_pthread.c:156)
==2534283== by 0x4D56431: start_thread (in /usr/lib64/libpthread-2.31.so)
==2534283== by 0x4E709D2: clone (in /usr/lib64/libc-2.31.so)
==2534283== Address 0xa0 is not stack'd, malloc'd or (recently) free'd
==2534283==
```
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Replace all lib/thread cancel macros, use thread_cancel()
everywhere. Only the THREAD_OFF macro and thread_cancel() api are
supported. Also adjust thread_cancel_async() to NULL caller's pointer (if
present).
Signed-off-by: Mark Stapp <mjs@voltanet.io>
Change thread_cancel to take a ** to an event, NULL-check
before dereferencing, and NULL the caller's pointer. Update
many callers to use the new signature.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
Because the backup nexthop groups currently are more like pseudo-NHEs
(they don't have IDs and are not inserted into the ID table or
hashed), they can't really have this depends/dependents relationship
yet in both directions. Some work needs to be done there to make
them more like first class citizens like "normal" NHGs to enable
this.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
When `-r` is specified to zebra, on shutdown we should
not remove any routes from the fib. This was a problem
with nhg's on shutdown due to their ref-count behavior.
Introduce a methodology where on shutdown we don't mess
with the nexthop groups in the kernel. That way on
next startup things will be ok.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Add an alias so people can still type `show ip ro`.
It became ambigious in a recent release.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Apparantly the dependents backpointer trees for singletons
got broken at some point and we never noticed. There is
not really any code making use of this right now so not
suprising but let's go ahead and fix it for zebra and proto
NHGs.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
This problem was accidentally introduced as a part of another fixup -
[
commit e378f5020d (anuradhak/mh-misc-fixes, mh-misc-fixes)
Author: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
Date: Tue Sep 15 16:50:14 2020 -0700
zebra: fix use of freed es during zebra shutdown
]
zif->es_info.es is cleared as a part of zebra_evpn_es_local_info_clear so it
cannot be passed around as a pointer from zebra_evpn_local_es_update/del.
Because of this bug removing ES from an interface resulted in
a zebra crash.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
Create appropriate accessor functions for the rn->lock
data. We should be accessing this data through accessor
functions since it is private data to the data structure.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
When zebra is running with debugs turned on there
is a use after free reported by the address sanitizer:
2020/10/16 12:58:02 ZEBRA: rib_delnode: (0:254):4.5.6.16/32: rn 0x60b000026f20, re 0x6080000131a0, removing
2020/10/16 12:58:02 ZEBRA: rib_meta_queue_add: (0:254):4.5.6.16/32: queued rn 0x60b000026f20 into sub-queue 3
=================================================================
==3101430==ERROR: AddressSanitizer: heap-use-after-free on address 0x608000011d28 at pc 0x555555705ab6 bp 0x7fffffffdab0 sp 0x7fffffffdaa8
READ of size 8 at 0x608000011d28 thread T0
#0 0x555555705ab5 in re_list_const_first zebra/rib.h:222
#1 0x555555705b54 in re_list_first zebra/rib.h:222
#2 0x555555711a4f in process_subq_route zebra/zebra_rib.c:2248
#3 0x555555711d2e in process_subq zebra/zebra_rib.c:2286
#4 0x555555711ec7 in meta_queue_process zebra/zebra_rib.c:2320
#5 0x7ffff74701f7 in work_queue_run lib/workqueue.c:291
#6 0x7ffff7450e9c in thread_call lib/thread.c:1581
#7 0x7ffff738eaf7 in frr_run lib/libfrr.c:1099
#8 0x55555561a578 in main zebra/main.c:455
#9 0x7ffff7079cc9 in __libc_start_main ../csu/libc-start.c:308
#10 0x5555555e3429 in _start (/usr/lib/frr/zebra+0x8f429)
0x608000011d28 is located 8 bytes inside of 88-byte region [0x608000011d20,0x608000011d78)
freed by thread T0 here:
#0 0x7ffff768bb6f in __interceptor_free (/lib/x86_64-linux-gnu/libasan.so.6+0xa9b6f)
#1 0x7ffff739ccad in qfree lib/memory.c:129
#2 0x555555709ee4 in rib_gc_dest zebra/zebra_rib.c:746
#3 0x55555570ca76 in rib_process zebra/zebra_rib.c:1240
#4 0x555555711a05 in process_subq_route zebra/zebra_rib.c:2245
#5 0x555555711d2e in process_subq zebra/zebra_rib.c:2286
#6 0x555555711ec7 in meta_queue_process zebra/zebra_rib.c:2320
#7 0x7ffff74701f7 in work_queue_run lib/workqueue.c:291
#8 0x7ffff7450e9c in thread_call lib/thread.c:1581
#9 0x7ffff738eaf7 in frr_run lib/libfrr.c:1099
#10 0x55555561a578 in main zebra/main.c:455
#11 0x7ffff7079cc9 in __libc_start_main ../csu/libc-start.c:308
previously allocated by thread T0 here:
#0 0x7ffff768c037 in calloc (/lib/x86_64-linux-gnu/libasan.so.6+0xaa037)
#1 0x7ffff739cb98 in qcalloc lib/memory.c:110
#2 0x555555712ace in zebra_rib_create_dest zebra/zebra_rib.c:2515
#3 0x555555712c6c in rib_link zebra/zebra_rib.c:2576
#4 0x555555712faa in rib_addnode zebra/zebra_rib.c:2607
#5 0x555555715bf0 in rib_add_multipath_nhe zebra/zebra_rib.c:3012
#6 0x555555715f56 in rib_add_multipath zebra/zebra_rib.c:3049
#7 0x55555571788b in rib_add zebra/zebra_rib.c:3327
#8 0x5555555e584a in connected_up zebra/connected.c:254
#9 0x5555555e42ff in connected_announce zebra/connected.c:94
#10 0x5555555e4fd3 in connected_update zebra/connected.c:195
#11 0x5555555e61ad in connected_add_ipv4 zebra/connected.c:340
#12 0x5555555f26f5 in netlink_interface_addr zebra/if_netlink.c:1213
#13 0x55555560f756 in netlink_information_fetch zebra/kernel_netlink.c:350
#14 0x555555612e49 in netlink_parse_info zebra/kernel_netlink.c:941
#15 0x55555560f9f1 in kernel_read zebra/kernel_netlink.c:402
#16 0x7ffff7450e9c in thread_call lib/thread.c:1581
#17 0x7ffff738eaf7 in frr_run lib/libfrr.c:1099
#18 0x55555561a578 in main zebra/main.c:455
#19 0x7ffff7079cc9 in __libc_start_main ../csu/libc-start.c:308
SUMMARY: AddressSanitizer: heap-use-after-free zebra/rib.h:222 in re_list_const_first
This is happening because we are using the dest pointer after a call into
rib_gc_dest. In process_subq_route, we call rib_process() and if the
dest is deleted dest pointer is now garbage. We must reload the
dest pointer in this case.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
We support configuration of multiple addresses in the same
subnet on a single interface: make sure that zebra supports
multiple instances of the corresponding connected route.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
Let's just track the NHEs we get from the kernel(dplane) for
ID usage with internal routes. I tried to be smart originally
and allow them to be re-used internal to zebra but its proving
to cause more bugs than it's worth.
This doesn't break any functionality. It just means we won't
use NHEs we get from the kernel with our routes, we will create
new ones.
Decided this based on various bugs seen ith the lastest one
being on startup with this kernel state:
```
[root@alfred frr-2]# ip next ls
id 15 via 192.168.161.1 dev doof scope link proto zebra
id 17 group 15 proto zebra
[root@alfred frr-2]# ip ro show 3.3.3.1
3.3.3.1 nhid 17 via 192.168.161.1 dev doof
```
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
SIOCGIFMEDIA returns the media state.
SIOCGIFDATA returns interface data which includes the link state.
While the status of the former is usually indicitive of the latter,
this is not always the case.
Ifact some recent net80211 changes in at least NetBSD and OpenBSD
have MONITOR media set to active but the link status set to DOWN.
All interfaces will return link state with SIOCGIFDATA, unlike
SIOCGIFMEDIA. However not all BSD's support SIOCGIFDATA - it has
recently been accepted into FreeBSD-13.
However, all BSD's do report the same structure in ifa_data for
AF_LINK addresses from getifaddrs(3) so the information has always
been available.
Signed-off-by: Roy Marples <roy@marples.name>
Add a param to the common NHE creation callstack so we can
know if this is one we have read in from the dataplane. We can
add some logic on how to handle these special ones later.
I considered putting this on a struct as a flag or something
but it would have required it being put on struct nexthop
since we have some `*_find_nexthop()` functions that can
be called when given NHEs from the dataplane.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
In zebra_evpn_es_evi_show_vni the zevpn pointer if passed into
zebra_evpn_es_evi_show_one_evi will crash if it is null and
we have code that checks that it is non null and then immediately
calls the function. Add a return to prevent a crash.
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
No need to check for n->mac existence as that all paths
leading to this code have n->mac already derefed.
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
Use the same lsp and nexthop/nhlfe objects for 'static' and
dynamic LSPs; remove the 'static' objects and their supporting
code.
Signed-off-by: Mark Stapp <mjs@voltanet.io>
Zebra's clear duplicate detect command is rpc converted.
There is condition where cli fails with human readable message.
Using northboun's errmsg buffer to display error message to
user.
Testing:
bharat# clear evpn dup-addr vni 1002 ip 2011:11::11
Error type: generic error
Error description: Requested IP's associated MAC aa:aa:aa:aa:aa:aa is still in duplicate state
bharat# clear evpn dup-addr vni 1002 ip 11.11.11.11
Error type: generic error
Error description: Requested IP's associated MAC aa:aa:aa:aa:aa:aa is still in duplicate state
Signed-off-by: Chirag Shah <chirag@nvidia.com>
Display human readable error message in northbound rpc
transaction failure. In case of vtysh nb client, the error
message will be displayed to user.
Testing:
bharat# clear evpn dup-addr vni 1002 ip 11.11.11.11
Error type: generic error
Error description: Requested IP's associated MAC aa:aa:aa:aa:aa:aa is still
in duplicate state
Signed-off-by: Chirag Shah <chirag@nvidia.com>
NetBSD and DragonFlyBSD support reporting of route(4) overflows
by setting the socket option SO_RERROR.
This is handled the same as on Linux by exiting with a -1 error code.
Signed-off-by: Roy Marples <roy@marples.name>
a) Use appropriate %p modifiers for output
2) Display vrf name in addition to vrf id
c) Remove now unused function
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
During quick ifdown / ifup events from the linux kernel there
exists a situation where a prefix that has both a kernel route
and a static route can queued up on the meta-q. If the static
route happens to point at a connected route for nexthop resolution
and we receive a series of quick up/down events *after* the
static route and kernel route are queued up for rib reprocessing.
Since the static route and kernel route are queued on meta-q 1
and the connected route is also on meta-q 1 there exists a situation
where the connected route will be resolved after the static route
fails to resolve, leaving the static route in a unresolved state.
Add a new queue level and put connected routes on their own level,
since they are the fundamental building blocks of pretty much
all the other routes.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
When zebra is processing routes to determine what to send
to the rib, suppose we have two routes (a) a route processed
earlier that none of it's nexthops were active and (b)
a route that has good nexthops but has a worse admin distance.
rib_process, would not relook at (a)'s nexthops because
the ROUTE_ENTRY_CHANGED flag was not true and it would
win when compared to (b) because it's admin distance
was better, leaving us with a state where we would
attempt and fail to install route (a) because it
was not valid.
Modify the code to consider the number of nexthops
we have as a determiner if we can use the route.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
In rib_process_update_fib, the function is sent two route entries
the old ( previously installed ) and new ( the one to install )
When the function detects that the new is unusable because
the number of nexthops that are usable for that route is 0,
then we uninstall the old route. The problem here is that
we should not attempt to uninstall any route that is
not owned by FRR. Modify the code to not attempt
this behavior
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
b0e9567ed1 fixed an issue whereby
zebra would abort while building an update for a blackhole route.
The same issue, `assert(data_len)` failing in
`zfpm_build_route_updates()`, can be observed when building updates
for unreachable and prohibit routes.
To address this `netlink_route_info_fill()` is updated to not
indicate failure, due to lack of nexthops, for any blackhole routes.
Signed-off-by: Duncan Eastoe <duncan.eastoe@att.com>
When debugging why a route was not successfully installed into the
rib, it would be preferable that the end user only have to turn
on `debug zebra rib detail` as that is what we have been telling
people to do for the last couple of years. Consolidate *back*
to this.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
With l2vni flap leading to duplicate entry creation
in l3vni's l2vni-list.
Use list sorted add with no duplicates.
root@TORC11:mgmt:~# show evpn vni 4001
VNI: 4001
Type: L3
Tenant VRF: vrf1
State: Up
...
L2 VNIs: 1000 1000 1000 0 0 1002
root@TORC11:mgmt:~# ip link set down vx-1002
root@TORC11:mgmt:~# ip link set up vx-1002
root@TORC11:mgmt:~# show evpn vni 4001
VNI: 4001
Type: L3
Tenant VRF: vrf1
State: Up
...
L2 VNIs: 1000 1000 1000 0 0 1002 1002
Ticket:CM-31545
Reviewed By:
Testing Done:
With Fix:
Multiple time flaps vni counts remained the same.
root@TORC11:mgmt:~# ip link set down vx-1002
root@TORC11:mgmt:~# ip link set up vx-1002
root@TORC11:mgmt:~# ip link set down vx-1002
root@TORC11:mgmt:~# ip link set up vx-1002
root@TORC11:mgmt:~# net show evpn vni 4001
VNI: 4001
Type: L3
Tenant VRF: vrf1
State: Up
...
L2 VNIs: 1000 1002
Signed-off-by: Chirag Shah <chirag@nvidia.com>
Only set the NHG/backup NHG pointers of the caller if the read
of the nexthops was successfull. Otherwise, we might free when not
neccessary or double free.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Add the zapi code for encoding/decoding of backup nexthops for when
we are ready for it, but disable it for now so that we revert
to the old way with them.
When zebra gets a proto-NHG with a backup in it, we early fail and
tell the upper level proto. In this case sharpd. Sharpd then reverts
to the old way of installation with the route.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Add type to the nhg_proto_del API params for sanity checking
that the types of the route sent by the proto matches the type
found with the ID.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Limit the not re-installation of routes with the same NHG ID
to routes that are using the new NHG PROTO API. This would
only include sharpd and EVPN-MH for now.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
In scoring our NHEs during shutdown there is a chance we could release mutliple
NHEs at the same time during one iteration. This can cause memory corruption
if the two being released are directly next to each other in the hash table.
hash_iterate accounts for releasing one during the iteration but not
two by setting hbnext before release but if hbnext is also freed,
we obviously can have a problem.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Reject proto NHGs of type blackhole/interface for now.
We need to think a bit more about how to resolve these
given the linux kernel needs to know the Address Family
of the routes that will use them and install it with them.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Clean up the function names and remove some TODOs that are no
longer needed/hacks we used for testing.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Get the multipath number checks working with proto-based NHG
message decoding in zapi_msg.c
Modify the function that checks this for routes to work without
being passed a prefix as is the case with NHG creates.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Add a flag to track the released state of a proto-based NHG.
This flag is used to know whether the upper level proto has called
the *_del API. Typically, the NHG would just get removed and uninstalled
at this point but there is a chance we are being sent it while routes
are still being owned or we were sent it multiple times. This flag
and associated code handles that.
Ticket: CM-30369
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
We currently don't support ADD/DEL/REPLACE with proto-based
NHGs that are not already fully resolved and ifindex/onlink
based. If we are handed one that doesn't have ifindex set
i.e. recursive, gracefully fail and with a notification.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Make the message parameters align better with other zapi
notifications and change the ID to correctly be a uint32.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
When the dataplane detects that we have no need to
reinstall the same route, setup the NEXTHOP_FLAG_FIB
appropriately.
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
The code was installing the nexthop group again using
the NLM_F_REPLACE function causing extremely large
route installation times. This reduces the time from
installing 1 million routes from sharpd with a nhg
from > 200 seconds ( where I gave up ) to ~15
seconds on my machine for 32 x ecmp. As a side note 1 million
routes using master sharpd takes ~50 seconds to do
the same thing.
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
Add some logging for when we choose to ignore a NHG install
for one reason or another. Also, cleanup some of the code
using the same accessor functions for the context object.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Return the proto nhe on del even if their are still possible
route references.
We may get a del before the routes are removed. So we still need
to return this to the caller so they can decrement the ref.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Fix the releasing of proto-owned singletons from the attribute
hashed table. Proto-owned singleton nexthops are hashed so they
can still be shared therefore they are present in this table
and need to be released when the time comes.
This check was only matching on zebra proto before. Changed
to match IDs in zebra allocated range.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Increment the nhg proto score iterator we used to count
leftover NHGs after client disconnect and log.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Fix some reference counting issues seen when replacing
a NHG and deleting one.
For replacement, we should end with the same refcnt on the new
one.
For delete, its the caller's job to decrement its ref after
its done with it.
Further, update routes in the rib with the new pointer after replace.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Add code to handle proto-based NHG uninstalling after
the owning client disconnects.
This is handled the same way as rib_score_proto() but for now
we are ignoring instance.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
When we add a proto NHG, increment the refcount, when
we del a proto NHG, decrement the refcount rather than
deleting it explicitly. If the upper level proto is handling
it properly, it should get decremented to zero when we
receive a NHG del.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Remove some leftover boilerplate from the old replace
code path. That code ended up in the add API so its no
longer needed.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
If we have received a route that the already existing
route is exactly the same, just note that it happened
and move on.
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
Fix check in zread where we determine validity of a route
based on reading in nexthops/checking ID is present.
We had a bad conditional that was determining a route
is bad if its not NHG ID based.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
We were hard coding proto bgp for use with the NHG creation.
Use the actual passed one from zapi now that it exists.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Make NHG ID allocation smarter so it wraps once it hits
the lower bound for protos and performs a lookup to make
sure we don't already have that ID in use.
Its pretty unlikely we would wrap since the ID space is somewhere
around 24million for Zebra at this point in time.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Determine the NHG ID spacing and lower bound with ZEBRA_ROUTE_MAX
in macros.
Directly set the upperbound to be the lower 28bits of the uint32_t ID
space (the top 4 are reserved for l2-NHGs). Round that number down
a bit to make it more even.
Convert all former lower_bound calls to just use the macro.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
When we receive a NHG from the kernel, we set the ID counter
to that to avoid using IDs owned from the kernel.
If we get one outside of zebra's range, lets not update it
since its probably one we created and never deleted anyway.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
For now let's assume proto-NHG-based routes are good to go
(we assume they are onlink/interface based anyway) and bypass
route resolution altogether.
Once we determine how to handle recursive nexthop-resolution for
proto-NHGs we will revisit this.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Add code to properly handle routes sent with NHG ID rather
than a nexthop_group.
For now, we separate this from backup nexthop handling since that
should probably be added to the nhg_proto_add calls.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Implement the ability to replace an NHG sent down
from an upper level proto. With proto-owned NHGs, we make the
assumption they are ecmp and always treat them as a group
to make the replace from 1 -> 2 and 2 -> 1 quite a bit
easier.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
To prevent duplication of singleton NHGs, lets hash
any zebra-ID spaced NHGs sent from an upper level proto.
These would be singleton NHGs anyway and should prevent duplication
of dataplane installs.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Add a command/functionality to only install proto-based nexthops.
That is nexthops owned/created by upper level protocols, not ones
implicitly created by zebra.
There are some scenarios where you would not want zebra to be
arbitrarily installing nexthop groups and but you still want
to use ones you have control over via lib/nexthop_group config
and an upper level protocol.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Implement the underlying zebra functionality to Add/Del an
internal zebra and kernel NHG.
These NHGs are managed by the upperlevel protocols that send them
down via zapi messaging.
They are not put into the overall zebra NHG hash table and only
put into to the ID table. Therefore, different protos cannot
and will not share NHGs.
The proto is also set appropriately when sent to the kernel.
Expand the separation of Zebra hashed/shared/created NHGs and
proto created and mangaged NHGs.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Remove the code for setting a NHG as unhashable. Originally
this was to prevent us from attempting to put duplicates from
the kernel in our hashtable.
Now I think its better to not use them in the hashtable at all
and only track them in the ID table. Routes will still be able
to use them if they specify the ID explicitly when sending Zebra
the route, but 'normal' routes we hash the nexthop group on
will not.
Signed-off-by: Stephen Worley <sworley@cumulusnetworks.com>
Modify the send down of a route to use the nexthop group id
if we have one associated with the route.
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
Add the ability to send a NHG from an upper level protocol down to
zebra. ZAPI_NHG_ADD encompasses both the addition and replace
semantics ( If the id passed down does not exist yet, it's Add,
else it's a replace ).
Effectively zebra will take this nhg passed down save the nhg
in the id hash for nhg's and then create the appropriate nhg's
and finally install them into the linux kernel. Notification
will be the ZAPI_NHG_NOTIFY_OWNER zapi message for normal
success/failure messaging to the installing protocol.
This work is being done to allow us to work with EVPN MH
which needs the ability to modify NHG's that BGP will own
and operate on.
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
Take the zebra code that reads nexthops and combine it
into one function so that when we add zapi messages
to send/receive nexthops we can take advantage of this function.
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
When attempting to limit the amount of data sent from the kernel
to FRR, some kernels we can run against may not have this ability
in which case the setsockopt will fail. Notice that in the log.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Add new compile option to enable human readable netlink dumps with
`debug zebra kernel msgdump`.
Signed-off-by: Rafael Zalamena <rzalamena@opensourcerouting.org>
The mlag_rd_buf_offset function was only ever being set to 0
in the mlag_read function and only written in that function.
There is no need for this global variable.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
This problem was reported by the sanitizer -
=================================================================
==24764==ERROR: AddressSanitizer: heap-use-after-free on address 0x60d0000115c8 at pc 0x55cb9cfad312 bp 0x7fffa0552140 sp 0x7fffa0552138
READ of size 8 at 0x60d0000115c8 thread T0
#0 0x55cb9cfad311 in zebra_evpn_remote_es_flush zebra/zebra_evpn_mh.c:2041
#1 0x55cb9cfad311 in zebra_evpn_es_cleanup zebra/zebra_evpn_mh.c:2234
#2 0x55cb9cf6ae78 in zebra_vrf_disable zebra/zebra_vrf.c:205
#3 0x7fc8d478f114 in vrf_delete lib/vrf.c:229
#4 0x7fc8d478f99a in vrf_terminate lib/vrf.c:541
#5 0x55cb9ceba0af in sigint zebra/main.c:176
#6 0x55cb9ceba0af in sigint zebra/main.c:130
#7 0x7fc8d4765d20 in quagga_sigevent_process lib/sigevent.c:103
#8 0x7fc8d4787e8c in thread_fetch lib/thread.c:1396
#9 0x7fc8d4708782 in frr_run lib/libfrr.c:1092
#10 0x55cb9ce931d8 in main zebra/main.c:488
#11 0x7fc8d43ee09a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a)
#12 0x55cb9ce94c09 in _start (/usr/lib/frr/zebra+0x8ac09)
=================================================================
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
The read/write mlag buffer sizes of 2k were sufficient
for ~100 S,G notifications at one go. Increase to 32k
to give us 16 times the space.
Ticket: CM-31576
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
If we receive a message that is greater than our buffer
size we are in a situation where both the read and write
buffers are fubar'ed beyond the end. Assert when we notice
this fact.
Ticket: CM-31576
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
The normal pattern of writing the type/length at the beginning
of the packet was not being quite followed. Modify the mlag
code to respect the proper way of doing things and get rid
of a stream_new and copy.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
The neigh hold timer was firing after the neigh was deleted resulting
in the following crash -
[
at ./zebra/zebra_evpn_neigh.h:155
at zebra/zebra_evpn_neigh.c:447
at lib/thread.c:1578
at zebra/main.c:488
]
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
Found that the command "evpn mh neigh-holdtime" can be set but
not deleted. This fix solves the delete process
Signed-off-by: Don Slice <dslice@cumulusnetworks.com>
When an ES peer withdraws a MAC-IP route we hold the entry for N seconds
to allow an external daemon (neighmgr) to establish host reachability
independent of the peer. Add config commands to allow the user to set
this holdtime (N).
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
Let's not make the entire `depend_finds` function pay
for the data gathering needed for the debug. There
are numerous other places in the code that check
the NEXTHOP_FLAG_RECURSIVE and do the same output.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
The linux kernel is getting RTM_F_TRAP and RTM_F_OFFLOAD for
kernel routes that have an underlying asic offload. Write the
code to receive these notifications from the linux kernel and
to store that data for display about the routes.
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
Some linux kernels are starting to support the idea of knowledge
about the underlying asic. Add a boolean that we can set/unset
to track whether or not we think the router has this functionality
available.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
The Solaris code has gone through a deprecation cycle. No-one
has said anything to us and worse of all we don't have any test
systems running Solaris to know if we are making changes that
are breaking on Solaris. Remove it from the system so
we can clean up a bit.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Code was added in the past to support a value of VRF_DEFAULT different
from 0. This option was abandoned, the default vrf id is always 0.
Remove this code, this will simplify the code and improve performance
(use a constant value instead of a function that performs tests).
Signed-off-by: Christophe Gouault <christophe.gouault@6wind.com>
In all outputs (text and json): simplify and optimize the vrf name
display, use the vrf_id_to_name() handler.
Note: vrf_id_to_name() has a safeguard system that prevents from
crashing when the vrf cannot be found because it changed in some
(unexpected) manner, it returns "n/a".
Note: "vrf n/a" will now be displayed instead of "vrf UNKNOWN" in this
case, like in most other frr components.
This safeguard was missing for show ip route json, so this
optimization also fixes a potential crash.
Signed-off-by: Christophe Gouault <christophe.gouault@6wind.com>
Variable "show ip route" commands invoke the same helper
(do_show_ip_route), potentially several times.
When asking to dump a non-default vrf, all vrfs or all tables, the
output is messy, the header summarizing abbreviations is repeated
several times, excess line feeds appear, the default table of default
VRF is concatenated to the previous table output...
Normalize the output:
- whatever the case, display the common header at most once, if there
is at least an entry to dump.
- when using a "vrf all" or "table all" command, prepend a line with
the VRF and table (even for the default vrf or table).
- when dumping a specific vrf or table, prepend a line with the VRF
and table.
Example (vrf all)
=================
router# show ip route vrf all
Codes: K - kernel route, C - connected, S - static, R - RIP,
O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
F - PBR, f - OpenFabric,
> - selected route, * - FIB route, q - queued route, r - rejected route
VRF main:
C>* 10.0.2.0/24 is directly connected, mgmt0, 00:24:09
K>* 10.0.2.2/32 [0/100] is directly connected, mgmt0, 00:24:09
C>* 10.125.0.0/24 is directly connected, ntfp2, 00:00:26
VRF private:
S>* 1.1.1.0/24 [1/0] via 10.125.0.2, loop0, 00:00:29
C>* 10.125.0.0/24 is directly connected, loop0, 00:00:42
Example (main vrf)
==================
router# show ip route
Codes: K - kernel route, C - connected, S - static, R - RIP,
O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
F - PBR, f - OpenFabric,
> - selected route, * - FIB route, q - queued route, r - rejected route
C>* 10.0.2.0/24 is directly connected, mgmt0, 00:24:41
K>* 10.0.2.2/32 [0/100] is directly connected, mgmt0, 00:24:41
C>* 10.125.0.0/24 is directly connected, ntfp2, 00:00:58
Example (specific vrf)
======================
router# show ip route vrf private
Codes: K - kernel route, C - connected, S - static, R - RIP,
O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
F - PBR, f - OpenFabric,
> - selected route, * - FIB route, q - queued route, r - rejected route
VRF private:
S>* 1.1.1.0/24 [1/0] via 10.125.0.2, loop0, 00:01:23
C>* 10.125.0.0/24 is directly connected, loop0, 00:01:36
Example (all tables)
====================
router# show ip route table all
Codes: K - kernel route, C - connected, S - static, R - RIP,
O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
F - PBR, f - OpenFabric,
> - selected route, * - FIB route, q - queued route, r - rejected route
VRF main table 200:
S>* 4.4.4.4/32 [1/0] via 10.125.0.3, ntfp2, 00:01:51
VRF main table 254:
C>* 10.0.2.0/24 is directly connected, mgmt0, 00:25:34
K>* 10.0.2.2/32 [0/100] is directly connected, mgmt0, 00:25:34
C>* 10.125.0.0/24 is directly connected, ntfp2, 00:01:51
Example (all vrf, all table)
============================
router# show ip route table all vrf all
Codes: K - kernel route, C - connected, S - static, R - RIP,
O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
F - PBR, f - OpenFabric,
> - selected route, * - FIB route, q - queued route, r - rejected route
VRF main table 200:
S>* 4.4.4.4/32 [1/0] via 10.125.0.3, ntfp2, 00:02:15
VRF main table 254:
C>* 10.0.2.0/24 is directly connected, mgmt0, 00:25:58
K>* 10.0.2.2/32 [0/100] is directly connected, mgmt0, 00:25:58
C>* 10.125.0.0/24 is directly connected, ntfp2, 00:02:15
VRF private table 200:
S>* 2.2.2.0/24 [1/0] via 10.125.0.2, loop0, 00:02:18
VRF private table 254:
S>* 1.1.1.0/24 [1/0] via 10.125.0.2, loop0, 00:02:18
C>* 10.125.0.0/24 is directly connected, loop0, 00:02:31
Example (specific table)
========================
router# show ip route table 200
Codes: K - kernel route, C - connected, S - static, R - RIP,
O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
F - PBR, f - OpenFabric,
> - selected route, * - FIB route, q - queued route, r - rejected route
VRF main table 200:
S>* 4.4.4.4/32 [1/0] via 10.125.0.3, ntfp2, 00:05:26
Signed-off-by: Christophe Gouault <christophe.gouault@6wind.com>
This series of events:
$ sudo ifconfig lo0 add 4.4.4.4/32
$ sudo ifconfig lo0 inet 4.4.4.4/32 delete
would end up leaving the 4.4.4.4/32 address on the interface under
freebsd.
This all boils down to the fact that the interface is not
considered connected yet we have a destination. If the
destination is the same and we are not connected ignore
it on freebsd.
I am sure there are other fun scenarios that someone
will have to squirrel out.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Problem commit -
[
b169fd6fd5 zebra: support for MAC-IP sync routes
]
That commit had accidentally replaced a mac-ip del to bgp with a mac
del (consequence of a bad cut-paste).
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
Changes to setup peer-synced as static in the dataplane. This prevents
them from being flushed out when the local switch cannot establish
their reachability.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
As a part of the re-factoring some of the evpn_vni_es apis got re-named
as evpn_evpn_es. Changed them to evpn_es_evi to make it common to
vxlan and mpls.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
When a MAC is detected duplicate on a local
learn event (with freeze action),
do not send update to bgp to advertise into
evpn control plane.
With evpn mh, inform_client flag is set and
sends notification to bgp albeit dup detect
is set.
Check mac are detected as duplicate before
setting inform_client to true.
Ticket:CM-29817
Reviewed By:CCR-10329
Testing Done:
Enable DAD with freeze action
Upon local learn MAC detected as duplica
Signed-off-by: Chirag Shah <chirag@cumulusnetworks.com>
When installing rules pass by the interface name across
zapi.
This is being changed because we have a situation where
if you quickly create/destroy ephermeal interfaces under
linux the upper level protocol may be trying to add
a rule for a interface that does not quite exist
at the moment. Since ip rules actually want the
interface name ( to handle just this sort of situation )
convert over to passing the interface name and storing
it and using it in zebra.
Ticket: CM-31042
Signed-off-by: Stephen Worley <sworley@nvidia.com>
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
this is used when parsing the newly network namespaces. actually, to
track the link of some interfaces like vxlan interfaces, both link index
and link nsid are necessary. if a vxlan interface is moved to a new
netns, the link information is in the default network namespace, then
LINK_NSID is the value of the netns by default in the new netns. That
value of the default netns in the new netns is not known, because the
system does not automatically assign an NSID of default network
namespace in the new netns. Now a new NSID of default netns, seen from
that new netns, is created. This permits to store at netns creation the
default netns relative value for further usage.
Because the default netns value is set from the new netns perspective,
it is not needed anymore to use the NETNSA_TARGET_NSID attribute only
available in recent kernels.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
the walk routine is used by vxlan service to identify some contexts in
each specific network namespace, when vrf netns backend is used. that
walk mechanism is extended with some additional paramters to the walk
routine.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
when duplicate address detection is observed, some incrementation,
some timing mechanisms need to be done. For that the main evpn
configuration is retrieved. Until now, the VRF that was storing the dad
config parameters was the same VRF that hosted the VXLAN interface. With
netns backend, this is not true, as the VXLAN interface is in the
same VRF as the bridge interface. The modification takes same definition
as in BGP, that is to say that there is a single bgp evpn instance, and
this is that instance that will give the correct config settings.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
this change is needed when a MAC/IP entry is learned by zebra, and the
entry happens to be in a different namespace. So that the entry be
active, the correct vni match has to be found.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
1. MAC ref of a zero ESI was accidentally creating a new ES with zero
ES id.
2. When an ES was deleted and re-added the ES was not being sent to BGP
because of a stale flag that suppressed the update as a dup.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
When we get a rib deletion event and we already have
that particular route node in the queue to be reprocessed,
just note that someone from kernel land has done us dirty
and allow it to be cleaned up by normal processing
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
Imagine a situation where a interface is bouncing up/down.
The interface comes up and daemons like pbr will get a nht
tracking callback for a connected interface up and will install
the routes down to zebra. At this same time the interface can
go down. But since zebra is busy handling route changes ( from pbr )
it has not read the netlink message and can get into a situation
where the route resolves properly and then we attempt to install
it into the kernel( which is rejected ). If the interface
bounces back up fast at this point, the down then up netlink
message will be read and create two route entries off the connected
route node. Zebra will then enqueue both route entries for future processing.
After this processing happens the down/up is collapsed into an up
and nexthop tracking sees no changes and does not inform any upper
level protocol( in this case pbr ) that nexthop tracking has changed.
So pbr still believes the nexthops are good but the routes are not
installed since pbr has taken no action.
Fix this by immediately running rnh when we signal a connected
route entry is scheduled for removal. This should cause
upper level protocols to get a rnh notification for the small
amount of time that the connected route was bouncing around like
a madman.
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
It was wrongly assumed that the kernel is replying in batches when multiple
requests fail. The kernel sends one error message at a time, so we can
simply keep reading data from the socket as long as possible.
Signed-off-by: Jakub Urbańczyk <xthaid@gmail.com>
During testing it was noticed that routes were considered
installed by zebra, but the kernel did not have the route.
Upon close debugging of the rib it was noticed that FRR
was turning a dplane_ctx_route_init into a success and
FRR was now in a bad state.
2020/08/26 17:55:53.897436 PBR: route_notify_owner: [0.0.0.0/0] Route Removed succeeded for table: 10012
2020/08/26 17:55:53.897572 ZEBRA: 0.0.0.0/0: uptime == 432033, type == 24, instance == 0, table == 10012
2020/08/26 17:55:53.897622 ZEBRA: rib_meta_queue_add: (0:10012):0.0.0.0/0: queued rn 0x5566b0ea7680 into sub-queue 5
2020/08/26 17:55:53.907637 ZEBRA: default(0:10012):0.0.0.0/0: Processing rn 0x5566b0ea7680
2020/08/26 17:55:53.907665 ZEBRA: default(0:10012):0.0.0.0/0: Examine re 0x5566b0d01200 (pbr) status 2 flags 1 dist 200 metric 0
2020/08/26 17:55:53.907702 ZEBRA: default(0:10012):0.0.0.0/0: After processing: old_selected 0x0 new_selected 0x5566b0d01200 old_fib 0x0 new_fib 0x5566b0d01200
2020/08/26 17:55:53.907713 ZEBRA: default(0:10012):0.0.0.0/0: Adding route rn 0x5566b0ea7680, re 0x5566b0d01200 (pbr)
2020/08/26 17:55:53.907879 ZEBRA: default(0:10012):0.0.0.0/0: rn 0x5566b0ea7680 dequeued from sub-queue 5
2020/08/26 17:55:53.907943 ZEBRA: netlink_route_multipath: RTM_NEWROUTE 0.0.0.0/0 vrf 0(10012)
2020/08/26 17:55:53.910756 ZEBRA: default(0:10012):0.0.0.0/0 Processing dplane result ctx 0x5566b0ea82f0, op ROUTE_INSTALL result SUCCESS
2020/08/26 17:55:53.910769 ZEBRA: update_from_ctx: default(0:10012):0.0.0.0/0: SELECTED, re 0x5566b0d01200
2020/08/26 17:55:53.910785 ZEBRA: default(0:10012):0.0.0.0/0 update_from_ctx(): no fib nhg
2020/08/26 17:55:53.910793 ZEBRA: default(0:10012):0.0.0.0/0 update_from_ctx(): rib nhg matched, changed 'true'
2020/08/26 17:55:53.910802 ZEBRA: (0:10012):0.0.0.0/0: Redist update re 0x5566b0d01200 (pbr), old 0x0 (None)
2020/08/26 17:55:53.910812 ZEBRA: Notifying Owner: 24 about prefix 0.0.0.0/0(10012) 2 vrf: 0
2020/08/26 17:55:53.910912 PBR: route_notify_owner: [0.0.0.0/0] Route installed succeeded for table: 10012
2020/08/26 17:55:55.400516 ZEBRA: RTM_DELROUTE 0.0.0.0/0 vrf default(0) table_id: 10012 metric: 20 Admin Distance: 0
2020/08/26 17:55:55.400527 ZEBRA: rib_delete: (0:10012):0.0.0.0/0: rn 0x5566b0ea7680, re 0x5566b0d01200 (pbr) was deleted from kernel, adding
We were receiving a notification from the kernel that the route was deleted and deciding
that we needed to reinstall it. At that point in time when it got into the dplane
handlers to convert it to the dplane pthread, the dplane decided to drop the request
convert it too a success and not do anything.
This code change removes the conversion from this failure to success and
notifies the upper level about it. After this change the default route
to table 10012 is now properly marked as rejected:
root@mlx-2700-07:mgmt:/var/log/frr# vtysh -c "show ip route table 10012"
Codes: K - kernel route, C - connected, S - static, R - RIP,
O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
F - PBR, f - OpenFabric,
> - selected route, * - FIB route, q - queued route, r - rejected route
VRF default table 10012:
F>r 0.0.0.0/0 [200/0] via 172.168.1.164, isp2-uplink (vrf PUBLIC), weight 1, 00:24:48
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
When we are not using nexthop groups, there is no need to
test for whether or not they are installed correctly or not
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
The fuzzing code that is in the master branch is outdated and unused, so it
is worth to remove it to improve readablity of the code.
All the code related to the fuzzing is in the `fuzz` branch.
Signed-off-by: Jakub Urbańczyk <xthaid@gmail.com>
in order to create appropriate policy route, family attribute is stored
in ipset and iptable zapi contexts. This commit also adds the flow label
attribute in iptables, for further usage.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
When turning on `debug zebra packet detail` or `debug zebra packet recv detail`
only display the detailed packet dump when `detail` is added.
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
There are a bunch of places where the table id is not being outputed
in debug messages for routing changes. Add in the table id we
are operating on. This is especially useful for the case where
pbr is working.
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
all network namespaces are read so as to collect interesting fdb and
neighbor tables for EVPN.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
this information is necessary for local information, because the
interface associated to the mac address is stored with its ifindex, and
the ifindex may not be enough to get to the right interface when it
comes with multiple network namespaces.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
when working with vrf netns backend, two bridges interfaces may have the
same bridge interface index, but not the same namespace. because in vrf
netns backend mode, a bridge slave always belong to the same network
namespace, then a check with the namespace id and the ns id of the
bridge interface permits to resolve correctly the interface pointer.
The problem could occur if a same index of two bridge interfaces can be
found on two different namespaces.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
when receiving a netlink API for an interface in a namespace, this
interface may come with LINK_NSID value, which means that the interface
has its link in an other namespace. Unfortunately, the link_nsid value
is self to that namespace, and there is a need to know what is its
associated nsid value from the default namespace point of view.
The information collected previously on each namespace, can then be
compared with that value to check if the link belongs to the default
namespace or not.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
to be able to retrieve the network namespace identifier for each
namespace, the ns id is stored in each ns context. For default
namespace, the netns id is the same as that value.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
as remind, the netns identifiers are local to a namespace. that is to
say that for instance, a vrf <vrfx> will have a netns id value in one
netns, and have an other netns id value in one other netns.
There is a need for zebra daemon to collect some cross information, like
the LINK_NETNSID information from interfaces having link layer in an
other network namespace. For that, it is needed to have a global
overview instead of a relative overview per namespace.
The first brick of this change is an API that sticks to netlink API,
that uses NETNSA_TARGET_NSID. from a given vrf vrfX, and a new vrf
created vrfY, the API returns the value of nsID from vrfX, inside the
new vrf vrfY.
The brick also gets the ns id value of default namespace in each other
namespace. An additional value in ns.h is offered, that permits to
retrieve the default namespace context.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
an incoming bridge index has been found, that is linked with vxlan
interface, and the search for that bridge interface is done. In
vrf-lite, the search is done across the same default namespace, because
bridge and vxlan may not be in the same vrf. But this behaviour is wrong
when using vrf netns backend, as the bridge and the vxlan have to be in
the same vrf ( hence in the same network namespace). To comply with
that, use the netnamespace of the vxlan interface. Like that, the
appropriate nsid is passed as parameter, and consequently, the search is
correct, and the mac address passed to BGP will be ok too.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
other network namespaces are parsed because bridge interface can be
bridged with vxlan interfaces with a link in the default vrf that hosts
l2vpn.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
With vrf-lite mechanisms, it is possible to create layer 3 vnis by
creating a bridge interface in default vr, by creating a vxlan interface
that is attached to that bridge interface, then by moving the vxlan
interface to the wished vrf.
With vrf-netns mechanism, it is slightly different since bridged
interfaces can not be separated in different network namespaces. To make
it work, the setup consists in :
- creating a vxlan interface on default vrf.
- move the vxlan interface to the wished vrf ( with an other netns)
- create a bridge interface in the wished vrf
- attach the vxlan interface to that bridged interface
from that point, if BGP is enabled to advertise vnis in default vrf,
then vxlan interfaces are discovered appropriately in other vrfs,
provided that the link interface still resides in the vrf where l2vpn is
advertised.
to import ipv4 entries from a separate vrf, into the l2vpn, the
configuration of vni in the dedicated vrf + the advertisement of ipv4
entries in bgp vrf will import the entries in the bgp l2vpn.
the modification consists in parsing the vxlan interfaces in all network
namespaces, where the link resides in the same network namespace as the
bgp core instance where bgp l2vpn is enabled.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
We can make the Linux kernel send an ARP/NDP request by adding
a neighbour with the 'NUD_INCOMPLETE' state and the 'NTF_USE' flag.
This commit adds new dataplane operation as well as new zapi message
to allow other daemons send ARP/NDP requests.
Signed-off-by: Jakub Urbańczyk <xthaid@gmail.com>
Reverting probing of neigh entry. There is a timing where
probe and remote macip add request comes at the same time resulting
in neigh to remain in local state event though it should be remote.
In mobility case, the host moves to remote VTEP, first MAC only type-2
route is received which triggers a PROBE of neighs (associated to MAC).
PROBE request can go via network port to remote VTEP.
PROBE request picks up local neigh with MAC entry's outgoing port is
remote VTEP tunnel port.
The PROBE reply and MAC-IP (containing IP) almost comes same time at
DUT.
DUT first processes remote macip and installs neigh as remote.
Followed by receives neigh as REACHABLE which marks neigh as LOCAL.
FRR does have BPF filter which does not allow its own netlink request
to receive. Otherwise frr's request to program neigh as remote can move
neigh from local to remote.
Though ordering can not be guranteed that REACHABLE (PROBE's repsonse)
can come at anytime and move it to LOCAL.
This fix would not suffice the needs of converging LOCAL inactive neighs
to remove from DB. As mobility draft sugges to PROBE local neigh when
MAC moves to remote but it is not working with current framework.
Ticket:CM-22864
This reverts commit 44bc8ae550
Signed-off-by: Chirag Shah <chirag@cumulusnetworks.com>
clone zebra_vxlan.c to create a file zebra_evpn.c for core
EVPN functions whilst retaining the history of zebra_vxlan.c
Signed-off-by: Pat Ruddy <pat@voltanet.io>
extract the neighbor uninstall part of
zebra_vxlan_handle_kernel_neigh_del into a new function
zebra_evpn_neigh_del_ip in zebra_evpn_neigh.c.
Signed-off-by: Pat Ruddy <pat@voltanet.io>
extract the neighbor uninstall part of process_remote_macip_add
into a new function zebra_evpn_neigh_remote_uninstall in
zebra_evpn_neigh.c.
Signed-off-by: Pat Ruddy <pat@voltanet.io>
extract the neighbor part of process_remote_macip_add into a new
function zebra_evpn_neigh_gw_macip_add in zebra_evpn_neigh.c.
Signed-off-by: Pat Ruddy <pat@voltanet.io>
extract the neighbor part of process_remote_macip_add into a new
function process_neigh_remote_macip_add in zebra_evpn_neigh.c.
Signed-off-by: Pat Ruddy <pat@voltanet.io>
clone zebra_vxlan.c to create a file zebra_evpn_neigh.c for neighbor
dB functions whilst retaining the history of zebra_vxlan.c
Signed-off-by: Pat Ruddy <pat@voltanet.io>
extract mac_gateway add code from zevi_gw_macip_add and move it to
a new generic function zebra_evpn_mac_gw_macip_add in zebra_evpn_mac.c
Signed-off-by: Pat Ruddy <pat@voltanet.io>
extract generic local mac add code from zebra_vxlan_local_mac_del
into a new function zebra_evpn_del_local_mac in zebra_evpn_mac.c
Signed-off-by: Pat Ruddy <pat@voltanet.io>
extract the local mac add code from zebra_vxlan_local_mac_add_update
and create a new generic local mac add function
zebra_evpn_add_update_local_mac
Signed-off-by: Pat Ruddy <pat@voltanet.io>
Move MAC add code from process_remote_macip_add in zebra_vxlan.c
to a generic function process_mac_remote_macip_add in
zebra_evpn_mac.c
Signed-off-by: Pat Ruddy <pat@voltanet.io>
clone zebra_vxlan.c to create a file zebra_evpn_mac.c for MAC dB
functions whilst retaining the history of zebra_vxlan.c
Signed-off-by: Pat Ruddy <pat@voltanet.io>
The main zebra_vni_t hash structure has been renamed to zebra_evpn_t
to allow for other transport underlays. Rename functions and variables
to reflect this change.
Signed-off-by: Pat Ruddy <pat@voltanet.io>
Configuration example:
ip route 9.9.9.9/32 6.6.6.6 color 123
The SR Policy to be chosen is uniquely identified by the policy
endpoint (6.6.6.6) and the SR-TE color (123). Traffic will be
augmented with an MPLS label stack according to the active
candidate path of that particular policy.
Co-authored-by: GalaxyGorilla <sascha@netdef.org>
Signed-off-by: Sebastien Merle <sebastien@netdef.org>
We were noticing registration time of the last nht time.
Let's just store the original time, although I am a bit
dubious about the usefulness of this.
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
As part of PR 6758 vrf vni converted to transactional cli.
Handle a scenario where vrf is not created yet (inactive) and vni
is mapped to the inactive vrf.
Testing Done:
bharat(config-vrf)# do show vrf
vrf vrf1 id 11 table 1001
vrf vrf5 inactive (configured)
bharat(config)# vrf vrf5
bharat(config-vrf)# vni 5005
bharat(config-vrf)# do show vrf vni
VRF VNI VxLAN IF L3-SVI State Rmac
vrf5 5005 None None Down None
bharat(config-vrf)# no vni 5005
bharat(config-vrf)# do show vrf vni
VRF VNI VxLAN IF L3-SVI State Rmac
Signed-off-by: Chirag Shah <chirag@cumulusnetworks.com>
For the sake of Segment Routing (SR) and Traffic Engineering (TE)
Policies there's a need for additional infrastructure within zebra.
The infrastructure in this PR is supposed to manage such policies
in terms of installing binding SIDs and LSPs. Also it is capable of
managing MPLS labels using the label manager, keeping track of
nexthops (for resolving labels) and notifying interested parties about
changes of a policy/LSP state. Further it enables a route map mechanism
for BGP and SR-TE colors such that learned BGP routes can be mapped
onto SR-TE Policies.
This PR does not introduce any usable features by now, it is just
infrastructure for other upcoming PRs which will introduce 'pathd',
a new SR-TE daemon.
Co-authored-by: Renato Westphal <renato@opensourcerouting.org>
Co-authored-by: GalaxyGorilla <sascha@netdef.org>
Signed-off-by: Sebastien Merle <sebastien@netdef.org>
For allocating a new label range the label manager will loop
the existing label chunks and compare the start and end labels
with the label range in question. In case a label range should
be re-allocated to the existing label chunk, the end label
of the chunk is not honored correctly, e.g. the new label
range has to be a true subset of the existing label chunk.
This is very easy reproducable by re-allocating a single label.
e.g. a label range of size 1.
This problem is fixed by allowing the mentioned 'end' labels to
be equal.
Signed-off-by: GalaxyGorilla <sascha@netdef.org>
It is causing build failures because of conflicts with netinet.
Instead I have re-defined the MAC-SYNC UAPIs in the re_netlink.c
This is clearly a hack that needs to be re-visited.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
MAC-IP routes are used for syncing local entries across redundant
switches in an EVPN-MH setup. A path from a peer that has a local
ES as destination is tagged as a SYNC path. The SYNC path results in the
addition of local MAC and/or local neigh entry in zebra and in the
dataplane.
Implementation overview
=======================
1. Three new flags "local-inactive", "peer-active" and "peer-proxy"
are maintained per-local-MAC and per-local-Neigh entry.
2. The "peer-XXX" flags are set and cleared via SYNC path updates
from BGP. Proxy sync paths result in the setting of "peer-proxy" flag
(and non-proxies result in the "peer-active").
3. A neigh entry that has a "peer-XXX" flag set is programmed as
"static" in the dataplane.
4. A MAC entry that has a "peer-XXX" flag set or is referenced by
a sync-neigh entry (that has a "peer-XXX" flags set) is programmed
as "static" in the dataplane.
5. The sync-seq number is used to normalize the MM seq number across
all the redundant switches i.e. the max MM seq number across all
switches is used by each of the switches. This commit also includes
the changes needed for extended MM seq syncing.
6. A MAC/neigh entry has to be local-active or peer-active to sent to
BGP. An entry that is NOT local-active is sent with the proxy flag (so
BGP can "proxy" advertise it).
7. The "peer-active" flag is aged out by zebra by using a hold_timer
(this is instead of being abruptly dropped on SYNC path delete). This
age-out is needed to handle peer-switch restart (procedures are specified
in draft-rbickhart-evpn-ip-mac-proxy-adv). The holdtime needs to be
sufficiently long to allow an external neighmgr daemon or the dataplane
component to independently probe and establish local reachability of a
host. The MAC and neigh hold time values are configurable.
PS: In the future this probing may happen in FRR itself.
CLI changes to display sync info
================================
MAC
===
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
root@torm-11:mgmt:~# net show evpn mac vni 1000
Number of MACs (local and remote) known for this VNI: 6
Flags: N=sync-neighs, I=local-inactive, P=peer-active, X=peer-proxy
MAC Type Flags Intf/Remote ES/VTEP VLAN Seq #'s
00:02:00:00:00:25 local vlan1000 1000 0/0
02:02:00:00:00:02 local PI hostbond1 1000 0/0
02:02:00:00:00:06 remote 03:00:00:00:00:02:11:00:00:01 0/0
02:02:00:00:00:01 local X hostbond1 1000 0/0
00:00:00:00:00:11 local PI hostbond1 1000 0/0
02:02:00:00:00:05 remote 03:00:00:00:00:02:11:00:00:01 0/0
root@torm-11:mgmt:~#
root@torm-11:mgmt:~# net show evpn mac vni 1000 mac 00:00:00:00:00:11
MAC: 00:00:00:00:00:11
ESI: 03:00:00:00:00:01:11:00:00:01
Intf: hostbond1(58) VLAN: 1000
Sync-info: neigh#: 0 local-inactive peer-active >>>>>>>>>>>>
Local Seq: 0 Remote Seq: 0
Neighbors:
No Neighbors
root@torm-11:mgmt:~#
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
neigh
=====
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
root@torm-11:mgmt:~# net show evpn arp vni 1003
Number of ARPs (local and remote) known for this VNI: 4
Flags: I=local-inactive, P=peer-active, X=peer-proxy
Neighbor Type Flags State MAC Remote ES/VTEP Seq #'s
2001:fee1:0:3::6 local active 00:02:00:00:00:25 0/0
45.0.3.66 local P active 00:02:00:00:00:66 0/0
45.0.3.6 local active 00:02:00:00:00:25 0/0
fe80::202:ff:fe00:25 local active 00:02:00:00:00:25 0/0
root@torm-11:mgmt:~#
root@torm-11:mgmt:~# net show evpn arp vni 1003 ip 45.0.3.66
IP: 45.0.3.66
Type: local
State: active
MAC: 00:02:00:00:00:66
Sync-info: peer-active >>>>>>>>>>>>>>>>
Local Seq: 0 Remote Seq: 0
root@torm-11:mgmt:~#
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>