The daemon creates a baseclass of either FuUsbDevice or FuUdevDevice when the
devices are added or coldplugged to match the quirk database and to find out
what plugin to run.
This is proxied to plugins, but they are given the GUsbDevice or GUdevDevice and
the FuDevice is just thrown away. Most plugins either use a FuUsbDevice or
superclassed version like FuNvmeDevice and so we re-create the FuDevice, re-probe
the hardware, re-query the quirk database and then return this to the daemon.
In some cases, plugins actually probe the hardware three times (!) by creating
a FuUsbDevice to get the quirks, so that the plugin knows what kind of
superclass to create, which then itself probes the hardware again.
Passing the temporary FuDevice to the plugins means that the simplest ones can
just fu_plugin_device_add() the passed in object, or create a superclass and
incorporate the actual GUsbDevice and all the GUIDs.
This breaks internal plugin API but speeds up startup substantially and deletes
a lot of code.
This pivots the data storage so that the group is used as the preconditon
and the key name is used as the parameter to change. This allows a more natural
data flow, where a new device needs one new group and a few few keys, rather
than multiple groups, each with one key.
This also allows us to remove the key globbing when matching the version format
which is often a source of confusion.
Whilst changing all the quirk files, change the key prefixes to be more familiar
to Windows users (e.g. Hwid -> Smbios, and FuUsbDevice -> DeviceInstanceId)
who have to use the same IDs in Windows Update.
This also allows us to pre-match the desired plugin, rather than calling the
probe() function on each plugin.
This means we can trivially support new devices in the future without compiling
any new code. This makes it easier to add support for new hardware for LTS
distros like RHEL.
This makes more sense; we're updating the device, not the plugin itself.
This also means we don't need to funnel everything through callbacks like
GFileProgressCallback and we can also update the state without adding an
explicit callback to each derived device type.
This saves all the USB plugins from connecting to the context and managing the
device lifecycle and allows devices that uses FuUsbDevice to be removed
automatically.
This makes supported plugins *much* smaller indeed.
It's actually less scary to see a SHA1 hash than it is to see a path like
/sys/devices/pci0000:00/0000:00:1d.0/usb1/1-1/1-1.2. It's also way easier to
copy and paste into the various fwupdmgr command that require a device ID and
also means we can match a partial prefix much like git allows.
If we also move to a model where plugins can be changed during different stages
of the update (e.g. during detach) then the device might change connection type
and then the sysfs path not only becomes difficult to paste, but incorrect.
Session software doesn't care about the format of the device ID (it is supposed
to be an implementation detail) and so there's no API or ABI break here. A few
plugins also needed to be ported, but nothing too worrying.
This allows us to show the devices in a GUI with a nice icon. Some of the icon
mappings are not perfect and I'll be asking the GNOME designers for some
additions to the icon specification.
Custom vendor icons can also be specified, and /usr/share/fwupd/icons would be
a good place to put them. If vendor icons are used they should show a physical
device with the branding, rather than just the vendor logo.
Over the months the original meaning of ALLOW_OFFLINE and ALLOW_ONLINE have be
lost, and there is now a confusing mixture of uses in the source tree. With this
commit we make it clear the UPDATABLE flag is used to specify when the device is
updatable (e.g. from the desktop live session, or from the systemd offline
updates mode, or both) and the NEEDS_REBOOT flag lets us know when the update
is actually going to be done.
For instance, a UEFI UpdateCapsule can be *scheduled* from either the desktop
or from the update mode (but the latter would be a bit weird), but does require
a reboot. Some devices might only be updatable outside the live session, for
instance a hard drive update or a GPU update -- there's just too much going on
with a live session and we want to tightly control what's running during the
firmware flash.
This also means we don't have to "retry" the update when scheduling an update
that really can be scheduled whenever, but just requires a reboot to apply.
This is a large commit that removes all the providers and turns them into
plugins. I think having both providers _and_ plugins was super confusing.
Plugins are loaded at runtime so you could in theory develop a new plugin
without putting it in the fwupd source tree, although there are no installed
headers or PC files as I'm not sure it's a good idea at this stage.
This commit moves all the per-provider docs, tests, notes, debug dumps and test
data to plugin-specific directories -- these also allows the plugin author to
"own" more of the source tree so we don't enforce fu- prefixes and the style
guide everywhere.
This allows us to run the same action on all the plugins in the future, so we
could have a prepare(FuPlugin, FuDevice) and cleanup(FuPlugin, FuDevice) run
on *all* plugins, so doing an update using one plugin would allow us to work
around hardware quirks in other plugins.
If I've broken your out-of-tree provider it's trivial to port to the new API
with sed and a fixed up build file. If you need help please let me know.