Commit Graph

1577 Commits

Author SHA1 Message Date
Peter Zijlstra
fd03c5b858 sched: Rework pick_next_task()
The current rule is that:

  pick_next_task() := pick_task() + set_next_task(.first = true)

And many classes implement it directly as such. Change things around
to make pick_next_task() optional while also changing the definition to:

  pick_next_task(prev) := pick_task() + put_prev_task() + set_next_task(.first = true)

The reason is that sched_ext would like to have a 'final' call that
knows the next task. By placing put_prev_task() right next to
set_next_task() (as it already is for sched_core) this becomes
trivial.

As a bonus, this is a nice cleanup on its own.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224016.051225657@infradead.org
2024-09-03 15:26:31 +02:00
Peter Zijlstra
4686cc598f sched: Clean up DL server vs core sched
Abide by the simple rule:

  pick_next_task() := pick_task() + set_next_task(.first = true)

This allows us to trivially get rid of server_pick_next() and things
collapse nicely.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224015.837303391@infradead.org
2024-09-03 15:26:31 +02:00
Peter Zijlstra
dae4320b29 sched: Fixup set_next_task() implementations
The rule is that:

  pick_next_task() := pick_task() + set_next_task(.first = true)

Turns out, there's still a few things in pick_next_task() that are
missing from that combination.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224015.724111109@infradead.org
2024-09-03 15:26:30 +02:00
Valentin Schneider
75b6499024 sched/fair: Properly deactivate sched_delayed task upon class change
__sched_setscheduler() goes through an enqueue/dequeue cycle like so:

  flags := DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
  prev_class->dequeue_task(rq, p, flags);
  new_class->enqueue_task(rq, p, flags);

when prev_class := fair_sched_class, this is followed by:

  dequeue_task(rq, p, DEQUEUE_NOCLOCK | DEQUEUE_SLEEP);

the idea being that since the task has switched classes, we need to drop
the sched_delayed logic and have that task be deactivated per its previous
dequeue_task(..., DEQUEUE_SLEEP).

Unfortunately, this leaves the task on_rq. This is missing the tail end of
dequeue_entities() that issues __block_task(), which __sched_setscheduler()
won't have done due to not using DEQUEUE_DELAYED - not that it should, as
it is pretty much a fair_sched_class specific thing.

Make switched_from_fair() properly deactivate sched_delayed tasks upon
class changes via __block_task(), as if a
  dequeue_task(..., DEQUEUE_DELAYED)
had been issued.

Fixes: 2e0199df25 ("sched/fair: Prepare exit/cleanup paths for delayed_dequeue")
Reported-by: "Paul E. McKenney" <paulmck@kernel.org>
Reported-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20240829135353.1524260-1-vschneid@redhat.com
2024-09-03 15:26:30 +02:00
Kaiyang Zhao
03790c51a4 mm: create promo_wmark_pages and clean up open-coded sites
Patch series "mm: print the promo watermark in zoneinfo", v2.


This patch (of 2):

Define promo_wmark_pages and convert current call sites of wmark_pages
with fixed WMARK_PROMO to using it instead.

Link: https://lkml.kernel.org/r/20240801232548.36604-1-kaiyang2@cs.cmu.edu
Link: https://lkml.kernel.org/r/20240801232548.36604-2-kaiyang2@cs.cmu.edu
Signed-off-by: Kaiyang Zhao <kaiyang2@cs.cmu.edu>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-01 20:25:58 -07:00
Zi Yan
2a28713a67 memory tiering: introduce folio_use_access_time() check
If memory tiering mode is on and a folio is not in the top tier memory,
folio's cpupid field is repurposed to store page access time.  Instead of
an open coded check, use a function to encapsulate the check.

Link: https://lkml.kernel.org/r/20240724130115.793641-3-ziy@nvidia.com
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-01 20:25:47 -07:00
Tejun Heo
5ac998574f Merge branch 'tip/sched/core' into for-6.12
To receive 863ccdbb91 ("sched: Allow sched_class::dequeue_task() to fail")
which makes sched_class.dequeue_task() return bool instead of void. This
leads to compile breakage and will be fixed by a follow-up patch.

Signed-off-by: Tejun Heo <tj@kernel.org>
2024-08-20 08:55:26 -10:00
Caleb Sander Mateos
e68ac2b488 softirq: Remove unused 'action' parameter from action callback
When soft interrupt actions are called, they are passed a pointer to the
struct softirq action which contains the action's function pointer.

This pointer isn't useful, as the action callback already knows what
function it is. And since each callback handles a specific soft interrupt,
the callback also knows which soft interrupt number is running.

No soft interrupt action callback actually uses this parameter, so remove
it from the function pointer signature. This clarifies that soft interrupt
actions are global routines and makes it slightly cheaper to call them.

Signed-off-by: Caleb Sander Mateos <csander@purestorage.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Link: https://lore.kernel.org/all/20240815171549.3260003-1-csander@purestorage.com
2024-08-20 17:13:40 +02:00
Peter Zijlstra
aef6987d89 sched/eevdf: Propagate min_slice up the cgroup hierarchy
In the absence of an explicit cgroup slice configureation, make mixed
slice length work with cgroups by propagating the min_slice up the
hierarchy.

This ensures the cgroup entity gets timely service to service its
entities that have this timing constraint set on them.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.948188417@infradead.org
2024-08-17 11:06:46 +02:00
Peter Zijlstra
857b158dc5 sched/eevdf: Use sched_attr::sched_runtime to set request/slice suggestion
Allow applications to directly set a suggested request/slice length using
sched_attr::sched_runtime.

The implementation clamps the value to: 0.1[ms] <= slice <= 100[ms]
which is 1/10 the size of HZ=1000 and 10 times the size of HZ=100.

Applications should strive to use their periodic runtime at a high
confidence interval (95%+) as the target slice. Using a smaller slice
will introduce undue preemptions, while using a larger value will
increase latency.

For all the following examples assume a scheduling quantum of 8, and for
consistency all examples have W=4:

  {A,B,C,D}(w=1,r=8):

  ABCD...
  +---+---+---+---

  t=0, V=1.5				t=1, V=3.5
  A  |------<				A          |------<
  B   |------<				B   |------<
  C    |------<				C    |------<
  D     |------<			D     |------<
  ---+*------+-------+---		---+--*----+-------+---

  t=2, V=5.5				t=3, V=7.5
  A          |------<			A          |------<
  B           |------<			B           |------<
  C    |------<				C            |------<
  D     |------<			D     |------<
  ---+----*--+-------+---		---+------*+-------+---

Note: 4 identical tasks in FIFO order

~~~

  {A,B}(w=1,r=16) C(w=2,r=16)

  AACCBBCC...
  +---+---+---+---

  t=0, V=1.25				t=2, V=5.25
  A  |--------------<                   A                  |--------------<
  B   |--------------<                  B   |--------------<
  C    |------<                         C    |------<
  ---+*------+-------+---               ---+----*--+-------+---

  t=4, V=8.25				t=6, V=12.25
  A                  |--------------<   A                  |--------------<
  B   |--------------<                  B                   |--------------<
  C            |------<                 C            |------<
  ---+-------*-------+---               ---+-------+---*---+---

Note: 1 heavy task -- because q=8, double r such that the deadline of the w=2
      task doesn't go below q.

Note: observe the full schedule becomes: W*max(r_i/w_i) = 4*2q = 8q in length.

Note: the period of the heavy task is half the full period at:
      W*(r_i/w_i) = 4*(2q/2) = 4q

~~~

  {A,C,D}(w=1,r=16) B(w=1,r=8):

  BAACCBDD...
  +---+---+---+---

  t=0, V=1.5				t=1, V=3.5
  A  |--------------<			A  |---------------<
  B   |------<				B           |------<
  C    |--------------<			C    |--------------<
  D     |--------------<		D     |--------------<
  ---+*------+-------+---		---+--*----+-------+---

  t=3, V=7.5				t=5, V=11.5
  A                  |---------------<  A                  |---------------<
  B           |------<                  B           |------<
  C    |--------------<                 C                    |--------------<
  D     |--------------<                D     |--------------<
  ---+------*+-------+---               ---+-------+--*----+---

  t=6, V=13.5
  A                  |---------------<
  B                   |------<
  C                    |--------------<
  D     |--------------<
  ---+-------+----*--+---

Note: 1 short task -- again double r so that the deadline of the short task
      won't be below q. Made B short because its not the leftmost task, but is
      eligible with the 0,1,2,3 spread.

Note: like with the heavy task, the period of the short task observes:
      W*(r_i/w_i) = 4*(1q/1) = 4q

~~~

  A(w=1,r=16) B(w=1,r=8) C(w=2,r=16)

  BCCAABCC...
  +---+---+---+---

  t=0, V=1.25				t=1, V=3.25
  A  |--------------<                   A  |--------------<
  B   |------<                          B           |------<
  C    |------<                         C    |------<
  ---+*------+-------+---               ---+--*----+-------+---

  t=3, V=7.25				t=5, V=11.25
  A  |--------------<                   A                  |--------------<
  B           |------<                  B           |------<
  C            |------<                 C            |------<
  ---+------*+-------+---               ---+-------+--*----+---

  t=6, V=13.25
  A                  |--------------<
  B                   |------<
  C            |------<
  ---+-------+----*--+---

Note: 1 heavy and 1 short task -- combine them all.

Note: both the short and heavy task end up with a period of 4q

~~~

  A(w=1,r=16) B(w=2,r=16) C(w=1,r=8)

  BBCAABBC...
  +---+---+---+---

  t=0, V=1				t=2, V=5
  A  |--------------<                   A  |--------------<
  B   |------<                          B           |------<
  C    |------<                         C    |------<
  ---+*------+-------+---               ---+----*--+-------+---

  t=3, V=7				t=5, V=11
  A  |--------------<                   A                  |--------------<
  B           |------<                  B           |------<
  C            |------<                 C            |------<
  ---+------*+-------+---               ---+-------+--*----+---

  t=7, V=15
  A                  |--------------<
  B                   |------<
  C            |------<
  ---+-------+------*+---

Note: as before but permuted

~~~

From all this it can be deduced that, for the steady state:

 - the total period (P) of a schedule is:	W*max(r_i/w_i)
 - the average period of a task is:		W*(r_i/w_i)
 - each task obtains the fair share:		w_i/W of each full period P

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.842834421@infradead.org
2024-08-17 11:06:45 +02:00
Peter Zijlstra
85e511df3c sched/eevdf: Allow shorter slices to wakeup-preempt
Part of the reason to have shorter slices is to improve
responsiveness. Allow shorter slices to preempt longer slices on
wakeup.

    Task                  |   Runtime ms  | Switches | Avg delay ms    | Max delay ms    | Sum delay ms     |

  100ms massive_intr 500us cyclictest NO_PREEMPT_SHORT

  1 massive_intr:(5)      | 846018.956 ms |   779188 | avg:   0.273 ms | max:  58.337 ms | sum:212545.245 ms |
  2 massive_intr:(5)      | 853450.693 ms |   792269 | avg:   0.275 ms | max:  71.193 ms | sum:218263.588 ms |
  3 massive_intr:(5)      | 843888.920 ms |   771456 | avg:   0.277 ms | max:  92.405 ms | sum:213353.221 ms |
  1 chromium-browse:(8)   |  53015.889 ms |   131766 | avg:   0.463 ms | max:  36.341 ms | sum:60959.230  ms |
  2 chromium-browse:(8)   |  53864.088 ms |   136962 | avg:   0.480 ms | max:  27.091 ms | sum:65687.681  ms |
  3 chromium-browse:(9)   |  53637.904 ms |   132637 | avg:   0.481 ms | max:  24.756 ms | sum:63781.673  ms |
  1 cyclictest:(5)        |  12615.604 ms |   639689 | avg:   0.471 ms | max:  32.272 ms | sum:301351.094 ms |
  2 cyclictest:(5)        |  12511.583 ms |   642578 | avg:   0.448 ms | max:  44.243 ms | sum:287632.830 ms |
  3 cyclictest:(5)        |  12545.867 ms |   635953 | avg:   0.475 ms | max:  25.530 ms | sum:302374.658 ms |

  100ms massive_intr 500us cyclictest PREEMPT_SHORT

  1 massive_intr:(5)      | 839843.919 ms |   837384 | avg:   0.264 ms | max:  74.366 ms | sum:221476.885 ms |
  2 massive_intr:(5)      | 852449.913 ms |   845086 | avg:   0.252 ms | max:  68.162 ms | sum:212595.968 ms |
  3 massive_intr:(5)      | 839180.725 ms |   836883 | avg:   0.266 ms | max:  69.742 ms | sum:222812.038 ms |
  1 chromium-browse:(11)  |  54591.481 ms |   138388 | avg:   0.458 ms | max:  35.427 ms | sum:63401.508  ms |
  2 chromium-browse:(8)   |  52034.541 ms |   132276 | avg:   0.436 ms | max:  31.826 ms | sum:57732.958  ms |
  3 chromium-browse:(8)   |  55231.771 ms |   141892 | avg:   0.469 ms | max:  27.607 ms | sum:66538.697  ms |
  1 cyclictest:(5)        |  13156.391 ms |   667412 | avg:   0.373 ms | max:  38.247 ms | sum:249174.502 ms |
  2 cyclictest:(5)        |  12688.939 ms |   665144 | avg:   0.374 ms | max:  33.548 ms | sum:248509.392 ms |
  3 cyclictest:(5)        |  13475.623 ms |   669110 | avg:   0.370 ms | max:  37.819 ms | sum:247673.390 ms |

As per the numbers the, this makes cyclictest (short slice) it's
max-delay more consistent and consistency drops the sum-delay. The
trade-off is that the massive_intr (long slice) gets more context
switches and a slight increase in sum-delay.

Chunxin contributed did_preempt_short() where a task that lost slice
protection from PREEMPT_SHORT gets rescheduled once it becomes
in-eligible.

[mike: numbers]
Co-Developed-by: Chunxin Zang <zangchunxin@lixiang.com>
Signed-off-by: Chunxin Zang <zangchunxin@lixiang.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Link: https://lkml.kernel.org/r/20240727105030.735459544@infradead.org
2024-08-17 11:06:45 +02:00
Peter Zijlstra
82e9d0456e sched/fair: Avoid re-setting virtual deadline on 'migrations'
During OSPM24 Youssef noted that migrations are re-setting the virtual
deadline. Notably everything that does a dequeue-enqueue, like setting
nice, changing preferred numa-node, and a myriad of other random crap,
will cause this to happen.

This shouldn't be. Preserve the relative virtual deadline across such
dequeue/enqueue cycles.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.625119246@infradead.org
2024-08-17 11:06:45 +02:00
Peter Zijlstra
fc1892becd sched/eevdf: Fixup PELT vs DELAYED_DEQUEUE
Note that tasks that are kept on the runqueue to burn off negative
lag, are not in fact runnable anymore, they'll get dequeued the moment
they get picked.

As such, don't count this time towards runnable.

Thanks to Valentin for spotting I had this backwards initially.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.514088302@infradead.org
2024-08-17 11:06:45 +02:00
Peter Zijlstra
54a58a7877 sched/fair: Implement DELAY_ZERO
'Extend' DELAY_DEQUEUE by noting that since we wanted to dequeued them
at the 0-lag point, truncate lag (eg. don't let them earn positive
lag).

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.403750550@infradead.org
2024-08-17 11:06:44 +02:00
Peter Zijlstra
152e11f6df sched/fair: Implement delayed dequeue
Extend / fix 86bfbb7ce4 ("sched/fair: Add lag based placement") by
noting that lag is fundamentally a temporal measure. It should not be
carried around indefinitely.

OTOH it should also not be instantly discarded, doing so will allow a
task to game the system by purposefully (micro) sleeping at the end of
its time quantum.

Since lag is intimately tied to the virtual time base, a wall-time
based decay is also insufficient, notably competition is required for
any of this to make sense.

Instead, delay the dequeue and keep the 'tasks' on the runqueue,
competing until they are eligible.

Strictly speaking, we only care about keeping them until the 0-lag
point, but that is a difficult proposition, instead carry them around
until they get picked again, and dequeue them at that point.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.226163742@infradead.org
2024-08-17 11:06:44 +02:00
Peter Zijlstra
781773e3b6 sched/fair: Implement ENQUEUE_DELAYED
Doing a wakeup on a delayed dequeue task is about as simple as it
sounds -- remove the delayed mark and enjoy the fact it was actually
still on the runqueue.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.888107381@infradead.org
2024-08-17 11:06:43 +02:00
Peter Zijlstra
f12e148892 sched/fair: Prepare pick_next_task() for delayed dequeue
Delayed dequeue's natural end is when it gets picked again. Ensure
pick_next_task() knows what to do with delayed tasks.

Note, this relies on the earlier patch that made pick_next_task()
state invariant -- it will restart the pick on dequeue, because
obviously the just dequeued task is no longer eligible.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.747330118@infradead.org
2024-08-17 11:06:43 +02:00
Peter Zijlstra
2e0199df25 sched/fair: Prepare exit/cleanup paths for delayed_dequeue
When dequeue_task() is delayed it becomes possible to exit a task (or
cgroup) that is still enqueued. Ensure things are dequeued before
freeing.

Thanks to Valentin for asking the obvious questions and making
switched_from_fair() less weird.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.631948434@infradead.org
2024-08-17 11:06:43 +02:00
Peter Zijlstra
e28b5f8bda sched/fair: Assert {set_next,put_prev}_entity() are properly balanced
Just a little sanity test..

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.486423066@infradead.org
2024-08-17 11:06:42 +02:00
Peter Zijlstra
fab4a808ba sched/fair: Re-organize dequeue_task_fair()
Working towards delaying dequeue, notably also inside the hierachy,
rework dequeue_task_fair() such that it can 'resume' an interrupted
hierarchy walk.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.977256873@infradead.org
2024-08-17 11:06:41 +02:00
Peter Zijlstra
863ccdbb91 sched: Allow sched_class::dequeue_task() to fail
Change the function signature of sched_class::dequeue_task() to return
a boolean, allowing future patches to 'fail' dequeue.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.864630153@infradead.org
2024-08-17 11:06:41 +02:00
Peter Zijlstra
3b3dd89b8b sched/fair: Unify pick_{,next_}_task_fair()
Implement pick_next_task_fair() in terms of pick_task_fair() to
de-duplicate the pick loop.

More importantly, this makes all the pick loops use the
state-invariant form, which is useful to introduce further re-try
conditions in later patches.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.725062368@infradead.org
2024-08-17 11:06:41 +02:00
Peter Zijlstra
c97f54fe6d sched/fair: Cleanup pick_task_fair()'s curr
With 4c456c9ad3 ("sched/fair: Remove unused 'curr' argument from
pick_next_entity()") curr is no longer being used, so no point in
clearing it.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.614707623@infradead.org
2024-08-17 11:06:41 +02:00
Peter Zijlstra
8e2e13ac61 sched/fair: Cleanup pick_task_fair() vs throttle
Per 54d27365ca ("sched/fair: Prevent throttling in early
pick_next_task_fair()") the reason check_cfs_rq_runtime() is under the
'if (curr)' check is to ensure the (downward) traversal does not
result in an empty cfs_rq.

But then the pick_task_fair() 'copy' of all this made it restart the
traversal anyway, so that seems to solve the issue too.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.501679876@infradead.org
2024-08-17 11:06:40 +02:00
Peter Zijlstra
949090eaf0 sched/eevdf: Remove min_vruntime_copy
Since commit e8f331bcc2 ("sched/smp: Use lag to simplify
cross-runqueue placement") the min_vruntime_copy is no longer used.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.395297941@infradead.org
2024-08-17 11:06:40 +02:00
Tejun Heo
924e2904da sched/fair: Make balance_fair() test sched_fair_runnable() instead of rq->nr_running
balance_fair() skips newidle balancing if rq->nr_running - there are already
tasks on the rq, so no need to try to pull tasks. This tests the total
number of queued tasks on the CPU instead of only the fair class, but is
still correct as the rq can currently only have fair class tasks while
balance_fair() is running.

However, with the addition of sched_ext below the fair class, this will not
hold anymore and make put_prev_task_balance() skip sched_ext's balance()
incorrectly as, when a CPU has only lower priority class tasks,
rq->nr_running would still be positive and balance_fair() would return 1
even when fair doesn't have any tasks to run.

Update balance_fair() to use sched_fair_runnable() which tests
rq->cfs.nr_running which is updated by bandwidth throttling. Note that
pick_next_task_fair() already uses sched_fair_runnable() in its optimized
path for the same purpose.

Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Reviewed-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/ZrFUjlCf7x3TNXB8@slm.duckdns.org
2024-08-07 12:44:16 +02:00
Tejun Heo
0df340ceae Merge branch 'sched/core' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip into for-6.12
Pull tip/sched/core to resolve the following four conflicts. While 2-4 are
simple context conflicts, 1 is a bit subtle and easy to resolve incorrectly.

1. 2c8d046d5d ("sched: Add normal_policy()")
   vs.
   faa42d2941 ("sched/fair: Make SCHED_IDLE entity be preempted in strict hierarchy")

The former converts direct test on p->policy to use the helper
normal_policy(). The latter moves the p->policy test to a different
location. Resolve by converting the test on p->plicy in the new location to
use normal_policy().

2. a7a9fc5492 ("sched_ext: Add boilerplate for extensible scheduler class")
   vs.
   a110a81c52 ("sched/deadline: Deferrable dl server")

Both add calls to put_prev_task_idle() and set_next_task_idle(). Simple
context conflict. Resolve by taking changes from both.

3. a7a9fc5492 ("sched_ext: Add boilerplate for extensible scheduler class")
   vs.
   c245910049 ("sched/core: Add clearing of ->dl_server in put_prev_task_balance()")

The former changes for_each_class() itertion to use for_each_active_class().
The latter moves away the adjacent dl_server handling code. Simple context
conflict. Resolve by taking changes from both.

4. 60c27fb59f ("sched_ext: Implement sched_ext_ops.cpu_online/offline()")
   vs.
   31b164e2e4 ("sched/smt: Introduce sched_smt_present_inc/dec() helper")
   2f02735412 ("sched/core: Introduce sched_set_rq_on/offline() helper")

The former adds scx_rq_deactivate() call. The latter two change code around
it. Simple context conflict. Resolve by taking changes from both.

Signed-off-by: Tejun Heo <tj@kernel.org>
2024-08-04 07:36:54 -10:00
Tejun Heo
c8faf11cd1 Linux 6.11-rc1
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmamtfseHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGC20H/j6G3+7gYGDtSsl9
 5eH7UFzk18JeIG4c9Z5q9p2YVqdTggHOyWUA0qYBJWLyjpQa0q5SO+Qf2VwH8bH7
 NpHZQYIdRB6dy/MySZII/6KdOJobz779P8EOPVdPs6PaAmiwOwzdK4aHxhi3iQJv
 8QHmswjnT6t44p7WX1gZCUL2R3TL5hyA505BfPBz5OPBLkuuTArCBO8mZfTvk3R6
 fskKrVBC3oEb9Vgx/bycah9wTJn4ptPUGggaTnbu44RkhZcHfMiciqOrtMtYtqKx
 fmGQllbVQ8CHp4IBZ5nYfUB4E04Zg+XqNeYHa0T9R97e7crZ5iMKutujydmnhqA0
 r3Ca53w=
 =R3sl
 -----END PGP SIGNATURE-----

Merge tag 'v6.11-rc1' into for-6.12

Linux 6.11-rc1
2024-07-30 09:30:11 -10:00
Peter Zijlstra
cea5a3472a sched/fair: Cleanup fair_server
The throttle interaction made my brain hurt, make it consistently
about 0 transitions of h_nr_running.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2024-07-29 12:22:37 +02:00
Joel Fernandes (Google)
c8a85394cf sched/core: Fix picking of tasks for core scheduling with DL server
* Use simple CFS pick_task for DL pick_task

  DL server's pick_task calls CFS's pick_next_task_fair(), this is wrong
  because core scheduling's pick_task only calls CFS's pick_task() for
  evaluation / checking of the CFS task (comparing across CPUs), not for
  actually affirmatively picking the next task. This causes RB tree
  corruption issues in CFS that were found by syzbot.

* Make pick_task_fair clear DL server

  A DL task pick might set ->dl_server, but it is possible the task will
  never run (say the other HT has a stop task). If the CFS task is picked
  in the future directly (say without DL server), ->dl_server will be
  set. So clear it in pick_task_fair().

This fixes the KASAN issue reported by syzbot in set_next_entity().

(DL refactoring suggestions by Vineeth Pillai).

Reported-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: "Joel Fernandes (Google)" <joel@joelfernandes.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vineeth Pillai <vineeth@bitbyteword.org>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/b10489ab1f03d23e08e6097acea47442e7d6466f.1716811044.git.bristot@kernel.org
2024-07-29 12:22:37 +02:00
Daniel Bristot de Oliveira
a110a81c52 sched/deadline: Deferrable dl server
Among the motivations for the DL servers is the real-time throttling
mechanism. This mechanism works by throttling the rt_rq after
running for a long period without leaving space for fair tasks.

The base dl server avoids this problem by boosting fair tasks instead
of throttling the rt_rq. The point is that it boosts without waiting
for potential starvation, causing some non-intuitive cases.

For example, an IRQ dispatches two tasks on an idle system, a fair
and an RT. The DL server will be activated, running the fair task
before the RT one. This problem can be avoided by deferring the
dl server activation.

By setting the defer option, the dl_server will dispatch an
SCHED_DEADLINE reservation with replenished runtime, but throttled.

The dl_timer will be set for the defer time at (period - runtime) ns
from start time. Thus boosting the fair rq at defer time.

If the fair scheduler has the opportunity to run while waiting
for defer time, the dl server runtime will be consumed. If
the runtime is completely consumed before the defer time, the
server will be replenished while still in a throttled state. Then,
the dl_timer will be reset to the new defer time

If the fair server reaches the defer time without consuming
its runtime, the server will start running, following CBS rules
(thus without breaking SCHED_DEADLINE). Then the server will
continue the running state (without deferring) until it fair
tasks are able to execute as regular fair scheduler (end of
the starvation).

Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/dd175943c72533cd9f0b87767c6499204879cc38.1716811044.git.bristot@kernel.org
2024-07-29 12:22:36 +02:00
Peter Zijlstra
557a6bfc66 sched/fair: Add trivial fair server
Use deadline servers to service fair tasks.

This patch adds a fair_server deadline entity which acts as a container
for fair entities and can be used to fix starvation when higher priority
(wrt fair) tasks are monopolizing CPU(s).

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/b6b0bcefaf25391bcf5b6ecdb9f1218de402d42e.1716811044.git.bristot@kernel.org
2024-07-29 12:22:36 +02:00
Tianchen Ding
faa42d2941 sched/fair: Make SCHED_IDLE entity be preempted in strict hierarchy
Consider the following cgroup:

                       root
                        |
             ------------------------
             |                      |
       normal_cgroup            idle_cgroup
             |                      |
   SCHED_IDLE task_A           SCHED_NORMAL task_B

According to the cgroup hierarchy, A should preempt B. But current
check_preempt_wakeup_fair() treats cgroup se and task separately, so B
will preempt A unexpectedly.
Unify the wakeup logic by {c,p}se_is_idle only. This makes SCHED_IDLE of
a task a relative policy that is effective only within its own cgroup,
similar to the behavior of NICE.

Also fix se_is_idle() definition when !CONFIG_FAIR_GROUP_SCHED.

Fixes: 304000390f ("sched: Cgroup SCHED_IDLE support")
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Don <joshdon@google.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20240626023505.1332596-1-dtcccc@linux.alibaba.com
2024-07-29 12:22:35 +02:00
Phil Auld
a58501fb83 sched: remove HZ_BW feature hedge
As a hedge against unexpected user issues commit 88c56cfeae
("sched/fair: Block nohz tick_stop when cfs bandwidth in use")
included a scheduler feature to disable the new functionality.
It's been a few releases (v6.6) and no screams, so remove it.

Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20240515133705.3632915-1-pauld@redhat.com
2024-07-29 12:22:34 +02:00
Zhang Qiao
c40dd90ac0 sched: Initialize the vruntime of a new task when it is first enqueued
When creating a new task, we initialize vruntime of the newly task at
sched_cgroup_fork(). However, the timing of executing this action is too
early and may not be accurate.

Because it uses current CPU to init the vruntime, but the new task
actually runs on the cpu which be assigned at wake_up_new_task().

To optimize this case, we pass ENQUEUE_INITIAL flag to activate_task()
in wake_up_new_task(), in this way, when place_entity is called in
enqueue_entity(), the vruntime of the new task will be initialized.

In addition, place_entity() in task_fork_fair() was introduced for two
reasons:
1. Previously, the __enqueue_entity() was in task_new_fair(),
in order to provide vruntime for enqueueing the newly task, the
vruntime assignment equation "se->vruntime = cfs_rq->min_vruntime" was
introduced by commit e9acbff648 ("sched: introduce se->vruntime").
This is the initial state of place_entity().

2. commit 4d78e7b656 ("sched: new task placement for vruntime") added
child_runs_first task placement feature which based on vruntime, this
also requires the new task's vruntime value.

After removing the child_runs_first and enqueue_entity() from
task_fork_fair(), this place_entity() no longer makes sense, so remove
it also.

Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20240627133359.1370598-1-zhangqiao22@huawei.com
2024-07-29 12:22:34 +02:00
Ingo Molnar
011b1134b8 Merge branch 'sched/urgent' into sched/core, to pick up fixes and refresh the branch
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024-07-11 10:42:33 +02:00
Tejun Heo
7b9f6c864a Merge branch 'sched/core' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip into for-6.11
d329605287 ("sched/fair: set_load_weight() must also call reweight_task()
for SCHED_IDLE tasks") applied to sched/core changes how reweight_task() is
called causing conflicts with e83edbf88f ("sched: Add
sched_class->reweight_task()"). Resolve the conflicts by taking
set_load_weight() changes from d329605287 and updating
sched_class->reweight_task() to take pointer to struct load_weight instead
of int prio.

Signed-off-by: Tejun Heo<tj@kernel.org>
2024-07-08 07:06:26 -10:00
Tejun Heo
d329605287 sched/fair: set_load_weight() must also call reweight_task() for SCHED_IDLE tasks
When a task's weight is being changed, set_load_weight() is called with
@update_load set. As weight changes aren't trivial for the fair class,
set_load_weight() calls fair.c::reweight_task() for fair class tasks.

However, set_load_weight() first tests task_has_idle_policy() on entry and
skips calling reweight_task() for SCHED_IDLE tasks. This is buggy as
SCHED_IDLE tasks are just fair tasks with a very low weight and they would
incorrectly skip load, vlag and position updates.

Fix it by updating reweight_task() to take struct load_weight as idle weight
can't be expressed with prio and making set_load_weight() call
reweight_task() for SCHED_IDLE tasks too when @update_load is set.

Fixes: 9059393e4e ("sched/fair: Use reweight_entity() for set_user_nice()")
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org # v4.15+
Link: http://lkml.kernel.org/r/20240624102331.GI31592@noisy.programming.kicks-ass.net
2024-07-04 15:59:52 +02:00
Josh Don
2feab2492d Revert "sched/fair: Make sure to try to detach at least one movable task"
This reverts commit b0defa7ae0.

b0defa7ae0 changed the load balancing logic to ignore env.max_loop if
all tasks examined to that point were pinned. The goal of the patch was
to make it more likely to be able to detach a task buried in a long list
of pinned tasks. However, this has the unfortunate side effect of
creating an O(n) iteration in detach_tasks(), as we now must fully
iterate every task on a cpu if all or most are pinned. Since this load
balance code is done with rq lock held, and often in softirq context, it
is very easy to trigger hard lockups. We observed such hard lockups with
a user who affined O(10k) threads to a single cpu.

When I discussed this with Vincent he initially suggested that we keep
the limit on the number of tasks to detach, but increase the number of
tasks we can search. However, after some back and forth on the mailing
list, he recommended we instead revert the original patch, as it seems
likely no one was actually getting hit by the original issue.

Fixes: b0defa7ae0 ("sched/fair: Make sure to try to detach at least one movable task")
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240620214450.316280-1-joshdon@google.com
2024-07-01 13:01:43 +02:00
Tejun Heo
2c8d046d5d sched: Add normal_policy()
A new BPF extensible sched_class will need to dynamically change how a task
picks its sched_class. For example, if the loaded BPF scheduler progs fail,
the tasks will be forced back on CFS even if the task's policy is set to the
new sched_class. To support such mapping, add normal_policy() which wraps
testing for %SCHED_NORMAL. This doesn't cause any behavior changes.

v2: Update the description with more details on the expected use.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
2024-06-18 10:09:17 -10:00
Tejun Heo
96fd6c65ef sched: Factor out update_other_load_avgs() from __update_blocked_others()
RT, DL, thermal and irq load and utilization metrics need to be decayed and
updated periodically and before consumption to keep the numbers reasonable.
This is currently done from __update_blocked_others() as a part of the fair
class load balance path. Let's factor it out to update_other_load_avgs().
Pure refactor. No functional changes.

This will be used by the new BPF extensible scheduling class to ensure that
the above metrics are properly maintained.

v2: Refreshed on top of tip:sched/core.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
2024-06-18 10:09:17 -10:00
Tejun Heo
e83edbf88f sched: Add sched_class->reweight_task()
Currently, during a task weight change, sched core directly calls
reweight_task() defined in fair.c if @p is on CFS. Let's make it a proper
sched_class operation instead. CFS's reweight_task() is renamed to
reweight_task_fair() and now called through sched_class.

While it turns a direct call into an indirect one, set_load_weight() isn't
called from a hot path and this change shouldn't cause any noticeable
difference. This will be used to implement reweight_task for a new BPF
extensible sched_class so that it can keep its cached task weight
up-to-date.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
2024-06-18 10:09:16 -10:00
Tim Chen
f90cc919f9 sched/balance: Skip unnecessary updates to idle load balancer's flags
We observed that the overhead on trigger_load_balance(), now renamed
sched_balance_trigger(), has risen with a system's core counts.

For an OLTP workload running 6.8 kernel on a 2 socket x86 systems
having 96 cores/socket, we saw that 0.7% cpu cycles are spent in
trigger_load_balance(). On older systems with fewer cores/socket, this
function's overhead was less than 0.1%.

The cause of this overhead was that there are multiple cpus calling
kick_ilb(flags), updating the balancing work needed to a common idle
load balancer cpu. The ilb_cpu's flags field got updated unconditionally
with atomic_fetch_or().  The atomic read and writes to ilb_cpu's flags
causes much cache bouncing and cpu cycles overhead. This is seen in the
annotated profile below.

             kick_ilb():
             if (ilb_cpu < 0)
               test   %r14d,%r14d
             ↑ js     6c
             flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
               mov    $0x2d600,%rdi
               movslq %r14d,%r8
               mov    %rdi,%rdx
               add    -0x7dd0c3e0(,%r8,8),%rdx
             arch_atomic_read():
  0.01         mov    0x64(%rdx),%esi
 35.58         add    $0x64,%rdx
             arch_atomic_fetch_or():

             static __always_inline int arch_atomic_fetch_or(int i, atomic_t *v)
             {
             int val = arch_atomic_read(v);

             do { } while (!arch_atomic_try_cmpxchg(v, &val, val | i));
  0.03  157:   mov    %r12d,%ecx
             arch_atomic_try_cmpxchg():
             return arch_try_cmpxchg(&v->counter, old, new);
  0.00         mov    %esi,%eax
             arch_atomic_fetch_or():
             do { } while (!arch_atomic_try_cmpxchg(v, &val, val | i));
               or     %esi,%ecx
             arch_atomic_try_cmpxchg():
             return arch_try_cmpxchg(&v->counter, old, new);
  0.01         lock   cmpxchg %ecx,(%rdx)
 42.96       ↓ jne    2d2
             kick_ilb():

With instrumentation, we found that 81% of the updates do not result in
any change in the ilb_cpu's flags.  That is, multiple cpus are asking
the ilb_cpu to do the same things over and over again, before the ilb_cpu
has a chance to run NOHZ load balance.

Skip updates to ilb_cpu's flags if no new work needs to be done.
Such updates do not change ilb_cpu's NOHZ flags.  This requires an extra
atomic read but it is less expensive than frequent unnecessary atomic
updates that generate cache bounces.

We saw that on the OLTP workload, cpu cycles from trigger_load_balance()
(or sched_balance_trigger()) got reduced from 0.7% to 0.2%.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chen Yu <yu.c.chen@intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240531205452.65781-1-tim.c.chen@linux.intel.com
2024-06-05 15:52:36 +02:00
Ingo Molnar
402de7fc88 sched: Fix spelling in comments
Do a spell-checking pass.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024-05-27 17:00:21 +02:00
Linus Torvalds
8dde191aab Misc fixes:
- Fix a sched_balance_newidle setting bug
 
  - Fix bug in the setting of /sys/fs/cgroup/test/cpu.max.burst
 
  - Fix variable-shadowing build warning
 
  - Extend sched-domains debug output
 
  - Fix documentation
 
  - Fix comments
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmZIbj4RHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1hEng/+NlAh7mm4AWckVjUxqyUnJ/omaV9Fe5F+
 koiihntyvhk+4RR40XomXPq37Av3zPo1dnKI4fJ3yioMs1tB+8JD+nVo3DURLGT/
 4k+lYI+K6RXBzUTpzeYZWVfa+ddGwbRu1KA5joI7QvRfjil7QP5rC5AQbAj0AiVO
 Xvor0M9vEcfkqShTttx4h2u7WVR4zqVEhBxkWNMT6dMxN2HnKm4qcAiX39E8p+Vx
 maC2/iO+1rXORRbUh+KBHR40WAwe2CVvh5hCe1sl+/vGfCbAnMK1k+j85UdV1pFD
 aZ1jSBwIERnx9PdD5zK0GCRx9hmux8mkJCeBseZyK/XubYuVOLiwBxfYA/9C3i3O
 1mQizaFBD8zanEiWj10sOxbfry+XhLwcISIiWC+xLpxKb0MvDD1TIeZR1fJv3Oz7
 14iYhq2CuKhfntYmV6fYTzSzXL2s16dMYMH/7m7cLY0P/cJo2vw7GNxkwPeJsOVN
 uX6jnRde2Kp3q+Er3I2u1SGeAZ8fEzXr19MCWRA0qI+wvgYQkaTgoh9zO9AwRNoa
 9hS/jc6Gq+O5xBMMJIPZMfOVai9RhYlPmQavFCGJLd3EFoVi9jp9+/iXgtyARCZp
 rfXFV9Dd9GvpFRzNnsMrLiKswBzUop5+epHYKZhVHJKH7aiHMbGEFD6cgNlf8k9b
 GFda3ay4JHA=
 =2okO
 -----END PGP SIGNATURE-----

Merge tag 'sched-urgent-2024-05-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler fixes from Ingo Molnar:

 - Fix a sched_balance_newidle setting bug

 - Fix bug in the setting of /sys/fs/cgroup/test/cpu.max.burst

 - Fix variable-shadowing build warning

 - Extend sched-domains debug output

 - Fix documentation

 - Fix comments

* tag 'sched-urgent-2024-05-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/core: Fix incorrect initialization of the 'burst' parameter in cpu_max_write()
  sched/fair: Remove stale FREQUENCY_UTIL comment
  sched/fair: Fix initial util_avg calculation
  docs: cgroup-v1: Clarify that domain levels are system-specific
  sched/debug: Dump domains' level
  sched/fair: Allow disabling sched_balance_newidle with sched_relax_domain_level
  arch/topology: Fix variable naming to avoid shadowing
2024-05-19 11:38:15 -07:00
Linus Torvalds
91b6163be4 sysctl changes for v6.10-rc1
Summary
 * Removed sentinel elements from ctl_table structs in kernel/*
 
   Removing sentinels in ctl_table arrays reduces the build time size and
   runtime memory consumed by ~64 bytes per array. Removals for net/, io_uring/,
   mm/, ipc/ and security/ are set to go into mainline through their respective
   subsystems making the next release the most likely place where the final
   series that removes the check for proc_name == NULL will land. This PR adds
   to removals already in arch/, drivers/ and fs/.
 
 * Adjusted ctl_table definitions and references to allow constification
 
   Adjustments:
     - Removing unused ctl_table function arguments
     - Moving non-const elements from ctl_table to ctl_table_header
     - Making ctl_table pointers const in ctl_table_root structure
 
   Making the static ctl_table structs const will increase safety by keeping the
   pointers to proc_handler functions in .rodata. Though no ctl_tables where
   made const in this PR, the ground work for making that possible has started
   with these changes sent by Thomas Weißschuh.
 
 Testing
 * These changes went into linux-next after v6.9-rc4; giving it a good month of
   testing.
 -----BEGIN PGP SIGNATURE-----
 
 iQGzBAABCgAdFiEErkcJVyXmMSXOyyeQupfNUreWQU8FAmZFvBMACgkQupfNUreW
 QU/eGAv9EWeiXKxr3EVSMAsb9MWbJq7C99I/pd5hMf+qH4PgJpKDH7w/sb2e8h8+
 unGiW83ikgrtph7OS4/xM3Y9r3Nvzd6C/OztqgMnNKeRFdMgP7wu9HaSNs05ordb
 CqJdhvL93quc5HxrGTS9sdLK/wLJWOHwuWMXhX4qS44JNxTdPV2q10Rb7DZyHZ6O
 C9qp61L2Q2CrnOBKIx8MoeCh20ynJQAo3b0pTN63ZYF4D0vqCcnYNNTPkge4ID8/
 ULJoP5hAQY0vJ4g4fC4Gmooa5GECpm8MfZUf3SdgPyauqM/sm3dVdsLXAWD4Phcp
 TsG2a/5KMYwnLHrUGwDW7bFfEemRU88h0Iam56+SKMl1kMlEpWaLL9ApQXoHFayG
 e10izS+i/nlQiqYIHtuczCoTimT4/LGnonCLcdA//C3XzBT5MnOd7xsjuaQSpFWl
 /CV9SZa4ABwzX7u2jty8ik90iihLCFQyKj1d9m1mDVbgb6r3iUOxVuHBgMtY7MF7
 eyaEmV7l
 =/rQW
 -----END PGP SIGNATURE-----

Merge tag 'sysctl-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl

Pull sysctl updates from Joel Granados:

 - Remove sentinel elements from ctl_table structs in kernel/*

   Removing sentinels in ctl_table arrays reduces the build time size
   and runtime memory consumed by ~64 bytes per array. Removals for
   net/, io_uring/, mm/, ipc/ and security/ are set to go into mainline
   through their respective subsystems making the next release the most
   likely place where the final series that removes the check for
   proc_name == NULL will land.

   This adds to removals already in arch/, drivers/ and fs/.

 - Adjust ctl_table definitions and references to allow constification
     - Remove unused ctl_table function arguments
     - Move non-const elements from ctl_table to ctl_table_header
     - Make ctl_table pointers const in ctl_table_root structure

   Making the static ctl_table structs const will increase safety by
   keeping the pointers to proc_handler functions in .rodata. Though no
   ctl_tables where made const in this PR, the ground work for making
   that possible has started with these changes sent by Thomas
   Weißschuh.

* tag 'sysctl-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl:
  sysctl: drop now unnecessary out-of-bounds check
  sysctl: move sysctl type to ctl_table_header
  sysctl: drop sysctl_is_perm_empty_ctl_table
  sysctl: treewide: constify argument ctl_table_root::permissions(table)
  sysctl: treewide: drop unused argument ctl_table_root::set_ownership(table)
  bpf: Remove the now superfluous sentinel elements from ctl_table array
  delayacct: Remove the now superfluous sentinel elements from ctl_table array
  kprobes: Remove the now superfluous sentinel elements from ctl_table array
  printk: Remove the now superfluous sentinel elements from ctl_table array
  scheduler: Remove the now superfluous sentinel elements from ctl_table array
  seccomp: Remove the now superfluous sentinel elements from ctl_table array
  timekeeping: Remove the now superfluous sentinel elements from ctl_table array
  ftrace: Remove the now superfluous sentinel elements from ctl_table array
  umh: Remove the now superfluous sentinel elements from ctl_table array
  kernel misc: Remove the now superfluous sentinel elements from ctl_table array
2024-05-17 17:31:24 -07:00
Christian Loehle
7cb7fb5b49 sched/fair: Remove stale FREQUENCY_UTIL comment
On 05/03/2024 15:05, Vincent Guittot wrote:

I'm fine with either and that was my first thought here, too, but it did seem like
the comment was mostly placed there to justify the 'unexpected' high utilization
when explicitly passing FREQUENCY_UTIL and the need to clamp it then.
So removing did feel slightly more natural to me anyway.

So alternatively:

From: Christian Loehle <christian.loehle@arm.com>
Date: Tue, 5 Mar 2024 09:34:41 +0000
Subject: [PATCH] sched/fair: Remove stale FREQUENCY_UTIL mention

effective_cpu_util() flags were removed, so remove mentioning of the
flag.

commit 9c0b4bb7f6 ("sched/cpufreq: Rework schedutil governor performance estimation")
reworked effective_cpu_util() removing enum cpu_util_type. Modify the
comment accordingly.

Signed-off-by: Christian Loehle <christian.loehle@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/0e2833ee-0939-44e0-82a2-520a585a0153@arm.com
2024-05-17 09:51:54 +02:00
Dawei Li
72bffbf57c sched/fair: Fix initial util_avg calculation
Change se->load.weight to se_weight(se) in the calculation for the
initial util_avg to avoid unnecessarily inflating the util_avg by 1024
times.

The reason is that se->load.weight has the unit/scale as the scaled-up
load, while cfs_rg->avg.load_avg has the unit/scale as the true task
weight (as mapped directly from the task's nice/priority value). With
CONFIG_32BIT, the scaled-up load is equal to the true task weight. With
CONFIG_64BIT, the scaled-up load is 1024 times the true task weight.
Thus, the current code may inflate the util_avg by 1024 times. The
follow-up capping will not allow the util_avg value to go wild. But the
calculation should have the correct logic.

Signed-off-by: Dawei Li <daweilics@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Vishal Chourasia <vishalc@linux.ibm.com>
Link: https://lore.kernel.org/r/20240315015916.21545-1-daweilics@gmail.com
2024-05-17 09:49:44 +02:00
Linus Torvalds
6e5a0c30b6 Scheduler changes for v6.10:
- Add cpufreq pressure feedback for the scheduler
 
  - Rework misfit load-balancing wrt. affinity restrictions
 
  - Clean up and simplify the code around ::overutilized and
    ::overload access.
 
  - Simplify sched_balance_newidle()
 
  - Bump SCHEDSTAT_VERSION to 16 due to a cleanup of CPU_MAX_IDLE_TYPES
    handling that changed the output.
 
  - Rework & clean up <asm/vtime.h> interactions wrt. arch_vtime_task_switch()
 
  - Reorganize, clean up and unify most of the higher level
    scheduler balancing function names around the sched_balance_*()
    prefix.
 
  - Simplify the balancing flag code (sched_balance_running)
 
  - Miscellaneous cleanups & fixes
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmZBtA0RHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1gQEw//WiCiV7zTlWShSiG/g8GTfoAvl53QTWXF
 0jQ8TUcoIhxB5VeGgxVG1srYt8f505UXjH7L0MJLrbC3nOgRCg4NK57WiQEachKK
 HORIJHT0tMMsKIwX9D5Ovo4xYJn+j7mv7j/caB+hIlzZAbWk+zZPNWcS84p0ZS/4
 appY6RIcp7+cI7bisNMGUuNZS14+WMdWoX3TgoI6ekgDZ7Ky+kQvkwGEMBXsNElO
 qZOj6yS/QUE4Htwz0tVfd6h5svoPM/VJMIvl0yfddPGurfNw6jEh/fjcXnLdAzZ6
 9mgcosETncQbm0vfSac116lrrZIR9ygXW/yXP5S7I5dt+r+5pCrBZR2E5g7U4Ezp
 GjX1+6J9U6r6y12AMLRjadFOcDvxdwtszhZq4/wAcmS3B9dvupnH/w7zqY9ho3wr
 hTdtDHoAIzxJh7RNEHgeUC0/yQX3wJ9THzfYltDRIIjHTuvl4d5lHgsug+4Y9ClE
 pUIQm/XKouweQN9TZz2ULle4ZhRrR9sM9QfZYfirJ/RppmuKool4riWyQFQNHLCy
 mBRMjFFsTpFIOoZXU6pD4EabOpWdNrRRuND/0yg3WbDat2gBWq6jvSFv2UN1/v7i
 Un5jijTuN7t8yP5lY5Tyf47kQfLlA9bUx1v56KnF9mrpI87FyiDD3MiQVhDsvpGX
 rP96BIOrkSo=
 =obph
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:

 - Add cpufreq pressure feedback for the scheduler

 - Rework misfit load-balancing wrt affinity restrictions

 - Clean up and simplify the code around ::overutilized and
   ::overload access.

 - Simplify sched_balance_newidle()

 - Bump SCHEDSTAT_VERSION to 16 due to a cleanup of CPU_MAX_IDLE_TYPES
   handling that changed the output.

 - Rework & clean up <asm/vtime.h> interactions wrt arch_vtime_task_switch()

 - Reorganize, clean up and unify most of the higher level
   scheduler balancing function names around the sched_balance_*()
   prefix

 - Simplify the balancing flag code (sched_balance_running)

 - Miscellaneous cleanups & fixes

* tag 'sched-core-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
  sched/pelt: Remove shift of thermal clock
  sched/cpufreq: Rename arch_update_thermal_pressure() => arch_update_hw_pressure()
  thermal/cpufreq: Remove arch_update_thermal_pressure()
  sched/cpufreq: Take cpufreq feedback into account
  cpufreq: Add a cpufreq pressure feedback for the scheduler
  sched/fair: Fix update of rd->sg_overutilized
  sched/vtime: Do not include <asm/vtime.h> header
  s390/irq,nmi: Include <asm/vtime.h> header directly
  s390/vtime: Remove unused __ARCH_HAS_VTIME_TASK_SWITCH leftover
  sched/vtime: Get rid of generic vtime_task_switch() implementation
  sched/vtime: Remove confusing arch_vtime_task_switch() declaration
  sched/balancing: Simplify the sg_status bitmask and use separate ->overloaded and ->overutilized flags
  sched/fair: Rename set_rd_overutilized_status() to set_rd_overutilized()
  sched/fair: Rename SG_OVERLOAD to SG_OVERLOADED
  sched/fair: Rename {set|get}_rd_overload() to {set|get}_rd_overloaded()
  sched/fair: Rename root_domain::overload to ::overloaded
  sched/fair: Use helper functions to access root_domain::overload
  sched/fair: Check root_domain::overload value before update
  sched/fair: Combine EAS check with root_domain::overutilized access
  sched/fair: Simplify the continue_balancing logic in sched_balance_newidle()
  ...
2024-05-13 17:18:51 -07:00
Vincent Guittot
97450eb909 sched/pelt: Remove shift of thermal clock
The optional shift of the clock used by thermal/hw load avg has been
introduced to handle case where the signal was not always a high frequency
hw signal. Now that cpufreq provides a signal for firmware and
SW pressure, we can remove this exception and always keep this PELT signal
aligned with other signals.
Mark sysctl_sched_migration_cost boot parameter as deprecated

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lore.kernel.org/r/20240326091616.3696851-6-vincent.guittot@linaro.org
2024-04-24 12:08:02 +02:00
Vincent Guittot
d4dbc99171 sched/cpufreq: Rename arch_update_thermal_pressure() => arch_update_hw_pressure()
Now that cpufreq provides a pressure value to the scheduler, rename
arch_update_thermal_pressure into HW pressure to reflect that it returns
a pressure applied by HW (i.e. with a high frequency change) and not
always related to thermal mitigation but also generated by max current
limitation as an example. Such high frequency signal needs filtering to be
smoothed and provide an value that reflects the average available capacity
into the scheduler time scale.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lore.kernel.org/r/20240326091616.3696851-5-vincent.guittot@linaro.org
2024-04-24 12:08:01 +02:00
Vincent Guittot
f1f8d0a224 sched/cpufreq: Take cpufreq feedback into account
Aggregate the different pressures applied on the capacity of CPUs and
create a new function that returns the actual capacity of the CPU:
get_actual_cpu_capacity().

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Link: https://lore.kernel.org/r/20240326091616.3696851-3-vincent.guittot@linaro.org
2024-04-24 12:07:59 +02:00
Vincent Guittot
cd18bec668 sched/fair: Fix update of rd->sg_overutilized
sg_overloaded is used instead of sg_overutilized to update
rd->sg_overutilized.

Fixes: 4475cd8bfd ("sched/balancing: Simplify the sg_status bitmask and use separate ->overloaded and ->overutilized flags")
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240404155738.2866102-1-vincent.guittot@linaro.org
2024-04-24 12:02:51 +02:00
Joel Granados
f532376e88 scheduler: Remove the now superfluous sentinel elements from ctl_table array
This commit comes at the tail end of a greater effort to remove the
empty elements at the end of the ctl_table arrays (sentinels) which
will reduce the overall build time size of the kernel and run time
memory bloat by ~64 bytes per sentinel (further information Link :
https://lore.kernel.org/all/ZO5Yx5JFogGi%2FcBo@bombadil.infradead.org/)

rm sentinel element from ctl_table arrays

Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Joel Granados <j.granados@samsung.com>
2024-04-24 09:43:54 +02:00
Xuewen Yan
1560d1f6eb sched/eevdf: Prevent vlag from going out of bounds in reweight_eevdf()
It was possible to have pick_eevdf() return NULL, which then causes a
NULL-deref. This turned out to be due to entity_eligible() returning
falsely negative because of a s64 multiplcation overflow.

Specifically, reweight_eevdf() computes the vlag without considering
the limit placed upon vlag as update_entity_lag() does, and then the
scaling multiplication (remember that weight is 20bit fixed point) can
overflow. This then leads to the new vruntime being weird which then
causes the above entity_eligible() to go side-ways and claim nothing
is eligible.

Thus limit the range of vlag accordingly.

All this was quite rare, but fatal when it does happen.

Closes: https://lore.kernel.org/all/ZhuYyrh3mweP_Kd8@nz.home/
Closes: https://lore.kernel.org/all/CA+9S74ih+45M_2TPUY_mPPVDhNvyYfy1J1ftSix+KjiTVxg8nw@mail.gmail.com/
Closes: https://lore.kernel.org/lkml/202401301012.2ed95df0-oliver.sang@intel.com/
Fixes: eab03c23c2 ("sched/eevdf: Fix vruntime adjustment on reweight")
Reported-by: Sergei Trofimovich <slyich@gmail.com>
Reported-by: Igor Raits <igor@gooddata.com>
Reported-by: Breno Leitao <leitao@debian.org>
Reported-by: kernel test robot <oliver.sang@intel.com>
Reported-by: Yujie Liu <yujie.liu@intel.com>
Signed-off-by: Xuewen Yan <xuewen.yan@unisoc.com>
Reviewed-and-tested-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240422082238.5784-1-xuewen.yan@unisoc.com
2024-04-22 13:01:27 +02:00
Tianchen Ding
afae8002b4 sched/eevdf: Fix miscalculation in reweight_entity() when se is not curr
reweight_eevdf() only keeps V unchanged inside itself. When se !=
cfs_rq->curr, it would be dequeued from rb tree first. So that V is
changed and the result is wrong. Pass the original V to reweight_eevdf()
to fix this issue.

Fixes: eab03c23c2 ("sched/eevdf: Fix vruntime adjustment on reweight")
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
[peterz: flip if() condition for clarity]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Abel Wu <wuyun.abel@bytedance.com>
Link: https://lkml.kernel.org/r/20240306022133.81008-3-dtcccc@linux.alibaba.com
2024-04-22 13:01:26 +02:00
Tianchen Ding
11b1b8bc2b sched/eevdf: Always update V if se->on_rq when reweighting
reweight_eevdf() needs the latest V to do accurate calculation for new
ve and vd. So update V unconditionally when se is runnable.

Fixes: eab03c23c2 ("sched/eevdf: Fix vruntime adjustment on reweight")
Suggested-by: Abel Wu <wuyun.abel@bytedance.com>
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Abel Wu <wuyun.abel@bytedance.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Tested-by: Chen Yu <yu.c.chen@intel.com>
Link: https://lore.kernel.org/r/20240306022133.81008-2-dtcccc@linux.alibaba.com
2024-04-22 13:01:26 +02:00
Ingo Molnar
4475cd8bfd sched/balancing: Simplify the sg_status bitmask and use separate ->overloaded and ->overutilized flags
SG_OVERLOADED and SG_OVERUTILIZED flags plus the sg_status bitmask are an
unnecessary complication that only make the code harder to read and slower.

We only ever set them separately:

 thule:~/tip> git grep SG_OVER kernel/sched/
 kernel/sched/fair.c:            set_rd_overutilized_status(rq->rd, SG_OVERUTILIZED);
 kernel/sched/fair.c:                    *sg_status |= SG_OVERLOADED;
 kernel/sched/fair.c:                    *sg_status |= SG_OVERUTILIZED;
 kernel/sched/fair.c:                            *sg_status |= SG_OVERLOADED;
 kernel/sched/fair.c:            set_rd_overloaded(env->dst_rq->rd, sg_status & SG_OVERLOADED);
 kernel/sched/fair.c:                                       sg_status & SG_OVERUTILIZED);
 kernel/sched/fair.c:    } else if (sg_status & SG_OVERUTILIZED) {
 kernel/sched/fair.c:            set_rd_overutilized_status(env->dst_rq->rd, SG_OVERUTILIZED);
 kernel/sched/sched.h:#define SG_OVERLOADED              0x1 /* More than one runnable task on a CPU. */
 kernel/sched/sched.h:#define SG_OVERUTILIZED            0x2 /* One or more CPUs are over-utilized. */
 kernel/sched/sched.h:           set_rd_overloaded(rq->rd, SG_OVERLOADED);

And use them separately, which results in suboptimal code:

                /* update overload indicator if we are at root domain */
                set_rd_overloaded(env->dst_rq->rd, sg_status & SG_OVERLOADED);

                /* Update over-utilization (tipping point, U >= 0) indicator */
                set_rd_overutilized_status(env->dst_rq->rd,

Introduce separate sg_overloaded and sg_overutilized flags in update_sd_lb_stats()
and its lower level functions, and change all of them to 'bool'.

Remove the now unused SG_OVERLOADED and SG_OVERUTILIZED flags.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Tested-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Cc: Qais Yousef <qyousef@layalina.io>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/ZgVPhODZ8/nbsqbP@gmail.com
2024-03-29 07:53:27 +01:00
Ingo Molnar
4d0a63e5b8 sched/fair: Rename set_rd_overutilized_status() to set_rd_overutilized()
The _status() postfix has no real meaning, simplify the naming
and harmonize it with set_rd_overloaded().

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Qais Yousef <qyousef@layalina.io>
Cc: Shrikanth Hegde <sshegde@linux.ibm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/ZgVHq65XKsOZpfgK@gmail.com
2024-03-28 11:54:42 +01:00
Ingo Molnar
7bda10ba7f sched/fair: Rename SG_OVERLOAD to SG_OVERLOADED
Follow the rename of the root_domain::overloaded flag.

Note that this also matches the SG_OVERUTILIZED flag better.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Qais Yousef <qyousef@layalina.io>
Cc: Shrikanth Hegde <sshegde@linux.ibm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/ZgVHq65XKsOZpfgK@gmail.com
2024-03-28 11:44:44 +01:00
Ingo Molnar
76cc4f9148 sched/fair: Rename {set|get}_rd_overload() to {set|get}_rd_overloaded()
Follow the rename of the root_domain::overloaded flag.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Qais Yousef <qyousef@layalina.io>
Cc: Shrikanth Hegde <sshegde@linux.ibm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/ZgVHq65XKsOZpfgK@gmail.com
2024-03-28 11:41:31 +01:00
Shrikanth Hegde
caac629172 sched/fair: Use helper functions to access root_domain::overload
Introduce two helper functions to access & set the root_domain::overload flag:

  get_rd_overload()
  set_rd_overload()

To make sure code is always following READ_ONCE()/WRITE_ONCE() access methods.

No change in functionality intended.

[ mingo: Renamed the accessors to get_/set_rd_overload(), tidied up the changelog. ]

Suggested-by: Qais Yousef <qyousef@layalina.io>
Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240325054505.201995-3-sshegde@linux.ibm.com
2024-03-28 11:30:13 +01:00
Shrikanth Hegde
c628db0a68 sched/fair: Check root_domain::overload value before update
The root_domain::overload flag is 1 when there's any rq
in the root domain that has 2 or more running tasks. (Ie. it's overloaded.)

The root_domain structure itself is a global structure per cpuset island.

The ::overload flag is maintained the following way:

  - Set when adding a second task to the runqueue.

  - It is cleared in update_sd_lb_stats() during load balance,
    if none of the rqs have 2 or more running tasks.

This flag is used during newidle balance to see if its worth doing a full
load balance pass, which can be an expensive operation. If it is set,
then newidle balance will try to aggressively pull a task.

Since commit:

  630246a06a ("sched/fair: Clean-up update_sg_lb_stats parameters")

::overload is being written unconditionally, even if it has the same
value. The change in value of this depends on the workload, but on
typical workloads, it doesn't change all that often: a system is
either dominantly overloaded for substantial amounts of time, or not.

Extra writes to this semi-global structure cause unnecessary overhead, extra
bus traffic, etc. - so avoid it as much as possible.

Perf probe stats show that it's worth making this change (numbers are
with patch applied):

	1M    probe:sched_balance_newidle_L38
	139   probe:update_sd_lb_stats_L53     <====== 1->0 writes
	129K  probe:add_nr_running_L12
	74    probe:add_nr_running_L13         <====== 0->1 writes
	54K   probe:update_sd_lb_stats_L50     <====== reads

These numbers prove that actual change in the ::overload value is (much) less
frequent: L50 is much larger at ~54,000 accesses vs L53+L13 of 139+74.

[ mingo: Rewrote the changelog. ]

Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20240325054505.201995-2-sshegde@linux.ibm.com
2024-03-28 11:30:13 +01:00
Shrikanth Hegde
902e786c4a sched/fair: Combine EAS check with root_domain::overutilized access
Access to root_domainoverutilized is always used with sched_energy_enabled in
the pattern:

  if (sched_energy_enabled && !overutilized)
         do something

So modify the helper function to utilize this pattern. This is more
readable code as it would say, do something when root domain is not
overutilized. This function always return true when EAS is disabled.

No change in functionality intended.

Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240326152616.380999-1-sshegde@linux.ibm.com
2024-03-28 10:39:18 +01:00
Shrikanth Hegde
c829d6818b sched/fair: Simplify the continue_balancing logic in sched_balance_newidle()
newidle(CPU_NEWLY_IDLE) balancing doesn't stop the load-balancing if the
continue_balancing flag is reset, but the other two balancing (IDLE, BUSY)
cases do that.

newidle balance stops the load balancing if rq has a task or there
is wakeup pending. The same checks are present in should_we_balance for
newidle. Hence use the return value and simplify continue_balancing
mechanism for newidle. Update the comment surrounding it as well.

No change in functionality intended.

Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20240325153926.274284-1-sshegde@linux.ibm.com
2024-03-26 20:16:20 +01:00
Shrikanth Hegde
d0f5d3cefc sched/fair: Introduce is_rd_overutilized() helper function to access root_domain::overutilized
The root_domain::overutilized field is READ_ONCE() accessed in
multiple places, which could be simplified with a helper function.

This might also make it more apparent that it needs to be used
only in case of EAS.

No change in functionality intended.

Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240307085725.444486-3-sshegde@linux.ibm.com
2024-03-26 08:58:59 +01:00
Shrikanth Hegde
be3a51e68f sched/fair: Add EAS checks before updating root_domain::overutilized
root_domain::overutilized is only used for EAS(energy aware scheduler)
to decide whether to do load balance or not. It is not used if EAS
not possible.

Currently enqueue_task_fair and task_tick_fair accesses, sometime updates
this field. In update_sd_lb_stats it is updated often. This causes cache
contention due to true sharing and burns a lot of cycles. ::overload and
::overutilized are part of the same cacheline. Updating it often invalidates
the cacheline. That causes access to ::overload to slow down due to
false sharing. Hence add EAS check before accessing/updating this field.
EAS check is optimized at compile time or it is a static branch.
Hence it shouldn't cost much.

With the patch, both enqueue_task_fair and newidle_balance don't show
up as hot routines in perf profile.

  6.8-rc4:
  7.18%  swapper          [kernel.vmlinux]              [k] enqueue_task_fair
  6.78%  s                [kernel.vmlinux]              [k] newidle_balance

  +patch:
  0.14%  swapper          [kernel.vmlinux]              [k] enqueue_task_fair
  0.00%  swapper          [kernel.vmlinux]              [k] newidle_balance

While at it: trace_sched_overutilized_tp expect that second argument to
be bool. So do a int to bool conversion for that.

Fixes: 2802bf3cd9 ("sched/fair: Add over-utilization/tipping point indicator")
Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Reviewed-by: Srikar Dronamraju <srikar@linux.ibm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240307085725.444486-2-sshegde@linux.ibm.com
2024-03-26 08:58:59 +01:00
Qais Yousef
58eeb2d79b sched/fair: Don't double balance_interval for migrate_misfit
It is not necessarily an indication of the system being busy and
requires a backoff of the load balancer activities. But pushing it high
could mean generally delaying other misfit activities or other type of
imbalances.

Also don't pollute nr_balance_failed because of misfit failures. The
value is used for enabling cache hot migration and in migrate_util/load
types. None of which should be impacted (skewed) by misfit failures.

Signed-off-by: Qais Yousef <qyousef@layalina.io>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240324004552.999936-5-qyousef@layalina.io
2024-03-25 12:09:57 +01:00
Qais Yousef
22d5607400 sched/fair: Check if a task has a fitting CPU when updating misfit
If a misfit task is affined to a subset of the possible CPUs, we need to
verify that one of these CPUs can fit it. Otherwise the load balancer
code will continuously trigger needlessly leading the balance_interval
to increase in return and eventually end up with a situation where real
imbalances take a long time to address because of this impossible
imbalance situation.

This can happen in Android world where it's common for background tasks
to be restricted to little cores.

Similarly if we can't fit the biggest core, triggering misfit is
pointless as it is the best we can ever get on this system.

To be able to detect that; we use asym_cap_list to iterate through
capacities in the system to see if the task is able to run at a higher
capacity level based on its p->cpus_ptr. We do that when the affinity
change, a fair task is forked, or when a task switched to fair policy.
We store the max_allowed_capacity in task_struct to allow for cheap
comparison in the fast path.

Improve check_misfit_status() function by removing redundant checks.
misfit_task_load will be 0 if the task can't move to a bigger CPU. And
nohz_balancer_kick() already checks for cpu_check_capacity() before
calling check_misfit_status().

Test:
=====

Add

	trace_printk("balance_interval = %lu\n", interval)

in get_sd_balance_interval().

run
	if [ "$MASK" != "0" ]; then
		adb shell "taskset -a $MASK cat /dev/zero > /dev/null"
	fi
	sleep 10
	// parse ftrace buffer counting the occurrence of each valaue

Where MASK is either:

	* 0: no busy task running
	* 1: busy task is pinned to 1 cpu; handled today to not cause
	  misfit
	* f: busy task pinned to little cores, simulates busy background
	  task, demonstrates the problem to be fixed

Results:
========

Note how occurrence of balance_interval = 128 overshoots for MASK = f.

BEFORE
------

	MASK=0

		   1 balance_interval = 175
		 120 balance_interval = 128
		 846 balance_interval = 64
		  55 balance_interval = 63
		 215 balance_interval = 32
		   2 balance_interval = 31
		   2 balance_interval = 16
		   4 balance_interval = 8
		1870 balance_interval = 4
		  65 balance_interval = 2

	MASK=1

		  27 balance_interval = 175
		  37 balance_interval = 127
		 840 balance_interval = 64
		 167 balance_interval = 63
		 449 balance_interval = 32
		  84 balance_interval = 31
		 304 balance_interval = 16
		1156 balance_interval = 8
		2781 balance_interval = 4
		 428 balance_interval = 2

	MASK=f

		   1 balance_interval = 175
		1328 balance_interval = 128
		  44 balance_interval = 64
		 101 balance_interval = 63
		  25 balance_interval = 32
		   5 balance_interval = 31
		  23 balance_interval = 16
		  23 balance_interval = 8
		4306 balance_interval = 4
		 177 balance_interval = 2

AFTER
-----

Note how the high values almost disappear for all MASK values. The
system has background tasks that could trigger the problem without
simulate it even with MASK=0.

	MASK=0

		 103 balance_interval = 63
		  19 balance_interval = 31
		 194 balance_interval = 8
		4827 balance_interval = 4
		 179 balance_interval = 2

	MASK=1

		 131 balance_interval = 63
		   1 balance_interval = 31
		  87 balance_interval = 8
		3600 balance_interval = 4
		   7 balance_interval = 2

	MASK=f

		   8 balance_interval = 127
		 182 balance_interval = 63
		   3 balance_interval = 31
		   9 balance_interval = 16
		 415 balance_interval = 8
		3415 balance_interval = 4
		  21 balance_interval = 2

Signed-off-by: Qais Yousef <qyousef@layalina.io>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240324004552.999936-3-qyousef@layalina.io
2024-03-25 12:09:54 +01:00
Ingo Molnar
f4566a1e73 Linux 6.9-rc1
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmYAlq0eHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGYqwH/0fb4pRbVtULpiIK
 Cs7/e/IWzRRWLBq+Jj2KVVTxwjyiKFNOq6K/CHHnljIWo1yN2CIWeOgbHfTI0WfN
 xmBdJP7OtK8MCN9PwwoWhZxMLcyv4pFCERrrkGa7AD+cdN4j/ytQ3mH5V8f/21fd
 rnpQSdpgGXB2SSMHd520Y+e56+gxrrTmsDXjZWM08Wt0bbqAWJrjNe58BMz5hI1t
 yQtcgYRTdUuZBn5TMkT99lK9EFQslV38YCo7RUP5D0DWXS1jSfWlgnCD1Nc1ziF4
 ps/xPdUMDJAc5Tslg/hgJOciSuLqgMzIUsVgZrKysuu3NhwDY1LDWGORmH1t8E8W
 RC25950=
 =F+01
 -----END PGP SIGNATURE-----

Merge tag 'v6.9-rc1' into sched/core, to pick up fixes and to refresh the branch

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024-03-25 11:32:29 +01:00
Linus Torvalds
902861e34c - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory.  Series
   "implement "memmap on memory" feature on s390".
 
 - More folio conversions from Matthew Wilcox in the series
 
 	"Convert memcontrol charge moving to use folios"
 	"mm: convert mm counter to take a folio"
 
 - Chengming Zhou has optimized zswap's rbtree locking, providing
   significant reductions in system time and modest but measurable
   reductions in overall runtimes.  The series is "mm/zswap: optimize the
   scalability of zswap rb-tree".
 
 - Chengming Zhou has also provided the series "mm/zswap: optimize zswap
   lru list" which provides measurable runtime benefits in some
   swap-intensive situations.
 
 - And Chengming Zhou further optimizes zswap in the series "mm/zswap:
   optimize for dynamic zswap_pools".  Measured improvements are modest.
 
 - zswap cleanups and simplifications from Yosry Ahmed in the series "mm:
   zswap: simplify zswap_swapoff()".
 
 - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
   contributed several DAX cleanups as well as adding a sysfs tunable to
   control the memmap_on_memory setting when the dax device is hotplugged
   as system memory.
 
 - Johannes Weiner has added the large series "mm: zswap: cleanups",
   which does that.
 
 - More DAMON work from SeongJae Park in the series
 
 	"mm/damon: make DAMON debugfs interface deprecation unignorable"
 	"selftests/damon: add more tests for core functionalities and corner cases"
 	"Docs/mm/damon: misc readability improvements"
 	"mm/damon: let DAMOS feeds and tame/auto-tune itself"
 
 - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
   extension" Rakie Kim has developed a new mempolicy interleaving policy
   wherein we allocate memory across nodes in a weighted fashion rather
   than uniformly.  This is beneficial in heterogeneous memory environments
   appearing with CXL.
 
 - Christophe Leroy has contributed some cleanup and consolidation work
   against the ARM pagetable dumping code in the series "mm: ptdump:
   Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
 
 - Luis Chamberlain has added some additional xarray selftesting in the
   series "test_xarray: advanced API multi-index tests".
 
 - Muhammad Usama Anjum has reworked the selftest code to make its
   human-readable output conform to the TAP ("Test Anything Protocol")
   format.  Amongst other things, this opens up the use of third-party
   tools to parse and process out selftesting results.
 
 - Ryan Roberts has added fork()-time PTE batching of THP ptes in the
   series "mm/memory: optimize fork() with PTE-mapped THP".  Mainly
   targeted at arm64, this significantly speeds up fork() when the process
   has a large number of pte-mapped folios.
 
 - David Hildenbrand also gets in on the THP pte batching game in his
   series "mm/memory: optimize unmap/zap with PTE-mapped THP".  It
   implements batching during munmap() and other pte teardown situations.
   The microbenchmark improvements are nice.
 
 - And in the series "Transparent Contiguous PTEs for User Mappings" Ryan
   Roberts further utilizes arm's pte's contiguous bit ("contpte
   mappings").  Kernel build times on arm64 improved nicely.  Ryan's series
   "Address some contpte nits" provides some followup work.
 
 - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
   fixed an obscure hugetlb race which was causing unnecessary page faults.
   He has also added a reproducer under the selftest code.
 
 - In the series "selftests/mm: Output cleanups for the compaction test",
   Mark Brown did what the title claims.
 
 - Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring".
 
 - Even more zswap material from Nhat Pham.  The series "fix and extend
   zswap kselftests" does as claimed.
 
 - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
   regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in
   our handling of DAX on archiecctures which have virtually aliasing data
   caches.  The arm architecture is the main beneficiary.
 
 - Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic
   improvements in worst-case mmap_lock hold times during certain
   userfaultfd operations.
 
 - Some page_owner enhancements and maintenance work from Oscar Salvador
   in his series
 
 	"page_owner: print stacks and their outstanding allocations"
 	"page_owner: Fixup and cleanup"
 
 - Uladzislau Rezki has contributed some vmalloc scalability improvements
   in his series "Mitigate a vmap lock contention".  It realizes a 12x
   improvement for a certain microbenchmark.
 
 - Some kexec/crash cleanup work from Baoquan He in the series "Split
   crash out from kexec and clean up related config items".
 
 - Some zsmalloc maintenance work from Chengming Zhou in the series
 
 	"mm/zsmalloc: fix and optimize objects/page migration"
 	"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
 
 - Zi Yan has taught the MM to perform compaction on folios larger than
   order=0.  This a step along the path to implementaton of the merging of
   large anonymous folios.  The series is named "Enable >0 order folio
   memory compaction".
 
 - Christoph Hellwig has done quite a lot of cleanup work in the
   pagecache writeback code in his series "convert write_cache_pages() to
   an iterator".
 
 - Some modest hugetlb cleanups and speedups in Vishal Moola's series
   "Handle hugetlb faults under the VMA lock".
 
 - Zi Yan has changed the page splitting code so we can split huge pages
   into sizes other than order-0 to better utilize large folios.  The
   series is named "Split a folio to any lower order folios".
 
 - David Hildenbrand has contributed the series "mm: remove
   total_mapcount()", a cleanup.
 
 - Matthew Wilcox has sought to improve the performance of bulk memory
   freeing in his series "Rearrange batched folio freeing".
 
 - Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
   provides large improvements in bootup times on large machines which are
   configured to use large numbers of hugetlb pages.
 
 - Matthew Wilcox's series "PageFlags cleanups" does that.
 
 - Qi Zheng's series "minor fixes and supplement for ptdesc" does that
   also.  S390 is affected.
 
 - Cleanups to our pagemap utility functions from Peter Xu in his series
   "mm/treewide: Replace pXd_large() with pXd_leaf()".
 
 - Nico Pache has fixed a few things with our hugepage selftests in his
   series "selftests/mm: Improve Hugepage Test Handling in MM Selftests".
 
 - Also, of course, many singleton patches to many things.  Please see
   the individual changelogs for details.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZfJpPQAKCRDdBJ7gKXxA
 joxeAP9TrcMEuHnLmBlhIXkWbIR4+ki+pA3v+gNTlJiBhnfVSgD9G55t1aBaRplx
 TMNhHfyiHYDTx/GAV9NXW84tasJSDgA=
 =TG55
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
   from hotplugged memory rather than only from main memory. Series
   "implement "memmap on memory" feature on s390".

 - More folio conversions from Matthew Wilcox in the series

	"Convert memcontrol charge moving to use folios"
	"mm: convert mm counter to take a folio"

 - Chengming Zhou has optimized zswap's rbtree locking, providing
   significant reductions in system time and modest but measurable
   reductions in overall runtimes. The series is "mm/zswap: optimize the
   scalability of zswap rb-tree".

 - Chengming Zhou has also provided the series "mm/zswap: optimize zswap
   lru list" which provides measurable runtime benefits in some
   swap-intensive situations.

 - And Chengming Zhou further optimizes zswap in the series "mm/zswap:
   optimize for dynamic zswap_pools". Measured improvements are modest.

 - zswap cleanups and simplifications from Yosry Ahmed in the series
   "mm: zswap: simplify zswap_swapoff()".

 - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
   contributed several DAX cleanups as well as adding a sysfs tunable to
   control the memmap_on_memory setting when the dax device is
   hotplugged as system memory.

 - Johannes Weiner has added the large series "mm: zswap: cleanups",
   which does that.

 - More DAMON work from SeongJae Park in the series

	"mm/damon: make DAMON debugfs interface deprecation unignorable"
	"selftests/damon: add more tests for core functionalities and corner cases"
	"Docs/mm/damon: misc readability improvements"
	"mm/damon: let DAMOS feeds and tame/auto-tune itself"

 - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
   extension" Rakie Kim has developed a new mempolicy interleaving
   policy wherein we allocate memory across nodes in a weighted fashion
   rather than uniformly. This is beneficial in heterogeneous memory
   environments appearing with CXL.

 - Christophe Leroy has contributed some cleanup and consolidation work
   against the ARM pagetable dumping code in the series "mm: ptdump:
   Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".

 - Luis Chamberlain has added some additional xarray selftesting in the
   series "test_xarray: advanced API multi-index tests".

 - Muhammad Usama Anjum has reworked the selftest code to make its
   human-readable output conform to the TAP ("Test Anything Protocol")
   format. Amongst other things, this opens up the use of third-party
   tools to parse and process out selftesting results.

 - Ryan Roberts has added fork()-time PTE batching of THP ptes in the
   series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
   targeted at arm64, this significantly speeds up fork() when the
   process has a large number of pte-mapped folios.

 - David Hildenbrand also gets in on the THP pte batching game in his
   series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
   implements batching during munmap() and other pte teardown
   situations. The microbenchmark improvements are nice.

 - And in the series "Transparent Contiguous PTEs for User Mappings"
   Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte
   mappings"). Kernel build times on arm64 improved nicely. Ryan's
   series "Address some contpte nits" provides some followup work.

 - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
   fixed an obscure hugetlb race which was causing unnecessary page
   faults. He has also added a reproducer under the selftest code.

 - In the series "selftests/mm: Output cleanups for the compaction
   test", Mark Brown did what the title claims.

 - Kinsey Ho has added the series "mm/mglru: code cleanup and
   refactoring".

 - Even more zswap material from Nhat Pham. The series "fix and extend
   zswap kselftests" does as claimed.

 - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
   regression" Mathieu Desnoyers has cleaned up and fixed rather a mess
   in our handling of DAX on archiecctures which have virtually aliasing
   data caches. The arm architecture is the main beneficiary.

 - Lokesh Gidra's series "per-vma locks in userfaultfd" provides
   dramatic improvements in worst-case mmap_lock hold times during
   certain userfaultfd operations.

 - Some page_owner enhancements and maintenance work from Oscar Salvador
   in his series

	"page_owner: print stacks and their outstanding allocations"
	"page_owner: Fixup and cleanup"

 - Uladzislau Rezki has contributed some vmalloc scalability
   improvements in his series "Mitigate a vmap lock contention". It
   realizes a 12x improvement for a certain microbenchmark.

 - Some kexec/crash cleanup work from Baoquan He in the series "Split
   crash out from kexec and clean up related config items".

 - Some zsmalloc maintenance work from Chengming Zhou in the series

	"mm/zsmalloc: fix and optimize objects/page migration"
	"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"

 - Zi Yan has taught the MM to perform compaction on folios larger than
   order=0. This a step along the path to implementaton of the merging
   of large anonymous folios. The series is named "Enable >0 order folio
   memory compaction".

 - Christoph Hellwig has done quite a lot of cleanup work in the
   pagecache writeback code in his series "convert write_cache_pages()
   to an iterator".

 - Some modest hugetlb cleanups and speedups in Vishal Moola's series
   "Handle hugetlb faults under the VMA lock".

 - Zi Yan has changed the page splitting code so we can split huge pages
   into sizes other than order-0 to better utilize large folios. The
   series is named "Split a folio to any lower order folios".

 - David Hildenbrand has contributed the series "mm: remove
   total_mapcount()", a cleanup.

 - Matthew Wilcox has sought to improve the performance of bulk memory
   freeing in his series "Rearrange batched folio freeing".

 - Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
   provides large improvements in bootup times on large machines which
   are configured to use large numbers of hugetlb pages.

 - Matthew Wilcox's series "PageFlags cleanups" does that.

 - Qi Zheng's series "minor fixes and supplement for ptdesc" does that
   also. S390 is affected.

 - Cleanups to our pagemap utility functions from Peter Xu in his series
   "mm/treewide: Replace pXd_large() with pXd_leaf()".

 - Nico Pache has fixed a few things with our hugepage selftests in his
   series "selftests/mm: Improve Hugepage Test Handling in MM
   Selftests".

 - Also, of course, many singleton patches to many things. Please see
   the individual changelogs for details.

* tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits)
  mm/zswap: remove the memcpy if acomp is not sleepable
  crypto: introduce: acomp_is_async to expose if comp drivers might sleep
  memtest: use {READ,WRITE}_ONCE in memory scanning
  mm: prohibit the last subpage from reusing the entire large folio
  mm: recover pud_leaf() definitions in nopmd case
  selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements
  selftests/mm: skip uffd hugetlb tests with insufficient hugepages
  selftests/mm: dont fail testsuite due to a lack of hugepages
  mm/huge_memory: skip invalid debugfs new_order input for folio split
  mm/huge_memory: check new folio order when split a folio
  mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure
  mm: add an explicit smp_wmb() to UFFDIO_CONTINUE
  mm: fix list corruption in put_pages_list
  mm: remove folio from deferred split list before uncharging it
  filemap: avoid unnecessary major faults in filemap_fault()
  mm,page_owner: drop unnecessary check
  mm,page_owner: check for null stack_record before bumping its refcount
  mm: swap: fix race between free_swap_and_cache() and swapoff()
  mm/treewide: align up pXd_leaf() retval across archs
  mm/treewide: drop pXd_large()
  ...
2024-03-14 17:43:30 -07:00
Ingo Molnar
b9e6e28663 sched/fair: Fix typos in comments
So I made all speling mistakes / typos red in my editor. Big mistake...

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-kernel@vger.kernel.org
2024-03-14 12:08:23 +01:00
Ingo Molnar
d72cf62438 sched/balancing: Fix a couple of outdated function names in comments
The 'idle_balance()' function hasn't existed for years, and there's no
load_balance_newidle() either - both are sched_balance_newidle() today.

Reported-by: Honglei Wang <jameshongleiwang@126.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/ZfAwNufbiyt/5biu@gmail.com
2024-03-12 12:00:01 +01:00
Ingo Molnar
686d148cbb sched/balancing: Rename find_idlest_cpu() => sched_balance_find_dst_cpu()
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.

Also use 'dst' instead of 'idlest', because it's not really
true that we return the 'idlest' group or CPU, we sort by
idle-exit latency and only return the idlest CPUs from the
lowest-latency set of CPUs.

The true 'idlest' CPUs often remain idle for a long time
and are never returned as long as the system is under-loaded.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-14-mingo@kernel.org
2024-03-12 12:00:00 +01:00
Ingo Molnar
a88b170802 sched/balancing: Rename find_idlest_group() => sched_balance_find_dst_group()
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.

Also use 'dst' instead of 'idlest', because it's not really
true that we return the 'idlest' group or CPU, we sort by
idle-exit latency and only return the idlest CPUs from the
lowest-latency set of CPUs.

The true 'idlest' CPUs often remain idle for a long time
and are never returned as long as the system is under-loaded.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-13-mingo@kernel.org
2024-03-12 12:00:00 +01:00
Ingo Molnar
646ebaf51c sched/balancing: Rename find_idlest_group_cpu() => sched_balance_find_dst_group_cpu()
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.

Also use 'dst' instead of 'idlest': while historically correct,
today it's not really true anymore that we return the 'idlest'
group or CPU, we sort by idle-exit latency and only return the
idlest CPUs from the lowest-latency set of CPUs.

The true 'idlest' CPUs often remain idle for a long time
and are never returned as long as the system is under-loaded.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-12-mingo@kernel.org
2024-03-12 12:00:00 +01:00
Ingo Molnar
7d058285cd sched/balancing: Rename newidle_balance() => sched_balance_newidle()
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-11-mingo@kernel.org
2024-03-12 12:00:00 +01:00
Ingo Molnar
391b7a5335 sched/balancing: Rename update_blocked_averages() => sched_balance_update_blocked_averages()
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-10-mingo@kernel.org
2024-03-12 12:00:00 +01:00
Ingo Molnar
82cf921432 sched/balancing: Rename find_busiest_group() => sched_balance_find_src_group()
Make two naming changes:

1)
   Standardize scheduler load-balancing function names on the
   sched_balance_() prefix.

2)

   Similar to find_busiest_queue(), the find_busiest_group() naming
   has become a bit of a misnomer: the 'busiest' qualifier to this
   function was historically correct but in the current code
   in quite a few cases we will not pick the 'busiest' group - but the best
   (possible) group we can balance from based on a complex set of
   constraints.

So name it a bit more neutrally, similar to the 'src/dst' nomenclature
we are already using when moving tasks between runqueues, and also
use the sched_balance_ prefix: sched_balance_find_src_group().

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-9-mingo@kernel.org
2024-03-12 12:00:00 +01:00
Ingo Molnar
f1cd2e2e79 sched/balancing: Rename find_busiest_queue() => sched_balance_find_src_rq()
The find_busiest_queue() naming has two small quirks:

 - Scheduler functions that deal with runqueues usually have a rq_ prefix
   or _rq postfix, but this function has neither.

 - Plus the 'busiest' qualifier to this function was historically
   correct, but has become somewhat of a misnomer: in quite a few
   cases we will not pick the busiest runqueue - but the best
   (possible) runqueue we can balance tasks from. So name it a
   bit more neutrally, similar to the 'src/dst' nomenclature
   we are already using when moving tasks between runqueues.

To fix both quirks, and to standardize scheduler load-balancing
function names on the sched_balance_() prefix, rename the
function to sched_balance_find_src_rq().

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-7-mingo@kernel.org
2024-03-12 12:00:00 +01:00
Ingo Molnar
4c3e509ea9 sched/balancing: Rename load_balance() => sched_balance_rq()
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.

Also load_balance() has become somewhat of a misnomer: historically
it was the first and primary load-balancing function that was called,
but with the introduction of sched domains, it's become a lower
layer function that balances runqueues.

Rename it to sched_balance_rq() accordingly.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-6-mingo@kernel.org
2024-03-12 12:00:00 +01:00
Ingo Molnar
14ff4dbd34 sched/balancing: Rename rebalance_domains() => sched_balance_domains()
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-5-mingo@kernel.org
2024-03-12 11:59:59 +01:00
Ingo Molnar
983be0628c sched/balancing: Rename trigger_load_balance() => sched_balance_trigger()
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-4-mingo@kernel.org
2024-03-12 11:59:59 +01:00
Ingo Molnar
70a27d6d1b sched/balancing: Rename run_rebalance_domains() => sched_balance_softirq()
run_rebalance_domains() is a misnomer, as it doesn't only
run rebalance_domains(), but since the introduction of the
NOHZ code it also runs nohz_idle_balance().

Rename it to sched_balance_softirq(), reflecting its more
generic purpose and that it's a softirq handler.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-2-mingo@kernel.org
2024-03-12 11:59:59 +01:00
Ingo Molnar
33928ed8bd sched/balancing: Update comments in 'struct sg_lb_stats' and 'struct sd_lb_stats'
- Align for readability
- Capitalize consistently

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240308105901.1096078-11-mingo@kernel.org
2024-03-12 11:59:59 +01:00
Ingo Molnar
e492e1b0e0 sched/balancing: Vertically align the comments of 'struct sg_lb_stats' and 'struct sd_lb_stats'
Make them easier to read.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240308105901.1096078-10-mingo@kernel.org
2024-03-12 11:59:59 +01:00
Ingo Molnar
3dc6f6c8ef sched/balancing: Update run_rebalance_domains() comments
The first sentence of the comment explaining run_rebalance_domains()
is historic and not true anymore:

    * run_rebalance_domains is triggered when needed from the scheduler tick.

... contradicted/modified by the second sentence:

    * Also triggered for NOHZ idle balancing (with NOHZ_BALANCE_KICK set).

Avoid that kind of confusion straight away and explain from what
places sched_balance_softirq() is triggered.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20240308105901.1096078-9-mingo@kernel.org
2024-03-12 11:59:43 +01:00
Ingo Molnar
3a5fe93057 sched/balancing: Fix comments (trying to) refer to NOHZ_BALANCE_KICK
Fix two typos:

 - There's no such thing as 'nohz_balancing_kick', the
   flag is named 'BALANCE' and is capitalized:  NOHZ_BALANCE_KICK.

 - Likewise there's no such thing as a 'pending nohz_balance_kick'
   either, the NOHZ_BALANCE_KICK flag is all upper-case.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240308105901.1096078-8-mingo@kernel.org
2024-03-12 11:03:42 +01:00
Ingo Molnar
be8858dba9 sched/balancing: Change comment formatting to not overlap Git conflict marker lines
So the scheduler has two such comment blocks, with '=' used as a double underline:

        /*
         * VRUNTIME
         * ========
         *

'========' also happens to be a Git conflict marker, throwing off a simple
search in an editor for this pattern.

Change them to '-------' type of underline instead - it looks just as good.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240308105901.1096078-7-mingo@kernel.org
2024-03-12 11:03:41 +01:00
Ingo Molnar
38d707c54d sched/balancing: Change 'enum cpu_idle_type' to have more natural definitions
The cpu_idle_type enum has the confusingly inverted property
that 'not idle' is 1, and 'idle' is '0'.

This resulted in a number of unnecessary complications in the code.

Reverse the order, remove the CPU_NOT_IDLE type, and convert
all code to a natural boolean form.

It's much more readable:

  -       enum cpu_idle_type idle = this_rq->idle_balance ?
  -                                               CPU_IDLE : CPU_NOT_IDLE;
  -
  +       enum cpu_idle_type idle = this_rq->idle_balance;

  --------------------------------

  -       if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
  +       if (!env->idle || !busiest->sum_nr_running)

  --------------------------------

And gets rid of the double negation in these usages:

  -               if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
  +               if (env->idle && env->src_rq->nr_running <= 1)

Furthermore, this makes code much more obvious where there's
differentiation between CPU_IDLE and CPU_NEWLY_IDLE.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: "Gautham R. Shenoy" <gautham.shenoy@amd.com>
Link: https://lore.kernel.org/r/20240308105901.1096078-4-mingo@kernel.org
2024-03-12 11:03:40 +01:00
Ingo Molnar
214c1b7f13 sched/balancing: Switch the 'DEFINE_SPINLOCK(balancing)' spinlock into an 'atomic_t sched_balance_running' flag
The 'balancing' spinlock added in:

  08c183f31b ("[PATCH] sched: add option to serialize load balancing")

... is taken when the SD_SERIALIZE flag is set in a domain, but in reality it
is a glorified global atomic flag serializing the load-balancing of
those domains.

It doesn't have any explicit locking semantics per se: we just
spin_trylock() it.

Turn it into a ... global atomic flag. This makes it more
clear what is going on here, and reduces overhead and code
size a bit:

  # kernel/sched/fair.o: [x86-64 defconfig]

     text	   data	    bss	    dec	    hex	filename
    60730	   2721	    104	  63555	   f843	fair.o.before
    60718	   2721	    104	  63543	   f837	fair.o.after

Also document the flag a bit.

No change in functionality intended.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Cc: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308105901.1096078-2-mingo@kernel.org
2024-03-12 11:03:39 +01:00
Byungchul Park
3fb4363687 sched/numa, mm: do not try to migrate memory to memoryless nodes
Memoryless nodes do not have any memory to migrate to, so, as an
optimization, stop trying it.

Link: https://lkml.kernel.org/r/20240219041920.1183-1-byungchul@sk.com
Link: https://lkml.kernel.org/r/20240216111502.79759-1-byungchul@sk.com
Fixes: c574bbe917 ("NUMA balancing: optimize page placement for memory tiering system")
Signed-off-by: Byungchul Park <byungchul@sk.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Benjamin Segall <bsegall@google.com>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-04 17:01:14 -08:00
Alex Shi
54de442747 sched/topology: Rename SD_SHARE_PKG_RESOURCES to SD_SHARE_LLC
SD_SHARE_PKG_RESOURCES is a bit of a misnomer: its naming suggests that
it's sharing all 'package resources' - while in reality it's specifically
for sharing the LLC only.

Rename it to SD_SHARE_LLC to reduce confusion.

[ mingo: Rewrote the confusing changelog as well. ]

Suggested-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Alex Shi <alexs@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Barry Song <baohua@kernel.org>
Link: https://lore.kernel.org/r/20240210113924.1130448-5-alexs@kernel.org
2024-02-28 15:43:17 +01:00
Alex Shi
fbc449864e sched/fair: Check the SD_ASYM_PACKING flag in sched_use_asym_prio()
sched_use_asym_prio() checks whether CPU priorities should be used. It
makes sense to check for the SD_ASYM_PACKING() inside the function.
Since both sched_asym() and sched_group_asym() use sched_use_asym_prio(),
remove the now superfluous checks for the flag in various places.

Signed-off-by: Alex Shi <alexs@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240210113924.1130448-4-alexs@kernel.org
2024-02-28 15:43:17 +01:00
Alex Shi
45de206234 sched/fair: Rework sched_use_asym_prio() and sched_asym_prefer()
sched_use_asym_prio() and sched_asym_prefer() are used together in various
places. Consolidate them into a single function sched_asym().

The existing sched_asym() function is only used when collecting statistics
of a scheduling group. Rename it as sched_group_asym(), and remove the
obsolete function description.

This makes the code easier to read. No functional changes.

Signed-off-by: Alex Shi <alexs@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240210113924.1130448-3-alexs@kernel.org
2024-02-28 15:43:17 +01:00
Alex Shi
5a64983731 sched/fair: Remove unused parameter from sched_asym()
The 'sds' argument is not used in the sched_asym() function anymore, remove it.

Fixes: c9ca07886a ("sched/fair: Do not even the number of busy CPUs via asym_packing")
Signed-off-by: Alex Shi <alexs@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240210113924.1130448-2-alexs@kernel.org
2024-02-28 15:43:08 +01:00
David Vernet
7e9f7d17fe sched/fair: Simplify the update_sd_pick_busiest() logic
When comparing the current struct sched_group with the yet-busiest
domain in update_sd_pick_busiest(), if the two groups have the same
group type, we're currently doing a bit of unnecessary work for any
group >= group_misfit_task. We're comparing the two groups, and then
returning only if false (the group in question is not the busiest).

Otherwise, we break out, do an extra unnecessary conditional check that's
vacuously false for any group type > group_fully_busy, and then always
return true.

Let's just return directly in the switch statement instead. This doesn't
change the size of vmlinux with llvm 17 (not surprising given that all
of this is inlined in load_balance()), but it does shrink load_balance()
by 88 bytes on x86. Given that it also improves readability, this seems
worth doing.

Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20240206043921.850302-4-void@manifault.com
2024-02-28 15:19:26 +01:00
David Vernet
7f1a722971 sched/fair: Do strict inequality check for busiest misfit task group
In update_sd_pick_busiest(), when comparing two sched groups that are
both of type group_misfit_task, we currently consider the new group as
busier than the current busiest group even if the new group has the
same misfit task load as the current busiest group. We can avoid some
unnecessary writes if we instead only consider the newest group to be
the busiest if it has a higher load than the current busiest. This
matches the behavior of other group types where we compare load, such as
two groups that are both overloaded.

Let's update the group_misfit_task type comparison to also only update
the busiest group in the event of strict inequality.

Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20240206043921.850302-3-void@manifault.com
2024-02-28 15:19:24 +01:00
David Vernet
9dfbc26d27 sched/fair: Remove unnecessary goto in update_sd_lb_stats()
In update_sd_lb_stats(), when we're iterating over the sched groups that
comprise a sched domain, we're skipping the call to
update_sd_pick_busiest() for the sched group that contains the local /
destination CPU. We use a goto to skip the call, but we could just as
easily check !local_group, as there's no other logic that we need to
skip with the goto. Let's remove the goto, and check for !local_group in
the if statement instead.

Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20240206043921.850302-2-void@manifault.com
2024-02-28 15:19:23 +01:00
Keisuke Nishimura
23d04d8c6b sched/fair: Take the scheduling domain into account in select_idle_core()
When picking a CPU on task wakeup, select_idle_core() has to take
into account the scheduling domain where the function looks for the CPU.

This is because the "isolcpus" kernel command line option can remove CPUs
from the domain to isolate them from other SMT siblings.

This change replaces the set of CPUs allowed to run the task from
p->cpus_ptr by the intersection of p->cpus_ptr and sched_domain_span(sd)
which is stored in the 'cpus' argument provided by select_idle_cpu().

Fixes: 9fe1f127b9 ("sched/fair: Merge select_idle_core/cpu()")
Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr>
Signed-off-by: Julia Lawall <julia.lawall@inria.fr>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240110131707.437301-2-keisuke.nishimura@inria.fr
2024-02-28 15:15:49 +01:00
Keisuke Nishimura
8aeaffef8c sched/fair: Take the scheduling domain into account in select_idle_smt()
When picking a CPU on task wakeup, select_idle_smt() has to take
into account the scheduling domain of @target. This is because the
"isolcpus" kernel command line option can remove CPUs from the domain to
isolate them from other SMT siblings.

This fix checks if the candidate CPU is in the target scheduling domain.

Commit:

  df3cb4ea1f ("sched/fair: Fix wrong cpu selecting from isolated domain")

... originally introduced this fix by adding the check of the scheduling
domain in the loop.

However, commit:

  3e6efe87cd ("sched/fair: Remove redundant check in select_idle_smt()")

... accidentally removed the check. Bring it back.

Fixes: 3e6efe87cd ("sched/fair: Remove redundant check in select_idle_smt()")
Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr>
Signed-off-by: Julia Lawall <julia.lawall@inria.fr>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240110131707.437301-1-keisuke.nishimura@inria.fr
2024-02-28 15:15:48 +01:00
Shrikanth Hegde
a6965b3188 sched/fair: Add READ_ONCE() and use existing helper function to access ->avg_irq
Use existing helper function cpu_util_irq() instead of open-coding
access to ->avg_irq.

During review it was noted that ->avg_irq could be updated by a
different CPU than the one which is trying to access it.

->avg_irq is updated with WRITE_ONCE(), use READ_ONCE to access it
in order to avoid any compiler optimizations.

Signed-off-by: Shrikanth Hegde <sshegde@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240101154624.100981-3-sshegde@linux.vnet.ibm.com
2024-02-28 15:11:15 +01:00
Shrikanth Hegde
8b936fc1d8 sched/fair: Use existing helper functions to access ->avg_rt and ->avg_dl
There are helper functions called cpu_util_dl() and cpu_util_rt() which give
the average utilization of DL and RT respectively. But there are a few
places in code where access to these variables is open-coded.

Instead use the helper function so that code becomes simpler and easier to
maintain later on.

No functional changes intended.

Signed-off-by: Shrikanth Hegde <sshegde@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240101154624.100981-2-sshegde@linux.vnet.ibm.com
2024-02-28 15:11:14 +01:00
Shrikanth Hegde
8cec3dd9e5 sched/core: Simplify code by removing duplicate #ifdefs
There's a few cases of nested #ifdefs in the scheduler code
that can be simplified:

  #ifdef DEFINE_A
  ...code block...
    #ifdef DEFINE_A       <-- This is a duplicate.
    ...code block...
    #endif
  #else
    #ifndef DEFINE_A     <-- This is also duplicate.
    ...code block...
    #endif
  #endif

More details about the script and methods used to find these code
patterns can be found at:

  https://lore.kernel.org/all/20240118080326.13137-1-sshegde@linux.ibm.com/

No change in functionality intended.

[ mingo: Clarified the changelog. ]

Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240216061433.535522-1-sshegde@linux.ibm.com
2024-02-16 09:37:15 +01:00
Linus Torvalds
9f2a635235 Quite a lot of kexec work this time around. Many singleton patches in
many places.  The notable patch series are:
 
 - nilfs2 folio conversion from Matthew Wilcox in "nilfs2: Folio
   conversions for file paths".
 
 - Additional nilfs2 folio conversion from Ryusuke Konishi in "nilfs2:
   Folio conversions for directory paths".
 
 - IA64 remnant removal in Heiko Carstens's "Remove unused code after
   IA-64 removal".
 
 - Arnd Bergmann has enabled the -Wmissing-prototypes warning everywhere
   in "Treewide: enable -Wmissing-prototypes".  This had some followup
   fixes:
 
   - Nathan Chancellor has cleaned up the hexagon build in the series
     "hexagon: Fix up instances of -Wmissing-prototypes".
 
   - Nathan also addressed some s390 warnings in "s390: A couple of
     fixes for -Wmissing-prototypes".
 
   - Arnd Bergmann addresses the same warnings for MIPS in his series
     "mips: address -Wmissing-prototypes warnings".
 
 - Baoquan He has made kexec_file operate in a top-down-fitting manner
   similar to kexec_load in the series "kexec_file: Load kernel at top of
   system RAM if required"
 
 - Baoquan He has also added the self-explanatory "kexec_file: print out
   debugging message if required".
 
 - Some checkstack maintenance work from Tiezhu Yang in the series
   "Modify some code about checkstack".
 
 - Douglas Anderson has disentangled the watchdog code's logging when
   multiple reports are occurring simultaneously.  The series is "watchdog:
   Better handling of concurrent lockups".
 
 - Yuntao Wang has contributed some maintenance work on the crash code in
   "crash: Some cleanups and fixes".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZZ2R6AAKCRDdBJ7gKXxA
 juCVAP4t76qUISDOSKugB/Dn5E4Nt9wvPY9PcufnmD+xoPsgkQD+JVl4+jd9+gAV
 vl6wkJDiJO5JZ3FVtBtC3DFA/xHtVgk=
 =kQw+
 -----END PGP SIGNATURE-----

Merge tag 'mm-nonmm-stable-2024-01-09-10-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull non-MM updates from Andrew Morton:
 "Quite a lot of kexec work this time around. Many singleton patches in
  many places. The notable patch series are:

   - nilfs2 folio conversion from Matthew Wilcox in 'nilfs2: Folio
     conversions for file paths'.

   - Additional nilfs2 folio conversion from Ryusuke Konishi in 'nilfs2:
     Folio conversions for directory paths'.

   - IA64 remnant removal in Heiko Carstens's 'Remove unused code after
     IA-64 removal'.

   - Arnd Bergmann has enabled the -Wmissing-prototypes warning
     everywhere in 'Treewide: enable -Wmissing-prototypes'. This had
     some followup fixes:

      - Nathan Chancellor has cleaned up the hexagon build in the series
        'hexagon: Fix up instances of -Wmissing-prototypes'.

      - Nathan also addressed some s390 warnings in 's390: A couple of
        fixes for -Wmissing-prototypes'.

      - Arnd Bergmann addresses the same warnings for MIPS in his series
        'mips: address -Wmissing-prototypes warnings'.

   - Baoquan He has made kexec_file operate in a top-down-fitting manner
     similar to kexec_load in the series 'kexec_file: Load kernel at top
     of system RAM if required'

   - Baoquan He has also added the self-explanatory 'kexec_file: print
     out debugging message if required'.

   - Some checkstack maintenance work from Tiezhu Yang in the series
     'Modify some code about checkstack'.

   - Douglas Anderson has disentangled the watchdog code's logging when
     multiple reports are occurring simultaneously. The series is
     'watchdog: Better handling of concurrent lockups'.

   - Yuntao Wang has contributed some maintenance work on the crash code
     in 'crash: Some cleanups and fixes'"

* tag 'mm-nonmm-stable-2024-01-09-10-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (157 commits)
  crash_core: fix and simplify the logic of crash_exclude_mem_range()
  x86/crash: use SZ_1M macro instead of hardcoded value
  x86/crash: remove the unused image parameter from prepare_elf_headers()
  kdump: remove redundant DEFAULT_CRASH_KERNEL_LOW_SIZE
  scripts/decode_stacktrace.sh: strip unexpected CR from lines
  watchdog: if panicking and we dumped everything, don't re-enable dumping
  watchdog/hardlockup: use printk_cpu_sync_get_irqsave() to serialize reporting
  watchdog/softlockup: use printk_cpu_sync_get_irqsave() to serialize reporting
  watchdog/hardlockup: adopt softlockup logic avoiding double-dumps
  kexec_core: fix the assignment to kimage->control_page
  x86/kexec: fix incorrect end address passed to kernel_ident_mapping_init()
  lib/trace_readwrite.c:: replace asm-generic/io with linux/io
  nilfs2: cpfile: fix some kernel-doc warnings
  stacktrace: fix kernel-doc typo
  scripts/checkstack.pl: fix no space expression between sp and offset
  x86/kexec: fix incorrect argument passed to kexec_dprintk()
  x86/kexec: use pr_err() instead of kexec_dprintk() when an error occurs
  nilfs2: add missing set_freezable() for freezable kthread
  kernel: relay: remove relay_file_splice_read dead code, doesn't work
  docs: submit-checklist: remove all of "make namespacecheck"
  ...
2024-01-09 11:46:20 -08:00
Ingo Molnar
cdb3033e19 Merge branch 'sched/urgent' into sched/core, to pick up pending v6.7 fixes for the v6.8 merge window
This fix didn't make it upstream in time, pick it up
for the v6.8 merge window.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024-01-08 12:57:28 +01:00
Vincent Guittot
f60a631ab9 sched/fair: Fix tg->load when offlining a CPU
When a CPU is taken offline, the contribution of its cfs_rqs to task_groups'
load may remain and will negatively impact the calculation of the share of
the online CPUs.

To fix this bug, clear the contribution of an offlining CPU to task groups'
load and skip its contribution while it is inactive.

Here's the reproducer of the anomaly, by Imran Khan:

	"So far I have encountered only one rather lengthy way of reproducing this issue,
	which is as follows:

	1. Take a KVM guest (booted with 4 CPUs and can be scaled up to 124 CPUs) and
	   create 2 custom cgroups: /sys/fs/cgroup/cpu/test_group_1 and /sys/fs/cgroup/
	   cpu/test_group_2

	2. Assign a CPU intensive workload to each of these cgroups and start the
	   workload.

	For my tests I am using following app:

	int main(int argc, char *argv[])
	{
		unsigned long count, i, val;
		if (argc != 2) {
		      printf("usage: ./a.out <number of random nums to generate> \n");
		      return 0;
		}

		count = strtoul(argv[1], NULL, 10);

		printf("Generating %lu random numbers \n", count);
		for (i = 0; i < count; i++) {
			val = rand();
			val = val % 2;
			//usleep(1);
		}
		printf("Generated %lu random numbers \n", count);
		return 0;
	}

	Also since the system is booted with 4 CPUs, in order to completely load the
	system I am also launching 4 instances of same test app under:

	   /sys/fs/cgroup/cpu/

	3. We can see that both of the cgroups get similar CPU time:

        # systemd-cgtop --depth 1
	Path                                 Tasks    %CPU  Memory  Input/s    Output/s
	/                                      659      -     5.5G        -        -
	/system.slice                            -      -     5.7G        -        -
	/test_group_1                            4      -        -        -        -
	/test_group_2                            3      -        -        -        -
	/user.slice                             31      -    56.5M        -        -

	Path                                 Tasks   %CPU   Memory  Input/s    Output/s
	/                                      659  394.6     5.5G        -        -
	/test_group_2                            3   65.7        -        -        -
	/user.slice                             29   55.1    48.0M        -        -
	/test_group_1                            4   47.3        -        -        -
	/system.slice                            -    2.2     5.7G        -        -

	Path                                 Tasks  %CPU    Memory  Input/s    Output/s
	/                                      659  394.8     5.5G        -        -
	/test_group_1                            4   62.9        -        -        -
	/user.slice                             28   44.9    54.2M        -        -
	/test_group_2                            3   44.7        -        -        -
	/system.slice                            -    0.9     5.7G        -        -

	Path                                 Tasks  %CPU    Memory  Input/s     Output/s
	/                                      659  394.4     5.5G        -        -
	/test_group_2                            3   58.8        -        -        -
	/test_group_1                            4   51.9        -        -        -
	/user.slice                              30   39.3    59.6M        -        -
	/system.slice                            -    1.9     5.7G        -        -

	Path                                 Tasks  %CPU     Memory  Input/s    Output/s
	/                                      659  394.7     5.5G        -        -
	/test_group_1                            4   60.9        -        -        -
	/test_group_2                            3   57.9        -        -        -
	/user.slice                             28   43.5    36.9M        -        -
	/system.slice                            -    3.0     5.7G        -        -

	Path                                 Tasks  %CPU     Memory  Input/s     Output/s
	/                                      659  395.0     5.5G        -        -
	/test_group_1                            4   66.8        -        -        -
	/test_group_2                            3   56.3        -        -        -
	/user.slice                             29   43.1    51.8M        -        -
	/system.slice                            -    0.7     5.7G        -        -

	4. Now move systemd-udevd to one of these test groups, say test_group_1, and
	   perform scale up to 124 CPUs followed by scale down back to 4 CPUs from the
	   host side.

	5. Run the same workload i.e 4 instances of CPU hogger under /sys/fs/cgroup/cpu
	   and one instance of  CPU hogger each in /sys/fs/cgroup/cpu/test_group_1 and
	   /sys/fs/cgroup/test_group_2.

	It can be seen that test_group_1 (the one where systemd-udevd was moved) is getting
	much less CPU time than the test_group_2, even though at this point of time both of
	these groups have only CPU hogger running:

        # systemd-cgtop --depth 1
	Path                                   Tasks   %CPU   Memory  Input/s   Output/s
	/                                      1219     -     5.4G        -        -
	/system.slice                           -       -     5.6G        -        -
	/test_group_1                           4       -        -        -        -
	/test_group_2                           3       -        -        -        -
	/user.slice                            26       -    91.3M        -        -

	Path                                   Tasks  %CPU     Memory  Input/s   Output/s
	/                                      1221  394.3     5.4G        -        -
	/test_group_2                             3   82.7        -        -        -
	/test_group_1                             4   14.3        -        -        -
	/system.slice                             -    0.8     5.6G        -        -
	/user.slice                              26    0.4    91.2M        -        -

	Path                                   Tasks  %CPU    Memory  Input/s    Output/s
	/                                      1221  394.6     5.4G        -        -
	/test_group_2                             3   67.4        -        -        -
	/system.slice                             -   24.6     5.6G        -        -
	/test_group_1                             4   12.5        -        -        -
	/user.slice                              26    0.4    91.2M        -        -

	Path                                  Tasks  %CPU    Memory  Input/s    Output/s
	/                                     1221  395.2     5.4G        -        -
	/test_group_2                            3   60.9        -        -        -
	/system.slice                            -   27.9     5.6G        -        -
	/test_group_1                            4   12.2        -        -        -
	/user.slice                             26    0.4    91.2M        -        -

	Path                                  Tasks  %CPU    Memory  Input/s    Output/s
	/                                     1221  395.2     5.4G        -        -
	/test_group_2                            3   69.4        -        -        -
	/test_group_1                            4   13.9        -        -        -
	/user.slice                             28    1.6    92.0M        -        -
	/system.slice                            -    1.0     5.6G        -        -

	Path                                  Tasks  %CPU    Memory  Input/s    Output/s
	/                                      1221  395.6     5.4G        -        -
	/test_group_2                             3   59.3        -        -        -
	/test_group_1                             4   14.1        -        -        -
	/user.slice                              28    1.3    92.2M        -        -
	/system.slice                             -    0.7     5.6G        -        -

	Path                                  Tasks  %CPU    Memory  Input/s    Output/s
	/                                      1221  395.5     5.4G        -        -
	/test_group_2                            3   67.2        -        -        -
	/test_group_1                            4   11.5        -        -        -
	/user.slice                             28    1.3    92.5M        -        -
	/system.slice                            -    0.6     5.6G        -        -

	Path                                  Tasks  %CPU    Memory  Input/s    Output/s
	/                                      1221  395.1     5.4G        -        -
	/test_group_2                             3   76.8        -        -        -
	/test_group_1                             4   12.9        -        -        -
	/user.slice                              28    1.3    92.8M        -        -
	/system.slice                             -    1.2     5.6G        -        -

	From sched_debug data it can be seen that in bad case the load.weight of per-CPU
	sched entities corresponding to test_group_1 has reduced significantly and
	also load_avg of test_group_1 remains much higher than that of test_group_2,
	even though systemd-udevd stopped running long time back and at this point of
	time both cgroups just have the CPU hogger app as running entity."

[ mingo: Added details from the original discussion, plus minor edits to the patch. ]

Reported-by: Imran Khan <imran.f.khan@oracle.com>
Tested-by: Imran Khan <imran.f.khan@oracle.com>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Imran Khan <imran.f.khan@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lore.kernel.org/r/20231223111545.62135-1-vincent.guittot@linaro.org
2023-12-29 13:22:03 +01:00
Wang Jinchao
fbb66ce0b1 sched/fair: Remove unused 'next_buddy_marked' local variable in check_preempt_wakeup_fair()
This variable became unused in:

    5e963f2bd4 ("sched/fair: Commit to EEVDF")

Signed-off-by: Wang Jinchao <wangjinchao@xfusion.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/202312141319+0800-wangjinchao@xfusion.com
2023-12-23 16:12:21 +01:00
Pierre Gondois
3af7524b14 sched/fair: Use all little CPUs for CPU-bound workloads
Running N CPU-bound tasks on an N CPUs platform:

- with asymmetric CPU capacity

- not being a DynamIq system (i.e. having a PKG level sched domain
  without the SD_SHARE_PKG_RESOURCES flag set)

.. might result in a task placement where two tasks run on a big CPU
and none on a little CPU. This placement could be more optimal by
using all CPUs.

Testing platform:

  Juno-r2:
    - 2 big CPUs (1-2), maximum capacity of 1024
    - 4 little CPUs (0,3-5), maximum capacity of 383

Testing workload ([1]):

  Spawn 6 CPU-bound tasks. During the first 100ms (step 1), each tasks
  is affine to a CPU, except for:

    - one little CPU which is left idle.
    - one big CPU which has 2 tasks affine.

  After the 100ms (step 2), remove the cpumask affinity.

Behavior before the patch:

  During step 2, the load balancer running from the idle CPU tags sched
  domains as:

  - little CPUs: 'group_has_spare'. Cf. group_has_capacity() and
    group_is_overloaded(), 3 CPU-bound tasks run on a 4 CPUs
    sched-domain, and the idle CPU provides enough spare capacity
    regarding the imbalance_pct

  - big CPUs: 'group_overloaded'. Indeed, 3 tasks run on a 2 CPUs
    sched-domain, so the following path is used:

      group_is_overloaded()
      \-if (sgs->sum_nr_running <= sgs->group_weight) return true;

    The following path which would change the migration type to
    'migrate_task' is not taken:

      calculate_imbalance()
      \-if (env->idle != CPU_NOT_IDLE && env->imbalance == 0)

    as the local group has some spare capacity, so the imbalance
    is not 0.

  The migration type requested is 'migrate_util' and the busiest
  runqueue is the big CPU's runqueue having 2 tasks (each having a
  utilization of 512). The idle little CPU cannot pull one of these
  task as its capacity is too small for the task. The following path
  is used:

   detach_tasks()
   \-case migrate_util:
     \-if (util > env->imbalance) goto next;

After the patch:

As the number of failed balancing attempts grows (with
'nr_balance_failed'), progressively make it easier to migrate
a big task to the idling little CPU. A similar mechanism is
used for the 'migrate_load' migration type.

Improvement:

Running the testing workload [1] with the step 2 representing
a ~10s load for a big CPU:

  Before patch: ~19.3s
  After patch:  ~18s (-6.7%)

Similar issue reported at:

  https://lore.kernel.org/lkml/20230716014125.139577-1-qyousef@layalina.io/

Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Pierre Gondois <pierre.gondois@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Qais Yousef <qyousef@layalina.io>
Link: https://lore.kernel.org/r/20231206090043.634697-1-pierre.gondois@arm.com
2023-12-23 16:06:36 +01:00
Vincent Guittot
11137d3849 sched/fair: Simplify util_est
With UTIL_EST_FASTUP now being permanent, we can take advantage of the
fact that the ewma jumps directly to a higher utilization at dequeue to
simplify util_est and remove the enqueued field.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Hongyan Xia <hongyan.xia2@arm.com>
Reviewed-by: Alex Shi <alexs@kernel.org>
Link: https://lore.kernel.org/r/20231201161652.1241695-3-vincent.guittot@linaro.org
2023-12-23 15:59:58 +01:00
Vincent Guittot
7736ae5572 sched/fair: Remove SCHED_FEAT(UTIL_EST_FASTUP, true)
sched_feat(UTIL_EST_FASTUP) has been added to easily disable the feature
in order to check for possibly related regressions. After 3 years, it has
never been used and no regression has been reported. Let's remove it
and make fast increase a permanent behavior.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Hongyan Xia <hongyan.xia2@arm.com>
Reviewed-by: Tang Yizhou <yizhou.tang@shopee.com>
Reviewed-by: Yanteng Si <siyanteng@loongson.cn> [for the Chinese translation]
Reviewed-by: Alex Shi <alexs@kernel.org>
Link: https://lore.kernel.org/r/20231201161652.1241695-2-vincent.guittot@linaro.org
2023-12-23 15:59:56 +01:00
Arnd Bergmann
b1c3efe079 sched: fair: move unused stub functions to header
These four functions have a normal definition for CONFIG_FAIR_GROUP_SCHED,
and empty one that is only referenced when FAIR_GROUP_SCHED is disabled
but CGROUP_SCHED is still enabled.  If both are turned off, the functions
are still defined but the misisng prototype causes a W=1 warning:

kernel/sched/fair.c:12544:6: error: no previous prototype for 'free_fair_sched_group'
kernel/sched/fair.c:12546:5: error: no previous prototype for 'alloc_fair_sched_group'
kernel/sched/fair.c:12553:6: error: no previous prototype for 'online_fair_sched_group'
kernel/sched/fair.c:12555:6: error: no previous prototype for 'unregister_fair_sched_group'

Move the alternatives into the header as static inline functions with the
correct combination of #ifdef checks to avoid the warning without adding
even more complexity.

[A different patch with the same description got applied by accident
 and was later reverted, but the original patch is still missing]

Link: https://lkml.kernel.org/r/20231123110506.707903-4-arnd@kernel.org
Fixes: 7aa55f2a59 ("sched/fair: Move unused stub functions to header")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Nicolas Schier <nicolas@fjasle.eu>
Cc: Palmer Dabbelt <palmer@rivosinc.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Tudor Ambarus <tudor.ambarus@linaro.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Zhihao Cheng <chengzhihao1@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-10 17:21:43 -08:00
Yiwei Lin
5068d84054 sched/fair: Update min_vruntime for reweight_entity() correctly
Since reweight_entity() may have chance to change the weight of
cfs_rq->curr entity, we should also update_min_vruntime() if
this is the case

Fixes: eab03c23c2 ("sched/eevdf: Fix vruntime adjustment on reweight")
Signed-off-by: Yiwei Lin <s921975628@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Abel Wu <wuyun.abel@bytedance.com>
Link: https://lore.kernel.org/r/20231117080106.12890-1-s921975628@gmail.com
2023-11-29 15:43:52 +01:00
Vincent Guittot
9c0b4bb7f6 sched/cpufreq: Rework schedutil governor performance estimation
The current method to take into account uclamp hints when estimating the
target frequency can end in a situation where the selected target
frequency is finally higher than uclamp hints, whereas there are no real
needs. Such cases mainly happen because we are currently mixing the
traditional scheduler utilization signal with the uclamp performance
hints. By adding these 2 metrics, we loose an important information when
it comes to select the target frequency, and we have to make some
assumptions which can't fit all cases.

Rework the interface between the scheduler and schedutil governor in order
to propagate all information down to the cpufreq governor.

effective_cpu_util() interface changes and now returns the actual
utilization of the CPU with 2 optional inputs:

- The minimum performance for this CPU; typically the capacity to handle
  the deadline task and the interrupt pressure. But also uclamp_min
  request when available.

- The maximum targeting performance for this CPU which reflects the
  maximum level that we would like to not exceed. By default it will be
  the CPU capacity but can be reduced because of some performance hints
  set with uclamp. The value can be lower than actual utilization and/or
  min performance level.

A new sugov_effective_cpu_perf() interface is also available to compute
the final performance level that is targeted for the CPU, after applying
some cpufreq headroom and taking into account all inputs.

With these 2 functions, schedutil is now able to decide when it must go
above uclamp hints. It now also has a generic way to get the min
performance level.

The dependency between energy model and cpufreq governor and its headroom
policy doesn't exist anymore.

eenv_pd_max_util() asks schedutil for the targeted performance after
applying the impact of the waking task.

[ mingo: Refined the changelog & C comments. ]

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Link: https://lore.kernel.org/r/20231122133904.446032-2-vincent.guittot@linaro.org
2023-11-23 11:32:01 +01:00
Vincent Guittot
50181c0cff sched/pelt: Avoid underestimation of task utilization
Lukasz Luba reported that a thread's util_est can significantly decrease as
a result of sharing the CPU with other threads.

The use case can be easily reproduced with a periodic task TA that runs 1ms
and sleeps 100us. When the task is alone on the CPU, its max utilization and
its util_est is around 888. If another similar task starts to run on the
same CPU, TA will have to share the CPU runtime and its maximum utilization
will decrease around half the CPU capacity (512) then TA's util_est will
follow this new maximum trend which is only the result of sharing the CPU
with others tasks.

Such situation can be detected with runnable_avg wich is close or
equal to util_avg when TA is alone, but increases above util_avg when TA
shares the CPU with other threads and wait on the runqueue.

[ We prefer an util_est that overestimate rather than under estimate
  because in 1st case we will not provide enough performance to the
  task which will remain under-provisioned, whereas in the other case we
  will create some idle time which will enable to reduce contention and
  as a result reduces the util_est so the overestimate will be transient
  whereas the underestimate will remain. ]

[ mingo: Refined the changelog, added comments from the LKML discussion. ]

Reported-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/lkml/CAKfTPtDd-HhF-YiNTtL9i5k0PfJbF819Yxu4YquzfXgwi7voyw@mail.gmail.com/#t
Link: https://lore.kernel.org/r/20231122140119.472110-1-vincent.guittot@linaro.org
Cc: Hongyan Xia <hongyan.xia2@arm.com>
2023-11-23 11:24:28 +01:00
Peter Zijlstra
63ba8422f8 sched/deadline: Introduce deadline servers
Low priority tasks (e.g., SCHED_OTHER) can suffer starvation if tasks
with higher priority (e.g., SCHED_FIFO) monopolize CPU(s).

RT Throttling has been introduced a while ago as a (mostly debug)
countermeasure one can utilize to reserve some CPU time for low priority
tasks (usually background type of work, e.g. workqueues, timers, etc.).
It however has its own problems (see documentation) and the undesired
effect of unconditionally throttling FIFO tasks even when no lower
priority activity needs to run (there are mechanisms to fix this issue
as well, but, again, with their own problems).

Introduce deadline servers to service low priority tasks needs under
starvation conditions. Deadline servers are built extending SCHED_DEADLINE
implementation to allow 2-level scheduling (a sched_deadline entity
becomes a container for lower priority scheduling entities).

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/4968601859d920335cf85822eb573a5f179f04b8.1699095159.git.bristot@kernel.org
2023-11-15 09:57:51 +01:00
Peter Zijlstra
c708a4dc5a sched: Unify more update_curr*()
Now that trace_sched_stat_runtime() no longer takes a vruntime
argument, the task specific bits are identical between
update_curr_common() and update_curr().

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2023-11-15 09:57:49 +01:00
Peter Zijlstra
5fe6ec8f6a sched: Remove vruntime from trace_sched_stat_runtime()
Tracing the runtime delta makes sense, observer can sum over time.
Tracing the absolute vruntime makes less sense, inconsistent:
absolute-vs-delta, but also vruntime delta can be computed from
runtime delta.

Removing the vruntime thing also makes the two tracepoint sites
identical, allowing to unify the code in a later patch.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2023-11-15 09:57:49 +01:00
Peter Zijlstra
5d69eca542 sched: Unify runtime accounting across classes
All classes use sched_entity::exec_start to track runtime and have
copies of the exact same code around to compute runtime.

Collapse all that.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/54d148a144f26d9559698c4dd82d8859038a7380.1699095159.git.bristot@kernel.org
2023-11-15 09:57:48 +01:00
Abel Wu
ee4373dc90 sched/eevdf: O(1) fastpath for task selection
Since the RB-tree is now sorted by deadline, let's first try the
leftmost entity which has the earliest virtual deadline. I've done
some benchmarks to see its effectiveness.

All the benchmarks are done inside a normal cpu cgroup in a clean
environment with cpu turbo disabled, on a dual-CPU Intel Xeon(R)
Platinum 8260 with 2 NUMA nodes each of which has 24C/48T.

  hackbench: process/thread + pipe/socket + 1/2/4/8 groups
  netperf:   TCP/UDP + STREAM/RR + 24/48/72/96/192 threads
  tbench:    loopback 24/48/72/96/192 threads
  schbench:  1/2/4/8 mthreads

  direct:    cfs_rq has only one entity
  parity:    RUN_TO_PARITY
  fast:      O(1) fastpath
  slow:	     heap search

    (%)		direct	parity	fast	slow
  hackbench	92.95	2.02	4.91	0.12
  netperf	68.08	6.60	24.18	1.14
  tbench	67.55	11.22	20.61	0.62
  schbench	69.91	2.65	25.73	1.71

The above results indicate that this fastpath really makes task
selection more efficient.

Signed-off-by: Abel Wu <wuyun.abel@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20231115033647.80785-4-wuyun.abel@bytedance.com
2023-11-15 09:57:47 +01:00
Abel Wu
2227a957e1 sched/eevdf: Sort the rbtree by virtual deadline
Sort the task timeline by virtual deadline and keep the min_vruntime
in the augmented tree, so we can avoid doubling the worst case cost
and make full use of the cached leftmost node to enable O(1) fastpath
picking in next patch.

Signed-off-by: Abel Wu <wuyun.abel@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20231115033647.80785-3-wuyun.abel@bytedance.com
2023-11-15 09:57:47 +01:00
Raghavendra K T
84db47ca71 sched/numa: Fix mm numa_scan_seq based unconditional scan
Since commit fc137c0dda ("sched/numa: enhance vma scanning logic")

NUMA Balancing allows updating PTEs to trap NUMA hinting faults if the
task had previously accessed VMA. However unconditional scan of VMAs are
allowed during initial phase of VMA creation until process's
mm numa_scan_seq reaches 2 even though current task had not accessed VMA.

Rationale:
 - Without initial scan subsequent PTE update may never happen.
 - Give fair opportunity to all the VMAs to be scanned and subsequently
understand the access pattern of all the VMAs.

But it has a corner case where, if a VMA is created after some time,
process's mm numa_scan_seq could be already greater than 2.

For e.g., values of mm numa_scan_seq when VMAs are created by running
mmtest autonuma benchmark briefly looks like:
start_seq=0 : 459
start_seq=2 : 138
start_seq=3 : 144
start_seq=4 : 8
start_seq=8 : 1
start_seq=9 : 1
This results in no unconditional PTE updates for those VMAs created after
some time.

Fix:
 - Note down the initial value of mm numa_scan_seq in per VMA start_seq.
 - Allow unconditional scan till start_seq + 2.

Result:
SUT: AMD EPYC Milan with 2 NUMA nodes 256 cpus.
base kernel: upstream 6.6-rc6 with Mels patches [1] applied.

kernbench
==========		base                  patched %gain
Amean    elsp-128      165.09 ( 0.00%)      164.78 *   0.19%*

Duration User       41404.28    41375.08
Duration System      9862.22     9768.48
Duration Elapsed      519.87      518.72

Ops NUMA PTE updates           1041416.00      831536.00
Ops NUMA hint faults            263296.00      220966.00
Ops NUMA pages migrated         258021.00      212769.00
Ops AutoNUMA cost                 1328.67        1114.69

autonumabench

NUMA01_THREADLOCAL
==================
Amean  elsp-NUMA01_THREADLOCAL   81.79 (0.00%)  67.74 *  17.18%*

Duration User       54832.73    47379.67
Duration System        75.00      185.75
Duration Elapsed      576.72      476.09

Ops NUMA PTE updates                  394429.00    11121044.00
Ops NUMA hint faults                    1001.00     8906404.00
Ops NUMA pages migrated                  288.00     2998694.00
Ops AutoNUMA cost                          7.77       44666.84

Signed-off-by: Raghavendra K T <raghavendra.kt@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/2ea7cbce80ac7c62e90cbfb9653a7972f902439f.1697816692.git.raghavendra.kt@amd.com
2023-11-15 09:57:46 +01:00
Keisuke Nishimura
6d7e4782bc sched/fair: Fix the decision for load balance
should_we_balance is called for the decision to do load-balancing.
When sched ticks invoke this function, only one CPU should return
true. However, in the current code, two CPUs can return true. The
following situation, where b means busy and i means idle, is an
example, because CPU 0 and CPU 2 return true.

        [0, 1] [2, 3]
         b  b   i  b

This fix checks if there exists an idle CPU with busy sibling(s)
after looking for a CPU on an idle core. If some idle CPUs with busy
siblings are found, just the first one should do load-balancing.

Fixes: b1bfeab9b0 ("sched/fair: Consider the idle state of the whole core for load balance")
Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chen Yu <yu.c.chen@intel.com>
Reviewed-by: Shrikanth Hegde <sshegde@linux.vnet.ibm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20231031133821.1570861-1-keisuke.nishimura@inria.fr
2023-11-14 22:27:01 +01:00
Abel Wu
eab03c23c2 sched/eevdf: Fix vruntime adjustment on reweight
vruntime of the (on_rq && !0-lag) entity needs to be adjusted when
it gets re-weighted, and the calculations can be simplified based
on the fact that re-weight won't change the w-average of all the
entities. Please check the proofs in comments.

But adjusting vruntime can also cause position change in RB-tree
hence require re-queue to fix up which might be costly. This might
be avoided by deferring adjustment to the time the entity actually
leaves tree (dequeue/pick), but that will negatively affect task
selection and probably not good enough either.

Fixes: 147f3efaa2 ("sched/fair: Implement an EEVDF-like scheduling policy")
Signed-off-by: Abel Wu <wuyun.abel@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20231107090510.71322-2-wuyun.abel@bytedance.com
2023-11-14 22:27:00 +01:00
Linus Torvalds
ecae0bd517 Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
 
 - Kemeng Shi has contributed some compation maintenance work in the
   series "Fixes and cleanups to compaction".
 
 - Joel Fernandes has a patchset ("Optimize mremap during mutual
   alignment within PMD") which fixes an obscure issue with mremap()'s
   pagetable handling during a subsequent exec(), based upon an
   implementation which Linus suggested.
 
 - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the
   following patch series:
 
 	mm/damon: misc fixups for documents, comments and its tracepoint
 	mm/damon: add a tracepoint for damos apply target regions
 	mm/damon: provide pseudo-moving sum based access rate
 	mm/damon: implement DAMOS apply intervals
 	mm/damon/core-test: Fix memory leaks in core-test
 	mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
 
 - In the series "Do not try to access unaccepted memory" Adrian Hunter
   provides some fixups for the recently-added "unaccepted memory' feature.
   To increase the feature's checking coverage.  "Plug a few gaps where
   RAM is exposed without checking if it is unaccepted memory".
 
 - In the series "cleanups for lockless slab shrink" Qi Zheng has done
   some maintenance work which is preparation for the lockless slab
   shrinking code.
 
 - Qi Zheng has redone the earlier (and reverted) attempt to make slab
   shrinking lockless in the series "use refcount+RCU method to implement
   lockless slab shrink".
 
 - David Hildenbrand contributes some maintenance work for the rmap code
   in the series "Anon rmap cleanups".
 
 - Kefeng Wang does more folio conversions and some maintenance work in
   the migration code.  Series "mm: migrate: more folio conversion and
   unification".
 
 - Matthew Wilcox has fixed an issue in the buffer_head code which was
   causing long stalls under some heavy memory/IO loads.  Some cleanups
   were added on the way.  Series "Add and use bdev_getblk()".
 
 - In the series "Use nth_page() in place of direct struct page
   manipulation" Zi Yan has fixed a potential issue with the direct
   manipulation of hugetlb page frames.
 
 - In the series "mm: hugetlb: Skip initialization of gigantic tail
   struct pages if freed by HVO" has improved our handling of gigantic
   pages in the hugetlb vmmemmep optimizaton code.  This provides
   significant boot time improvements when significant amounts of gigantic
   pages are in use.
 
 - Matthew Wilcox has sent the series "Small hugetlb cleanups" - code
   rationalization and folio conversions in the hugetlb code.
 
 - Yin Fengwei has improved mlock()'s handling of large folios in the
   series "support large folio for mlock"
 
 - In the series "Expose swapcache stat for memcg v1" Liu Shixin has
   added statistics for memcg v1 users which are available (and useful)
   under memcg v2.
 
 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
   prctl so that userspace may direct the kernel to not automatically
   propagate the denial to child processes.  The series is named "MDWE
   without inheritance".
 
 - Kefeng Wang has provided the series "mm: convert numa balancing
   functions to use a folio" which does what it says.
 
 - In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch
   makes is possible for a process to propagate KSM treatment across
   exec().
 
 - Huang Ying has enhanced memory tiering's calculation of memory
   distances.  This is used to permit the dax/kmem driver to use "high
   bandwidth memory" in addition to Optane Data Center Persistent Memory
   Modules (DCPMM).  The series is named "memory tiering: calculate
   abstract distance based on ACPI HMAT"
 
 - In the series "Smart scanning mode for KSM" Stefan Roesch has
   optimized KSM by teaching it to retain and use some historical
   information from previous scans.
 
 - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the
   series "mm: memcg: fix tracking of pending stats updates values".
 
 - In the series "Implement IOCTL to get and optionally clear info about
   PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits
   us to atomically read-then-clear page softdirty state.  This is mainly
   used by CRIU.
 
 - Hugh Dickins contributed the series "shmem,tmpfs: general maintenance"
   - a bunch of relatively minor maintenance tweaks to this code.
 
 - Matthew Wilcox has increased the use of the VMA lock over file-backed
   page faults in the series "Handle more faults under the VMA lock".  Some
   rationalizations of the fault path became possible as a result.
 
 - In the series "mm/rmap: convert page_move_anon_rmap() to
   folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups
   and folio conversions.
 
 - In the series "various improvements to the GUP interface" Lorenzo
   Stoakes has simplified and improved the GUP interface with an eye to
   providing groundwork for future improvements.
 
 - Andrey Konovalov has sent along the series "kasan: assorted fixes and
   improvements" which does those things.
 
 - Some page allocator maintenance work from Kemeng Shi in the series
   "Two minor cleanups to break_down_buddy_pages".
 
 - In thes series "New selftest for mm" Breno Leitao has developed
   another MM self test which tickles a race we had between madvise() and
   page faults.
 
 - In the series "Add folio_end_read" Matthew Wilcox provides cleanups
   and an optimization to the core pagecache code.
 
 - Nhat Pham has added memcg accounting for hugetlb memory in the series
   "hugetlb memcg accounting".
 
 - Cleanups and rationalizations to the pagemap code from Lorenzo
   Stoakes, in the series "Abstract vma_merge() and split_vma()".
 
 - Audra Mitchell has fixed issues in the procfs page_owner code's new
   timestamping feature which was causing some misbehaviours.  In the
   series "Fix page_owner's use of free timestamps".
 
 - Lorenzo Stoakes has fixed the handling of new mappings of sealed files
   in the series "permit write-sealed memfd read-only shared mappings".
 
 - Mike Kravetz has optimized the hugetlb vmemmap optimization in the
   series "Batch hugetlb vmemmap modification operations".
 
 - Some buffer_head folio conversions and cleanups from Matthew Wilcox in
   the series "Finish the create_empty_buffers() transition".
 
 - As a page allocator performance optimization Huang Ying has added
   automatic tuning to the allocator's per-cpu-pages feature, in the series
   "mm: PCP high auto-tuning".
 
 - Roman Gushchin has contributed the patchset "mm: improve performance
   of accounted kernel memory allocations" which improves their performance
   by ~30% as measured by a micro-benchmark.
 
 - folio conversions from Kefeng Wang in the series "mm: convert page
   cpupid functions to folios".
 
 - Some kmemleak fixups in Liu Shixin's series "Some bugfix about
   kmemleak".
 
 - Qi Zheng has improved our handling of memoryless nodes by keeping them
   off the allocation fallback list.  This is done in the series "handle
   memoryless nodes more appropriately".
 
 - khugepaged conversions from Vishal Moola in the series "Some
   khugepaged folio conversions".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA
 jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y
 FgeUPAD1oasg6CP+INZvCj34waNxwAc=
 =E+Y4
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:
 "Many singleton patches against the MM code. The patch series which are
  included in this merge do the following:

   - Kemeng Shi has contributed some compation maintenance work in the
     series 'Fixes and cleanups to compaction'

   - Joel Fernandes has a patchset ('Optimize mremap during mutual
     alignment within PMD') which fixes an obscure issue with mremap()'s
     pagetable handling during a subsequent exec(), based upon an
     implementation which Linus suggested

   - More DAMON/DAMOS maintenance and feature work from SeongJae Park i
     the following patch series:

	mm/damon: misc fixups for documents, comments and its tracepoint
	mm/damon: add a tracepoint for damos apply target regions
	mm/damon: provide pseudo-moving sum based access rate
	mm/damon: implement DAMOS apply intervals
	mm/damon/core-test: Fix memory leaks in core-test
	mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval

   - In the series 'Do not try to access unaccepted memory' Adrian
     Hunter provides some fixups for the recently-added 'unaccepted
     memory' feature. To increase the feature's checking coverage. 'Plug
     a few gaps where RAM is exposed without checking if it is
     unaccepted memory'

   - In the series 'cleanups for lockless slab shrink' Qi Zheng has done
     some maintenance work which is preparation for the lockless slab
     shrinking code

   - Qi Zheng has redone the earlier (and reverted) attempt to make slab
     shrinking lockless in the series 'use refcount+RCU method to
     implement lockless slab shrink'

   - David Hildenbrand contributes some maintenance work for the rmap
     code in the series 'Anon rmap cleanups'

   - Kefeng Wang does more folio conversions and some maintenance work
     in the migration code. Series 'mm: migrate: more folio conversion
     and unification'

   - Matthew Wilcox has fixed an issue in the buffer_head code which was
     causing long stalls under some heavy memory/IO loads. Some cleanups
     were added on the way. Series 'Add and use bdev_getblk()'

   - In the series 'Use nth_page() in place of direct struct page
     manipulation' Zi Yan has fixed a potential issue with the direct
     manipulation of hugetlb page frames

   - In the series 'mm: hugetlb: Skip initialization of gigantic tail
     struct pages if freed by HVO' has improved our handling of gigantic
     pages in the hugetlb vmmemmep optimizaton code. This provides
     significant boot time improvements when significant amounts of
     gigantic pages are in use

   - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code
     rationalization and folio conversions in the hugetlb code

   - Yin Fengwei has improved mlock()'s handling of large folios in the
     series 'support large folio for mlock'

   - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has
     added statistics for memcg v1 users which are available (and
     useful) under memcg v2

   - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
     prctl so that userspace may direct the kernel to not automatically
     propagate the denial to child processes. The series is named 'MDWE
     without inheritance'

   - Kefeng Wang has provided the series 'mm: convert numa balancing
     functions to use a folio' which does what it says

   - In the series 'mm/ksm: add fork-exec support for prctl' Stefan
     Roesch makes is possible for a process to propagate KSM treatment
     across exec()

   - Huang Ying has enhanced memory tiering's calculation of memory
     distances. This is used to permit the dax/kmem driver to use 'high
     bandwidth memory' in addition to Optane Data Center Persistent
     Memory Modules (DCPMM). The series is named 'memory tiering:
     calculate abstract distance based on ACPI HMAT'

   - In the series 'Smart scanning mode for KSM' Stefan Roesch has
     optimized KSM by teaching it to retain and use some historical
     information from previous scans

   - Yosry Ahmed has fixed some inconsistencies in memcg statistics in
     the series 'mm: memcg: fix tracking of pending stats updates
     values'

   - In the series 'Implement IOCTL to get and optionally clear info
     about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap
     which permits us to atomically read-then-clear page softdirty
     state. This is mainly used by CRIU

   - Hugh Dickins contributed the series 'shmem,tmpfs: general
     maintenance', a bunch of relatively minor maintenance tweaks to
     this code

   - Matthew Wilcox has increased the use of the VMA lock over
     file-backed page faults in the series 'Handle more faults under the
     VMA lock'. Some rationalizations of the fault path became possible
     as a result

   - In the series 'mm/rmap: convert page_move_anon_rmap() to
     folio_move_anon_rmap()' David Hildenbrand has implemented some
     cleanups and folio conversions

   - In the series 'various improvements to the GUP interface' Lorenzo
     Stoakes has simplified and improved the GUP interface with an eye
     to providing groundwork for future improvements

   - Andrey Konovalov has sent along the series 'kasan: assorted fixes
     and improvements' which does those things

   - Some page allocator maintenance work from Kemeng Shi in the series
     'Two minor cleanups to break_down_buddy_pages'

   - In thes series 'New selftest for mm' Breno Leitao has developed
     another MM self test which tickles a race we had between madvise()
     and page faults

   - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups
     and an optimization to the core pagecache code

   - Nhat Pham has added memcg accounting for hugetlb memory in the
     series 'hugetlb memcg accounting'

   - Cleanups and rationalizations to the pagemap code from Lorenzo
     Stoakes, in the series 'Abstract vma_merge() and split_vma()'

   - Audra Mitchell has fixed issues in the procfs page_owner code's new
     timestamping feature which was causing some misbehaviours. In the
     series 'Fix page_owner's use of free timestamps'

   - Lorenzo Stoakes has fixed the handling of new mappings of sealed
     files in the series 'permit write-sealed memfd read-only shared
     mappings'

   - Mike Kravetz has optimized the hugetlb vmemmap optimization in the
     series 'Batch hugetlb vmemmap modification operations'

   - Some buffer_head folio conversions and cleanups from Matthew Wilcox
     in the series 'Finish the create_empty_buffers() transition'

   - As a page allocator performance optimization Huang Ying has added
     automatic tuning to the allocator's per-cpu-pages feature, in the
     series 'mm: PCP high auto-tuning'

   - Roman Gushchin has contributed the patchset 'mm: improve
     performance of accounted kernel memory allocations' which improves
     their performance by ~30% as measured by a micro-benchmark

   - folio conversions from Kefeng Wang in the series 'mm: convert page
     cpupid functions to folios'

   - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about
     kmemleak'

   - Qi Zheng has improved our handling of memoryless nodes by keeping
     them off the allocation fallback list. This is done in the series
     'handle memoryless nodes more appropriately'

   - khugepaged conversions from Vishal Moola in the series 'Some
     khugepaged folio conversions'"

[ bcachefs conflicts with the dynamically allocated shrinkers have been
  resolved as per Stephen Rothwell in

     https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/

  with help from Qi Zheng.

  The clone3 test filtering conflict was half-arsed by yours truly ]

* tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits)
  mm/damon/sysfs: update monitoring target regions for online input commit
  mm/damon/sysfs: remove requested targets when online-commit inputs
  selftests: add a sanity check for zswap
  Documentation: maple_tree: fix word spelling error
  mm/vmalloc: fix the unchecked dereference warning in vread_iter()
  zswap: export compression failure stats
  Documentation: ubsan: drop "the" from article title
  mempolicy: migration attempt to match interleave nodes
  mempolicy: mmap_lock is not needed while migrating folios
  mempolicy: alloc_pages_mpol() for NUMA policy without vma
  mm: add page_rmappable_folio() wrapper
  mempolicy: remove confusing MPOL_MF_LAZY dead code
  mempolicy: mpol_shared_policy_init() without pseudo-vma
  mempolicy trivia: use pgoff_t in shared mempolicy tree
  mempolicy trivia: slightly more consistent naming
  mempolicy trivia: delete those ancient pr_debug()s
  mempolicy: fix migrate_pages(2) syscall return nr_failed
  kernfs: drop shared NUMA mempolicy hooks
  hugetlbfs: drop shared NUMA mempolicy pretence
  mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets()
  ...
2023-11-02 19:38:47 -10:00
Kefeng Wang
1b143cc77f sched/fair: use folio_xchg_last_cpupid() in should_numa_migrate_memory()
Convert to use folio_xchg_last_cpupid() in should_numa_migrate_memory().

Link: https://lkml.kernel.org/r/20231018140806.2783514-14-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:12 -07:00
Kefeng Wang
0b201c3624 sched/fair: use folio_xchg_access_time() in numa_hint_fault_latency()
Convert to use folio_xchg_access_time() in numa_hint_fault_latency().

Link: https://lkml.kernel.org/r/20231018140806.2783514-9-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:12 -07:00
Peter Zijlstra
984ffb6a43 sched/fair: Remove SIS_PROP
SIS_UTIL seems to work well, lets remove the old thing.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20231020134337.GD33965@noisy.programming.kicks-ass.net
2023-10-24 10:38:44 +02:00
Yicong Yang
22165f61d0 sched/fair: Use candidate prev/recent_used CPU if scanning failed for cluster wakeup
Chen Yu reports a hackbench regression of cluster wakeup when
hackbench threads equal to the CPU number [1]. Analysis shows
it's because we wake up more on the target CPU even if the
prev_cpu is a good wakeup candidate and leads to the decrease
of the CPU utilization.

Generally if the task's prev_cpu is idle we'll wake up the task
on it without scanning. On cluster machines we'll try to wake up
the task in the same cluster of the target for better cache
affinity, so if the prev_cpu is idle but not sharing the same
cluster with the target we'll still try to find an idle CPU within
the cluster. This will improve the performance at low loads on
cluster machines. But in the issue above, if the prev_cpu is idle
but not in the cluster with the target CPU, we'll try to scan an
idle one in the cluster. But since the system is busy, we're
likely to fail the scanning and use target instead, even if
the prev_cpu is idle. Then leads to the regression.

This patch solves this in 2 steps:
o record the prev_cpu/recent_used_cpu if they're good wakeup
  candidates but not sharing the cluster with the target.
o on scanning failure use the prev_cpu/recent_used_cpu if
  they're recorded as idle

[1] https://lore.kernel.org/all/ZGzDLuVaHR1PAYDt@chenyu5-mobl1/

Closes: https://lore.kernel.org/all/ZGsLy83wPIpamy6x@chenyu5-mobl1/
Reported-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Tested-and-reviewed-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20231019033323.54147-4-yangyicong@huawei.com
2023-10-24 10:38:43 +02:00
Barry Song
8881e1639f sched/fair: Scan cluster before scanning LLC in wake-up path
For platforms having clusters like Kunpeng920, CPUs within the same cluster
have lower latency when synchronizing and accessing shared resources like
cache. Thus, this patch tries to find an idle cpu within the cluster of the
target CPU before scanning the whole LLC to gain lower latency. This
will be implemented in 2 steps in select_idle_sibling():
1. When the prev_cpu/recent_used_cpu are good wakeup candidates, use them
   if they're sharing cluster with the target CPU. Otherwise trying to
   scan for an idle CPU in the target's cluster.
2. Scanning the cluster prior to the LLC of the target CPU for an
   idle CPU to wakeup.

Testing has been done on Kunpeng920 by pinning tasks to one numa and two
numa. On Kunpeng920, Each numa has 8 clusters and each cluster has 4 CPUs.

With this patch, We noticed enhancement on tbench and netperf within one
numa or cross two numa on top of tip-sched-core commit
9b46f1abc6d4 ("sched/debug: Print 'tgid' in sched_show_task()")

tbench results (node 0):
            baseline                     patched
  1:        327.2833        372.4623 (   13.80%)
  4:       1320.5933       1479.8833 (   12.06%)
  8:       2638.4867       2921.5267 (   10.73%)
 16:       5282.7133       5891.5633 (   11.53%)
 32:       9810.6733       9877.3400 (    0.68%)
 64:       7408.9367       7447.9900 (    0.53%)
128:       6203.2600       6191.6500 (   -0.19%)
tbench results (node 0-1):
            baseline                     patched
  1:        332.0433        372.7223 (   12.25%)
  4:       1325.4667       1477.6733 (   11.48%)
  8:       2622.9433       2897.9967 (   10.49%)
 16:       5218.6100       5878.2967 (   12.64%)
 32:      10211.7000      11494.4000 (   12.56%)
 64:      13313.7333      16740.0333 (   25.74%)
128:      13959.1000      14533.9000 (    4.12%)

netperf results TCP_RR (node 0):
            baseline                     patched
  1:      76546.5033      90649.9867 (   18.42%)
  4:      77292.4450      90932.7175 (   17.65%)
  8:      77367.7254      90882.3467 (   17.47%)
 16:      78519.9048      90938.8344 (   15.82%)
 32:      72169.5035      72851.6730 (    0.95%)
 64:      25911.2457      25882.2315 (   -0.11%)
128:      10752.6572      10768.6038 (    0.15%)

netperf results TCP_RR (node 0-1):
            baseline                     patched
  1:      76857.6667      90892.2767 (   18.26%)
  4:      78236.6475      90767.3017 (   16.02%)
  8:      77929.6096      90684.1633 (   16.37%)
 16:      77438.5873      90502.5787 (   16.87%)
 32:      74205.6635      88301.5612 (   19.00%)
 64:      69827.8535      71787.6706 (    2.81%)
128:      25281.4366      25771.3023 (    1.94%)

netperf results UDP_RR (node 0):
            baseline                     patched
  1:      96869.8400     110800.8467 (   14.38%)
  4:      97744.9750     109680.5425 (   12.21%)
  8:      98783.9863     110409.9637 (   11.77%)
 16:      99575.0235     110636.2435 (   11.11%)
 32:      95044.7250      97622.8887 (    2.71%)
 64:      32925.2146      32644.4991 (   -0.85%)
128:      12859.2343      12824.0051 (   -0.27%)

netperf results UDP_RR (node 0-1):
            baseline                     patched
  1:      97202.4733     110190.1200 (   13.36%)
  4:      95954.0558     106245.7258 (   10.73%)
  8:      96277.1958     105206.5304 (    9.27%)
 16:      97692.7810     107927.2125 (   10.48%)
 32:      79999.6702     103550.2999 (   29.44%)
 64:      80592.7413      87284.0856 (    8.30%)
128:      27701.5770      29914.5820 (    7.99%)

Note neither Kunpeng920 nor x86 Jacobsville supports SMT, so the SMT branch
in the code has not been tested but it supposed to work.

Chen Yu also noticed this will improve the performance of tbench and
netperf on a 24 CPUs Jacobsville machine, there are 4 CPUs in one
cluster sharing L2 Cache.

[https://lore.kernel.org/lkml/Ytfjs+m1kUs0ScSn@worktop.programming.kicks-ass.net]
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Chen Yu <yu.c.chen@intel.com>
Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-and-reviewed-by: Chen Yu <yu.c.chen@intel.com>
Tested-by: Yicong Yang <yangyicong@hisilicon.com>
Link: https://lkml.kernel.org/r/20231019033323.54147-3-yangyicong@huawei.com
2023-10-24 10:38:43 +02:00
Ingo Molnar
4e5b65a22b Linux 6.6-rc7
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmU1ngkeHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGrsIH/0k/+gdBBYFFdEym
 foRhKir9WV3ZX4oIozJjA1f7T+qVYclKs6kaYm3gNepRBb6AoG8pdgv4MMAqhYsf
 QMe2XHi0MrO/qKBgfNfivxEa9jq+0QK5uvTbqCRqCAB8LfwVyDqapCmg3EuiZcPW
 UbMITmnwLIfXgPxvp9rabmCsTqO6FLbf0GDOVIkNSAIDBXMpcO1iffjrWUbhRa7n
 oIoiJmWJLcXLxPWDsRKbpJwzw2cIG08YhfQYAiQnC3YaeRm1FKLDIICRBsmfYzja
 rWv9r4dn4TDfV4/AnjggQnsZvz2yPCxNaFSQIT88nIeiLvyuUTJ9j8aidsSfMZQf
 xZAbzbA=
 =NoQv
 -----END PGP SIGNATURE-----

Merge tag 'v6.6-rc7' into sched/core, to pick up fixes

Pick up recent sched/urgent fixes merged upstream.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2023-10-23 11:32:25 +02:00
Yiwei Lin
4c456c9ad3 sched/fair: Remove unused 'curr' argument from pick_next_entity()
The 'curr' argument of pick_next_entity() has become unused after
the EEVDF changes.

[ mingo: Updated the changelog. ]

Signed-off-by: Yiwei Lin <s921975628@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231020055617.42064-1-s921975628@gmail.com
2023-10-20 15:55:04 +02:00
Joel Fernandes (Google)
fb064e5ae1 sched/nohz: Update comments about NEWILB_KICK
How ILB is triggered without IPIs is cryptic. Out of mercy for future
code readers, document it in code comments.

The comments are derived from a discussion with Vincent in a past
review.

Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231020014031.919742-2-joel@joelfernandes.org
2023-10-20 09:56:21 +02:00
Jiapeng Chong
1b7ef2d94f sched/fair: Remove duplicate #include
./kernel/sched/fair.c: linux/sched/cond_resched.h is included more than once.

Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231018062759.44375-1-jiapeng.chong@linux.alibaba.com

Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=6907
2023-10-18 10:32:31 +02:00
Peter Zijlstra
d2929762cc sched/eevdf: Fix heap corruption more
Because someone is a flaming idiot... and forgot we have current as
se->on_rq but not actually in the tree itself, and walking rb_parent()
on an entry not in the tree is 'funky' and KASAN complains.

Fixes: 8dafa9d0eb ("sched/eevdf: Fix min_deadline heap integrity")
Reported-by: 0599jiangyc@gmail.com
Reported-by: Dmitry Safonov <0x7f454c46@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Dmitry Safonov <0x7f454c46@gmail.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=218020
Link: https://lkml.kernel.org/r/CAJwJo6ZGXO07%3DQvW4fgQfbsDzQPs9xj5sAQ1zp%3DmAyPMNbHYww%40mail.gmail.com
2023-10-18 10:22:13 +02:00
Kefeng Wang
8c9ae56dc7 sched/numa, mm: make numa migrate functions to take a folio
The cpupid (or access time) is stored in the head page for THP, so it is
safely to make should_numa_migrate_memory() and numa_hint_fault_latency()
to take a folio.  This is in preparation for large folio numa balancing.

Link: https://lkml.kernel.org/r/20230921074417.24004-7-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-16 15:44:38 -07:00
Peter Zijlstra
f0498d2a54 sched: Fix stop_one_cpu_nowait() vs hotplug
Kuyo reported sporadic failures on a sched_setaffinity() vs CPU
hotplug stress-test -- notably affine_move_task() remains stuck in
wait_for_completion(), leading to a hung-task detector warning.

Specifically, it was reported that stop_one_cpu_nowait(.fn =
migration_cpu_stop) returns false -- this stopper is responsible for
the matching complete().

The race scenario is:

	CPU0					CPU1

					// doing _cpu_down()

  __set_cpus_allowed_ptr()
    task_rq_lock();
					takedown_cpu()
					  stop_machine_cpuslocked(take_cpu_down..)

					<PREEMPT: cpu_stopper_thread()
					  MULTI_STOP_PREPARE
					  ...
    __set_cpus_allowed_ptr_locked()
      affine_move_task()
        task_rq_unlock();

  <PREEMPT: cpu_stopper_thread()\>
    ack_state()
					  MULTI_STOP_RUN
					    take_cpu_down()
					      __cpu_disable();
					      stop_machine_park();
						stopper->enabled = false;
					 />
   />
	stop_one_cpu_nowait(.fn = migration_cpu_stop);
          if (stopper->enabled) // false!!!

That is, by doing stop_one_cpu_nowait() after dropping rq-lock, the
stopper thread gets a chance to preempt and allows the cpu-down for
the target CPU to complete.

OTOH, since stop_one_cpu_nowait() / cpu_stop_queue_work() needs to
issue a wakeup, it must not be ran under the scheduler locks.

Solve this apparent contradiction by keeping preemption disabled over
the unlock + queue_stopper combination:

	preempt_disable();
	task_rq_unlock(...);
	if (!stop_pending)
	  stop_one_cpu_nowait(...)
	preempt_enable();

This respects the lock ordering contraints while still avoiding the
above race. That is, if we find the CPU is online under rq-lock, the
targeted stop_one_cpu_nowait() must succeed.

Apply this pattern to all similar stop_one_cpu_nowait() invocations.

Fixes: 6d337eab04 ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()")
Reported-by: "Kuyo Chang (張建文)" <Kuyo.Chang@mediatek.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: "Kuyo Chang (張建文)" <Kuyo.Chang@mediatek.com>
Link: https://lkml.kernel.org/r/20231010200442.GA16515@noisy.programming.kicks-ass.net
2023-10-13 09:56:29 +02:00
Peter Zijlstra
f577cd57bf sched/topology: Rename 'DIE' domain to 'PKG'
While reworking the x86 topology code Thomas tripped over creating a 'DIE' domain
for the package mask. :-)

Since these names are CONFIG_SCHED_DEBUG=y only, rename them to make the
name less ambiguous.

[ Shrikanth Hegde: rename on s390 as well. ]
[ Valentin Schneider: also rename it in the comments. ]
[ mingo: port to recent kernels & find all remaining occurances. ]

Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Valentin Schneider <vschneid@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Gautham R. Shenoy <gautham.shenoy@amd.com>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20230712141056.GI3100107@hirez.programming.kicks-ass.net
2023-10-12 09:38:16 +02:00
Mel Gorman
f169c62ff7 sched/numa: Complete scanning of inactive VMAs when there is no alternative
VMAs are skipped if there is no recent fault activity but this represents
a chicken-and-egg problem as there may be no fault activity if the PTEs
are never updated to trap NUMA hints. There is an indirect reliance on
scanning to be forced early in the lifetime of a task but this may fail
to detect changes in phase behaviour. Force inactive VMAs to be scanned
when all other eligible VMAs have been updated within the same scan
sequence.

Test results in general look good with some changes in performance, both
negative and positive, depending on whether the additional scanning and
faulting was beneficial or not to the workload. The autonuma benchmark
workload NUMA01_THREADLOCAL was picked for closer examination. The workload
creates two processes with numerous threads and thread-local storage that
is zero-filled in a loop. It exercises the corner case where unrelated
threads may skip VMAs that are thread-local to another thread and still
has some VMAs that inactive while the workload executes.

The VMA skipping activity frequency with and without the patch:

	6.6.0-rc2-sched-numabtrace-v1
	=============================
	    649 reason=scan_delay
	  9,094 reason=unsuitable
	 48,915 reason=shared_ro
	143,919 reason=inaccessible
	193,050 reason=pid_inactive

	6.6.0-rc2-sched-numabselective-v1
	=============================
	    146 reason=seq_completed
	    622 reason=ignore_pid_inactive

	    624 reason=scan_delay
	  6,570 reason=unsuitable
	 16,101 reason=shared_ro
	 27,608 reason=inaccessible
	 41,939 reason=pid_inactive

Note that with the patch applied, the PID activity is ignored
(ignore_pid_inactive) to ensure a VMA with some activity is completely
scanned. In addition, a small number of VMAs are scanned when no other
eligible VMA is available during a single scan window (seq_completed).
The number of times a VMA is skipped due to no PID activity from the
scanning task (pid_inactive) drops dramatically. It is expected that
this will increase the number of PTEs updated for NUMA hinting faults
as well as hinting faults but these represent PTEs that would otherwise
have been missed. The tradeoff is scan+fault overhead versus improving
locality due to migration.

On a 2-socket Cascade Lake test machine, the time to complete the
workload is as follows;

                                                 6.6.0-rc2              6.6.0-rc2
                                       sched-numabtrace-v1 sched-numabselective-v1
  Min       elsp-NUMA01_THREADLOCAL      174.22 (   0.00%)      117.64 (  32.48%)
  Amean     elsp-NUMA01_THREADLOCAL      175.68 (   0.00%)      123.34 *  29.79%*
  Stddev    elsp-NUMA01_THREADLOCAL        1.20 (   0.00%)        4.06 (-238.20%)
  CoeffVar  elsp-NUMA01_THREADLOCAL        0.68 (   0.00%)        3.29 (-381.70%)
  Max       elsp-NUMA01_THREADLOCAL      177.18 (   0.00%)      128.03 (  27.74%)

The time to complete the workload is reduced by almost 30%:

                     6.6.0-rc2   6.6.0-rc2
                  sched-numabtrace-v1 sched-numabselective-v1 /
  Duration User       91201.80    63506.64
  Duration System      2015.53     1819.78
  Duration Elapsed     1234.77      868.37

In this specific case, system CPU time was not increased but it's not
universally true.

From vmstat, the NUMA scanning and fault activity is as follows;

                                        6.6.0-rc2      6.6.0-rc2
                              sched-numabtrace-v1 sched-numabselective-v1
  Ops NUMA base-page range updates       64272.00    26374386.00
  Ops NUMA PTE updates                   36624.00       55538.00
  Ops NUMA PMD updates                      54.00       51404.00
  Ops NUMA hint faults                   15504.00       75786.00
  Ops NUMA hint local faults %           14860.00       56763.00
  Ops NUMA hint local percent               95.85          74.90
  Ops NUMA pages migrated                 1629.00     6469222.00

Both the number of PTE updates and hint faults is dramatically
increased. While this is superficially unfortunate, it represents
ranges that were simply skipped without the patch. As a result
of the scanning and hinting faults, many more pages were also
migrated but as the time to completion is reduced, the overhead
is offset by the gain.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Raghavendra K T <raghavendra.kt@amd.com>
Link: https://lore.kernel.org/r/20231010083143.19593-7-mgorman@techsingularity.net
2023-10-10 23:42:15 +02:00
Mel Gorman
b7a5b537c5 sched/numa: Complete scanning of partial VMAs regardless of PID activity
NUMA Balancing skips VMAs when the current task has not trapped a NUMA
fault within the VMA. If the VMA is skipped then mm->numa_scan_offset
advances and a task that is trapping faults within the VMA may never
fully update PTEs within the VMA.

Force tasks to update PTEs for partially scanned PTEs. The VMA will
be tagged for NUMA hints by some task but this removes some of the
benefit of tracking PID activity within a VMA. A follow-on patch
will mitigate this problem.

The test cases and machines evaluated did not trigger the corner case so
the performance results are neutral with only small changes within the
noise from normal test-to-test variance. However, the next patch makes
the corner case easier to trigger.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Raghavendra K T <raghavendra.kt@amd.com>
Link: https://lore.kernel.org/r/20231010083143.19593-6-mgorman@techsingularity.net
2023-10-10 23:41:47 +02:00
Raghavendra K T
2e2675db19 sched/numa: Move up the access pid reset logic
Recent NUMA hinting faulting activity is reset approximately every
VMA_PID_RESET_PERIOD milliseconds. However, if the current task has not
accessed a VMA then the reset check is missed and the reset is potentially
deferred forever. Check if the PID activity information should be reset
before checking if the current task recently trapped a NUMA hinting fault.

[ mgorman@techsingularity.net: Rewrite changelog ]

Suggested-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Raghavendra K T <raghavendra.kt@amd.com>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231010083143.19593-5-mgorman@techsingularity.net
2023-10-10 11:10:01 +02:00
Mel Gorman
ed2da8b725 sched/numa: Trace decisions related to skipping VMAs
NUMA balancing skips or scans VMAs for a variety of reasons. In preparation
for completing scans of VMAs regardless of PID access, trace the reasons
why a VMA was skipped. In a later patch, the tracing will be used to track
if a VMA was forcibly scanned.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231010083143.19593-4-mgorman@techsingularity.net
2023-10-10 11:10:00 +02:00
Mel Gorman
f3a6c97940 sched/numa: Rename vma_numab_state::access_pids[] => ::pids_active[], ::next_pid_reset => ::pids_active_reset
The access_pids[] field name is somewhat ambiguous as no PIDs are accessed.
Similarly, it's not clear that next_pid_reset is related to access_pids[].
Rename the fields to more accurately reflect their purpose.

[ mingo: Rename in the comments too. ]

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231010083143.19593-3-mgorman@techsingularity.net
2023-10-10 11:10:00 +02:00
Vincent Guittot
7bc263840b sched/topology: Consolidate and clean up access to a CPU's max compute capacity
Remove the rq::cpu_capacity_orig field and use arch_scale_cpu_capacity()
instead.

The scheduler uses 3 methods to get access to a CPU's max compute capacity:

 - arch_scale_cpu_capacity(cpu) which is the default way to get a CPU's capacity.

 - cpu_capacity_orig field which is periodically updated with
   arch_scale_cpu_capacity().

 - capacity_orig_of(cpu) which encapsulates rq->cpu_capacity_orig.

There is no real need to save the value returned by arch_scale_cpu_capacity()
in struct rq. arch_scale_cpu_capacity() returns:

 - either a per_cpu variable.

 - or a const value for systems which have only one capacity.

Remove rq::cpu_capacity_orig and use arch_scale_cpu_capacity() everywhere.

No functional changes.

Some performance tests on Arm64:

  - small SMP device (hikey): no noticeable changes
  - HMP device (RB5):         hackbench shows minor improvement (1-2%)
  - large smp (thx2):         hackbench and tbench shows minor improvement (1%)

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20231009103621.374412-2-vincent.guittot@linaro.org
2023-10-09 12:59:48 +02:00
Ingo Molnar
f4bb570511 sched/nohz: Remove unnecessarily complex error handling pattern from find_new_ilb()
find_new_ilb() returns nr_cpu_ids on failure - which is the usual
cpumask bitops return pattern, but is weird & unnecessary in this
context: not only is it a global variable, it it is a +1 out of
bounds CPU index and also has different signedness ...

Its only user, kick_ilb(), then checks the return against nr_cpu_ids
to decide to return. There's no other use.

So instead of this, use a standard -1 return on failure to find an
idle CPU, as the argument is signed already.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Link: https://lore.kernel.org/r/20231006102518.2452758-4-mingo@kernel.org
2023-10-09 12:21:23 +02:00
Ingo Molnar
b6dd698483 sched/nohz: Use consistent variable names in find_new_ilb() and kick_ilb()
Use 'ilb_cpu' consistently in both functions.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Link: https://lore.kernel.org/r/20231006102518.2452758-3-mingo@kernel.org
2023-10-09 12:21:23 +02:00
Ingo Molnar
7ef7145a2b sched/nohz: Update idle load-balancing (ILB) comments
- Fix incorrect/misleading comments,

 - clarify some others,

 - fix typos & grammar,

 - and use more consistent style throughout.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Link: https://lore.kernel.org/r/20231006102518.2452758-2-mingo@kernel.org
2023-10-09 12:21:23 +02:00
Benjamin Segall
b01db23d59 sched/eevdf: Fix pick_eevdf()
The old pick_eevdf() could fail to find the actual earliest eligible
deadline when it descended to the right looking for min_deadline, but
it turned out that that min_deadline wasn't actually eligible. In that
case we need to go back and search through any left branches we
skipped looking for the actual best _eligible_ min_deadline.

This is more expensive, but still O(log n), and at worst should only
involve descending two branches of the rbtree.

I've run this through a userspace stress test (thank you
tools/lib/rbtree.c), so hopefully this implementation doesn't miss any
corner cases.

Fixes: 147f3efaa2 ("sched/fair: Implement an EEVDF-like scheduling policy")
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/xm261qego72d.fsf_-_@google.com
2023-10-09 09:48:33 +02:00
Peter Zijlstra
8dafa9d0eb sched/eevdf: Fix min_deadline heap integrity
Marek and Biju reported instances of:

  "EEVDF scheduling fail, picking leftmost"

which Mike correlated with cgroup scheduling and the min_deadline heap
getting corrupted; some trace output confirms:

> And yeah, min_deadline is hosed somehow:
>
>    validate_cfs_rq: --- /
>    __print_se: ffff88845cf48080 w: 1024 ve: -58857638 lag: 870381 vd: -55861854 vmd: -66302085 E (11372/tr)
>    __print_se:   ffff88810d165800 w: 25 ve: -80323686 lag: 22336429 vd: -41496434 vmd: -66302085 E (-1//autogroup-31)
>    __print_se:   ffff888108379000 w: 25 ve: 0 lag: -57987257 vd: 114632828 vmd: 114632828 N (-1//autogroup-33)
>    validate_cfs_rq: min_deadline: -55861854 avg_vruntime: -62278313462 / 1074 = -57987256

Turns out that reweight_entity(), which tries really hard to be fast,
does not do the normal dequeue+update+enqueue pattern but *does* scale
the deadline.

However, it then fails to propagate the updated deadline value up the
heap.

Fixes: 147f3efaa2 ("sched/fair: Implement an EEVDF-like scheduling policy")
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reported-by: Biju Das <biju.das.jz@bp.renesas.com>
Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Biju Das <biju.das.jz@bp.renesas.com>
Tested-by: Mike Galbraith <efault@gmx.de>
Link: https://lkml.kernel.org/r/20231006192445.GE743@noisy.programming.kicks-ass.net
2023-10-09 09:48:32 +02:00
Ingo Molnar
8db30574db Merge branch 'sched/urgent' into sched/core, to pick up fixes and refresh the branch
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2023-10-07 11:32:24 +02:00