In /proc/schedstat, lb_imbalance reports the sum of imbalances
discovered in sched domains with each call to sched_balance_rq(), which is
not very useful because lb_imbalance does not mention whether the imbalance
is due to load, utilization, nr_tasks or misfit_tasks. Remove this field
from /proc/schedstat.
Currently there is no field in /proc/schedstat to report different types
of imbalances. Introduce new fields in /proc/schedstat to report the
total imbalances in load, utilization, nr_tasks or misfit_tasks.
Added fields to /proc/schedstat:
- lb_imbalance_load: Total imbalance due to load.
- lb_imbalance_util: Total imbalance due to utilization.
- lb_imbalance_task: Total imbalance due to number of tasks.
- lb_imbalance_misfit: Total imbalance due to misfit tasks.
Signed-off-by: Swapnil Sapkal <swapnil.sapkal@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20241220063224.17767-4-swapnil.sapkal@amd.com
migrate_degrade_locality() would return {1, 0, -1} respectively to
indicate that migration would degrade-locality, would improve
locality, would be ambivalent to locality improvements.
This patch improves readability by changing the return value to mean:
* Any positive value degrades locality
* 0 migration doesn't affect locality
* Any negative value improves locality
[Swapnil: Fixed comments around code and wrote commit log]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Not-yet-signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Swapnil Sapkal <swapnil.sapkal@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241220063224.17767-3-swapnil.sapkal@amd.com
In /proc/schedstat, lb_hot_gained reports the number hot tasks pulled
during load balance. This value is incremented in can_migrate_task()
if the task is migratable and hot. After incrementing the value,
load balancer can still decide not to migrate this task leading to wrong
accounting. Fix this by incrementing stats when hot tasks are detached.
This issue only exists in detach_tasks() where we can decide to not
migrate hot task even if it is migratable. However, in detach_one_task(),
we migrate it unconditionally.
[Swapnil: Handled the case where nr_failed_migrations_hot was not accounted properly and wrote commit log]
Fixes: d31980846f ("sched: Move up affinity check to mitigate useless redoing overhead")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reported-by: "Gautham R. Shenoy" <gautham.shenoy@amd.com>
Not-yet-signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Swapnil Sapkal <swapnil.sapkal@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241220063224.17767-2-swapnil.sapkal@amd.com
scheduler_tick() was renamed to sched_tick() in 86dd6c04ef
("sched/balancing: Rename scheduler_tick() => sched_tick()").
Update comments still referring to scheduler_tick.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20241219085839.302378-1-bigeasy@linutronix.de
CPU controller limits are not properly enforced during CPU hotplug
operations, particularly during CPU offline. When a CPU goes offline,
throttled processes are unintentionally being unthrottled across all CPUs
in the system, allowing them to exceed their assigned quota limits.
Consider below for an example,
Assigning 6.25% bandwidth limit to a cgroup
in a 8 CPU system, where, workload is running 8 threads for 20 seconds at
100% CPU utilization, expected (user+sys) time = 10 seconds.
$ cat /sys/fs/cgroup/test/cpu.max
50000 100000
$ ./ebizzy -t 8 -S 20 // non-hotplug case
real 20.00 s
user 10.81 s // intended behaviour
sys 0.00 s
$ ./ebizzy -t 8 -S 20 // hotplug case
real 20.00 s
user 14.43 s // Workload is able to run for 14 secs
sys 0.00 s // when it should have only run for 10 secs
During CPU hotplug, scheduler domains are rebuilt and cpu_attach_domain
is called for every active CPU to update the root domain. That ends up
calling rq_offline_fair which un-throttles any throttled hierarchies.
Unthrottling should only occur for the CPU being hotplugged to allow its
throttled processes to become runnable and get migrated to other CPUs.
With current patch applied,
$ ./ebizzy -t 8 -S 20 // hotplug case
real 21.00 s
user 10.16 s // intended behaviour
sys 0.00 s
This also has another symptom, when a CPU goes offline, and if the cfs_rq
is not in throttled state and the runtime_remaining still had plenty
remaining, it gets reset to 1 here, causing the runtime_remaining of
cfs_rq to be quickly depleted.
Note: hotplug operation (online, offline) was performed in while(1) loop
v3: https://lore.kernel.org/all/20241210102346.228663-2-vishalc@linux.ibm.com
v2: https://lore.kernel.org/all/20241207052730.1746380-2-vishalc@linux.ibm.com
v1: https://lore.kernel.org/all/20241126064812.809903-2-vishalc@linux.ibm.com
Suggested-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Vishal Chourasia <vishalc@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Madadi Vineeth Reddy <vineethr@linux.ibm.com>
Tested-by: Samir Mulani <samir@linux.ibm.com>
Link: https://lore.kernel.org/r/20241212043102.584863-2-vishalc@linux.ibm.com
its time accounting
- Properly track the CFS runqueue runnable stats
- Check the total number of all queued tasks in a sched fair's runqueue
hierarchy before deciding to stop the tick
- Fix the scheduling of the task that got woken last (NEXT_BUDDY) by
preventing those from being delayed
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmdexEsACgkQEsHwGGHe
VUpFqA//SIIbNJEIQEwGkFrYpGwVpSISm94L4ENsrkWbJWQlALwQEBJF9Me/DOZH
vHaX3o+cMxt26W7o0NKyPcvYtulnOr33HZA/uxK35MDaUinSA3Spt3jXHfR3n0mL
ljNQQraWHGaJh7dzKMZoxP6DR78/Z0yotXjt33xeBFMSJuzGsklrbIiSJ6c4m/3u
Y1lrQT8LncsxJMYIPAKtBAc9hvJfGFV6IOTaTfxP0oTuDo/2qTNVHm7to40wk3NW
kb0lf2kjVtE6mwMfEm49rtjE3h0VnPJKGKoEkLi9IQoPbQq9Uf4i9VSmRe3zqPAz
yBxV8BAu2koscMZzqw1CTnd9c/V+/A9qOOHfDo72I5MriJ1qVWCEsqB1y3u2yT6n
XjwFDbPiVKI8H9YlsZpWERocCRypshevPNlYOF93PlK+YTXoMWaXMQhec5NDzLLw
Se1K2sCi3U8BMdln0dH6nhk0unzNKQ8UKzrMFncSjnpWhpJ69uxyUZ/jL//6bvfi
Z+7G4U54mUhGyOAaUSGH/20TnZRWJ7NJC542omFgg9v0VLxx+wnZyX4zJIV0jvRr
6voYmYDCO8zn/hO67VBJuei97ayIzxDNP1tVl15LzcvRcIGWNUPOwp5jijv8vDJG
lJhQrMF6w4fgPItC20FvptlDvpP9cItSzyyOeg074HjDS53QN2Y=
=jOb3
-----END PGP SIGNATURE-----
Merge tag 'sched_urgent_for_v6.13_rc3-p2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Borislav Petkov:
- Prevent incorrect dequeueing of the deadline dlserver helper task and
fix its time accounting
- Properly track the CFS runqueue runnable stats
- Check the total number of all queued tasks in a sched fair's runqueue
hierarchy before deciding to stop the tick
- Fix the scheduling of the task that got woken last (NEXT_BUDDY) by
preventing those from being delayed
* tag 'sched_urgent_for_v6.13_rc3-p2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/dlserver: Fix dlserver time accounting
sched/dlserver: Fix dlserver double enqueue
sched/eevdf: More PELT vs DELAYED_DEQUEUE
sched/fair: Fix sched_can_stop_tick() for fair tasks
sched/fair: Fix NEXT_BUDDY
dlserver time is accounted when:
- dlserver is active and the dlserver proxies the cfs task.
- dlserver is active but deferred and cfs task runs after being picked
through the normal fair class pick.
dl_server_update is called in two places to make sure that both the
above times are accounted for. But it doesn't check if dlserver is
active or not. Now that we have this dl_server_active flag, we can
consolidate dl_server_update into one place and all we need to check is
whether dlserver is active or not. When dlserver is active there is only
two possible conditions:
- dlserver is deferred.
- cfs task is running on behalf of dlserver.
Fixes: a110a81c52 ("sched/deadline: Deferrable dl server")
Signed-off-by: "Vineeth Pillai (Google)" <vineeth@bitbyteword.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Marcel Ziswiler <marcel.ziswiler@codethink.co.uk> # ROCK 5B
Link: https://lore.kernel.org/r/20241213032244.877029-2-vineeth@bitbyteword.org
a RT mutex
- Do not setup a new deadline entity on a boosted task as that has happened
already
- Update preempt= kernel command line param
- Prevent needless softirqd wakeups in the idle task's context
- Detect the case where the idle load balancer CPU becomes busy and avoid
unnecessary load balancing invocation
- Remove an unnecessary load balancing need_resched() call in nohz_csd_func()
- Allow for raising of SCHED_SOFTIRQ softirq type on RT but retain the warning
to catch any other cases
- Remove a wrong warning when a cpuset update makes the task affinity no
longer a subset of the cpuset
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmdWvHYACgkQEsHwGGHe
VUrJ6g//eEwmHpa9+at3UvXrVlcYQmZsQpgL2ksjVE0n4KXFeUavwCR4h6SJzvcD
RDF9AyDuPAoCqy5DhL5wTXPG/4AnnISqAEkoP7h7YO76P7ks6+HD7t31pCF/uqCH
yqS4vc1RJ6yW8otcCpR7rOPEQ49Klqc1KTFTNAFLc6MNEb/SVH5Ih+wFL5Mj/W3I
UkBEtUy1oR2Q4QPhJ+0sr0LAI1AwjykdbkWzOhs6D1kPaRqdV4Atgc2fwioLIvhO
s++lev9BmGx02dmrRWRmIBL9S9ycSLT1qx28sbzlS+PZMGYqOnImVOW5+EPr+ovK
fILc0m8sLD6GyZHIPgeIT2+DqSvDTQOGQwXyUYmoarI+BWGGSz6iZGn4RrZHMRQo
cpqYV9z7F2t3X1hPfhrH+40BXJeMMX+wd4ahXNA44QD6Bf7I+zPUfsrfnrR4BwV7
qpXhBzXOuZrgOKolIwJmHIxyLtd79idYccGvjIME5rwj8eBg0J7zmjzoVewqUXsb
F9ualvq6twxUIdD4XiClpi+E16Z2Ot3PplNIohosVrUDRDUgvTBbTuDZnUuOkXbb
wV26XKuYKQYfx5UfJBSYL3DCfCttkKCVrPX2oiqw6PKNXw9BM8BQIux+XQH2jvIg
wOPqZWZf2VIoQJU2N+twc/BAIRAF7CNr/ioTJlXQ1hsOIlTp3kk=
=XLf1
-----END PGP SIGNATURE-----
Merge tag 'sched_urgent_for_v6.13_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Borislav Petkov:
- Remove wrong enqueueing of a task for a later wakeup when a task
blocks on a RT mutex
- Do not setup a new deadline entity on a boosted task as that has
happened already
- Update preempt= kernel command line param
- Prevent needless softirqd wakeups in the idle task's context
- Detect the case where the idle load balancer CPU becomes busy and
avoid unnecessary load balancing invocation
- Remove an unnecessary load balancing need_resched() call in
nohz_csd_func()
- Allow for raising of SCHED_SOFTIRQ softirq type on RT but retain the
warning to catch any other cases
- Remove a wrong warning when a cpuset update makes the task affinity
no longer a subset of the cpuset
* tag 'sched_urgent_for_v6.13_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking: rtmutex: Fix wake_q logic in task_blocks_on_rt_mutex
sched/deadline: Fix warning in migrate_enable for boosted tasks
sched/core: Update kernel boot parameters for LAZY preempt.
sched/core: Prevent wakeup of ksoftirqd during idle load balance
sched/fair: Check idle_cpu() before need_resched() to detect ilb CPU turning busy
sched/core: Remove the unnecessary need_resched() check in nohz_csd_func()
softirq: Allow raising SCHED_SOFTIRQ from SMP-call-function on RT kernel
sched: fix warning in sched_setaffinity
sched/deadline: Fix replenish_dl_new_period dl_server condition
There are 3 sites using set_next_buddy() and only one is conditional
on NEXT_BUDDY, the other two sites are unconditional; to note:
- yield_to_task()
- cgroup dequeue / pick optimization
However, having NEXT_BUDDY control both the wakeup-preemption and the
picking side of things means its near useless.
Fixes: 147f3efaa2 ("sched/fair: Implement an EEVDF-like scheduling policy")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20241129101541.GA33464@noisy.programming.kicks-ass.net
When max_vruntime() is unused, it prevents kernel builds with clang,
`make W=1` and CONFIG_WERROR=y:
kernel/sched/fair.c:526:19: error: unused function 'max_vruntime' [-Werror,-Wunused-function]
526 | static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
| ^~~~~~~~~~~~
Fix this by marking them with __maybe_unused (all cases for the sake of
symmetry).
See also commit 6863f5643d ("kbuild: allow Clang to find unused static
inline functions for W=1 build").
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20241202173546.634433-1-andriy.shevchenko@linux.intel.com
Move variable declaration at the beginning of the function
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20241202174606.4074512-12-vincent.guittot@linaro.org
Migrating a delayed dequeued task doesn't help in balancing the number
of runnable tasks in the system.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20241202174606.4074512-11-vincent.guittot@linaro.org
Rename cfs_rq.nr_running into cfs_rq.nr_queued which better reflects the
reality as the value includes both the ready to run tasks and the delayed
dequeue tasks.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20241202174606.4074512-10-vincent.guittot@linaro.org
cfs_rq.idle_nr_running field is not used anywhere so we can remove the
useless associated computation. Last user went in commit 5e963f2bd4
("sched/fair: Commit to EEVDF").
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20241202174606.4074512-9-vincent.guittot@linaro.org
Use same naming convention as others starting with h_nr_* and rename
idle_h_nr_running into h_nr_idle.
The "running" is not correct anymore as it includes delayed dequeue tasks
as well.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20241202174606.4074512-8-vincent.guittot@linaro.org
h_nr_delayed is not used anymore. We now have:
- h_nr_runnable which tracks tasks ready to run
- h_nr_queued which tracks enqueued tasks either ready to run or
delayed dequeue
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20241202174606.4074512-7-vincent.guittot@linaro.org
Use the new h_nr_runnable that tracks only queued and runnable tasks in the
statistics that are used to balance the system:
- PELT runnable_avg
- deciding if a group is overloaded or has spare capacity
- numa stats
- reduced capacity management
- load balance
- nohz kick
It should be noticed that the rq->nr_running still counts the delayed
dequeued tasks as delayed dequeue is a fair feature that is meaningless
at core level.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20241202174606.4074512-6-vincent.guittot@linaro.org
With delayed dequeued feature, a sleeping sched_entity remains queued in
the rq until its lag has elapsed. As a result, it stays also visible
in the statistics that are used to balance the system and in particular
the field cfs.h_nr_queued when the sched_entity is associated to a task.
Create a new h_nr_runnable that tracks only queued and runnable tasks.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20241202174606.4074512-5-vincent.guittot@linaro.org
With delayed dequeued feature, a sleeping sched_entity remains queued
in the rq until its lag has elapsed but can't run.
Rename h_nr_running into h_nr_queued to reflect this new behavior.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20241202174606.4074512-4-vincent.guittot@linaro.org
Vincent and Dietmar noted that while
commit fc1892becd ("sched/eevdf: Fixup PELT vs DELAYED_DEQUEUE") fixes
the entity runnable stats, it does not adjust the cfs_rq runnable stats,
which are based off of h_nr_running.
Track h_nr_delayed such that we can discount those and adjust the
signal.
Fixes: fc1892becd ("sched/eevdf: Fixup PELT vs DELAYED_DEQUEUE")
Closes: https://lore.kernel.org/lkml/a9a45193-d0c6-4ba2-a822-464ad30b550e@arm.com/
Closes: https://lore.kernel.org/lkml/CAKfTPtCNUvWE_GX5LyvTF-WdxUT=ZgvZZv-4t=eWntg5uOFqiQ@mail.gmail.com/
[ Fixes checkpatch warnings and rebased ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reported-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reported-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20241202174606.4074512-3-vincent.guittot@linaro.org
Adam reports that enabling NEXT_BUDDY insta triggers a WARN in
pick_next_entity().
Moving clear_buddies() up before the delayed dequeue bits ensures
no ->next buddy becomes delayed. Further ensure no new ->next buddy
ever starts as delayed.
Fixes: 152e11f6df ("sched/fair: Implement delayed dequeue")
Reported-by: Adam Li <adamli@os.amperecomputing.com>
Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Adam Li <adamli@os.amperecomputing.com>
Link: https://lkml.kernel.org/r/670a0d54-e398-4b1f-8a6e-90784e2fdf89@amd.com
[Problem Description]
When running the hackbench program of LTP, the following memory leak is
reported by kmemleak.
# /opt/ltp/testcases/bin/hackbench 20 thread 1000
Running with 20*40 (== 800) tasks.
# dmesg | grep kmemleak
...
kmemleak: 480 new suspected memory leaks (see /sys/kernel/debug/kmemleak)
kmemleak: 665 new suspected memory leaks (see /sys/kernel/debug/kmemleak)
# cat /sys/kernel/debug/kmemleak
unreferenced object 0xffff888cd8ca2c40 (size 64):
comm "hackbench", pid 17142, jiffies 4299780315
hex dump (first 32 bytes):
ac 74 49 00 01 00 00 00 4c 84 49 00 01 00 00 00 .tI.....L.I.....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc bff18fd4):
[<ffffffff81419a89>] __kmalloc_cache_noprof+0x2f9/0x3f0
[<ffffffff8113f715>] task_numa_work+0x725/0xa00
[<ffffffff8110f878>] task_work_run+0x58/0x90
[<ffffffff81ddd9f8>] syscall_exit_to_user_mode+0x1c8/0x1e0
[<ffffffff81dd78d5>] do_syscall_64+0x85/0x150
[<ffffffff81e0012b>] entry_SYSCALL_64_after_hwframe+0x76/0x7e
...
This issue can be consistently reproduced on three different servers:
* a 448-core server
* a 256-core server
* a 192-core server
[Root Cause]
Since multiple threads are created by the hackbench program (along with
the command argument 'thread'), a shared vma might be accessed by two or
more cores simultaneously. When two or more cores observe that
vma->numab_state is NULL at the same time, vma->numab_state will be
overwritten.
Although current code ensures that only one thread scans the VMAs in a
single 'numa_scan_period', there might be a chance for another thread
to enter in the next 'numa_scan_period' while we have not gotten till
numab_state allocation [1].
Note that the command `/opt/ltp/testcases/bin/hackbench 50 process 1000`
cannot the reproduce the issue. It is verified with 200+ test runs.
[Solution]
Use the cmpxchg atomic operation to ensure that only one thread executes
the vma->numab_state assignment.
[1] https://lore.kernel.org/lkml/1794be3c-358c-4cdc-a43d-a1f841d91ef7@amd.com/
Link: https://lkml.kernel.org/r/20241113102146.2384-1-ahuang12@lenovo.com
Fixes: ef6a22b70f ("sched/numa: apply the scan delay to every new vma")
Signed-off-by: Adrian Huang <ahuang12@lenovo.com>
Reported-by: Jiwei Sun <sunjw10@lenovo.com>
Reviewed-by: Raghavendra K T <raghavendra.kt@amd.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
As all the non-domain and non-managed_irq housekeeping types have been
unified to HK_TYPE_KERNEL_NOISE, replace all these references in the
scheduler to use HK_TYPE_KERNEL_NOISE.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20241030175253.125248-5-longman@redhat.com
The HK_TYPE_SCHED housekeeping type is defined but not set anywhere. So
any code that try to use HK_TYPE_SCHED are essentially dead code. So
remove HK_TYPE_SCHED and any code that use it.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20241030175253.125248-2-longman@redhat.com
Andy reported that clang gets upset with CONFIG_CFS_BANDWIDTH=n:
kernel/sched/fair.c:6580:20: error: unused function 'cfs_bandwidth_used' [-Werror,-Wunused-function]
6580 | static inline bool cfs_bandwidth_used(void)
| ^~~~~~~~~~~~~~~~~~
Indeed, cfs_bandwidth_used() is only used within functions defined under
CONFIG_CFS_BANDWIDTH=y. Remove its CONFIG_CFS_BANDWIDTH=n declaration &
definition.
Reported-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Link: https://lore.kernel.org/r/20241127165501.160004-1-vschneid@redhat.com
Commit b2a02fc43a ("smp: Optimize send_call_function_single_ipi()")
optimizes IPIs to idle CPUs in TIF_POLLING_NRFLAG mode by setting the
TIF_NEED_RESCHED flag in idle task's thread info and relying on
flush_smp_call_function_queue() in idle exit path to run the
call-function. A softirq raised by the call-function is handled shortly
after in do_softirq_post_smp_call_flush() but the TIF_NEED_RESCHED flag
remains set and is only cleared later when schedule_idle() calls
__schedule().
need_resched() check in _nohz_idle_balance() exists to bail out of load
balancing if another task has woken up on the CPU currently in-charge of
idle load balancing which is being processed in SCHED_SOFTIRQ context.
Since the optimization mentioned above overloads the interpretation of
TIF_NEED_RESCHED, check for idle_cpu() before going with the existing
need_resched() check which can catch a genuine task wakeup on an idle
CPU processing SCHED_SOFTIRQ from do_softirq_post_smp_call_flush(), as
well as the case where ksoftirqd needs to be preempted as a result of
new task wakeup or slice expiry.
In case of PREEMPT_RT or threadirqs, although the idle load balancing
may be inhibited in some cases on the ilb CPU, the fact that ksoftirqd
is the only fair task going back to sleep will trigger a newidle balance
on the CPU which will alleviate some imbalance if it exists if idle
balance fails to do so.
Fixes: b2a02fc43a ("smp: Optimize send_call_function_single_ipi()")
Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241119054432.6405-4-kprateek.nayak@amd.com
Change fair to use resched_curr_lazy(), which, when the lazy
preemption model is selected, will set TIF_NEED_RESCHED_LAZY.
This LAZY bit will be promoted to the full NEED_RESCHED bit on tick.
As such, the average delay between setting LAZY and actually
rescheduling will be TICK_NSEC/2.
In short, Lazy preemption will delay preemption for fair class but
will function as Full preemption for all the other classes, most
notably the realtime (RR/FIFO/DEADLINE) classes.
The goal is to bridge the performance gap with Voluntary, such that we
might eventually remove that option entirely.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lkml.kernel.org/r/20241007075055.331243614@infradead.org
When running stress-ng-vm-segv test, we found a null pointer dereference
error in task_numa_work(). Here is the backtrace:
[323676.066985] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000020
......
[323676.067108] CPU: 35 PID: 2694524 Comm: stress-ng-vm-se
......
[323676.067113] pstate: 23401009 (nzCv daif +PAN -UAO +TCO +DIT +SSBS BTYPE=--)
[323676.067115] pc : vma_migratable+0x1c/0xd0
[323676.067122] lr : task_numa_work+0x1ec/0x4e0
[323676.067127] sp : ffff8000ada73d20
[323676.067128] x29: ffff8000ada73d20 x28: 0000000000000000 x27: 000000003e89f010
[323676.067130] x26: 0000000000080000 x25: ffff800081b5c0d8 x24: ffff800081b27000
[323676.067133] x23: 0000000000010000 x22: 0000000104d18cc0 x21: ffff0009f7158000
[323676.067135] x20: 0000000000000000 x19: 0000000000000000 x18: ffff8000ada73db8
[323676.067138] x17: 0001400000000000 x16: ffff800080df40b0 x15: 0000000000000035
[323676.067140] x14: ffff8000ada73cc8 x13: 1fffe0017cc72001 x12: ffff8000ada73cc8
[323676.067142] x11: ffff80008001160c x10: ffff000be639000c x9 : ffff8000800f4ba4
[323676.067145] x8 : ffff000810375000 x7 : ffff8000ada73974 x6 : 0000000000000001
[323676.067147] x5 : 0068000b33e26707 x4 : 0000000000000001 x3 : ffff0009f7158000
[323676.067149] x2 : 0000000000000041 x1 : 0000000000004400 x0 : 0000000000000000
[323676.067152] Call trace:
[323676.067153] vma_migratable+0x1c/0xd0
[323676.067155] task_numa_work+0x1ec/0x4e0
[323676.067157] task_work_run+0x78/0xd8
[323676.067161] do_notify_resume+0x1ec/0x290
[323676.067163] el0_svc+0x150/0x160
[323676.067167] el0t_64_sync_handler+0xf8/0x128
[323676.067170] el0t_64_sync+0x17c/0x180
[323676.067173] Code: d2888001 910003fd f9000bf3 aa0003f3 (f9401000)
[323676.067177] SMP: stopping secondary CPUs
[323676.070184] Starting crashdump kernel...
stress-ng-vm-segv in stress-ng is used to stress test the SIGSEGV error
handling function of the system, which tries to cause a SIGSEGV error on
return from unmapping the whole address space of the child process.
Normally this program will not cause kernel crashes. But before the
munmap system call returns to user mode, a potential task_numa_work()
for numa balancing could be added and executed. In this scenario, since the
child process has no vma after munmap, the vma_next() in task_numa_work()
will return a null pointer even if the vma iterator restarts from 0.
Recheck the vma pointer before dereferencing it in task_numa_work().
Fixes: 214dbc4281 ("sched: convert to vma iterator")
Signed-off-by: Shawn Wang <shawnwang@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org # v6.2+
Link: https://lkml.kernel.org/r/20241025022208.125527-1-shawnwang@linux.alibaba.com
Syzkaller robot reported KCSAN tripping over the
ASSERT_EXCLUSIVE_WRITER(p->on_rq) in __block_task().
The report noted that both pick_next_task_fair() and try_to_wake_up()
were concurrently trying to write to the same p->on_rq, violating the
assertion -- even though both paths hold rq->__lock.
The logical consequence is that both code paths end up holding a
different rq->__lock. And looking through ttwu(), this is possible
when the __block_task() 'p->on_rq = 0' store is visible to the ttwu()
'p->on_rq' load, which then assumes the task is not queued and
continues to migrate it.
Rearrange things such that __block_task() releases @p with the store
and no code thereafter will use @p again.
Fixes: 152e11f6df ("sched/fair: Implement delayed dequeue")
Reported-by: syzbot+0ec1e96c2cdf5c0e512a@syzkaller.appspotmail.com
Reported-by: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Marco Elver <elver@google.com>
Link: https://lkml.kernel.org/r/20241023093641.GE16066@noisy.programming.kicks-ass.net
Let's define the "scheduling context" as all the scheduler state
in task_struct for the task chosen to run, which we'll call the
donor task, and the "execution context" as all state required to
actually run the task.
Currently both are intertwined in task_struct. We want to
logically split these such that we can use the scheduling
context of the donor task selected to be scheduled, but use
the execution context of a different task to actually be run.
To this purpose, introduce rq->donor field to point to the
task_struct chosen from the runqueue by the scheduler, and will
be used for scheduler state, and preserve rq->curr to indicate
the execution context of the task that will actually be run.
This patch introduces the donor field as a union with curr, so it
doesn't cause the contexts to be split yet, but adds the logic to
handle everything separately.
[add additional comments and update more sched_class code to use
rq::proxy]
[jstultz: Rebased and resolved minor collisions, reworked to use
accessors, tweaked update_curr_common to use rq_proxy fixing rt
scheduling issues]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Connor O'Brien <connoro@google.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Metin Kaya <metin.kaya@arm.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Tested-by: Metin Kaya <metin.kaya@arm.com>
Link: https://lore.kernel.org/r/20241009235352.1614323-8-jstultz@google.com
Commit 2e0199df25 ("sched/fair: Prepare exit/cleanup paths for delayed_dequeue")
and its follow up fixes try to deal with a rather unfortunate
situation where is task is enqueued in a new class, even though it
shouldn't have been. Mostly because the existing ->switched_to/from()
hooks are in the wrong place for this case.
This all led to Paul being able to trigger failures at something like
once per 10k CPU hours of RCU torture.
For now, do the ugly thing and move the code to the right place by
ignoring the switch hooks.
Note: Clean up the whole sched_class::switch*_{to,from}() thing.
Fixes: 2e0199df25 ("sched/fair: Prepare exit/cleanup paths for delayed_dequeue")
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20241003185037.GA5594@noisy.programming.kicks-ass.net
When PLACE_LAG is enabled, from the relationship:
vl_i = (W + w_i)*vl'_i / W
we know that if vl'_i(se->vlag) is zero, the vl_i is zero too.
So if se->vlag is zero, there is no need to waste cycles to
do the calculation.
Signed-off-by: Huang Shijie <shijie@os.amperecomputing.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Christoph Lameter (Ampere) <cl@linux.com>
Link: https://lkml.kernel.org/r/20241001070021.10626-1-shijie@os.amperecomputing.com
The patch "5e963f2bd46 sched/fair: Commit to EEVDF"
removed the code following the DOUBLE_TICK:
-
- if (!sched_feat(EEVDF) && cfs_rq->nr_running > 1)
- check_preempt_tick(cfs_rq, curr);
The DOUBLE_TICK feature becomes dead code now, so remove it.
Signed-off-by: Huang Shijie <shijie@os.amperecomputing.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: "Christoph Lameter (Ampere)" <cl@linux.com>
Reviewed-by: Vishal Chourasia <vishalc@linux.ibm.com>
Link: https://lore.kernel.org/r/20241001065451.10356-1-shijie@os.amperecomputing.com
Commit 85e511df3c ("sched/eevdf: Allow shorter slices to wakeup-preempt")
introduced a mechanism that a wakee with shorter slice could preempt
the current running task. It also lower the bar for the current task
to be preempted, by checking the rq->nr_running instead of cfs_rq->nr_running
when the current task has ran out of time slice. But there is a scenario
that is problematic. Say, if there is 1 cfs task and 1 rt task, before
85e511df3c, update_deadline() will not trigger a reschedule, and after
85e511df3c, since rq->nr_running is 2 and resched is true, a resched_curr()
would happen.
Some workloads (like the hackbench reported by lkp) do not like
over-scheduling. We can see that the preemption rate has been
increased by 2.2%:
1.654e+08 +2.2% 1.69e+08 hackbench.time.involuntary_context_switches
Restore its previous check criterion.
Fixes: 85e511df3c ("sched/eevdf: Allow shorter slices to wakeup-preempt")
Closes: https://lore.kernel.org/oe-lkp/202409231416.9403c2e9-oliver.sang@intel.com
Reported-by: kernel test robot <oliver.sang@intel.com>
Suggested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Honglei Wang <jameshongleiwang@126.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240925085440.358138-1-yu.c.chen@intel.com
Meeting an unfinished DELAY_DEQUEUE treated entity in unthrottle_cfs_rq()
leads to a couple terminal scenarios. Finish it first, so ENQUEUE_WAKEUP
can proceed as it would have sans DELAY_DEQUEUE treatment.
Fixes: 152e11f6df ("sched/fair: Implement delayed dequeue")
Reported-by: Venkat Rao Bagalkote <venkat88@linux.vnet.ibm.com>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Venkat Rao Bagalkote <venkat88@linux.vnet.ibm.com>
Link: https://lore.kernel.org/r/7515d2e64c989b9e3b828a9e21bcd959b99df06a.camel@gmx.de
This is the initial pull request of sched_ext. The v7 patchset
(https://lkml.kernel.org/r/20240618212056.2833381-1-tj@kernel.org) is
applied on top of tip/sched/core + bpf/master as of Jun 18th.
tip/sched/core 793a62823d1c ("sched/core: Drop spinlocks on contention iff kernel is preempti
ble")
bpf/master f6afdaf72a ("Merge branch 'bpf-support-resilient-split-btf'")
Since then, the following pulls were made:
- v6.11-rc1 is pulled to keep up with the mainline.
- tip/sched/core was pulled several times:
- 7b9f6c864a, 0df340ceae, 5ac998574f, 0b1777f0fa: To resolve
conflicts. See each commit for details on conflicts and their
resolutions.
- d7b01aef9d: To receive fd03c5b858 ("sched: Rework pick_next_task()")
and related commits. @prev in added to sched_class->put_prev_task() and
put_prev_task() is reordered after ->pick_task(), which makes
sched_class->switch_class() unnecessary. The follow-up commits update
sched_ext accordingly and drop sched_class->switch_class().
- bpf/master was pulled to receive baebe9aaba ("bpf: allow passing struct
bpf_iter_<type> as kfunc arguments") and related changes in preparation
for the DSQ iterator patchset
To obtain the net sched_ext changes, diff against:
git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext.git for-6.12-base
which is the merge of:
tip/sched/core bc9057da1a ("sched/cpufreq: Use NSEC_PER_MSEC for deadline task")
bpf/master 2ad6d23f46 ("selftests/bpf: Do not update vmlinux.h unnecessarily")
Since the v7 patchset, the following changes were made:
- cpuperf support which was a part of the v6 patchset was posted separately
and then applied after reviews.
- cgroup support which was a part of the v6 patchset was posted seprately,
iterated and then applied.
- Improve integration with sched core.
- Double locking usage in migration paths dropped. Depend on
TASK_ON_RQ_MIGRATING synchronization instead.
- The BPF scheduler couldn't directly dispatch to the local DSQ of another
CPU using a SCX_DSQ_LOCAL_ON verdict. This caused difficulties around
handling non-wakeup enqueues. Updated so that SCX_DSQ_LOCAL_ON can be used
in the enqueue path too.
- DSQ iterator which was a part of the v6 patchset was posted separately.
The iterator itself was applied after a couple revisions. The associated
selective consumption kfunc can use further improvements and is still
being worked on.
- scx_bpf_dispatch[_vtime]_from_dsq() added to increase flexibility. A task
can now be transferred between two DSQs from almost any context. This
involved significant refactoring of migration code.
- Various fixes and improvements.
As the branch is based on top of tip/sched/core + bpf/master, please merge
after both are applied.
-----BEGIN PGP SIGNATURE-----
iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZuOSuA4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGVZyAQDBU3WPkYKB8gl6a6YQ+/PzBXorOK7mioS9A2iJ
vBR3FgEAg1vtcss1S+2juWmVq7ItiFNWCqtXzUr/bVmL9CqqDwA=
=bOOC
-----END PGP SIGNATURE-----
Merge tag 'sched_ext-for-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext
Pull sched_ext support from Tejun Heo:
"This implements a new scheduler class called ‘ext_sched_class’, or
sched_ext, which allows scheduling policies to be implemented as BPF
programs.
The goals of this are:
- Ease of experimentation and exploration: Enabling rapid iteration
of new scheduling policies.
- Customization: Building application-specific schedulers which
implement policies that are not applicable to general-purpose
schedulers.
- Rapid scheduler deployments: Non-disruptive swap outs of scheduling
policies in production environments"
See individual commits for more documentation, but also the cover letter
for the latest series:
Link: https://lore.kernel.org/all/20240618212056.2833381-1-tj@kernel.org/
* tag 'sched_ext-for-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext: (110 commits)
sched: Move update_other_load_avgs() to kernel/sched/pelt.c
sched_ext: Don't trigger ops.quiescent/runnable() on migrations
sched_ext: Synchronize bypass state changes with rq lock
scx_qmap: Implement highpri boosting
sched_ext: Implement scx_bpf_dispatch[_vtime]_from_dsq()
sched_ext: Compact struct bpf_iter_scx_dsq_kern
sched_ext: Replace consume_local_task() with move_local_task_to_local_dsq()
sched_ext: Move consume_local_task() upward
sched_ext: Move sanity check and dsq_mod_nr() into task_unlink_from_dsq()
sched_ext: Reorder args for consume_local/remote_task()
sched_ext: Restructure dispatch_to_local_dsq()
sched_ext: Fix processs_ddsp_deferred_locals() by unifying DTL_INVALID handling
sched_ext: Make find_dsq_for_dispatch() handle SCX_DSQ_LOCAL_ON
sched_ext: Refactor consume_remote_task()
sched_ext: Rename scx_kfunc_set_sleepable to unlocked and relocate
sched_ext: Add missing static to scx_dump_data
sched_ext: Add missing static to scx_has_op[]
sched_ext: Temporarily work around pick_task_scx() being called without balance_scx()
sched_ext: Add a cgroup scheduler which uses flattened hierarchy
sched_ext: Add cgroup support
...
this pull request are:
"Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds
consistency to the APIs and behaviour of these two core allocation
functions. This also simplifies/enables Rustification.
"Some cleanups for shmem" from Baolin Wang. No functional changes - mode
code reuse, better function naming, logic simplifications.
"mm: some small page fault cleanups" from Josef Bacik. No functional
changes - code cleanups only.
"Various memory tiering fixes" from Zi Yan. A small fix and a little
cleanup.
"mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and
simplifications and .text shrinkage.
"Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This
is a feature, it adds new feilds to /proc/vmstat such as
$ grep kstack /proc/vmstat
kstack_1k 3
kstack_2k 188
kstack_4k 11391
kstack_8k 243
kstack_16k 0
which tells us that 11391 processes used 4k of stack while none at all
used 16k. Useful for some system tuning things, but partivularly useful
for "the dynamic kernel stack project".
"kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov.
Teaches kmemleak to detect leaksage of percpu memory.
"mm: memcg: page counters optimizations" from Roman Gushchin. "3
independent small optimizations of page counters".
"mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David
Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work
correctly by design rather than by accident.
"mm: remove arch_make_page_accessible()" from David Hildenbrand. Some
folio conversions which make arch_make_page_accessible() unneeded.
"mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel.
Cleans up and fixes our handling of the resetting of the cgroup/process
peak-memory-use detector.
"Make core VMA operations internal and testable" from Lorenzo Stoakes.
Rationalizaion and encapsulation of the VMA manipulation APIs. With a
view to better enable testing of the VMA functions, even from a
userspace-only harness.
"mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in
the zswap global shrinker, resulting in improved performance.
"mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in
some missing info in /proc/zoneinfo.
"mm: replace follow_page() by folio_walk" from David Hildenbrand. Code
cleanups and rationalizations (conversion to folio_walk()) resulting in
the removal of follow_page().
"improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some
tuning to improve zswap's dynamic shrinker. Significant reductions in
swapin and improvements in performance are shown.
"mm: Fix several issues with unaccepted memory" from Kirill Shutemov.
Improvements to the new unaccepted memory feature,
"mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX
PUDs. This was missing, although nobody seems to have notied yet.
"Introduce a store type enum for the Maple tree" from Sidhartha Kumar.
Cleanups and modest performance improvements for the maple tree library
code.
"memcg: further decouple v1 code from v2" from Shakeel Butt. Move more
cgroup v1 remnants away from the v2 memcg code.
"memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds
various warnings telling users that memcg v1 features are deprecated.
"mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li.
Greatly improves the success rate of the mTHP swap allocation.
"mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate
per-arch implementations of numa_memblk code into generic code.
"mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly
improves the performance of munmap() of swap-filled ptes.
"support large folio swap-out and swap-in for shmem" from Baolin Wang.
With this series we no longer split shmem large folios into simgle-page
folios when swapping out shmem.
"mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance
improvements and code reductions for gigantic folios.
"support shmem mTHP collapse" from Baolin Wang. Adds support for
khugepaged's collapsing of shmem mTHP folios.
"mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect()
performance regression due to the addition of mseal().
"Increase the number of bits available in page_type" from Matthew Wilcox.
Increases the number of bits available in page_type!
"Simplify the page flags a little" from Matthew Wilcox. Many legacy page
flags are now folio flags, so the page-based flags and their
accessors/mutators can be removed.
"mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An
optimization which permits us to avoid writing/reading zero-filled zswap
pages to backing store.
"Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window
which occurs when a MAP_FIXED operqtion is occurring during an unrelated
vma tree walk.
"mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the
vma_merge() functionality, making ot cleaner, more testable and better
tested.
"misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor
fixups of DAMON selftests and kunit tests.
"mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code
cleanups and folio conversions.
"Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups
for shmem controls and stats.
"mm: count the number of anonymous THPs per size" from Barry Song. Expose
additional anon THP stats to userspace for improved tuning.
"mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio
conversions and removal of now-unused page-based APIs.
"replace per-quota region priorities histogram buffer with per-context
one" from SeongJae Park. DAMON histogram rationalization.
"Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae
Park. DAMON documentation updates.
"mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve
related doc and warn" from Jason Wang: fixes usage of page allocator
__GFP_NOFAIL and GFP_ATOMIC flags.
"mm: split underused THPs" from Yu Zhao. Improve THP=always policy - this
was overprovisioning THPs in sparsely accessed memory areas.
"zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add
support for zram run-time compression algorithm tuning.
"mm: Care about shadow stack guard gap when getting an unmapped area" from
Mark Brown. Fix up the various arch_get_unmapped_area() implementations
to better respect guard areas.
"Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of
mem_cgroup_iter() and various code cleanups.
"mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge
pfnmap support.
"resource: Fix region_intersects() vs add_memory_driver_managed()" from
Huang Ying. Fix a bug in region_intersects() for systems with CXL memory.
"mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a
couple more code paths to correctly recover from the encountering of
poisoned memry.
"mm: enable large folios swap-in support" from Barry Song. Support the
swapin of mTHP memory into appropriately-sized folios, rather than into
single-page folios.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZu1BBwAKCRDdBJ7gKXxA
jlWNAQDYlqQLun7bgsAN4sSvi27VUuWv1q70jlMXTfmjJAvQqwD/fBFVR6IOOiw7
AkDbKWP2k0hWPiNJBGwoqxdHHx09Xgo=
=s0T+
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Along with the usual shower of singleton patches, notable patch series
in this pull request are:
- "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds
consistency to the APIs and behaviour of these two core allocation
functions. This also simplifies/enables Rustification.
- "Some cleanups for shmem" from Baolin Wang. No functional changes -
mode code reuse, better function naming, logic simplifications.
- "mm: some small page fault cleanups" from Josef Bacik. No
functional changes - code cleanups only.
- "Various memory tiering fixes" from Zi Yan. A small fix and a
little cleanup.
- "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and
simplifications and .text shrinkage.
- "Kernel stack usage histogram" from Pasha Tatashin and Shakeel
Butt. This is a feature, it adds new feilds to /proc/vmstat such as
$ grep kstack /proc/vmstat
kstack_1k 3
kstack_2k 188
kstack_4k 11391
kstack_8k 243
kstack_16k 0
which tells us that 11391 processes used 4k of stack while none at
all used 16k. Useful for some system tuning things, but
partivularly useful for "the dynamic kernel stack project".
- "kmemleak: support for percpu memory leak detect" from Pavel
Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory.
- "mm: memcg: page counters optimizations" from Roman Gushchin. "3
independent small optimizations of page counters".
- "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from
David Hildenbrand. Improves PTE/PMD splitlock detection, makes
powerpc/8xx work correctly by design rather than by accident.
- "mm: remove arch_make_page_accessible()" from David Hildenbrand.
Some folio conversions which make arch_make_page_accessible()
unneeded.
- "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David
Finkel. Cleans up and fixes our handling of the resetting of the
cgroup/process peak-memory-use detector.
- "Make core VMA operations internal and testable" from Lorenzo
Stoakes. Rationalizaion and encapsulation of the VMA manipulation
APIs. With a view to better enable testing of the VMA functions,
even from a userspace-only harness.
- "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix
issues in the zswap global shrinker, resulting in improved
performance.
- "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill
in some missing info in /proc/zoneinfo.
- "mm: replace follow_page() by folio_walk" from David Hildenbrand.
Code cleanups and rationalizations (conversion to folio_walk())
resulting in the removal of follow_page().
- "improving dynamic zswap shrinker protection scheme" from Nhat
Pham. Some tuning to improve zswap's dynamic shrinker. Significant
reductions in swapin and improvements in performance are shown.
- "mm: Fix several issues with unaccepted memory" from Kirill
Shutemov. Improvements to the new unaccepted memory feature,
- "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on
DAX PUDs. This was missing, although nobody seems to have notied
yet.
- "Introduce a store type enum for the Maple tree" from Sidhartha
Kumar. Cleanups and modest performance improvements for the maple
tree library code.
- "memcg: further decouple v1 code from v2" from Shakeel Butt. Move
more cgroup v1 remnants away from the v2 memcg code.
- "memcg: initiate deprecation of v1 features" from Shakeel Butt.
Adds various warnings telling users that memcg v1 features are
deprecated.
- "mm: swap: mTHP swap allocator base on swap cluster order" from
Chris Li. Greatly improves the success rate of the mTHP swap
allocation.
- "mm: introduce numa_memblks" from Mike Rapoport. Moves various
disparate per-arch implementations of numa_memblk code into generic
code.
- "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly
improves the performance of munmap() of swap-filled ptes.
- "support large folio swap-out and swap-in for shmem" from Baolin
Wang. With this series we no longer split shmem large folios into
simgle-page folios when swapping out shmem.
- "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice
performance improvements and code reductions for gigantic folios.
- "support shmem mTHP collapse" from Baolin Wang. Adds support for
khugepaged's collapsing of shmem mTHP folios.
- "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect()
performance regression due to the addition of mseal().
- "Increase the number of bits available in page_type" from Matthew
Wilcox. Increases the number of bits available in page_type!
- "Simplify the page flags a little" from Matthew Wilcox. Many legacy
page flags are now folio flags, so the page-based flags and their
accessors/mutators can be removed.
- "mm: store zero pages to be swapped out in a bitmap" from Usama
Arif. An optimization which permits us to avoid writing/reading
zero-filled zswap pages to backing store.
- "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race
window which occurs when a MAP_FIXED operqtion is occurring during
an unrelated vma tree walk.
- "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of
the vma_merge() functionality, making ot cleaner, more testable and
better tested.
- "misc fixups for DAMON {self,kunit} tests" from SeongJae Park.
Minor fixups of DAMON selftests and kunit tests.
- "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang.
Code cleanups and folio conversions.
- "Shmem mTHP controls and stats improvements" from Ryan Roberts.
Cleanups for shmem controls and stats.
- "mm: count the number of anonymous THPs per size" from Barry Song.
Expose additional anon THP stats to userspace for improved tuning.
- "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more
folio conversions and removal of now-unused page-based APIs.
- "replace per-quota region priorities histogram buffer with
per-context one" from SeongJae Park. DAMON histogram
rationalization.
- "Docs/damon: update GitHub repo URLs and maintainer-profile" from
SeongJae Park. DAMON documentation updates.
- "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and
improve related doc and warn" from Jason Wang: fixes usage of page
allocator __GFP_NOFAIL and GFP_ATOMIC flags.
- "mm: split underused THPs" from Yu Zhao. Improve THP=always policy.
This was overprovisioning THPs in sparsely accessed memory areas.
- "zram: introduce custom comp backends API" frm Sergey Senozhatsky.
Add support for zram run-time compression algorithm tuning.
- "mm: Care about shadow stack guard gap when getting an unmapped
area" from Mark Brown. Fix up the various arch_get_unmapped_area()
implementations to better respect guard areas.
- "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability
of mem_cgroup_iter() and various code cleanups.
- "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge
pfnmap support.
- "resource: Fix region_intersects() vs add_memory_driver_managed()"
from Huang Ying. Fix a bug in region_intersects() for systems with
CXL memory.
- "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches
a couple more code paths to correctly recover from the encountering
of poisoned memry.
- "mm: enable large folios swap-in support" from Barry Song. Support
the swapin of mTHP memory into appropriately-sized folios, rather
than into single-page folios"
* tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (416 commits)
zram: free secondary algorithms names
uprobes: turn xol_area->pages[2] into xol_area->page
uprobes: introduce the global struct vm_special_mapping xol_mapping
Revert "uprobes: use vm_special_mapping close() functionality"
mm: support large folios swap-in for sync io devices
mm: add nr argument in mem_cgroup_swapin_uncharge_swap() helper to support large folios
mm: fix swap_read_folio_zeromap() for large folios with partial zeromap
mm/debug_vm_pgtable: Use pxdp_get() for accessing page table entries
set_memory: add __must_check to generic stubs
mm/vma: return the exact errno in vms_gather_munmap_vmas()
memcg: cleanup with !CONFIG_MEMCG_V1
mm/show_mem.c: report alloc tags in human readable units
mm: support poison recovery from copy_present_page()
mm: support poison recovery from do_cow_fault()
resource, kunit: add test case for region_intersects()
resource: make alloc_free_mem_region() works for iomem_resource
mm: z3fold: deprecate CONFIG_Z3FOLD
vfio/pci: implement huge_fault support
mm/arm64: support large pfn mappings
mm/x86: support large pfn mappings
...
- Implement the SCHED_DEADLINE server infrastructure - Daniel Bristot de Oliveira's
last major contribution to the kernel:
"SCHED_DEADLINE servers can help fixing starvation issues of low priority
tasks (e.g., SCHED_OTHER) when higher priority tasks monopolize CPU
cycles. Today we have RT Throttling; DEADLINE servers should be able to
replace and improve that."
(Daniel Bristot de Oliveira, Peter Zijlstra, Joel Fernandes,
Youssef Esmat, Huang Shijie)
- Preparatory changes for sched_ext integration:
- Use set_next_task(.first) where required
- Fix up set_next_task() implementations
- Clean up DL server vs. core sched
- Split up put_prev_task_balance()
- Rework pick_next_task()
- Combine the last put_prev_task() and the first set_next_task()
- Rework dl_server
- Add put_prev_task(.next)
(Peter Zijlstra, with a fix by Tejun Heo)
- Complete the EEVDF transition and refine EEVDF scheduling:
- Implement delayed dequeue
- Allow shorter slices to wakeup-preempt
- Use sched_attr::sched_runtime to set request/slice suggestion
- Document the new feature flags
- Remove unused and duplicate-functionality fields
- Simplify & unify pick_next_task_fair()
- Misc debuggability enhancements
(Peter Zijlstra, with fixes/cleanups by Dietmar Eggemann,
Valentin Schneider and Chuyi Zhou)
- Initialize the vruntime of a new task when it is first enqueued,
resulting in significant decrease in latency of newly woken tasks.
(Zhang Qiao)
- Introduce SM_IDLE and an idle re-entry fast-path in __schedule()
(K Prateek Nayak, Peter Zijlstra)
- Clean up and clarify the usage of Clean up usage of rt_task()
(Qais Yousef)
- Preempt SCHED_IDLE entities in strict cgroup hierarchies
(Tianchen Ding)
- Clarify the documentation of time units for deadline scheduler
parameters. (Christian Loehle)
- Remove the HZ_BW chicken-bit feature flag introduced a year ago,
the original change seems to be working fine.
(Phil Auld)
- Misc fixes and cleanups (Chen Yu, Dan Carpenter, Huang Shijie,
Peilin He, Qais Yousefm and Vincent Guittot)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmbr8qcRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gdbw/+Mj3zWfYP+dtUkfgrR2FClPAJoo1/9Dz0
LYD8XgYHu8rEJ0Aq+VbdkgYGUt9utvzUFPIxvWFDcldQl57KwhF4hp9Ir+PqJyYC
NolQ1q8ddo1hnslxnEg6SgHVzQq/4FqMM0nDNUkQETCx6zTyFFeRf+q7o/2c2m5B
uI9dSU1Wrx7XrXm2D3kB8+xP+ZRy+qhbFN5Pfuz96mhelfklylgKMfPzgAiCT/7T
JTbQhQ2HdcCNgiLoSrWsHBDy2UYpouP4zb4jyd+lDQzhSUJrj3u4Xy4vVmuTKq+y
sTgWlgKB+MTuh9UuJ4UYzSnMqg161UlMvtXeH84ABmAqDNGHRPtOKrrlcLtJ3D4x
m1SPhNnsvpjOu2pH0XLIS8al3VUesWND5S+rucHRYSq6Nvhivf4MTvRJlicXXurL
Mt2APnIlhGJuKBNWnmyZovVdtO0ZUUPlaZWfr3rCS4txAVo+HwWhsm3uhtTycQqN
gazsCiuGh6Jds90ZqA/BvdLWG+DY8J0xLlV3ex4pCXuQ/HFrabVWTyThJsULhrZ2
5mTdWIsocPctNMO9/RHMy7vJI7G7ljgHEquWVn5kiGGzXhK6VwVwKAMpfgXGw+YA
yVP6/M7a7g2yEzj69gXkcDa8k/kedMVquJ/G/8YhZM7u7sPqsMjpmaGsqsJRfnpT
ChngAzap+kA=
=TEC6
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2024-09-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Implement the SCHED_DEADLINE server infrastructure - Daniel Bristot
de Oliveira's last major contribution to the kernel:
"SCHED_DEADLINE servers can help fixing starvation issues of low
priority tasks (e.g., SCHED_OTHER) when higher priority tasks
monopolize CPU cycles. Today we have RT Throttling; DEADLINE
servers should be able to replace and improve that."
(Daniel Bristot de Oliveira, Peter Zijlstra, Joel Fernandes, Youssef
Esmat, Huang Shijie)
- Preparatory changes for sched_ext integration:
- Use set_next_task(.first) where required
- Fix up set_next_task() implementations
- Clean up DL server vs. core sched
- Split up put_prev_task_balance()
- Rework pick_next_task()
- Combine the last put_prev_task() and the first set_next_task()
- Rework dl_server
- Add put_prev_task(.next)
(Peter Zijlstra, with a fix by Tejun Heo)
- Complete the EEVDF transition and refine EEVDF scheduling:
- Implement delayed dequeue
- Allow shorter slices to wakeup-preempt
- Use sched_attr::sched_runtime to set request/slice suggestion
- Document the new feature flags
- Remove unused and duplicate-functionality fields
- Simplify & unify pick_next_task_fair()
- Misc debuggability enhancements
(Peter Zijlstra, with fixes/cleanups by Dietmar Eggemann, Valentin
Schneider and Chuyi Zhou)
- Initialize the vruntime of a new task when it is first enqueued,
resulting in significant decrease in latency of newly woken tasks
(Zhang Qiao)
- Introduce SM_IDLE and an idle re-entry fast-path in __schedule()
(K Prateek Nayak, Peter Zijlstra)
- Clean up and clarify the usage of Clean up usage of rt_task()
(Qais Yousef)
- Preempt SCHED_IDLE entities in strict cgroup hierarchies
(Tianchen Ding)
- Clarify the documentation of time units for deadline scheduler
parameters (Christian Loehle)
- Remove the HZ_BW chicken-bit feature flag introduced a year ago,
the original change seems to be working fine (Phil Auld)
- Misc fixes and cleanups (Chen Yu, Dan Carpenter, Huang Shijie,
Peilin He, Qais Yousefm and Vincent Guittot)
* tag 'sched-core-2024-09-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits)
sched/cpufreq: Use NSEC_PER_MSEC for deadline task
cpufreq/cppc: Use NSEC_PER_MSEC for deadline task
sched/deadline: Clarify nanoseconds in uapi
sched/deadline: Convert schedtool example to chrt
sched/debug: Fix the runnable tasks output
sched: Fix sched_delayed vs sched_core
kernel/sched: Fix util_est accounting for DELAY_DEQUEUE
kthread: Fix task state in kthread worker if being frozen
sched/pelt: Use rq_clock_task() for hw_pressure
sched/fair: Move effective_cpu_util() and effective_cpu_util() in fair.c
sched/core: Introduce SM_IDLE and an idle re-entry fast-path in __schedule()
sched: Add put_prev_task(.next)
sched: Rework dl_server
sched: Combine the last put_prev_task() and the first set_next_task()
sched: Rework pick_next_task()
sched: Split up put_prev_task_balance()
sched: Clean up DL server vs core sched
sched: Fixup set_next_task() implementations
sched: Use set_next_task(.first) where required
sched/fair: Properly deactivate sched_delayed task upon class change
...
Pull in tip/sched/core to resolve two merge conflicts:
- 96fd6c65ef ("sched: Factor out update_other_load_avgs() from __update_blocked_others()")
5d871a6399 ("sched/fair: Move effective_cpu_util() and effective_cpu_util() in fair.c")
A simple context conflict. The former added __update_blocked_others() in
the same #ifdef CONFIG_SMP block that effective_cpu_util() and
sched_cpu_util() are in and the latter moved those functions to fair.c.
This makes __update_blocked_others() more out of place. Will follow up
with a patch to relocate.
- 96fd6c65ef ("sched: Factor out update_other_load_avgs() from __update_blocked_others()")
84d265281d ("sched/pelt: Use rq_clock_task() for hw_pressure")
The former factored out the body of __update_blocked_others() into
update_other_load_avgs(). The latter changed how update_hw_load_avg() is
called in the body. Resolved by applying the change to
update_other_load_avgs() instead.
Signed-off-by: Tejun Heo <tj@kernel.org>
Remove delayed tasks from util_est even they are runnable.
Exclude delayed task which are (a) migrating between rq's or (b) in a
SAVE/RESTORE dequeue/enqueue.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/c49ef5fe-a909-43f1-b02f-a765ab9cedbf@arm.com
commit 97450eb909 ("sched/pelt: Remove shift of thermal clock")
removed the decay_shift for hw_pressure. This commit uses the
sched_clock_task() in sched_tick() while it replaces the
sched_clock_task() with rq_clock_pelt() in __update_blocked_others().
This could bring inconsistence. One possible scenario I can think of
is in ___update_load_sum():
u64 delta = now - sa->last_update_time
'now' could be calculated by rq_clock_pelt() from
__update_blocked_others(), and last_update_time was calculated by
rq_clock_task() previously from sched_tick(). Usually the former
chases after the latter, it cause a very large 'delta' and brings
unexpected behavior.
Fixes: 97450eb909 ("sched/pelt: Remove shift of thermal clock")
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Hongyan Xia <hongyan.xia2@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20240827112607.181206-1-yu.c.chen@intel.com
Move effective_cpu_util() and sched_cpu_util() functions in fair.c file
with others utilization related functions.
No functional change.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20240904092417.20660-1-vincent.guittot@linaro.org
Problem statement:
Since commit fc137c0dda ("sched/numa: enhance vma scanning logic"), the
Numa vma scan overhead has been reduced a lot. Meanwhile, the reducing of
the vma scan might create less Numa page fault information. The
insufficient information makes it harder for the Numa balancer to make
decision. Later, commit b7a5b537c5 ("sched/numa: Complete scanning of
partial VMAs regardless of PID activity") and commit 84db47ca71
("sched/numa: Fix mm numa_scan_seq based unconditional scan") are found to
bring back part of the performance.
Recently when running SPECcpu omnetpp_r on a 320 CPUs/2 Sockets system, a
long duration of remote Numa node read was observed by PMU events: A few
cores having ~500MB/s remote memory access for ~20 seconds. It causes
high core-to-core variance and performance penalty. After the
investigation, it is found that many vmas are skipped due to the active
PID check. According to the trace events, in most cases,
vma_is_accessed() returns false because the history access info stored in
pids_active array has been cleared.
Proposal:
The main idea is to adjust vma_is_accessed() to let it return true easier.
Thus compare the diff between mm->numa_scan_seq and
vma->numab_state->prev_scan_seq. If the diff has exceeded the threshold,
scan the vma.
This patch especially helps the cases where there are small number of
threads, like the process-based SPECcpu. Without this patch, if the
SPECcpu process access the vma at the beginning, then sleeps for a long
time, the pid_active array will be cleared. A a result, if this process
is woken up again, it never has a chance to set prot_none anymore.
Because only the first 2 times of access is granted for vma scan:
(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2 to be
worse, no other threads within the task can help set the prot_none. This
causes information lost.
Raghavendra helped test current patch and got the positive result
on the AMD platform:
autonumabench NUMA01
base patched
Amean syst-NUMA01 194.05 ( 0.00%) 165.11 * 14.92%*
Amean elsp-NUMA01 324.86 ( 0.00%) 315.58 * 2.86%*
Duration User 380345.36 368252.04
Duration System 1358.89 1156.23
Duration Elapsed 2277.45 2213.25
autonumabench NUMA02
Amean syst-NUMA02 1.12 ( 0.00%) 1.09 * 2.93%*
Amean elsp-NUMA02 3.50 ( 0.00%) 3.56 * -1.84%*
Duration User 1513.23 1575.48
Duration System 8.33 8.13
Duration Elapsed 28.59 29.71
kernbench
Amean user-256 22935.42 ( 0.00%) 22535.19 * 1.75%*
Amean syst-256 7284.16 ( 0.00%) 7608.72 * -4.46%*
Amean elsp-256 159.01 ( 0.00%) 158.17 * 0.53%*
Duration User 68816.41 67615.74
Duration System 21873.94 22848.08
Duration Elapsed 506.66 504.55
Intel 256 CPUs/2 Sockets:
autonuma benchmark also shows improvements:
v6.10-rc5 v6.10-rc5
+patch
Amean syst-NUMA01 245.85 ( 0.00%) 230.84 * 6.11%*
Amean syst-NUMA01_THREADLOCAL 205.27 ( 0.00%) 191.86 * 6.53%*
Amean syst-NUMA02 18.57 ( 0.00%) 18.09 * 2.58%*
Amean syst-NUMA02_SMT 2.63 ( 0.00%) 2.54 * 3.47%*
Amean elsp-NUMA01 517.17 ( 0.00%) 526.34 * -1.77%*
Amean elsp-NUMA01_THREADLOCAL 99.92 ( 0.00%) 100.59 * -0.67%*
Amean elsp-NUMA02 15.81 ( 0.00%) 15.72 * 0.59%*
Amean elsp-NUMA02_SMT 13.23 ( 0.00%) 12.89 * 2.53%*
v6.10-rc5 v6.10-rc5
+patch
Duration User 1064010.16 1075416.23
Duration System 3307.64 3104.66
Duration Elapsed 4537.54 4604.73
The SPECcpu remote node access issue disappears with the patch applied.
Link: https://lkml.kernel.org/r/20240827112958.181388-1-yu.c.chen@intel.com
Fixes: fc137c0dda ("sched/numa: enhance vma scanning logic")
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Co-developed-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Yujie Liu <yujie.liu@intel.com>
Reported-by: Xiaoping Zhou <xiaoping.zhou@intel.com>
Reviewed-and-tested-by: Raghavendra K T <raghavendra.kt@amd.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: "Chen, Tim C" <tim.c.chen@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Raghavendra K T <raghavendra.kt@amd.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
- Resolve trivial context conflicts from dl_server clearing being moved
around.
- Add @next to put_prev_task_scx() and @prev to pick_next_task_scx() to
match sched/core.
- Merge sched_class->switch_class() addition from sched_ext with
tip/sched/core changes in __pick_next_task().
- Make pick_next_task_scx() call put_prev_task_scx() to emulate the previous
behavior where sched_class->put_prev_task() was called before
sched_class->pick_next_task().
While this makes sched_ext build and function, the behavior is not in line
with other sched classes. The follow-up patches will address the
discrepancies and remove sched_class->switch_class().
Signed-off-by: Tejun Heo <tj@kernel.org>
In order to tell the previous sched_class what the next task is, add
put_prev_task(.next).
Notable SCX will use this to:
1) determine the next task will leave the SCX sched class and push
the current task to another CPU if possible.
2) statistics on how often and which other classes preempt it
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224016.367421076@infradead.org
When a task is selected through a dl_server, it will have p->dl_server
set, such that it can account runtime to the dl_server, see
update_curr_task().
Currently p->dl_server is set in pick*task() whenever it goes through
the dl_server, clearing it is a bit of a mess though. The trivial
solution is clearing it on the final put (now that we have this
location).
However, this gives a problem when:
p = pick_task(rq);
if (p)
put_prev_set_next_task(rq, prev, next);
picks the same task but through a different path, notably when it goes
from picking through the dl_server to a direct pick or vice-versa. In
that case we cannot readily determine wether we should clear or
preserve p->dl_server.
An additional complication is pick_*task() setting p->dl_server for a
remote pick, it might still need to update runtime before it schedules
the core_pick.
Close all these holes and remove all the random clearing of
p->dl_server by:
- having pick_*task() manage rq->dl_server
- having the final put_prev_task() clear p->dl_server
- having the first set_next_task() set p->dl_server = rq->dl_server
- complicate the core_sched code to save/restore rq->dl_server where
appropriate.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224016.259853414@infradead.org
The current rule is that:
pick_next_task() := pick_task() + set_next_task(.first = true)
And many classes implement it directly as such. Change things around
to make pick_next_task() optional while also changing the definition to:
pick_next_task(prev) := pick_task() + put_prev_task() + set_next_task(.first = true)
The reason is that sched_ext would like to have a 'final' call that
knows the next task. By placing put_prev_task() right next to
set_next_task() (as it already is for sched_core) this becomes
trivial.
As a bonus, this is a nice cleanup on its own.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224016.051225657@infradead.org
Abide by the simple rule:
pick_next_task() := pick_task() + set_next_task(.first = true)
This allows us to trivially get rid of server_pick_next() and things
collapse nicely.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224015.837303391@infradead.org
The rule is that:
pick_next_task() := pick_task() + set_next_task(.first = true)
Turns out, there's still a few things in pick_next_task() that are
missing from that combination.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224015.724111109@infradead.org
__sched_setscheduler() goes through an enqueue/dequeue cycle like so:
flags := DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
prev_class->dequeue_task(rq, p, flags);
new_class->enqueue_task(rq, p, flags);
when prev_class := fair_sched_class, this is followed by:
dequeue_task(rq, p, DEQUEUE_NOCLOCK | DEQUEUE_SLEEP);
the idea being that since the task has switched classes, we need to drop
the sched_delayed logic and have that task be deactivated per its previous
dequeue_task(..., DEQUEUE_SLEEP).
Unfortunately, this leaves the task on_rq. This is missing the tail end of
dequeue_entities() that issues __block_task(), which __sched_setscheduler()
won't have done due to not using DEQUEUE_DELAYED - not that it should, as
it is pretty much a fair_sched_class specific thing.
Make switched_from_fair() properly deactivate sched_delayed tasks upon
class changes via __block_task(), as if a
dequeue_task(..., DEQUEUE_DELAYED)
had been issued.
Fixes: 2e0199df25 ("sched/fair: Prepare exit/cleanup paths for delayed_dequeue")
Reported-by: "Paul E. McKenney" <paulmck@kernel.org>
Reported-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20240829135353.1524260-1-vschneid@redhat.com
If memory tiering mode is on and a folio is not in the top tier memory,
folio's cpupid field is repurposed to store page access time. Instead of
an open coded check, use a function to encapsulate the check.
Link: https://lkml.kernel.org/r/20240724130115.793641-3-ziy@nvidia.com
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
To receive 863ccdbb91 ("sched: Allow sched_class::dequeue_task() to fail")
which makes sched_class.dequeue_task() return bool instead of void. This
leads to compile breakage and will be fixed by a follow-up patch.
Signed-off-by: Tejun Heo <tj@kernel.org>
When soft interrupt actions are called, they are passed a pointer to the
struct softirq action which contains the action's function pointer.
This pointer isn't useful, as the action callback already knows what
function it is. And since each callback handles a specific soft interrupt,
the callback also knows which soft interrupt number is running.
No soft interrupt action callback actually uses this parameter, so remove
it from the function pointer signature. This clarifies that soft interrupt
actions are global routines and makes it slightly cheaper to call them.
Signed-off-by: Caleb Sander Mateos <csander@purestorage.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Link: https://lore.kernel.org/all/20240815171549.3260003-1-csander@purestorage.com
In the absence of an explicit cgroup slice configureation, make mixed
slice length work with cgroups by propagating the min_slice up the
hierarchy.
This ensures the cgroup entity gets timely service to service its
entities that have this timing constraint set on them.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.948188417@infradead.org
Allow applications to directly set a suggested request/slice length using
sched_attr::sched_runtime.
The implementation clamps the value to: 0.1[ms] <= slice <= 100[ms]
which is 1/10 the size of HZ=1000 and 10 times the size of HZ=100.
Applications should strive to use their periodic runtime at a high
confidence interval (95%+) as the target slice. Using a smaller slice
will introduce undue preemptions, while using a larger value will
increase latency.
For all the following examples assume a scheduling quantum of 8, and for
consistency all examples have W=4:
{A,B,C,D}(w=1,r=8):
ABCD...
+---+---+---+---
t=0, V=1.5 t=1, V=3.5
A |------< A |------<
B |------< B |------<
C |------< C |------<
D |------< D |------<
---+*------+-------+--- ---+--*----+-------+---
t=2, V=5.5 t=3, V=7.5
A |------< A |------<
B |------< B |------<
C |------< C |------<
D |------< D |------<
---+----*--+-------+--- ---+------*+-------+---
Note: 4 identical tasks in FIFO order
~~~
{A,B}(w=1,r=16) C(w=2,r=16)
AACCBBCC...
+---+---+---+---
t=0, V=1.25 t=2, V=5.25
A |--------------< A |--------------<
B |--------------< B |--------------<
C |------< C |------<
---+*------+-------+--- ---+----*--+-------+---
t=4, V=8.25 t=6, V=12.25
A |--------------< A |--------------<
B |--------------< B |--------------<
C |------< C |------<
---+-------*-------+--- ---+-------+---*---+---
Note: 1 heavy task -- because q=8, double r such that the deadline of the w=2
task doesn't go below q.
Note: observe the full schedule becomes: W*max(r_i/w_i) = 4*2q = 8q in length.
Note: the period of the heavy task is half the full period at:
W*(r_i/w_i) = 4*(2q/2) = 4q
~~~
{A,C,D}(w=1,r=16) B(w=1,r=8):
BAACCBDD...
+---+---+---+---
t=0, V=1.5 t=1, V=3.5
A |--------------< A |---------------<
B |------< B |------<
C |--------------< C |--------------<
D |--------------< D |--------------<
---+*------+-------+--- ---+--*----+-------+---
t=3, V=7.5 t=5, V=11.5
A |---------------< A |---------------<
B |------< B |------<
C |--------------< C |--------------<
D |--------------< D |--------------<
---+------*+-------+--- ---+-------+--*----+---
t=6, V=13.5
A |---------------<
B |------<
C |--------------<
D |--------------<
---+-------+----*--+---
Note: 1 short task -- again double r so that the deadline of the short task
won't be below q. Made B short because its not the leftmost task, but is
eligible with the 0,1,2,3 spread.
Note: like with the heavy task, the period of the short task observes:
W*(r_i/w_i) = 4*(1q/1) = 4q
~~~
A(w=1,r=16) B(w=1,r=8) C(w=2,r=16)
BCCAABCC...
+---+---+---+---
t=0, V=1.25 t=1, V=3.25
A |--------------< A |--------------<
B |------< B |------<
C |------< C |------<
---+*------+-------+--- ---+--*----+-------+---
t=3, V=7.25 t=5, V=11.25
A |--------------< A |--------------<
B |------< B |------<
C |------< C |------<
---+------*+-------+--- ---+-------+--*----+---
t=6, V=13.25
A |--------------<
B |------<
C |------<
---+-------+----*--+---
Note: 1 heavy and 1 short task -- combine them all.
Note: both the short and heavy task end up with a period of 4q
~~~
A(w=1,r=16) B(w=2,r=16) C(w=1,r=8)
BBCAABBC...
+---+---+---+---
t=0, V=1 t=2, V=5
A |--------------< A |--------------<
B |------< B |------<
C |------< C |------<
---+*------+-------+--- ---+----*--+-------+---
t=3, V=7 t=5, V=11
A |--------------< A |--------------<
B |------< B |------<
C |------< C |------<
---+------*+-------+--- ---+-------+--*----+---
t=7, V=15
A |--------------<
B |------<
C |------<
---+-------+------*+---
Note: as before but permuted
~~~
From all this it can be deduced that, for the steady state:
- the total period (P) of a schedule is: W*max(r_i/w_i)
- the average period of a task is: W*(r_i/w_i)
- each task obtains the fair share: w_i/W of each full period P
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.842834421@infradead.org
Part of the reason to have shorter slices is to improve
responsiveness. Allow shorter slices to preempt longer slices on
wakeup.
Task | Runtime ms | Switches | Avg delay ms | Max delay ms | Sum delay ms |
100ms massive_intr 500us cyclictest NO_PREEMPT_SHORT
1 massive_intr:(5) | 846018.956 ms | 779188 | avg: 0.273 ms | max: 58.337 ms | sum:212545.245 ms |
2 massive_intr:(5) | 853450.693 ms | 792269 | avg: 0.275 ms | max: 71.193 ms | sum:218263.588 ms |
3 massive_intr:(5) | 843888.920 ms | 771456 | avg: 0.277 ms | max: 92.405 ms | sum:213353.221 ms |
1 chromium-browse:(8) | 53015.889 ms | 131766 | avg: 0.463 ms | max: 36.341 ms | sum:60959.230 ms |
2 chromium-browse:(8) | 53864.088 ms | 136962 | avg: 0.480 ms | max: 27.091 ms | sum:65687.681 ms |
3 chromium-browse:(9) | 53637.904 ms | 132637 | avg: 0.481 ms | max: 24.756 ms | sum:63781.673 ms |
1 cyclictest:(5) | 12615.604 ms | 639689 | avg: 0.471 ms | max: 32.272 ms | sum:301351.094 ms |
2 cyclictest:(5) | 12511.583 ms | 642578 | avg: 0.448 ms | max: 44.243 ms | sum:287632.830 ms |
3 cyclictest:(5) | 12545.867 ms | 635953 | avg: 0.475 ms | max: 25.530 ms | sum:302374.658 ms |
100ms massive_intr 500us cyclictest PREEMPT_SHORT
1 massive_intr:(5) | 839843.919 ms | 837384 | avg: 0.264 ms | max: 74.366 ms | sum:221476.885 ms |
2 massive_intr:(5) | 852449.913 ms | 845086 | avg: 0.252 ms | max: 68.162 ms | sum:212595.968 ms |
3 massive_intr:(5) | 839180.725 ms | 836883 | avg: 0.266 ms | max: 69.742 ms | sum:222812.038 ms |
1 chromium-browse:(11) | 54591.481 ms | 138388 | avg: 0.458 ms | max: 35.427 ms | sum:63401.508 ms |
2 chromium-browse:(8) | 52034.541 ms | 132276 | avg: 0.436 ms | max: 31.826 ms | sum:57732.958 ms |
3 chromium-browse:(8) | 55231.771 ms | 141892 | avg: 0.469 ms | max: 27.607 ms | sum:66538.697 ms |
1 cyclictest:(5) | 13156.391 ms | 667412 | avg: 0.373 ms | max: 38.247 ms | sum:249174.502 ms |
2 cyclictest:(5) | 12688.939 ms | 665144 | avg: 0.374 ms | max: 33.548 ms | sum:248509.392 ms |
3 cyclictest:(5) | 13475.623 ms | 669110 | avg: 0.370 ms | max: 37.819 ms | sum:247673.390 ms |
As per the numbers the, this makes cyclictest (short slice) it's
max-delay more consistent and consistency drops the sum-delay. The
trade-off is that the massive_intr (long slice) gets more context
switches and a slight increase in sum-delay.
Chunxin contributed did_preempt_short() where a task that lost slice
protection from PREEMPT_SHORT gets rescheduled once it becomes
in-eligible.
[mike: numbers]
Co-Developed-by: Chunxin Zang <zangchunxin@lixiang.com>
Signed-off-by: Chunxin Zang <zangchunxin@lixiang.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Link: https://lkml.kernel.org/r/20240727105030.735459544@infradead.org
During OSPM24 Youssef noted that migrations are re-setting the virtual
deadline. Notably everything that does a dequeue-enqueue, like setting
nice, changing preferred numa-node, and a myriad of other random crap,
will cause this to happen.
This shouldn't be. Preserve the relative virtual deadline across such
dequeue/enqueue cycles.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.625119246@infradead.org
Note that tasks that are kept on the runqueue to burn off negative
lag, are not in fact runnable anymore, they'll get dequeued the moment
they get picked.
As such, don't count this time towards runnable.
Thanks to Valentin for spotting I had this backwards initially.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.514088302@infradead.org
'Extend' DELAY_DEQUEUE by noting that since we wanted to dequeued them
at the 0-lag point, truncate lag (eg. don't let them earn positive
lag).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.403750550@infradead.org
Extend / fix 86bfbb7ce4 ("sched/fair: Add lag based placement") by
noting that lag is fundamentally a temporal measure. It should not be
carried around indefinitely.
OTOH it should also not be instantly discarded, doing so will allow a
task to game the system by purposefully (micro) sleeping at the end of
its time quantum.
Since lag is intimately tied to the virtual time base, a wall-time
based decay is also insufficient, notably competition is required for
any of this to make sense.
Instead, delay the dequeue and keep the 'tasks' on the runqueue,
competing until they are eligible.
Strictly speaking, we only care about keeping them until the 0-lag
point, but that is a difficult proposition, instead carry them around
until they get picked again, and dequeue them at that point.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.226163742@infradead.org
Doing a wakeup on a delayed dequeue task is about as simple as it
sounds -- remove the delayed mark and enjoy the fact it was actually
still on the runqueue.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.888107381@infradead.org
Delayed dequeue's natural end is when it gets picked again. Ensure
pick_next_task() knows what to do with delayed tasks.
Note, this relies on the earlier patch that made pick_next_task()
state invariant -- it will restart the pick on dequeue, because
obviously the just dequeued task is no longer eligible.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.747330118@infradead.org
When dequeue_task() is delayed it becomes possible to exit a task (or
cgroup) that is still enqueued. Ensure things are dequeued before
freeing.
Thanks to Valentin for asking the obvious questions and making
switched_from_fair() less weird.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.631948434@infradead.org
Just a little sanity test..
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.486423066@infradead.org
Working towards delaying dequeue, notably also inside the hierachy,
rework dequeue_task_fair() such that it can 'resume' an interrupted
hierarchy walk.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.977256873@infradead.org
Change the function signature of sched_class::dequeue_task() to return
a boolean, allowing future patches to 'fail' dequeue.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.864630153@infradead.org
Implement pick_next_task_fair() in terms of pick_task_fair() to
de-duplicate the pick loop.
More importantly, this makes all the pick loops use the
state-invariant form, which is useful to introduce further re-try
conditions in later patches.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.725062368@infradead.org
With 4c456c9ad3 ("sched/fair: Remove unused 'curr' argument from
pick_next_entity()") curr is no longer being used, so no point in
clearing it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.614707623@infradead.org
Per 54d27365ca ("sched/fair: Prevent throttling in early
pick_next_task_fair()") the reason check_cfs_rq_runtime() is under the
'if (curr)' check is to ensure the (downward) traversal does not
result in an empty cfs_rq.
But then the pick_task_fair() 'copy' of all this made it restart the
traversal anyway, so that seems to solve the issue too.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.501679876@infradead.org
Since commit e8f331bcc2 ("sched/smp: Use lag to simplify
cross-runqueue placement") the min_vruntime_copy is no longer used.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.395297941@infradead.org
balance_fair() skips newidle balancing if rq->nr_running - there are already
tasks on the rq, so no need to try to pull tasks. This tests the total
number of queued tasks on the CPU instead of only the fair class, but is
still correct as the rq can currently only have fair class tasks while
balance_fair() is running.
However, with the addition of sched_ext below the fair class, this will not
hold anymore and make put_prev_task_balance() skip sched_ext's balance()
incorrectly as, when a CPU has only lower priority class tasks,
rq->nr_running would still be positive and balance_fair() would return 1
even when fair doesn't have any tasks to run.
Update balance_fair() to use sched_fair_runnable() which tests
rq->cfs.nr_running which is updated by bandwidth throttling. Note that
pick_next_task_fair() already uses sched_fair_runnable() in its optimized
path for the same purpose.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Reviewed-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/ZrFUjlCf7x3TNXB8@slm.duckdns.org
Pull tip/sched/core to resolve the following four conflicts. While 2-4 are
simple context conflicts, 1 is a bit subtle and easy to resolve incorrectly.
1. 2c8d046d5d ("sched: Add normal_policy()")
vs.
faa42d2941 ("sched/fair: Make SCHED_IDLE entity be preempted in strict hierarchy")
The former converts direct test on p->policy to use the helper
normal_policy(). The latter moves the p->policy test to a different
location. Resolve by converting the test on p->plicy in the new location to
use normal_policy().
2. a7a9fc5492 ("sched_ext: Add boilerplate for extensible scheduler class")
vs.
a110a81c52 ("sched/deadline: Deferrable dl server")
Both add calls to put_prev_task_idle() and set_next_task_idle(). Simple
context conflict. Resolve by taking changes from both.
3. a7a9fc5492 ("sched_ext: Add boilerplate for extensible scheduler class")
vs.
c245910049 ("sched/core: Add clearing of ->dl_server in put_prev_task_balance()")
The former changes for_each_class() itertion to use for_each_active_class().
The latter moves away the adjacent dl_server handling code. Simple context
conflict. Resolve by taking changes from both.
4. 60c27fb59f ("sched_ext: Implement sched_ext_ops.cpu_online/offline()")
vs.
31b164e2e4 ("sched/smt: Introduce sched_smt_present_inc/dec() helper")
2f02735412 ("sched/core: Introduce sched_set_rq_on/offline() helper")
The former adds scx_rq_deactivate() call. The latter two change code around
it. Simple context conflict. Resolve by taking changes from both.
Signed-off-by: Tejun Heo <tj@kernel.org>
The throttle interaction made my brain hurt, make it consistently
about 0 transitions of h_nr_running.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
* Use simple CFS pick_task for DL pick_task
DL server's pick_task calls CFS's pick_next_task_fair(), this is wrong
because core scheduling's pick_task only calls CFS's pick_task() for
evaluation / checking of the CFS task (comparing across CPUs), not for
actually affirmatively picking the next task. This causes RB tree
corruption issues in CFS that were found by syzbot.
* Make pick_task_fair clear DL server
A DL task pick might set ->dl_server, but it is possible the task will
never run (say the other HT has a stop task). If the CFS task is picked
in the future directly (say without DL server), ->dl_server will be
set. So clear it in pick_task_fair().
This fixes the KASAN issue reported by syzbot in set_next_entity().
(DL refactoring suggestions by Vineeth Pillai).
Reported-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: "Joel Fernandes (Google)" <joel@joelfernandes.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vineeth Pillai <vineeth@bitbyteword.org>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/b10489ab1f03d23e08e6097acea47442e7d6466f.1716811044.git.bristot@kernel.org
Among the motivations for the DL servers is the real-time throttling
mechanism. This mechanism works by throttling the rt_rq after
running for a long period without leaving space for fair tasks.
The base dl server avoids this problem by boosting fair tasks instead
of throttling the rt_rq. The point is that it boosts without waiting
for potential starvation, causing some non-intuitive cases.
For example, an IRQ dispatches two tasks on an idle system, a fair
and an RT. The DL server will be activated, running the fair task
before the RT one. This problem can be avoided by deferring the
dl server activation.
By setting the defer option, the dl_server will dispatch an
SCHED_DEADLINE reservation with replenished runtime, but throttled.
The dl_timer will be set for the defer time at (period - runtime) ns
from start time. Thus boosting the fair rq at defer time.
If the fair scheduler has the opportunity to run while waiting
for defer time, the dl server runtime will be consumed. If
the runtime is completely consumed before the defer time, the
server will be replenished while still in a throttled state. Then,
the dl_timer will be reset to the new defer time
If the fair server reaches the defer time without consuming
its runtime, the server will start running, following CBS rules
(thus without breaking SCHED_DEADLINE). Then the server will
continue the running state (without deferring) until it fair
tasks are able to execute as regular fair scheduler (end of
the starvation).
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/dd175943c72533cd9f0b87767c6499204879cc38.1716811044.git.bristot@kernel.org
Use deadline servers to service fair tasks.
This patch adds a fair_server deadline entity which acts as a container
for fair entities and can be used to fix starvation when higher priority
(wrt fair) tasks are monopolizing CPU(s).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/b6b0bcefaf25391bcf5b6ecdb9f1218de402d42e.1716811044.git.bristot@kernel.org
Consider the following cgroup:
root
|
------------------------
| |
normal_cgroup idle_cgroup
| |
SCHED_IDLE task_A SCHED_NORMAL task_B
According to the cgroup hierarchy, A should preempt B. But current
check_preempt_wakeup_fair() treats cgroup se and task separately, so B
will preempt A unexpectedly.
Unify the wakeup logic by {c,p}se_is_idle only. This makes SCHED_IDLE of
a task a relative policy that is effective only within its own cgroup,
similar to the behavior of NICE.
Also fix se_is_idle() definition when !CONFIG_FAIR_GROUP_SCHED.
Fixes: 304000390f ("sched: Cgroup SCHED_IDLE support")
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Don <joshdon@google.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20240626023505.1332596-1-dtcccc@linux.alibaba.com
As a hedge against unexpected user issues commit 88c56cfeae
("sched/fair: Block nohz tick_stop when cfs bandwidth in use")
included a scheduler feature to disable the new functionality.
It's been a few releases (v6.6) and no screams, so remove it.
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20240515133705.3632915-1-pauld@redhat.com
When creating a new task, we initialize vruntime of the newly task at
sched_cgroup_fork(). However, the timing of executing this action is too
early and may not be accurate.
Because it uses current CPU to init the vruntime, but the new task
actually runs on the cpu which be assigned at wake_up_new_task().
To optimize this case, we pass ENQUEUE_INITIAL flag to activate_task()
in wake_up_new_task(), in this way, when place_entity is called in
enqueue_entity(), the vruntime of the new task will be initialized.
In addition, place_entity() in task_fork_fair() was introduced for two
reasons:
1. Previously, the __enqueue_entity() was in task_new_fair(),
in order to provide vruntime for enqueueing the newly task, the
vruntime assignment equation "se->vruntime = cfs_rq->min_vruntime" was
introduced by commit e9acbff648 ("sched: introduce se->vruntime").
This is the initial state of place_entity().
2. commit 4d78e7b656 ("sched: new task placement for vruntime") added
child_runs_first task placement feature which based on vruntime, this
also requires the new task's vruntime value.
After removing the child_runs_first and enqueue_entity() from
task_fork_fair(), this place_entity() no longer makes sense, so remove
it also.
Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20240627133359.1370598-1-zhangqiao22@huawei.com
d329605287 ("sched/fair: set_load_weight() must also call reweight_task()
for SCHED_IDLE tasks") applied to sched/core changes how reweight_task() is
called causing conflicts with e83edbf88f ("sched: Add
sched_class->reweight_task()"). Resolve the conflicts by taking
set_load_weight() changes from d329605287 and updating
sched_class->reweight_task() to take pointer to struct load_weight instead
of int prio.
Signed-off-by: Tejun Heo<tj@kernel.org>
When a task's weight is being changed, set_load_weight() is called with
@update_load set. As weight changes aren't trivial for the fair class,
set_load_weight() calls fair.c::reweight_task() for fair class tasks.
However, set_load_weight() first tests task_has_idle_policy() on entry and
skips calling reweight_task() for SCHED_IDLE tasks. This is buggy as
SCHED_IDLE tasks are just fair tasks with a very low weight and they would
incorrectly skip load, vlag and position updates.
Fix it by updating reweight_task() to take struct load_weight as idle weight
can't be expressed with prio and making set_load_weight() call
reweight_task() for SCHED_IDLE tasks too when @update_load is set.
Fixes: 9059393e4e ("sched/fair: Use reweight_entity() for set_user_nice()")
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org # v4.15+
Link: http://lkml.kernel.org/r/20240624102331.GI31592@noisy.programming.kicks-ass.net
This reverts commit b0defa7ae0.
b0defa7ae0 changed the load balancing logic to ignore env.max_loop if
all tasks examined to that point were pinned. The goal of the patch was
to make it more likely to be able to detach a task buried in a long list
of pinned tasks. However, this has the unfortunate side effect of
creating an O(n) iteration in detach_tasks(), as we now must fully
iterate every task on a cpu if all or most are pinned. Since this load
balance code is done with rq lock held, and often in softirq context, it
is very easy to trigger hard lockups. We observed such hard lockups with
a user who affined O(10k) threads to a single cpu.
When I discussed this with Vincent he initially suggested that we keep
the limit on the number of tasks to detach, but increase the number of
tasks we can search. However, after some back and forth on the mailing
list, he recommended we instead revert the original patch, as it seems
likely no one was actually getting hit by the original issue.
Fixes: b0defa7ae0 ("sched/fair: Make sure to try to detach at least one movable task")
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240620214450.316280-1-joshdon@google.com
A new BPF extensible sched_class will need to dynamically change how a task
picks its sched_class. For example, if the loaded BPF scheduler progs fail,
the tasks will be forced back on CFS even if the task's policy is set to the
new sched_class. To support such mapping, add normal_policy() which wraps
testing for %SCHED_NORMAL. This doesn't cause any behavior changes.
v2: Update the description with more details on the expected use.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
RT, DL, thermal and irq load and utilization metrics need to be decayed and
updated periodically and before consumption to keep the numbers reasonable.
This is currently done from __update_blocked_others() as a part of the fair
class load balance path. Let's factor it out to update_other_load_avgs().
Pure refactor. No functional changes.
This will be used by the new BPF extensible scheduling class to ensure that
the above metrics are properly maintained.
v2: Refreshed on top of tip:sched/core.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Currently, during a task weight change, sched core directly calls
reweight_task() defined in fair.c if @p is on CFS. Let's make it a proper
sched_class operation instead. CFS's reweight_task() is renamed to
reweight_task_fair() and now called through sched_class.
While it turns a direct call into an indirect one, set_load_weight() isn't
called from a hot path and this change shouldn't cause any noticeable
difference. This will be used to implement reweight_task for a new BPF
extensible sched_class so that it can keep its cached task weight
up-to-date.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
We observed that the overhead on trigger_load_balance(), now renamed
sched_balance_trigger(), has risen with a system's core counts.
For an OLTP workload running 6.8 kernel on a 2 socket x86 systems
having 96 cores/socket, we saw that 0.7% cpu cycles are spent in
trigger_load_balance(). On older systems with fewer cores/socket, this
function's overhead was less than 0.1%.
The cause of this overhead was that there are multiple cpus calling
kick_ilb(flags), updating the balancing work needed to a common idle
load balancer cpu. The ilb_cpu's flags field got updated unconditionally
with atomic_fetch_or(). The atomic read and writes to ilb_cpu's flags
causes much cache bouncing and cpu cycles overhead. This is seen in the
annotated profile below.
kick_ilb():
if (ilb_cpu < 0)
test %r14d,%r14d
↑ js 6c
flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
mov $0x2d600,%rdi
movslq %r14d,%r8
mov %rdi,%rdx
add -0x7dd0c3e0(,%r8,8),%rdx
arch_atomic_read():
0.01 mov 0x64(%rdx),%esi
35.58 add $0x64,%rdx
arch_atomic_fetch_or():
static __always_inline int arch_atomic_fetch_or(int i, atomic_t *v)
{
int val = arch_atomic_read(v);
do { } while (!arch_atomic_try_cmpxchg(v, &val, val | i));
0.03 157: mov %r12d,%ecx
arch_atomic_try_cmpxchg():
return arch_try_cmpxchg(&v->counter, old, new);
0.00 mov %esi,%eax
arch_atomic_fetch_or():
do { } while (!arch_atomic_try_cmpxchg(v, &val, val | i));
or %esi,%ecx
arch_atomic_try_cmpxchg():
return arch_try_cmpxchg(&v->counter, old, new);
0.01 lock cmpxchg %ecx,(%rdx)
42.96 ↓ jne 2d2
kick_ilb():
With instrumentation, we found that 81% of the updates do not result in
any change in the ilb_cpu's flags. That is, multiple cpus are asking
the ilb_cpu to do the same things over and over again, before the ilb_cpu
has a chance to run NOHZ load balance.
Skip updates to ilb_cpu's flags if no new work needs to be done.
Such updates do not change ilb_cpu's NOHZ flags. This requires an extra
atomic read but it is less expensive than frequent unnecessary atomic
updates that generate cache bounces.
We saw that on the OLTP workload, cpu cycles from trigger_load_balance()
(or sched_balance_trigger()) got reduced from 0.7% to 0.2%.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chen Yu <yu.c.chen@intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240531205452.65781-1-tim.c.chen@linux.intel.com
Summary
* Removed sentinel elements from ctl_table structs in kernel/*
Removing sentinels in ctl_table arrays reduces the build time size and
runtime memory consumed by ~64 bytes per array. Removals for net/, io_uring/,
mm/, ipc/ and security/ are set to go into mainline through their respective
subsystems making the next release the most likely place where the final
series that removes the check for proc_name == NULL will land. This PR adds
to removals already in arch/, drivers/ and fs/.
* Adjusted ctl_table definitions and references to allow constification
Adjustments:
- Removing unused ctl_table function arguments
- Moving non-const elements from ctl_table to ctl_table_header
- Making ctl_table pointers const in ctl_table_root structure
Making the static ctl_table structs const will increase safety by keeping the
pointers to proc_handler functions in .rodata. Though no ctl_tables where
made const in this PR, the ground work for making that possible has started
with these changes sent by Thomas Weißschuh.
Testing
* These changes went into linux-next after v6.9-rc4; giving it a good month of
testing.
-----BEGIN PGP SIGNATURE-----
iQGzBAABCgAdFiEErkcJVyXmMSXOyyeQupfNUreWQU8FAmZFvBMACgkQupfNUreW
QU/eGAv9EWeiXKxr3EVSMAsb9MWbJq7C99I/pd5hMf+qH4PgJpKDH7w/sb2e8h8+
unGiW83ikgrtph7OS4/xM3Y9r3Nvzd6C/OztqgMnNKeRFdMgP7wu9HaSNs05ordb
CqJdhvL93quc5HxrGTS9sdLK/wLJWOHwuWMXhX4qS44JNxTdPV2q10Rb7DZyHZ6O
C9qp61L2Q2CrnOBKIx8MoeCh20ynJQAo3b0pTN63ZYF4D0vqCcnYNNTPkge4ID8/
ULJoP5hAQY0vJ4g4fC4Gmooa5GECpm8MfZUf3SdgPyauqM/sm3dVdsLXAWD4Phcp
TsG2a/5KMYwnLHrUGwDW7bFfEemRU88h0Iam56+SKMl1kMlEpWaLL9ApQXoHFayG
e10izS+i/nlQiqYIHtuczCoTimT4/LGnonCLcdA//C3XzBT5MnOd7xsjuaQSpFWl
/CV9SZa4ABwzX7u2jty8ik90iihLCFQyKj1d9m1mDVbgb6r3iUOxVuHBgMtY7MF7
eyaEmV7l
=/rQW
-----END PGP SIGNATURE-----
Merge tag 'sysctl-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl
Pull sysctl updates from Joel Granados:
- Remove sentinel elements from ctl_table structs in kernel/*
Removing sentinels in ctl_table arrays reduces the build time size
and runtime memory consumed by ~64 bytes per array. Removals for
net/, io_uring/, mm/, ipc/ and security/ are set to go into mainline
through their respective subsystems making the next release the most
likely place where the final series that removes the check for
proc_name == NULL will land.
This adds to removals already in arch/, drivers/ and fs/.
- Adjust ctl_table definitions and references to allow constification
- Remove unused ctl_table function arguments
- Move non-const elements from ctl_table to ctl_table_header
- Make ctl_table pointers const in ctl_table_root structure
Making the static ctl_table structs const will increase safety by
keeping the pointers to proc_handler functions in .rodata. Though no
ctl_tables where made const in this PR, the ground work for making
that possible has started with these changes sent by Thomas
Weißschuh.
* tag 'sysctl-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl:
sysctl: drop now unnecessary out-of-bounds check
sysctl: move sysctl type to ctl_table_header
sysctl: drop sysctl_is_perm_empty_ctl_table
sysctl: treewide: constify argument ctl_table_root::permissions(table)
sysctl: treewide: drop unused argument ctl_table_root::set_ownership(table)
bpf: Remove the now superfluous sentinel elements from ctl_table array
delayacct: Remove the now superfluous sentinel elements from ctl_table array
kprobes: Remove the now superfluous sentinel elements from ctl_table array
printk: Remove the now superfluous sentinel elements from ctl_table array
scheduler: Remove the now superfluous sentinel elements from ctl_table array
seccomp: Remove the now superfluous sentinel elements from ctl_table array
timekeeping: Remove the now superfluous sentinel elements from ctl_table array
ftrace: Remove the now superfluous sentinel elements from ctl_table array
umh: Remove the now superfluous sentinel elements from ctl_table array
kernel misc: Remove the now superfluous sentinel elements from ctl_table array
On 05/03/2024 15:05, Vincent Guittot wrote:
I'm fine with either and that was my first thought here, too, but it did seem like
the comment was mostly placed there to justify the 'unexpected' high utilization
when explicitly passing FREQUENCY_UTIL and the need to clamp it then.
So removing did feel slightly more natural to me anyway.
So alternatively:
From: Christian Loehle <christian.loehle@arm.com>
Date: Tue, 5 Mar 2024 09:34:41 +0000
Subject: [PATCH] sched/fair: Remove stale FREQUENCY_UTIL mention
effective_cpu_util() flags were removed, so remove mentioning of the
flag.
commit 9c0b4bb7f6 ("sched/cpufreq: Rework schedutil governor performance estimation")
reworked effective_cpu_util() removing enum cpu_util_type. Modify the
comment accordingly.
Signed-off-by: Christian Loehle <christian.loehle@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/0e2833ee-0939-44e0-82a2-520a585a0153@arm.com
Change se->load.weight to se_weight(se) in the calculation for the
initial util_avg to avoid unnecessarily inflating the util_avg by 1024
times.
The reason is that se->load.weight has the unit/scale as the scaled-up
load, while cfs_rg->avg.load_avg has the unit/scale as the true task
weight (as mapped directly from the task's nice/priority value). With
CONFIG_32BIT, the scaled-up load is equal to the true task weight. With
CONFIG_64BIT, the scaled-up load is 1024 times the true task weight.
Thus, the current code may inflate the util_avg by 1024 times. The
follow-up capping will not allow the util_avg value to go wild. But the
calculation should have the correct logic.
Signed-off-by: Dawei Li <daweilics@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Vishal Chourasia <vishalc@linux.ibm.com>
Link: https://lore.kernel.org/r/20240315015916.21545-1-daweilics@gmail.com
- Add cpufreq pressure feedback for the scheduler
- Rework misfit load-balancing wrt. affinity restrictions
- Clean up and simplify the code around ::overutilized and
::overload access.
- Simplify sched_balance_newidle()
- Bump SCHEDSTAT_VERSION to 16 due to a cleanup of CPU_MAX_IDLE_TYPES
handling that changed the output.
- Rework & clean up <asm/vtime.h> interactions wrt. arch_vtime_task_switch()
- Reorganize, clean up and unify most of the higher level
scheduler balancing function names around the sched_balance_*()
prefix.
- Simplify the balancing flag code (sched_balance_running)
- Miscellaneous cleanups & fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmZBtA0RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gQEw//WiCiV7zTlWShSiG/g8GTfoAvl53QTWXF
0jQ8TUcoIhxB5VeGgxVG1srYt8f505UXjH7L0MJLrbC3nOgRCg4NK57WiQEachKK
HORIJHT0tMMsKIwX9D5Ovo4xYJn+j7mv7j/caB+hIlzZAbWk+zZPNWcS84p0ZS/4
appY6RIcp7+cI7bisNMGUuNZS14+WMdWoX3TgoI6ekgDZ7Ky+kQvkwGEMBXsNElO
qZOj6yS/QUE4Htwz0tVfd6h5svoPM/VJMIvl0yfddPGurfNw6jEh/fjcXnLdAzZ6
9mgcosETncQbm0vfSac116lrrZIR9ygXW/yXP5S7I5dt+r+5pCrBZR2E5g7U4Ezp
GjX1+6J9U6r6y12AMLRjadFOcDvxdwtszhZq4/wAcmS3B9dvupnH/w7zqY9ho3wr
hTdtDHoAIzxJh7RNEHgeUC0/yQX3wJ9THzfYltDRIIjHTuvl4d5lHgsug+4Y9ClE
pUIQm/XKouweQN9TZz2ULle4ZhRrR9sM9QfZYfirJ/RppmuKool4riWyQFQNHLCy
mBRMjFFsTpFIOoZXU6pD4EabOpWdNrRRuND/0yg3WbDat2gBWq6jvSFv2UN1/v7i
Un5jijTuN7t8yP5lY5Tyf47kQfLlA9bUx1v56KnF9mrpI87FyiDD3MiQVhDsvpGX
rP96BIOrkSo=
=obph
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Add cpufreq pressure feedback for the scheduler
- Rework misfit load-balancing wrt affinity restrictions
- Clean up and simplify the code around ::overutilized and
::overload access.
- Simplify sched_balance_newidle()
- Bump SCHEDSTAT_VERSION to 16 due to a cleanup of CPU_MAX_IDLE_TYPES
handling that changed the output.
- Rework & clean up <asm/vtime.h> interactions wrt arch_vtime_task_switch()
- Reorganize, clean up and unify most of the higher level
scheduler balancing function names around the sched_balance_*()
prefix
- Simplify the balancing flag code (sched_balance_running)
- Miscellaneous cleanups & fixes
* tag 'sched-core-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
sched/pelt: Remove shift of thermal clock
sched/cpufreq: Rename arch_update_thermal_pressure() => arch_update_hw_pressure()
thermal/cpufreq: Remove arch_update_thermal_pressure()
sched/cpufreq: Take cpufreq feedback into account
cpufreq: Add a cpufreq pressure feedback for the scheduler
sched/fair: Fix update of rd->sg_overutilized
sched/vtime: Do not include <asm/vtime.h> header
s390/irq,nmi: Include <asm/vtime.h> header directly
s390/vtime: Remove unused __ARCH_HAS_VTIME_TASK_SWITCH leftover
sched/vtime: Get rid of generic vtime_task_switch() implementation
sched/vtime: Remove confusing arch_vtime_task_switch() declaration
sched/balancing: Simplify the sg_status bitmask and use separate ->overloaded and ->overutilized flags
sched/fair: Rename set_rd_overutilized_status() to set_rd_overutilized()
sched/fair: Rename SG_OVERLOAD to SG_OVERLOADED
sched/fair: Rename {set|get}_rd_overload() to {set|get}_rd_overloaded()
sched/fair: Rename root_domain::overload to ::overloaded
sched/fair: Use helper functions to access root_domain::overload
sched/fair: Check root_domain::overload value before update
sched/fair: Combine EAS check with root_domain::overutilized access
sched/fair: Simplify the continue_balancing logic in sched_balance_newidle()
...
The optional shift of the clock used by thermal/hw load avg has been
introduced to handle case where the signal was not always a high frequency
hw signal. Now that cpufreq provides a signal for firmware and
SW pressure, we can remove this exception and always keep this PELT signal
aligned with other signals.
Mark sysctl_sched_migration_cost boot parameter as deprecated
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lore.kernel.org/r/20240326091616.3696851-6-vincent.guittot@linaro.org