Sort the #include directives in trace_probe* files alphabetically for
easier maintenance and avoid double includes.
This also groups headers as linux-generic, asm-generic, and local
headers.
Link: https://lore.kernel.org/all/175323424678.57270.11975372127870059007.stgit@devnote2/
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
In January 2015, tracefs was created to allow access to the tracing
infrastructure without needing to compile in debugfs. When tracefs is
configured, the directory /sys/kernel/tracing will exist and tooling is
expected to use that path to access the tracing infrastructure.
To allow backward compatibility, when debugfs is mounted, it would
automount tracefs in its "tracing" directory so that tooling that had hard
coded /sys/kernel/debug/tracing would still work.
It has been over 10 years since the new interface was introduced, and all
tooling should now be using it. Start the process of deprecating the old
path so that it doesn't need to be maintained anymore.
A new config is added to allow distributions to disable automounting of
tracefs on debugfs.
If /sys/kernel/debug/tracing is accessed, a pr_warn() will trigger stating:
"NOTICE: Automounting of tracing to debugfs is deprecated and will be removed in 2030"
Expect to remove this feature in 5 years (2030).
Cc: <linux-trace-users@vger.kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/20250722170806.40c068c6@gandalf.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Ftrace is tightly coupled with architecture specific code because it
requires the use of trampolines written in assembly. This means that when
a new feature or optimization is made, it must be done for all
architectures. To simplify the approach, CONFIG_HAVE_FTRACE_* configs are
added to denote which architecture has the new enhancement so that other
architectures can still function until they too have been updated.
The CONFIG_HAVE_FTRACE_MCOUNT was added to help simplify the
DYNAMIC_FTRACE work, but now every architecture that implements
DYNAMIC_FTRACE also has HAVE_FTRACE_MCOUNT set too, making it redundant
with the HAVE_DYNAMIC_FTRACE.
Remove the HAVE_FTRACE_MCOUNT config and use DYNAMIC_FTRACE directly where
applicable.
Link: https://lore.kernel.org/all/20250703154916.48e3ada7@gandalf.local.home/
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20250704104838.27a18690@gandalf.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
When soft disabling of trace events was first created, it needed to have a
way to know if a file had a user that was using it with soft disabled (for
triggers that need to enable or disable events from a context that can not
really enable or disable the event, it would set SOFT_DISABLED to state it
is disabled). The flag SOFT_MODE was used to denote that an event had a
user that would enable or disable it via the SOFT_DISABLED flag.
Commit 1cf4c0732d ("tracing: Modify soft-mode only if there's no other
referrer") fixed a bug where if two users were using the SOFT_DISABLED
flag the accounting would get messed up as the SOFT_MODE flag could only
handle one user. That commit added the sm_ref counter which kept track of
how many users were using the event in "soft mode". This made the
SOFT_MODE flag redundant as it should only be set if the sm_ref counter is
non zero.
Remove the SOFT_MODE flag and just use the sm_ref counter to know the
event is in soft mode or not. This makes the code a bit simpler.
Link: https://lore.kernel.org/all/20250702111908.03759998@batman.local.home/
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Gabriele Paoloni <gpaoloni@redhat.com>
Link: https://lore.kernel.org/20250702143657.18dd1882@batman.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Memory barriers are useful to ensure memory accesses from one CPU appear in
the original order as seen by other CPUs.
Some smp_rmb() and smp_wmb() are used, but they are not ordering multiple
memory accesses.
Remove them.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Gabriele Monaco <gmonaco@redhat.com>
Link: https://lore.kernel.org/20250626151940.1756398-1-namcao@linutronix.de
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
ftrace has two flavors:
1) static: Where every function always calls the ftrace trampoline
2) dynamic: Where each function has nops that can be changed on demand to
jump to the ftrace trampoline when needed.
The static flavor has very high performance overhead and was only created
to make it easier for architectures to implement the dynamic flavor. An
architecture developer can first implement the static ftrace to make sure
the trampolines work before working on the more complicated dynamic aspect
of ftrace. Once the architecture can support dynamic ftrace, there's no
reason to continue to support the static flavor. In fact, the static
flavor tends to bitrot and bugs start to appear in them.
Remove the prompt to pick DYNAMIC_FTRACE and simply enable it if the
architecture supports it.
Link: https://lore.kernel.org/all/f7e12c6d-892e-4ca3-9ef0-fbb524d04a48@ghiti.fr/
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Alexandre Ghiti <alex@ghiti.fr>
Cc: ChenMiao <chenmiao.ku@gmail.com>
Link: https://lore.kernel.org/20250703115222.2d7c8cd5@batman.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Add a warning if unregister_ftrace_graph() is called without ever
registering it, or if register_ftrace_graph() is called twice. This can
detect errors when they happen and not later when there's a side effect:
Link: https://lore.kernel.org/all/20250617120830.24fbdd62@gandalf.local.home/
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/20250701194451.22e34724@gandalf.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
When the ring buffer was first introduced, reading the non-consuming
"trace" file required disabling the writing of the ring buffer. To make
sure the writing was fully disabled before iterating the buffer with a
non-consuming read, it would set the disable flag of the buffer and then
call an RCU synchronization to make sure all the buffers were
synchronized.
The function ring_buffer_read_start() originally would initialize the
iterator and call an RCU synchronization, but this was for each individual
per CPU buffer where this would get called many times on a machine with
many CPUs before the trace file could be read. The commit 72c9ddfd4c
("ring-buffer: Make non-consuming read less expensive with lots of cpus.")
separated ring_buffer_read_start into ring_buffer_read_prepare(),
ring_buffer_read_sync() and then ring_buffer_read_start() to allow each of
the per CPU buffers to be prepared, call the read_buffer_read_sync() once,
and then the ring_buffer_read_start() for each of the CPUs which made
things much faster.
The commit 1039221cc2 ("ring-buffer: Do not disable recording when there
is an iterator") removed the requirement of disabling the recording of the
ring buffer in order to iterate it, but it did not remove the
synchronization that was happening that was required to wait for all the
buffers to have no more writers. It's now OK for the buffers to have
writers and no synchronization is needed.
Remove the synchronization and put back the interface for the ring buffer
iterator back before commit 72c9ddfd4c was applied.
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20250630180440.3eabb514@batman.local.home
Reported-by: David Howells <dhowells@redhat.com>
Fixes: 1039221cc2 ("ring-buffer: Do not disable recording when there is an iterator")
Tested-by: David Howells <dhowells@redhat.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
As the trace event powernv_throttle is only used by the powernv code, move
it to a separate include file and have that code directly enable it.
Trace events can take up around 5K of memory when they are defined
regardless if they are used or not. It wastes memory to have them defined
in configurations where the tracepoint is not used.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/20250612145407.906308844@goodmis.org
Fixes: 0306e481d4 ("cpufreq: powernv/tracing: Add powernv_throttle tracepoint")
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
- Fix timerlat with use of FORTIFY_SOURCE
FORTIFY_SOURCE was added to the stack tracer where it compares the
entry->caller array to having entry->size elements.
timerlat has the following:
memcpy(&entry->caller, fstack->calls, size);
entry->size = size;
Which triggers FORTIFY_SOURCE as the caller is populated before the
entry->size is initialized.
Swap the order to satisfy FORTIFY_SOURCE logic.
- Add down_write(trace_event_sem) when adding trace events in modules
Trace events being added to the ftrace_events array are protected by
the trace_event_sem semaphore. But when loading modules that have
trace events, the addition of the events are not protected by the
semaphore and loading two modules that have events at the same time
can corrupt the list.
Also add a lockdep_assert_held(trace_event_sem) to
_trace_add_event_dirs() to confirm its held when iterating the list.
-----BEGIN PGP SIGNATURE-----
iIoEABYKADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCaH06gBQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qoJsAP0a+/E0f+5g7O/OtYPVEDSCREv1vj9c
3dr0iWopqaOC7gEAw8Vc5iWIHKcB/JuJ+GqALoutL+lihruG26MWkFFsOgU=
=zH5J
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.16-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing fixes from Steven Rostedt:
- Fix timerlat with use of FORTIFY_SOURCE
FORTIFY_SOURCE was added to the stack tracer where it compares the
entry->caller array to having entry->size elements.
timerlat has the following:
memcpy(&entry->caller, fstack->calls, size);
entry->size = size;
Which triggers FORTIFY_SOURCE as the caller is populated before the
entry->size is initialized.
Swap the order to satisfy FORTIFY_SOURCE logic.
- Add down_write(trace_event_sem) when adding trace events in modules
Trace events being added to the ftrace_events array are protected by
the trace_event_sem semaphore. But when loading modules that have
trace events, the addition of the events are not protected by the
semaphore and loading two modules that have events at the same time
can corrupt the list.
Also add a lockdep_assert_held(trace_event_sem) to
_trace_add_event_dirs() to confirm it is held when iterating the
list.
* tag 'trace-v6.16-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing: Add down_write(trace_event_sem) when adding trace event
tracing/osnoise: Fix crash in timerlat_dump_stack()
When a module is loaded, it adds trace events defined by the module. It
may also need to modify the modules trace printk formats to replace enum
names with their values.
If two modules are loaded at the same time, the adding of the event to the
ftrace_events list can corrupt the walking of the list in the code that is
modifying the printk format strings and crash the kernel.
The addition of the event should take the trace_event_sem for write while
it adds the new event.
Also add a lockdep_assert_held() on that semaphore in
__trace_add_event_dirs() as it iterates the list.
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Link: https://lore.kernel.org/20250718223158.799bfc0c@batman.local.home
Reported-by: Fusheng Huang(黄富生) <Fusheng.Huang@luxshare-ict.com>
Closes: https://lore.kernel.org/all/20250717105007.46ccd18f@batman.local.home/
Fixes: 110bf2b764 ("tracing: add protection around module events unload")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
We have observed kernel panics when using timerlat with stack saving,
with the following dmesg output:
memcpy: detected buffer overflow: 88 byte write of buffer size 0
WARNING: CPU: 2 PID: 8153 at lib/string_helpers.c:1032 __fortify_report+0x55/0xa0
CPU: 2 UID: 0 PID: 8153 Comm: timerlatu/2 Kdump: loaded Not tainted 6.15.3-200.fc42.x86_64 #1 PREEMPT(lazy)
Call Trace:
<TASK>
? trace_buffer_lock_reserve+0x2a/0x60
__fortify_panic+0xd/0xf
__timerlat_dump_stack.cold+0xd/0xd
timerlat_dump_stack.part.0+0x47/0x80
timerlat_fd_read+0x36d/0x390
vfs_read+0xe2/0x390
? syscall_exit_to_user_mode+0x1d5/0x210
ksys_read+0x73/0xe0
do_syscall_64+0x7b/0x160
? exc_page_fault+0x7e/0x1a0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
__timerlat_dump_stack() constructs the ftrace stack entry like this:
struct stack_entry *entry;
...
memcpy(&entry->caller, fstack->calls, size);
entry->size = fstack->nr_entries;
Since commit e7186af7fb ("tracing: Add back FORTIFY_SOURCE logic to
kernel_stack event structure"), struct stack_entry marks its caller
field with __counted_by(size). At the time of the memcpy, entry->size
contains garbage from the ringbuffer, which under some circumstances is
zero, triggering a kernel panic by buffer overflow.
Populate the size field before the memcpy so that the out-of-bounds
check knows the correct size. This is analogous to
__ftrace_trace_stack().
Cc: stable@vger.kernel.org
Cc: John Kacur <jkacur@redhat.com>
Cc: Luis Goncalves <lgoncalv@redhat.com>
Cc: Attila Fazekas <afazekas@redhat.com>
Link: https://lore.kernel.org/20250716143601.7313-1-tglozar@redhat.com
Fixes: e7186af7fb ("tracing: Add back FORTIFY_SOURCE logic to kernel_stack event structure")
Signed-off-by: Tomas Glozar <tglozar@redhat.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
After a recent change in clang to strengthen uninitialized warnings [1],
it points out that in one of the error paths in parse_btf_arg(), params
is used uninitialized:
kernel/trace/trace_probe.c:660:19: warning: variable 'params' is uninitialized when used here [-Wuninitialized]
660 | return PTR_ERR(params);
| ^~~~~~
Match many other NO_BTF_ENTRY error cases and return -ENOENT, clearing
up the warning.
Link: https://lore.kernel.org/all/20250715-trace_probe-fix-const-uninit-warning-v1-1-98960f91dd04@kernel.org/
Cc: stable@vger.kernel.org
Closes: https://github.com/ClangBuiltLinux/linux/issues/2110
Fixes: d157d76944 ("tracing/probes: Support BTF field access from $retval")
Link: 2464313eef [1]
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Add zoned block commands to blk_fill_rwbs:
- ZONE APPEND will be decoded as 'ZA'
- ZONE RESET will be decoded as 'ZR'
- ZONE RESET ALL will be decoded as 'ZRA'
- ZONE FINISH will be decoded as 'ZF'
- ZONE OPEN will be decoded as 'ZO'
- ZONE CLOSE will be decoded as 'ZC'
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Link: https://lore.kernel.org/r/20250715115324.53308-2-johannes.thumshirn@wdc.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Attach_type will be set when a link is created by user. It is better to
record attach_type in bpf_link generically and have it available
universally for all link types. So add the attach_type field in bpf_link
and move the sleepable field to avoid unnecessary gap padding.
Signed-off-by: Tao Chen <chen.dylane@linux.dev>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20250710032038.888700-2-chen.dylane@linux.dev
Replace internal subbuf_start in blktrace with the default policy in
relayfs.
Remove dropped field from struct blktrace. Correspondingly, call the
common helper in relay. By incrementing full_count to keep track of how
many times we encountered a full buffer issue, user space will know how
many events were lost.
Link: https://lkml.kernel.org/r/20250612061201.34272-5-kerneljasonxing@gmail.com
Signed-off-by: Jason Xing <kernelxing@tencent.com>
Reviewed-by: Yushan Zhou <katrinzhou@tencent.com>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "relayfs: misc changes", v5.
The series mostly focuses on the error counters which helps every user
debug their own kernel module.
This patch (of 5):
prev_padding represents the unused space of certain subbuffer. If the
content of a call of relay_write() exceeds the limit of the remainder of
this subbuffer, it will skip storing in the rest space and record the
start point as buf->prev_padding in relay_switch_subbuf(). Since the buf
is a per-cpu big buffer, the point of prev_padding as a global value for
the whole buffer instead of a single subbuffer (whose padding info is
stored in buf->padding[]) seems meaningless from the real use cases, so we
don't bother to record it any more.
Link: https://lkml.kernel.org/r/20250612061201.34272-1-kerneljasonxing@gmail.com
Link: https://lkml.kernel.org/r/20250612061201.34272-2-kerneljasonxing@gmail.com
Signed-off-by: Jason Xing <kernelxing@tencent.com>
Reviewed-by: Yushan Zhou <katrinzhou@tencent.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The comment above buffer mentions sign, 10 bytes width for number and null
terminator, but buffer itself isn't large enough to hold that much data.
This is a cosmetic change, since PID cannot be negative, other than -1.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
Link: https://lore.kernel.org/20250617152110.2530-1-a.sadovnikov@ispras.ru
Signed-off-by: Artem Sadovnikov <a.sadovnikov@ispras.ru>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Rewind persistent ring buffer pages which have been read in the previous
boot. Those pages are highly possible to be lost before writing it to the
disk if the previous kernel crashed. In this case, the trace data is kept
on the persistent ring buffer, but it can not be read because its commit
size has been reset after read. This skips clearing the commit size of
each sub-buffer and recover it after reboot.
Note: If you read the previous boot data via trace_pipe, that is not
accessible in that time. But reboot without clearing (or reusing) the read
data, the read data is recovered again in the next boot.
Thus, when you read the previous boot data, clear it by `echo > trace`.
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/174899582116.955054.773265393511190051.stgit@mhiramat.tok.corp.google.com
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Now that there are 2 monitors for real-time applications, users may want to
enable both of them simultaneously. Make the number of per-task monitor
configurable. Default it to 2 for now.
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/93e83313fc4ba7f6e66f4abe80ca5f5494d658d0.1752088709.git.namcao@linutronix.de
Reviewed-by: Gabriele Monaco <gmonaco@redhat.com>
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Add a monitor for checking that real-time tasks do not go to sleep in a
manner that may cause undesirable latency.
Also change
RV depends on TRACING
to
RV select TRACING
to avoid the following recursive dependency:
error: recursive dependency detected!
symbol TRACING is selected by PREEMPTIRQ_TRACEPOINTS
symbol PREEMPTIRQ_TRACEPOINTS depends on TRACE_IRQFLAGS
symbol TRACE_IRQFLAGS is selected by RV_MON_SLEEP
symbol RV_MON_SLEEP depends on RV
symbol RV depends on TRACING
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/75bc5bcc741d153aa279c95faf778dff35c5c8ad.1752088709.git.namcao@linutronix.de
Reviewed-by: Gabriele Monaco <gmonaco@redhat.com>
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Userspace real-time applications may have design flaws that they raise
page faults in real-time threads, and thus have unexpected latencies.
Add an linear temporal logic monitor to detect this scenario.
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/78fea8a2de6d058241d3c6502c1a92910772b0ed.1752088709.git.namcao@linutronix.de
Reviewed-by: Gabriele Monaco <gmonaco@redhat.com>
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Add the container "rtapp" which is the monitor collection for detecting
problems with real-time applications. The monitors will be added in the
follow-up commits.
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/fb18b87631d386271de00959d8d4826f23fcd1cd.1752088709.git.namcao@linutronix.de
Reviewed-by: Gabriele Monaco <gmonaco@redhat.com>
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
While attempting to implement DA monitors for some complex specifications,
deterministic automaton is found to be inappropriate as the specification
language. The automaton is complicated, hard to understand, and
error-prone.
For these cases, linear temporal logic is more suitable as the
specification language.
Add support for linear temporal logic runtime verification monitor.
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Gabriele Monaco <gmonaco@redhat.com>
Link: https://lore.kernel.org/d366c1fed60ed4e8f6451f3c15a99755f2740b5f.1752088709.git.namcao@linutronix.de
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
CONFIG_DA_MON_EVENTS is not specific to deterministic automaton. It could
be used for other monitor types. Therefore rename it to
CONFIG_RV_MON_EVENTS.
This prepares for the introduction of linear temporal logic monitor.
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/507210517123d887c1d208aa2fd45ec69765d3f0.1752088709.git.namcao@linutronix.de
Reviewed-by: Gabriele Monaco <gmonaco@redhat.com>
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Each RV monitor has one static buffer to send to the reactors. If multiple
errors are detected simultaneously, the one buffer could be overwritten.
Instead, leave it to the reactors to handle buffering.
Reviewed-by: Gabriele Monaco <gmonaco@redhat.com>
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Without "#undef TRACE_INCLUDE_FILE", there could be a build error due to
TRACE_INCLUDE_FILE being redefined. Therefore add it.
Also fix a typo while at it.
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/f805e074581e927bb176c742c981fa7675b6ebe5.1752088709.git.namcao@linutronix.de
Reviewed-by: Gabriele Monaco <gmonaco@redhat.com>
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
A CPU mask on the stack is broken for large values of CONFIG_NR_CPUS:
kernel/trace/preemptirq_delay_test.c: In function ‘preemptirq_delay_run’:
kernel/trace/preemptirq_delay_test.c:143:1: error: the frame size of 8512 bytes is larger than 1536 bytes [-Werror=frame-larger-than=]
Fall back to dynamic allocation here.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Song Chen <chensong_2000@189.cn>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20250620111215.3365305-1-arnd@kernel.org
Fixes: 4b9091e1c1 ("kernel: trace: preemptirq_delay_test: add cpu affinity")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Freeing of filters requires to wait for both an RCU grace period as well as
a RCU task trace wait period after they have been detached from their
lists. The trace task period can be quite large so the freeing of the
filters was moved to use the call_rcu*() routines. The problem with that is
that the callback functions of call_rcu*() is done from a soft irq and can
cause latencies if the callback takes a bit of time.
The filters are freed per event in a system and the syscalls system
contains an event per system call, which can be over 700 events. Freeing 700
filters in a bottom half is undesirable.
Instead, move the freeing to use queue_rcu_work() which is done in task
context.
Link: https://lore.kernel.org/all/9a2f0cd0-1561-4206-8966-f93ccd25927f@paulmck-laptop/
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20250609131732.04fd303b@gandalf.local.home
Fixes: a9d0aab5eb ("tracing: Fix regression of filter waiting a long time on RCU synchronization")
Suggested-by: "Paul E. McKenney" <paulmck@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The dedicated cpumask_next_wrap() is more verbose and effective than
cpumask_next() followed by cpumask_first().
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20250605000651.45281-1-yury.norov@gmail.com
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Alexei suggested, 'link_type' can be more precise and differentiate
for human in fdinfo. In fact BPF_LINK_TYPE_KPROBE_MULTI includes
kretprobe_multi type, the same as BPF_LINK_TYPE_UPROBE_MULTI, so we
can show it more concretely.
link_type: kprobe_multi
link_id: 1
prog_tag: d2b307e915f0dd37
...
link_type: kretprobe_multi
link_id: 2
prog_tag: ab9ea0545870781d
...
link_type: uprobe_multi
link_id: 9
prog_tag: e729f789e34a8eca
...
link_type: uretprobe_multi
link_id: 10
prog_tag: 7db356c03e61a4d4
Co-developed-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Tao Chen <chen.dylane@linux.dev>
Link: https://lore.kernel.org/r/20250702153958.639852-1-chen.dylane@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
As same as fprobe, register tracepoint stub function only when enabling
tprobe events. The major changes are introducing a list of
tracepoint_user and its lock, and tprobe_event_module_nb, which is
another module notifier for module loading/unloading. By spliting the
lock from event_mutex and a module notifier for trace_fprobe, it
solved AB-BA lock dependency issue between event_mutex and
tracepoint_module_list_mutex.
Link: https://lore.kernel.org/all/174343538901.843280.423773753642677941.stgit@devnote2/
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Currently fprobe events are registered when it is defined. Thus it will
give some overhead even if it is disabled. This changes it to register the
fprobe only when it is enabled.
Link: https://lore.kernel.org/all/174343537128.843280.16131300052837035043.stgit@devnote2/
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cleanup __store_entry_arg() so that it is easier to understand.
The main complexity may come from combining the loops for finding
stored-entry-arg and max-offset and appending new entry.
This split those different loops into 3 parts, lookup the same
entry-arg, find the max offset and append new entry.
Link: https://lore.kernel.org/all/174323039929.348535.4705349977127704120.stgit@devnote2/
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cross-merge BPF, perf and other fixes after downstream PRs.
It restores BPF CI to green after critical fix
commit bc4394e5e7 ("perf: Fix the throttle error of some clock events")
No conflicts.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The underlying lookup_user_key() function uses a signed 32 bit integer
for key serial numbers because legitimate serial numbers are positive
(and > 3) and keyrings are negative. Using a u32 for the keyring in
the bpf function doesn't currently cause any conversion problems but
will start to trip the signed to unsigned conversion warnings when the
kernel enables them, so convert the argument to signed (and update the
tests accordingly) before it acquires more users.
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Reviewed-by: Roberto Sassu <roberto.sassu@huawei.com>
Link: https://lore.kernel.org/r/84cdb0775254d297d75e21f577089f64abdfbd28.camel@HansenPartnership.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The variable "head" is allocated and initialized as a list before
allocating the first "item" for the list. If the allocation of "item"
fails, it frees "head" and then jumps to the label "free_now" which will
process head and free it.
This will cause a UAF of "head", and it doesn't need to free it before
jumping to the "free_now" label as that code will free it.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20250610093348.33c5643a@gandalf.local.home
Fixes: a9d0aab5eb ("tracing: Fix regression of filter waiting a long time on RCU synchronization")
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Closes: https://lore.kernel.org/r/202506070424.lCiNreTI-lkp@intel.com/
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
- Fix regression of waiting a long time on updating trace event filters
When the faultable trace points were added, it needed task trace RCU
synchronization. This was added to the tracepoint_synchronize_unregister()
function. The filter logic always called this function whenever it
updated the trace event filters before freeing the old filters.
This increased the time of "trace-cmd record" from taking 13 seconds
to running over 2 minutes to complete.
Move the freeing of the filters to call_rcu*() logic, which brings the
time back down to 13 seconds.
- Fix ring_buffer_subbuf_order_set() error path lock protection
The error path of the ring_buffer_subbuf_order_set() released the
mutex too early and allowed subsequent accesses to setting the
subbuffer size to corrupt the data and cause a bug.
By moving the mutex locking to the end of the error path, it prevents
the reentrant access to the critical data and also allows the function
to convert the taking of the mutex over to the guard() logic.
- Remove unused power management clock events
The clock events were added in 2010 for power management. In 2011
arm used them. In 2013 the code they were used in was removed.
These events have been wasting memory since then.
- Fix sparse warnings
There was a few places that sparse warned about trace_events_filter.c
where file->filter was referenced directly, but it is annotated with
an __rcu tag. Use the helper functions and fix them up to use
rcu_dereference() properly.
-----BEGIN PGP SIGNATURE-----
iIoEABYKADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCaEST0xQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qgdSAPoD7L17oeiP5KQkM0wPuPBz0tmJF7XE
2VmHp1lBu5rYwgEAyHTD7SqWvInMMp9sGt5tzkByXpOsYC65/RprkbFpXwA=
=s4wK
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.16-3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull more tracing fixes from Steven Rostedt:
- Fix regression of waiting a long time on updating trace event filters
When the faultable trace points were added, it needed task trace RCU
synchronization.
This was added to the tracepoint_synchronize_unregister() function.
The filter logic always called this function whenever it updated the
trace event filters before freeing the old filters. This increased
the time of "trace-cmd record" from taking 13 seconds to running over
2 minutes to complete.
Move the freeing of the filters to call_rcu*() logic, which brings
the time back down to 13 seconds.
- Fix ring_buffer_subbuf_order_set() error path lock protection
The error path of the ring_buffer_subbuf_order_set() released the
mutex too early and allowed subsequent accesses to setting the
subbuffer size to corrupt the data and cause a bug.
By moving the mutex locking to the end of the error path, it prevents
the reentrant access to the critical data and also allows the
function to convert the taking of the mutex over to the guard()
logic.
- Remove unused power management clock events
The clock events were added in 2010 for power management. In 2011 arm
used them. In 2013 the code they were used in was removed. These
events have been wasting memory since then.
- Fix sparse warnings
There was a few places that sparse warned about trace_events_filter.c
where file->filter was referenced directly, but it is annotated with
an __rcu tag. Use the helper functions and fix them up to use
rcu_dereference() properly.
* tag 'trace-v6.16-3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing: Add rcu annotation around file->filter accesses
tracing: PM: Remove unused clock events
ring-buffer: Fix buffer locking in ring_buffer_subbuf_order_set()
tracing: Fix regression of filter waiting a long time on RCU synchronization
Running sparse on trace_events_filter.c triggered several warnings about
file->filter being accessed directly even though it's annotated with __rcu.
Add rcu_dereference() around it and shuffle the logic slightly so that
it's always referenced via accessor functions.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20250607102821.6c7effbf@gandalf.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
* Support for the FWFT SBI extension, which is part of SBI 3.0 and a
dependency for many new SBI and ISA extensions.
* Support for getrandom() in the VDSO.
* Support for mseal.
* Optimized routines for raid6 syndrome and recovery calculations.
* kexec_file() supports loading Image-formatted kernel binaries.
* Improvements to the instruction patching framework to allow for atomic
instruction patching, along with rules as to how systems need to
behave in order to function correctly.
* Support for a handful of new ISA extensions: Svinval, Zicbop, Zabha,
some SiFive vendor extensions.
* Various fixes and cleanups, including: misaligned access handling, perf
symbol mangling, module loading, PUD THPs, and improved uaccess
routines.
-----BEGIN PGP SIGNATURE-----
iQJNBAABCAA3FiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmhDLP8ZHHBhbG1lcmRh
YmJlbHRAZ29vZ2xlLmNvbQAKCRAuExnzX7sYiZhFD/4+Zikkld812VjFb9dTF+Wj
n/x9h86zDwAEFgf2BMIpUQhHru6vtdkO2l/Ky6mQblTPMWLafF4eK85yCsf84sQ0
+RX4sOMLZ0+qvqxKX+aOFe9JXOWB0QIQuPvgBfDDOV4UTm60sglIxwqOpKcsBEHs
2nplXXjiv0ckaMFLos8xlwu1uy4A/jMfT3Y9FDcABxYCqBoKOZ1frcL9ezJZbHbv
BoOKLDH8ZypFxIG/eQ511lIXXtrnLas0l4jHWjrfsWu6pmXTgJasKtbGuH3LoLnM
G/4qvHufR6lpVUOIL5L0V6PpsmYwDi/ciFIFlc8NH2oOZil3qiVaGSEbJIkWGFu9
8lWTXQWnbinZbfg2oYbWp8GlwI70vKomtDyYNyB9q9Cq9jyiTChMklRNODr4764j
ZiEnzc/l4KyvaxUg8RLKCT595lKECiUDnMytbIbunJu05HBqRCoGpBtMVzlQsyUd
ybkRt3BA7eOR8/xFA7ZZQeJofmiu2yxkBs5ggMo8UnSragw27hmv/OA0mWMXEuaD
aaWc4ZKpKqf7qLchLHOvEl5ORUhsisyIJgZwOqdme5rQoWorVtr51faA4AKwFAN4
vcKgc5qJjK8vnpW+rl3LNJF9LtH+h4TgmUI853vUlukPoH2oqRkeKVGSkxG0iAze
eQy2VjP1fJz6ciRtJZn9aw==
=cZGy
-----END PGP SIGNATURE-----
Merge tag 'riscv-for-linus-6.16-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V updates from Palmer Dabbelt:
- Support for the FWFT SBI extension, which is part of SBI 3.0 and a
dependency for many new SBI and ISA extensions
- Support for getrandom() in the VDSO
- Support for mseal
- Optimized routines for raid6 syndrome and recovery calculations
- kexec_file() supports loading Image-formatted kernel binaries
- Improvements to the instruction patching framework to allow for
atomic instruction patching, along with rules as to how systems need
to behave in order to function correctly
- Support for a handful of new ISA extensions: Svinval, Zicbop, Zabha,
some SiFive vendor extensions
- Various fixes and cleanups, including: misaligned access handling,
perf symbol mangling, module loading, PUD THPs, and improved uaccess
routines
* tag 'riscv-for-linus-6.16-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (69 commits)
riscv: uaccess: Only restore the CSR_STATUS SUM bit
RISC-V: vDSO: Wire up getrandom() vDSO implementation
riscv: enable mseal sysmap for RV64
raid6: Add RISC-V SIMD syndrome and recovery calculations
riscv: mm: Add support for Svinval extension
RISC-V: Documentation: Add enough title underlines to CMODX
riscv: Improve Kconfig help for RISCV_ISA_V_PREEMPTIVE
MAINTAINERS: Update Atish's email address
riscv: uaccess: do not do misaligned accesses in get/put_user()
riscv: process: use unsigned int instead of unsigned long for put_user()
riscv: make unsafe user copy routines use existing assembly routines
riscv: hwprobe: export Zabha extension
riscv: Make regs_irqs_disabled() more clear
perf symbols: Ignore mapping symbols on riscv
RISC-V: Kconfig: Fix help text of CMDLINE_EXTEND
riscv: module: Optimize PLT/GOT entry counting
riscv: Add support for PUD THP
riscv: xchg: Prefetch the destination word for sc.w
riscv: Add ARCH_HAS_PREFETCH[W] support with Zicbop
riscv: Add support for Zicbop
...
When faultable trace events were added, a trace event may no longer use
normal RCU to synchronize but instead used synchronize_rcu_tasks_trace().
This synchronization takes a much longer time to synchronize.
The filter logic would free the filters by calling
tracepoint_synchronize_unregister() after it unhooked the filter strings
and before freeing them. With this function now calling
synchronize_rcu_tasks_trace() this increased the time to free a filter
tremendously. On a PREEMPT_RT system, it was even more noticeable.
# time trace-cmd record -p function sleep 1
[..]
real 2m29.052s
user 0m0.244s
sys 0m20.136s
As trace-cmd would clear out all the filters before recording, it could
take up to 2 minutes to do a recording of "sleep 1".
To find out where the issues was:
~# trace-cmd sqlhist -e -n sched_stack select start.prev_state as state, end.next_comm as comm, TIMESTAMP_DELTA_USECS as delta, start.STACKTRACE as stack from sched_switch as start join sched_switch as end on start.prev_pid = end.next_pid
Which will produce the following commands (and -e will also execute them):
echo 's:sched_stack s64 state; char comm[16]; u64 delta; unsigned long stack[];' >> /sys/kernel/tracing/dynamic_events
echo 'hist:keys=prev_pid:__arg_18057_2=prev_state,__arg_18057_4=common_timestamp.usecs,__arg_18057_7=common_stacktrace' >> /sys/kernel/tracing/events/sched/sched_switch/trigger
echo 'hist:keys=next_pid:__state_18057_1=$__arg_18057_2,__comm_18057_3=next_comm,__delta_18057_5=common_timestamp.usecs-$__arg_18057_4,__stack_18057_6=$__arg_18057_7:onmatch(sched.sched_switch).trace(sched_stack,$__state_18057_1,$__comm_18057_3,$__delta_18057_5,$__stack_18057_6)' >> /sys/kernel/tracing/events/sched/sched_switch/trigger
The above creates a synthetic event that creates a stack trace when a task
schedules out and records it with the time it scheduled back in. Basically
the time a task is off the CPU. It also records the state of the task when
it left the CPU (running, blocked, sleeping, etc). It also saves the comm
of the task as "comm" (needed for the next command).
~# echo 'hist:keys=state,stack.stacktrace:vals=delta:sort=state,delta if comm == "trace-cmd" && state & 3' > /sys/kernel/tracing/events/synthetic/sched_stack/trigger
The above creates a histogram with buckets per state, per stack, and the
value of the total time it was off the CPU for that stack trace. It filters
on tasks with "comm == trace-cmd" and only the sleeping and blocked states
(1 - sleeping, 2 - blocked).
~# trace-cmd record -p function sleep 1
~# cat /sys/kernel/tracing/events/synthetic/sched_stack/hist | tail -18
{ state: 2, stack.stacktrace __schedule+0x1545/0x3700
schedule+0xe2/0x390
schedule_timeout+0x175/0x200
wait_for_completion_state+0x294/0x440
__wait_rcu_gp+0x247/0x4f0
synchronize_rcu_tasks_generic+0x151/0x230
apply_subsystem_event_filter+0xa2b/0x1300
subsystem_filter_write+0x67/0xc0
vfs_write+0x1e2/0xeb0
ksys_write+0xff/0x1d0
do_syscall_64+0x7b/0x420
entry_SYSCALL_64_after_hwframe+0x76/0x7e
} hitcount: 237 delta: 99756288 <<--------------- Delta is 99 seconds!
Totals:
Hits: 525
Entries: 21
Dropped: 0
This shows that this particular trace waited for 99 seconds on
synchronize_rcu_tasks() in apply_subsystem_event_filter().
In fact, there's a lot of places in the filter code that spends a lot of
time waiting for synchronize_rcu_tasks_trace() in order to free the
filters.
Add helper functions that will use call_rcu*() variants to asynchronously
free the filters. This brings the timings back to normal:
# time trace-cmd record -p function sleep 1
[..]
real 0m14.681s
user 0m0.335s
sys 0m28.616s
And the histogram also shows this:
~# cat /sys/kernel/tracing/events/synthetic/sched_stack/hist | tail -21
{ state: 2, stack.stacktrace __schedule+0x1545/0x3700
schedule+0xe2/0x390
schedule_timeout+0x175/0x200
wait_for_completion_state+0x294/0x440
__wait_rcu_gp+0x247/0x4f0
synchronize_rcu_normal+0x3db/0x5c0
tracing_reset_online_cpus+0x8f/0x1e0
tracing_open+0x335/0x440
do_dentry_open+0x4c6/0x17a0
vfs_open+0x82/0x360
path_openat+0x1a36/0x2990
do_filp_open+0x1c5/0x420
do_sys_openat2+0xed/0x180
__x64_sys_openat+0x108/0x1d0
do_syscall_64+0x7b/0x420
} hitcount: 2 delta: 77044
Totals:
Hits: 55
Entries: 28
Dropped: 0
Where the total waiting time of synchronize_rcu_tasks_trace() is 77
milliseconds.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Jan Kiszka <jan.kiszka@siemens.com>
Cc: Andreas Ziegler <ziegler.andreas@siemens.com>
Cc: Felix MOESSBAUER <felix.moessbauer@siemens.com>
Link: https://lore.kernel.org/20250606201936.1e3d09a9@batman.local.home
Reported-by: "Flot, Julien" <julien.flot@siemens.com>
Tested-by: Julien Flot <julien.flot@siemens.com>
Fixes: a363d27cdb ("tracing: Allow system call tracepoints to handle page faults")
Closes: https://lore.kernel.org/all/240017f656631c7dd4017aa93d91f41f653788ea.camel@siemens.com/
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
riscv patches for 6.16-rc1, part 2
* Performance improvements
- Add support for vdso getrandom
- Implement raid6 calculations using vectors
- Introduce svinval tlb invalidation
* Cleanup
- A bunch of deduplication of the macros we use for manipulating instructions
* Misc
- Introduce a kunit test for kprobes
- Add support for mseal as riscv fits the requirements (thanks to Lorenzo for making sure of that :))
[Palmer: There was a rebase between part 1 and part 2, so I've had to do
some more git surgery here... at least two rounds of surgery...]
* alex-pr-2: (866 commits)
RISC-V: vDSO: Wire up getrandom() vDSO implementation
riscv: enable mseal sysmap for RV64
raid6: Add RISC-V SIMD syndrome and recovery calculations
riscv: mm: Add support for Svinval extension
riscv: Add kprobes KUnit test
riscv: kprobes: Remove duplication of RV_EXTRACT_ITYPE_IMM
riscv: kprobes: Remove duplication of RV_EXTRACT_UTYPE_IMM
riscv: kprobes: Remove duplication of RV_EXTRACT_RD_REG
riscv: kprobes: Remove duplication of RVC_EXTRACT_BTYPE_IMM
riscv: kprobes: Remove duplication of RVC_EXTRACT_C2_RS1_REG
riscv: kproves: Remove duplication of RVC_EXTRACT_JTYPE_IMM
riscv: kprobes: Remove duplication of RV_EXTRACT_BTYPE_IMM
riscv: kprobes: Remove duplication of RV_EXTRACT_RS1_REG
riscv: kprobes: Remove duplication of RV_EXTRACT_JTYPE_IMM
riscv: kprobes: Move branch_funct3 to insn.h
riscv: kprobes: Move branch_rs2_idx to insn.h
Linux 6.15-rc6
Input: xpad - fix xpad_device sorting
Input: xpad - add support for several more controllers
Input: xpad - fix Share button on Xbox One controllers
...
The following ftrace patch for riscv uses a data store to update ftrace
function. Therefore, a romote fence is required to order it against
function_trace_op updates. The mechanism is similar to the fence between
function_trace_op and update_ftrace_func in the generic ftrace, so we
leverage the same ftrace_sync_ipi function.
[ alex: Fix build warning when !CONFIG_DYNAMIC_FTRACE ]
Signed-off-by: Andy Chiu <andybnac@gmail.com>
Link: https://lore.kernel.org/r/20250407180838.42877-4-andybnac@gmail.com
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Signed-off-by: Palmer Dabbelt <palmer@dabbelt.com>
If ftrace is disabled, it is meaningless to allocate a module map.
Add a check in allocate_ftrace_mod_map() to not allocate if ftrace is
disabled.
Link: https://lore.kernel.org/20250529111955.2349189-3-yebin@huaweicloud.com
Signed-off-by: Ye Bin <yebin10@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The following issue happens with a buggy module:
BUG: unable to handle page fault for address: ffffffffc05d0218
PGD 1bd66f067 P4D 1bd66f067 PUD 1bd671067 PMD 101808067 PTE 0
Oops: Oops: 0000 [#1] SMP KASAN PTI
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
RIP: 0010:sized_strscpy+0x81/0x2f0
RSP: 0018:ffff88812d76fa08 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffffffc0601010 RCX: dffffc0000000000
RDX: 0000000000000038 RSI: dffffc0000000000 RDI: ffff88812608da2d
RBP: 8080808080808080 R08: ffff88812608da2d R09: ffff88812608da68
R10: ffff88812608d82d R11: ffff88812608d810 R12: 0000000000000038
R13: ffff88812608da2d R14: ffffffffc05d0218 R15: fefefefefefefeff
FS: 00007fef552de740(0000) GS:ffff8884251c7000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffc05d0218 CR3: 00000001146f0000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
ftrace_mod_get_kallsym+0x1ac/0x590
update_iter_mod+0x239/0x5b0
s_next+0x5b/0xa0
seq_read_iter+0x8c9/0x1070
seq_read+0x249/0x3b0
proc_reg_read+0x1b0/0x280
vfs_read+0x17f/0x920
ksys_read+0xf3/0x1c0
do_syscall_64+0x5f/0x2e0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The above issue may happen as follows:
(1) Add kprobe tracepoint;
(2) insmod test.ko;
(3) Module triggers ftrace disabled;
(4) rmmod test.ko;
(5) cat /proc/kallsyms; --> Will trigger UAF as test.ko already removed;
ftrace_mod_get_kallsym()
...
strscpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
...
The problem is when a module triggers an issue with ftrace and
sets ftrace_disable. The ftrace_disable is set when an anomaly is
discovered and to prevent any more damage, ftrace stops all text
modification. The issue that happened was that the ftrace_disable stops
more than just the text modification.
When a module is loaded, its init functions can also be traced. Because
kallsyms deletes the init functions after a module has loaded, ftrace
saves them when the module is loaded and function tracing is enabled. This
allows the output of the function trace to show the init function names
instead of just their raw memory addresses.
When a module is removed, ftrace_release_mod() is called, and if
ftrace_disable is set, it just returns without doing anything more. The
problem here is that it leaves the mod_list still around and if kallsyms
is called, it will call into this code and access the module memory that
has already been freed as it will return:
strscpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
Where the "mod" no longer exists and triggers a UAF bug.
Link: https://lore.kernel.org/all/20250523135452.626d8dcd@gandalf.local.home/
Cc: stable@vger.kernel.org
Fixes: aba4b5c22c ("ftrace: Save module init functions kallsyms symbols for tracing")
Link: https://lore.kernel.org/20250529111955.2349189-2-yebin@huaweicloud.com
Signed-off-by: Ye Bin <yebin10@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
- Allow the persistent ring buffer to be memory mapped
In the last merge window there was issues with the implementation of
mapping the persistent ring buffer because it was assumed that the
persistent memory was just physical memory without being part of the
kernel virtual address space. But this was incorrect and the persistent
ring buffer can be mapped the same way as the allocated ring buffer is
mapped.
The meta data for the persistent ring buffer is different than the normal
ring buffer and the organization of mapping it to user space is a little
different. Make the updates needed to the meta data to allow the
persistent ring buffer to be mapped to user space.
- Fix cpus_read_lock() with buffer->mutex and cpu_buffer->mapping_lock
Mapping the ring buffer to user space uses the cpu_buffer->mapping_lock.
The buffer->mutex can be taken when the mapping_lock is held, giving the
locking order of: cpu_buffer->mapping_lock -->> buffer->mutex. But there
also exists the ordering:
buffer->mutex -->> cpus_read_lock()
mm->mmap_lock -->> cpu_buffer->mapping_lock
cpus_read_lock() -->> mm->mmap_lock
causing a circular chain of:
cpu_buffer->mapping_lock -> buffer->mutex -->> cpus_read_lock() -->>
mm->mmap_lock -->> cpu_buffer->mapping_lock
By moving the cpus_read_lock() outside the buffer->mutex where:
cpus_read_lock() -->> buffer->mutex, breaks the deadlock chain.
- Do not trigger WARN_ON() for commit overrun
When the ring buffer is user space mapped and there's a "commit overrun"
(where an interrupt preempted an event, and then added so many events it
filled the buffer having to drop events when it hit the preempted event)
a WARN_ON() was triggered if this was read via a memory mapped buffer.
This is due to "missed events" being non zero when the reader page ended
up with the commit page. The idea was, if the writer is on the reader page,
there's only one page that has been written to and there should be no
missed events. But if a commit overrun is done where the writer is off the
commit page and looped around to the commit page causing missed events, it
is possible that the reader page is the commit page with missed events.
Instead of triggering a WARN_ON() when the reader page is the commit page
with missed events, trigger it when the reader page is the tail_page with
missed events. That's because the writer is always on the tail_page if
an event was interrupted (which holds the commit event) and continues off
the commit page.
- Reset the persistent buffer if it is fully consumed
On boot up, if the user fully consumes the last boot buffer of the
persistent buffer, if it reboots without enabling it, there will still be
events in the buffer which can cause confusion. Instead, reset the buffer
when it is fully consumed, so that the data is not read again.
- Clean up some goto out jumps
There's a few cases that the code jumps to the "out:" label that simply
returns a value. There used to be more work done at those labels but now
that they simply return a value use a return instead of jumping to a
label.
- Use guard() to simplify some of the code
Add guard() around some locking instead of jumping to a label to do the
unlocking.
- Use free() to simplify some of the code
Use free(kfree) on variables that will get freed on error and use
return_ptr() to return the variable when its not freed. There's one
instance where free(kfree) simplifies the code on a temp variable that was
allocated just for the function use.
-----BEGIN PGP SIGNATURE-----
iIoEABYKADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCaDjJMxQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qkDzAP468AZOnjIxezfzYEmtcDl8ZUgf2U3I
XtXjn7aKH/gZiwD/dCCZX2IY2gddqAb6s9Bo4/AWgtYbjacLPL+pWYbTJwQ=
=DOfF
-----END PGP SIGNATURE-----
Merge tag 'trace-ringbuffer-v6.16' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull ring-buffer updates from Steven Rostedt:
- Allow the persistent ring buffer to be memory mapped
In the last merge window there was issues with the implementation of
mapping the persistent ring buffer because it was assumed that the
persistent memory was just physical memory without being part of the
kernel virtual address space. But this was incorrect and the
persistent ring buffer can be mapped the same way as the allocated
ring buffer is mapped.
The metadata for the persistent ring buffer is different than the
normal ring buffer and the organization of mapping it to user space
is a little different. Make the updates needed to the meta data to
allow the persistent ring buffer to be mapped to user space.
- Fix cpus_read_lock() with buffer->mutex and cpu_buffer->mapping_lock
Mapping the ring buffer to user space uses the
cpu_buffer->mapping_lock. The buffer->mutex can be taken when the
mapping_lock is held, giving the locking order of:
cpu_buffer->mapping_lock -->> buffer->mutex. But there also exists
the ordering:
buffer->mutex -->> cpus_read_lock()
mm->mmap_lock -->> cpu_buffer->mapping_lock
cpus_read_lock() -->> mm->mmap_lock
causing a circular chain of:
cpu_buffer->mapping_lock -> buffer->mutex -->> cpus_read_lock() -->>
mm->mmap_lock -->> cpu_buffer->mapping_lock
By moving the cpus_read_lock() outside the buffer->mutex where:
cpus_read_lock() -->> buffer->mutex, breaks the deadlock chain.
- Do not trigger WARN_ON() for commit overrun
When the ring buffer is user space mapped and there's a "commit
overrun" (where an interrupt preempted an event, and then added so
many events it filled the buffer having to drop events when it hit
the preempted event) a WARN_ON() was triggered if this was read via a
memory mapped buffer.
This is due to "missed events" being non zero when the reader page
ended up with the commit page. The idea was, if the writer is on the
reader page, there's only one page that has been written to and there
should be no missed events.
But if a commit overrun is done where the writer is off the commit
page and looped around to the commit page causing missed events, it
is possible that the reader page is the commit page with missed
events.
Instead of triggering a WARN_ON() when the reader page is the commit
page with missed events, trigger it when the reader page is the
tail_page with missed events. That's because the writer is always on
the tail_page if an event was interrupted (which holds the commit
event) and continues off the commit page.
- Reset the persistent buffer if it is fully consumed
On boot up, if the user fully consumes the last boot buffer of the
persistent buffer, if it reboots without enabling it, there will
still be events in the buffer which can cause confusion. Instead,
reset the buffer when it is fully consumed, so that the data is not
read again.
- Clean up some goto out jumps
There's a few cases that the code jumps to the "out:" label that
simply returns a value. There used to be more work done at those
labels but now that they simply return a value use a return instead
of jumping to a label.
- Use guard() to simplify some of the code
Add guard() around some locking instead of jumping to a label to do
the unlocking.
- Use free() to simplify some of the code
Use free(kfree) on variables that will get freed on error and use
return_ptr() to return the variable when its not freed. There's one
instance where free(kfree) simplifies the code on a temp variable
that was allocated just for the function use.
* tag 'trace-ringbuffer-v6.16' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
ring-buffer: Simplify functions with __free(kfree) to free allocations
ring-buffer: Make ring_buffer_{un}map() simpler with guard(mutex)
ring-buffer: Simplify ring_buffer_read_page() with guard()
ring-buffer: Simplify reset_disabled_cpu_buffer() with use of guard()
ring-buffer: Remove jump to out label in ring_buffer_swap_cpu()
ring-buffer: Removed unnecessary if() goto out where out is the next line
tracing: Reset last-boot buffers when reading out all cpu buffers
ring-buffer: Allow reserve_mem persistent ring buffers to be mmapped
ring-buffer: Do not trigger WARN_ON() due to a commit_overrun
ring-buffer: Move cpus_read_lock() outside of buffer->mutex
Calling conventions of ->d_automount() made saner (flagday change)
vfs_submount() is gone - its sole remaining user (trace_automount) had
been switched to saner primitives.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCaDoRWQAKCRBZ7Krx/gZQ
6wxMAQCzuMc2GiGBMXzeK4SGA7d5rsK71unf+zczOd8NvbTImQEAs1Cu3u3bF3pq
EmHQWFTKBpBf+RHsLSoDHwUA+9THowM=
=GXLi
-----END PGP SIGNATURE-----
Merge tag 'pull-automount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull automount updates from Al Viro:
"Automount wart removal
A bunch of odd boilerplate gone from instances - the reason for
those was the need to protect the yet-to-be-attched mount from
mark_mounts_for_expiry() deciding to take it out.
But that's easy to detect and take care of in mark_mounts_for_expiry()
itself; no need to have every instance simulate mount being busy by
grabbing an extra reference to it, with finish_automount() undoing
that once it attaches that mount.
Should've done it that way from the very beginning... This is a
flagday change, thankfully there are very few instances.
vfs_submount() is gone - its sole remaining user (trace_automount)
had been switched to saner primitives"
* tag 'pull-automount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
kill vfs_submount()
saner calling conventions for ->d_automount()
- Have module addresses get updated in the persistent ring buffer
The addresses of the modules from the previous boot are saved in the
persistent ring buffer. If the same modules are loaded and an address is
in the old buffer points to an address that was both saved in the
persistent ring buffer and is loaded in memory, shift the address to point
to the address that is loaded in memory in the trace event.
- Print function names for irqs off and preempt off callsites
When ignoring the print fmt of a trace event and just printing the fields
directly, have the fields for preempt off and irqs off events still show
the function name (via kallsyms) instead of just showing the raw address.
- Clean ups of the histogram code
The histogram functions saved over 800 bytes on the stack to process
events as they come in. Instead, create per-cpu buffers that can hold this
information and have a separate location for each context level (thread,
softirq, IRQ and NMI).
Also add some more comments to the code.
- Add "common_comm" field for histograms
Add "common_comm" that uses the current->comm as a field in an event
histogram and acts like any of the other fields of the event.
- Show "subops" in the enabled_functions file
When the function graph infrastructure is used, a subsystem has a "subops"
that it attaches its callback function to. Instead of the
enabled_functions just showing a function calling the function that calls
the subops functions, also show the subops functions that will get called
for that function too.
- Add "copy_trace_marker" option to instances
There are cases where an instance is created for tooling to write into,
but the old tooling has the top level instance hardcoded into the
application. New tools want to consume the data from an instance and not
the top level buffer. By adding a copy_trace_marker option, whenever the
top instance trace_marker is written into, a copy of it is also written
into the instance with this option set. This allows new tools to read what
old tools are writing into the top buffer.
If this option is cleared by the top instance, then what is written into
the trace_marker is not written into the top instance. This is a way to
redirect the trace_marker writes into another instance.
- Have tracepoints created by DECLARE_TRACE() use trace_<name>_tp()
If a tracepoint is created by DECLARE_TRACE() instead of TRACE_EVENT(),
then it will not be exposed via tracefs. Currently there's no way to
differentiate in the kernel the tracepoint functions between those that
are exposed via tracefs or not. A calling convention has been made
manually to append a "_tp" prefix for events created by DECLARE_TRACE().
Instead of doing this manually, force it so that all DECLARE_TRACE()
events have this notation.
- Use __string() for task->comm in some sched events
Instead of hardcoding the comm to be TASK_COMM_LEN in some of the
scheduler events use __string() which makes it dynamic. Note, if these
events are parsed by user space it they may break, and the event may have
to be converted back to the hardcoded size.
- Have function graph "depth" be unsigned to the user
Internally to the kernel, the "depth" field of the function graph event is
signed due to -1 being used for end of boundary. What actually gets
recorded in the event itself is zero or positive. Reflect this to user
space by showing "depth" as unsigned int and be consistent across all
events.
- Allow an arbitrary long CPU string to osnoise_cpus_write()
The filtering of which CPUs to write to can exceed 256 bytes. If a machine
has 256 CPUs, and the filter is to filter every other CPU, the write would
take a string larger than 256 bytes. Instead of using a fixed size buffer
on the stack that is 256 bytes, allocate it to handle what is passed in.
- Stop having ftrace check the per-cpu data "disabled" flag
The "disabled" flag in the data structure passed to most ftrace functions
is checked to know if tracing has been disabled or not. This flag was
added back in 2008 before the ring buffer had its own way to disable
tracing. The "disable" flag is now not always set when needed, and the
ring buffer flag should be used in all locations where the disabled is
needed. Since the "disable" flag is redundant and incorrect, stop using it.
Fix up some locations that use the "disable" flag to use the ring buffer
info.
- Use a new tracer_tracing_disable/enable() instead of data->disable flag
There's a few cases that set the data->disable flag to stop tracing, but
this flag is not consistently used. It is also an on/off switch where if a
function set it and calls another function that sets it, the called
function may incorrectly enable it.
Use a new trace_tracing_disable() and tracer_tracing_enable() that uses a
counter and can be nested. These use the ring buffer flags which are
always checked making the disabling more consistent.
- Save the trace clock in the persistent ring buffer
Save what clock was used for tracing in the persistent ring buffer and set
it back to that clock after a reboot.
- Remove unused reference to a per CPU data pointer in mmiotrace functions
- Remove unused buffer_page field from trace_array_cpu structure
- Remove more strncpy() instances
- Other minor clean ups and fixes
-----BEGIN PGP SIGNATURE-----
iIoEABYKADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCaDhiqRQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qkheAQDpyRHoXF1AIoEqyahDax8f3vpZQeCH
B/mn+YJmU1wuVgEA7AFALov5SHKv4IzoARz68GXtR0jGhP5D8uebUhUqDAQ=
=WmFG
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.16' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing updates from Steven Rostedt:
- Have module addresses get updated in the persistent ring buffer
The addresses of the modules from the previous boot are saved in the
persistent ring buffer. If the same modules are loaded and an address
is in the old buffer points to an address that was both saved in the
persistent ring buffer and is loaded in memory, shift the address to
point to the address that is loaded in memory in the trace event.
- Print function names for irqs off and preempt off callsites
When ignoring the print fmt of a trace event and just printing the
fields directly, have the fields for preempt off and irqs off events
still show the function name (via kallsyms) instead of just showing
the raw address.
- Clean ups of the histogram code
The histogram functions saved over 800 bytes on the stack to process
events as they come in. Instead, create per-cpu buffers that can hold
this information and have a separate location for each context level
(thread, softirq, IRQ and NMI).
Also add some more comments to the code.
- Add "common_comm" field for histograms
Add "common_comm" that uses the current->comm as a field in an event
histogram and acts like any of the other fields of the event.
- Show "subops" in the enabled_functions file
When the function graph infrastructure is used, a subsystem has a
"subops" that it attaches its callback function to. Instead of the
enabled_functions just showing a function calling the function that
calls the subops functions, also show the subops functions that will
get called for that function too.
- Add "copy_trace_marker" option to instances
There are cases where an instance is created for tooling to write
into, but the old tooling has the top level instance hardcoded into
the application. New tools want to consume the data from an instance
and not the top level buffer. By adding a copy_trace_marker option,
whenever the top instance trace_marker is written into, a copy of it
is also written into the instance with this option set. This allows
new tools to read what old tools are writing into the top buffer.
If this option is cleared by the top instance, then what is written
into the trace_marker is not written into the top instance. This is a
way to redirect the trace_marker writes into another instance.
- Have tracepoints created by DECLARE_TRACE() use trace_<name>_tp()
If a tracepoint is created by DECLARE_TRACE() instead of
TRACE_EVENT(), then it will not be exposed via tracefs. Currently
there's no way to differentiate in the kernel the tracepoint
functions between those that are exposed via tracefs or not. A
calling convention has been made manually to append a "_tp" prefix
for events created by DECLARE_TRACE(). Instead of doing this
manually, force it so that all DECLARE_TRACE() events have this
notation.
- Use __string() for task->comm in some sched events
Instead of hardcoding the comm to be TASK_COMM_LEN in some of the
scheduler events use __string() which makes it dynamic. Note, if
these events are parsed by user space it they may break, and the
event may have to be converted back to the hardcoded size.
- Have function graph "depth" be unsigned to the user
Internally to the kernel, the "depth" field of the function graph
event is signed due to -1 being used for end of boundary. What
actually gets recorded in the event itself is zero or positive.
Reflect this to user space by showing "depth" as unsigned int and be
consistent across all events.
- Allow an arbitrary long CPU string to osnoise_cpus_write()
The filtering of which CPUs to write to can exceed 256 bytes. If a
machine has 256 CPUs, and the filter is to filter every other CPU,
the write would take a string larger than 256 bytes. Instead of using
a fixed size buffer on the stack that is 256 bytes, allocate it to
handle what is passed in.
- Stop having ftrace check the per-cpu data "disabled" flag
The "disabled" flag in the data structure passed to most ftrace
functions is checked to know if tracing has been disabled or not.
This flag was added back in 2008 before the ring buffer had its own
way to disable tracing. The "disable" flag is now not always set when
needed, and the ring buffer flag should be used in all locations
where the disabled is needed. Since the "disable" flag is redundant
and incorrect, stop using it. Fix up some locations that use the
"disable" flag to use the ring buffer info.
- Use a new tracer_tracing_disable/enable() instead of data->disable
flag
There's a few cases that set the data->disable flag to stop tracing,
but this flag is not consistently used. It is also an on/off switch
where if a function set it and calls another function that sets it,
the called function may incorrectly enable it.
Use a new trace_tracing_disable() and tracer_tracing_enable() that
uses a counter and can be nested. These use the ring buffer flags
which are always checked making the disabling more consistent.
- Save the trace clock in the persistent ring buffer
Save what clock was used for tracing in the persistent ring buffer
and set it back to that clock after a reboot.
- Remove unused reference to a per CPU data pointer in mmiotrace
functions
- Remove unused buffer_page field from trace_array_cpu structure
- Remove more strncpy() instances
- Other minor clean ups and fixes
* tag 'trace-v6.16' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (36 commits)
tracing: Fix compilation warning on arm32
tracing: Record trace_clock and recover when reboot
tracing/sched: Use __string() instead of fixed lengths for task->comm
tracepoint: Have tracepoints created with DECLARE_TRACE() have _tp suffix
tracing: Cleanup upper_empty() in pid_list
tracing: Allow the top level trace_marker to write into another instances
tracing: Add a helper function to handle the dereference arg in verifier
tracing: Remove unnecessary "goto out" that simply returns ret is trigger code
tracing: Fix error handling in event_trigger_parse()
tracing: Rename event_trigger_alloc() to trigger_data_alloc()
tracing: Replace deprecated strncpy() with strscpy() for stack_trace_filter_buf
tracing: Remove unused buffer_page field from trace_array_cpu structure
tracing: Use atomic_inc_return() for updating "disabled" counter in irqsoff tracer
tracing: Convert the per CPU "disabled" counter to local from atomic
tracing: branch: Use trace_tracing_is_on_cpu() instead of "disabled" field
ring-buffer: Add ring_buffer_record_is_on_cpu()
tracing: Do not use per CPU array_buffer.data->disabled for cpumask
ftrace: Do not disabled function graph based on "disabled" field
tracing: kdb: Use tracer_tracing_on/off() instead of setting per CPU disabled
tracing: Use tracer_tracing_disable() instead of "disabled" field for ftrace_dump_one()
...
The function rb_allocate_pages() allocates cpu_buffer and on error needs
to free it. It has a single return. Use __free(kfree) and return directly
on errors and have the return use return_ptr(cpu_buffer).
The function alloc_buffer() allocates buffer and on error needs to free
it. It has a single return. Use __free(kfree) and return directly on
errors and have the return use return_ptr(buffer).
The function __rb_map_vma() allocates a temporary array "pages". Have it
use __free() and not worry about freeing it when returning.
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20250527143144.6edc4625@gandalf.local.home
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Convert the taking of the buffer->mutex and the cpu_buffer->mapping_lock
over to guard(mutex) and simplify the ring_buffer_map() and
ring_buffer_unmap() functions.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20250527122009.267efb72@gandalf.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The function ring_buffer_read_page() had two gotos. One was simply
returning "ret" and the other was unlocking the reader_lock.
There's no reason to use goto to simply return the "ret" variable. Instead
just return the value.
The jump to the unlocking of the reader_lock can be replaced by
guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock).
With these two changes the "ret" variable is no longer used and can be
removed. The return value on non-error is what was read and is stored in
the "read" variable.
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20250527145216.0187cf36@gandalf.local.home
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Use guard(raw_spinlock_irqsave)() in reset_disabled_cpu_buffer() to
simplify the locking.
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20250527144623.77a9cc47@gandalf.local.home
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The function ring_buffer_swap_cpu() has a bunch of jumps to the label out
that simply returns "ret". There's no reason to jump to a label that
simply returns a value. Just return directly from there.
This goes back to almost the beginning when commit 8aabee573d
("ring-buffer: remove unneeded get_online_cpus") was introduced. That
commit removed a put_online_cpus() from that label, but never updated all
the jumps to it that now no longer needed to do anything but return a
value.
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20250527145753.6b45d840@gandalf.local.home
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
In the function ring_buffer_discard_commit() there's an if statement that
jumps to the next line:
if (rb_try_to_discard(cpu_buffer, event))
goto out;
out:
This was caused by the change that modified the way timestamps were taken
in interrupt context, and removed the code between the if statement and
the goto, but failed to update the conditional logic.
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20250527155116.227f35be@gandalf.local.home
Fixes: a389d86f7f ("ring-buffer: Have nested events still record running time stamp")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reset the last-boot ring buffers when read() reads out all cpu
buffers through trace_pipe/trace_pipe_raw. This prevents ftrace to
unwind ring buffer read pointer next boot.
Note that this resets only when all per-cpu buffers are empty, and
read via read(2) syscall. For example, if you read only one of the
per-cpu trace_pipe, it does not reset it. Also, reading buffer by
splice(2) syscall does not reset because some data in the reader
(the last) page.
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/174792929202.496143.8184644221859580999.stgit@mhiramat.tok.corp.google.com
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
When the persistent ring buffer is created from the memory returned by
reserve_mem there is nothing prohibiting it to be memory mapped to user
space. The memory is the same as the pages allocated by alloc_page().
The way the memory is managed by the ring buffer code is slightly
different though and needs to be addressed.
The persistent memory uses the page->id for its own purpose where as the
user mmap buffer currently uses that for the subbuf array mapped to user
space. If the buffer is a persistent buffer, use the page index into that
buffer as the identifier instead of the page->id.
That is, the page->id for a persistent buffer, represents the order of the
buffer is in the link list. ->id == 0 means it is the reader page.
When a reader page is swapped, the new reader page's ->id gets zero, and
the old reader page gets the ->id of the page that it swapped with.
The user space mapping has the ->id is the index of where it was mapped in
user space and does not change while it is mapped.
Since the persistent buffer is fixed in its location, the index of where
a page is in the memory range can be used as the "id" to put in the meta
page array, and it can be mapped in the same order to user space as it is
in the persistent memory.
A new rb_page_id() helper function is used to get and set the id depending
on if the page is a normal memory allocated buffer or a physical memory
mapped buffer.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Jann Horn <jannh@google.com>
Link: https://lore.kernel.org/20250401203332.246646011@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
When reading a memory mapped buffer the reader page is just swapped out
with the last page written in the write buffer. If the reader page is the
same as the commit buffer (the buffer that is currently being written to)
it was assumed that it should never have missed events. If it does, it
triggers a WARN_ON_ONCE().
But there just happens to be one scenario where this can legitimately
happen. That is on a commit_overrun. A commit overrun is when an interrupt
preempts an event being written to the buffer and then the interrupt adds
so many new events that it fills and wraps the buffer back to the commit.
Any new events would then be dropped and be reported as "missed_events".
In this case, the next page to read is the commit buffer and after the
swap of the reader page, the reader page will be the commit buffer, but
this time there will be missed events and this triggers the following
warning:
------------[ cut here ]------------
WARNING: CPU: 2 PID: 1127 at kernel/trace/ring_buffer.c:7357 ring_buffer_map_get_reader+0x49a/0x780
Modules linked in: kvm_intel kvm irqbypass
CPU: 2 UID: 0 PID: 1127 Comm: trace-cmd Not tainted 6.15.0-rc7-test-00004-g478bc2824b45-dirty #564 PREEMPT
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:ring_buffer_map_get_reader+0x49a/0x780
Code: 00 00 00 48 89 fe 48 c1 ee 03 80 3c 2e 00 0f 85 ec 01 00 00 4d 3b a6 a8 00 00 00 0f 85 8a fd ff ff 48 85 c0 0f 84 55 fe ff ff <0f> 0b e9 4e fe ff ff be 08 00 00 00 4c 89 54 24 58 48 89 54 24 50
RSP: 0018:ffff888121787dc0 EFLAGS: 00010002
RAX: 00000000000006a2 RBX: ffff888100062800 RCX: ffffffff8190cb49
RDX: ffff888126934c00 RSI: 1ffff11020200a15 RDI: ffff8881010050a8
RBP: dffffc0000000000 R08: 0000000000000000 R09: ffffed1024d26982
R10: ffff888126934c17 R11: ffff8881010050a8 R12: ffff888126934c00
R13: ffff8881010050b8 R14: ffff888101005000 R15: ffff888126930008
FS: 00007f95c8cd7540(0000) GS:ffff8882b576e000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f95c8de4dc0 CR3: 0000000128452002 CR4: 0000000000172ef0
Call Trace:
<TASK>
? __pfx_ring_buffer_map_get_reader+0x10/0x10
tracing_buffers_ioctl+0x283/0x370
__x64_sys_ioctl+0x134/0x190
do_syscall_64+0x79/0x1c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f95c8de48db
Code: 00 48 89 44 24 18 31 c0 48 8d 44 24 60 c7 04 24 10 00 00 00 48 89 44 24 08 48 8d 44 24 20 48 89 44 24 10 b8 10 00 00 00 0f 05 <89> c2 3d 00 f0 ff ff 77 1c 48 8b 44 24 18 64 48 2b 04 25 28 00 00
RSP: 002b:00007ffe037ba110 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007ffe037bb2b0 RCX: 00007f95c8de48db
RDX: 0000000000000000 RSI: 0000000000005220 RDI: 0000000000000006
RBP: 00007ffe037ba180 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 00007ffe037bb6f8 R14: 00007f95c9065000 R15: 00005575c7492c90
</TASK>
irq event stamp: 5080
hardirqs last enabled at (5079): [<ffffffff83e0adb0>] _raw_spin_unlock_irqrestore+0x50/0x70
hardirqs last disabled at (5080): [<ffffffff83e0aa83>] _raw_spin_lock_irqsave+0x63/0x70
softirqs last enabled at (4182): [<ffffffff81516122>] handle_softirqs+0x552/0x710
softirqs last disabled at (4159): [<ffffffff815163f7>] __irq_exit_rcu+0x107/0x210
---[ end trace 0000000000000000 ]---
The above was triggered by running on a kernel with both lockdep and KASAN
as well as kmemleak enabled and executing the following command:
# perf record -o perf-test.dat -a -- trace-cmd record --nosplice -e all -p function hackbench 50
With perf interjecting a lot of interrupts and trace-cmd enabling all
events as well as function tracing, with lockdep, KASAN and kmemleak
enabled, it could cause an interrupt preempting an event being written to
add enough events to wrap the buffer. trace-cmd was modified to have
--nosplice use mmap instead of reading the buffer.
The way to differentiate this case from the normal case of there only
being one page written to where the swap of the reader page received that
one page (which is the commit page), check if the tail page is on the
reader page. The difference between the commit page and the tail page is
that the tail page is where new writes go to, and the commit page holds
the first write that hasn't been committed yet. In the case of an
interrupt preempting the write of an event and filling the buffer, it
would move the tail page but not the commit page.
Have the warning only trigger if the tail page is also on the reader page,
and also print out the number of events dropped by a commit overrun as
that can not yet be safely added to the page so that the reader can see
there were events dropped.
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20250528121555.2066527e@gandalf.local.home
Fixes: fe832be05a ("ring-buffer: Have mmapped ring buffer keep track of missed events")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE+soXsSLHKoYyzcli6rmadz2vbToFAmg3NqgACgkQ6rmadz2v
bTpNUQ/8DPeYtn3nskpsP2OwFy6O3hhfCe6gjOAmUVSk000xbG+AcI/h1DnGZWgk
xlVcEs93ekzUzHd7k1+RJ2c5yDLXieLJAtb66rbFU1enkxs2cWlcWSKE6K/gaoh3
G1BCARVlKwtrJhrVrsXtYP/eGZxKRSUZFK7xhtCk7lp7sRI3xkTLE+FJBcDkTJ6W
HwF14i3zO+BkqNGdFwwlASCCqRItSNBBiM3KjW1DbETOTfAKlvCTrcgdUiODqxhF
PNnULW+xmICABDFlKfDMlUAGNlSHKjiI3+g31LdblA5eyEhIqiCRgBGFYoCnsluk
qUauRSie61KqC7fxN3qVpC3bXJfD1td7uIvoqSkDLtTv8a5+HAoiohzi1qBzCayl
LAGkBYewAfDtdDDjNY38JLH2RCdyY6zG9DhqghPHdPlM7zj7L5zZgj34igEwesMM
mfj9TuFFF99yfX5UUeSxKpDGR1eO4Ew0p7tg8CRs8Fqh6AIQSmboREZrsncVRCTS
4SDHSI4KcO4LO2pEKzy+X4dewganN7aESnQG34iG0liyvDDwJOgUnDWLRwPLas7k
3b/zIfBLxOJpA5R+0hhAMtjMA4NgyKJf4yFZwEieuasQjvzwTApi24YhZ/b3HSEB
2Dp8kHEEbwezv0OFFz/fJ88dNQnrDmtJ+QByN/liA8kj4Yuh2+Q=
=j3t8
-----END PGP SIGNATURE-----
Merge tag 'bpf-next-6.16' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Pull bpf updates from Alexei Starovoitov:
- Fix and improve BTF deduplication of identical BTF types (Alan
Maguire and Andrii Nakryiko)
- Support up to 12 arguments in BPF trampoline on arm64 (Xu Kuohai and
Alexis Lothoré)
- Support load-acquire and store-release instructions in BPF JIT on
riscv64 (Andrea Parri)
- Fix uninitialized values in BPF_{CORE,PROBE}_READ macros (Anton
Protopopov)
- Streamline allowed helpers across program types (Feng Yang)
- Support atomic update for hashtab of BPF maps (Hou Tao)
- Implement json output for BPF helpers (Ihor Solodrai)
- Several s390 JIT fixes (Ilya Leoshkevich)
- Various sockmap fixes (Jiayuan Chen)
- Support mmap of vmlinux BTF data (Lorenz Bauer)
- Support BPF rbtree traversal and list peeking (Martin KaFai Lau)
- Tests for sockmap/sockhash redirection (Michal Luczaj)
- Introduce kfuncs for memory reads into dynptrs (Mykyta Yatsenko)
- Add support for dma-buf iterators in BPF (T.J. Mercier)
- The verifier support for __bpf_trap() (Yonghong Song)
* tag 'bpf-next-6.16' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (135 commits)
bpf, arm64: Remove unused-but-set function and variable.
selftests/bpf: Add tests with stack ptr register in conditional jmp
bpf: Do not include stack ptr register in precision backtracking bookkeeping
selftests/bpf: enable many-args tests for arm64
bpf, arm64: Support up to 12 function arguments
bpf: Check rcu_read_lock_trace_held() in bpf_map_lookup_percpu_elem()
bpf: Avoid __bpf_prog_ret0_warn when jit fails
bpftool: Add support for custom BTF path in prog load/loadall
selftests/bpf: Add unit tests with __bpf_trap() kfunc
bpf: Warn with __bpf_trap() kfunc maybe due to uninitialized variable
bpf: Remove special_kfunc_set from verifier
selftests/bpf: Add test for open coded dmabuf_iter
selftests/bpf: Add test for dmabuf_iter
bpf: Add open coded dmabuf iterator
bpf: Add dmabuf iterator
dma-buf: Rename debugfs symbols
bpf: Fix error return value in bpf_copy_from_user_dynptr
libbpf: Use mmap to parse vmlinux BTF from sysfs
selftests: bpf: Add a test for mmapable vmlinux BTF
btf: Allow mmap of vmlinux btf
...
On arm32, size_t is defined to be unsigned int, while PAGE_SIZE is
unsigned long. This hence triggers a compilation warning as min()
asserts the type of two operands to be equal. Casting PAGE_SIZE to size_t
solves this issue and works on other target architectures as well.
Compilation warning details:
kernel/trace/trace.c: In function 'tracing_splice_read_pipe':
./include/linux/minmax.h:20:28: warning: comparison of distinct pointer types lacks a cast
(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
^
./include/linux/minmax.h:26:4: note: in expansion of macro '__typecheck'
(__typecheck(x, y) && __no_side_effects(x, y))
^~~~~~~~~~~
...
kernel/trace/trace.c:6771:8: note: in expansion of macro 'min'
min((size_t)trace_seq_used(&iter->seq),
^~~
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/20250526013731.1198030-1-pantaixi@huaweicloud.com
Fixes: f5178c41bb ("tracing: Fix oob write in trace_seq_to_buffer()")
Reviewed-by: Jeongjun Park <aha310510@gmail.com>
Signed-off-by: Pan Taixi <pantaixi@huaweicloud.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
* Move kern_table members out of kernel/sysctl.c
Moved a subset (tracing, panic, signal, stack_tracer and sparc) out of the
kern_table array. The goal is for kern_table to only have sysctl elements. All
this increases modularity by placing the ctl_tables closer to where they are
used while reducing the chances of merge conflicts in kernel/sysctl.c.
* Fixed sysctl unit test panic by relocating it to selftests
* Testing
These have been in linux-next from rc2, so they have had more than a month
worth of testing.
-----BEGIN PGP SIGNATURE-----
iQGzBAABCgAdFiEErkcJVyXmMSXOyyeQupfNUreWQU8FAmgwLsAACgkQupfNUreW
QU9ghwv/VKZW+IXEvSjc8OiwntWkL7e5ddHY6O2Vf44MzhBefLTXmfx2HfkEA0Xw
RaOQ28Hf/zQL83RqHHnXqI7JdGWQJUm8bCPwk4H3DCaF8qOfPVvblVYmfNL2auSY
oyRRpRzZuY5EtKcrNjiHFHL2WIC8KvPVwS748oHY1eZY7kn1fcs8DDnNO4iuWop+
uJeDxu87wkRCFXF3DIM+MAHRvxSa8GHtZvb9EjAl/EHMbAyVSz3uTb7FdQDdnE09
s7P30EC03RHtgi3sd2Ku04dJsHLz7VErvpToxSH2KFlcdpJuWuCSCTT8XaD8kII8
kYYCxNpmPOf4LzEy/J2vVZB0PSHrHvuQCH7iGy+8wOPk9GHTOMkKMMXVmeGnAsef
AiosPYroxXp/nBFcuNs6/1LKpsdpFr2F6u6oMgbzLaW1Xe/oc+6oynuOgeVj9LuM
FrSxSwaVvpdwHYHujYPQAAWIgKRzITiEXnCgtSyohFquKb+7E8ZspwjOqYH2xWMQ
WwABNRqY
=45X2
-----END PGP SIGNATURE-----
Merge tag 'sysctl-6.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl
Pull sysctl updates from Joel Granados:
- Move kern_table members out of kernel/sysctl.c
Moved a subset (tracing, panic, signal, stack_tracer and sparc) out
of the kern_table array. The goal is for kern_table to only have
sysctl elements. All this increases modularity by placing the
ctl_tables closer to where they are used while reducing the chances
of merge conflicts in kernel/sysctl.c.
- Fixed sysctl unit test panic by relocating it to selftests
* tag 'sysctl-6.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl:
sysctl: Close test ctl_headers with a for loop
sysctl: call sysctl tests with a for loop
sysctl: Add 0012 to test the u8 range check
sysctl: move u8 register test to lib/test_sysctl.c
sparc: mv sparc sysctls into their own file under arch/sparc/kernel
stack_tracer: move sysctl registration to kernel/trace/trace_stack.c
tracing: Move trace sysctls into trace.c
signal: Move signal ctl tables into signal.c
panic: Move panic ctl tables into panic.c
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmgwnGYQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpq9aD/4iqOts77xhWWLrOJWkkhOcV5rREeyppq8X
MKYul9S4cc4Uin9Xou9a+nab31QBQEk3nsN3kX9o3yAXvkh6yUm36HD8qYNW/46q
IUkwRQQJ0COyTnexMZQNTbZPQDIYcenXmQxOcrEJ5jC1Jcz0sOKHsgekL+ab3kCy
fLnuz2ozvjGDMala/NmE8fN5qSlj4qQABHgbamwlwfo4aWu07cwfqn5G/FCYJgDO
xUvsnTVclom2g4G+7eSSvGQI1QyAxl5QpviPnj/TEgfFBFnhbCSoBTEY6ecqhlfW
6u59MF/Uw8E+weiuGY4L87kDtBhjQs3UMSLxCuwH7MxXb25ff7qB4AIkcFD0kKFH
3V5NtwqlU7aQT0xOjGxaHhfPwjLD+FVss4ARmuHS09/Kn8egOW9yROPyetnuH84R
Oz0Ctnt1IPLFjvGeg3+rt9fjjS9jWOXLITb9Q6nX9gnCt7orCwIYke8YCpmnJyhn
i+fV4CWYIQBBRKxIT0E/GhJxZOmL0JKpomnbpP2dH8npemnsTCuvtfdrK9gfhH2X
chBVqCPY8MNU5zKfzdEiavPqcm9392lMzOoOXW2pSC1eAKqnAQ86ZT3r7rLntqE8
75LxHcvaQIsnpyG+YuJVHvoiJ83TbqZNpyHwNaQTYhDmdYpp2d/wTtTQywX4DuXb
Y6NDJw5+kQ==
=1PNK
-----END PGP SIGNATURE-----
Merge tag 'for-6.16/block-20250523' of git://git.kernel.dk/linux
Pull block updates from Jens Axboe:
- ublk updates:
- Add support for updating the size of a ublk instance
- Zero-copy improvements
- Auto-registering of buffers for zero-copy
- Series simplifying and improving GET_DATA and request lookup
- Series adding quiesce support
- Lots of selftests additions
- Various cleanups
- NVMe updates via Christoph:
- add per-node DMA pools and use them for PRP/SGL allocations
(Caleb Sander Mateos, Keith Busch)
- nvme-fcloop refcounting fixes (Daniel Wagner)
- support delayed removal of the multipath node and optionally
support the multipath node for private namespaces (Nilay Shroff)
- support shared CQs in the PCI endpoint target code (Wilfred
Mallawa)
- support admin-queue only authentication (Hannes Reinecke)
- use the crc32c library instead of the crypto API (Eric Biggers)
- misc cleanups (Christoph Hellwig, Marcelo Moreira, Hannes
Reinecke, Leon Romanovsky, Gustavo A. R. Silva)
- MD updates via Yu:
- Fix that normal IO can be starved by sync IO, found by mkfs on
newly created large raid5, with some clean up patches for bdev
inflight counters
- Clean up brd, getting rid of atomic kmaps and bvec poking
- Add loop driver specifically for zoned IO testing
- Eliminate blk-rq-qos calls with a static key, if not enabled
- Improve hctx locking for when a plug has IO for multiple queues
pending
- Remove block layer bouncing support, which in turn means we can
remove the per-node bounce stat as well
- Improve blk-throttle support
- Improve delay support for blk-throttle
- Improve brd discard support
- Unify IO scheduler switching. This should also fix a bunch of lockdep
warnings we've been seeing, after enabling lockdep support for queue
freezing/unfreezeing
- Add support for block write streams via FDP (flexible data placement)
on NVMe
- Add a bunch of block helpers, facilitating the removal of a bunch of
duplicated boilerplate code
- Remove obsolete BLK_MQ pci and virtio Kconfig options
- Add atomic/untorn write support to blktrace
- Various little cleanups and fixes
* tag 'for-6.16/block-20250523' of git://git.kernel.dk/linux: (186 commits)
selftests: ublk: add test for UBLK_F_QUIESCE
ublk: add feature UBLK_F_QUIESCE
selftests: ublk: add test case for UBLK_U_CMD_UPDATE_SIZE
traceevent/block: Add REQ_ATOMIC flag to block trace events
ublk: run auto buf unregisgering in same io_ring_ctx with registering
io_uring: add helper io_uring_cmd_ctx_handle()
ublk: remove io argument from ublk_auto_buf_reg_fallback()
ublk: handle ublk_set_auto_buf_reg() failure correctly in ublk_fetch()
selftests: ublk: add test for covering UBLK_AUTO_BUF_REG_FALLBACK
selftests: ublk: support UBLK_F_AUTO_BUF_REG
ublk: support UBLK_AUTO_BUF_REG_FALLBACK
ublk: register buffer to local io_uring with provided buf index via UBLK_F_AUTO_BUF_REG
ublk: prepare for supporting to register request buffer automatically
ublk: convert to refcount_t
selftests: ublk: make IO & device removal test more stressful
nvme: rename nvme_mpath_shutdown_disk to nvme_mpath_remove_disk
nvme: introduce multipath_always_on module param
nvme-multipath: introduce delayed removal of the multipath head node
nvme-pci: derive and better document max segments limits
nvme-pci: use struct_size for allocation struct nvme_dev
...
On error, copy_from_user returns number of bytes not copied to
destination, but current implementation of copy_user_data_sleepable does
not handle that correctly and returns it as error value, which may
confuse user, expecting meaningful negative error value.
Fixes: a498ee7576 ("bpf: Implement dynptr copy kfuncs")
Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Signed-off-by: Mykyta Yatsenko <yatsenko@meta.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20250523181705.261585-1-mykyta.yatsenko5@gmail.com
Filesystems like XFS can implement atomic write I/O using either
REQ_ATOMIC flag set in the bio or via CoW operation. It will be useful
if we have a flag in trace events to distinguish between the two. This
patch adds char 'U' (Untorn writes) to rwbs field of the trace events
if REQ_ATOMIC flag is set in the bio.
<W/ REQ_ATOMIC>
=================
xfs_io-4238 [009] ..... 4148.126843: block_rq_issue: 259,0 WFSU 16384 () 768 + 32 none,0,0 [xfs_io]
<idle>-0 [009] d.h1. 4148.129864: block_rq_complete: 259,0 WFSU () 768 + 32 none,0,0 [0]
<W/O REQ_ATOMIC>
===============
xfs_io-4237 [010] ..... 4143.325616: block_rq_issue: 259,0 WS 16384 () 768 + 32 none,0,0 [xfs_io]
<idle>-0 [010] d.H1. 4143.329138: block_rq_complete: 259,0 WS () 768 + 32 none,0,0 [0]
Signed-off-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Reviewed-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Link: https://lore.kernel.org/r/44317cb2ec4588f6a2c1501a96684e6a1196e8ba.1747921498.git.ritesh.list@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This reverts commit 4a8f635a60.
Althought get_pid_task() internally already calls rcu_read_lock() and
rcu_read_unlock(), the find_vpid() was not.
The documentation for find_vpid() clearly states:
"Must be called with the tasklist_lock or rcu_read_lock() held."
Add proper rcu_read_lock/unlock() to protect the find_vpid().
Fixes: 4a8f635a60 ("bpf: remove unnecessary rcu_read_{lock,unlock}() in multi-uprobe attach logic")
Reported-by: Xuewen Yan <xuewen.yan@unisoc.com>
Signed-off-by: Di Shen <di.shen@unisoc.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20250520054943.5002-1-xuewen.yan@unisoc.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
- Fix sample code that uses trace_array_printk()
The sample code for in kernel use of trace_array (that creates an instance
for use within the kernel) and shows how to use trace_array_printk() that
writes into the created instance, used trace_printk_init_buffers(). But
that function is used to initialize normal trace_printk() and produces the
NOTICE banner which is not needed for use of trace_array_printk(). The
function to initialize that is trace_array_init_printk() that takes the
created trace array instance as a parameter.
Update the sample code to reflect the proper usage.
- Fix preemption count output for stacktrace event
The tracing buffer shows the preempt count level when an event executes.
Because writing the event itself disables preemption, this needs to be
accounted for when recording. The stacktrace event did not account for
this so the output of the stacktrace event showed preemption was disabled
while the event that triggered the stacktrace shows preemption is enabled
and this leads to confusion. Account for preemption being disabled for the
stacktrace event.
The same happened for stack traces triggered by function tracer.
- Fix persistent ring buffer when trace_pipe is used
The ring buffer swaps the reader page with the next page to read from the
write buffer when trace_pipe is used. If there's only a page of data in
the ring buffer, this swap will cause the "commit" pointer (last data
written) to be on the reader page. If more data is written to the buffer,
it is added to the reader page until it falls off back into the write
buffer.
If the system reboots and the commit pointer is still on the reader page,
even if new data was written, the persistent buffer validator will miss
finding the commit pointer because it only checks the write buffer and
does not check the reader page. This causes the validator to fail the
validation and clear the buffer, where the new data is lost.
There was a check for this, but it checked the "head pointer", which was
incorrect, because the "head pointer" always stays on the write buffer and
is the next page to swap out for the reader page. Fix the logic to catch
this case and allow the user to still read the data after reboot.
-----BEGIN PGP SIGNATURE-----
iIoEABYKADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCaCTZHBQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qu04AQDjOS46Y8d58MuwjLrQAotOUnANZADz
7d+5snlcMjhqkAEAo+zc2z9LgqBAnv1VG3GEPgac0JmyPeOnqSJRWRpRXAM=
=UveQ
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.15-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing fixes from Steven Rostedt:
- Fix sample code that uses trace_array_printk()
The sample code for in kernel use of trace_array (that creates an
instance for use within the kernel) and shows how to use
trace_array_printk() that writes into the created instance, used
trace_printk_init_buffers(). But that function is used to initialize
normal trace_printk() and produces the NOTICE banner which is not
needed for use of trace_array_printk(). The function to initialize
that is trace_array_init_printk() that takes the created trace array
instance as a parameter.
Update the sample code to reflect the proper usage.
- Fix preemption count output for stacktrace event
The tracing buffer shows the preempt count level when an event
executes. Because writing the event itself disables preemption, this
needs to be accounted for when recording. The stacktrace event did
not account for this so the output of the stacktrace event showed
preemption was disabled while the event that triggered the stacktrace
shows preemption is enabled and this leads to confusion. Account for
preemption being disabled for the stacktrace event.
The same happened for stack traces triggered by function tracer.
- Fix persistent ring buffer when trace_pipe is used
The ring buffer swaps the reader page with the next page to read from
the write buffer when trace_pipe is used. If there's only a page of
data in the ring buffer, this swap will cause the "commit" pointer
(last data written) to be on the reader page. If more data is written
to the buffer, it is added to the reader page until it falls off back
into the write buffer.
If the system reboots and the commit pointer is still on the reader
page, even if new data was written, the persistent buffer validator
will miss finding the commit pointer because it only checks the write
buffer and does not check the reader page. This causes the validator
to fail the validation and clear the buffer, where the new data is
lost.
There was a check for this, but it checked the "head pointer", which
was incorrect, because the "head pointer" always stays on the write
buffer and is the next page to swap out for the reader page. Fix the
logic to catch this case and allow the user to still read the data
after reboot.
* tag 'trace-v6.15-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
ring-buffer: Fix persistent buffer when commit page is the reader page
ftrace: Fix preemption accounting for stacktrace filter command
ftrace: Fix preemption accounting for stacktrace trigger command
tracing: samples: Initialize trace_array_printk() with the correct function
The ring buffer is made up of sub buffers (sometimes called pages as they
are by default PAGE_SIZE). It has the following "pages":
"tail page" - this is the page that the next write will write to
"head page" - this is the page that the reader will swap the reader page with.
"reader page" - This belongs to the reader, where it will swap the head
page from the ring buffer so that the reader does not
race with the writer.
The writer may end up on the "reader page" if the ring buffer hasn't
written more than one page, where the "tail page" and the "head page" are
the same.
The persistent ring buffer has meta data that points to where these pages
exist so on reboot it can re-create the pointers to the cpu_buffer
descriptor. But when the commit page is on the reader page, the logic is
incorrect.
The check to see if the commit page is on the reader page checked if the
head page was the reader page, which would never happen, as the head page
is always in the ring buffer. The correct check would be to test if the
commit page is on the reader page. If that's the case, then it can exit
out early as the commit page is only on the reader page when there's only
one page of data in the buffer. There's no reason to iterate the ring
buffer pages to find the "commit page" as it is already found.
To trigger this bug:
# echo 1 > /sys/kernel/tracing/instances/boot_mapped/events/syscalls/sys_enter_fchownat/enable
# touch /tmp/x
# chown sshd /tmp/x
# reboot
On boot up, the dmesg will have:
Ring buffer meta [0] is from previous boot!
Ring buffer meta [1] is from previous boot!
Ring buffer meta [2] is from previous boot!
Ring buffer meta [3] is from previous boot!
Ring buffer meta [4] commit page not found
Ring buffer meta [5] is from previous boot!
Ring buffer meta [6] is from previous boot!
Ring buffer meta [7] is from previous boot!
Where the buffer on CPU 4 had a "commit page not found" error and that
buffer is cleared and reset causing the output to be empty and the data lost.
When it works correctly, it has:
# cat /sys/kernel/tracing/instances/boot_mapped/trace_pipe
<...>-1137 [004] ..... 998.205323: sys_enter_fchownat: __syscall_nr=0x104 (260) dfd=0xffffff9c (4294967196) filename=(0xffffc90000a0002c) user=0x3e8 (1000) group=0xffffffff (4294967295) flag=0x0 (0
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20250513115032.3e0b97f7@gandalf.local.home
Fixes: 5f3b6e839f ("ring-buffer: Validate boot range memory events")
Reported-by: Tasos Sahanidis <tasos@tasossah.com>
Tested-by: Tasos Sahanidis <tasos@tasossah.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
When using the stacktrace trigger command to trace syscalls, the
preemption count was consistently reported as 1 when the system call
event itself had 0 (".").
For example:
root@ubuntu22-vm:/sys/kernel/tracing/events/syscalls/sys_enter_read
$ echo stacktrace > trigger
$ echo 1 > enable
sshd-416 [002] ..... 232.864910: sys_read(fd: a, buf: 556b1f3221d0, count: 8000)
sshd-416 [002] ...1. 232.864913: <stack trace>
=> ftrace_syscall_enter
=> syscall_trace_enter
=> do_syscall_64
=> entry_SYSCALL_64_after_hwframe
The root cause is that the trace framework disables preemption in __DO_TRACE before
invoking the trigger callback.
Use the tracing_gen_ctx_dec() that will accommodate for the increase of
the preemption count in __DO_TRACE when calling the callback. The result
is the accurate reporting of:
sshd-410 [004] ..... 210.117660: sys_read(fd: 4, buf: 559b725ba130, count: 40000)
sshd-410 [004] ..... 210.117662: <stack trace>
=> ftrace_syscall_enter
=> syscall_trace_enter
=> do_syscall_64
=> entry_SYSCALL_64_after_hwframe
Cc: stable@vger.kernel.org
Fixes: ce33c845b0 ("tracing: Dump stacktrace trigger to the corresponding instance")
Link: https://lore.kernel.org/20250512094246.1167956-1-dolinux.peng@gmail.com
Signed-off-by: pengdonglin <dolinux.peng@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Record trace_clock information in the trace_scratch area and recover
the trace_clock when boot, so that reader can docode the timestamp
correctly.
Note that since most trace_clocks records the timestamp in nano-
seconds, this is not a bug. But some trace_clock, like counter and
tsc will record the counter value. Only for those trace_clock user
needs this information.
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/174720625803.1925039.1815089037443798944.stgit@mhiramat.tok.corp.google.com
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Instead of find_first_bit() use the dedicated bitmap_empty(),
and make upper_empty() a nice one-liner.
While there, fix opencoded BITS_PER_TYPE().
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20250429195119.620204-1-yury.norov@gmail.com
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Since the shared trace_probe_log variable can be accessed and
modified via probe event create operation of kprobe_events,
uprobe_events, and dynamic_events, it should be protected.
In the dynamic_events, all operations are serialized by
`dyn_event_ops_mutex`. But kprobe_events and uprobe_events
interfaces are not serialized.
To solve this issue, introduces dyn_event_create(), which runs
create() operation under the mutex, for kprobe_events and
uprobe_events. This also uses lockdep to check the mutex is
held when using trace_probe_log* APIs.
Link: https://lore.kernel.org/all/174684868120.551552.3068655787654268804.stgit@devnote2/
Reported-by: Paul Cacheux <paulcacheux@gmail.com>
Closes: https://lore.kernel.org/all/20250510074456.805a16872b591e2971a4d221@kernel.org/
Fixes: ab105a4fb8 ("tracing: Use tracing error_log with probe events")
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
This patch introduces a new set of kfuncs for working with dynptrs in
BPF programs, enabling reading variable-length user or kernel data
into dynptr directly. To enable memory-safety, verifier allows only
constant-sized reads via existing bpf_probe_read_{user|kernel} etc.
kfuncs, dynptr-based kfuncs allow dynamically-sized reads without memory
safety shortcomings.
The following kfuncs are introduced:
* `bpf_probe_read_kernel_dynptr()`: probes kernel-space data into a dynptr
* `bpf_probe_read_user_dynptr()`: probes user-space data into a dynptr
* `bpf_probe_read_kernel_str_dynptr()`: probes kernel-space string into
a dynptr
* `bpf_probe_read_user_str_dynptr()`: probes user-space string into a
dynptr
* `bpf_copy_from_user_dynptr()`: sleepable, copies user-space data into
a dynptr for the current task
* `bpf_copy_from_user_str_dynptr()`: sleepable, copies user-space string
into a dynptr for the current task
* `bpf_copy_from_user_task_dynptr()`: sleepable, copies user-space data
of the task into a dynptr
* `bpf_copy_from_user_task_str_dynptr()`: sleepable, copies user-space
string of the task into a dynptr
The implementation is built on two generic functions:
* __bpf_dynptr_copy
* __bpf_dynptr_copy_str
These functions take function pointers as arguments, enabling the
copying of data from various sources, including both kernel and user
space.
Use __always_inline for generic functions and callbacks to make sure the
compiler doesn't generate indirect calls into callbacks, which is more
expensive, especially on some kernel configurations. Inlining allows
compiler to put direct calls into all the specific callback implementations
(copy_user_data_sleepable, copy_user_data_nofault, and so on).
Reviewed-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Mykyta Yatsenko <yatsenko@meta.com>
Link: https://lore.kernel.org/r/20250512205348.191079-3-mykyta.yatsenko5@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Make sure trace_probe_log_clear is called in the tracing
eprobe code path, matching the trace_probe_log_init call.
Link: https://lore.kernel.org/all/20250504-fix-trace-probe-log-race-v3-1-9e99fec7eddc@gmail.com/
Signed-off-by: Paul Cacheux <paulcacheux@gmail.com>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
When CONFIG_PROVE_RCU_LIST is enabled, fprobe triggers the following
warning:
WARNING: suspicious RCU usage
kernel/trace/fprobe.c:457 RCU-list traversed in non-reader section!!
other info that might help us debug this:
#1: ffffffff863c4e08 (fprobe_mutex){+.+.}-{4:4}, at: fprobe_module_callback+0x7b/0x8c0
Call Trace:
fprobe_module_callback
notifier_call_chain
blocking_notifier_call_chain
This warning occurs because fprobe_remove_node_in_module() traverses an
RCU list using RCU primitives without holding an RCU read lock. However,
the function is only called from fprobe_module_callback(), which holds
the fprobe_mutex lock that provides sufficient protection for safely
traversing the list.
Fix the warning by specifying the locking design to the
CONFIG_PROVE_RCU_LIST mechanism. Add the lockdep_is_held() argument to
hlist_for_each_entry_rcu() to inform the RCU checker that fprobe_mutex
provides the required protection.
Link: https://lore.kernel.org/all/20250410-fprobe-v1-1-068ef5f41436@debian.org/
Fixes: a3dc2983ca ("tracing: fprobe: Cleanup fprobe hash when module unloading")
Signed-off-by: Breno Leitao <leitao@debian.org>
Tested-by: Antonio Quartulli <antonio@mandelbit.com>
Tested-by: Matthieu Baerts (NGI0) <matttbe@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Adding support to retrieve ref_ctr_offset for uprobe perf link,
which got somehow omitted from the initial uprobe link info changes.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/bpf/20250509153539.779599-2-jolsa@kernel.org
There are applications that have it hard coded to write into the top level
trace_marker instance (/sys/kernel/tracing/trace_marker). This can be
annoying if a profiler is using that instance for other work, or if it
needs all writes to go into a new instance.
A new option is created called "copy_trace_marker". By default, the top
level has this set, as that is the default buffer that writing into the
top level trace_marker file will go to. But now if an instance is created
and sets this option, all writes into the top level trace_marker will also
be written into that instance buffer just as if an application were to
write into the instance's trace_marker file.
If the top level instance disables this option, then writes to its own
trace_marker and trace_marker_raw files will not go into its buffer.
If no instance has this option set, then the write will return an error
and errno will contain ENODEV.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20250508095639.39f84eda@gandalf.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Add a helper function called handle_dereference_arg() to replace the logic
that is identical in two locations of test_event_printk().
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20250507191703.5dd8a61d@gandalf.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
There's several functions that have "goto out;" where the label out is just:
out:
return ret;
Simplify the code by just doing the return in the location and removing
all the out labels and jumps.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tom Zanussi <zanussi@kernel.org>
Link: https://lore.kernel.org/20250507145456.121186494@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
According to trigger_data_alloc() doc, trigger_data_free() should be
used to free an event_trigger_data object. This fixes a mismatch introduced
when kzalloc was replaced with trigger_data_alloc without updating
the corresponding deallocation calls.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Link: https://lore.kernel.org/20250507145455.944453325@goodmis.org
Link: https://lore.kernel.org/20250318112737.4174-1-linmq006@gmail.com
Fixes: e1f187d09e ("tracing: Have existing event_command.parse() implementations use helpers")
Signed-off-by: Miaoqian Lin <linmq006@gmail.com>
[ SDR: Changed event_trigger_alloc/free() to trigger_data_alloc/free() ]
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The function event_trigger_alloc() creates an event_trigger_data
descriptor and states that it needs to be freed via event_trigger_free().
This is incorrect, it needs to be freed by trigger_data_free() as
event_trigger_free() adds ref counting.
Rename event_trigger_alloc() to trigger_data_alloc() and state that it
needs to be freed via trigger_data_free(). This naming convention
was introducing bugs.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tom Zanussi <zanussi@kernel.org>
Link: https://lore.kernel.org/20250507145455.776436410@goodmis.org
Fixes: 86599dbe2c ("tracing: Add helper functions to simplify event_command.parse() callback handling")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The trace_array_cpu had a "buffer_page" field that was originally going to
be used as a backup page for the ring buffer. But the ring buffer has its
own way of reusing pages and this field was never used.
Remove it.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/20250505212236.738849456@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The irqsoff tracer uses the per CPU "disabled" field to prevent corruption
of the accounting when it starts to trace interrupts disabled, but there's
a slight race that could happen if for some reason it was called twice.
Use atomic_inc_return() instead.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/20250505212236.567884756@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The per CPU "disabled" counter is used for the latency tracers and stack
tracers to make sure that their accounting isn't messed up by an NMI or
interrupt coming in and affecting the same CPU data. But the counter is an
atomic_t type. As it only needs to synchronize against the current CPU,
switch it over to local_t type.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/20250505212236.394925376@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The branch tracer currently checks the per CPU "disabled" field to know if
tracing is enabled or not for the CPU. As the "disabled" value is not used
anymore to turn of tracing generically, use tracing_tracer_is_on_cpu()
instead.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/20250505212236.224658526@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Add the function ring_buffer_record_is_on_cpu() that returns true if the
ring buffer for a give CPU is writable and false otherwise.
Also add tracer_tracing_is_on_cpu() to return if the ring buffer for a
given CPU is writeable for a given trace_array.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/20250505212236.059853898@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The per CPU "disabled" value was the original way to disable tracing when
the tracing subsystem was first created. Today, the ring buffer
infrastructure has its own way to disable tracing. In fact, things have
changed so much since 2008 that many things ignore the disable flag.
Do not bother setting the per CPU disabled flag of the array_buffer data
to use to determine what CPUs can write to the buffer and only rely on the
ring buffer code itself to disabled it.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/20250505212235.885452497@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>