mirror_smartmontools-debian/ataprint.cpp
2010-02-04 08:10:32 +01:00

2445 lines
84 KiB
C++

/*
* ataprint.cpp
*
* Home page of code is: http://smartmontools.sourceforge.net
*
* Copyright (C) 2002-10 Bruce Allen <smartmontools-support@lists.sourceforge.net>
* Copyright (C) 2008-10 Christian Franke <smartmontools-support@lists.sourceforge.net>
* Copyright (C) 1999-2000 Michael Cornwell <cornwell@acm.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* You should have received a copy of the GNU General Public License
* (for example COPYING); if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* This code was originally developed as a Senior Thesis by Michael Cornwell
* at the Concurrent Systems Laboratory (now part of the Storage Systems
* Research Center), Jack Baskin School of Engineering, University of
* California, Santa Cruz. http://ssrc.soe.ucsc.edu/
*
*/
#include "config.h"
#include <ctype.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef HAVE_LOCALE_H
#include <locale.h>
#endif // #ifdef HAVE_LOCALE_H
#include "int64.h"
#include "atacmdnames.h"
#include "atacmds.h"
#include "dev_interface.h"
#include "ataprint.h"
#include "smartctl.h"
#include "extern.h"
#include "utility.h"
#include "knowndrives.h"
const char * ataprint_cpp_cvsid = "$Id: ataprint.cpp 3037 2010-01-16 20:07:13Z chrfranke $"
ATAPRINT_H_CVSID;
// for passing global control variables
extern smartmonctrl *con;
static const char * infofound(const char *output) {
return (*output ? output : "[No Information Found]");
}
/* For the given Command Register (CR) and Features Register (FR), attempts
* to construct a string that describes the contents of the Status
* Register (ST) and Error Register (ER). The caller passes the string
* buffer and the return value is a pointer to this string. If the
* meanings of the flags of the error register are not known for the given
* command then it returns NULL.
*
* The meanings of the flags of the error register for all commands are
* described in the ATA spec and could all be supported here in theory.
* Currently, only a few commands are supported (those that have been seen
* to produce errors). If many more are to be added then this function
* should probably be redesigned.
*/
static const char * construct_st_er_desc(
char * s,
unsigned char CR, unsigned char FR,
unsigned char ST, unsigned char ER,
unsigned short SC,
const ata_smart_errorlog_error_struct * lba28_regs,
const ata_smart_exterrlog_error * lba48_regs
)
{
const char *error_flag[8];
int i, print_lba=0, print_sector=0;
// Set of character strings corresponding to different error codes.
// Please keep in alphabetic order if you add more.
const char *abrt = "ABRT"; // ABORTED
const char *amnf = "AMNF"; // ADDRESS MARK NOT FOUND
const char *ccto = "CCTO"; // COMMAND COMPLETION TIMED OUT
const char *eom = "EOM"; // END OF MEDIA
const char *icrc = "ICRC"; // INTERFACE CRC ERROR
const char *idnf = "IDNF"; // ID NOT FOUND
const char *ili = "ILI"; // MEANING OF THIS BIT IS COMMAND-SET SPECIFIC
const char *mc = "MC"; // MEDIA CHANGED
const char *mcr = "MCR"; // MEDIA CHANGE REQUEST
const char *nm = "NM"; // NO MEDIA
const char *obs = "obs"; // OBSOLETE
const char *tk0nf = "TK0NF"; // TRACK 0 NOT FOUND
const char *unc = "UNC"; // UNCORRECTABLE
const char *wp = "WP"; // WRITE PROTECTED
/* If for any command the Device Fault flag of the status register is
* not used then used_device_fault should be set to 0 (in the CR switch
* below)
*/
int uses_device_fault = 1;
/* A value of NULL means that the error flag isn't used */
for (i = 0; i < 8; i++)
error_flag[i] = NULL;
switch (CR) {
case 0x10: // RECALIBRATE
error_flag[2] = abrt;
error_flag[1] = tk0nf;
break;
case 0x20: /* READ SECTOR(S) */
case 0x21: // READ SECTOR(S)
case 0x24: // READ SECTOR(S) EXT
case 0xC4: /* READ MULTIPLE */
case 0x29: // READ MULTIPLE EXT
error_flag[6] = unc;
error_flag[5] = mc;
error_flag[4] = idnf;
error_flag[3] = mcr;
error_flag[2] = abrt;
error_flag[1] = nm;
error_flag[0] = amnf;
print_lba=1;
break;
case 0x22: // READ LONG (with retries)
case 0x23: // READ LONG (without retries)
error_flag[4] = idnf;
error_flag[2] = abrt;
error_flag[0] = amnf;
print_lba=1;
break;
case 0x2a: // READ STREAM DMA
case 0x2b: // READ STREAM PIO
if (CR==0x2a)
error_flag[7] = icrc;
error_flag[6] = unc;
error_flag[5] = mc;
error_flag[4] = idnf;
error_flag[3] = mcr;
error_flag[2] = abrt;
error_flag[1] = nm;
error_flag[0] = ccto;
print_lba=1;
print_sector=SC;
break;
case 0x3A: // WRITE STREAM DMA
case 0x3B: // WRITE STREAM PIO
if (CR==0x3A)
error_flag[7] = icrc;
error_flag[6] = wp;
error_flag[5] = mc;
error_flag[4] = idnf;
error_flag[3] = mcr;
error_flag[2] = abrt;
error_flag[1] = nm;
error_flag[0] = ccto;
print_lba=1;
print_sector=SC;
break;
case 0x25: /* READ DMA EXT */
case 0x26: // READ DMA QUEUED EXT
case 0xC7: // READ DMA QUEUED
case 0xC8: /* READ DMA */
case 0xC9:
error_flag[7] = icrc;
error_flag[6] = unc;
error_flag[5] = mc;
error_flag[4] = idnf;
error_flag[3] = mcr;
error_flag[2] = abrt;
error_flag[1] = nm;
error_flag[0] = amnf;
print_lba=1;
if (CR==0x25 || CR==0xC8)
print_sector=SC;
break;
case 0x30: /* WRITE SECTOR(S) */
case 0x31: // WRITE SECTOR(S)
case 0x34: // WRITE SECTOR(S) EXT
case 0xC5: /* WRITE MULTIPLE */
case 0x39: // WRITE MULTIPLE EXT
case 0xCE: // WRITE MULTIPLE FUA EXT
error_flag[6] = wp;
error_flag[5] = mc;
error_flag[4] = idnf;
error_flag[3] = mcr;
error_flag[2] = abrt;
error_flag[1] = nm;
print_lba=1;
break;
case 0x32: // WRITE LONG (with retries)
case 0x33: // WRITE LONG (without retries)
error_flag[4] = idnf;
error_flag[2] = abrt;
print_lba=1;
break;
case 0x3C: // WRITE VERIFY
error_flag[6] = unc;
error_flag[4] = idnf;
error_flag[2] = abrt;
error_flag[0] = amnf;
print_lba=1;
break;
case 0x40: // READ VERIFY SECTOR(S) with retries
case 0x41: // READ VERIFY SECTOR(S) without retries
case 0x42: // READ VERIFY SECTOR(S) EXT
error_flag[6] = unc;
error_flag[5] = mc;
error_flag[4] = idnf;
error_flag[3] = mcr;
error_flag[2] = abrt;
error_flag[1] = nm;
error_flag[0] = amnf;
print_lba=1;
break;
case 0xA0: /* PACKET */
/* Bits 4-7 are all used for sense key (a 'command packet set specific error
* indication' according to the ATA/ATAPI-7 standard), so "Sense key" will
* be repeated in the error description string if more than one of those
* bits is set.
*/
error_flag[7] = "Sense key (bit 3)",
error_flag[6] = "Sense key (bit 2)",
error_flag[5] = "Sense key (bit 1)",
error_flag[4] = "Sense key (bit 0)",
error_flag[2] = abrt;
error_flag[1] = eom;
error_flag[0] = ili;
break;
case 0xA1: /* IDENTIFY PACKET DEVICE */
case 0xEF: /* SET FEATURES */
case 0x00: /* NOP */
case 0xC6: /* SET MULTIPLE MODE */
error_flag[2] = abrt;
break;
case 0x2F: // READ LOG EXT
error_flag[6] = unc;
error_flag[4] = idnf;
error_flag[2] = abrt;
error_flag[0] = obs;
break;
case 0x3F: // WRITE LOG EXT
error_flag[4] = idnf;
error_flag[2] = abrt;
error_flag[0] = obs;
break;
case 0xB0: /* SMART */
switch(FR) {
case 0xD0: // SMART READ DATA
case 0xD1: // SMART READ ATTRIBUTE THRESHOLDS
case 0xD5: /* SMART READ LOG */
error_flag[6] = unc;
error_flag[4] = idnf;
error_flag[2] = abrt;
error_flag[0] = obs;
break;
case 0xD6: /* SMART WRITE LOG */
error_flag[4] = idnf;
error_flag[2] = abrt;
error_flag[0] = obs;
break;
case 0xD2: // Enable/Disable Attribute Autosave
case 0xD3: // SMART SAVE ATTRIBUTE VALUES (ATA-3)
case 0xD8: // SMART ENABLE OPERATIONS
case 0xD9: /* SMART DISABLE OPERATIONS */
case 0xDA: /* SMART RETURN STATUS */
case 0xDB: // Enable/Disable Auto Offline (SFF)
error_flag[2] = abrt;
break;
case 0xD4: // SMART EXECUTE IMMEDIATE OFFLINE
error_flag[4] = idnf;
error_flag[2] = abrt;
break;
default:
return NULL;
break;
}
break;
case 0xB1: /* DEVICE CONFIGURATION */
switch (FR) {
case 0xC0: /* DEVICE CONFIGURATION RESTORE */
error_flag[2] = abrt;
break;
default:
return NULL;
break;
}
break;
case 0xCA: /* WRITE DMA */
case 0xCB:
case 0x35: // WRITE DMA EXT
case 0x3D: // WRITE DMA FUA EXT
case 0xCC: // WRITE DMA QUEUED
case 0x36: // WRITE DMA QUEUED EXT
case 0x3E: // WRITE DMA QUEUED FUA EXT
error_flag[7] = icrc;
error_flag[6] = wp;
error_flag[5] = mc;
error_flag[4] = idnf;
error_flag[3] = mcr;
error_flag[2] = abrt;
error_flag[1] = nm;
error_flag[0] = amnf;
print_lba=1;
if (CR==0x35)
print_sector=SC;
break;
case 0xE4: // READ BUFFER
case 0xE8: // WRITE BUFFER
error_flag[2] = abrt;
break;
default:
return NULL;
}
s[0] = '\0';
/* We ignore any status flags other than Device Fault and Error */
if (uses_device_fault && (ST & (1 << 5))) {
strcat(s, "Device Fault");
if (ST & 1) // Error flag
strcat(s, "; ");
}
if (ST & 1) { // Error flag
int count = 0;
strcat(s, "Error: ");
for (i = 7; i >= 0; i--)
if ((ER & (1 << i)) && (error_flag[i])) {
if (count++ > 0)
strcat(s, ", ");
strcat(s, error_flag[i]);
}
}
// If the error was a READ or WRITE error, print the Logical Block
// Address (LBA) at which the read or write failed.
if (print_lba) {
char tmp[128];
// print number of sectors, if known, and append to print string
if (print_sector) {
snprintf(tmp, 128, " %d sectors", print_sector);
strcat(s, tmp);
}
if (lba28_regs) {
unsigned lba;
// bits 24-27: bits 0-3 of DH
lba = 0xf & lba28_regs->drive_head;
lba <<= 8;
// bits 16-23: CH
lba |= lba28_regs->cylinder_high;
lba <<= 8;
// bits 8-15: CL
lba |= lba28_regs->cylinder_low;
lba <<= 8;
// bits 0-7: SN
lba |= lba28_regs->sector_number;
snprintf(tmp, 128, " at LBA = 0x%08x = %u", lba, lba);
strcat(s, tmp);
}
else if (lba48_regs) {
// This assumes that upper LBA registers are 0 for 28-bit commands
// (TODO: detect 48-bit commands above)
uint64_t lba48;
lba48 = lba48_regs->lba_high_register_hi;
lba48 <<= 8;
lba48 |= lba48_regs->lba_mid_register_hi;
lba48 <<= 8;
lba48 |= lba48_regs->lba_low_register_hi;
lba48 |= lba48_regs->device_register & 0xf;
lba48 <<= 8;
lba48 |= lba48_regs->lba_high_register;
lba48 <<= 8;
lba48 |= lba48_regs->lba_mid_register;
lba48 <<= 8;
lba48 |= lba48_regs->lba_low_register;
snprintf(tmp, 128, " at LBA = 0x%08"PRIx64" = %"PRIu64, lba48, lba48);
strcat(s, tmp);
}
}
return s;
}
static inline const char * construct_st_er_desc(char * s,
const ata_smart_errorlog_struct * data)
{
return construct_st_er_desc(s,
data->commands[4].commandreg,
data->commands[4].featuresreg,
data->error_struct.status,
data->error_struct.error_register,
data->error_struct.sector_count,
&data->error_struct, (const ata_smart_exterrlog_error *)0);
}
static inline const char * construct_st_er_desc(char * s,
const ata_smart_exterrlog_error_log * data)
{
return construct_st_er_desc(s,
data->commands[4].command_register,
data->commands[4].features_register,
data->error.status_register,
data->error.error_register,
data->error.count_register_hi << 8 | data->error.count_register,
(const ata_smart_errorlog_error_struct *)0, &data->error);
}
// This returns the capacity of a disk drive and also prints this into
// a string, using comma separators to make it easier to read. If the
// drive doesn't support LBA addressing or has no user writable
// sectors (eg, CDROM or DVD) then routine returns zero.
static uint64_t determine_capacity(const ata_identify_device * drive, char * pstring)
{
// get correct character to use as thousands separator
const char *separator = ",";
#ifdef HAVE_LOCALE_H
struct lconv *currentlocale=NULL;
setlocale (LC_ALL, "");
currentlocale=localeconv();
if (*(currentlocale->thousands_sep))
separator=(char *)currentlocale->thousands_sep;
#endif // #ifdef HAVE_LOCALE_H
// get #sectors and turn into bytes
uint64_t capacity = get_num_sectors(drive) * 512;
uint64_t retval = capacity;
// print with locale-specific separators (default is comma)
int started=0, k=1000000000;
uint64_t power_of_ten = k;
power_of_ten *= k;
for (k=0; k<7; k++) {
uint64_t threedigits = capacity/power_of_ten;
capacity -= threedigits*power_of_ten;
if (started)
// we have already printed some digits
pstring += sprintf(pstring, "%s%03"PRIu64, separator, threedigits);
else if (threedigits || k==6) {
// these are the first digits that we are printing
pstring += sprintf(pstring, "%"PRIu64, threedigits);
started = 1;
}
if (k!=6)
power_of_ten /= 1000;
}
return retval;
}
static bool PrintDriveInfo(const ata_identify_device * drive, bool fix_swapped_id)
{
// format drive information (with byte swapping as needed)
char model[64], serial[64], firm[64];
format_ata_string(model, drive->model, 40, fix_swapped_id);
format_ata_string(serial, drive->serial_no, 20, fix_swapped_id);
format_ata_string(firm, drive->fw_rev, 8, fix_swapped_id);
// print out model, serial # and firmware versions (byte-swap ASCI strings)
const drive_settings * dbentry = lookup_drive(model, firm);
// Print model family if known
if (dbentry && *dbentry->modelfamily)
pout("Model Family: %s\n", dbentry->modelfamily);
pout("Device Model: %s\n", infofound(model));
if (!con->dont_print_serial)
pout("Serial Number: %s\n", infofound(serial));
pout("Firmware Version: %s\n", infofound(firm));
char capacity[64];
if (determine_capacity(drive, capacity))
pout("User Capacity: %s bytes\n", capacity);
// See if drive is recognized
pout("Device is: %s\n", !dbentry ?
"Not in smartctl database [for details use: -P showall]":
"In smartctl database [for details use: -P show]");
// now get ATA version info
const char *description; unsigned short minorrev;
int version = ataVersionInfo(&description, drive, &minorrev);
// SMART Support was first added into the ATA/ATAPI-3 Standard with
// Revision 3 of the document, July 25, 1995. Look at the "Document
// Status" revision commands at the beginning of
// http://www.t13.org/Documents/UploadedDocuments/project/d2008r7b-ATA-3.pdf
// to see this. So it's not enough to check if we are ATA-3.
// Version=-3 indicates ATA-3 BEFORE Revision 3.
// Version=0 indicates that no info is found. This may happen if
// the OS provides only part of the IDENTIFY data.
std::string majorstr, minorstr;
if (version) {
majorstr = strprintf("%d", abs(version));
if (description)
minorstr = description;
else if (!minorrev)
minorstr = "Exact ATA specification draft version not indicated";
else
minorstr = strprintf("Not recognized. Minor revision code: 0x%04x", minorrev);
}
pout("ATA Version is: %s\n", infofound(majorstr.c_str()));
pout("ATA Standard is: %s\n", infofound(minorstr.c_str()));
// print current time and date and timezone
char timedatetz[DATEANDEPOCHLEN]; dateandtimezone(timedatetz);
pout("Local Time is: %s\n", timedatetz);
// Print warning message, if there is one
if (dbentry && *dbentry->warningmsg)
pout("\n==> WARNING: %s\n\n", dbentry->warningmsg);
if (!version || version >= 3)
return !!dbentry;
pout("SMART is only available in ATA Version 3 Revision 3 or greater.\n");
pout("We will try to proceed in spite of this.\n");
return !!dbentry;
}
static const char *OfflineDataCollectionStatus(unsigned char status_byte)
{
unsigned char stat=status_byte & 0x7f;
switch(stat){
case 0x00:
return "was never started";
case 0x02:
return "was completed without error";
case 0x03:
if (status_byte == 0x03)
return "is in progress";
else
return "is in a Reserved state";
case 0x04:
return "was suspended by an interrupting command from host";
case 0x05:
return "was aborted by an interrupting command from host";
case 0x06:
return "was aborted by the device with a fatal error";
default:
if (stat >= 0x40)
return "is in a Vendor Specific state";
else
return "is in a Reserved state";
}
}
// prints verbose value Off-line data collection status byte
static void PrintSmartOfflineStatus(const ata_smart_values * data)
{
pout("Offline data collection status: (0x%02x)\t",
(int)data->offline_data_collection_status);
// Off-line data collection status byte is not a reserved
// or vendor specific value
pout("Offline data collection activity\n"
"\t\t\t\t\t%s.\n", OfflineDataCollectionStatus(data->offline_data_collection_status));
// Report on Automatic Data Collection Status. Only IBM documents
// this bit. See SFF 8035i Revision 2 for details.
if (data->offline_data_collection_status & 0x80)
pout("\t\t\t\t\tAuto Offline Data Collection: Enabled.\n");
else
pout("\t\t\t\t\tAuto Offline Data Collection: Disabled.\n");
return;
}
static void PrintSmartSelfExecStatus(const ata_smart_values * data,
unsigned char fix_firmwarebug)
{
pout("Self-test execution status: ");
switch (data->self_test_exec_status >> 4)
{
case 0:
pout("(%4d)\tThe previous self-test routine completed\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("without error or no self-test has ever \n\t\t\t\t\tbeen run.\n");
break;
case 1:
pout("(%4d)\tThe self-test routine was aborted by\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("the host.\n");
break;
case 2:
pout("(%4d)\tThe self-test routine was interrupted\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("by the host with a hard or soft reset.\n");
break;
case 3:
pout("(%4d)\tA fatal error or unknown test error\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("occurred while the device was executing\n\t\t\t\t\t");
pout("its self-test routine and the device \n\t\t\t\t\t");
pout("was unable to complete the self-test \n\t\t\t\t\t");
pout("routine.\n");
break;
case 4:
pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("a test element that failed and the test\n\t\t\t\t\t");
pout("element that failed is not known.\n");
break;
case 5:
pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("the electrical element of the test\n\t\t\t\t\t");
pout("failed.\n");
break;
case 6:
pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("the servo (and/or seek) element of the \n\t\t\t\t\t");
pout("test failed.\n");
break;
case 7:
pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("the read element of the test failed.\n");
break;
case 8:
pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("a test element that failed and the\n\t\t\t\t\t");
pout("device is suspected of having handling\n\t\t\t\t\t");
pout("damage.\n");
break;
case 15:
if (fix_firmwarebug == FIX_SAMSUNG3 && data->self_test_exec_status == 0xf0) {
pout("(%4d)\tThe previous self-test routine completed\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("with unknown result or self-test in\n\t\t\t\t\t");
pout("progress with less than 10%% remaining.\n");
}
else {
pout("(%4d)\tSelf-test routine in progress...\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("%1d0%% of test remaining.\n",
(int)(data->self_test_exec_status & 0x0f));
}
break;
default:
pout("(%4d)\tReserved.\n",
(int)data->self_test_exec_status);
break;
}
}
static void PrintSmartTotalTimeCompleteOffline (const ata_smart_values * data)
{
pout("Total time to complete Offline \n");
pout("data collection: \t\t (%4d) seconds.\n",
(int)data->total_time_to_complete_off_line);
}
static void PrintSmartOfflineCollectCap(const ata_smart_values *data)
{
pout("Offline data collection\n");
pout("capabilities: \t\t\t (0x%02x) ",
(int)data->offline_data_collection_capability);
if (data->offline_data_collection_capability == 0x00){
pout("\tOffline data collection not supported.\n");
}
else {
pout( "%s\n", isSupportExecuteOfflineImmediate(data)?
"SMART execute Offline immediate." :
"No SMART execute Offline immediate.");
pout( "\t\t\t\t\t%s\n", isSupportAutomaticTimer(data)?
"Auto Offline data collection on/off support.":
"No Auto Offline data collection support.");
pout( "\t\t\t\t\t%s\n", isSupportOfflineAbort(data)?
"Abort Offline collection upon new\n\t\t\t\t\tcommand.":
"Suspend Offline collection upon new\n\t\t\t\t\tcommand.");
pout( "\t\t\t\t\t%s\n", isSupportOfflineSurfaceScan(data)?
"Offline surface scan supported.":
"No Offline surface scan supported.");
pout( "\t\t\t\t\t%s\n", isSupportSelfTest(data)?
"Self-test supported.":
"No Self-test supported.");
pout( "\t\t\t\t\t%s\n", isSupportConveyanceSelfTest(data)?
"Conveyance Self-test supported.":
"No Conveyance Self-test supported.");
pout( "\t\t\t\t\t%s\n", isSupportSelectiveSelfTest(data)?
"Selective Self-test supported.":
"No Selective Self-test supported.");
}
}
static void PrintSmartCapability(const ata_smart_values *data)
{
pout("SMART capabilities: ");
pout("(0x%04x)\t", (int)data->smart_capability);
if (data->smart_capability == 0x00)
{
pout("Automatic saving of SMART data\t\t\t\t\tis not implemented.\n");
}
else
{
pout( "%s\n", (data->smart_capability & 0x01)?
"Saves SMART data before entering\n\t\t\t\t\tpower-saving mode.":
"Does not save SMART data before\n\t\t\t\t\tentering power-saving mode.");
if ( data->smart_capability & 0x02 )
{
pout("\t\t\t\t\tSupports SMART auto save timer.\n");
}
}
}
static void PrintSmartErrorLogCapability(const ata_smart_values * data, const ata_identify_device * identity)
{
pout("Error logging capability: ");
if ( isSmartErrorLogCapable(data, identity) )
{
pout(" (0x%02x)\tError logging supported.\n",
(int)data->errorlog_capability);
}
else {
pout(" (0x%02x)\tError logging NOT supported.\n",
(int)data->errorlog_capability);
}
}
static void PrintSmartShortSelfTestPollingTime(const ata_smart_values * data)
{
pout("Short self-test routine \n");
if (isSupportSelfTest(data))
pout("recommended polling time: \t (%4d) minutes.\n",
(int)data->short_test_completion_time);
else
pout("recommended polling time: \t Not Supported.\n");
}
static void PrintSmartExtendedSelfTestPollingTime(const ata_smart_values * data)
{
pout("Extended self-test routine\n");
if (isSupportSelfTest(data))
pout("recommended polling time: \t (%4d) minutes.\n",
(int)data->extend_test_completion_time);
else
pout("recommended polling time: \t Not Supported.\n");
}
static void PrintSmartConveyanceSelfTestPollingTime(const ata_smart_values * data)
{
pout("Conveyance self-test routine\n");
if (isSupportConveyanceSelfTest(data))
pout("recommended polling time: \t (%4d) minutes.\n",
(int)data->conveyance_test_completion_time);
else
pout("recommended polling time: \t Not Supported.\n");
}
// Check SMART attribute table for Threshold failure
// onlyfailed=0: are or were any age or prefailure attributes <= threshold
// onlyfailed=1: are any prefailure attributes <= threshold now
static int find_failed_attr(const ata_smart_values * data,
const ata_smart_thresholds_pvt * thresholds,
const ata_vendor_attr_defs & defs, int onlyfailed)
{
for (int i = 0; i < NUMBER_ATA_SMART_ATTRIBUTES; i++) {
const ata_smart_attribute & attr = data->vendor_attributes[i];
ata_attr_state state = ata_get_attr_state(attr,
thresholds->thres_entries[i], defs);
if (!onlyfailed) {
if (state >= ATTRSTATE_FAILED_PAST)
return attr.id;
}
else {
if (state == ATTRSTATE_FAILED_NOW && ATTRIBUTE_FLAGS_PREFAILURE(attr.flags))
return attr.id;
}
}
return 0;
}
// onlyfailed=0 : print all attribute values
// onlyfailed=1: just ones that are currently failed and have prefailure bit set
// onlyfailed=2: ones that are failed, or have failed with or without prefailure bit set
static void PrintSmartAttribWithThres(const ata_smart_values * data,
const ata_smart_thresholds_pvt * thresholds,
const ata_vendor_attr_defs & defs,
int onlyfailed)
{
bool needheader = true;
// step through all vendor attributes
for (int i = 0; i < NUMBER_ATA_SMART_ATTRIBUTES; i++) {
const ata_smart_attribute & attr = data->vendor_attributes[i];
const ata_smart_threshold_entry & thre = thresholds->thres_entries[i];
// Check attribute and threshold
ata_attr_state state = ata_get_attr_state(attr, thre, defs);
if (state == ATTRSTATE_NON_EXISTING)
continue;
// These break out of the loop if we are only printing certain entries...
if (onlyfailed == 1 && !(ATTRIBUTE_FLAGS_PREFAILURE(attr.flags) && state == ATTRSTATE_FAILED_NOW))
continue;
if (onlyfailed == 2 && state < ATTRSTATE_FAILED_PAST)
continue;
// print header only if needed
if (needheader) {
if (!onlyfailed) {
pout("SMART Attributes Data Structure revision number: %d\n",(int)data->revnumber);
pout("Vendor Specific SMART Attributes with Thresholds:\n");
}
pout("ID# ATTRIBUTE_NAME FLAG VALUE WORST THRESH TYPE UPDATED WHEN_FAILED RAW_VALUE\n");
needheader = false;
}
// Format value, worst, threshold
std::string valstr, worstr, threstr;
if (state > ATTRSTATE_NO_NORMVAL)
valstr = strprintf("%.3d", attr.current);
else
valstr = "---";
if (!(defs[attr.id].flags & ATTRFLAG_NO_WORSTVAL))
worstr = strprintf("%.3d", attr.worst);
else
worstr = "---";
if (state > ATTRSTATE_NO_THRESHOLD)
threstr = strprintf("%.3d", thre.threshold);
else
threstr = "---";
// Print line for each valid attribute
std::string attrname = ata_get_smart_attr_name(attr.id, defs);
pout("%3d %-24s0x%04x %-3s %-3s %-3s %-10s%-9s%-12s%s\n",
attr.id, attrname.c_str(), attr.flags,
valstr.c_str(), worstr.c_str(), threstr.c_str(),
(ATTRIBUTE_FLAGS_PREFAILURE(attr.flags)? "Pre-fail" : "Old_age"),
(ATTRIBUTE_FLAGS_ONLINE(attr.flags)? "Always" : "Offline"),
(state == ATTRSTATE_FAILED_NOW ? "FAILING_NOW" :
state == ATTRSTATE_FAILED_PAST ? "In_the_past" :
" -" ),
ata_format_attr_raw_value(attr, defs).c_str());
// Print a warning if there is inconsistency here
if (state == ATTRSTATE_BAD_THRESHOLD) {
pout("%3d %-24s<== Data Page | WARNING: PREVIOUS ATTRIBUTE HAS TWO\n",
attr.id, attrname.c_str());
pout("%3d %-24s<== Threshold Page | INCONSISTENT IDENTITIES IN THE DATA\n",
thre.id, ata_get_smart_attr_name(thre.id, defs).c_str());
}
}
if (!needheader) pout("\n");
}
// Print SMART related SCT capabilities
static void ataPrintSCTCapability(const ata_identify_device *drive)
{
unsigned short sctcaps = drive->words088_255[206-88];
if (!(sctcaps & 0x01))
return;
pout("SCT capabilities: \t (0x%04x)\tSCT Status supported.\n", sctcaps);
if (sctcaps & 0x10)
pout("\t\t\t\t\tSCT Feature Control supported.\n");
if (sctcaps & 0x20)
pout("\t\t\t\t\tSCT Data Table supported.\n");
}
static void PrintGeneralSmartValues(const ata_smart_values *data, const ata_identify_device *drive,
unsigned char fix_firmwarebug)
{
pout("General SMART Values:\n");
PrintSmartOfflineStatus(data);
if (isSupportSelfTest(data)){
PrintSmartSelfExecStatus(data, fix_firmwarebug);
}
PrintSmartTotalTimeCompleteOffline(data);
PrintSmartOfflineCollectCap(data);
PrintSmartCapability(data);
PrintSmartErrorLogCapability(data, drive);
pout( "\t\t\t\t\t%s\n", isGeneralPurposeLoggingCapable(drive)?
"General Purpose Logging supported.":
"No General Purpose Logging support.");
if (isSupportSelfTest(data)){
PrintSmartShortSelfTestPollingTime (data);
PrintSmartExtendedSelfTestPollingTime (data);
}
if (isSupportConveyanceSelfTest(data))
PrintSmartConveyanceSelfTestPollingTime (data);
ataPrintSCTCapability(drive);
pout("\n");
}
// Get # sectors of a log addr, 0 if log does not exist.
static unsigned GetNumLogSectors(const ata_smart_log_directory * logdir, unsigned logaddr, bool gpl)
{
if (!logdir)
return 0;
if (logaddr > 0xff)
return 0;
if (logaddr == 0)
return 1;
unsigned n = logdir->entry[logaddr-1].numsectors;
if (gpl)
// GP logs may have >255 sectors
n |= logdir->entry[logaddr-1].reserved << 8;
return n;
}
// Get name of log.
// Table A.2 of T13/1699-D Revision 6
static const char * GetLogName(unsigned logaddr)
{
switch (logaddr) {
case 0x00: return "Log Directory";
case 0x01: return "Summary SMART error log";
case 0x02: return "Comprehensive SMART error log";
case 0x03: return "Ext. Comprehensive SMART error log";
case 0x04: return "Device Statistics";
case 0x06: return "SMART self-test log";
case 0x07: return "Extended self-test log";
case 0x09: return "Selective self-test log";
case 0x10: return "NCQ Command Error";
case 0x11: return "SATA Phy Event Counters";
case 0x20: return "Streaming performance log"; // Obsolete
case 0x21: return "Write stream error log";
case 0x22: return "Read stream error log";
case 0x23: return "Delayed sector log"; // Obsolete
case 0xe0: return "SCT Command/Status";
case 0xe1: return "SCT Data Transfer";
default:
if (0xa0 <= logaddr && logaddr <= 0xdf)
return "Device vendor specific log";
if (0x80 <= logaddr && logaddr <= 0x9f)
return "Host vendor specific log";
if (0x12 <= logaddr && logaddr <= 0x17)
return "Reserved for Serial ATA";
return "Reserved";
}
/*NOTREACHED*/
}
// Print SMART and/or GP Log Directory
static void PrintLogDirectories(const ata_smart_log_directory * gplogdir,
const ata_smart_log_directory * smartlogdir)
{
if (gplogdir)
pout("General Purpose Log Directory Version %u\n", gplogdir->logversion);
if (smartlogdir)
pout("SMART %sLog Directory Version %u%s\n",
(gplogdir ? " " : ""), smartlogdir->logversion,
(smartlogdir->logversion==1 ? " [multi-sector log support]" : ""));
for (unsigned i = 0; i <= 0xff; i++) {
// Get number of sectors
unsigned smart_numsect = GetNumLogSectors(smartlogdir, i, false);
unsigned gp_numsect = GetNumLogSectors(gplogdir , i, true );
if (!(smart_numsect || gp_numsect))
continue; // Log does not exist
const char * name = GetLogName(i);
// Print name and length of log.
// If both SMART and GP exist, print separate entries if length differ.
if (smart_numsect == gp_numsect)
pout( "GP/S Log at address 0x%02x has %4d sectors [%s]\n", i, smart_numsect, name);
else {
if (gp_numsect)
pout("GP %sLog at address 0x%02x has %4d sectors [%s]\n", (smartlogdir?" ":""),
i, gp_numsect, name);
if (smart_numsect)
pout("SMART Log at address 0x%02x has %4d sectors [%s]\n", i, smart_numsect, name);
}
}
pout("\n");
}
// Print hexdump of log pages.
// Format is compatible with 'xxd -r'.
static void PrintLogPages(const char * type, const unsigned char * data,
unsigned char logaddr, unsigned page,
unsigned num_pages, unsigned max_pages)
{
pout("%s Log 0x%02x [%s], Page %u-%u (of %u)\n",
type, logaddr, GetLogName(logaddr), page, page+num_pages-1, max_pages);
for (unsigned i = 0; i < num_pages * 512; i += 16) {
const unsigned char * p = data+i;
pout("%07x: %02x %02x %02x %02x %02x %02x %02x %02x "
"%02x %02x %02x %02x %02x %02x %02x %02x ",
(page * 512) + i,
p[ 0], p[ 1], p[ 2], p[ 3], p[ 4], p[ 5], p[ 6], p[ 7],
p[ 8], p[ 9], p[10], p[11], p[12], p[13], p[14], p[15]);
#define P(n) (isprint((int)(p[n]))?(int)(p[n]):'.')
pout("|%c%c%c%c%c%c%c%c"
"%c%c%c%c%c%c%c%c|\n",
P( 0), P( 1), P( 2), P( 3), P( 4), P( 5), P( 6), P( 7),
P( 8), P( 9), P(10), P(11), P(12), P(13), P(14), P(15));
#undef P
if ((i & 0x1ff) == 0x1f0)
pout("\n");
}
}
// Print log 0x11
static void PrintSataPhyEventCounters(const unsigned char * data, bool reset)
{
if (checksum(data))
checksumwarning("SATA Phy Event Counters");
pout("SATA Phy Event Counters (GP Log 0x11)\n");
if (data[0] || data[1] || data[2] || data[3])
pout("[Reserved: 0x%02x 0x%02x 0x%02x 0x%02x]\n",
data[0], data[1], data[2], data[3]);
pout("ID Size Value Description\n");
for (unsigned i = 4; ; ) {
// Get counter id and size (bits 14:12)
unsigned id = data[i] | (data[i+1] << 8);
unsigned size = ((id >> 12) & 0x7) << 1;
id &= 0x8fff;
// End of counter table ?
if (!id)
break;
i += 2;
if (!(2 <= size && size <= 8 && i + size < 512)) {
pout("0x%04x %u: Invalid entry\n", id, size);
break;
}
// Get value
uint64_t val = 0, max_val = 0;
for (unsigned j = 0; j < size; j+=2) {
val |= (uint64_t)(data[i+j] | (data[i+j+1] << 8)) << (j*8);
max_val |= (uint64_t)0xffffU << (j*8);
}
i += size;
// Get name
const char * name;
switch (id) {
case 0x001: name = "Command failed due to ICRC error"; break; // Mandatory
case 0x002: name = "R_ERR response for data FIS"; break;
case 0x003: name = "R_ERR response for device-to-host data FIS"; break;
case 0x004: name = "R_ERR response for host-to-device data FIS"; break;
case 0x005: name = "R_ERR response for non-data FIS"; break;
case 0x006: name = "R_ERR response for device-to-host non-data FIS"; break;
case 0x007: name = "R_ERR response for host-to-device non-data FIS"; break;
case 0x008: name = "Device-to-host non-data FIS retries"; break;
case 0x009: name = "Transition from drive PhyRdy to drive PhyNRdy"; break;
case 0x00A: name = "Device-to-host register FISes sent due to a COMRESET"; break; // Mandatory
case 0x00B: name = "CRC errors within host-to-device FIS"; break;
case 0x00D: name = "Non-CRC errors within host-to-device FIS"; break;
case 0x00F: name = "R_ERR response for host-to-device data FIS, CRC"; break;
case 0x010: name = "R_ERR response for host-to-device data FIS, non-CRC"; break;
case 0x012: name = "R_ERR response for host-to-device non-data FIS, CRC"; break;
case 0x013: name = "R_ERR response for host-to-device non-data FIS, non-CRC"; break;
default: name = (id & 0x8000 ? "Vendor specific" : "Unknown"); break;
}
// Counters stop at max value, add '+' in this case
pout("0x%04x %u %12"PRIu64"%c %s\n", id, size, val,
(val == max_val ? '+' : ' '), name);
}
if (reset)
pout("All counters reset\n");
pout("\n");
}
// Get description for 'state' value from SMART Error Logs
static const char * get_error_log_state_desc(unsigned state)
{
state &= 0x0f;
switch (state){
case 0x0: return "in an unknown state";
case 0x1: return "sleeping";
case 0x2: return "in standby mode";
case 0x3: return "active or idle";
case 0x4: return "doing SMART Offline or Self-test";
default:
return (state < 0xb ? "in a reserved state"
: "in a vendor specific state");
}
}
// returns number of errors
static int PrintSmartErrorlog(const ata_smart_errorlog *data,
unsigned char fix_firmwarebug)
{
pout("SMART Error Log Version: %d\n", (int)data->revnumber);
// if no errors logged, return
if (!data->error_log_pointer){
pout("No Errors Logged\n\n");
return 0;
}
PRINT_ON(con);
// If log pointer out of range, return
if (data->error_log_pointer>5){
pout("Invalid Error Log index = 0x%02x (T13/1321D rev 1c "
"Section 8.41.6.8.2.2 gives valid range from 1 to 5)\n\n",
(int)data->error_log_pointer);
return 0;
}
// Some internal consistency checking of the data structures
if ((data->ata_error_count-data->error_log_pointer)%5 && fix_firmwarebug != FIX_SAMSUNG2) {
pout("Warning: ATA error count %d inconsistent with error log pointer %d\n\n",
data->ata_error_count,data->error_log_pointer);
}
// starting printing error log info
if (data->ata_error_count<=5)
pout( "ATA Error Count: %d\n", (int)data->ata_error_count);
else
pout( "ATA Error Count: %d (device log contains only the most recent five errors)\n",
(int)data->ata_error_count);
PRINT_OFF(con);
pout("\tCR = Command Register [HEX]\n"
"\tFR = Features Register [HEX]\n"
"\tSC = Sector Count Register [HEX]\n"
"\tSN = Sector Number Register [HEX]\n"
"\tCL = Cylinder Low Register [HEX]\n"
"\tCH = Cylinder High Register [HEX]\n"
"\tDH = Device/Head Register [HEX]\n"
"\tDC = Device Command Register [HEX]\n"
"\tER = Error register [HEX]\n"
"\tST = Status register [HEX]\n"
"Powered_Up_Time is measured from power on, and printed as\n"
"DDd+hh:mm:SS.sss where DD=days, hh=hours, mm=minutes,\n"
"SS=sec, and sss=millisec. It \"wraps\" after 49.710 days.\n\n");
// now step through the five error log data structures (table 39 of spec)
for (int k = 4; k >= 0; k-- ) {
// The error log data structure entries are a circular buffer
int j, i=(data->error_log_pointer+k)%5;
const ata_smart_errorlog_struct * elog = data->errorlog_struct+i;
const ata_smart_errorlog_error_struct * summary = &(elog->error_struct);
// Spec says: unused error log structures shall be zero filled
if (nonempty(elog, sizeof(*elog))){
// Table 57 of T13/1532D Volume 1 Revision 3
const char *msgstate = get_error_log_state_desc(summary->state);
int days = (int)summary->timestamp/24;
// See table 42 of ATA5 spec
PRINT_ON(con);
pout("Error %d occurred at disk power-on lifetime: %d hours (%d days + %d hours)\n",
(int)(data->ata_error_count+k-4), (int)summary->timestamp, days, (int)(summary->timestamp-24*days));
PRINT_OFF(con);
pout(" When the command that caused the error occurred, the device was %s.\n\n",msgstate);
pout(" After command completion occurred, registers were:\n"
" ER ST SC SN CL CH DH\n"
" -- -- -- -- -- -- --\n"
" %02x %02x %02x %02x %02x %02x %02x",
(int)summary->error_register,
(int)summary->status,
(int)summary->sector_count,
(int)summary->sector_number,
(int)summary->cylinder_low,
(int)summary->cylinder_high,
(int)summary->drive_head);
// Add a description of the contents of the status and error registers
// if possible
char descbuf[256];
const char * st_er_desc = construct_st_er_desc(descbuf, elog);
if (st_er_desc)
pout(" %s", st_er_desc);
pout("\n\n");
pout(" Commands leading to the command that caused the error were:\n"
" CR FR SC SN CL CH DH DC Powered_Up_Time Command/Feature_Name\n"
" -- -- -- -- -- -- -- -- ---------------- --------------------\n");
for ( j = 4; j >= 0; j--){
const ata_smart_errorlog_command_struct * thiscommand = elog->commands+j;
// Spec says: unused data command structures shall be zero filled
if (nonempty(thiscommand, sizeof(*thiscommand))) {
char timestring[32];
// Convert integer milliseconds to a text-format string
MsecToText(thiscommand->timestamp, timestring);
pout(" %02x %02x %02x %02x %02x %02x %02x %02x %16s %s\n",
(int)thiscommand->commandreg,
(int)thiscommand->featuresreg,
(int)thiscommand->sector_count,
(int)thiscommand->sector_number,
(int)thiscommand->cylinder_low,
(int)thiscommand->cylinder_high,
(int)thiscommand->drive_head,
(int)thiscommand->devicecontrolreg,
timestring,
look_up_ata_command(thiscommand->commandreg, thiscommand->featuresreg));
}
}
pout("\n");
}
}
PRINT_ON(con);
if (con->printing_switchable)
pout("\n");
PRINT_OFF(con);
return data->ata_error_count;
}
// Print SMART Extended Comprehensive Error Log (GP Log 0x03)
static int PrintSmartExtErrorLog(const ata_smart_exterrlog * log,
unsigned nsectors, unsigned max_errors)
{
pout("SMART Extended Comprehensive Error Log Version: %u (%u sectors)\n",
log->version, nsectors);
if (!log->device_error_count) {
pout("No Errors Logged\n\n");
return 0;
}
PRINT_ON(con);
// Check index
unsigned nentries = nsectors * 4;
unsigned erridx = log->error_log_index;
if (!(1 <= erridx && erridx <= nentries)){
// Some Samsung disks (at least SP1614C/SW100-25, HD300LJ/ZT100-12) use the
// former index from Summary Error Log (byte 1, now reserved) and set byte 2-3
// to 0.
if (!(erridx == 0 && 1 <= log->reserved1 && log->reserved1 <= nentries)) {
pout("Invalid Error Log index = 0x%04x (reserved = 0x%02x)\n", erridx, log->reserved1);
return 0;
}
pout("Invalid Error Log index = 0x%04x, trying reserved byte (0x%02x) instead\n", erridx, log->reserved1);
erridx = log->reserved1;
}
// Index base is not clearly specified by ATA8-ACS (T13/1699-D Revision 6a),
// it is 1-based in practice.
erridx--;
// Calculate #errors to print
unsigned errcnt = log->device_error_count;
if (errcnt <= nentries)
pout("Device Error Count: %u\n", log->device_error_count);
else {
errcnt = nentries;
pout("Device Error Count: %u (device log contains only the most recent %u errors)\n",
log->device_error_count, errcnt);
}
if (max_errors < errcnt)
errcnt = max_errors;
PRINT_OFF(con);
pout("\tCR = Command Register\n"
"\tFEATR = Features Register\n"
"\tCOUNT = Count (was: Sector Count) Register\n"
"\tLBA_48 = Upper bytes of LBA High/Mid/Low Registers ] ATA-8\n"
"\tLH = LBA High (was: Cylinder High) Register ] LBA\n"
"\tLM = LBA Mid (was: Cylinder Low) Register ] Register\n"
"\tLL = LBA Low (was: Sector Number) Register ]\n"
"\tDV = Device (was: Device/Head) Register\n"
"\tDC = Device Control Register\n"
"\tER = Error register\n"
"\tST = Status register\n"
"Powered_Up_Time is measured from power on, and printed as\n"
"DDd+hh:mm:SS.sss where DD=days, hh=hours, mm=minutes,\n"
"SS=sec, and sss=millisec. It \"wraps\" after 49.710 days.\n\n");
// Iterate through circular buffer in reverse direction
for (unsigned i = 0, errnum = log->device_error_count;
i < errcnt; i++, errnum--, erridx = (erridx > 0 ? erridx - 1 : nentries - 1)) {
const ata_smart_exterrlog_error_log & entry = log[erridx / 4].error_logs[erridx % 4];
// Skip unused entries
if (!nonempty(&entry, sizeof(entry))) {
pout("Error %u [%u] log entry is empty\n", errnum, erridx);
continue;
}
// Print error information
PRINT_ON(con);
const ata_smart_exterrlog_error & err = entry.error;
pout("Error %u [%u] occurred at disk power-on lifetime: %u hours (%u days + %u hours)\n",
errnum, erridx, err.timestamp, err.timestamp / 24, err.timestamp % 24);
PRINT_OFF(con);
pout(" When the command that caused the error occurred, the device was %s.\n\n",
get_error_log_state_desc(err.state));
// Print registers
pout(" After command completion occurred, registers were:\n"
" ER -- ST COUNT LBA_48 LH LM LL DV DC\n"
" -- -- -- == -- == == == -- -- -- -- --\n"
" %02x -- %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
err.error_register,
err.status_register,
err.count_register_hi,
err.count_register,
err.lba_high_register_hi,
err.lba_mid_register_hi,
err.lba_low_register_hi,
err.lba_high_register,
err.lba_mid_register,
err.lba_low_register,
err.device_register,
err.device_control_register);
// Add a description of the contents of the status and error registers
// if possible
char descbuf[256];
const char * st_er_desc = construct_st_er_desc(descbuf, &entry);
if (st_er_desc)
pout(" %s", st_er_desc);
pout("\n\n");
// Print command history
pout(" Commands leading to the command that caused the error were:\n"
" CR FEATR COUNT LBA_48 LH LM LL DV DC Powered_Up_Time Command/Feature_Name\n"
" -- == -- == -- == == == -- -- -- -- -- --------------- --------------------\n");
for (int ci = 4; ci >= 0; ci--) {
const ata_smart_exterrlog_command & cmd = entry.commands[ci];
// Skip unused entries
if (!nonempty(&cmd, sizeof(cmd)))
continue;
// Print registers, timestamp and ATA command name
char timestring[32];
MsecToText(cmd.timestamp, timestring);
pout(" %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %16s %s\n",
cmd.command_register,
cmd.features_register_hi,
cmd.features_register,
cmd.count_register_hi,
cmd.count_register,
cmd.lba_high_register_hi,
cmd.lba_mid_register_hi,
cmd.lba_low_register_hi,
cmd.lba_high_register,
cmd.lba_mid_register,
cmd.lba_low_register,
cmd.device_register,
cmd.device_control_register,
timestring,
look_up_ata_command(cmd.command_register, cmd.features_register));
}
pout("\n");
}
PRINT_ON(con);
if (con->printing_switchable)
pout("\n");
PRINT_OFF(con);
return log->device_error_count;
}
// Print SMART Extended Self-test Log (GP Log 0x07)
static void PrintSmartExtSelfTestLog(const ata_smart_extselftestlog * log,
unsigned nsectors, unsigned max_entries)
{
pout("SMART Extended Self-test Log Version: %u (%u sectors)\n",
log->version, nsectors);
if (!log->log_desc_index){
pout("No self-tests have been logged. [To run self-tests, use: smartctl -t]\n\n");
return;
}
// Check index
unsigned nentries = nsectors * 19;
unsigned logidx = log->log_desc_index;
if (logidx > nentries) {
pout("Invalid Self-test Log index = 0x%04x (reserved = 0x%02x)\n", logidx, log->reserved1);
return;
}
// Index base is not clearly specified by ATA8-ACS (T13/1699-D Revision 6a),
// it is 1-based in practice.
logidx--;
bool print_header = true;
// Iterate through circular buffer in reverse direction
for (unsigned i = 0, testnum = 1;
i < nentries && testnum <= max_entries;
i++, logidx = (logidx > 0 ? logidx - 1 : nentries - 1)) {
const ata_smart_extselftestlog_desc & entry = log[logidx / 19].log_descs[logidx % 19];
// Skip unused entries
if (!nonempty(&entry, sizeof(entry)))
continue;
// Get LBA
const unsigned char * b = entry.failing_lba;
uint64_t lba48 = b[0]
| ( b[1] << 8)
| ( b[2] << 16)
| ((uint64_t)b[3] << 24)
| ((uint64_t)b[4] << 32)
| ((uint64_t)b[5] << 40);
// Print entry
ataPrintSmartSelfTestEntry(testnum++, entry.self_test_type,
entry.self_test_status, entry.timestamp, lba48,
false /*!print_error_only*/, print_header);
}
pout("\n");
}
static void ataPrintSelectiveSelfTestLog(const ata_selective_self_test_log * log, const ata_smart_values * sv)
{
int i,field1,field2;
const char *msg;
char tmp[64];
uint64_t maxl=0,maxr=0;
uint64_t current=log->currentlba;
uint64_t currentend=current+65535;
// print data structure revision number
pout("SMART Selective self-test log data structure revision number %d\n",(int)log->logversion);
if (1 != log->logversion)
pout("Note: revision number not 1 implies that no selective self-test has ever been run\n");
switch((sv->self_test_exec_status)>>4){
case 0:msg="Completed";
break;
case 1:msg="Aborted_by_host";
break;
case 2:msg="Interrupted";
break;
case 3:msg="Fatal_error";
break;
case 4:msg="Completed_unknown_failure";
break;
case 5:msg="Completed_electrical_failure";
break;
case 6:msg="Completed_servo/seek_failure";
break;
case 7:msg="Completed_read_failure";
break;
case 8:msg="Completed_handling_damage??";
break;
case 15:msg="Self_test_in_progress";
break;
default:msg="Unknown_status ";
break;
}
// find the number of columns needed for printing. If in use, the
// start/end of span being read-scanned...
if (log->currentspan>5) {
maxl=current;
maxr=currentend;
}
for (i=0; i<5; i++) {
uint64_t start=log->span[i].start;
uint64_t end =log->span[i].end;
// ... plus max start/end of each of the five test spans.
if (start>maxl)
maxl=start;
if (end > maxr)
maxr=end;
}
// we need at least 7 characters wide fields to accomodate the
// labels
if ((field1=snprintf(tmp,64, "%"PRIu64, maxl))<7)
field1=7;
if ((field2=snprintf(tmp,64, "%"PRIu64, maxr))<7)
field2=7;
// now print the five test spans
pout(" SPAN %*s %*s CURRENT_TEST_STATUS\n", field1, "MIN_LBA", field2, "MAX_LBA");
for (i=0; i<5; i++) {
uint64_t start=log->span[i].start;
uint64_t end=log->span[i].end;
if ((i+1)==(int)log->currentspan)
// this span is currently under test
pout(" %d %*"PRIu64" %*"PRIu64" %s [%01d0%% left] (%"PRIu64"-%"PRIu64")\n",
i+1, field1, start, field2, end, msg,
(int)(sv->self_test_exec_status & 0xf), current, currentend);
else
// this span is not currently under test
pout(" %d %*"PRIu64" %*"PRIu64" Not_testing\n",
i+1, field1, start, field2, end);
}
// if we are currently read-scanning, print LBAs and the status of
// the read scan
if (log->currentspan>5)
pout("%5d %*"PRIu64" %*"PRIu64" Read_scanning %s\n",
(int)log->currentspan, field1, current, field2, currentend,
OfflineDataCollectionStatus(sv->offline_data_collection_status));
/* Print selective self-test flags. Possible flag combinations are
(numbering bits from 0-15):
Bit-1 Bit-3 Bit-4
Scan Pending Active
0 * * Don't scan
1 0 0 Will carry out scan after selective test
1 1 0 Waiting to carry out scan after powerup
1 0 1 Currently scanning
1 1 1 Currently scanning
*/
pout("Selective self-test flags (0x%x):\n", (unsigned int)log->flags);
if (log->flags & SELECTIVE_FLAG_DOSCAN) {
if (log->flags & SELECTIVE_FLAG_ACTIVE)
pout(" Currently read-scanning the remainder of the disk.\n");
else if (log->flags & SELECTIVE_FLAG_PENDING)
pout(" Read-scan of remainder of disk interrupted; will resume %d min after power-up.\n",
(int)log->pendingtime);
else
pout(" After scanning selected spans, read-scan remainder of disk.\n");
}
else
pout(" After scanning selected spans, do NOT read-scan remainder of disk.\n");
// print pending time
pout("If Selective self-test is pending on power-up, resume after %d minute delay.\n",
(int)log->pendingtime);
return;
}
// Format SCT Temperature value
static const char * sct_ptemp(signed char x, char * buf)
{
if (x == -128 /*0x80 = unknown*/)
strcpy(buf, " ?");
else
sprintf(buf, "%2d", x);
return buf;
}
static const char * sct_pbar(int x, char * buf)
{
if (x <= 19)
x = 0;
else
x -= 19;
bool ov = false;
if (x > 40) {
x = 40; ov = true;
}
if (x > 0) {
memset(buf, '*', x);
if (ov)
buf[x-1] = '+';
buf[x] = 0;
}
else {
buf[0] = '-'; buf[1] = 0;
}
return buf;
}
static const char * sct_device_state_msg(unsigned char state)
{
switch (state) {
case 0: return "Active";
case 1: return "Stand-by";
case 2: return "Sleep";
case 3: return "DST executing in background";
case 4: return "SMART Off-line Data Collection executing in background";
case 5: return "SCT command executing in background";
default:return "Unknown";
}
}
// Print SCT Status
static int ataPrintSCTStatus(const ata_sct_status_response * sts)
{
pout("SCT Status Version: %u\n", sts->format_version);
pout("SCT Version (vendor specific): %u (0x%04x)\n", sts->sct_version, sts->sct_version);
pout("SCT Support Level: %u\n", sts->sct_spec);
pout("Device State: %s (%u)\n",
sct_device_state_msg(sts->device_state), sts->device_state);
char buf1[20], buf2[20];
if ( !sts->min_temp && !sts->life_min_temp && !sts->byte205
&& !sts->under_limit_count && !sts->over_limit_count ) {
// "Reserved" fields not set, assume "old" format version 2
// Table 11 of T13/1701DT Revision 5
// Table 54 of T13/1699-D Revision 3e
pout("Current Temperature: %s Celsius\n",
sct_ptemp(sts->hda_temp, buf1));
pout("Power Cycle Max Temperature: %s Celsius\n",
sct_ptemp(sts->max_temp, buf2));
pout("Lifetime Max Temperature: %s Celsius\n",
sct_ptemp(sts->life_max_temp, buf2));
}
else {
// Assume "new" format version 2 or version 3
// T13/e06152r0-3 (Additional SCT Temperature Statistics)
// Table 60 of T13/1699-D Revision 3f
pout("Current Temperature: %s Celsius\n",
sct_ptemp(sts->hda_temp, buf1));
pout("Power Cycle Min/Max Temperature: %s/%s Celsius\n",
sct_ptemp(sts->min_temp, buf1), sct_ptemp(sts->max_temp, buf2));
pout("Lifetime Min/Max Temperature: %s/%s Celsius\n",
sct_ptemp(sts->life_min_temp, buf1), sct_ptemp(sts->life_max_temp, buf2));
if (sts->byte205) // e06152r0-2, removed in e06152r3
pout("Lifetime Average Temperature: %s Celsius\n",
sct_ptemp((signed char)sts->byte205, buf1));
pout("Under/Over Temperature Limit Count: %2u/%u\n",
sts->under_limit_count, sts->over_limit_count);
}
return 0;
}
// Print SCT Temperature History Table
static int ataPrintSCTTempHist(const ata_sct_temperature_history_table * tmh)
{
char buf1[20], buf2[80];
pout("SCT Temperature History Version: %u\n", tmh->format_version);
pout("Temperature Sampling Period: %u minute%s\n",
tmh->sampling_period, (tmh->sampling_period==1?"":"s"));
pout("Temperature Logging Interval: %u minute%s\n",
tmh->interval, (tmh->interval==1?"":"s"));
pout("Min/Max recommended Temperature: %s/%s Celsius\n",
sct_ptemp(tmh->min_op_limit, buf1), sct_ptemp(tmh->max_op_limit, buf2));
pout("Min/Max Temperature Limit: %s/%s Celsius\n",
sct_ptemp(tmh->under_limit, buf1), sct_ptemp(tmh->over_limit, buf2));
pout("Temperature History Size (Index): %u (%u)\n", tmh->cb_size, tmh->cb_index);
if (!(0 < tmh->cb_size && tmh->cb_size <= sizeof(tmh->cb) && tmh->cb_index < tmh->cb_size)) {
pout("Error invalid Temperature History Size or Index\n");
return 0;
}
// Print table
pout("\nIndex Estimated Time Temperature Celsius\n");
unsigned n = 0, i = (tmh->cb_index+1) % tmh->cb_size;
unsigned interval = (tmh->interval > 0 ? tmh->interval : 1);
time_t t = time(0) - (tmh->cb_size-1) * interval * 60;
t -= t % (interval * 60);
while (n < tmh->cb_size) {
// Find range of identical temperatures
unsigned n1 = n, n2 = n+1, i2 = (i+1) % tmh->cb_size;
while (n2 < tmh->cb_size && tmh->cb[i2] == tmh->cb[i]) {
n2++; i2 = (i2+1) % tmh->cb_size;
}
// Print range
while (n < n2) {
if (n == n1 || n == n2-1 || n2 <= n1+3) {
char date[30];
// TODO: Don't print times < boot time
strftime(date, sizeof(date), "%Y-%m-%d %H:%M", localtime(&t));
pout(" %3u %s %s %s\n", i, date,
sct_ptemp(tmh->cb[i], buf1), sct_pbar(tmh->cb[i], buf2));
}
else if (n == n1+1) {
pout(" ... ..(%3u skipped). .. %s\n",
n2-n1-2, sct_pbar(tmh->cb[i], buf2));
}
t += interval * 60; i = (i+1) % tmh->cb_size; n++;
}
}
//assert(n == tmh->cb_size && i == (tmh->cb_index+1) % tmh->cb_size);
return 0;
}
// Compares failure type to policy in effect, and either exits or
// simply returns to the calling routine.
void failuretest(int type, int returnvalue){
// If this is an error in an "optional" SMART command
if (type==OPTIONAL_CMD){
if (con->conservative){
pout("An optional SMART command failed: exiting. Remove '-T conservative' option to continue.\n");
EXIT(returnvalue);
}
return;
}
// If this is an error in a "mandatory" SMART command
if (type==MANDATORY_CMD){
if (con->permissive--)
return;
pout("A mandatory SMART command failed: exiting. To continue, add one or more '-T permissive' options.\n");
EXIT(returnvalue);
}
pout("Smartctl internal error in failuretest(type=%d). Please contact developers at " PACKAGE_HOMEPAGE "\n",type);
EXIT(returnvalue|FAILCMD);
}
// Initialize to zero just in case some SMART routines don't work
static ata_identify_device drive;
static ata_smart_values smartval;
static ata_smart_thresholds_pvt smartthres;
static ata_smart_errorlog smarterror;
static ata_smart_selftestlog smartselftest;
int ataPrintMain (ata_device * device, const ata_print_options & options)
{
int timewait,code;
int returnval=0, retid=0, supported=0, needupdate=0;
const char * powername = 0; char powerchg = 0;
// If requested, check power mode first
if (options.powermode) {
unsigned char powerlimit = 0xff;
int powermode = ataCheckPowerMode(device);
switch (powermode) {
case -1:
if (errno == ENOSYS) {
pout("CHECK POWER STATUS not implemented, ignoring -n Option\n"); break;
}
powername = "SLEEP"; powerlimit = 2;
break;
case 0:
powername = "STANDBY"; powerlimit = 3; break;
case 0x80:
powername = "IDLE"; powerlimit = 4; break;
case 0xff:
powername = "ACTIVE or IDLE"; break;
default:
pout("CHECK POWER STATUS returned %d, not ATA compliant, ignoring -n Option\n", powermode);
break;
}
if (powername) {
if (options.powermode >= powerlimit) {
pout("Device is in %s mode, exit(%d)\n", powername, FAILPOWER);
return FAILPOWER;
}
powerchg = (powermode != 0xff); // SMART tests will spin up drives
}
}
// Start by getting Drive ID information. We need this, to know if SMART is supported.
if ((retid=ataReadHDIdentity(device,&drive))<0){
pout("Smartctl: Device Read Identity Failed (not an ATA/ATAPI device)\n\n");
failuretest(MANDATORY_CMD, returnval|=FAILID);
}
// If requested, show which presets would be used for this drive and exit.
if (options.show_presets) {
show_presets(&drive, options.fix_swapped_id);
return 0;
}
// Use preset vendor attribute options unless user has requested otherwise.
ata_vendor_attr_defs attribute_defs = options.attribute_defs;
unsigned char fix_firmwarebug = options.fix_firmwarebug;
if (!options.ignore_presets)
apply_presets(&drive, attribute_defs, fix_firmwarebug, options.fix_swapped_id);
// Print most drive identity information if requested
bool known = false;
if (options.drive_info) {
pout("=== START OF INFORMATION SECTION ===\n");
known = PrintDriveInfo(&drive, options.fix_swapped_id);
}
// Was this a packet device?
if (retid>0){
pout("SMART support is: Unavailable - Packet Interface Devices [this device: %s] don't support ATA SMART\n", packetdevicetype(retid-1));
failuretest(MANDATORY_CMD, returnval|=FAILSMART);
}
// if drive does not supports SMART it's time to exit
supported=ataSmartSupport(&drive);
if (supported != 1){
if (supported==0) {
pout("SMART support is: Unavailable - device lacks SMART capability.\n");
failuretest(MANDATORY_CMD, returnval|=FAILSMART);
pout(" Checking to be sure by trying SMART ENABLE command.\n");
}
else {
pout("SMART support is: Ambiguous - ATA IDENTIFY DEVICE words 82-83 don't show if SMART supported.\n");
if (!known) failuretest(MANDATORY_CMD, returnval|=FAILSMART);
pout(" Checking for SMART support by trying SMART ENABLE command.\n");
}
if (ataEnableSmart(device)){
pout(" SMART ENABLE failed - this establishes that this device lacks SMART functionality.\n");
failuretest(MANDATORY_CMD, returnval|=FAILSMART);
supported=0;
}
else {
pout(" SMART ENABLE appeared to work! Continuing.\n");
supported=1;
}
if (!options.drive_info)
pout("\n");
}
// Now print remaining drive info: is SMART enabled?
if (options.drive_info) {
int ison=ataIsSmartEnabled(&drive),isenabled=ison;
if (ison==-1) {
pout("SMART support is: Ambiguous - ATA IDENTIFY DEVICE words 85-87 don't show if SMART is enabled.\n");
failuretest(MANDATORY_CMD, returnval|=FAILSMART);
// check SMART support by trying a command
pout(" Checking to be sure by trying SMART RETURN STATUS command.\n");
isenabled=ataDoesSmartWork(device);
}
else {
pout("SMART support is: Available - device has SMART capability.\n");
if (device->ata_identify_is_cached()) {
pout(" %sabled status cached by OS, trying SMART RETURN STATUS cmd.\n",
(isenabled?"En":"Dis"));
isenabled=ataDoesSmartWork(device);
}
}
if (isenabled)
pout("SMART support is: Enabled\n");
else {
if (ison==-1)
pout("SMART support is: Unavailable\n");
else
pout("SMART support is: Disabled\n");
}
// Print the (now possibly changed) power mode if available
if (powername)
pout("Power mode %s %s\n", (powerchg?"was:":"is: "), powername);
pout("\n");
}
// START OF THE ENABLE/DISABLE SECTION OF THE CODE
if ( options.smart_disable || options.smart_enable
|| options.smart_auto_save_disable || options.smart_auto_save_enable
|| options.smart_auto_offl_disable || options.smart_auto_offl_enable)
pout("=== START OF ENABLE/DISABLE COMMANDS SECTION ===\n");
// Enable/Disable SMART commands
if (options.smart_enable) {
if (ataEnableSmart(device)) {
pout("Smartctl: SMART Enable Failed.\n\n");
failuretest(MANDATORY_CMD, returnval|=FAILSMART);
}
else
pout("SMART Enabled.\n");
}
// From here on, every command requires that SMART be enabled...
if (!ataDoesSmartWork(device)) {
pout("SMART Disabled. Use option -s with argument 'on' to enable it.\n");
return returnval;
}
// Turn off SMART on device
if (options.smart_disable) {
if (ataDisableSmart(device)) {
pout( "Smartctl: SMART Disable Failed.\n\n");
failuretest(MANDATORY_CMD,returnval|=FAILSMART);
}
pout("SMART Disabled. Use option -s with argument 'on' to enable it.\n");
return returnval;
}
// Let's ALWAYS issue this command to get the SMART status
code=ataSmartStatus2(device);
if (code==-1)
failuretest(MANDATORY_CMD, returnval|=FAILSMART);
// Enable/Disable Auto-save attributes
if (options.smart_auto_save_enable) {
if (ataEnableAutoSave(device)){
pout( "Smartctl: SMART Enable Attribute Autosave Failed.\n\n");
failuretest(MANDATORY_CMD, returnval|=FAILSMART);
}
else
pout("SMART Attribute Autosave Enabled.\n");
}
if (options.smart_auto_save_disable) {
if (ataDisableAutoSave(device)){
pout( "Smartctl: SMART Disable Attribute Autosave Failed.\n\n");
failuretest(MANDATORY_CMD, returnval|=FAILSMART);
}
else
pout("SMART Attribute Autosave Disabled.\n");
}
// for everything else read values and thresholds are needed
if (ataReadSmartValues(device, &smartval)){
pout("Smartctl: SMART Read Values failed.\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
if (ataReadSmartThresholds(device, &smartthres)){
pout("Smartctl: SMART Read Thresholds failed.\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
// Enable/Disable Off-line testing
if (options.smart_auto_offl_enable) {
if (!isSupportAutomaticTimer(&smartval)){
pout("Warning: device does not support SMART Automatic Timers.\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
needupdate=1;
if (ataEnableAutoOffline(device)){
pout( "Smartctl: SMART Enable Automatic Offline Failed.\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else
pout("SMART Automatic Offline Testing Enabled every four hours.\n");
}
if (options.smart_auto_offl_disable) {
if (!isSupportAutomaticTimer(&smartval)){
pout("Warning: device does not support SMART Automatic Timers.\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
needupdate=1;
if (ataDisableAutoOffline(device)){
pout("Smartctl: SMART Disable Automatic Offline Failed.\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else
pout("SMART Automatic Offline Testing Disabled.\n");
}
if (needupdate && ataReadSmartValues(device, &smartval)){
pout("Smartctl: SMART Read Values failed.\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
// all this for a newline!
if ( options.smart_disable || options.smart_enable
|| options.smart_auto_save_disable || options.smart_auto_save_enable
|| options.smart_auto_offl_disable || options.smart_auto_offl_enable)
pout("\n");
// START OF READ-ONLY OPTIONS APART FROM -V and -i
if ( options.smart_check_status || options.smart_general_values
|| options.smart_vendor_attrib || options.smart_error_log
|| options.smart_selftest_log || options.smart_selective_selftest_log
|| options.smart_ext_error_log || options.smart_ext_selftest_log
|| options.sct_temp_sts || options.sct_temp_hist )
pout("=== START OF READ SMART DATA SECTION ===\n");
// Check SMART status (use previously returned value)
if (options.smart_check_status) {
switch (code) {
case 0:
// The case where the disk health is OK
pout("SMART overall-health self-assessment test result: PASSED\n");
if (find_failed_attr(&smartval, &smartthres, options.attribute_defs, 0)){
if (options.smart_vendor_attrib)
pout("See vendor-specific Attribute list for marginal Attributes.\n\n");
else {
PRINT_ON(con);
pout("Please note the following marginal Attributes:\n");
PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs, 2);
}
returnval|=FAILAGE;
}
else
pout("\n");
break;
case 1:
// The case where the disk health is NOT OK
PRINT_ON(con);
pout("SMART overall-health self-assessment test result: FAILED!\n"
"Drive failure expected in less than 24 hours. SAVE ALL DATA.\n");
PRINT_OFF(con);
if (find_failed_attr(&smartval, &smartthres, options.attribute_defs, 1)){
returnval|=FAILATTR;
if (options.smart_vendor_attrib)
pout("See vendor-specific Attribute list for failed Attributes.\n\n");
else {
PRINT_ON(con);
pout("Failed Attributes:\n");
PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs, 1);
}
}
else
pout("No failed Attributes found.\n\n");
returnval|=FAILSTATUS;
PRINT_OFF(con);
break;
case -1:
default:
// The case where something went wrong with HDIO_DRIVE_TASK ioctl()
if (find_failed_attr(&smartval, &smartthres, options.attribute_defs, 1)){
PRINT_ON(con);
pout("SMART overall-health self-assessment test result: FAILED!\n"
"Drive failure expected in less than 24 hours. SAVE ALL DATA.\n");
PRINT_OFF(con);
returnval|=FAILATTR;
returnval|=FAILSTATUS;
if (options.smart_vendor_attrib)
pout("See vendor-specific Attribute list for failed Attributes.\n\n");
else {
PRINT_ON(con);
pout("Failed Attributes:\n");
PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs, 1);
}
}
else {
pout("SMART overall-health self-assessment test result: PASSED\n");
if (find_failed_attr(&smartval, &smartthres, options.attribute_defs, 0)){
if (options.smart_vendor_attrib)
pout("See vendor-specific Attribute list for marginal Attributes.\n\n");
else {
PRINT_ON(con);
pout("Please note the following marginal Attributes:\n");
PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs, 2);
}
returnval|=FAILAGE;
}
else
pout("\n");
}
PRINT_OFF(con);
break;
} // end of switch statement
PRINT_OFF(con);
} // end of checking SMART Status
// Print general SMART values
if (options.smart_general_values)
PrintGeneralSmartValues(&smartval, &drive, fix_firmwarebug);
// Print vendor-specific attributes
if (options.smart_vendor_attrib) {
PRINT_ON(con);
PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs,
(con->printing_switchable ? 2 : 0));
PRINT_OFF(con);
}
// Print SMART and/or GP log Directory and/or logs
// Get #pages for extended SMART logs
ata_smart_log_directory smartlogdir_buf, gplogdir_buf;
const ata_smart_log_directory * smartlogdir = 0, * gplogdir = 0;
if ( options.gp_logdir
|| options.smart_logdir
|| options.smart_ext_error_log
|| options.smart_ext_selftest_log
|| options.sataphy
|| !options.log_requests.empty() ) {
if (isGeneralPurposeLoggingCapable(&drive))
pout("General Purpose Logging (GPL) feature set supported\n");
// Detect directories needed
bool need_smart_logdir = options.smart_logdir;
bool need_gp_logdir = ( options.gp_logdir
|| options.smart_ext_error_log
|| options.smart_ext_selftest_log
|| options.sataphy );
unsigned i;
for (i = 0; i < options.log_requests.size(); i++) {
if (options.log_requests[i].gpl)
need_gp_logdir = true;
else
need_smart_logdir = true;
}
// Read SMART Log directory
if (need_smart_logdir) {
if (ataReadLogDirectory(device, &smartlogdir_buf, false)){
pout("Read SMART Log Directory failed.\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else
smartlogdir = &smartlogdir_buf;
}
// Read GP Log directory
if (need_gp_logdir) {
if (ataReadLogDirectory(device, &gplogdir_buf, true)){
pout("Read GP Log Directory failed.\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else
gplogdir = &gplogdir_buf;
}
// Print log directories
if ((options.gp_logdir && gplogdir) || (options.smart_logdir && smartlogdir))
PrintLogDirectories(gplogdir, smartlogdir);
// Print log pages
for (i = 0; i < options.log_requests.size(); i++) {
const ata_log_request & req = options.log_requests[i];
const char * type;
unsigned max_nsectors;
if (req.gpl) {
type = "General Purpose";
max_nsectors = GetNumLogSectors(gplogdir, req.logaddr, true);
}
else {
type = "SMART";
max_nsectors = GetNumLogSectors(smartlogdir, req.logaddr, false);
}
if (!max_nsectors) {
if (!con->permissive) {
pout("%s Log 0x%02x does not exist (override with '-T permissive' option)\n", type, req.logaddr);
continue;
}
con->permissive--;
max_nsectors = req.page+1;
}
if (max_nsectors <= req.page) {
pout("%s Log 0x%02x has only %u sectors, output skipped\n", type, req.logaddr, max_nsectors);
continue;
}
unsigned ns = req.nsectors;
if (ns > max_nsectors - req.page) {
if (req.nsectors != ~0U) // "FIRST-max"
pout("%s Log 0x%02x has only %u sectors, output truncated\n", type, req.logaddr, max_nsectors);
ns = max_nsectors - req.page;
}
// SMART log don't support sector offset, start with first sector
unsigned offs = (req.gpl ? 0 : req.page);
raw_buffer log_buf((offs + ns) * 512);
bool ok;
if (req.gpl)
ok = ataReadLogExt(device, req.logaddr, 0x00, req.page, log_buf.data(), ns);
else
ok = ataReadSmartLog(device, req.logaddr, log_buf.data(), offs + ns);
if (!ok)
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
else
PrintLogPages(type, log_buf.data() + offs*512, req.logaddr, req.page, ns, max_nsectors);
}
}
// Print SMART Extendend Comprehensive Error Log
bool do_smart_error_log = options.smart_error_log;
if (options.smart_ext_error_log) {
bool ok = false;
unsigned nsectors = GetNumLogSectors(gplogdir, 0x03, true);
if (!nsectors)
pout("SMART Extended Comprehensive Error Log (GP Log 0x03) not supported\n");
else if (nsectors >= 256)
pout("SMART Extended Comprehensive Error Log size %u not supported\n", nsectors);
else {
raw_buffer log_03_buf(nsectors * 512);
ata_smart_exterrlog * log_03 = (ata_smart_exterrlog *)log_03_buf.data();
if (!ataReadExtErrorLog(device, log_03, nsectors))
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
else {
PrintSmartExtErrorLog(log_03, nsectors, options.smart_ext_error_log);
ok = true;
}
}
if (!ok) {
if (options.retry_error_log)
do_smart_error_log = true;
else if (!do_smart_error_log)
pout("Try '-l [xerror,]error' to read traditional SMART Error Log\n");
}
}
// Print SMART error log
if (do_smart_error_log) {
if (!isSmartErrorLogCapable(&smartval, &drive)){
pout("Warning: device does not support Error Logging\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
if (ataReadErrorLog(device, &smarterror, fix_firmwarebug)){
pout("Smartctl: SMART Error Log Read Failed\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else {
// quiet mode is turned on inside ataPrintSmartErrorLog()
if (PrintSmartErrorlog(&smarterror, fix_firmwarebug))
returnval|=FAILERR;
PRINT_OFF(con);
}
}
// Print SMART Extendend Self-test Log
bool do_smart_selftest_log = options.smart_selftest_log;
if (options.smart_ext_selftest_log) {
bool ok = false;
unsigned nsectors = GetNumLogSectors(gplogdir, 0x07, true);
if (!nsectors)
pout("SMART Extended Self-test Log (GP Log 0x07) not supported\n");
else if (nsectors >= 256)
pout("SMART Extended Self-test Log size %u not supported\n", nsectors);
else {
raw_buffer log_07_buf(nsectors * 512);
ata_smart_extselftestlog * log_07 = (ata_smart_extselftestlog *)log_07_buf.data();
if (!ataReadExtSelfTestLog(device, log_07, nsectors))
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
else {
PrintSmartExtSelfTestLog(log_07, nsectors, options.smart_ext_selftest_log);
ok = true;
}
}
if (!ok) {
if (options.retry_selftest_log)
do_smart_selftest_log = true;
else if (!do_smart_selftest_log)
pout("Try '-l [xselftest,]selftest' to read traditional SMART Self Test Log\n");
}
}
// Print SMART self-test log
if (do_smart_selftest_log) {
if (!isSmartTestLogCapable(&smartval, &drive)){
pout("Warning: device does not support Self Test Logging\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
if(ataReadSelfTestLog(device, &smartselftest, fix_firmwarebug)){
pout("Smartctl: SMART Self Test Log Read Failed\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else {
PRINT_ON(con);
if (ataPrintSmartSelfTestlog(&smartselftest, !con->printing_switchable, fix_firmwarebug))
returnval|=FAILLOG;
PRINT_OFF(con);
pout("\n");
}
}
// Print SMART selective self-test log
if (options.smart_selective_selftest_log) {
ata_selective_self_test_log log;
if (!isSupportSelectiveSelfTest(&smartval))
pout("Device does not support Selective Self Tests/Logging\n");
else if(ataReadSelectiveSelfTestLog(device, &log)) {
pout("Smartctl: SMART Selective Self Test Log Read Failed\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else {
PRINT_ON(con);
// If any errors were found, they are logged in the SMART Self-test log.
// So there is no need to print the Selective Self Test log in silent
// mode.
if (!con->printing_switchable) ataPrintSelectiveSelfTestLog(&log, &smartval);
PRINT_OFF(con);
pout("\n");
}
}
// Print SCT status and temperature history table
if (options.sct_temp_sts || options.sct_temp_hist || options.sct_temp_int) {
for (;;) {
if (!isSCTCapable(&drive)) {
pout("Warning: device does not support SCT Commands\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
break;
}
if (options.sct_temp_sts || options.sct_temp_hist) {
ata_sct_status_response sts;
ata_sct_temperature_history_table tmh;
if (!options.sct_temp_hist) {
// Read SCT status only
if (ataReadSCTStatus(device, &sts)) {
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
break;
}
}
else {
if (!isSCTDataTableCapable(&drive)) {
pout("Warning: device does not support SCT Data Table command\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
break;
}
// Read SCT status and temperature history
if (ataReadSCTTempHist(device, &tmh, &sts)) {
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
break;
}
}
if (options.sct_temp_sts)
ataPrintSCTStatus(&sts);
if (options.sct_temp_hist)
ataPrintSCTTempHist(&tmh);
pout("\n");
}
if (options.sct_temp_int) {
// Set new temperature logging interval
if (!isSCTFeatureControlCapable(&drive)) {
pout("Warning: device does not support SCT Feature Control command\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
break;
}
if (ataSetSCTTempInterval(device, options.sct_temp_int, options.sct_temp_int_pers)) {
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
break;
}
pout("Temperature Logging Interval set to %u minute%s (%s)\n",
options.sct_temp_int, (options.sct_temp_int == 1 ? "" : "s"),
(options.sct_temp_int_pers ? "persistent" : "volatile"));
}
break;
}
}
// Print SATA Phy Event Counters
if (options.sataphy) {
unsigned nsectors = GetNumLogSectors(gplogdir, 0x11, true);
if (!nsectors)
pout("SATA Phy Event Counters (GP Log 0x11) not supported\n");
else if (nsectors != 1)
pout("SATA Phy Event Counters with %u sectors not supported\n", nsectors);
else {
unsigned char log_11[512] = {0, };
unsigned char features = (options.sataphy_reset ? 0x01 : 0x00);
if (!ataReadLogExt(device, 0x11, features, 0, log_11, 1))
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
else
PrintSataPhyEventCounters(log_11, options.sataphy_reset);
}
}
// START OF THE TESTING SECTION OF THE CODE. IF NO TESTING, RETURN
if (options.smart_selftest_type == -1)
return returnval;
pout("=== START OF OFFLINE IMMEDIATE AND SELF-TEST SECTION ===\n");
// if doing a self-test, be sure it's supported by the hardware
switch (options.smart_selftest_type) {
case OFFLINE_FULL_SCAN:
if (!isSupportExecuteOfflineImmediate(&smartval)){
pout("Warning: device does not support Execute Offline Immediate function.\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
break;
case ABORT_SELF_TEST:
case SHORT_SELF_TEST:
case EXTEND_SELF_TEST:
case SHORT_CAPTIVE_SELF_TEST:
case EXTEND_CAPTIVE_SELF_TEST:
if (!isSupportSelfTest(&smartval)){
pout("Warning: device does not support Self-Test functions.\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
break;
case CONVEYANCE_SELF_TEST:
case CONVEYANCE_CAPTIVE_SELF_TEST:
if (!isSupportConveyanceSelfTest(&smartval)){
pout("Warning: device does not support Conveyance Self-Test functions.\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
break;
case SELECTIVE_SELF_TEST:
case SELECTIVE_CAPTIVE_SELF_TEST:
if (!isSupportSelectiveSelfTest(&smartval)){
pout("Warning: device does not support Selective Self-Test functions.\n\n");
failuretest(MANDATORY_CMD, returnval|=FAILSMART);
}
break;
default:
pout("Internal error in smartctl: smart_test_type==%d not recognized\n", options.smart_selftest_type);
pout("Please contact smartmontools developers at %s.\n", PACKAGE_BUGREPORT);
EXIT(returnval|=FAILCMD);
}
// Now do the test. Note ataSmartTest prints its own error/success
// messages
if (ataSmartTest(device, options.smart_selftest_type, options.smart_selective_args,
&smartval, get_num_sectors(&drive) ))
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
else {
// Tell user how long test will take to complete. This is tricky
// because in the case of an Offline Full Scan, the completion
// timer is volatile, and needs to be read AFTER the command is
// given. If this will interrupt the Offline Full Scan, we don't
// do it, just warn user.
if (options.smart_selftest_type == OFFLINE_FULL_SCAN) {
if (isSupportOfflineAbort(&smartval))
pout("Note: giving further SMART commands will abort Offline testing\n");
else if (ataReadSmartValues(device, &smartval)){
pout("Smartctl: SMART Read Values failed.\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
}
// Now say how long the test will take to complete
if ((timewait = TestTime(&smartval, options.smart_selftest_type))) {
time_t t=time(NULL);
if (options.smart_selftest_type == OFFLINE_FULL_SCAN) {
t+=timewait;
pout("Please wait %d seconds for test to complete.\n", (int)timewait);
} else {
t+=timewait*60;
pout("Please wait %d minutes for test to complete.\n", (int)timewait);
}
pout("Test will complete after %s\n", ctime(&t));
if ( options.smart_selftest_type != SHORT_CAPTIVE_SELF_TEST
&& options.smart_selftest_type != EXTEND_CAPTIVE_SELF_TEST
&& options.smart_selftest_type != CONVEYANCE_CAPTIVE_SELF_TEST
&& options.smart_selftest_type != SELECTIVE_CAPTIVE_SELF_TEST )
pout("Use smartctl -X to abort test.\n");
}
}
return returnval;
}