/* * ataprint.cpp * * Home page of code is: http://smartmontools.sourceforge.net * * Copyright (C) 2002-10 Bruce Allen * Copyright (C) 2008-10 Christian Franke * Copyright (C) 1999-2000 Michael Cornwell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * You should have received a copy of the GNU General Public License * (for example COPYING); if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * This code was originally developed as a Senior Thesis by Michael Cornwell * at the Concurrent Systems Laboratory (now part of the Storage Systems * Research Center), Jack Baskin School of Engineering, University of * California, Santa Cruz. http://ssrc.soe.ucsc.edu/ * */ #include "config.h" #include #include #include #include #include #ifdef HAVE_LOCALE_H #include #endif // #ifdef HAVE_LOCALE_H #include "int64.h" #include "atacmdnames.h" #include "atacmds.h" #include "dev_interface.h" #include "ataprint.h" #include "smartctl.h" #include "extern.h" #include "utility.h" #include "knowndrives.h" const char * ataprint_cpp_cvsid = "$Id: ataprint.cpp 3037 2010-01-16 20:07:13Z chrfranke $" ATAPRINT_H_CVSID; // for passing global control variables extern smartmonctrl *con; static const char * infofound(const char *output) { return (*output ? output : "[No Information Found]"); } /* For the given Command Register (CR) and Features Register (FR), attempts * to construct a string that describes the contents of the Status * Register (ST) and Error Register (ER). The caller passes the string * buffer and the return value is a pointer to this string. If the * meanings of the flags of the error register are not known for the given * command then it returns NULL. * * The meanings of the flags of the error register for all commands are * described in the ATA spec and could all be supported here in theory. * Currently, only a few commands are supported (those that have been seen * to produce errors). If many more are to be added then this function * should probably be redesigned. */ static const char * construct_st_er_desc( char * s, unsigned char CR, unsigned char FR, unsigned char ST, unsigned char ER, unsigned short SC, const ata_smart_errorlog_error_struct * lba28_regs, const ata_smart_exterrlog_error * lba48_regs ) { const char *error_flag[8]; int i, print_lba=0, print_sector=0; // Set of character strings corresponding to different error codes. // Please keep in alphabetic order if you add more. const char *abrt = "ABRT"; // ABORTED const char *amnf = "AMNF"; // ADDRESS MARK NOT FOUND const char *ccto = "CCTO"; // COMMAND COMPLETION TIMED OUT const char *eom = "EOM"; // END OF MEDIA const char *icrc = "ICRC"; // INTERFACE CRC ERROR const char *idnf = "IDNF"; // ID NOT FOUND const char *ili = "ILI"; // MEANING OF THIS BIT IS COMMAND-SET SPECIFIC const char *mc = "MC"; // MEDIA CHANGED const char *mcr = "MCR"; // MEDIA CHANGE REQUEST const char *nm = "NM"; // NO MEDIA const char *obs = "obs"; // OBSOLETE const char *tk0nf = "TK0NF"; // TRACK 0 NOT FOUND const char *unc = "UNC"; // UNCORRECTABLE const char *wp = "WP"; // WRITE PROTECTED /* If for any command the Device Fault flag of the status register is * not used then used_device_fault should be set to 0 (in the CR switch * below) */ int uses_device_fault = 1; /* A value of NULL means that the error flag isn't used */ for (i = 0; i < 8; i++) error_flag[i] = NULL; switch (CR) { case 0x10: // RECALIBRATE error_flag[2] = abrt; error_flag[1] = tk0nf; break; case 0x20: /* READ SECTOR(S) */ case 0x21: // READ SECTOR(S) case 0x24: // READ SECTOR(S) EXT case 0xC4: /* READ MULTIPLE */ case 0x29: // READ MULTIPLE EXT error_flag[6] = unc; error_flag[5] = mc; error_flag[4] = idnf; error_flag[3] = mcr; error_flag[2] = abrt; error_flag[1] = nm; error_flag[0] = amnf; print_lba=1; break; case 0x22: // READ LONG (with retries) case 0x23: // READ LONG (without retries) error_flag[4] = idnf; error_flag[2] = abrt; error_flag[0] = amnf; print_lba=1; break; case 0x2a: // READ STREAM DMA case 0x2b: // READ STREAM PIO if (CR==0x2a) error_flag[7] = icrc; error_flag[6] = unc; error_flag[5] = mc; error_flag[4] = idnf; error_flag[3] = mcr; error_flag[2] = abrt; error_flag[1] = nm; error_flag[0] = ccto; print_lba=1; print_sector=SC; break; case 0x3A: // WRITE STREAM DMA case 0x3B: // WRITE STREAM PIO if (CR==0x3A) error_flag[7] = icrc; error_flag[6] = wp; error_flag[5] = mc; error_flag[4] = idnf; error_flag[3] = mcr; error_flag[2] = abrt; error_flag[1] = nm; error_flag[0] = ccto; print_lba=1; print_sector=SC; break; case 0x25: /* READ DMA EXT */ case 0x26: // READ DMA QUEUED EXT case 0xC7: // READ DMA QUEUED case 0xC8: /* READ DMA */ case 0xC9: error_flag[7] = icrc; error_flag[6] = unc; error_flag[5] = mc; error_flag[4] = idnf; error_flag[3] = mcr; error_flag[2] = abrt; error_flag[1] = nm; error_flag[0] = amnf; print_lba=1; if (CR==0x25 || CR==0xC8) print_sector=SC; break; case 0x30: /* WRITE SECTOR(S) */ case 0x31: // WRITE SECTOR(S) case 0x34: // WRITE SECTOR(S) EXT case 0xC5: /* WRITE MULTIPLE */ case 0x39: // WRITE MULTIPLE EXT case 0xCE: // WRITE MULTIPLE FUA EXT error_flag[6] = wp; error_flag[5] = mc; error_flag[4] = idnf; error_flag[3] = mcr; error_flag[2] = abrt; error_flag[1] = nm; print_lba=1; break; case 0x32: // WRITE LONG (with retries) case 0x33: // WRITE LONG (without retries) error_flag[4] = idnf; error_flag[2] = abrt; print_lba=1; break; case 0x3C: // WRITE VERIFY error_flag[6] = unc; error_flag[4] = idnf; error_flag[2] = abrt; error_flag[0] = amnf; print_lba=1; break; case 0x40: // READ VERIFY SECTOR(S) with retries case 0x41: // READ VERIFY SECTOR(S) without retries case 0x42: // READ VERIFY SECTOR(S) EXT error_flag[6] = unc; error_flag[5] = mc; error_flag[4] = idnf; error_flag[3] = mcr; error_flag[2] = abrt; error_flag[1] = nm; error_flag[0] = amnf; print_lba=1; break; case 0xA0: /* PACKET */ /* Bits 4-7 are all used for sense key (a 'command packet set specific error * indication' according to the ATA/ATAPI-7 standard), so "Sense key" will * be repeated in the error description string if more than one of those * bits is set. */ error_flag[7] = "Sense key (bit 3)", error_flag[6] = "Sense key (bit 2)", error_flag[5] = "Sense key (bit 1)", error_flag[4] = "Sense key (bit 0)", error_flag[2] = abrt; error_flag[1] = eom; error_flag[0] = ili; break; case 0xA1: /* IDENTIFY PACKET DEVICE */ case 0xEF: /* SET FEATURES */ case 0x00: /* NOP */ case 0xC6: /* SET MULTIPLE MODE */ error_flag[2] = abrt; break; case 0x2F: // READ LOG EXT error_flag[6] = unc; error_flag[4] = idnf; error_flag[2] = abrt; error_flag[0] = obs; break; case 0x3F: // WRITE LOG EXT error_flag[4] = idnf; error_flag[2] = abrt; error_flag[0] = obs; break; case 0xB0: /* SMART */ switch(FR) { case 0xD0: // SMART READ DATA case 0xD1: // SMART READ ATTRIBUTE THRESHOLDS case 0xD5: /* SMART READ LOG */ error_flag[6] = unc; error_flag[4] = idnf; error_flag[2] = abrt; error_flag[0] = obs; break; case 0xD6: /* SMART WRITE LOG */ error_flag[4] = idnf; error_flag[2] = abrt; error_flag[0] = obs; break; case 0xD2: // Enable/Disable Attribute Autosave case 0xD3: // SMART SAVE ATTRIBUTE VALUES (ATA-3) case 0xD8: // SMART ENABLE OPERATIONS case 0xD9: /* SMART DISABLE OPERATIONS */ case 0xDA: /* SMART RETURN STATUS */ case 0xDB: // Enable/Disable Auto Offline (SFF) error_flag[2] = abrt; break; case 0xD4: // SMART EXECUTE IMMEDIATE OFFLINE error_flag[4] = idnf; error_flag[2] = abrt; break; default: return NULL; break; } break; case 0xB1: /* DEVICE CONFIGURATION */ switch (FR) { case 0xC0: /* DEVICE CONFIGURATION RESTORE */ error_flag[2] = abrt; break; default: return NULL; break; } break; case 0xCA: /* WRITE DMA */ case 0xCB: case 0x35: // WRITE DMA EXT case 0x3D: // WRITE DMA FUA EXT case 0xCC: // WRITE DMA QUEUED case 0x36: // WRITE DMA QUEUED EXT case 0x3E: // WRITE DMA QUEUED FUA EXT error_flag[7] = icrc; error_flag[6] = wp; error_flag[5] = mc; error_flag[4] = idnf; error_flag[3] = mcr; error_flag[2] = abrt; error_flag[1] = nm; error_flag[0] = amnf; print_lba=1; if (CR==0x35) print_sector=SC; break; case 0xE4: // READ BUFFER case 0xE8: // WRITE BUFFER error_flag[2] = abrt; break; default: return NULL; } s[0] = '\0'; /* We ignore any status flags other than Device Fault and Error */ if (uses_device_fault && (ST & (1 << 5))) { strcat(s, "Device Fault"); if (ST & 1) // Error flag strcat(s, "; "); } if (ST & 1) { // Error flag int count = 0; strcat(s, "Error: "); for (i = 7; i >= 0; i--) if ((ER & (1 << i)) && (error_flag[i])) { if (count++ > 0) strcat(s, ", "); strcat(s, error_flag[i]); } } // If the error was a READ or WRITE error, print the Logical Block // Address (LBA) at which the read or write failed. if (print_lba) { char tmp[128]; // print number of sectors, if known, and append to print string if (print_sector) { snprintf(tmp, 128, " %d sectors", print_sector); strcat(s, tmp); } if (lba28_regs) { unsigned lba; // bits 24-27: bits 0-3 of DH lba = 0xf & lba28_regs->drive_head; lba <<= 8; // bits 16-23: CH lba |= lba28_regs->cylinder_high; lba <<= 8; // bits 8-15: CL lba |= lba28_regs->cylinder_low; lba <<= 8; // bits 0-7: SN lba |= lba28_regs->sector_number; snprintf(tmp, 128, " at LBA = 0x%08x = %u", lba, lba); strcat(s, tmp); } else if (lba48_regs) { // This assumes that upper LBA registers are 0 for 28-bit commands // (TODO: detect 48-bit commands above) uint64_t lba48; lba48 = lba48_regs->lba_high_register_hi; lba48 <<= 8; lba48 |= lba48_regs->lba_mid_register_hi; lba48 <<= 8; lba48 |= lba48_regs->lba_low_register_hi; lba48 |= lba48_regs->device_register & 0xf; lba48 <<= 8; lba48 |= lba48_regs->lba_high_register; lba48 <<= 8; lba48 |= lba48_regs->lba_mid_register; lba48 <<= 8; lba48 |= lba48_regs->lba_low_register; snprintf(tmp, 128, " at LBA = 0x%08"PRIx64" = %"PRIu64, lba48, lba48); strcat(s, tmp); } } return s; } static inline const char * construct_st_er_desc(char * s, const ata_smart_errorlog_struct * data) { return construct_st_er_desc(s, data->commands[4].commandreg, data->commands[4].featuresreg, data->error_struct.status, data->error_struct.error_register, data->error_struct.sector_count, &data->error_struct, (const ata_smart_exterrlog_error *)0); } static inline const char * construct_st_er_desc(char * s, const ata_smart_exterrlog_error_log * data) { return construct_st_er_desc(s, data->commands[4].command_register, data->commands[4].features_register, data->error.status_register, data->error.error_register, data->error.count_register_hi << 8 | data->error.count_register, (const ata_smart_errorlog_error_struct *)0, &data->error); } // This returns the capacity of a disk drive and also prints this into // a string, using comma separators to make it easier to read. If the // drive doesn't support LBA addressing or has no user writable // sectors (eg, CDROM or DVD) then routine returns zero. static uint64_t determine_capacity(const ata_identify_device * drive, char * pstring) { // get correct character to use as thousands separator const char *separator = ","; #ifdef HAVE_LOCALE_H struct lconv *currentlocale=NULL; setlocale (LC_ALL, ""); currentlocale=localeconv(); if (*(currentlocale->thousands_sep)) separator=(char *)currentlocale->thousands_sep; #endif // #ifdef HAVE_LOCALE_H // get #sectors and turn into bytes uint64_t capacity = get_num_sectors(drive) * 512; uint64_t retval = capacity; // print with locale-specific separators (default is comma) int started=0, k=1000000000; uint64_t power_of_ten = k; power_of_ten *= k; for (k=0; k<7; k++) { uint64_t threedigits = capacity/power_of_ten; capacity -= threedigits*power_of_ten; if (started) // we have already printed some digits pstring += sprintf(pstring, "%s%03"PRIu64, separator, threedigits); else if (threedigits || k==6) { // these are the first digits that we are printing pstring += sprintf(pstring, "%"PRIu64, threedigits); started = 1; } if (k!=6) power_of_ten /= 1000; } return retval; } static bool PrintDriveInfo(const ata_identify_device * drive, bool fix_swapped_id) { // format drive information (with byte swapping as needed) char model[64], serial[64], firm[64]; format_ata_string(model, drive->model, 40, fix_swapped_id); format_ata_string(serial, drive->serial_no, 20, fix_swapped_id); format_ata_string(firm, drive->fw_rev, 8, fix_swapped_id); // print out model, serial # and firmware versions (byte-swap ASCI strings) const drive_settings * dbentry = lookup_drive(model, firm); // Print model family if known if (dbentry && *dbentry->modelfamily) pout("Model Family: %s\n", dbentry->modelfamily); pout("Device Model: %s\n", infofound(model)); if (!con->dont_print_serial) pout("Serial Number: %s\n", infofound(serial)); pout("Firmware Version: %s\n", infofound(firm)); char capacity[64]; if (determine_capacity(drive, capacity)) pout("User Capacity: %s bytes\n", capacity); // See if drive is recognized pout("Device is: %s\n", !dbentry ? "Not in smartctl database [for details use: -P showall]": "In smartctl database [for details use: -P show]"); // now get ATA version info const char *description; unsigned short minorrev; int version = ataVersionInfo(&description, drive, &minorrev); // SMART Support was first added into the ATA/ATAPI-3 Standard with // Revision 3 of the document, July 25, 1995. Look at the "Document // Status" revision commands at the beginning of // http://www.t13.org/Documents/UploadedDocuments/project/d2008r7b-ATA-3.pdf // to see this. So it's not enough to check if we are ATA-3. // Version=-3 indicates ATA-3 BEFORE Revision 3. // Version=0 indicates that no info is found. This may happen if // the OS provides only part of the IDENTIFY data. std::string majorstr, minorstr; if (version) { majorstr = strprintf("%d", abs(version)); if (description) minorstr = description; else if (!minorrev) minorstr = "Exact ATA specification draft version not indicated"; else minorstr = strprintf("Not recognized. Minor revision code: 0x%04x", minorrev); } pout("ATA Version is: %s\n", infofound(majorstr.c_str())); pout("ATA Standard is: %s\n", infofound(minorstr.c_str())); // print current time and date and timezone char timedatetz[DATEANDEPOCHLEN]; dateandtimezone(timedatetz); pout("Local Time is: %s\n", timedatetz); // Print warning message, if there is one if (dbentry && *dbentry->warningmsg) pout("\n==> WARNING: %s\n\n", dbentry->warningmsg); if (!version || version >= 3) return !!dbentry; pout("SMART is only available in ATA Version 3 Revision 3 or greater.\n"); pout("We will try to proceed in spite of this.\n"); return !!dbentry; } static const char *OfflineDataCollectionStatus(unsigned char status_byte) { unsigned char stat=status_byte & 0x7f; switch(stat){ case 0x00: return "was never started"; case 0x02: return "was completed without error"; case 0x03: if (status_byte == 0x03) return "is in progress"; else return "is in a Reserved state"; case 0x04: return "was suspended by an interrupting command from host"; case 0x05: return "was aborted by an interrupting command from host"; case 0x06: return "was aborted by the device with a fatal error"; default: if (stat >= 0x40) return "is in a Vendor Specific state"; else return "is in a Reserved state"; } } // prints verbose value Off-line data collection status byte static void PrintSmartOfflineStatus(const ata_smart_values * data) { pout("Offline data collection status: (0x%02x)\t", (int)data->offline_data_collection_status); // Off-line data collection status byte is not a reserved // or vendor specific value pout("Offline data collection activity\n" "\t\t\t\t\t%s.\n", OfflineDataCollectionStatus(data->offline_data_collection_status)); // Report on Automatic Data Collection Status. Only IBM documents // this bit. See SFF 8035i Revision 2 for details. if (data->offline_data_collection_status & 0x80) pout("\t\t\t\t\tAuto Offline Data Collection: Enabled.\n"); else pout("\t\t\t\t\tAuto Offline Data Collection: Disabled.\n"); return; } static void PrintSmartSelfExecStatus(const ata_smart_values * data, unsigned char fix_firmwarebug) { pout("Self-test execution status: "); switch (data->self_test_exec_status >> 4) { case 0: pout("(%4d)\tThe previous self-test routine completed\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("without error or no self-test has ever \n\t\t\t\t\tbeen run.\n"); break; case 1: pout("(%4d)\tThe self-test routine was aborted by\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("the host.\n"); break; case 2: pout("(%4d)\tThe self-test routine was interrupted\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("by the host with a hard or soft reset.\n"); break; case 3: pout("(%4d)\tA fatal error or unknown test error\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("occurred while the device was executing\n\t\t\t\t\t"); pout("its self-test routine and the device \n\t\t\t\t\t"); pout("was unable to complete the self-test \n\t\t\t\t\t"); pout("routine.\n"); break; case 4: pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("a test element that failed and the test\n\t\t\t\t\t"); pout("element that failed is not known.\n"); break; case 5: pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("the electrical element of the test\n\t\t\t\t\t"); pout("failed.\n"); break; case 6: pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("the servo (and/or seek) element of the \n\t\t\t\t\t"); pout("test failed.\n"); break; case 7: pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("the read element of the test failed.\n"); break; case 8: pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("a test element that failed and the\n\t\t\t\t\t"); pout("device is suspected of having handling\n\t\t\t\t\t"); pout("damage.\n"); break; case 15: if (fix_firmwarebug == FIX_SAMSUNG3 && data->self_test_exec_status == 0xf0) { pout("(%4d)\tThe previous self-test routine completed\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("with unknown result or self-test in\n\t\t\t\t\t"); pout("progress with less than 10%% remaining.\n"); } else { pout("(%4d)\tSelf-test routine in progress...\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("%1d0%% of test remaining.\n", (int)(data->self_test_exec_status & 0x0f)); } break; default: pout("(%4d)\tReserved.\n", (int)data->self_test_exec_status); break; } } static void PrintSmartTotalTimeCompleteOffline (const ata_smart_values * data) { pout("Total time to complete Offline \n"); pout("data collection: \t\t (%4d) seconds.\n", (int)data->total_time_to_complete_off_line); } static void PrintSmartOfflineCollectCap(const ata_smart_values *data) { pout("Offline data collection\n"); pout("capabilities: \t\t\t (0x%02x) ", (int)data->offline_data_collection_capability); if (data->offline_data_collection_capability == 0x00){ pout("\tOffline data collection not supported.\n"); } else { pout( "%s\n", isSupportExecuteOfflineImmediate(data)? "SMART execute Offline immediate." : "No SMART execute Offline immediate."); pout( "\t\t\t\t\t%s\n", isSupportAutomaticTimer(data)? "Auto Offline data collection on/off support.": "No Auto Offline data collection support."); pout( "\t\t\t\t\t%s\n", isSupportOfflineAbort(data)? "Abort Offline collection upon new\n\t\t\t\t\tcommand.": "Suspend Offline collection upon new\n\t\t\t\t\tcommand."); pout( "\t\t\t\t\t%s\n", isSupportOfflineSurfaceScan(data)? "Offline surface scan supported.": "No Offline surface scan supported."); pout( "\t\t\t\t\t%s\n", isSupportSelfTest(data)? "Self-test supported.": "No Self-test supported."); pout( "\t\t\t\t\t%s\n", isSupportConveyanceSelfTest(data)? "Conveyance Self-test supported.": "No Conveyance Self-test supported."); pout( "\t\t\t\t\t%s\n", isSupportSelectiveSelfTest(data)? "Selective Self-test supported.": "No Selective Self-test supported."); } } static void PrintSmartCapability(const ata_smart_values *data) { pout("SMART capabilities: "); pout("(0x%04x)\t", (int)data->smart_capability); if (data->smart_capability == 0x00) { pout("Automatic saving of SMART data\t\t\t\t\tis not implemented.\n"); } else { pout( "%s\n", (data->smart_capability & 0x01)? "Saves SMART data before entering\n\t\t\t\t\tpower-saving mode.": "Does not save SMART data before\n\t\t\t\t\tentering power-saving mode."); if ( data->smart_capability & 0x02 ) { pout("\t\t\t\t\tSupports SMART auto save timer.\n"); } } } static void PrintSmartErrorLogCapability(const ata_smart_values * data, const ata_identify_device * identity) { pout("Error logging capability: "); if ( isSmartErrorLogCapable(data, identity) ) { pout(" (0x%02x)\tError logging supported.\n", (int)data->errorlog_capability); } else { pout(" (0x%02x)\tError logging NOT supported.\n", (int)data->errorlog_capability); } } static void PrintSmartShortSelfTestPollingTime(const ata_smart_values * data) { pout("Short self-test routine \n"); if (isSupportSelfTest(data)) pout("recommended polling time: \t (%4d) minutes.\n", (int)data->short_test_completion_time); else pout("recommended polling time: \t Not Supported.\n"); } static void PrintSmartExtendedSelfTestPollingTime(const ata_smart_values * data) { pout("Extended self-test routine\n"); if (isSupportSelfTest(data)) pout("recommended polling time: \t (%4d) minutes.\n", (int)data->extend_test_completion_time); else pout("recommended polling time: \t Not Supported.\n"); } static void PrintSmartConveyanceSelfTestPollingTime(const ata_smart_values * data) { pout("Conveyance self-test routine\n"); if (isSupportConveyanceSelfTest(data)) pout("recommended polling time: \t (%4d) minutes.\n", (int)data->conveyance_test_completion_time); else pout("recommended polling time: \t Not Supported.\n"); } // Check SMART attribute table for Threshold failure // onlyfailed=0: are or were any age or prefailure attributes <= threshold // onlyfailed=1: are any prefailure attributes <= threshold now static int find_failed_attr(const ata_smart_values * data, const ata_smart_thresholds_pvt * thresholds, const ata_vendor_attr_defs & defs, int onlyfailed) { for (int i = 0; i < NUMBER_ATA_SMART_ATTRIBUTES; i++) { const ata_smart_attribute & attr = data->vendor_attributes[i]; ata_attr_state state = ata_get_attr_state(attr, thresholds->thres_entries[i], defs); if (!onlyfailed) { if (state >= ATTRSTATE_FAILED_PAST) return attr.id; } else { if (state == ATTRSTATE_FAILED_NOW && ATTRIBUTE_FLAGS_PREFAILURE(attr.flags)) return attr.id; } } return 0; } // onlyfailed=0 : print all attribute values // onlyfailed=1: just ones that are currently failed and have prefailure bit set // onlyfailed=2: ones that are failed, or have failed with or without prefailure bit set static void PrintSmartAttribWithThres(const ata_smart_values * data, const ata_smart_thresholds_pvt * thresholds, const ata_vendor_attr_defs & defs, int onlyfailed) { bool needheader = true; // step through all vendor attributes for (int i = 0; i < NUMBER_ATA_SMART_ATTRIBUTES; i++) { const ata_smart_attribute & attr = data->vendor_attributes[i]; const ata_smart_threshold_entry & thre = thresholds->thres_entries[i]; // Check attribute and threshold ata_attr_state state = ata_get_attr_state(attr, thre, defs); if (state == ATTRSTATE_NON_EXISTING) continue; // These break out of the loop if we are only printing certain entries... if (onlyfailed == 1 && !(ATTRIBUTE_FLAGS_PREFAILURE(attr.flags) && state == ATTRSTATE_FAILED_NOW)) continue; if (onlyfailed == 2 && state < ATTRSTATE_FAILED_PAST) continue; // print header only if needed if (needheader) { if (!onlyfailed) { pout("SMART Attributes Data Structure revision number: %d\n",(int)data->revnumber); pout("Vendor Specific SMART Attributes with Thresholds:\n"); } pout("ID# ATTRIBUTE_NAME FLAG VALUE WORST THRESH TYPE UPDATED WHEN_FAILED RAW_VALUE\n"); needheader = false; } // Format value, worst, threshold std::string valstr, worstr, threstr; if (state > ATTRSTATE_NO_NORMVAL) valstr = strprintf("%.3d", attr.current); else valstr = "---"; if (!(defs[attr.id].flags & ATTRFLAG_NO_WORSTVAL)) worstr = strprintf("%.3d", attr.worst); else worstr = "---"; if (state > ATTRSTATE_NO_THRESHOLD) threstr = strprintf("%.3d", thre.threshold); else threstr = "---"; // Print line for each valid attribute std::string attrname = ata_get_smart_attr_name(attr.id, defs); pout("%3d %-24s0x%04x %-3s %-3s %-3s %-10s%-9s%-12s%s\n", attr.id, attrname.c_str(), attr.flags, valstr.c_str(), worstr.c_str(), threstr.c_str(), (ATTRIBUTE_FLAGS_PREFAILURE(attr.flags)? "Pre-fail" : "Old_age"), (ATTRIBUTE_FLAGS_ONLINE(attr.flags)? "Always" : "Offline"), (state == ATTRSTATE_FAILED_NOW ? "FAILING_NOW" : state == ATTRSTATE_FAILED_PAST ? "In_the_past" : " -" ), ata_format_attr_raw_value(attr, defs).c_str()); // Print a warning if there is inconsistency here if (state == ATTRSTATE_BAD_THRESHOLD) { pout("%3d %-24s<== Data Page | WARNING: PREVIOUS ATTRIBUTE HAS TWO\n", attr.id, attrname.c_str()); pout("%3d %-24s<== Threshold Page | INCONSISTENT IDENTITIES IN THE DATA\n", thre.id, ata_get_smart_attr_name(thre.id, defs).c_str()); } } if (!needheader) pout("\n"); } // Print SMART related SCT capabilities static void ataPrintSCTCapability(const ata_identify_device *drive) { unsigned short sctcaps = drive->words088_255[206-88]; if (!(sctcaps & 0x01)) return; pout("SCT capabilities: \t (0x%04x)\tSCT Status supported.\n", sctcaps); if (sctcaps & 0x10) pout("\t\t\t\t\tSCT Feature Control supported.\n"); if (sctcaps & 0x20) pout("\t\t\t\t\tSCT Data Table supported.\n"); } static void PrintGeneralSmartValues(const ata_smart_values *data, const ata_identify_device *drive, unsigned char fix_firmwarebug) { pout("General SMART Values:\n"); PrintSmartOfflineStatus(data); if (isSupportSelfTest(data)){ PrintSmartSelfExecStatus(data, fix_firmwarebug); } PrintSmartTotalTimeCompleteOffline(data); PrintSmartOfflineCollectCap(data); PrintSmartCapability(data); PrintSmartErrorLogCapability(data, drive); pout( "\t\t\t\t\t%s\n", isGeneralPurposeLoggingCapable(drive)? "General Purpose Logging supported.": "No General Purpose Logging support."); if (isSupportSelfTest(data)){ PrintSmartShortSelfTestPollingTime (data); PrintSmartExtendedSelfTestPollingTime (data); } if (isSupportConveyanceSelfTest(data)) PrintSmartConveyanceSelfTestPollingTime (data); ataPrintSCTCapability(drive); pout("\n"); } // Get # sectors of a log addr, 0 if log does not exist. static unsigned GetNumLogSectors(const ata_smart_log_directory * logdir, unsigned logaddr, bool gpl) { if (!logdir) return 0; if (logaddr > 0xff) return 0; if (logaddr == 0) return 1; unsigned n = logdir->entry[logaddr-1].numsectors; if (gpl) // GP logs may have >255 sectors n |= logdir->entry[logaddr-1].reserved << 8; return n; } // Get name of log. // Table A.2 of T13/1699-D Revision 6 static const char * GetLogName(unsigned logaddr) { switch (logaddr) { case 0x00: return "Log Directory"; case 0x01: return "Summary SMART error log"; case 0x02: return "Comprehensive SMART error log"; case 0x03: return "Ext. Comprehensive SMART error log"; case 0x04: return "Device Statistics"; case 0x06: return "SMART self-test log"; case 0x07: return "Extended self-test log"; case 0x09: return "Selective self-test log"; case 0x10: return "NCQ Command Error"; case 0x11: return "SATA Phy Event Counters"; case 0x20: return "Streaming performance log"; // Obsolete case 0x21: return "Write stream error log"; case 0x22: return "Read stream error log"; case 0x23: return "Delayed sector log"; // Obsolete case 0xe0: return "SCT Command/Status"; case 0xe1: return "SCT Data Transfer"; default: if (0xa0 <= logaddr && logaddr <= 0xdf) return "Device vendor specific log"; if (0x80 <= logaddr && logaddr <= 0x9f) return "Host vendor specific log"; if (0x12 <= logaddr && logaddr <= 0x17) return "Reserved for Serial ATA"; return "Reserved"; } /*NOTREACHED*/ } // Print SMART and/or GP Log Directory static void PrintLogDirectories(const ata_smart_log_directory * gplogdir, const ata_smart_log_directory * smartlogdir) { if (gplogdir) pout("General Purpose Log Directory Version %u\n", gplogdir->logversion); if (smartlogdir) pout("SMART %sLog Directory Version %u%s\n", (gplogdir ? " " : ""), smartlogdir->logversion, (smartlogdir->logversion==1 ? " [multi-sector log support]" : "")); for (unsigned i = 0; i <= 0xff; i++) { // Get number of sectors unsigned smart_numsect = GetNumLogSectors(smartlogdir, i, false); unsigned gp_numsect = GetNumLogSectors(gplogdir , i, true ); if (!(smart_numsect || gp_numsect)) continue; // Log does not exist const char * name = GetLogName(i); // Print name and length of log. // If both SMART and GP exist, print separate entries if length differ. if (smart_numsect == gp_numsect) pout( "GP/S Log at address 0x%02x has %4d sectors [%s]\n", i, smart_numsect, name); else { if (gp_numsect) pout("GP %sLog at address 0x%02x has %4d sectors [%s]\n", (smartlogdir?" ":""), i, gp_numsect, name); if (smart_numsect) pout("SMART Log at address 0x%02x has %4d sectors [%s]\n", i, smart_numsect, name); } } pout("\n"); } // Print hexdump of log pages. // Format is compatible with 'xxd -r'. static void PrintLogPages(const char * type, const unsigned char * data, unsigned char logaddr, unsigned page, unsigned num_pages, unsigned max_pages) { pout("%s Log 0x%02x [%s], Page %u-%u (of %u)\n", type, logaddr, GetLogName(logaddr), page, page+num_pages-1, max_pages); for (unsigned i = 0; i < num_pages * 512; i += 16) { const unsigned char * p = data+i; pout("%07x: %02x %02x %02x %02x %02x %02x %02x %02x " "%02x %02x %02x %02x %02x %02x %02x %02x ", (page * 512) + i, p[ 0], p[ 1], p[ 2], p[ 3], p[ 4], p[ 5], p[ 6], p[ 7], p[ 8], p[ 9], p[10], p[11], p[12], p[13], p[14], p[15]); #define P(n) (isprint((int)(p[n]))?(int)(p[n]):'.') pout("|%c%c%c%c%c%c%c%c" "%c%c%c%c%c%c%c%c|\n", P( 0), P( 1), P( 2), P( 3), P( 4), P( 5), P( 6), P( 7), P( 8), P( 9), P(10), P(11), P(12), P(13), P(14), P(15)); #undef P if ((i & 0x1ff) == 0x1f0) pout("\n"); } } // Print log 0x11 static void PrintSataPhyEventCounters(const unsigned char * data, bool reset) { if (checksum(data)) checksumwarning("SATA Phy Event Counters"); pout("SATA Phy Event Counters (GP Log 0x11)\n"); if (data[0] || data[1] || data[2] || data[3]) pout("[Reserved: 0x%02x 0x%02x 0x%02x 0x%02x]\n", data[0], data[1], data[2], data[3]); pout("ID Size Value Description\n"); for (unsigned i = 4; ; ) { // Get counter id and size (bits 14:12) unsigned id = data[i] | (data[i+1] << 8); unsigned size = ((id >> 12) & 0x7) << 1; id &= 0x8fff; // End of counter table ? if (!id) break; i += 2; if (!(2 <= size && size <= 8 && i + size < 512)) { pout("0x%04x %u: Invalid entry\n", id, size); break; } // Get value uint64_t val = 0, max_val = 0; for (unsigned j = 0; j < size; j+=2) { val |= (uint64_t)(data[i+j] | (data[i+j+1] << 8)) << (j*8); max_val |= (uint64_t)0xffffU << (j*8); } i += size; // Get name const char * name; switch (id) { case 0x001: name = "Command failed due to ICRC error"; break; // Mandatory case 0x002: name = "R_ERR response for data FIS"; break; case 0x003: name = "R_ERR response for device-to-host data FIS"; break; case 0x004: name = "R_ERR response for host-to-device data FIS"; break; case 0x005: name = "R_ERR response for non-data FIS"; break; case 0x006: name = "R_ERR response for device-to-host non-data FIS"; break; case 0x007: name = "R_ERR response for host-to-device non-data FIS"; break; case 0x008: name = "Device-to-host non-data FIS retries"; break; case 0x009: name = "Transition from drive PhyRdy to drive PhyNRdy"; break; case 0x00A: name = "Device-to-host register FISes sent due to a COMRESET"; break; // Mandatory case 0x00B: name = "CRC errors within host-to-device FIS"; break; case 0x00D: name = "Non-CRC errors within host-to-device FIS"; break; case 0x00F: name = "R_ERR response for host-to-device data FIS, CRC"; break; case 0x010: name = "R_ERR response for host-to-device data FIS, non-CRC"; break; case 0x012: name = "R_ERR response for host-to-device non-data FIS, CRC"; break; case 0x013: name = "R_ERR response for host-to-device non-data FIS, non-CRC"; break; default: name = (id & 0x8000 ? "Vendor specific" : "Unknown"); break; } // Counters stop at max value, add '+' in this case pout("0x%04x %u %12"PRIu64"%c %s\n", id, size, val, (val == max_val ? '+' : ' '), name); } if (reset) pout("All counters reset\n"); pout("\n"); } // Get description for 'state' value from SMART Error Logs static const char * get_error_log_state_desc(unsigned state) { state &= 0x0f; switch (state){ case 0x0: return "in an unknown state"; case 0x1: return "sleeping"; case 0x2: return "in standby mode"; case 0x3: return "active or idle"; case 0x4: return "doing SMART Offline or Self-test"; default: return (state < 0xb ? "in a reserved state" : "in a vendor specific state"); } } // returns number of errors static int PrintSmartErrorlog(const ata_smart_errorlog *data, unsigned char fix_firmwarebug) { pout("SMART Error Log Version: %d\n", (int)data->revnumber); // if no errors logged, return if (!data->error_log_pointer){ pout("No Errors Logged\n\n"); return 0; } PRINT_ON(con); // If log pointer out of range, return if (data->error_log_pointer>5){ pout("Invalid Error Log index = 0x%02x (T13/1321D rev 1c " "Section 8.41.6.8.2.2 gives valid range from 1 to 5)\n\n", (int)data->error_log_pointer); return 0; } // Some internal consistency checking of the data structures if ((data->ata_error_count-data->error_log_pointer)%5 && fix_firmwarebug != FIX_SAMSUNG2) { pout("Warning: ATA error count %d inconsistent with error log pointer %d\n\n", data->ata_error_count,data->error_log_pointer); } // starting printing error log info if (data->ata_error_count<=5) pout( "ATA Error Count: %d\n", (int)data->ata_error_count); else pout( "ATA Error Count: %d (device log contains only the most recent five errors)\n", (int)data->ata_error_count); PRINT_OFF(con); pout("\tCR = Command Register [HEX]\n" "\tFR = Features Register [HEX]\n" "\tSC = Sector Count Register [HEX]\n" "\tSN = Sector Number Register [HEX]\n" "\tCL = Cylinder Low Register [HEX]\n" "\tCH = Cylinder High Register [HEX]\n" "\tDH = Device/Head Register [HEX]\n" "\tDC = Device Command Register [HEX]\n" "\tER = Error register [HEX]\n" "\tST = Status register [HEX]\n" "Powered_Up_Time is measured from power on, and printed as\n" "DDd+hh:mm:SS.sss where DD=days, hh=hours, mm=minutes,\n" "SS=sec, and sss=millisec. It \"wraps\" after 49.710 days.\n\n"); // now step through the five error log data structures (table 39 of spec) for (int k = 4; k >= 0; k-- ) { // The error log data structure entries are a circular buffer int j, i=(data->error_log_pointer+k)%5; const ata_smart_errorlog_struct * elog = data->errorlog_struct+i; const ata_smart_errorlog_error_struct * summary = &(elog->error_struct); // Spec says: unused error log structures shall be zero filled if (nonempty(elog, sizeof(*elog))){ // Table 57 of T13/1532D Volume 1 Revision 3 const char *msgstate = get_error_log_state_desc(summary->state); int days = (int)summary->timestamp/24; // See table 42 of ATA5 spec PRINT_ON(con); pout("Error %d occurred at disk power-on lifetime: %d hours (%d days + %d hours)\n", (int)(data->ata_error_count+k-4), (int)summary->timestamp, days, (int)(summary->timestamp-24*days)); PRINT_OFF(con); pout(" When the command that caused the error occurred, the device was %s.\n\n",msgstate); pout(" After command completion occurred, registers were:\n" " ER ST SC SN CL CH DH\n" " -- -- -- -- -- -- --\n" " %02x %02x %02x %02x %02x %02x %02x", (int)summary->error_register, (int)summary->status, (int)summary->sector_count, (int)summary->sector_number, (int)summary->cylinder_low, (int)summary->cylinder_high, (int)summary->drive_head); // Add a description of the contents of the status and error registers // if possible char descbuf[256]; const char * st_er_desc = construct_st_er_desc(descbuf, elog); if (st_er_desc) pout(" %s", st_er_desc); pout("\n\n"); pout(" Commands leading to the command that caused the error were:\n" " CR FR SC SN CL CH DH DC Powered_Up_Time Command/Feature_Name\n" " -- -- -- -- -- -- -- -- ---------------- --------------------\n"); for ( j = 4; j >= 0; j--){ const ata_smart_errorlog_command_struct * thiscommand = elog->commands+j; // Spec says: unused data command structures shall be zero filled if (nonempty(thiscommand, sizeof(*thiscommand))) { char timestring[32]; // Convert integer milliseconds to a text-format string MsecToText(thiscommand->timestamp, timestring); pout(" %02x %02x %02x %02x %02x %02x %02x %02x %16s %s\n", (int)thiscommand->commandreg, (int)thiscommand->featuresreg, (int)thiscommand->sector_count, (int)thiscommand->sector_number, (int)thiscommand->cylinder_low, (int)thiscommand->cylinder_high, (int)thiscommand->drive_head, (int)thiscommand->devicecontrolreg, timestring, look_up_ata_command(thiscommand->commandreg, thiscommand->featuresreg)); } } pout("\n"); } } PRINT_ON(con); if (con->printing_switchable) pout("\n"); PRINT_OFF(con); return data->ata_error_count; } // Print SMART Extended Comprehensive Error Log (GP Log 0x03) static int PrintSmartExtErrorLog(const ata_smart_exterrlog * log, unsigned nsectors, unsigned max_errors) { pout("SMART Extended Comprehensive Error Log Version: %u (%u sectors)\n", log->version, nsectors); if (!log->device_error_count) { pout("No Errors Logged\n\n"); return 0; } PRINT_ON(con); // Check index unsigned nentries = nsectors * 4; unsigned erridx = log->error_log_index; if (!(1 <= erridx && erridx <= nentries)){ // Some Samsung disks (at least SP1614C/SW100-25, HD300LJ/ZT100-12) use the // former index from Summary Error Log (byte 1, now reserved) and set byte 2-3 // to 0. if (!(erridx == 0 && 1 <= log->reserved1 && log->reserved1 <= nentries)) { pout("Invalid Error Log index = 0x%04x (reserved = 0x%02x)\n", erridx, log->reserved1); return 0; } pout("Invalid Error Log index = 0x%04x, trying reserved byte (0x%02x) instead\n", erridx, log->reserved1); erridx = log->reserved1; } // Index base is not clearly specified by ATA8-ACS (T13/1699-D Revision 6a), // it is 1-based in practice. erridx--; // Calculate #errors to print unsigned errcnt = log->device_error_count; if (errcnt <= nentries) pout("Device Error Count: %u\n", log->device_error_count); else { errcnt = nentries; pout("Device Error Count: %u (device log contains only the most recent %u errors)\n", log->device_error_count, errcnt); } if (max_errors < errcnt) errcnt = max_errors; PRINT_OFF(con); pout("\tCR = Command Register\n" "\tFEATR = Features Register\n" "\tCOUNT = Count (was: Sector Count) Register\n" "\tLBA_48 = Upper bytes of LBA High/Mid/Low Registers ] ATA-8\n" "\tLH = LBA High (was: Cylinder High) Register ] LBA\n" "\tLM = LBA Mid (was: Cylinder Low) Register ] Register\n" "\tLL = LBA Low (was: Sector Number) Register ]\n" "\tDV = Device (was: Device/Head) Register\n" "\tDC = Device Control Register\n" "\tER = Error register\n" "\tST = Status register\n" "Powered_Up_Time is measured from power on, and printed as\n" "DDd+hh:mm:SS.sss where DD=days, hh=hours, mm=minutes,\n" "SS=sec, and sss=millisec. It \"wraps\" after 49.710 days.\n\n"); // Iterate through circular buffer in reverse direction for (unsigned i = 0, errnum = log->device_error_count; i < errcnt; i++, errnum--, erridx = (erridx > 0 ? erridx - 1 : nentries - 1)) { const ata_smart_exterrlog_error_log & entry = log[erridx / 4].error_logs[erridx % 4]; // Skip unused entries if (!nonempty(&entry, sizeof(entry))) { pout("Error %u [%u] log entry is empty\n", errnum, erridx); continue; } // Print error information PRINT_ON(con); const ata_smart_exterrlog_error & err = entry.error; pout("Error %u [%u] occurred at disk power-on lifetime: %u hours (%u days + %u hours)\n", errnum, erridx, err.timestamp, err.timestamp / 24, err.timestamp % 24); PRINT_OFF(con); pout(" When the command that caused the error occurred, the device was %s.\n\n", get_error_log_state_desc(err.state)); // Print registers pout(" After command completion occurred, registers were:\n" " ER -- ST COUNT LBA_48 LH LM LL DV DC\n" " -- -- -- == -- == == == -- -- -- -- --\n" " %02x -- %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", err.error_register, err.status_register, err.count_register_hi, err.count_register, err.lba_high_register_hi, err.lba_mid_register_hi, err.lba_low_register_hi, err.lba_high_register, err.lba_mid_register, err.lba_low_register, err.device_register, err.device_control_register); // Add a description of the contents of the status and error registers // if possible char descbuf[256]; const char * st_er_desc = construct_st_er_desc(descbuf, &entry); if (st_er_desc) pout(" %s", st_er_desc); pout("\n\n"); // Print command history pout(" Commands leading to the command that caused the error were:\n" " CR FEATR COUNT LBA_48 LH LM LL DV DC Powered_Up_Time Command/Feature_Name\n" " -- == -- == -- == == == -- -- -- -- -- --------------- --------------------\n"); for (int ci = 4; ci >= 0; ci--) { const ata_smart_exterrlog_command & cmd = entry.commands[ci]; // Skip unused entries if (!nonempty(&cmd, sizeof(cmd))) continue; // Print registers, timestamp and ATA command name char timestring[32]; MsecToText(cmd.timestamp, timestring); pout(" %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %16s %s\n", cmd.command_register, cmd.features_register_hi, cmd.features_register, cmd.count_register_hi, cmd.count_register, cmd.lba_high_register_hi, cmd.lba_mid_register_hi, cmd.lba_low_register_hi, cmd.lba_high_register, cmd.lba_mid_register, cmd.lba_low_register, cmd.device_register, cmd.device_control_register, timestring, look_up_ata_command(cmd.command_register, cmd.features_register)); } pout("\n"); } PRINT_ON(con); if (con->printing_switchable) pout("\n"); PRINT_OFF(con); return log->device_error_count; } // Print SMART Extended Self-test Log (GP Log 0x07) static void PrintSmartExtSelfTestLog(const ata_smart_extselftestlog * log, unsigned nsectors, unsigned max_entries) { pout("SMART Extended Self-test Log Version: %u (%u sectors)\n", log->version, nsectors); if (!log->log_desc_index){ pout("No self-tests have been logged. [To run self-tests, use: smartctl -t]\n\n"); return; } // Check index unsigned nentries = nsectors * 19; unsigned logidx = log->log_desc_index; if (logidx > nentries) { pout("Invalid Self-test Log index = 0x%04x (reserved = 0x%02x)\n", logidx, log->reserved1); return; } // Index base is not clearly specified by ATA8-ACS (T13/1699-D Revision 6a), // it is 1-based in practice. logidx--; bool print_header = true; // Iterate through circular buffer in reverse direction for (unsigned i = 0, testnum = 1; i < nentries && testnum <= max_entries; i++, logidx = (logidx > 0 ? logidx - 1 : nentries - 1)) { const ata_smart_extselftestlog_desc & entry = log[logidx / 19].log_descs[logidx % 19]; // Skip unused entries if (!nonempty(&entry, sizeof(entry))) continue; // Get LBA const unsigned char * b = entry.failing_lba; uint64_t lba48 = b[0] | ( b[1] << 8) | ( b[2] << 16) | ((uint64_t)b[3] << 24) | ((uint64_t)b[4] << 32) | ((uint64_t)b[5] << 40); // Print entry ataPrintSmartSelfTestEntry(testnum++, entry.self_test_type, entry.self_test_status, entry.timestamp, lba48, false /*!print_error_only*/, print_header); } pout("\n"); } static void ataPrintSelectiveSelfTestLog(const ata_selective_self_test_log * log, const ata_smart_values * sv) { int i,field1,field2; const char *msg; char tmp[64]; uint64_t maxl=0,maxr=0; uint64_t current=log->currentlba; uint64_t currentend=current+65535; // print data structure revision number pout("SMART Selective self-test log data structure revision number %d\n",(int)log->logversion); if (1 != log->logversion) pout("Note: revision number not 1 implies that no selective self-test has ever been run\n"); switch((sv->self_test_exec_status)>>4){ case 0:msg="Completed"; break; case 1:msg="Aborted_by_host"; break; case 2:msg="Interrupted"; break; case 3:msg="Fatal_error"; break; case 4:msg="Completed_unknown_failure"; break; case 5:msg="Completed_electrical_failure"; break; case 6:msg="Completed_servo/seek_failure"; break; case 7:msg="Completed_read_failure"; break; case 8:msg="Completed_handling_damage??"; break; case 15:msg="Self_test_in_progress"; break; default:msg="Unknown_status "; break; } // find the number of columns needed for printing. If in use, the // start/end of span being read-scanned... if (log->currentspan>5) { maxl=current; maxr=currentend; } for (i=0; i<5; i++) { uint64_t start=log->span[i].start; uint64_t end =log->span[i].end; // ... plus max start/end of each of the five test spans. if (start>maxl) maxl=start; if (end > maxr) maxr=end; } // we need at least 7 characters wide fields to accomodate the // labels if ((field1=snprintf(tmp,64, "%"PRIu64, maxl))<7) field1=7; if ((field2=snprintf(tmp,64, "%"PRIu64, maxr))<7) field2=7; // now print the five test spans pout(" SPAN %*s %*s CURRENT_TEST_STATUS\n", field1, "MIN_LBA", field2, "MAX_LBA"); for (i=0; i<5; i++) { uint64_t start=log->span[i].start; uint64_t end=log->span[i].end; if ((i+1)==(int)log->currentspan) // this span is currently under test pout(" %d %*"PRIu64" %*"PRIu64" %s [%01d0%% left] (%"PRIu64"-%"PRIu64")\n", i+1, field1, start, field2, end, msg, (int)(sv->self_test_exec_status & 0xf), current, currentend); else // this span is not currently under test pout(" %d %*"PRIu64" %*"PRIu64" Not_testing\n", i+1, field1, start, field2, end); } // if we are currently read-scanning, print LBAs and the status of // the read scan if (log->currentspan>5) pout("%5d %*"PRIu64" %*"PRIu64" Read_scanning %s\n", (int)log->currentspan, field1, current, field2, currentend, OfflineDataCollectionStatus(sv->offline_data_collection_status)); /* Print selective self-test flags. Possible flag combinations are (numbering bits from 0-15): Bit-1 Bit-3 Bit-4 Scan Pending Active 0 * * Don't scan 1 0 0 Will carry out scan after selective test 1 1 0 Waiting to carry out scan after powerup 1 0 1 Currently scanning 1 1 1 Currently scanning */ pout("Selective self-test flags (0x%x):\n", (unsigned int)log->flags); if (log->flags & SELECTIVE_FLAG_DOSCAN) { if (log->flags & SELECTIVE_FLAG_ACTIVE) pout(" Currently read-scanning the remainder of the disk.\n"); else if (log->flags & SELECTIVE_FLAG_PENDING) pout(" Read-scan of remainder of disk interrupted; will resume %d min after power-up.\n", (int)log->pendingtime); else pout(" After scanning selected spans, read-scan remainder of disk.\n"); } else pout(" After scanning selected spans, do NOT read-scan remainder of disk.\n"); // print pending time pout("If Selective self-test is pending on power-up, resume after %d minute delay.\n", (int)log->pendingtime); return; } // Format SCT Temperature value static const char * sct_ptemp(signed char x, char * buf) { if (x == -128 /*0x80 = unknown*/) strcpy(buf, " ?"); else sprintf(buf, "%2d", x); return buf; } static const char * sct_pbar(int x, char * buf) { if (x <= 19) x = 0; else x -= 19; bool ov = false; if (x > 40) { x = 40; ov = true; } if (x > 0) { memset(buf, '*', x); if (ov) buf[x-1] = '+'; buf[x] = 0; } else { buf[0] = '-'; buf[1] = 0; } return buf; } static const char * sct_device_state_msg(unsigned char state) { switch (state) { case 0: return "Active"; case 1: return "Stand-by"; case 2: return "Sleep"; case 3: return "DST executing in background"; case 4: return "SMART Off-line Data Collection executing in background"; case 5: return "SCT command executing in background"; default:return "Unknown"; } } // Print SCT Status static int ataPrintSCTStatus(const ata_sct_status_response * sts) { pout("SCT Status Version: %u\n", sts->format_version); pout("SCT Version (vendor specific): %u (0x%04x)\n", sts->sct_version, sts->sct_version); pout("SCT Support Level: %u\n", sts->sct_spec); pout("Device State: %s (%u)\n", sct_device_state_msg(sts->device_state), sts->device_state); char buf1[20], buf2[20]; if ( !sts->min_temp && !sts->life_min_temp && !sts->byte205 && !sts->under_limit_count && !sts->over_limit_count ) { // "Reserved" fields not set, assume "old" format version 2 // Table 11 of T13/1701DT Revision 5 // Table 54 of T13/1699-D Revision 3e pout("Current Temperature: %s Celsius\n", sct_ptemp(sts->hda_temp, buf1)); pout("Power Cycle Max Temperature: %s Celsius\n", sct_ptemp(sts->max_temp, buf2)); pout("Lifetime Max Temperature: %s Celsius\n", sct_ptemp(sts->life_max_temp, buf2)); } else { // Assume "new" format version 2 or version 3 // T13/e06152r0-3 (Additional SCT Temperature Statistics) // Table 60 of T13/1699-D Revision 3f pout("Current Temperature: %s Celsius\n", sct_ptemp(sts->hda_temp, buf1)); pout("Power Cycle Min/Max Temperature: %s/%s Celsius\n", sct_ptemp(sts->min_temp, buf1), sct_ptemp(sts->max_temp, buf2)); pout("Lifetime Min/Max Temperature: %s/%s Celsius\n", sct_ptemp(sts->life_min_temp, buf1), sct_ptemp(sts->life_max_temp, buf2)); if (sts->byte205) // e06152r0-2, removed in e06152r3 pout("Lifetime Average Temperature: %s Celsius\n", sct_ptemp((signed char)sts->byte205, buf1)); pout("Under/Over Temperature Limit Count: %2u/%u\n", sts->under_limit_count, sts->over_limit_count); } return 0; } // Print SCT Temperature History Table static int ataPrintSCTTempHist(const ata_sct_temperature_history_table * tmh) { char buf1[20], buf2[80]; pout("SCT Temperature History Version: %u\n", tmh->format_version); pout("Temperature Sampling Period: %u minute%s\n", tmh->sampling_period, (tmh->sampling_period==1?"":"s")); pout("Temperature Logging Interval: %u minute%s\n", tmh->interval, (tmh->interval==1?"":"s")); pout("Min/Max recommended Temperature: %s/%s Celsius\n", sct_ptemp(tmh->min_op_limit, buf1), sct_ptemp(tmh->max_op_limit, buf2)); pout("Min/Max Temperature Limit: %s/%s Celsius\n", sct_ptemp(tmh->under_limit, buf1), sct_ptemp(tmh->over_limit, buf2)); pout("Temperature History Size (Index): %u (%u)\n", tmh->cb_size, tmh->cb_index); if (!(0 < tmh->cb_size && tmh->cb_size <= sizeof(tmh->cb) && tmh->cb_index < tmh->cb_size)) { pout("Error invalid Temperature History Size or Index\n"); return 0; } // Print table pout("\nIndex Estimated Time Temperature Celsius\n"); unsigned n = 0, i = (tmh->cb_index+1) % tmh->cb_size; unsigned interval = (tmh->interval > 0 ? tmh->interval : 1); time_t t = time(0) - (tmh->cb_size-1) * interval * 60; t -= t % (interval * 60); while (n < tmh->cb_size) { // Find range of identical temperatures unsigned n1 = n, n2 = n+1, i2 = (i+1) % tmh->cb_size; while (n2 < tmh->cb_size && tmh->cb[i2] == tmh->cb[i]) { n2++; i2 = (i2+1) % tmh->cb_size; } // Print range while (n < n2) { if (n == n1 || n == n2-1 || n2 <= n1+3) { char date[30]; // TODO: Don't print times < boot time strftime(date, sizeof(date), "%Y-%m-%d %H:%M", localtime(&t)); pout(" %3u %s %s %s\n", i, date, sct_ptemp(tmh->cb[i], buf1), sct_pbar(tmh->cb[i], buf2)); } else if (n == n1+1) { pout(" ... ..(%3u skipped). .. %s\n", n2-n1-2, sct_pbar(tmh->cb[i], buf2)); } t += interval * 60; i = (i+1) % tmh->cb_size; n++; } } //assert(n == tmh->cb_size && i == (tmh->cb_index+1) % tmh->cb_size); return 0; } // Compares failure type to policy in effect, and either exits or // simply returns to the calling routine. void failuretest(int type, int returnvalue){ // If this is an error in an "optional" SMART command if (type==OPTIONAL_CMD){ if (con->conservative){ pout("An optional SMART command failed: exiting. Remove '-T conservative' option to continue.\n"); EXIT(returnvalue); } return; } // If this is an error in a "mandatory" SMART command if (type==MANDATORY_CMD){ if (con->permissive--) return; pout("A mandatory SMART command failed: exiting. To continue, add one or more '-T permissive' options.\n"); EXIT(returnvalue); } pout("Smartctl internal error in failuretest(type=%d). Please contact developers at " PACKAGE_HOMEPAGE "\n",type); EXIT(returnvalue|FAILCMD); } // Initialize to zero just in case some SMART routines don't work static ata_identify_device drive; static ata_smart_values smartval; static ata_smart_thresholds_pvt smartthres; static ata_smart_errorlog smarterror; static ata_smart_selftestlog smartselftest; int ataPrintMain (ata_device * device, const ata_print_options & options) { int timewait,code; int returnval=0, retid=0, supported=0, needupdate=0; const char * powername = 0; char powerchg = 0; // If requested, check power mode first if (options.powermode) { unsigned char powerlimit = 0xff; int powermode = ataCheckPowerMode(device); switch (powermode) { case -1: if (errno == ENOSYS) { pout("CHECK POWER STATUS not implemented, ignoring -n Option\n"); break; } powername = "SLEEP"; powerlimit = 2; break; case 0: powername = "STANDBY"; powerlimit = 3; break; case 0x80: powername = "IDLE"; powerlimit = 4; break; case 0xff: powername = "ACTIVE or IDLE"; break; default: pout("CHECK POWER STATUS returned %d, not ATA compliant, ignoring -n Option\n", powermode); break; } if (powername) { if (options.powermode >= powerlimit) { pout("Device is in %s mode, exit(%d)\n", powername, FAILPOWER); return FAILPOWER; } powerchg = (powermode != 0xff); // SMART tests will spin up drives } } // Start by getting Drive ID information. We need this, to know if SMART is supported. if ((retid=ataReadHDIdentity(device,&drive))<0){ pout("Smartctl: Device Read Identity Failed (not an ATA/ATAPI device)\n\n"); failuretest(MANDATORY_CMD, returnval|=FAILID); } // If requested, show which presets would be used for this drive and exit. if (options.show_presets) { show_presets(&drive, options.fix_swapped_id); return 0; } // Use preset vendor attribute options unless user has requested otherwise. ata_vendor_attr_defs attribute_defs = options.attribute_defs; unsigned char fix_firmwarebug = options.fix_firmwarebug; if (!options.ignore_presets) apply_presets(&drive, attribute_defs, fix_firmwarebug, options.fix_swapped_id); // Print most drive identity information if requested bool known = false; if (options.drive_info) { pout("=== START OF INFORMATION SECTION ===\n"); known = PrintDriveInfo(&drive, options.fix_swapped_id); } // Was this a packet device? if (retid>0){ pout("SMART support is: Unavailable - Packet Interface Devices [this device: %s] don't support ATA SMART\n", packetdevicetype(retid-1)); failuretest(MANDATORY_CMD, returnval|=FAILSMART); } // if drive does not supports SMART it's time to exit supported=ataSmartSupport(&drive); if (supported != 1){ if (supported==0) { pout("SMART support is: Unavailable - device lacks SMART capability.\n"); failuretest(MANDATORY_CMD, returnval|=FAILSMART); pout(" Checking to be sure by trying SMART ENABLE command.\n"); } else { pout("SMART support is: Ambiguous - ATA IDENTIFY DEVICE words 82-83 don't show if SMART supported.\n"); if (!known) failuretest(MANDATORY_CMD, returnval|=FAILSMART); pout(" Checking for SMART support by trying SMART ENABLE command.\n"); } if (ataEnableSmart(device)){ pout(" SMART ENABLE failed - this establishes that this device lacks SMART functionality.\n"); failuretest(MANDATORY_CMD, returnval|=FAILSMART); supported=0; } else { pout(" SMART ENABLE appeared to work! Continuing.\n"); supported=1; } if (!options.drive_info) pout("\n"); } // Now print remaining drive info: is SMART enabled? if (options.drive_info) { int ison=ataIsSmartEnabled(&drive),isenabled=ison; if (ison==-1) { pout("SMART support is: Ambiguous - ATA IDENTIFY DEVICE words 85-87 don't show if SMART is enabled.\n"); failuretest(MANDATORY_CMD, returnval|=FAILSMART); // check SMART support by trying a command pout(" Checking to be sure by trying SMART RETURN STATUS command.\n"); isenabled=ataDoesSmartWork(device); } else { pout("SMART support is: Available - device has SMART capability.\n"); if (device->ata_identify_is_cached()) { pout(" %sabled status cached by OS, trying SMART RETURN STATUS cmd.\n", (isenabled?"En":"Dis")); isenabled=ataDoesSmartWork(device); } } if (isenabled) pout("SMART support is: Enabled\n"); else { if (ison==-1) pout("SMART support is: Unavailable\n"); else pout("SMART support is: Disabled\n"); } // Print the (now possibly changed) power mode if available if (powername) pout("Power mode %s %s\n", (powerchg?"was:":"is: "), powername); pout("\n"); } // START OF THE ENABLE/DISABLE SECTION OF THE CODE if ( options.smart_disable || options.smart_enable || options.smart_auto_save_disable || options.smart_auto_save_enable || options.smart_auto_offl_disable || options.smart_auto_offl_enable) pout("=== START OF ENABLE/DISABLE COMMANDS SECTION ===\n"); // Enable/Disable SMART commands if (options.smart_enable) { if (ataEnableSmart(device)) { pout("Smartctl: SMART Enable Failed.\n\n"); failuretest(MANDATORY_CMD, returnval|=FAILSMART); } else pout("SMART Enabled.\n"); } // From here on, every command requires that SMART be enabled... if (!ataDoesSmartWork(device)) { pout("SMART Disabled. Use option -s with argument 'on' to enable it.\n"); return returnval; } // Turn off SMART on device if (options.smart_disable) { if (ataDisableSmart(device)) { pout( "Smartctl: SMART Disable Failed.\n\n"); failuretest(MANDATORY_CMD,returnval|=FAILSMART); } pout("SMART Disabled. Use option -s with argument 'on' to enable it.\n"); return returnval; } // Let's ALWAYS issue this command to get the SMART status code=ataSmartStatus2(device); if (code==-1) failuretest(MANDATORY_CMD, returnval|=FAILSMART); // Enable/Disable Auto-save attributes if (options.smart_auto_save_enable) { if (ataEnableAutoSave(device)){ pout( "Smartctl: SMART Enable Attribute Autosave Failed.\n\n"); failuretest(MANDATORY_CMD, returnval|=FAILSMART); } else pout("SMART Attribute Autosave Enabled.\n"); } if (options.smart_auto_save_disable) { if (ataDisableAutoSave(device)){ pout( "Smartctl: SMART Disable Attribute Autosave Failed.\n\n"); failuretest(MANDATORY_CMD, returnval|=FAILSMART); } else pout("SMART Attribute Autosave Disabled.\n"); } // for everything else read values and thresholds are needed if (ataReadSmartValues(device, &smartval)){ pout("Smartctl: SMART Read Values failed.\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } if (ataReadSmartThresholds(device, &smartthres)){ pout("Smartctl: SMART Read Thresholds failed.\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } // Enable/Disable Off-line testing if (options.smart_auto_offl_enable) { if (!isSupportAutomaticTimer(&smartval)){ pout("Warning: device does not support SMART Automatic Timers.\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } needupdate=1; if (ataEnableAutoOffline(device)){ pout( "Smartctl: SMART Enable Automatic Offline Failed.\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else pout("SMART Automatic Offline Testing Enabled every four hours.\n"); } if (options.smart_auto_offl_disable) { if (!isSupportAutomaticTimer(&smartval)){ pout("Warning: device does not support SMART Automatic Timers.\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } needupdate=1; if (ataDisableAutoOffline(device)){ pout("Smartctl: SMART Disable Automatic Offline Failed.\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else pout("SMART Automatic Offline Testing Disabled.\n"); } if (needupdate && ataReadSmartValues(device, &smartval)){ pout("Smartctl: SMART Read Values failed.\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } // all this for a newline! if ( options.smart_disable || options.smart_enable || options.smart_auto_save_disable || options.smart_auto_save_enable || options.smart_auto_offl_disable || options.smart_auto_offl_enable) pout("\n"); // START OF READ-ONLY OPTIONS APART FROM -V and -i if ( options.smart_check_status || options.smart_general_values || options.smart_vendor_attrib || options.smart_error_log || options.smart_selftest_log || options.smart_selective_selftest_log || options.smart_ext_error_log || options.smart_ext_selftest_log || options.sct_temp_sts || options.sct_temp_hist ) pout("=== START OF READ SMART DATA SECTION ===\n"); // Check SMART status (use previously returned value) if (options.smart_check_status) { switch (code) { case 0: // The case where the disk health is OK pout("SMART overall-health self-assessment test result: PASSED\n"); if (find_failed_attr(&smartval, &smartthres, options.attribute_defs, 0)){ if (options.smart_vendor_attrib) pout("See vendor-specific Attribute list for marginal Attributes.\n\n"); else { PRINT_ON(con); pout("Please note the following marginal Attributes:\n"); PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs, 2); } returnval|=FAILAGE; } else pout("\n"); break; case 1: // The case where the disk health is NOT OK PRINT_ON(con); pout("SMART overall-health self-assessment test result: FAILED!\n" "Drive failure expected in less than 24 hours. SAVE ALL DATA.\n"); PRINT_OFF(con); if (find_failed_attr(&smartval, &smartthres, options.attribute_defs, 1)){ returnval|=FAILATTR; if (options.smart_vendor_attrib) pout("See vendor-specific Attribute list for failed Attributes.\n\n"); else { PRINT_ON(con); pout("Failed Attributes:\n"); PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs, 1); } } else pout("No failed Attributes found.\n\n"); returnval|=FAILSTATUS; PRINT_OFF(con); break; case -1: default: // The case where something went wrong with HDIO_DRIVE_TASK ioctl() if (find_failed_attr(&smartval, &smartthres, options.attribute_defs, 1)){ PRINT_ON(con); pout("SMART overall-health self-assessment test result: FAILED!\n" "Drive failure expected in less than 24 hours. SAVE ALL DATA.\n"); PRINT_OFF(con); returnval|=FAILATTR; returnval|=FAILSTATUS; if (options.smart_vendor_attrib) pout("See vendor-specific Attribute list for failed Attributes.\n\n"); else { PRINT_ON(con); pout("Failed Attributes:\n"); PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs, 1); } } else { pout("SMART overall-health self-assessment test result: PASSED\n"); if (find_failed_attr(&smartval, &smartthres, options.attribute_defs, 0)){ if (options.smart_vendor_attrib) pout("See vendor-specific Attribute list for marginal Attributes.\n\n"); else { PRINT_ON(con); pout("Please note the following marginal Attributes:\n"); PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs, 2); } returnval|=FAILAGE; } else pout("\n"); } PRINT_OFF(con); break; } // end of switch statement PRINT_OFF(con); } // end of checking SMART Status // Print general SMART values if (options.smart_general_values) PrintGeneralSmartValues(&smartval, &drive, fix_firmwarebug); // Print vendor-specific attributes if (options.smart_vendor_attrib) { PRINT_ON(con); PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs, (con->printing_switchable ? 2 : 0)); PRINT_OFF(con); } // Print SMART and/or GP log Directory and/or logs // Get #pages for extended SMART logs ata_smart_log_directory smartlogdir_buf, gplogdir_buf; const ata_smart_log_directory * smartlogdir = 0, * gplogdir = 0; if ( options.gp_logdir || options.smart_logdir || options.smart_ext_error_log || options.smart_ext_selftest_log || options.sataphy || !options.log_requests.empty() ) { if (isGeneralPurposeLoggingCapable(&drive)) pout("General Purpose Logging (GPL) feature set supported\n"); // Detect directories needed bool need_smart_logdir = options.smart_logdir; bool need_gp_logdir = ( options.gp_logdir || options.smart_ext_error_log || options.smart_ext_selftest_log || options.sataphy ); unsigned i; for (i = 0; i < options.log_requests.size(); i++) { if (options.log_requests[i].gpl) need_gp_logdir = true; else need_smart_logdir = true; } // Read SMART Log directory if (need_smart_logdir) { if (ataReadLogDirectory(device, &smartlogdir_buf, false)){ pout("Read SMART Log Directory failed.\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else smartlogdir = &smartlogdir_buf; } // Read GP Log directory if (need_gp_logdir) { if (ataReadLogDirectory(device, &gplogdir_buf, true)){ pout("Read GP Log Directory failed.\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else gplogdir = &gplogdir_buf; } // Print log directories if ((options.gp_logdir && gplogdir) || (options.smart_logdir && smartlogdir)) PrintLogDirectories(gplogdir, smartlogdir); // Print log pages for (i = 0; i < options.log_requests.size(); i++) { const ata_log_request & req = options.log_requests[i]; const char * type; unsigned max_nsectors; if (req.gpl) { type = "General Purpose"; max_nsectors = GetNumLogSectors(gplogdir, req.logaddr, true); } else { type = "SMART"; max_nsectors = GetNumLogSectors(smartlogdir, req.logaddr, false); } if (!max_nsectors) { if (!con->permissive) { pout("%s Log 0x%02x does not exist (override with '-T permissive' option)\n", type, req.logaddr); continue; } con->permissive--; max_nsectors = req.page+1; } if (max_nsectors <= req.page) { pout("%s Log 0x%02x has only %u sectors, output skipped\n", type, req.logaddr, max_nsectors); continue; } unsigned ns = req.nsectors; if (ns > max_nsectors - req.page) { if (req.nsectors != ~0U) // "FIRST-max" pout("%s Log 0x%02x has only %u sectors, output truncated\n", type, req.logaddr, max_nsectors); ns = max_nsectors - req.page; } // SMART log don't support sector offset, start with first sector unsigned offs = (req.gpl ? 0 : req.page); raw_buffer log_buf((offs + ns) * 512); bool ok; if (req.gpl) ok = ataReadLogExt(device, req.logaddr, 0x00, req.page, log_buf.data(), ns); else ok = ataReadSmartLog(device, req.logaddr, log_buf.data(), offs + ns); if (!ok) failuretest(OPTIONAL_CMD, returnval|=FAILSMART); else PrintLogPages(type, log_buf.data() + offs*512, req.logaddr, req.page, ns, max_nsectors); } } // Print SMART Extendend Comprehensive Error Log bool do_smart_error_log = options.smart_error_log; if (options.smart_ext_error_log) { bool ok = false; unsigned nsectors = GetNumLogSectors(gplogdir, 0x03, true); if (!nsectors) pout("SMART Extended Comprehensive Error Log (GP Log 0x03) not supported\n"); else if (nsectors >= 256) pout("SMART Extended Comprehensive Error Log size %u not supported\n", nsectors); else { raw_buffer log_03_buf(nsectors * 512); ata_smart_exterrlog * log_03 = (ata_smart_exterrlog *)log_03_buf.data(); if (!ataReadExtErrorLog(device, log_03, nsectors)) failuretest(OPTIONAL_CMD, returnval|=FAILSMART); else { PrintSmartExtErrorLog(log_03, nsectors, options.smart_ext_error_log); ok = true; } } if (!ok) { if (options.retry_error_log) do_smart_error_log = true; else if (!do_smart_error_log) pout("Try '-l [xerror,]error' to read traditional SMART Error Log\n"); } } // Print SMART error log if (do_smart_error_log) { if (!isSmartErrorLogCapable(&smartval, &drive)){ pout("Warning: device does not support Error Logging\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } if (ataReadErrorLog(device, &smarterror, fix_firmwarebug)){ pout("Smartctl: SMART Error Log Read Failed\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else { // quiet mode is turned on inside ataPrintSmartErrorLog() if (PrintSmartErrorlog(&smarterror, fix_firmwarebug)) returnval|=FAILERR; PRINT_OFF(con); } } // Print SMART Extendend Self-test Log bool do_smart_selftest_log = options.smart_selftest_log; if (options.smart_ext_selftest_log) { bool ok = false; unsigned nsectors = GetNumLogSectors(gplogdir, 0x07, true); if (!nsectors) pout("SMART Extended Self-test Log (GP Log 0x07) not supported\n"); else if (nsectors >= 256) pout("SMART Extended Self-test Log size %u not supported\n", nsectors); else { raw_buffer log_07_buf(nsectors * 512); ata_smart_extselftestlog * log_07 = (ata_smart_extselftestlog *)log_07_buf.data(); if (!ataReadExtSelfTestLog(device, log_07, nsectors)) failuretest(OPTIONAL_CMD, returnval|=FAILSMART); else { PrintSmartExtSelfTestLog(log_07, nsectors, options.smart_ext_selftest_log); ok = true; } } if (!ok) { if (options.retry_selftest_log) do_smart_selftest_log = true; else if (!do_smart_selftest_log) pout("Try '-l [xselftest,]selftest' to read traditional SMART Self Test Log\n"); } } // Print SMART self-test log if (do_smart_selftest_log) { if (!isSmartTestLogCapable(&smartval, &drive)){ pout("Warning: device does not support Self Test Logging\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } if(ataReadSelfTestLog(device, &smartselftest, fix_firmwarebug)){ pout("Smartctl: SMART Self Test Log Read Failed\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else { PRINT_ON(con); if (ataPrintSmartSelfTestlog(&smartselftest, !con->printing_switchable, fix_firmwarebug)) returnval|=FAILLOG; PRINT_OFF(con); pout("\n"); } } // Print SMART selective self-test log if (options.smart_selective_selftest_log) { ata_selective_self_test_log log; if (!isSupportSelectiveSelfTest(&smartval)) pout("Device does not support Selective Self Tests/Logging\n"); else if(ataReadSelectiveSelfTestLog(device, &log)) { pout("Smartctl: SMART Selective Self Test Log Read Failed\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else { PRINT_ON(con); // If any errors were found, they are logged in the SMART Self-test log. // So there is no need to print the Selective Self Test log in silent // mode. if (!con->printing_switchable) ataPrintSelectiveSelfTestLog(&log, &smartval); PRINT_OFF(con); pout("\n"); } } // Print SCT status and temperature history table if (options.sct_temp_sts || options.sct_temp_hist || options.sct_temp_int) { for (;;) { if (!isSCTCapable(&drive)) { pout("Warning: device does not support SCT Commands\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); break; } if (options.sct_temp_sts || options.sct_temp_hist) { ata_sct_status_response sts; ata_sct_temperature_history_table tmh; if (!options.sct_temp_hist) { // Read SCT status only if (ataReadSCTStatus(device, &sts)) { failuretest(OPTIONAL_CMD, returnval|=FAILSMART); break; } } else { if (!isSCTDataTableCapable(&drive)) { pout("Warning: device does not support SCT Data Table command\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); break; } // Read SCT status and temperature history if (ataReadSCTTempHist(device, &tmh, &sts)) { failuretest(OPTIONAL_CMD, returnval|=FAILSMART); break; } } if (options.sct_temp_sts) ataPrintSCTStatus(&sts); if (options.sct_temp_hist) ataPrintSCTTempHist(&tmh); pout("\n"); } if (options.sct_temp_int) { // Set new temperature logging interval if (!isSCTFeatureControlCapable(&drive)) { pout("Warning: device does not support SCT Feature Control command\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); break; } if (ataSetSCTTempInterval(device, options.sct_temp_int, options.sct_temp_int_pers)) { failuretest(OPTIONAL_CMD, returnval|=FAILSMART); break; } pout("Temperature Logging Interval set to %u minute%s (%s)\n", options.sct_temp_int, (options.sct_temp_int == 1 ? "" : "s"), (options.sct_temp_int_pers ? "persistent" : "volatile")); } break; } } // Print SATA Phy Event Counters if (options.sataphy) { unsigned nsectors = GetNumLogSectors(gplogdir, 0x11, true); if (!nsectors) pout("SATA Phy Event Counters (GP Log 0x11) not supported\n"); else if (nsectors != 1) pout("SATA Phy Event Counters with %u sectors not supported\n", nsectors); else { unsigned char log_11[512] = {0, }; unsigned char features = (options.sataphy_reset ? 0x01 : 0x00); if (!ataReadLogExt(device, 0x11, features, 0, log_11, 1)) failuretest(OPTIONAL_CMD, returnval|=FAILSMART); else PrintSataPhyEventCounters(log_11, options.sataphy_reset); } } // START OF THE TESTING SECTION OF THE CODE. IF NO TESTING, RETURN if (options.smart_selftest_type == -1) return returnval; pout("=== START OF OFFLINE IMMEDIATE AND SELF-TEST SECTION ===\n"); // if doing a self-test, be sure it's supported by the hardware switch (options.smart_selftest_type) { case OFFLINE_FULL_SCAN: if (!isSupportExecuteOfflineImmediate(&smartval)){ pout("Warning: device does not support Execute Offline Immediate function.\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } break; case ABORT_SELF_TEST: case SHORT_SELF_TEST: case EXTEND_SELF_TEST: case SHORT_CAPTIVE_SELF_TEST: case EXTEND_CAPTIVE_SELF_TEST: if (!isSupportSelfTest(&smartval)){ pout("Warning: device does not support Self-Test functions.\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } break; case CONVEYANCE_SELF_TEST: case CONVEYANCE_CAPTIVE_SELF_TEST: if (!isSupportConveyanceSelfTest(&smartval)){ pout("Warning: device does not support Conveyance Self-Test functions.\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } break; case SELECTIVE_SELF_TEST: case SELECTIVE_CAPTIVE_SELF_TEST: if (!isSupportSelectiveSelfTest(&smartval)){ pout("Warning: device does not support Selective Self-Test functions.\n\n"); failuretest(MANDATORY_CMD, returnval|=FAILSMART); } break; default: pout("Internal error in smartctl: smart_test_type==%d not recognized\n", options.smart_selftest_type); pout("Please contact smartmontools developers at %s.\n", PACKAGE_BUGREPORT); EXIT(returnval|=FAILCMD); } // Now do the test. Note ataSmartTest prints its own error/success // messages if (ataSmartTest(device, options.smart_selftest_type, options.smart_selective_args, &smartval, get_num_sectors(&drive) )) failuretest(OPTIONAL_CMD, returnval|=FAILSMART); else { // Tell user how long test will take to complete. This is tricky // because in the case of an Offline Full Scan, the completion // timer is volatile, and needs to be read AFTER the command is // given. If this will interrupt the Offline Full Scan, we don't // do it, just warn user. if (options.smart_selftest_type == OFFLINE_FULL_SCAN) { if (isSupportOfflineAbort(&smartval)) pout("Note: giving further SMART commands will abort Offline testing\n"); else if (ataReadSmartValues(device, &smartval)){ pout("Smartctl: SMART Read Values failed.\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } } // Now say how long the test will take to complete if ((timewait = TestTime(&smartval, options.smart_selftest_type))) { time_t t=time(NULL); if (options.smart_selftest_type == OFFLINE_FULL_SCAN) { t+=timewait; pout("Please wait %d seconds for test to complete.\n", (int)timewait); } else { t+=timewait*60; pout("Please wait %d minutes for test to complete.\n", (int)timewait); } pout("Test will complete after %s\n", ctime(&t)); if ( options.smart_selftest_type != SHORT_CAPTIVE_SELF_TEST && options.smart_selftest_type != EXTEND_CAPTIVE_SELF_TEST && options.smart_selftest_type != CONVEYANCE_CAPTIVE_SELF_TEST && options.smart_selftest_type != SELECTIVE_CAPTIVE_SELF_TEST ) pout("Use smartctl -X to abort test.\n"); } } return returnval; }