mirror of
https://git.proxmox.com/git/mirror_frr
synced 2025-04-29 08:07:35 +00:00

This one also needed a bit of shuffling around, but MTYPE_RE is the only one left used across file boundaries now. Signed-off-by: David Lamparter <equinox@diac24.net>
1561 lines
41 KiB
C
1561 lines
41 KiB
C
/* Kernel communication using netlink interface.
|
|
* Copyright (C) 1999 Kunihiro Ishiguro
|
|
*
|
|
* This file is part of GNU Zebra.
|
|
*
|
|
* GNU Zebra is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2, or (at your option) any
|
|
* later version.
|
|
*
|
|
* GNU Zebra is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; see the file COPYING; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <zebra.h>
|
|
|
|
#ifdef HAVE_NETLINK
|
|
|
|
#include "linklist.h"
|
|
#include "if.h"
|
|
#include "log.h"
|
|
#include "prefix.h"
|
|
#include "connected.h"
|
|
#include "table.h"
|
|
#include "memory.h"
|
|
#include "rib.h"
|
|
#include "thread.h"
|
|
#include "privs.h"
|
|
#include "nexthop.h"
|
|
#include "vrf.h"
|
|
#include "mpls.h"
|
|
#include "lib_errors.h"
|
|
|
|
//#include "zebra/zserv.h"
|
|
#include "zebra/zebra_router.h"
|
|
#include "zebra/zebra_ns.h"
|
|
#include "zebra/zebra_vrf.h"
|
|
#include "zebra/rt.h"
|
|
#include "zebra/debug.h"
|
|
#include "zebra/kernel_netlink.h"
|
|
#include "zebra/rt_netlink.h"
|
|
#include "zebra/if_netlink.h"
|
|
#include "zebra/rule_netlink.h"
|
|
#include "zebra/zebra_errors.h"
|
|
|
|
#ifndef SO_RCVBUFFORCE
|
|
#define SO_RCVBUFFORCE (33)
|
|
#endif
|
|
|
|
/* Hack for GNU libc version 2. */
|
|
#ifndef MSG_TRUNC
|
|
#define MSG_TRUNC 0x20
|
|
#endif /* MSG_TRUNC */
|
|
|
|
#ifndef NLMSG_TAIL
|
|
#define NLMSG_TAIL(nmsg) \
|
|
((struct rtattr *)(((uint8_t *)(nmsg)) \
|
|
+ NLMSG_ALIGN((nmsg)->nlmsg_len)))
|
|
#endif
|
|
|
|
#ifndef RTA_TAIL
|
|
#define RTA_TAIL(rta) \
|
|
((struct rtattr *)(((uint8_t *)(rta)) + RTA_ALIGN((rta)->rta_len)))
|
|
#endif
|
|
|
|
#ifndef RTNL_FAMILY_IP6MR
|
|
#define RTNL_FAMILY_IP6MR 129
|
|
#endif
|
|
|
|
#ifndef RTPROT_MROUTED
|
|
#define RTPROT_MROUTED 17
|
|
#endif
|
|
|
|
#define NL_DEFAULT_BATCH_BUFSIZE (16 * NL_PKT_BUF_SIZE)
|
|
|
|
/*
|
|
* We limit the batch's size to a number smaller than the length of the
|
|
* underlying buffer since the last message that wouldn't fit the batch would go
|
|
* over the upper boundary and then it would have to be encoded again into a new
|
|
* buffer. If the difference between the limit and the length of the buffer is
|
|
* big enough (bigger than the biggest Netlink message) then this situation
|
|
* won't occur.
|
|
*/
|
|
#define NL_DEFAULT_BATCH_SEND_THRESHOLD (15 * NL_PKT_BUF_SIZE)
|
|
|
|
#define NL_BATCH_RX_BUFSIZE NL_RCV_PKT_BUF_SIZE
|
|
|
|
static const struct message nlmsg_str[] = {{RTM_NEWROUTE, "RTM_NEWROUTE"},
|
|
{RTM_DELROUTE, "RTM_DELROUTE"},
|
|
{RTM_GETROUTE, "RTM_GETROUTE"},
|
|
{RTM_NEWLINK, "RTM_NEWLINK"},
|
|
{RTM_DELLINK, "RTM_DELLINK"},
|
|
{RTM_GETLINK, "RTM_GETLINK"},
|
|
{RTM_NEWADDR, "RTM_NEWADDR"},
|
|
{RTM_DELADDR, "RTM_DELADDR"},
|
|
{RTM_GETADDR, "RTM_GETADDR"},
|
|
{RTM_NEWNEIGH, "RTM_NEWNEIGH"},
|
|
{RTM_DELNEIGH, "RTM_DELNEIGH"},
|
|
{RTM_GETNEIGH, "RTM_GETNEIGH"},
|
|
{RTM_NEWRULE, "RTM_NEWRULE"},
|
|
{RTM_DELRULE, "RTM_DELRULE"},
|
|
{RTM_GETRULE, "RTM_GETRULE"},
|
|
{RTM_NEWNEXTHOP, "RTM_NEWNEXTHOP"},
|
|
{RTM_DELNEXTHOP, "RTM_DELNEXTHOP"},
|
|
{RTM_GETNEXTHOP, "RTM_GETNEXTHOP"},
|
|
{0}};
|
|
|
|
static const struct message rtproto_str[] = {
|
|
{RTPROT_REDIRECT, "redirect"},
|
|
{RTPROT_KERNEL, "kernel"},
|
|
{RTPROT_BOOT, "boot"},
|
|
{RTPROT_STATIC, "static"},
|
|
{RTPROT_GATED, "GateD"},
|
|
{RTPROT_RA, "router advertisement"},
|
|
{RTPROT_MRT, "MRT"},
|
|
{RTPROT_ZEBRA, "Zebra"},
|
|
#ifdef RTPROT_BIRD
|
|
{RTPROT_BIRD, "BIRD"},
|
|
#endif /* RTPROT_BIRD */
|
|
{RTPROT_MROUTED, "mroute"},
|
|
{RTPROT_BGP, "BGP"},
|
|
{RTPROT_OSPF, "OSPF"},
|
|
{RTPROT_ISIS, "IS-IS"},
|
|
{RTPROT_RIP, "RIP"},
|
|
{RTPROT_RIPNG, "RIPNG"},
|
|
{RTPROT_ZSTATIC, "static"},
|
|
{0}};
|
|
|
|
static const struct message family_str[] = {{AF_INET, "ipv4"},
|
|
{AF_INET6, "ipv6"},
|
|
{AF_BRIDGE, "bridge"},
|
|
{RTNL_FAMILY_IPMR, "ipv4MR"},
|
|
{RTNL_FAMILY_IP6MR, "ipv6MR"},
|
|
{0}};
|
|
|
|
static const struct message rttype_str[] = {{RTN_UNSPEC, "none"},
|
|
{RTN_UNICAST, "unicast"},
|
|
{RTN_LOCAL, "local"},
|
|
{RTN_BROADCAST, "broadcast"},
|
|
{RTN_ANYCAST, "anycast"},
|
|
{RTN_MULTICAST, "multicast"},
|
|
{RTN_BLACKHOLE, "blackhole"},
|
|
{RTN_UNREACHABLE, "unreachable"},
|
|
{RTN_PROHIBIT, "prohibited"},
|
|
{RTN_THROW, "throw"},
|
|
{RTN_NAT, "nat"},
|
|
{RTN_XRESOLVE, "resolver"},
|
|
{0}};
|
|
|
|
extern struct thread_master *master;
|
|
extern uint32_t nl_rcvbufsize;
|
|
|
|
extern struct zebra_privs_t zserv_privs;
|
|
|
|
DEFINE_MTYPE_STATIC(ZEBRA, NL_BUF, "Zebra Netlink buffers");
|
|
|
|
size_t nl_batch_tx_bufsize;
|
|
char *nl_batch_tx_buf;
|
|
|
|
char nl_batch_rx_buf[NL_BATCH_RX_BUFSIZE];
|
|
|
|
_Atomic uint32_t nl_batch_bufsize = NL_DEFAULT_BATCH_BUFSIZE;
|
|
_Atomic uint32_t nl_batch_send_threshold = NL_DEFAULT_BATCH_SEND_THRESHOLD;
|
|
|
|
struct nl_batch {
|
|
void *buf;
|
|
size_t bufsiz;
|
|
size_t limit;
|
|
|
|
void *buf_head;
|
|
size_t curlen;
|
|
size_t msgcnt;
|
|
|
|
const struct zebra_dplane_info *zns;
|
|
|
|
struct dplane_ctx_q ctx_list;
|
|
|
|
/*
|
|
* Pointer to the queue of completed contexts outbound back
|
|
* towards the dataplane module.
|
|
*/
|
|
struct dplane_ctx_q *ctx_out_q;
|
|
};
|
|
|
|
int netlink_config_write_helper(struct vty *vty)
|
|
{
|
|
uint32_t size =
|
|
atomic_load_explicit(&nl_batch_bufsize, memory_order_relaxed);
|
|
uint32_t threshold = atomic_load_explicit(&nl_batch_send_threshold,
|
|
memory_order_relaxed);
|
|
|
|
if (size != NL_DEFAULT_BATCH_BUFSIZE
|
|
|| threshold != NL_DEFAULT_BATCH_SEND_THRESHOLD)
|
|
vty_out(vty, "zebra kernel netlink batch-tx-buf %u %u\n", size,
|
|
threshold);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void netlink_set_batch_buffer_size(uint32_t size, uint32_t threshold, bool set)
|
|
{
|
|
if (!set) {
|
|
size = NL_DEFAULT_BATCH_BUFSIZE;
|
|
threshold = NL_DEFAULT_BATCH_SEND_THRESHOLD;
|
|
}
|
|
|
|
atomic_store_explicit(&nl_batch_bufsize, size, memory_order_relaxed);
|
|
atomic_store_explicit(&nl_batch_send_threshold, threshold,
|
|
memory_order_relaxed);
|
|
}
|
|
|
|
int netlink_talk_filter(struct nlmsghdr *h, ns_id_t ns_id, int startup)
|
|
{
|
|
/*
|
|
* This is an error condition that must be handled during
|
|
* development.
|
|
*
|
|
* The netlink_talk_filter function is used for communication
|
|
* down the netlink_cmd pipe and we are expecting
|
|
* an ack being received. So if we get here
|
|
* then we did not receive the ack and instead
|
|
* received some other message in an unexpected
|
|
* way.
|
|
*/
|
|
zlog_debug("%s: ignoring message type 0x%04x(%s) NS %u", __func__,
|
|
h->nlmsg_type, nl_msg_type_to_str(h->nlmsg_type), ns_id);
|
|
return 0;
|
|
}
|
|
|
|
static int netlink_recvbuf(struct nlsock *nl, uint32_t newsize)
|
|
{
|
|
uint32_t oldsize;
|
|
socklen_t newlen = sizeof(newsize);
|
|
socklen_t oldlen = sizeof(oldsize);
|
|
int ret;
|
|
|
|
ret = getsockopt(nl->sock, SOL_SOCKET, SO_RCVBUF, &oldsize, &oldlen);
|
|
if (ret < 0) {
|
|
flog_err_sys(EC_LIB_SOCKET,
|
|
"Can't get %s receive buffer size: %s", nl->name,
|
|
safe_strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
/* Try force option (linux >= 2.6.14) and fall back to normal set */
|
|
frr_with_privs(&zserv_privs) {
|
|
ret = setsockopt(nl->sock, SOL_SOCKET, SO_RCVBUFFORCE,
|
|
&nl_rcvbufsize,
|
|
sizeof(nl_rcvbufsize));
|
|
}
|
|
if (ret < 0)
|
|
ret = setsockopt(nl->sock, SOL_SOCKET, SO_RCVBUF,
|
|
&nl_rcvbufsize, sizeof(nl_rcvbufsize));
|
|
if (ret < 0) {
|
|
flog_err_sys(EC_LIB_SOCKET,
|
|
"Can't set %s receive buffer size: %s", nl->name,
|
|
safe_strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
ret = getsockopt(nl->sock, SOL_SOCKET, SO_RCVBUF, &newsize, &newlen);
|
|
if (ret < 0) {
|
|
flog_err_sys(EC_LIB_SOCKET,
|
|
"Can't get %s receive buffer size: %s", nl->name,
|
|
safe_strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
zlog_info("Setting netlink socket receive buffer size: %u -> %u",
|
|
oldsize, newsize);
|
|
return 0;
|
|
}
|
|
|
|
/* Make socket for Linux netlink interface. */
|
|
static int netlink_socket(struct nlsock *nl, unsigned long groups,
|
|
ns_id_t ns_id)
|
|
{
|
|
int ret;
|
|
struct sockaddr_nl snl;
|
|
int sock;
|
|
int namelen;
|
|
|
|
frr_with_privs(&zserv_privs) {
|
|
sock = ns_socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE, ns_id);
|
|
if (sock < 0) {
|
|
zlog_err("Can't open %s socket: %s", nl->name,
|
|
safe_strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
memset(&snl, 0, sizeof(snl));
|
|
snl.nl_family = AF_NETLINK;
|
|
snl.nl_groups = groups;
|
|
|
|
/* Bind the socket to the netlink structure for anything. */
|
|
ret = bind(sock, (struct sockaddr *)&snl, sizeof(snl));
|
|
}
|
|
|
|
if (ret < 0) {
|
|
zlog_err("Can't bind %s socket to group 0x%x: %s", nl->name,
|
|
snl.nl_groups, safe_strerror(errno));
|
|
close(sock);
|
|
return -1;
|
|
}
|
|
|
|
/* multiple netlink sockets will have different nl_pid */
|
|
namelen = sizeof(snl);
|
|
ret = getsockname(sock, (struct sockaddr *)&snl, (socklen_t *)&namelen);
|
|
if (ret < 0 || namelen != sizeof(snl)) {
|
|
flog_err_sys(EC_LIB_SOCKET, "Can't get %s socket name: %s",
|
|
nl->name, safe_strerror(errno));
|
|
close(sock);
|
|
return -1;
|
|
}
|
|
|
|
nl->snl = snl;
|
|
nl->sock = sock;
|
|
return ret;
|
|
}
|
|
|
|
static int netlink_information_fetch(struct nlmsghdr *h, ns_id_t ns_id,
|
|
int startup)
|
|
{
|
|
/*
|
|
* When we handle new message types here
|
|
* because we are starting to install them
|
|
* then lets check the netlink_install_filter
|
|
* and see if we should add the corresponding
|
|
* allow through entry there.
|
|
* Probably not needed to do but please
|
|
* think about it.
|
|
*/
|
|
switch (h->nlmsg_type) {
|
|
case RTM_NEWROUTE:
|
|
return netlink_route_change(h, ns_id, startup);
|
|
case RTM_DELROUTE:
|
|
return netlink_route_change(h, ns_id, startup);
|
|
case RTM_NEWLINK:
|
|
return netlink_link_change(h, ns_id, startup);
|
|
case RTM_DELLINK:
|
|
return netlink_link_change(h, ns_id, startup);
|
|
case RTM_NEWADDR:
|
|
return netlink_interface_addr(h, ns_id, startup);
|
|
case RTM_DELADDR:
|
|
return netlink_interface_addr(h, ns_id, startup);
|
|
case RTM_NEWNEIGH:
|
|
return netlink_neigh_change(h, ns_id);
|
|
case RTM_DELNEIGH:
|
|
return netlink_neigh_change(h, ns_id);
|
|
case RTM_GETNEIGH:
|
|
/*
|
|
* Kernel in some situations when it expects
|
|
* user space to resolve arp entries, we will
|
|
* receive this notification. As we don't
|
|
* need this notification and as that
|
|
* we don't want to spam the log file with
|
|
* below messages, just ignore.
|
|
*/
|
|
if (IS_ZEBRA_DEBUG_KERNEL)
|
|
zlog_debug("Received RTM_GETNEIGH, ignoring");
|
|
break;
|
|
case RTM_NEWRULE:
|
|
return netlink_rule_change(h, ns_id, startup);
|
|
case RTM_DELRULE:
|
|
return netlink_rule_change(h, ns_id, startup);
|
|
case RTM_NEWNEXTHOP:
|
|
return netlink_nexthop_change(h, ns_id, startup);
|
|
case RTM_DELNEXTHOP:
|
|
return netlink_nexthop_change(h, ns_id, startup);
|
|
default:
|
|
/*
|
|
* If we have received this message then
|
|
* we have made a mistake during development
|
|
* and we need to write some code to handle
|
|
* this message type or not ask for
|
|
* it to be sent up to us
|
|
*/
|
|
flog_err(EC_ZEBRA_UNKNOWN_NLMSG,
|
|
"Unknown netlink nlmsg_type %s(%d) vrf %u",
|
|
nl_msg_type_to_str(h->nlmsg_type), h->nlmsg_type,
|
|
ns_id);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int kernel_read(struct thread *thread)
|
|
{
|
|
struct zebra_ns *zns = (struct zebra_ns *)THREAD_ARG(thread);
|
|
struct zebra_dplane_info dp_info;
|
|
|
|
/* Capture key info from ns struct */
|
|
zebra_dplane_info_from_zns(&dp_info, zns, false);
|
|
|
|
netlink_parse_info(netlink_information_fetch, &zns->netlink, &dp_info,
|
|
5, 0);
|
|
zns->t_netlink = NULL;
|
|
thread_add_read(zrouter.master, kernel_read, zns, zns->netlink.sock,
|
|
&zns->t_netlink);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Filter out messages from self that occur on listener socket,
|
|
* caused by our actions on the command socket(s)
|
|
*
|
|
* When we add new Netlink message types we probably
|
|
* do not need to add them here as that we are filtering
|
|
* on the routes we actually care to receive( which is rarer
|
|
* then the normal course of operations). We are intentionally
|
|
* allowing some messages from ourselves through
|
|
* ( I'm looking at you Interface based netlink messages )
|
|
* so that we only had to write one way to handle incoming
|
|
* address add/delete changes.
|
|
*/
|
|
static void netlink_install_filter(int sock, __u32 pid, __u32 dplane_pid)
|
|
{
|
|
/*
|
|
* BPF_JUMP instructions and where you jump to are based upon
|
|
* 0 as being the next statement. So count from 0. Writing
|
|
* this down because every time I look at this I have to
|
|
* re-remember it.
|
|
*/
|
|
struct sock_filter filter[] = {
|
|
/*
|
|
* Logic:
|
|
* if (nlmsg_pid == pid ||
|
|
* nlmsg_pid == dplane_pid) {
|
|
* if (the incoming nlmsg_type ==
|
|
* RTM_NEWADDR | RTM_DELADDR)
|
|
* keep this message
|
|
* else
|
|
* skip this message
|
|
* } else
|
|
* keep this netlink message
|
|
*/
|
|
/*
|
|
* 0: Load the nlmsg_pid into the BPF register
|
|
*/
|
|
BPF_STMT(BPF_LD | BPF_ABS | BPF_W,
|
|
offsetof(struct nlmsghdr, nlmsg_pid)),
|
|
/*
|
|
* 1: Compare to pid
|
|
*/
|
|
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htonl(pid), 1, 0),
|
|
/*
|
|
* 2: Compare to dplane pid
|
|
*/
|
|
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htonl(dplane_pid), 0, 4),
|
|
/*
|
|
* 3: Load the nlmsg_type into BPF register
|
|
*/
|
|
BPF_STMT(BPF_LD | BPF_ABS | BPF_H,
|
|
offsetof(struct nlmsghdr, nlmsg_type)),
|
|
/*
|
|
* 4: Compare to RTM_NEWADDR
|
|
*/
|
|
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htons(RTM_NEWADDR), 2, 0),
|
|
/*
|
|
* 5: Compare to RTM_DELADDR
|
|
*/
|
|
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htons(RTM_DELADDR), 1, 0),
|
|
/*
|
|
* 6: This is the end state of we want to skip the
|
|
* message
|
|
*/
|
|
BPF_STMT(BPF_RET | BPF_K, 0),
|
|
/* 7: This is the end state of we want to keep
|
|
* the message
|
|
*/
|
|
BPF_STMT(BPF_RET | BPF_K, 0xffff),
|
|
};
|
|
|
|
struct sock_fprog prog = {
|
|
.len = array_size(filter), .filter = filter,
|
|
};
|
|
|
|
if (setsockopt(sock, SOL_SOCKET, SO_ATTACH_FILTER, &prog, sizeof(prog))
|
|
< 0)
|
|
flog_err_sys(EC_LIB_SOCKET, "Can't install socket filter: %s",
|
|
safe_strerror(errno));
|
|
}
|
|
|
|
void netlink_parse_rtattr_flags(struct rtattr **tb, int max,
|
|
struct rtattr *rta, int len, unsigned short flags)
|
|
{
|
|
unsigned short type;
|
|
|
|
while (RTA_OK(rta, len)) {
|
|
type = rta->rta_type & ~flags;
|
|
if ((type <= max) && (!tb[type]))
|
|
tb[type] = rta;
|
|
rta = RTA_NEXT(rta, len);
|
|
}
|
|
}
|
|
|
|
void netlink_parse_rtattr(struct rtattr **tb, int max, struct rtattr *rta,
|
|
int len)
|
|
{
|
|
while (RTA_OK(rta, len)) {
|
|
if (rta->rta_type <= max)
|
|
tb[rta->rta_type] = rta;
|
|
rta = RTA_NEXT(rta, len);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* netlink_parse_rtattr_nested() - Parses a nested route attribute
|
|
* @tb: Pointer to array for storing rtattr in.
|
|
* @max: Max number to store.
|
|
* @rta: Pointer to rtattr to look for nested items in.
|
|
*/
|
|
void netlink_parse_rtattr_nested(struct rtattr **tb, int max,
|
|
struct rtattr *rta)
|
|
{
|
|
netlink_parse_rtattr(tb, max, RTA_DATA(rta), RTA_PAYLOAD(rta));
|
|
}
|
|
|
|
bool nl_attr_put(struct nlmsghdr *n, unsigned int maxlen, int type,
|
|
const void *data, unsigned int alen)
|
|
{
|
|
int len;
|
|
struct rtattr *rta;
|
|
|
|
len = RTA_LENGTH(alen);
|
|
|
|
if (NLMSG_ALIGN(n->nlmsg_len) + RTA_ALIGN(len) > maxlen)
|
|
return false;
|
|
|
|
rta = (struct rtattr *)(((char *)n) + NLMSG_ALIGN(n->nlmsg_len));
|
|
rta->rta_type = type;
|
|
rta->rta_len = len;
|
|
|
|
if (data)
|
|
memcpy(RTA_DATA(rta), data, alen);
|
|
else
|
|
assert(alen == 0);
|
|
|
|
n->nlmsg_len = NLMSG_ALIGN(n->nlmsg_len) + RTA_ALIGN(len);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool nl_attr_put16(struct nlmsghdr *n, unsigned int maxlen, int type,
|
|
uint16_t data)
|
|
{
|
|
return nl_attr_put(n, maxlen, type, &data, sizeof(uint16_t));
|
|
}
|
|
|
|
bool nl_attr_put32(struct nlmsghdr *n, unsigned int maxlen, int type,
|
|
uint32_t data)
|
|
{
|
|
return nl_attr_put(n, maxlen, type, &data, sizeof(uint32_t));
|
|
}
|
|
|
|
struct rtattr *nl_attr_nest(struct nlmsghdr *n, unsigned int maxlen, int type)
|
|
{
|
|
struct rtattr *nest = NLMSG_TAIL(n);
|
|
|
|
if (!nl_attr_put(n, maxlen, type, NULL, 0))
|
|
return NULL;
|
|
|
|
nest->rta_type |= NLA_F_NESTED;
|
|
return nest;
|
|
}
|
|
|
|
int nl_attr_nest_end(struct nlmsghdr *n, struct rtattr *nest)
|
|
{
|
|
nest->rta_len = (uint8_t *)NLMSG_TAIL(n) - (uint8_t *)nest;
|
|
return n->nlmsg_len;
|
|
}
|
|
|
|
struct rtnexthop *nl_attr_rtnh(struct nlmsghdr *n, unsigned int maxlen)
|
|
{
|
|
struct rtnexthop *rtnh = (struct rtnexthop *)NLMSG_TAIL(n);
|
|
|
|
if (NLMSG_ALIGN(n->nlmsg_len) + RTNH_ALIGN(sizeof(struct rtnexthop))
|
|
> maxlen)
|
|
return NULL;
|
|
|
|
memset(rtnh, 0, sizeof(struct rtnexthop));
|
|
n->nlmsg_len =
|
|
NLMSG_ALIGN(n->nlmsg_len) + RTA_ALIGN(sizeof(struct rtnexthop));
|
|
|
|
return rtnh;
|
|
}
|
|
|
|
void nl_attr_rtnh_end(struct nlmsghdr *n, struct rtnexthop *rtnh)
|
|
{
|
|
rtnh->rtnh_len = (uint8_t *)NLMSG_TAIL(n) - (uint8_t *)rtnh;
|
|
}
|
|
|
|
const char *nl_msg_type_to_str(uint16_t msg_type)
|
|
{
|
|
return lookup_msg(nlmsg_str, msg_type, "");
|
|
}
|
|
|
|
const char *nl_rtproto_to_str(uint8_t rtproto)
|
|
{
|
|
return lookup_msg(rtproto_str, rtproto, "");
|
|
}
|
|
|
|
const char *nl_family_to_str(uint8_t family)
|
|
{
|
|
return lookup_msg(family_str, family, "");
|
|
}
|
|
|
|
const char *nl_rttype_to_str(uint8_t rttype)
|
|
{
|
|
return lookup_msg(rttype_str, rttype, "");
|
|
}
|
|
|
|
#define NLA_OK(nla, len) \
|
|
((len) >= (int)sizeof(struct nlattr) \
|
|
&& (nla)->nla_len >= sizeof(struct nlattr) \
|
|
&& (nla)->nla_len <= (len))
|
|
#define NLA_NEXT(nla, attrlen) \
|
|
((attrlen) -= NLA_ALIGN((nla)->nla_len), \
|
|
(struct nlattr *)(((char *)(nla)) + NLA_ALIGN((nla)->nla_len)))
|
|
#define NLA_LENGTH(len) (NLA_ALIGN(sizeof(struct nlattr)) + (len))
|
|
#define NLA_DATA(nla) ((struct nlattr *)(((char *)(nla)) + NLA_LENGTH(0)))
|
|
|
|
#define ERR_NLA(err, inner_len) \
|
|
((struct nlattr *)(((char *)(err)) \
|
|
+ NLMSG_ALIGN(sizeof(struct nlmsgerr)) \
|
|
+ NLMSG_ALIGN((inner_len))))
|
|
|
|
static void netlink_parse_nlattr(struct nlattr **tb, int max,
|
|
struct nlattr *nla, int len)
|
|
{
|
|
while (NLA_OK(nla, len)) {
|
|
if (nla->nla_type <= max)
|
|
tb[nla->nla_type] = nla;
|
|
nla = NLA_NEXT(nla, len);
|
|
}
|
|
}
|
|
|
|
static void netlink_parse_extended_ack(struct nlmsghdr *h)
|
|
{
|
|
struct nlattr *tb[NLMSGERR_ATTR_MAX + 1] = {};
|
|
const struct nlmsgerr *err = (const struct nlmsgerr *)NLMSG_DATA(h);
|
|
const struct nlmsghdr *err_nlh = NULL;
|
|
/* Length not including nlmsghdr */
|
|
uint32_t len = 0;
|
|
/* Inner error netlink message length */
|
|
uint32_t inner_len = 0;
|
|
const char *msg = NULL;
|
|
uint32_t off = 0;
|
|
|
|
if (!(h->nlmsg_flags & NLM_F_CAPPED))
|
|
inner_len = (uint32_t)NLMSG_PAYLOAD(&err->msg, 0);
|
|
|
|
len = (uint32_t)(NLMSG_PAYLOAD(h, sizeof(struct nlmsgerr)) - inner_len);
|
|
|
|
netlink_parse_nlattr(tb, NLMSGERR_ATTR_MAX, ERR_NLA(err, inner_len),
|
|
len);
|
|
|
|
if (tb[NLMSGERR_ATTR_MSG])
|
|
msg = (const char *)NLA_DATA(tb[NLMSGERR_ATTR_MSG]);
|
|
|
|
if (tb[NLMSGERR_ATTR_OFFS]) {
|
|
off = *(uint32_t *)NLA_DATA(tb[NLMSGERR_ATTR_OFFS]);
|
|
|
|
if (off > h->nlmsg_len) {
|
|
zlog_err("Invalid offset for NLMSGERR_ATTR_OFFS");
|
|
} else if (!(h->nlmsg_flags & NLM_F_CAPPED)) {
|
|
/*
|
|
* Header of failed message
|
|
* we are not doing anything currently with it
|
|
* but noticing it for later.
|
|
*/
|
|
err_nlh = &err->msg;
|
|
zlog_debug("%s: Received %s extended Ack", __func__,
|
|
nl_msg_type_to_str(err_nlh->nlmsg_type));
|
|
}
|
|
}
|
|
|
|
if (msg && *msg != '\0') {
|
|
bool is_err = !!err->error;
|
|
|
|
if (is_err)
|
|
zlog_err("Extended Error: %s", msg);
|
|
else
|
|
flog_warn(EC_ZEBRA_NETLINK_EXTENDED_WARNING,
|
|
"Extended Warning: %s", msg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* netlink_send_msg - send a netlink message of a certain size.
|
|
*
|
|
* Returns -1 on error. Otherwise, it returns the number of bytes sent.
|
|
*/
|
|
static ssize_t netlink_send_msg(const struct nlsock *nl, void *buf,
|
|
size_t buflen)
|
|
{
|
|
struct sockaddr_nl snl = {};
|
|
struct iovec iov = {};
|
|
struct msghdr msg = {};
|
|
ssize_t status;
|
|
int save_errno = 0;
|
|
|
|
iov.iov_base = buf;
|
|
iov.iov_len = buflen;
|
|
msg.msg_name = &snl;
|
|
msg.msg_namelen = sizeof(snl);
|
|
msg.msg_iov = &iov;
|
|
msg.msg_iovlen = 1;
|
|
|
|
snl.nl_family = AF_NETLINK;
|
|
|
|
/* Send message to netlink interface. */
|
|
frr_with_privs(&zserv_privs) {
|
|
status = sendmsg(nl->sock, &msg, 0);
|
|
save_errno = errno;
|
|
}
|
|
|
|
if (IS_ZEBRA_DEBUG_KERNEL_MSGDUMP_SEND) {
|
|
zlog_debug("%s: >> netlink message dump [sent]", __func__);
|
|
#ifdef NETLINK_DEBUG
|
|
nl_dump(buf, buflen);
|
|
#else
|
|
zlog_hexdump(buf, buflen);
|
|
#endif /* NETLINK_DEBUG */
|
|
}
|
|
|
|
if (status == -1) {
|
|
flog_err_sys(EC_LIB_SOCKET, "%s error: %s", __func__,
|
|
safe_strerror(save_errno));
|
|
return -1;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* netlink_recv_msg - receive a netlink message.
|
|
*
|
|
* Returns -1 on error, 0 if read would block or the number of bytes received.
|
|
*/
|
|
static int netlink_recv_msg(const struct nlsock *nl, struct msghdr msg,
|
|
void *buf, size_t buflen)
|
|
{
|
|
struct iovec iov;
|
|
int status;
|
|
|
|
iov.iov_base = buf;
|
|
iov.iov_len = buflen;
|
|
msg.msg_iov = &iov;
|
|
msg.msg_iovlen = 1;
|
|
|
|
do {
|
|
status = recvmsg(nl->sock, &msg, 0);
|
|
} while (status == -1 && errno == EINTR);
|
|
|
|
if (status == -1) {
|
|
if (errno == EWOULDBLOCK || errno == EAGAIN)
|
|
return 0;
|
|
flog_err(EC_ZEBRA_RECVMSG_OVERRUN, "%s recvmsg overrun: %s",
|
|
nl->name, safe_strerror(errno));
|
|
/*
|
|
* In this case we are screwed. There is no good way to recover
|
|
* zebra at this point.
|
|
*/
|
|
exit(-1);
|
|
}
|
|
|
|
if (status == 0) {
|
|
flog_err_sys(EC_LIB_SOCKET, "%s EOF", nl->name);
|
|
return -1;
|
|
}
|
|
|
|
if (msg.msg_namelen != sizeof(struct sockaddr_nl)) {
|
|
flog_err(EC_ZEBRA_NETLINK_LENGTH_ERROR,
|
|
"%s sender address length error: length %d", nl->name,
|
|
msg.msg_namelen);
|
|
return -1;
|
|
}
|
|
|
|
if (IS_ZEBRA_DEBUG_KERNEL_MSGDUMP_RECV) {
|
|
zlog_debug("%s: << netlink message dump [recv]", __func__);
|
|
#ifdef NETLINK_DEBUG
|
|
nl_dump(buf, status);
|
|
#else
|
|
zlog_hexdump(buf, status);
|
|
#endif /* NETLINK_DEBUG */
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* netlink_parse_error - parse a netlink error message
|
|
*
|
|
* Returns 1 if this message is acknowledgement, 0 if this error should be
|
|
* ignored, -1 otherwise.
|
|
*/
|
|
static int netlink_parse_error(const struct nlsock *nl, struct nlmsghdr *h,
|
|
const struct zebra_dplane_info *zns,
|
|
bool startup)
|
|
{
|
|
struct nlmsgerr *err = (struct nlmsgerr *)NLMSG_DATA(h);
|
|
int errnum = err->error;
|
|
int msg_type = err->msg.nlmsg_type;
|
|
|
|
if (h->nlmsg_len < NLMSG_LENGTH(sizeof(struct nlmsgerr))) {
|
|
flog_err(EC_ZEBRA_NETLINK_LENGTH_ERROR,
|
|
"%s error: message truncated", nl->name);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Parse the extended information before we actually handle it. At this
|
|
* point in time we do not do anything other than report the issue.
|
|
*/
|
|
if (h->nlmsg_flags & NLM_F_ACK_TLVS)
|
|
netlink_parse_extended_ack(h);
|
|
|
|
/* If the error field is zero, then this is an ACK. */
|
|
if (err->error == 0) {
|
|
if (IS_ZEBRA_DEBUG_KERNEL) {
|
|
zlog_debug("%s: %s ACK: type=%s(%u), seq=%u, pid=%u",
|
|
__func__, nl->name,
|
|
nl_msg_type_to_str(err->msg.nlmsg_type),
|
|
err->msg.nlmsg_type, err->msg.nlmsg_seq,
|
|
err->msg.nlmsg_pid);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Deal with errors that occur because of races in link handling. */
|
|
if (zns->is_cmd
|
|
&& ((msg_type == RTM_DELROUTE
|
|
&& (-errnum == ENODEV || -errnum == ESRCH))
|
|
|| (msg_type == RTM_NEWROUTE
|
|
&& (-errnum == ENETDOWN || -errnum == EEXIST)))) {
|
|
if (IS_ZEBRA_DEBUG_KERNEL)
|
|
zlog_debug("%s: error: %s type=%s(%u), seq=%u, pid=%u",
|
|
nl->name, safe_strerror(-errnum),
|
|
nl_msg_type_to_str(msg_type), msg_type,
|
|
err->msg.nlmsg_seq, err->msg.nlmsg_pid);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We see RTM_DELNEIGH when shutting down an interface with an IPv4
|
|
* link-local. The kernel should have already deleted the neighbor so
|
|
* do not log these as an error.
|
|
*/
|
|
if (msg_type == RTM_DELNEIGH
|
|
|| (zns->is_cmd && msg_type == RTM_NEWROUTE
|
|
&& (-errnum == ESRCH || -errnum == ENETUNREACH))) {
|
|
/*
|
|
* This is known to happen in some situations, don't log as
|
|
* error.
|
|
*/
|
|
if (IS_ZEBRA_DEBUG_KERNEL)
|
|
zlog_debug("%s error: %s, type=%s(%u), seq=%u, pid=%u",
|
|
nl->name, safe_strerror(-errnum),
|
|
nl_msg_type_to_str(msg_type), msg_type,
|
|
err->msg.nlmsg_seq, err->msg.nlmsg_pid);
|
|
} else {
|
|
if ((msg_type != RTM_GETNEXTHOP) || !startup)
|
|
flog_err(EC_ZEBRA_UNEXPECTED_MESSAGE,
|
|
"%s error: %s, type=%s(%u), seq=%u, pid=%u",
|
|
nl->name, safe_strerror(-errnum),
|
|
nl_msg_type_to_str(msg_type), msg_type,
|
|
err->msg.nlmsg_seq, err->msg.nlmsg_pid);
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* netlink_parse_info
|
|
*
|
|
* Receive message from netlink interface and pass those information
|
|
* to the given function.
|
|
*
|
|
* filter -> Function to call to read the results
|
|
* nl -> netlink socket information
|
|
* zns -> The zebra namespace data
|
|
* count -> How many we should read in, 0 means as much as possible
|
|
* startup -> Are we reading in under startup conditions? passed to
|
|
* the filter.
|
|
*/
|
|
int netlink_parse_info(int (*filter)(struct nlmsghdr *, ns_id_t, int),
|
|
const struct nlsock *nl,
|
|
const struct zebra_dplane_info *zns,
|
|
int count, int startup)
|
|
{
|
|
int status;
|
|
int ret = 0;
|
|
int error;
|
|
int read_in = 0;
|
|
|
|
while (1) {
|
|
char buf[NL_RCV_PKT_BUF_SIZE];
|
|
struct sockaddr_nl snl;
|
|
struct msghdr msg = {.msg_name = (void *)&snl,
|
|
.msg_namelen = sizeof(snl)};
|
|
struct nlmsghdr *h;
|
|
|
|
if (count && read_in >= count)
|
|
return 0;
|
|
|
|
status = netlink_recv_msg(nl, msg, buf, sizeof(buf));
|
|
if (status == -1)
|
|
return -1;
|
|
else if (status == 0)
|
|
break;
|
|
|
|
read_in++;
|
|
for (h = (struct nlmsghdr *)buf;
|
|
(status >= 0 && NLMSG_OK(h, (unsigned int)status));
|
|
h = NLMSG_NEXT(h, status)) {
|
|
/* Finish of reading. */
|
|
if (h->nlmsg_type == NLMSG_DONE)
|
|
return ret;
|
|
|
|
/* Error handling. */
|
|
if (h->nlmsg_type == NLMSG_ERROR) {
|
|
int err = netlink_parse_error(nl, h, zns,
|
|
startup);
|
|
if (err == 1) {
|
|
if (!(h->nlmsg_flags & NLM_F_MULTI))
|
|
return 0;
|
|
continue;
|
|
} else
|
|
return err;
|
|
}
|
|
|
|
/* OK we got netlink message. */
|
|
if (IS_ZEBRA_DEBUG_KERNEL)
|
|
zlog_debug(
|
|
"netlink_parse_info: %s type %s(%u), len=%d, seq=%u, pid=%u",
|
|
nl->name,
|
|
nl_msg_type_to_str(h->nlmsg_type),
|
|
h->nlmsg_type, h->nlmsg_len,
|
|
h->nlmsg_seq, h->nlmsg_pid);
|
|
|
|
|
|
/*
|
|
* Ignore messages that maybe sent from
|
|
* other actors besides the kernel
|
|
*/
|
|
if (snl.nl_pid != 0) {
|
|
zlog_debug("Ignoring message from pid %u",
|
|
snl.nl_pid);
|
|
continue;
|
|
}
|
|
|
|
error = (*filter)(h, zns->ns_id, startup);
|
|
if (error < 0) {
|
|
zlog_debug("%s filter function error",
|
|
nl->name);
|
|
ret = error;
|
|
}
|
|
}
|
|
|
|
/* After error care. */
|
|
if (msg.msg_flags & MSG_TRUNC) {
|
|
flog_err(EC_ZEBRA_NETLINK_LENGTH_ERROR,
|
|
"%s error: message truncated", nl->name);
|
|
continue;
|
|
}
|
|
if (status) {
|
|
flog_err(EC_ZEBRA_NETLINK_LENGTH_ERROR,
|
|
"%s error: data remnant size %d", nl->name,
|
|
status);
|
|
return -1;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* netlink_talk_info
|
|
*
|
|
* sendmsg() to netlink socket then recvmsg().
|
|
* Calls netlink_parse_info to parse returned data
|
|
*
|
|
* filter -> The filter to read final results from kernel
|
|
* nlmsghdr -> The data to send to the kernel
|
|
* dp_info -> The dataplane and netlink socket information
|
|
* startup -> Are we reading in under startup conditions
|
|
* This is passed through eventually to filter.
|
|
*/
|
|
static int
|
|
netlink_talk_info(int (*filter)(struct nlmsghdr *, ns_id_t, int startup),
|
|
struct nlmsghdr *n, const struct zebra_dplane_info *dp_info,
|
|
int startup)
|
|
{
|
|
const struct nlsock *nl;
|
|
|
|
nl = &(dp_info->nls);
|
|
n->nlmsg_seq = nl->seq;
|
|
n->nlmsg_pid = nl->snl.nl_pid;
|
|
|
|
if (IS_ZEBRA_DEBUG_KERNEL)
|
|
zlog_debug(
|
|
"netlink_talk: %s type %s(%u), len=%d seq=%u flags 0x%x",
|
|
nl->name, nl_msg_type_to_str(n->nlmsg_type),
|
|
n->nlmsg_type, n->nlmsg_len, n->nlmsg_seq,
|
|
n->nlmsg_flags);
|
|
|
|
if (netlink_send_msg(nl, n, n->nlmsg_len) == -1)
|
|
return -1;
|
|
|
|
/*
|
|
* Get reply from netlink socket.
|
|
* The reply should either be an acknowlegement or an error.
|
|
*/
|
|
return netlink_parse_info(filter, nl, dp_info, 0, startup);
|
|
}
|
|
|
|
/*
|
|
* Synchronous version of netlink_talk_info. Converts args to suit the
|
|
* common version, which is suitable for both sync and async use.
|
|
*/
|
|
int netlink_talk(int (*filter)(struct nlmsghdr *, ns_id_t, int startup),
|
|
struct nlmsghdr *n, struct nlsock *nl, struct zebra_ns *zns,
|
|
int startup)
|
|
{
|
|
struct zebra_dplane_info dp_info;
|
|
|
|
/* Increment sequence number before capturing snapshot of ns socket
|
|
* info.
|
|
*/
|
|
nl->seq++;
|
|
|
|
/* Capture info in intermediate info struct */
|
|
zebra_dplane_info_from_zns(&dp_info, zns, (nl == &(zns->netlink_cmd)));
|
|
|
|
return netlink_talk_info(filter, n, &dp_info, startup);
|
|
}
|
|
|
|
/* Issue request message to kernel via netlink socket. GET messages
|
|
* are issued through this interface.
|
|
*/
|
|
int netlink_request(struct nlsock *nl, void *req)
|
|
{
|
|
struct nlmsghdr *n = (struct nlmsghdr *)req;
|
|
|
|
/* Check netlink socket. */
|
|
if (nl->sock < 0) {
|
|
flog_err_sys(EC_LIB_SOCKET, "%s socket isn't active.",
|
|
nl->name);
|
|
return -1;
|
|
}
|
|
|
|
/* Fill common fields for all requests. */
|
|
n->nlmsg_pid = nl->snl.nl_pid;
|
|
n->nlmsg_seq = ++nl->seq;
|
|
|
|
if (netlink_send_msg(nl, req, n->nlmsg_len) == -1)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nl_batch_read_resp(struct nl_batch *bth)
|
|
{
|
|
struct nlmsghdr *h;
|
|
struct sockaddr_nl snl;
|
|
struct msghdr msg = {};
|
|
int status, seq;
|
|
const struct nlsock *nl;
|
|
struct zebra_dplane_ctx *ctx;
|
|
bool ignore_msg;
|
|
|
|
nl = &(bth->zns->nls);
|
|
|
|
msg.msg_name = (void *)&snl;
|
|
msg.msg_namelen = sizeof(snl);
|
|
|
|
/*
|
|
* The responses are not batched, so we need to read and process one
|
|
* message at a time.
|
|
*/
|
|
while (true) {
|
|
status = netlink_recv_msg(nl, msg, nl_batch_rx_buf,
|
|
sizeof(nl_batch_rx_buf));
|
|
if (status == -1 || status == 0)
|
|
return status;
|
|
|
|
h = (struct nlmsghdr *)nl_batch_rx_buf;
|
|
ignore_msg = false;
|
|
seq = h->nlmsg_seq;
|
|
/*
|
|
* Find the corresponding context object. Received responses are
|
|
* in the same order as requests we sent, so we can simply
|
|
* iterate over the context list and match responses with
|
|
* requests at same time.
|
|
*/
|
|
while (true) {
|
|
ctx = dplane_ctx_dequeue(&(bth->ctx_list));
|
|
if (ctx == NULL)
|
|
break;
|
|
|
|
dplane_ctx_enqueue_tail(bth->ctx_out_q, ctx);
|
|
|
|
/* We have found corresponding context object. */
|
|
if (dplane_ctx_get_ns(ctx)->nls.seq == seq)
|
|
break;
|
|
|
|
/*
|
|
* 'update' context objects take two consecutive
|
|
* sequence numbers.
|
|
*/
|
|
if (dplane_ctx_is_update(ctx)
|
|
&& dplane_ctx_get_ns(ctx)->nls.seq + 1 == seq) {
|
|
/*
|
|
* This is the situation where we get a response
|
|
* to a message that should be ignored.
|
|
*/
|
|
ignore_msg = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ignore_msg)
|
|
continue;
|
|
|
|
/*
|
|
* We received a message with the sequence number that isn't
|
|
* associated with any dplane context object.
|
|
*/
|
|
if (ctx == NULL) {
|
|
if (IS_ZEBRA_DEBUG_KERNEL)
|
|
zlog_debug(
|
|
"%s: skipping unassociated response, seq number %d NS %u",
|
|
__func__, h->nlmsg_seq,
|
|
bth->zns->ns_id);
|
|
continue;
|
|
}
|
|
|
|
if (h->nlmsg_type == NLMSG_ERROR) {
|
|
int err = netlink_parse_error(nl, h, bth->zns, 0);
|
|
|
|
if (err == -1)
|
|
dplane_ctx_set_status(
|
|
ctx, ZEBRA_DPLANE_REQUEST_FAILURE);
|
|
|
|
if (IS_ZEBRA_DEBUG_KERNEL)
|
|
zlog_debug("%s: netlink error message seq=%d ",
|
|
__func__, h->nlmsg_seq);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If we get here then we did not receive neither the ack nor
|
|
* the error and instead received some other message in an
|
|
* unexpected way.
|
|
*/
|
|
if (IS_ZEBRA_DEBUG_KERNEL)
|
|
zlog_debug("%s: ignoring message type 0x%04x(%s) NS %u",
|
|
__func__, h->nlmsg_type,
|
|
nl_msg_type_to_str(h->nlmsg_type),
|
|
bth->zns->ns_id);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nl_batch_reset(struct nl_batch *bth)
|
|
{
|
|
bth->buf_head = bth->buf;
|
|
bth->curlen = 0;
|
|
bth->msgcnt = 0;
|
|
bth->zns = NULL;
|
|
|
|
TAILQ_INIT(&(bth->ctx_list));
|
|
}
|
|
|
|
static void nl_batch_init(struct nl_batch *bth, struct dplane_ctx_q *ctx_out_q)
|
|
{
|
|
/*
|
|
* If the size of the buffer has changed, free and then allocate a new
|
|
* one.
|
|
*/
|
|
size_t bufsize =
|
|
atomic_load_explicit(&nl_batch_bufsize, memory_order_relaxed);
|
|
if (bufsize != nl_batch_tx_bufsize) {
|
|
if (nl_batch_tx_buf)
|
|
XFREE(MTYPE_NL_BUF, nl_batch_tx_buf);
|
|
|
|
nl_batch_tx_buf = XCALLOC(MTYPE_NL_BUF, bufsize);
|
|
nl_batch_tx_bufsize = bufsize;
|
|
}
|
|
|
|
bth->buf = nl_batch_tx_buf;
|
|
bth->bufsiz = bufsize;
|
|
bth->limit = atomic_load_explicit(&nl_batch_send_threshold,
|
|
memory_order_relaxed);
|
|
|
|
bth->ctx_out_q = ctx_out_q;
|
|
|
|
nl_batch_reset(bth);
|
|
}
|
|
|
|
static void nl_batch_send(struct nl_batch *bth)
|
|
{
|
|
struct zebra_dplane_ctx *ctx;
|
|
bool err = false;
|
|
|
|
if (bth->curlen != 0 && bth->zns != NULL) {
|
|
if (IS_ZEBRA_DEBUG_KERNEL)
|
|
zlog_debug("%s: %s, batch size=%zu, msg cnt=%zu",
|
|
__func__, bth->zns->nls.name, bth->curlen,
|
|
bth->msgcnt);
|
|
|
|
if (netlink_send_msg(&(bth->zns->nls), bth->buf, bth->curlen)
|
|
== -1)
|
|
err = true;
|
|
|
|
if (!err) {
|
|
if (nl_batch_read_resp(bth) == -1)
|
|
err = true;
|
|
}
|
|
}
|
|
|
|
/* Move remaining contexts to the outbound queue. */
|
|
while (true) {
|
|
ctx = dplane_ctx_dequeue(&(bth->ctx_list));
|
|
if (ctx == NULL)
|
|
break;
|
|
|
|
if (err)
|
|
dplane_ctx_set_status(ctx,
|
|
ZEBRA_DPLANE_REQUEST_FAILURE);
|
|
|
|
dplane_ctx_enqueue_tail(bth->ctx_out_q, ctx);
|
|
}
|
|
|
|
nl_batch_reset(bth);
|
|
}
|
|
|
|
enum netlink_msg_status netlink_batch_add_msg(
|
|
struct nl_batch *bth, struct zebra_dplane_ctx *ctx,
|
|
ssize_t (*msg_encoder)(struct zebra_dplane_ctx *, void *, size_t),
|
|
bool ignore_res)
|
|
{
|
|
int seq;
|
|
ssize_t size;
|
|
struct nlmsghdr *msgh;
|
|
|
|
size = (*msg_encoder)(ctx, bth->buf_head, bth->bufsiz - bth->curlen);
|
|
|
|
/*
|
|
* If there was an error while encoding the message (other than buffer
|
|
* overflow) then return an error.
|
|
*/
|
|
if (size < 0)
|
|
return FRR_NETLINK_ERROR;
|
|
|
|
/*
|
|
* If the message doesn't fit entirely in the buffer then send the batch
|
|
* and retry.
|
|
*/
|
|
if (size == 0) {
|
|
nl_batch_send(bth);
|
|
size = (*msg_encoder)(ctx, bth->buf_head,
|
|
bth->bufsiz - bth->curlen);
|
|
/*
|
|
* If the message doesn't fit in the empty buffer then just
|
|
* return an error.
|
|
*/
|
|
if (size <= 0)
|
|
return FRR_NETLINK_ERROR;
|
|
}
|
|
|
|
seq = dplane_ctx_get_ns(ctx)->nls.seq;
|
|
if (ignore_res)
|
|
seq++;
|
|
|
|
msgh = (struct nlmsghdr *)bth->buf_head;
|
|
msgh->nlmsg_seq = seq;
|
|
msgh->nlmsg_pid = dplane_ctx_get_ns(ctx)->nls.snl.nl_pid;
|
|
|
|
bth->zns = dplane_ctx_get_ns(ctx);
|
|
bth->buf_head = ((char *)bth->buf_head) + size;
|
|
bth->curlen += size;
|
|
bth->msgcnt++;
|
|
|
|
return FRR_NETLINK_QUEUED;
|
|
}
|
|
|
|
static enum netlink_msg_status nl_put_msg(struct nl_batch *bth,
|
|
struct zebra_dplane_ctx *ctx)
|
|
{
|
|
if (dplane_ctx_is_skip_kernel(ctx))
|
|
return FRR_NETLINK_SUCCESS;
|
|
|
|
switch (dplane_ctx_get_op(ctx)) {
|
|
|
|
case DPLANE_OP_ROUTE_INSTALL:
|
|
case DPLANE_OP_ROUTE_UPDATE:
|
|
case DPLANE_OP_ROUTE_DELETE:
|
|
return netlink_put_route_update_msg(bth, ctx);
|
|
|
|
case DPLANE_OP_NH_INSTALL:
|
|
case DPLANE_OP_NH_UPDATE:
|
|
case DPLANE_OP_NH_DELETE:
|
|
return netlink_put_nexthop_update_msg(bth, ctx);
|
|
|
|
case DPLANE_OP_LSP_INSTALL:
|
|
case DPLANE_OP_LSP_UPDATE:
|
|
case DPLANE_OP_LSP_DELETE:
|
|
return netlink_put_lsp_update_msg(bth, ctx);
|
|
|
|
case DPLANE_OP_PW_INSTALL:
|
|
case DPLANE_OP_PW_UNINSTALL:
|
|
return netlink_put_pw_update_msg(bth, ctx);
|
|
|
|
case DPLANE_OP_ADDR_INSTALL:
|
|
case DPLANE_OP_ADDR_UNINSTALL:
|
|
return netlink_put_address_update_msg(bth, ctx);
|
|
|
|
case DPLANE_OP_MAC_INSTALL:
|
|
case DPLANE_OP_MAC_DELETE:
|
|
return netlink_put_mac_update_msg(bth, ctx);
|
|
|
|
case DPLANE_OP_NEIGH_INSTALL:
|
|
case DPLANE_OP_NEIGH_UPDATE:
|
|
case DPLANE_OP_NEIGH_DELETE:
|
|
case DPLANE_OP_VTEP_ADD:
|
|
case DPLANE_OP_VTEP_DELETE:
|
|
case DPLANE_OP_NEIGH_DISCOVER:
|
|
return netlink_put_neigh_update_msg(bth, ctx);
|
|
|
|
case DPLANE_OP_RULE_ADD:
|
|
case DPLANE_OP_RULE_DELETE:
|
|
case DPLANE_OP_RULE_UPDATE:
|
|
return netlink_put_rule_update_msg(bth, ctx);
|
|
|
|
case DPLANE_OP_SYS_ROUTE_ADD:
|
|
case DPLANE_OP_SYS_ROUTE_DELETE:
|
|
case DPLANE_OP_ROUTE_NOTIFY:
|
|
case DPLANE_OP_LSP_NOTIFY:
|
|
case DPLANE_OP_BR_PORT_UPDATE:
|
|
return FRR_NETLINK_SUCCESS;
|
|
|
|
case DPLANE_OP_IPTABLE_ADD:
|
|
case DPLANE_OP_IPTABLE_DELETE:
|
|
case DPLANE_OP_IPSET_ADD:
|
|
case DPLANE_OP_IPSET_DELETE:
|
|
case DPLANE_OP_IPSET_ENTRY_ADD:
|
|
case DPLANE_OP_IPSET_ENTRY_DELETE:
|
|
return FRR_NETLINK_ERROR;
|
|
|
|
case DPLANE_OP_NONE:
|
|
return FRR_NETLINK_ERROR;
|
|
}
|
|
|
|
return FRR_NETLINK_ERROR;
|
|
}
|
|
|
|
void kernel_update_multi(struct dplane_ctx_q *ctx_list)
|
|
{
|
|
struct nl_batch batch;
|
|
struct zebra_dplane_ctx *ctx;
|
|
struct dplane_ctx_q handled_list;
|
|
enum netlink_msg_status res;
|
|
|
|
TAILQ_INIT(&handled_list);
|
|
nl_batch_init(&batch, &handled_list);
|
|
|
|
while (true) {
|
|
ctx = dplane_ctx_dequeue(ctx_list);
|
|
if (ctx == NULL)
|
|
break;
|
|
|
|
if (batch.zns != NULL
|
|
&& batch.zns->ns_id != dplane_ctx_get_ns(ctx)->ns_id)
|
|
nl_batch_send(&batch);
|
|
|
|
/*
|
|
* Assume all messages will succeed and then mark only the ones
|
|
* that failed.
|
|
*/
|
|
dplane_ctx_set_status(ctx, ZEBRA_DPLANE_REQUEST_SUCCESS);
|
|
|
|
res = nl_put_msg(&batch, ctx);
|
|
|
|
dplane_ctx_enqueue_tail(&(batch.ctx_list), ctx);
|
|
if (res == FRR_NETLINK_ERROR)
|
|
dplane_ctx_set_status(ctx,
|
|
ZEBRA_DPLANE_REQUEST_FAILURE);
|
|
|
|
if (batch.curlen > batch.limit)
|
|
nl_batch_send(&batch);
|
|
}
|
|
|
|
nl_batch_send(&batch);
|
|
|
|
TAILQ_INIT(ctx_list);
|
|
dplane_ctx_list_append(ctx_list, &handled_list);
|
|
}
|
|
|
|
/* Exported interface function. This function simply calls
|
|
netlink_socket (). */
|
|
void kernel_init(struct zebra_ns *zns)
|
|
{
|
|
uint32_t groups;
|
|
#if defined SOL_NETLINK
|
|
int one, ret;
|
|
#endif
|
|
|
|
/*
|
|
* Initialize netlink sockets
|
|
*
|
|
* If RTMGRP_XXX exists use that, but at some point
|
|
* I think the kernel developers realized that
|
|
* keeping track of all the different values would
|
|
* lead to confusion, so we need to convert the
|
|
* RTNLGRP_XXX to a bit position for ourself
|
|
*/
|
|
groups = RTMGRP_LINK |
|
|
RTMGRP_IPV4_ROUTE |
|
|
RTMGRP_IPV4_IFADDR |
|
|
RTMGRP_IPV6_ROUTE |
|
|
RTMGRP_IPV6_IFADDR |
|
|
RTMGRP_IPV4_MROUTE |
|
|
RTMGRP_NEIGH |
|
|
((uint32_t) 1 << (RTNLGRP_IPV4_RULE - 1)) |
|
|
((uint32_t) 1 << (RTNLGRP_IPV6_RULE - 1)) |
|
|
((uint32_t) 1 << (RTNLGRP_NEXTHOP - 1));
|
|
|
|
snprintf(zns->netlink.name, sizeof(zns->netlink.name),
|
|
"netlink-listen (NS %u)", zns->ns_id);
|
|
zns->netlink.sock = -1;
|
|
if (netlink_socket(&zns->netlink, groups, zns->ns_id) < 0) {
|
|
zlog_err("Failure to create %s socket",
|
|
zns->netlink.name);
|
|
exit(-1);
|
|
}
|
|
|
|
snprintf(zns->netlink_cmd.name, sizeof(zns->netlink_cmd.name),
|
|
"netlink-cmd (NS %u)", zns->ns_id);
|
|
zns->netlink_cmd.sock = -1;
|
|
if (netlink_socket(&zns->netlink_cmd, 0, zns->ns_id) < 0) {
|
|
zlog_err("Failure to create %s socket",
|
|
zns->netlink_cmd.name);
|
|
exit(-1);
|
|
}
|
|
|
|
snprintf(zns->netlink_dplane.name, sizeof(zns->netlink_dplane.name),
|
|
"netlink-dp (NS %u)", zns->ns_id);
|
|
zns->netlink_dplane.sock = -1;
|
|
if (netlink_socket(&zns->netlink_dplane, 0, zns->ns_id) < 0) {
|
|
zlog_err("Failure to create %s socket",
|
|
zns->netlink_dplane.name);
|
|
exit(-1);
|
|
}
|
|
|
|
/*
|
|
* SOL_NETLINK is not available on all platforms yet
|
|
* apparently. It's in bits/socket.h which I am not
|
|
* sure that we want to pull into our build system.
|
|
*/
|
|
#if defined SOL_NETLINK
|
|
/*
|
|
* Let's tell the kernel that we want to receive extended
|
|
* ACKS over our command socket(s)
|
|
*/
|
|
one = 1;
|
|
ret = setsockopt(zns->netlink_cmd.sock, SOL_NETLINK, NETLINK_EXT_ACK,
|
|
&one, sizeof(one));
|
|
|
|
if (ret < 0)
|
|
zlog_notice("Registration for extended cmd ACK failed : %d %s",
|
|
errno, safe_strerror(errno));
|
|
|
|
one = 1;
|
|
ret = setsockopt(zns->netlink_dplane.sock, SOL_NETLINK, NETLINK_EXT_ACK,
|
|
&one, sizeof(one));
|
|
|
|
if (ret < 0)
|
|
zlog_notice("Registration for extended dp ACK failed : %d %s",
|
|
errno, safe_strerror(errno));
|
|
|
|
/*
|
|
* Trim off the payload of the original netlink message in the
|
|
* acknowledgment. This option is available since Linux 4.2, so if
|
|
* setsockopt fails, ignore the error.
|
|
*/
|
|
one = 1;
|
|
ret = setsockopt(zns->netlink_dplane.sock, SOL_NETLINK, NETLINK_CAP_ACK,
|
|
&one, sizeof(one));
|
|
if (ret < 0)
|
|
zlog_notice(
|
|
"Registration for reduced ACK packet size failed, probably running an early kernel");
|
|
#endif
|
|
|
|
/* Register kernel socket. */
|
|
if (fcntl(zns->netlink.sock, F_SETFL, O_NONBLOCK) < 0)
|
|
flog_err_sys(EC_LIB_SOCKET, "Can't set %s socket flags: %s",
|
|
zns->netlink.name, safe_strerror(errno));
|
|
|
|
if (fcntl(zns->netlink_cmd.sock, F_SETFL, O_NONBLOCK) < 0)
|
|
zlog_err("Can't set %s socket error: %s(%d)",
|
|
zns->netlink_cmd.name, safe_strerror(errno), errno);
|
|
|
|
if (fcntl(zns->netlink_dplane.sock, F_SETFL, O_NONBLOCK) < 0)
|
|
zlog_err("Can't set %s socket error: %s(%d)",
|
|
zns->netlink_dplane.name, safe_strerror(errno), errno);
|
|
|
|
/* Set receive buffer size if it's set from command line */
|
|
if (nl_rcvbufsize) {
|
|
netlink_recvbuf(&zns->netlink, nl_rcvbufsize);
|
|
netlink_recvbuf(&zns->netlink_cmd, nl_rcvbufsize);
|
|
netlink_recvbuf(&zns->netlink_dplane, nl_rcvbufsize);
|
|
}
|
|
|
|
netlink_install_filter(zns->netlink.sock,
|
|
zns->netlink_cmd.snl.nl_pid,
|
|
zns->netlink_dplane.snl.nl_pid);
|
|
|
|
zns->t_netlink = NULL;
|
|
|
|
thread_add_read(zrouter.master, kernel_read, zns,
|
|
zns->netlink.sock, &zns->t_netlink);
|
|
|
|
rt_netlink_init();
|
|
}
|
|
|
|
void kernel_terminate(struct zebra_ns *zns, bool complete)
|
|
{
|
|
thread_cancel(&zns->t_netlink);
|
|
|
|
if (zns->netlink.sock >= 0) {
|
|
close(zns->netlink.sock);
|
|
zns->netlink.sock = -1;
|
|
}
|
|
|
|
if (zns->netlink_cmd.sock >= 0) {
|
|
close(zns->netlink_cmd.sock);
|
|
zns->netlink_cmd.sock = -1;
|
|
}
|
|
|
|
/* During zebra shutdown, we need to leave the dataplane socket
|
|
* around until all work is done.
|
|
*/
|
|
if (complete) {
|
|
if (zns->netlink_dplane.sock >= 0) {
|
|
close(zns->netlink_dplane.sock);
|
|
zns->netlink_dplane.sock = -1;
|
|
}
|
|
}
|
|
}
|
|
#endif /* HAVE_NETLINK */
|