a) Remove setting of thread pointer to NULL after
thread invocation, this is already done.
b) Use thread_is_scheduled()
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
The ospf6_is_valid_summary_addr function is checking
to see if a prefix is the default and also then double
comparing it against the v6 prefix part. No need to do this.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Problem Statement:
==================
RFC 7166 support for OSPF6 in FRR code.
RCA:
====
This feature is newly supported in FRR
Fix:
====
Core functionality implemented in previous commit is
stitched with rest of ospf6 code as part of this commit.
Risk:
=====
Low risk
Tests Executed:
===============
Have executed the combination of commands.
Signed-off-by: Abhinay Ramesh <rabhinay@vmware.com>
if r1 has a route received from a neighbor and the same route
configured as static, the administrative distance will determine
which route to use
r1(config)# ipv6 route 1:1::1/128 Null0 70
r1# sh ipv6 route
Codes: K - kernel route, C - connected, S - static, R - RIPng,
O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table,
v - VNC, V - VNC-Direct, A - Babel, F - PBR,
f - OpenFabric,
> - selected route, * - FIB route, q - queued, r - rejected, b - backup
t - trapped, o - offload failure
S>* 1:1::1/128 [70/0] unreachable (blackhole), weight 1, 00:00:12
O 1:1::1/128 [110/20] via fe80::1833:c9ff:fe7b:3e43, r1-r2-eth0, weight 1, 00:00:49
The static route is selected. If we now change the administrative distance
in ospf6, the OSPF route should be selected
r1(config)# router ospf6
r1(config-ospf6)# distance 50
r1# sh ipv6 route
Codes: K - kernel route, C - connected, S - static, R - RIPng,
O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table,
v - VNC, V - VNC-Direct, A - Babel, F - PBR,
f - OpenFabric,
> - selected route, * - FIB route, q - queued, r - rejected, b - backup
t - trapped, o - offload failure
S>* 1:1::1/128 [70/0] unreachable (blackhole), weight 1, 00:00:39
O 1:1::1/128 [110/20] via fe80::1833:c9ff:fe7b:3e43, r1-r2-eth0, weight 1, 00:01:16
However the distance is not applied as there are no changes in the routing table
This commit will force the update of the routing table with the new configured distance
r1# sh ipv6 route
Codes: K - kernel route, C - connected, S - static, R - RIPng,
O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table,
v - VNC, V - VNC-Direct, A - Babel, F - PBR,
f - OpenFabric,
> - selected route, * - FIB route, q - queued, r - rejected, b - backup
t - trapped, o - offload failure
O>* 1:1::1/128 [50/20] via fe80::8cb7:e6ff:fef5:2344, r1-r2-eth0, weight 1, 00:00:03
S 1:1::1/128 [70/0] unreachable (blackhole), weight 1, 00:00:19
Signed-off-by: ckishimo <carles.kishimoto@gmail.com>
Opaque data takes up a lot of memory when there are a lot of routes on
the box. Given that this is just a cosmetic info, I propose to disable
it by default to not shock people who start using FRR for the first time
or upgrades from an old version.
Fixes#10101.
Signed-off-by: Igor Ryzhov <iryzhov@nfware.com>
Update ospfd and ospf6d to send opaque route attributes to
zebra. Those attributes are stored in the RIB and can be viewed
using the "show ip[v6] route" commands (other than that, they are
completely ignored by zebra).
Example:
```
debian# show ip route 192.168.1.0/24
Routing entry for 192.168.1.0/24
Known via "ospf", distance 110, metric 20, best
Last update 01:57:08 ago
* 10.0.1.2, via eth-rt2, weight 1
OSPF path type : External-2
OSPF tag : 0
debian#
debian# show ip route 192.168.1.0/24 json
{
"192.168.1.0\/24":[
{
"prefix":"192.168.1.0\/24",
"prefixLen":24,
"protocol":"ospf",
"vrfId":0,
"vrfName":"default",
"selected":true,
[snip]
"ospfPathType":"External-2",
"ospfTag":"0"
}
]
}
```
Signed-off-by: Renato Westphal <renato@opensourcerouting.org>
Currently the ospf6d's commands with non-exist vrfs can't give the error
informations to users.
This commit adds a macro "OSPF6_CMD_CHECK_VRF" to give error information
if with non-exist vrfs. As usual, skip the checking process in the case
of json.
So one command can call this macro to do the checking process in its
end. At that time it need know json style or not, so add "json" parameter for
several related functions.
BTW, suppress the build warning of the macro `OSPF6_FIND_VRF_ARGS`:
"Macros starting with if should be enclosed by a do - while loop to avoid
possible if/else logic defects."
Signed-off-by: anlan_cs <anlan_cs@tom.com>
Currently, it is possible to rename the default VRF either by passing
`-o` option to zebra or by creating a file in `/var/run/netns` and
binding it to `/proc/self/ns/net`.
In both cases, only zebra knows about the rename and other daemons learn
about it only after they connect to zebra. This is a problem, because
daemons may read their config before they connect to zebra. To handle
this rename after the config is read, we have some special code in every
single daemon, which is not very bad but not desirable in my opinion.
But things are getting worse when we need to handle this in northbound
layer as we have to manually rewrite the config nodes. This approach is
already hacky, but still works as every daemon handles its own NB
structures. But it is completely incompatible with the central
management daemon architecture we are aiming for, as mgmtd doesn't even
have a connection with zebra to learn from it. And it shouldn't have it,
because operational state changes should never affect configuration.
To solve the problem and simplify the code, I propose to expand the `-o`
option to all daemons. By using the startup option, we let daemons know
about the rename before they read their configs so we don't need any
special code to deal with it. There's an easy way to pass the option to
all daemons by using `frr_global_options` variable.
Unfortunately, the second way of renaming by creating a file in
`/var/run/netns` is incompatible with the new mgmtd architecture.
Theoretically, we could force daemons to read their configs only after
they connect to zebra, but it means adding even more code to handle a
very specific use-case. And anyway this won't work for mgmtd as it
doesn't have a connection with zebra. So I had to remove this option.
Signed-off-by: Igor Ryzhov <iryzhov@nfware.com>
The external_id_table was only ever used to store pointers to data
and was never used for lookup during the course of normal operations.
However it did lead to crashes because somewhere along the way
external routes stored in the external_table never had their
id associated into the external_id_table and we would assert
on the node lookup failing.
Since this code was never used for anything other than
storing data and it was never retrieved for anything useful
let's just remove it from ospf6d.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
It allows FRR to read the interface config even when the necessary VRFs
are not yet created and interfaces are in "wrong" VRFs. Currently, such
config is rejected.
For VRF-lite backend, we don't care at all about the VRF of the inactive
interface. When the interface is created in the OS and becomes active,
we always use its actual VRF instead of the configured one. So there's
no need to reject the config.
For netns backend, we may have multiple interfaces with the same name in
different VRFs. So we care about the VRF of inactive interfaces. And we
must allow to preconfigure the interface in a VRF even before it is
moved to the corresponding netns. From now on, we allow to create
multiple configs for the same interface name in different VRFs and
the necessary config is applied once the OS interface is moved to the
corresponding netns.
Signed-off-by: Igor Ryzhov <iryzhov@nfware.com>
FRR should only ever use the appropriate THREAD_ON/THREAD_OFF
semantics. This is espacially true for the functions we
end up calling the thread for.
Signed-off-by: Donatas Abraitis <donatas.abraitis@gmail.com>
The ospf6 router-id is provided by order of preference by:
ospf6d itself if the "ospf6 router-id X.X.X.X" command is set.
- zebra. If the "ip router-id X.X.X.X" zebra command is set, the
configured IP is provided as the ID or alternatively the highest
loopback IPv4 address or else the highest interface IPv4 address.
The running ospf6 router-id is stored in ospf6->router-id.
ospf6->router-id can change in the following conditions:
- A configuration change provides a new router-id value according to
the above rules. ospf6->router-id is updated to the new value if
there is no adjacency in FULL state. Otherwise, the ospf6d process
must be restarted to take the new router-id into account.
- On startup of both zebra and ospf6d, if ospf6d has not yet received a
valid router-id, ospf6d->router-id is set to 0 (i.e. 0.0.0.0). Then,
zebra notifies ospf6d that the router-id is available.
At ospf6->router-id, the current behavior of ospf6d is the following:
- The self generated LSAs that refer to the previous router-id as the
advertising router are kept.
- Self generated LSAs are created with router-id value.
- LSAs from the redistribution that refer to the previous router-id are
kept and no new redistribution LSAs are created.
As a consequence, the routers in the ospf6 areas will get incorrect
LSAs and might not be able to install prefixes of those LSAs into their
RIB.
This fix solves this issue by resetting the areas and the redistribution
when ospf6->router-id updated.
Signed-off-by: Louis Scalbert <louis.scalbert@6wind.com>
ospf6_router_id_update function is used by ospf6_router_id_update_zebra
to update the running the ospf6 router-id.
This patches makes the functions to (un)configure ospf6 router-id use
the same function as ospf6_router_id_update_zebra.
Signed-off-by: Louis Scalbert <louis.scalbert@6wind.com>
When a router-id change is notified by zebra to ospf6d, we only take
into account the change if no adjacencies are in Full state.
Signed-off-by: Louis Scalbert <louis.scalbert@6wind.com>
RFC 5187 specifies the Graceful Restart enhancement to the OSPFv3
routing protocol. This commit implements support for the GR
restarting mode.
Here's a quick summary of how the GR restarting mode works:
* GR can be enabled on a per-instance basis using the `graceful-restart
[grace-period (1-1800)]` command;
* To perform a graceful shutdown, the `graceful-restart prepare ipv6
ospf` EXEC-level command needs to be issued before restarting the
ospf6d daemon (there's no specific requirement on how the daemon
should be restarted);
* `graceful-restart prepare ospf` will initiate the graceful restart
for all GR-enabled instances by taking the following actions:
o Flooding Grace-LSAs over all interfaces
o Freezing the OSPF routes in the RIB
o Saving the end of the grace period in non-volatile memory (a JSON
file stored in `$frr_statedir`)
* Once ospf6d is started again, it will follow the procedures
described in RFC 3623 until it detects it's time to exit the graceful
restart (either successfully or unsuccessfully).
Testing done:
* New topotest featuring a multi-area OSPF topology (including stub
and NSSA areas);
* Successful interop tests against IOS-XR routers acting as helpers.
Signed-off-by: Renato Westphal <renato@opensourcerouting.org>
There is a possibility that the same line can be matched as a command in
some node and its parent node. In this case, when reading the config,
this line is always executed as a command of the child node.
For example, with the following config:
```
router ospf
network 193.168.0.0/16 area 0
!
mpls ldp
discovery hello interval 111
!
```
Line `mpls ldp` is processed as command `mpls ldp-sync` inside the
`router ospf` node. This leads to a complete loss of `mpls ldp` node
configuration.
To eliminate this issue and all possible similar issues, let's print an
explicit "exit" at the end of every node config.
This commit also changes indentation for a couple of existing exit
commands so that all existing commands are on the same level as their
corresponding node-entering commands.
Fixes#9206.
Signed-off-by: Igor Ryzhov <iryzhov@nfware.com>
Description:
1. changes to process GRACE LSA packet.
2. Validation changes to enter Helper role.
3. Helper functionality during graceful restart.
Signed-off-by: Rajesh Girada <rgirada@vmware.com>
Feature Implementation.
========================
This feature will help in advertising the External LSAs with aggregation.
The commands allow us to tune the advertisement with different parameters
as mentioned in the CLI List below.
It can also help in case we do not want to advertise any prefix with the
no-advertise option.
New CLIs added:
===============
summary-address X:X::X:X/M$prefix [tag (1-4294967295)] [{metric (0-16777215) | metric-type (1-2)}]
no summary-address X:X::X:X/M$prefix [tag (1-4294967295)] [{metric (0-16777215) | metric-type (1-2)}]
summary-address X:X::X:X/M$prefix no-advertise
no summary-address X:X::X:X/M$prefix no-advertise
aggregation timer (5-1800)
no aggregation timer (5-1800)
show ipv6 ospf6 summary-address [detail$detail] [json]
debug ospf6 lsa aggregation
CAT RUN:
========
QE to add test scripts
Signed-Off-by: Mobashshera Rasool <mrassol@vmware.com>
The ospf6 router-id is provided by order of preference by:
ospf6d itself if the "ospf6 router-id X.X.X.X" command is set.
- zebra. If the "ip router-id X.X.X.X" zebra command is set, the
configured IP is provided as the ID or alternatively the highest
loopback IPv4 address or else the highest interface IPv4 address.
The running ospf6 router-id is stored in ospf6->router-id.
ospf6->router-id can change in the following conditions:
- A configuration change provides a new router-id value according to
the above rules. ospf6->router-id is updated to the new value if
there is no adjacency in FULL state. Otherwise, the ospf6d process
must be restarted to take the new router-id into account.
- On startup of both zebra and ospf6d, if ospf6d has not yet received a
valid router-id, ospf6d->router-id is set to 0 (i.e. 0.0.0.0). Then,
zebra notifies ospf6d that the router-id is available.
At ospf6->router-id, the current behavior of ospf6d is the following:
- The self generated LSAs that refer to the previous router-id as the
advertising router are kept.
- Self generated LSAs are created with router-id value.
- LSAs from the redistribution that refer to the previous router-id are
kept and no new redistribution LSAs are created.
As a consequence, the routers in the ospf6 areas will get incorrect
LSAs and might not be able to install prefixes of those LSAs into their
RIB.
This fix solves this issue by resetting the areas and the redistribution
when ospf6->router-id updated.
Signed-off-by: Louis Scalbert <louis.scalbert@6wind.com>
ospf6_router_id_update function is used by ospf6_router_id_update_zebra
to update the running the ospf6 router-id.
This patches makes the functions to (un)configure ospf6 router-id use
the same function as ospf6_router_id_update_zebra.
Signed-off-by: Louis Scalbert <louis.scalbert@6wind.com>
---