mirror_corosync/exec/amfsu.c
Hans Feldt 154a857c3b AMF changes:
- Revised cluster start 
- Includes Steven's "amf invalid write patch"
- Includes "components not started with 0.76" patch
- New timer API use backed out of AMF (temporary)



git-svn-id: http://svn.fedorahosted.org/svn/corosync/trunk@1091 fd59a12c-fef9-0310-b244-a6a79926bd2f
2006-06-27 08:49:07 +00:00

462 lines
15 KiB
C

/** @file exec/amfsu.c
*
* Copyright (c) 2002-2006 MontaVista Software, Inc.
* Author: Steven Dake (sdake@mvista.com)
*
* Copyright (c) 2006 Ericsson AB.
* Author: Hans Feldt
* - Introduced AMF B.02 information model
* - Use DN in API and multicast messages
* - (Re-)Introduction of event based multicast messages
* - Refactoring of code into several AMF files
* Author: Anders Eriksson
*
* All rights reserved.
*
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* AMF Service Unit Class Implementation
*
* This file contains functions for handling AMF-service units(SUs). It can be
* viewed as the implementation of the AMF Service Unit class (called SU)
* as described in SAI-Overview-B.02.01. The SA Forum specification
* SAI-AIS-AMF-B.02.01 has been used as specification of the behaviour
* and is referred to as 'the spec' below.
*
* The functions in this file are responsible for:
* - instantiating and terminating service units on request
* (considering the dependencies between components described in paragraph
* 3.9.2)
* - creating and deleting CSI-assignment objects between its components and
* CSI-objects upon request
* - receiving error reports from its components and forwarding them to
* appropriate handler (SU or SG or node or cluster)
* - implementing restart of itself and its components (paragraph 3.12.1.2)
* - implementing error escallation level 1 (paragraph 3.12.2.2 in the spec)
* - handling all run time attributes of the AMF SU; all cached
* attributes are stored as variables and sent to the IMM service
* upon the changes described in the specification.
*
* SU contains the following state machines:
* - presence state machine (PRSM)
* - administrative state machine (ADSM) (NOT IN THIS RELEASE)
* - operational state machine (OPSM)
* - readiness state machine (RESM)
* - ha state per service instance (SI)
* - restart control state machine (RCSM)
*
* The presence state machine orders intantiation of its components on request.
* It fully respects the dependency rules between components at instantiation
* such that it orders instantiation simultaneously only of components on the
* same instantiation level. The presence state machine is implemented with
* the states described in the spec and the state transitions are trigged by
* reported state transitions from its contained components according to
* paragraph 3.3.1.1.
*
* The operational state machine is not responsible for any control function.
* It assumes the DISABLED state if an incoming operational state change report
* from a component indicates the component has assumed the DISABLED state.
* Operational state changes are reported to IMM.
*
* The readiness state machine is not used for any control but is updated and
* reported to IMM when it is changed.
*
* The restart control state machine (RCSM) is used to implement level 1 of
* the error escallation polycy described in chapter 3.12.2 of the spec. It
* also implements component restart and service unit restart as described in
* paragraph 3.12.1.2 and 3.12.1.3.
* RCSM contains three composite states.
* Being a composite state means that the state contains substates.
* RCSM composite states are:
* - ESCALLATION_LEVEL (LEVEL_0, LEVEL_1 and LEVEL_2)
* - RESTARTING_COMPONENT (DEACTIVATING, RESTARTING, SETTING and ACTIVATING)
* - RESTARTING_SERVICE_UNIT (DEACTIVATING, TERMINATING, INSTANTIATING,
* and ACTIVATING)
*
* ESCALLATION_LEVEL is a kind of idle state where no actions are performed
* and used only to remember the escallation level. Substate LEVEL_0 indicates
* no escallation. LEVEL_1 indicates that a component restart has been
* executed recently and the escallation timer is still running. At this level
* component restart requests will transition to RESTARTING_COMPONENT but
* if there are too many restart requests before the probation timer expires
* then a transition will be made to LEVEL_2 and the restart request will
* be forwarded to the node instance hosting this component.
* State RESTARTING_SERVICE_UNIT will only be assumed if the node explicitly
* requests the SU to execute a restart of itself (after having evaluated its
* part of the error escallation policy).
*
*/
/*
*
*/
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <errno.h>
#include "amf.h"
#include "util.h"
#include "print.h"
#include "main.h"
static int presence_state_all_comps_in_su_are_set (struct amf_su *su,
SaAmfPresenceStateT state)
{
int all_set = 1;
struct amf_comp *comp;
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
if (comp->saAmfCompPresenceState != state) {
all_set = 0;
}
}
return all_set;
}
static void su_readiness_state_set (struct amf_su *su,
SaAmfReadinessStateT readiness_state)
{
su->saAmfSUReadinessState = readiness_state;
TRACE1 ("Setting SU '%s' readiness state: %s\n",
&su->name.value, amf_readiness_state(readiness_state));
}
static void su_presence_state_set (struct amf_su *su,
SaAmfPresenceStateT presence_state)
{
su->saAmfSUPresenceState = presence_state;
TRACE1 ("Setting SU '%s' presence state: %s\n",
su->name.value, amf_presence_state (presence_state));
amf_sg_su_state_changed (su->sg, su, SA_AMF_PRESENCE_STATE, presence_state);
}
static void su_operational_state_set (struct amf_su *su,
SaAmfOperationalStateT oper_state)
{
struct amf_comp* comp;
if (oper_state == su->saAmfSUOperState) {
log_printf (LOG_INFO,
"Not assigning service unit new operational state - same state\n");
return;
}
su->saAmfSUOperState = oper_state;
TRACE1 ("Setting SU '%s' operational state: %s\n",
su->name.value, amf_op_state (oper_state));
if (oper_state == SA_AMF_OPERATIONAL_ENABLED) {
su_readiness_state_set (su, SA_AMF_READINESS_IN_SERVICE);
for (comp = su->comp_head; comp; comp = comp->next) {
amf_comp_readiness_state_set (comp, SA_AMF_READINESS_IN_SERVICE);
}
// amf_sg_su_state_changed (su->sg, su, SA_AMF_OP_STATE, SA_AMF_OPERATIONAL_ENABLED);
} else if (oper_state == SA_AMF_OPERATIONAL_DISABLED) {
su_readiness_state_set (su, SA_AMF_READINESS_OUT_OF_SERVICE);
}
}
static void comp_assign_csi (struct amf_comp *comp, struct amf_csi *csi,
SaAmfHAStateT ha_state)
{
struct amf_csi_assignment *csi_assignment;
dprintf (" Creating CSI '%s' to comp '%s' with hastate %s\n",
getSaNameT (&csi->name), getSaNameT (&comp->name),
amf_ha_state (ha_state));
csi_assignment = malloc (sizeof (struct amf_csi_assignment));
if (csi_assignment == NULL) {
openais_exit_error (AIS_DONE_OUT_OF_MEMORY);
}
csi_assignment->comp_next = comp->assigned_csis;
comp->assigned_csis = csi_assignment;
csi_assignment->csi_next = csi->csi_assignments;
csi->csi_assignments = csi_assignment;
setSaNameT (&csi_assignment->name, (char*)comp->name.value);
csi_assignment->saAmfCSICompHAState = ha_state;
csi_assignment->csi = csi;
csi_assignment->comp = comp;
csi_assignment->saAmfCSICompHAState = 0; /* undefined confirmed HA state */
csi_assignment->requested_ha_state = ha_state;
if (ha_state == SA_AMF_HA_ACTIVE)
comp->saAmfCompNumCurrActiveCsi++;
else if (ha_state == SA_AMF_HA_STANDBY)
comp->saAmfCompNumCurrStandbyCsi++;
else
assert (0);
}
static void su_cleanup (struct amf_su *su)
{
struct amf_comp *comp;
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
amf_comp_restart (comp);
}
}
static void escalation_policy_cleanup (struct amf_comp *comp)
{
// escalation_timer_start (comp);
switch (comp->su->escalation_level) {
case ESCALATION_LEVEL_NO_ESCALATION:
comp->saAmfCompRestartCount += 1;
if (comp->saAmfCompRestartCount >= comp->su->sg->saAmfSGCompRestartMax) {
comp->su->escalation_level = ESCALATION_LEVEL_ONE;
escalation_policy_cleanup (comp);
comp->saAmfCompRestartCount = 0;
return;
}
dprintf ("Escalation level 0 - restart component\n");
dprintf ("Cleaning up and restarting component.\n");
amf_comp_restart (comp);
break;
case ESCALATION_LEVEL_ONE:
comp->su->saAmfSURestartCount += 1;
if (comp->su->saAmfSURestartCount >= comp->su->sg->saAmfSGSuRestartMax) {
comp->su->escalation_level = ESCALATION_LEVEL_TWO;
escalation_policy_cleanup (comp);
comp->saAmfCompRestartCount = 0;
comp->su->saAmfSURestartCount = 0;
return;
}
dprintf ("Escalation level 1 - restart unit\n");
dprintf ("Cleaning up and restarting unit.\n");
su_cleanup (comp->su);
break;
case ESCALATION_LEVEL_TWO:
dprintf ("Escalation level TWO\n");
su_cleanup (comp->su);
// unit_terminate_failover (comp);
break;
case ESCALATION_LEVEL_THREE:
//TODO
break;
}
}
void amf_su_instantiate (struct amf_su *su)
{
struct amf_comp *comp;
ENTER ("'%s'", su->name.value);
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
amf_comp_instantiate (comp);
}
}
void amf_su_assign_si (struct amf_su *su, struct amf_si *si,
SaAmfHAStateT ha_state)
{
struct amf_si_assignment *si_assignment;
dprintf ("Creating SI '%s' to SU '%s' with hastate %s\n",
getSaNameT (&si->name), getSaNameT (&su->name),
amf_ha_state (ha_state));
si_assignment = malloc (sizeof (struct amf_si_assignment));
if (si_assignment == NULL) {
openais_exit_error (AIS_DONE_OUT_OF_MEMORY);
}
setSaNameT (&si_assignment->name, (char*)su->name.value);
si_assignment->saAmfSISUHAState = 0; /* undefined confirmed HA state */
si_assignment->requested_ha_state = ha_state;
si_assignment->next = su->assigned_sis;
su->assigned_sis = si_assignment;
si_assignment->si = si;
memcpy (&si_assignment->si->saAmfSIProtectedbySG,
&su->sg->name, sizeof (SaNameT));
if (ha_state == SA_AMF_HA_ACTIVE) {
si->saAmfSINumCurrActiveAssignments++;
su->saAmfSUNumCurrActiveSIs++;
} else if (ha_state == SA_AMF_HA_STANDBY) {
su->saAmfSUNumCurrStandbySIs++;
si->saAmfSINumCurrStandbyAssignments++;
} else
assert(0);
if ((si->saAmfSINumCurrActiveAssignments == si->saAmfSIPrefActiveAssignments) &&
(si->saAmfSINumCurrStandbyAssignments == si->saAmfSIPrefStandbyAssignments)) {
si->saAmfSIAssignmentState = SA_AMF_ASSIGNMENT_FULLY_ASSIGNED;
} else if ((si->saAmfSINumCurrActiveAssignments < si->saAmfSIPrefActiveAssignments) ||
(si->saAmfSINumCurrStandbyAssignments < si->saAmfSIPrefStandbyAssignments)) {
si->saAmfSIAssignmentState = SA_AMF_ASSIGNMENT_PARTIALLY_ASSIGNED;
}
{
struct amf_csi *csi;
struct amf_comp *comp;
SaNameT *cs_type;
int i;
/*
** for each component in SU, find a CSI in the SI with the same type
*/
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
int no_of_cs_types = 0;
for (i = 0; comp->saAmfCompCsTypes[i]; i++) {
cs_type = comp->saAmfCompCsTypes[i];
no_of_cs_types++;
int no_of_assignments = 0;
for (csi = si->csi_head; csi != NULL; csi = csi->next) {
if (!memcmp(csi->saAmfCSTypeName.value, cs_type->value, cs_type->length)) {
comp_assign_csi (comp, csi, ha_state);
no_of_assignments++;
}
}
if (no_of_assignments == 0) {
log_printf (LOG_WARNING, "\t No CSIs of type %s configured?!!\n",
getSaNameT (cs_type));
}
}
if (no_of_cs_types == 0) {
log_printf (LOG_LEVEL_ERROR, "\t No CS types configured for comp %s ?!!\n",
getSaNameT (&comp->name));
}
}
}
}
/**
* Used by a component to report a state change event
* @param su
* @param comp
* @param type type of state
* @param state new state
*/
void amf_su_comp_state_changed (
struct amf_su *su, struct amf_comp *comp, SaAmfStateT type, int state)
{
if (type == SA_AMF_PRESENCE_STATE) {
/*
* If all comp presence states are INSTANTIATED, then SU should
* be instantated.
*/
if (state == SA_AMF_PRESENCE_INSTANTIATED) {
if (presence_state_all_comps_in_su_are_set (
comp->su, SA_AMF_PRESENCE_INSTANTIATED)) {
su_presence_state_set (comp->su, SA_AMF_PRESENCE_INSTANTIATED);
} else {
assert (0);
}
} else if (state == SA_AMF_PRESENCE_INSTANTIATING) {
} else if (state == SA_AMF_PRESENCE_RESTARTING) {
} else {
assert (0);
}
} else if (type == SA_AMF_OP_STATE) {
/*
* If all component op states are ENABLED, then SU op
* state should be ENABLED.
*/
if (state == SA_AMF_OPERATIONAL_ENABLED) {
struct amf_comp *comp_compare;
int all_set = 1;
for (comp_compare = comp->su->comp_head; comp_compare != NULL; comp_compare = comp->next) {
if (comp_compare->saAmfCompOperState != SA_AMF_OPERATIONAL_ENABLED) {
all_set = 0;
break;
}
}
if (all_set) {
su_operational_state_set (comp->su, SA_AMF_OPERATIONAL_ENABLED);
} else {
su_operational_state_set (comp->su, SA_AMF_OPERATIONAL_DISABLED);
}
} else {
assert (0);
}
} else {
assert (0);
}
}
/**
* Used by a component to report a change in HA state
* @param su
* @param comp
* @param csi_assignment
*/
void amf_su_comp_hastate_changed (
struct amf_su *su, struct amf_comp *comp,
struct amf_csi_assignment *csi_assignment)
{
ENTER("'%s' '%s'", comp->name.value, csi_assignment->csi->name.value);
}
/**
* Determine if the SU is hosted on the local node.
* @param su
*
* @return int
*/
int amf_su_is_local (struct amf_su *su)
{
if (name_match (&this_amf_node->name, &su->saAmfSUHostedByNode)) {
return 1;
} else {
return 0;
}
}
/**
* Called by a component to report a suspected error on a component
* @param su
* @param comp
* @param recommended_recovery
*/
void amf_su_comp_error_suspected (
struct amf_su *su,
struct amf_comp *comp,
SaAmfRecommendedRecoveryT recommended_recovery)
{
escalation_policy_cleanup (comp);
}
void amf_su_init (void)
{
log_init ("AMF");
}