/** @file exec/amfsu.c * * Copyright (c) 2002-2006 MontaVista Software, Inc. * Author: Steven Dake (sdake@mvista.com) * * Copyright (c) 2006 Ericsson AB. * Author: Hans Feldt * - Introduced AMF B.02 information model * - Use DN in API and multicast messages * - (Re-)Introduction of event based multicast messages * - Refactoring of code into several AMF files * Author: Anders Eriksson * * All rights reserved. * * * This software licensed under BSD license, the text of which follows: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the MontaVista Software, Inc. nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * AMF Service Unit Class Implementation * * This file contains functions for handling AMF-service units(SUs). It can be * viewed as the implementation of the AMF Service Unit class (called SU) * as described in SAI-Overview-B.02.01. The SA Forum specification * SAI-AIS-AMF-B.02.01 has been used as specification of the behaviour * and is referred to as 'the spec' below. * * The functions in this file are responsible for: * - instantiating and terminating service units on request * (considering the dependencies between components described in paragraph * 3.9.2) * - creating and deleting CSI-assignment objects between its components and * CSI-objects upon request * - receiving error reports from its components and forwarding them to * appropriate handler (SU or SG or node or cluster) * - implementing restart of itself and its components (paragraph 3.12.1.2) * - implementing error escallation level 1 (paragraph 3.12.2.2 in the spec) * - handling all run time attributes of the AMF SU; all cached * attributes are stored as variables and sent to the IMM service * upon the changes described in the specification. * * SU contains the following state machines: * - presence state machine (PRSM) * - administrative state machine (ADSM) (NOT IN THIS RELEASE) * - operational state machine (OPSM) * - readiness state machine (RESM) * - ha state per service instance (SI) * - restart control state machine (RCSM) * * The presence state machine orders intantiation of its components on request. * It fully respects the dependency rules between components at instantiation * such that it orders instantiation simultaneously only of components on the * same instantiation level. The presence state machine is implemented with * the states described in the spec and the state transitions are trigged by * reported state transitions from its contained components according to * paragraph 3.3.1.1. * * The operational state machine is not responsible for any control function. * It assumes the DISABLED state if an incoming operational state change report * from a component indicates the component has assumed the DISABLED state. * Operational state changes are reported to IMM. * * The readiness state machine is not used for any control but is updated and * reported to IMM when it is changed. * * The restart control state machine (RCSM) is used to implement level 1 of * the error escallation polycy described in chapter 3.12.2 of the spec. It * also implements component restart and service unit restart as described in * paragraph 3.12.1.2 and 3.12.1.3. * RCSM contains three composite states. * Being a composite state means that the state contains substates. * RCSM composite states are: * - ESCALLATION_LEVEL (LEVEL_0, LEVEL_1 and LEVEL_2) * - RESTARTING_COMPONENT (DEACTIVATING, RESTARTING, SETTING and ACTIVATING) * - RESTARTING_SERVICE_UNIT (DEACTIVATING, TERMINATING, INSTANTIATING, * and ACTIVATING) * * ESCALLATION_LEVEL is a kind of idle state where no actions are performed * and used only to remember the escallation level. Substate LEVEL_0 indicates * no escallation. LEVEL_1 indicates that a component restart has been * executed recently and the escallation timer is still running. At this level * component restart requests will transition to RESTARTING_COMPONENT but * if there are too many restart requests before the probation timer expires * then a transition will be made to LEVEL_2 and the restart request will * be forwarded to the node instance hosting this component. * State RESTARTING_SERVICE_UNIT will only be assumed if the node explicitly * requests the SU to execute a restart of itself (after having evaluated its * part of the error escallation policy). * */ /* * */ #include #include #include #include #include "amf.h" #include "util.h" #include "print.h" #include "main.h" static int presence_state_all_comps_in_su_are_set (struct amf_su *su, SaAmfPresenceStateT state) { int all_set = 1; struct amf_comp *comp; for (comp = su->comp_head; comp != NULL; comp = comp->next) { if (comp->saAmfCompPresenceState != state) { all_set = 0; } } return all_set; } static void su_readiness_state_set (struct amf_su *su, SaAmfReadinessStateT readiness_state) { su->saAmfSUReadinessState = readiness_state; TRACE1 ("Setting SU '%s' readiness state: %s\n", &su->name.value, amf_readiness_state(readiness_state)); } static void su_presence_state_set (struct amf_su *su, SaAmfPresenceStateT presence_state) { su->saAmfSUPresenceState = presence_state; TRACE1 ("Setting SU '%s' presence state: %s\n", su->name.value, amf_presence_state (presence_state)); amf_sg_su_state_changed (su->sg, su, SA_AMF_PRESENCE_STATE, presence_state); } static void su_operational_state_set (struct amf_su *su, SaAmfOperationalStateT oper_state) { struct amf_comp* comp; if (oper_state == su->saAmfSUOperState) { log_printf (LOG_INFO, "Not assigning service unit new operational state - same state\n"); return; } su->saAmfSUOperState = oper_state; TRACE1 ("Setting SU '%s' operational state: %s\n", su->name.value, amf_op_state (oper_state)); if (oper_state == SA_AMF_OPERATIONAL_ENABLED) { su_readiness_state_set (su, SA_AMF_READINESS_IN_SERVICE); for (comp = su->comp_head; comp; comp = comp->next) { amf_comp_readiness_state_set (comp, SA_AMF_READINESS_IN_SERVICE); } // amf_sg_su_state_changed (su->sg, su, SA_AMF_OP_STATE, SA_AMF_OPERATIONAL_ENABLED); } else if (oper_state == SA_AMF_OPERATIONAL_DISABLED) { su_readiness_state_set (su, SA_AMF_READINESS_OUT_OF_SERVICE); } } static void comp_assign_csi (struct amf_comp *comp, struct amf_csi *csi, SaAmfHAStateT ha_state) { struct amf_csi_assignment *csi_assignment; dprintf (" Creating CSI '%s' to comp '%s' with hastate %s\n", getSaNameT (&csi->name), getSaNameT (&comp->name), amf_ha_state (ha_state)); csi_assignment = malloc (sizeof (struct amf_csi_assignment)); if (csi_assignment == NULL) { openais_exit_error (AIS_DONE_OUT_OF_MEMORY); } csi_assignment->comp_next = comp->assigned_csis; comp->assigned_csis = csi_assignment; csi_assignment->csi_next = csi->csi_assignments; csi->csi_assignments = csi_assignment; setSaNameT (&csi_assignment->name, (char*)comp->name.value); csi_assignment->saAmfCSICompHAState = ha_state; csi_assignment->csi = csi; csi_assignment->comp = comp; csi_assignment->saAmfCSICompHAState = 0; /* undefined confirmed HA state */ csi_assignment->requested_ha_state = ha_state; if (ha_state == SA_AMF_HA_ACTIVE) comp->saAmfCompNumCurrActiveCsi++; else if (ha_state == SA_AMF_HA_STANDBY) comp->saAmfCompNumCurrStandbyCsi++; else assert (0); } static void su_cleanup (struct amf_su *su) { struct amf_comp *comp; for (comp = su->comp_head; comp != NULL; comp = comp->next) { amf_comp_restart (comp); } } static void escalation_policy_cleanup (struct amf_comp *comp) { // escalation_timer_start (comp); switch (comp->su->escalation_level) { case ESCALATION_LEVEL_NO_ESCALATION: comp->saAmfCompRestartCount += 1; if (comp->saAmfCompRestartCount >= comp->su->sg->saAmfSGCompRestartMax) { comp->su->escalation_level = ESCALATION_LEVEL_ONE; escalation_policy_cleanup (comp); comp->saAmfCompRestartCount = 0; return; } dprintf ("Escalation level 0 - restart component\n"); dprintf ("Cleaning up and restarting component.\n"); amf_comp_restart (comp); break; case ESCALATION_LEVEL_ONE: comp->su->saAmfSURestartCount += 1; if (comp->su->saAmfSURestartCount >= comp->su->sg->saAmfSGSuRestartMax) { comp->su->escalation_level = ESCALATION_LEVEL_TWO; escalation_policy_cleanup (comp); comp->saAmfCompRestartCount = 0; comp->su->saAmfSURestartCount = 0; return; } dprintf ("Escalation level 1 - restart unit\n"); dprintf ("Cleaning up and restarting unit.\n"); su_cleanup (comp->su); break; case ESCALATION_LEVEL_TWO: dprintf ("Escalation level TWO\n"); su_cleanup (comp->su); // unit_terminate_failover (comp); break; case ESCALATION_LEVEL_THREE: //TODO break; } } void amf_su_instantiate (struct amf_su *su) { struct amf_comp *comp; ENTER ("'%s'", su->name.value); for (comp = su->comp_head; comp != NULL; comp = comp->next) { amf_comp_instantiate (comp); } } void amf_su_assign_si (struct amf_su *su, struct amf_si *si, SaAmfHAStateT ha_state) { struct amf_si_assignment *si_assignment; dprintf ("Creating SI '%s' to SU '%s' with hastate %s\n", getSaNameT (&si->name), getSaNameT (&su->name), amf_ha_state (ha_state)); si_assignment = malloc (sizeof (struct amf_si_assignment)); if (si_assignment == NULL) { openais_exit_error (AIS_DONE_OUT_OF_MEMORY); } setSaNameT (&si_assignment->name, (char*)su->name.value); si_assignment->saAmfSISUHAState = 0; /* undefined confirmed HA state */ si_assignment->requested_ha_state = ha_state; si_assignment->next = su->assigned_sis; su->assigned_sis = si_assignment; si_assignment->si = si; memcpy (&si_assignment->si->saAmfSIProtectedbySG, &su->sg->name, sizeof (SaNameT)); if (ha_state == SA_AMF_HA_ACTIVE) { si->saAmfSINumCurrActiveAssignments++; su->saAmfSUNumCurrActiveSIs++; } else if (ha_state == SA_AMF_HA_STANDBY) { su->saAmfSUNumCurrStandbySIs++; si->saAmfSINumCurrStandbyAssignments++; } else assert(0); if ((si->saAmfSINumCurrActiveAssignments == si->saAmfSIPrefActiveAssignments) && (si->saAmfSINumCurrStandbyAssignments == si->saAmfSIPrefStandbyAssignments)) { si->saAmfSIAssignmentState = SA_AMF_ASSIGNMENT_FULLY_ASSIGNED; } else if ((si->saAmfSINumCurrActiveAssignments < si->saAmfSIPrefActiveAssignments) || (si->saAmfSINumCurrStandbyAssignments < si->saAmfSIPrefStandbyAssignments)) { si->saAmfSIAssignmentState = SA_AMF_ASSIGNMENT_PARTIALLY_ASSIGNED; } { struct amf_csi *csi; struct amf_comp *comp; SaNameT *cs_type; int i; /* ** for each component in SU, find a CSI in the SI with the same type */ for (comp = su->comp_head; comp != NULL; comp = comp->next) { int no_of_cs_types = 0; for (i = 0; comp->saAmfCompCsTypes[i]; i++) { cs_type = comp->saAmfCompCsTypes[i]; no_of_cs_types++; int no_of_assignments = 0; for (csi = si->csi_head; csi != NULL; csi = csi->next) { if (!memcmp(csi->saAmfCSTypeName.value, cs_type->value, cs_type->length)) { comp_assign_csi (comp, csi, ha_state); no_of_assignments++; } } if (no_of_assignments == 0) { log_printf (LOG_WARNING, "\t No CSIs of type %s configured?!!\n", getSaNameT (cs_type)); } } if (no_of_cs_types == 0) { log_printf (LOG_LEVEL_ERROR, "\t No CS types configured for comp %s ?!!\n", getSaNameT (&comp->name)); } } } } /** * Used by a component to report a state change event * @param su * @param comp * @param type type of state * @param state new state */ void amf_su_comp_state_changed ( struct amf_su *su, struct amf_comp *comp, SaAmfStateT type, int state) { if (type == SA_AMF_PRESENCE_STATE) { /* * If all comp presence states are INSTANTIATED, then SU should * be instantated. */ if (state == SA_AMF_PRESENCE_INSTANTIATED) { if (presence_state_all_comps_in_su_are_set ( comp->su, SA_AMF_PRESENCE_INSTANTIATED)) { su_presence_state_set (comp->su, SA_AMF_PRESENCE_INSTANTIATED); } else { assert (0); } } else if (state == SA_AMF_PRESENCE_INSTANTIATING) { } else if (state == SA_AMF_PRESENCE_RESTARTING) { } else { assert (0); } } else if (type == SA_AMF_OP_STATE) { /* * If all component op states are ENABLED, then SU op * state should be ENABLED. */ if (state == SA_AMF_OPERATIONAL_ENABLED) { struct amf_comp *comp_compare; int all_set = 1; for (comp_compare = comp->su->comp_head; comp_compare != NULL; comp_compare = comp->next) { if (comp_compare->saAmfCompOperState != SA_AMF_OPERATIONAL_ENABLED) { all_set = 0; break; } } if (all_set) { su_operational_state_set (comp->su, SA_AMF_OPERATIONAL_ENABLED); } else { su_operational_state_set (comp->su, SA_AMF_OPERATIONAL_DISABLED); } } else { assert (0); } } else { assert (0); } } /** * Used by a component to report a change in HA state * @param su * @param comp * @param csi_assignment */ void amf_su_comp_hastate_changed ( struct amf_su *su, struct amf_comp *comp, struct amf_csi_assignment *csi_assignment) { ENTER("'%s' '%s'", comp->name.value, csi_assignment->csi->name.value); } /** * Determine if the SU is hosted on the local node. * @param su * * @return int */ int amf_su_is_local (struct amf_su *su) { if (name_match (&this_amf_node->name, &su->saAmfSUHostedByNode)) { return 1; } else { return 0; } } /** * Called by a component to report a suspected error on a component * @param su * @param comp * @param recommended_recovery */ void amf_su_comp_error_suspected ( struct amf_su *su, struct amf_comp *comp, SaAmfRecommendedRecoveryT recommended_recovery) { escalation_policy_cleanup (comp); } void amf_su_init (void) { log_init ("AMF"); }