`git_futils_mkdir` does not blindly call `git_futils_mkdir_relative`.
`git_futils_mkdir_relative` is used when you have some base directory
and want to create some path inside of it, potentially removing blocking
symlinks and files in the process. This is not suitable for a general
recursive mkdir within the filesystem.
Instead, when `mkdir` is being recursive, locate the first existent
parent directory and use that as the base for `mkdir_relative`.
Untangle git_futils_mkdir from git_futils_mkdir_ext - the latter
assumes that we own everything beneath the base, as if it were
being called with a base of the repository or working directory,
and is tailored towards checkout and ensuring that there is no
bogosity beneath the base that must be cleaned up.
This is (at best) slow and (at worst) unsafe in the larger context
of a filesystem where we do not own things and cannot do things like
unlink symlinks that are in our way.
When a file exists on disk and we're checking out a file that differs
in executableness, remove the old file. This allows us to recreate the
new file with p_open, which will take the new mode into account and
handle setting the umask properly.
Remove any notion of chmod'ing existing files, since it is now handled
by the aforementioned removal and was incorrect, as it did not take
umask into account.
Ensure that we can iterate the filesystem root and that paths come
back well-formed, not with an additional '/'. (eg, when iterating
`c:/`, expect that we do not get some path like `c://autoexec.bat`).
The previous commit left the comment referencing the earlier state of
the code, change it to explain the current logic. While here, change the
logic to avoid repeating the copy of the base pattern.
These are small pieces of data, so there is no advantage to allocating
them separately. Include the two ids inline in the struct we use to
check that the expected and actual ids match.
On case insensitive platforms, allow `git_index_add` to provide a new
path for an existing index entry. Previously, we would maintain the
case in an index entry without the ability to change it (except by
removing an entry and re-adding it.)
Higher-level functions (like `git_index_add_bypath` and
`git_index_add_frombuffers`) continue to keep the old path for easier
usage.
On case insensitive systems, when given a user-provided path in the
higher-level index addition functions (eg `git_index_add_bypath` /
`git_index_add_frombuffer`), examine the index to try to match the
given path to an existing directory.
Various mechanisms can cause the on-disk representation of a folder
to not match the representation in HEAD or the index - for example,
a case changing rename of some file `a/file.txt` to `A/file.txt`
will update the paths in the index, but not rename the folder on
disk.
If a user subsequently adds `a/other.txt`, then this should be stored
in the index as `A/other.txt`.
We create a lockfile to update files under GIT_DIR. Sometimes these
files are actually located elsewhere and a symlink takes their place. In
that case we should lock and update the file at its final location
rather than overwrite the symlink.
Some nicer refactoring for index iteration walks.
The index iterator doesn't binary search through the pathlist space,
since it lacks directory entries, and would have to binary search
each index entry and all its parents (eg, when presented with an index
entry of `foo/bar/file.c`, you would have to look in the pathlist for
`foo/bar/file.c`, `foo/bar` and `foo`). Since the index entries and the
pathlist are both nicely sorted, we walk the index entries in lockstep
with the pathlist like we do for other iteration/diff/merge walks.
When using literal pathspecs in diff with `GIT_DIFF_DISABLE_PATHSPEC_MATCH`
turn on the faster iterator pathlist handling.
Updates iterator pathspecs to include directory prefixes (eg, `foo/`)
for compatibility with `GIT_DIFF_DISABLE_PATHSPEC_MATCH`.
Document that `GIT_DIFF_PATHSPEC_DISABLE` is not necessarily about
explicit path matching, but also includes matching of directory
names. Enforce this in a test.
When given a pathlist, don't assume that directories sort before
files. Walk through any list of entries sorting before us to make
sure that we've exhausted all entries that *aren't* directories.
Eg, if we're searching for 'foo/bar', and we have a 'foo.c', keep
advancing the pathlist to keep looking for an entry prefixed with
'foo/'.
When parsing user-provided regex patterns for functions, we must not
fail to provide a diff just because a pattern is not well
formed. Ignore it instead.
This lock/unlock pair allows for the cller to lock a configuration file
to avoid concurrent operations.
It also allows for a transactional approach to updating a configuration
file. If multiple updates must be made atomically, they can be done
while the config is locked.
When a configuration file is locked, any updates made to it will be done
to the in-memory copy of the file. This allows for multiple updates to
happen while we hold the lock, preventing races during complex
config-file manipulation.
While we download the remote's remote-tracking branches, we don't
download the tag. This points to the tag auto-follow rules interfering
with the refspec.