As refdb and odb backends can be allocated by client code, libgit2
can’t know whether an alternative memory allocator was used, and thus
should not try to call `git__free` on those objects.
Instead, odb and refdb backend implementations must always provide
their own `free` functions to ensure memory gets freed correctly.
git expects an empty line after the binary data:
literal X
...binary data...
<empty_line>
The last literal block of the generated patches were not containing the required empty line. Example:
diff --git a/binary_file b/binary_file
index 3f1b3f9098131cfecea4a50ff8afab349ea66d22..86e5c1008b5ce635d3e3fffa4434c5eccd8f00b6 100644
GIT binary patch
literal 8
Pc${NM&PdElPvrst3ey5{
literal 6
Nc${NM%g@i}0ssZ|0lokL
diff --git a/binary_file2 b/binary_file2
index 31be99be19470da4af5b28b21e27896a2f2f9ee2..86e5c1008b5ce635d3e3fffa4434c5eccd8f00b6 100644
GIT binary patch
literal 8
Pc${NM&PdElPvrst3ey5{
literal 13
Sc${NMEKbZyOexL+Qd|HZV+4u-
git apply of that diff results in:
error: corrupt binary patch at line 9: diff --git a/binary_file2 b/binary_file2
fatal: patch with only garbage at line 10
The proper formating is:
diff --git a/binary_file b/binary_file
index 3f1b3f9098131cfecea4a50ff8afab349ea66d22..86e5c1008b5ce635d3e3fffa4434c5eccd8f00b6 100644
GIT binary patch
literal 8
Pc${NM&PdElPvrst3ey5{
literal 6
Nc${NM%g@i}0ssZ|0lokL
diff --git a/binary_file2 b/binary_file2
index 31be99be19470da4af5b28b21e27896a2f2f9ee2..86e5c1008b5ce635d3e3fffa4434c5eccd8f00b6 100644
GIT binary patch
literal 8
Pc${NM&PdElPvrst3ey5{
literal 13
Sc${NMEKbZyOexL+Qd|HZV+4u-
This allows us to remove OS checks from source code, instead relying
on CMake to detect whether or not `struct stat` has the nanoseconds
members we rely on.
Test an initial submodule update, where we are trying to checkout
the submodule for the first time, and placing a file within the
submodule working directory with the same name as the submodule
(and consequently, the same name as the repository itself).
`git_futils_mkdir` does not blindly call `git_futils_mkdir_relative`.
`git_futils_mkdir_relative` is used when you have some base directory
and want to create some path inside of it, potentially removing blocking
symlinks and files in the process. This is not suitable for a general
recursive mkdir within the filesystem.
Instead, when `mkdir` is being recursive, locate the first existent
parent directory and use that as the base for `mkdir_relative`.
Untangle git_futils_mkdir from git_futils_mkdir_ext - the latter
assumes that we own everything beneath the base, as if it were
being called with a base of the repository or working directory,
and is tailored towards checkout and ensuring that there is no
bogosity beneath the base that must be cleaned up.
This is (at best) slow and (at worst) unsafe in the larger context
of a filesystem where we do not own things and cannot do things like
unlink symlinks that are in our way.
When a file exists on disk and we're checking out a file that differs
in executableness, remove the old file. This allows us to recreate the
new file with p_open, which will take the new mode into account and
handle setting the umask properly.
Remove any notion of chmod'ing existing files, since it is now handled
by the aforementioned removal and was incorrect, as it did not take
umask into account.
Ensure that we can iterate the filesystem root and that paths come
back well-formed, not with an additional '/'. (eg, when iterating
`c:/`, expect that we do not get some path like `c://autoexec.bat`).
The previous commit left the comment referencing the earlier state of
the code, change it to explain the current logic. While here, change the
logic to avoid repeating the copy of the base pattern.
These are small pieces of data, so there is no advantage to allocating
them separately. Include the two ids inline in the struct we use to
check that the expected and actual ids match.
On case insensitive platforms, allow `git_index_add` to provide a new
path for an existing index entry. Previously, we would maintain the
case in an index entry without the ability to change it (except by
removing an entry and re-adding it.)
Higher-level functions (like `git_index_add_bypath` and
`git_index_add_frombuffers`) continue to keep the old path for easier
usage.
On case insensitive systems, when given a user-provided path in the
higher-level index addition functions (eg `git_index_add_bypath` /
`git_index_add_frombuffer`), examine the index to try to match the
given path to an existing directory.
Various mechanisms can cause the on-disk representation of a folder
to not match the representation in HEAD or the index - for example,
a case changing rename of some file `a/file.txt` to `A/file.txt`
will update the paths in the index, but not rename the folder on
disk.
If a user subsequently adds `a/other.txt`, then this should be stored
in the index as `A/other.txt`.
We create a lockfile to update files under GIT_DIR. Sometimes these
files are actually located elsewhere and a symlink takes their place. In
that case we should lock and update the file at its final location
rather than overwrite the symlink.