The libxmlb library is much faster to query, and does not require the daemon
to parse the XML metadata at startup. It's a zero-copy mmap design that is more
modern and less clunky.
RSS has reduced from 3Mb (peak 3.61Mb) to 1Mb (peak 1.07Mb) and the startup
time has gone from 280ms to 250ms.
The daemon creates a baseclass of either FuUsbDevice or FuUdevDevice when the
devices are added or coldplugged to match the quirk database and to find out
what plugin to run.
This is proxied to plugins, but they are given the GUsbDevice or GUdevDevice and
the FuDevice is just thrown away. Most plugins either use a FuUsbDevice or
superclassed version like FuNvmeDevice and so we re-create the FuDevice, re-probe
the hardware, re-query the quirk database and then return this to the daemon.
In some cases, plugins actually probe the hardware three times (!) by creating
a FuUsbDevice to get the quirks, so that the plugin knows what kind of
superclass to create, which then itself probes the hardware again.
Passing the temporary FuDevice to the plugins means that the simplest ones can
just fu_plugin_device_add() the passed in object, or create a superclass and
incorporate the actual GUsbDevice and all the GUIDs.
This breaks internal plugin API but speeds up startup substantially and deletes
a lot of code.
These are GUIDs that are related to the main device, but should not be used for
quirk matching. For instance, we might want to list the GUIDs for a bootloader
mode, but we don't want to import all the quirks for the bootloader when in the
runtime mode.
This allows us to match non-DeviceID GUIDs, and also GUIDs we don't know how to
generate.
To make this fully useful, search for device quirks when GUIDs are added.
Apparently the linker complains when dlopen'ing a plugin that's linked against
the libfwupdprivate library the daemon is using. This only seems to happen when
using distro packages...
Five plugins (soon to be 7) are linking to the DFU plugin just for this simple
segment-aware chunking functionality. Move this into common code to make
building simpler.
This pivots the data storage so that the group is used as the preconditon
and the key name is used as the parameter to change. This allows a more natural
data flow, where a new device needs one new group and a few few keys, rather
than multiple groups, each with one key.
This also allows us to remove the key globbing when matching the version format
which is often a source of confusion.
Whilst changing all the quirk files, change the key prefixes to be more familiar
to Windows users (e.g. Hwid -> Smbios, and FuUsbDevice -> DeviceInstanceId)
who have to use the same IDs in Windows Update.
This also allows us to pre-match the desired plugin, rather than calling the
probe() function on each plugin.
GLib creates two static inline functions for paramaters that may
not be used that set off warnings in clang but not gcc.
Ignore these on clang builds everywhere that
G_DEFINE_AUTOPTR_CLEANUP_FUNC is used.
In newer releases libusb has started returning LIBUSB_TRANSFER_ERROR (rather
than the arguably more correct LIBUSB_TRANSFER_STALL...) when the device is
removed before the control transfer has completed.
By filtering out the devices not in runtime we have two problems:
* We can't use fwupdmgr to 'fix' any devices that failed to flash and are
stuck in bootloader mode
* We can't transition from a runtime-less FuDevice to a DFU-capable FuDevice.
This allows the Nitrokey to be updated using fwupd.
Although we don't quite do the right thing, we only need to typically work out
the start offset of the firmware. This fixes 'dfu-tool dump foo.hex' for files
produced for the ATMEL ATXMEGA architechure.
Previously, the various install paths were obtained using get_option
as needed.
This patch unifies the directory selection inside the top-level meson
file as requested in https://github.com/hughsie/colord/pull/62.
This allows us to flash hardware like the Retrode and other devices using chips
like the AT90USB1287.
The test files can be re-generated using the sample code found here:
https://github.com/hughsie/fwupd-test-firmware and are designed
to be used on the AT90USBKEY2 development board.
It's actually less scary to see a SHA1 hash than it is to see a path like
/sys/devices/pci0000:00/0000:00:1d.0/usb1/1-1/1-1.2. It's also way easier to
copy and paste into the various fwupdmgr command that require a device ID and
also means we can match a partial prefix much like git allows.
If we also move to a model where plugins can be changed during different stages
of the update (e.g. during detach) then the device might change connection type
and then the sysfs path not only becomes difficult to paste, but incorrect.
Session software doesn't care about the format of the device ID (it is supposed
to be an implementation detail) and so there's no API or ABI break here. A few
plugins also needed to be ported, but nothing too worrying.
This allows end-users testing a specific plugin to start fwupd with an extra
command line parameter, e.g. `--plugin-verbose=unifying` to output a lot of
debugging information to the console for that specific plugin.
This replaces a lot of ad-hoc environment variables with different naming
conventions.
This also adds an *almost* throw-away python script to import the chip-ids from
the default conf file from the avrdude project. I've imported it here in case we
have to start caring about different page sizes or application offsets.
Notably, bootloaders for this class of device export an incorrect DFU interface.
Additionally, allow setting the buffer size for the UPLOAD to a larger size
than the defined device transfer size, which allows us to return the full
packet from the larger XMEGA devices.
Ignoring the warning is not good enough when we're setting policy based on the
specific version. Use the new quirk functionality to do this easily, which
also allows us to remove one more thing in the quirk mega-bitfield.
If page_sz == 0, which is supported, then we try to take the modulus of it
which is undefined behaviour and can cause a division by zero crash.
Found using Coverity.
This allows us to remove the Jabra-specific quirk entry in the device bitfield,
and more importantly allows us to support some more Jabra devices in the future
without code changes.
This is slightly more verbose than desired as we also have to include the quirk
information when running the dfu-tool, which does not have an already set-up
FuQuirks object as it has no plugin.
Although it makes things faster to ignore the timeout, it violates the DFU
specification which could break some devices.
Lets err on the side of caution for now, even if this means slowing down an
uncommon operation.
This reverts commit 144473c1f4.
This allows us to show the devices in a GUI with a nice icon. Some of the icon
mappings are not perfect and I'll be asking the GNOME designers for some
additions to the icon specification.
Custom vendor icons can also be specified, and /usr/share/fwupd/icons would be
a good place to put them. If vendor icons are used they should show a physical
device with the branding, rather than just the vendor logo.
The hardware does not support the DFU specification enough for a metadata table
to be embedded, so there's no way to reliably detect the 'devo' cipher, thus
making the support useless.
Over the months the original meaning of ALLOW_OFFLINE and ALLOW_ONLINE have be
lost, and there is now a confusing mixture of uses in the source tree. With this
commit we make it clear the UPDATABLE flag is used to specify when the device is
updatable (e.g. from the desktop live session, or from the systemd offline
updates mode, or both) and the NEEDS_REBOOT flag lets us know when the update
is actually going to be done.
For instance, a UEFI UpdateCapsule can be *scheduled* from either the desktop
or from the update mode (but the latter would be a bit weird), but does require
a reboot. Some devices might only be updatable outside the live session, for
instance a hard drive update or a GPU update -- there's just too much going on
with a live session and we want to tightly control what's running during the
firmware flash.
This also means we don't have to "retry" the update when scheduling an update
that really can be scheduled whenever, but just requires a reboot to apply.
Although we supported other hashes than SHA1 (which is now moderately unsafe)
we had to switch the metadata provider and daemon on some kind of flag day to
using SHA256. Since that's somewhat impractical, just allow multiple checksums
to be set on objects and just try to match whatever is given in preference
order.
This also means we can easily transition to other hash types in the future.
The removed API was never present in a tarball release, so not an API break.
Automake and autoconf are impossible to fully understand and Meson now provides
everything we need for a much smaller, faster, and more understandable build.
See http://mesonbuild.com/ for more information.
failed to open plugin
/usr/lib/x86_64-linux-gnu/fwupd-plugins-2/libfu_plugin_dfu.so:
failed to open plugin:
/usr/lib/x86_64-linux-gnu/fwupd-plugins-2/libfu_plugin_dfu.so:
undefined symbol: dfu_device_upload
This is a large commit that removes all the providers and turns them into
plugins. I think having both providers _and_ plugins was super confusing.
Plugins are loaded at runtime so you could in theory develop a new plugin
without putting it in the fwupd source tree, although there are no installed
headers or PC files as I'm not sure it's a good idea at this stage.
This commit moves all the per-provider docs, tests, notes, debug dumps and test
data to plugin-specific directories -- these also allows the plugin author to
"own" more of the source tree so we don't enforce fu- prefixes and the style
guide everywhere.
This allows us to run the same action on all the plugins in the future, so we
could have a prepare(FuPlugin, FuDevice) and cleanup(FuPlugin, FuDevice) run
on *all* plugins, so doing an update using one plugin would allow us to work
around hardware quirks in other plugins.
If I've broken your out-of-tree provider it's trivial to port to the new API
with sed and a fixed up build file. If you need help please let me know.