node/src/util-inl.h
Tobias Nießen 3a43e55a00
src: update outdated references to spec sections
The exact section has changed in recent versions of ECMA-262, so fix the
section number and explicitly mark the edition of the standard to avoid
having to update it in the future.

PR-URL: https://github.com/nodejs/node/pull/53832
Reviewed-By: James M Snell <jasnell@gmail.com>
Reviewed-By: Marco Ippolito <marcoippolito54@gmail.com>
2024-07-15 20:01:14 +00:00

569 lines
18 KiB
C++

// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SRC_UTIL_INL_H_
#define SRC_UTIL_INL_H_
#if defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
#include <cmath>
#include <cstring>
#include <locale>
#include <regex> // NOLINT(build/c++11)
#include "node_revert.h"
#include "util.h"
#define CHAR_TEST(bits, name, expr) \
template <typename T> \
bool name(const T ch) { \
static_assert(sizeof(ch) >= (bits) / 8, \
"Character must be wider than " #bits " bits"); \
return (expr); \
}
namespace node {
template <typename T>
ListNode<T>::ListNode() : prev_(this), next_(this) {}
template <typename T>
ListNode<T>::~ListNode() {
Remove();
}
template <typename T>
void ListNode<T>::Remove() {
prev_->next_ = next_;
next_->prev_ = prev_;
prev_ = this;
next_ = this;
}
template <typename T>
bool ListNode<T>::IsEmpty() const {
return prev_ == this;
}
template <typename T, ListNode<T> (T::*M)>
ListHead<T, M>::Iterator::Iterator(ListNode<T>* node) : node_(node) {}
template <typename T, ListNode<T> (T::*M)>
T* ListHead<T, M>::Iterator::operator*() const {
return ContainerOf(M, node_);
}
template <typename T, ListNode<T> (T::*M)>
const typename ListHead<T, M>::Iterator&
ListHead<T, M>::Iterator::operator++() {
node_ = node_->next_;
return *this;
}
template <typename T, ListNode<T> (T::*M)>
bool ListHead<T, M>::Iterator::operator!=(const Iterator& that) const {
return node_ != that.node_;
}
template <typename T, ListNode<T> (T::*M)>
ListHead<T, M>::~ListHead() {
while (IsEmpty() == false)
head_.next_->Remove();
}
template <typename T, ListNode<T> (T::*M)>
void ListHead<T, M>::PushBack(T* element) {
ListNode<T>* that = &(element->*M);
head_.prev_->next_ = that;
that->prev_ = head_.prev_;
that->next_ = &head_;
head_.prev_ = that;
}
template <typename T, ListNode<T> (T::*M)>
void ListHead<T, M>::PushFront(T* element) {
ListNode<T>* that = &(element->*M);
head_.next_->prev_ = that;
that->prev_ = &head_;
that->next_ = head_.next_;
head_.next_ = that;
}
template <typename T, ListNode<T> (T::*M)>
bool ListHead<T, M>::IsEmpty() const {
return head_.IsEmpty();
}
template <typename T, ListNode<T> (T::*M)>
T* ListHead<T, M>::PopFront() {
if (IsEmpty())
return nullptr;
ListNode<T>* node = head_.next_;
node->Remove();
return ContainerOf(M, node);
}
template <typename T, ListNode<T> (T::*M)>
typename ListHead<T, M>::Iterator ListHead<T, M>::begin() const {
return Iterator(head_.next_);
}
template <typename T, ListNode<T> (T::*M)>
typename ListHead<T, M>::Iterator ListHead<T, M>::end() const {
return Iterator(const_cast<ListNode<T>*>(&head_));
}
template <typename Inner, typename Outer>
constexpr uintptr_t OffsetOf(Inner Outer::*field) {
return reinterpret_cast<uintptr_t>(&(static_cast<Outer*>(nullptr)->*field));
}
template <typename Inner, typename Outer>
ContainerOfHelper<Inner, Outer>::ContainerOfHelper(Inner Outer::*field,
Inner* pointer)
: pointer_(
reinterpret_cast<Outer*>(
reinterpret_cast<uintptr_t>(pointer) - OffsetOf(field))) {}
template <typename Inner, typename Outer>
template <typename TypeName>
ContainerOfHelper<Inner, Outer>::operator TypeName*() const {
return static_cast<TypeName*>(pointer_);
}
template <typename Inner, typename Outer>
constexpr ContainerOfHelper<Inner, Outer> ContainerOf(Inner Outer::*field,
Inner* pointer) {
return ContainerOfHelper<Inner, Outer>(field, pointer);
}
inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
const char* data,
int length) {
return v8::String::NewFromOneByte(isolate,
reinterpret_cast<const uint8_t*>(data),
v8::NewStringType::kNormal,
length).ToLocalChecked();
}
inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
const signed char* data,
int length) {
return v8::String::NewFromOneByte(isolate,
reinterpret_cast<const uint8_t*>(data),
v8::NewStringType::kNormal,
length).ToLocalChecked();
}
inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
const unsigned char* data,
int length) {
return v8::String::NewFromOneByte(
isolate, data, v8::NewStringType::kNormal, length)
.ToLocalChecked();
}
char ToLower(char c) {
return std::tolower(c, std::locale::classic());
}
std::string ToLower(const std::string& in) {
std::string out(in.size(), 0);
for (size_t i = 0; i < in.size(); ++i)
out[i] = ToLower(in[i]);
return out;
}
char ToUpper(char c) {
return std::toupper(c, std::locale::classic());
}
std::string ToUpper(const std::string& in) {
std::string out(in.size(), 0);
for (size_t i = 0; i < in.size(); ++i)
out[i] = ToUpper(in[i]);
return out;
}
bool StringEqualNoCase(const char* a, const char* b) {
while (ToLower(*a) == ToLower(*b++)) {
if (*a++ == '\0')
return true;
}
return false;
}
bool StringEqualNoCaseN(const char* a, const char* b, size_t length) {
for (size_t i = 0; i < length; i++) {
if (ToLower(a[i]) != ToLower(b[i]))
return false;
if (a[i] == '\0')
return true;
}
return true;
}
template <typename T>
inline T MultiplyWithOverflowCheck(T a, T b) {
auto ret = a * b;
if (a != 0)
CHECK_EQ(b, ret / a);
return ret;
}
// These should be used in our code as opposed to the native
// versions as they abstract out some platform and or
// compiler version specific functionality.
// malloc(0) and realloc(ptr, 0) have implementation-defined behavior in
// that the standard allows them to either return a unique pointer or a
// nullptr for zero-sized allocation requests. Normalize by always using
// a nullptr.
template <typename T>
T* UncheckedRealloc(T* pointer, size_t n) {
size_t full_size = MultiplyWithOverflowCheck(sizeof(T), n);
if (full_size == 0) {
free(pointer);
return nullptr;
}
void* allocated = realloc(pointer, full_size);
if (UNLIKELY(allocated == nullptr)) {
// Tell V8 that memory is low and retry.
LowMemoryNotification();
allocated = realloc(pointer, full_size);
}
return static_cast<T*>(allocated);
}
// As per spec realloc behaves like malloc if passed nullptr.
template <typename T>
inline T* UncheckedMalloc(size_t n) {
return UncheckedRealloc<T>(nullptr, n);
}
template <typename T>
inline T* UncheckedCalloc(size_t n) {
if (MultiplyWithOverflowCheck(sizeof(T), n) == 0) return nullptr;
return static_cast<T*>(calloc(n, sizeof(T)));
}
template <typename T>
inline T* Realloc(T* pointer, size_t n) {
T* ret = UncheckedRealloc(pointer, n);
CHECK_IMPLIES(n > 0, ret != nullptr);
return ret;
}
template <typename T>
inline T* Malloc(size_t n) {
T* ret = UncheckedMalloc<T>(n);
CHECK_IMPLIES(n > 0, ret != nullptr);
return ret;
}
template <typename T>
inline T* Calloc(size_t n) {
T* ret = UncheckedCalloc<T>(n);
CHECK_IMPLIES(n > 0, ret != nullptr);
return ret;
}
// Shortcuts for char*.
inline char* Malloc(size_t n) { return Malloc<char>(n); }
inline char* Calloc(size_t n) { return Calloc<char>(n); }
inline char* UncheckedMalloc(size_t n) { return UncheckedMalloc<char>(n); }
inline char* UncheckedCalloc(size_t n) { return UncheckedCalloc<char>(n); }
// This is a helper in the .cc file so including util-inl.h doesn't include more
// headers than we really need to.
void ThrowErrStringTooLong(v8::Isolate* isolate);
struct ArrayIterationData {
std::vector<v8::Global<v8::Value>>* out;
v8::Isolate* isolate = nullptr;
};
inline v8::Array::CallbackResult PushItemToVector(uint32_t index,
v8::Local<v8::Value> element,
void* data) {
auto vec = static_cast<ArrayIterationData*>(data)->out;
auto isolate = static_cast<ArrayIterationData*>(data)->isolate;
vec->push_back(v8::Global<v8::Value>(isolate, element));
return v8::Array::CallbackResult::kContinue;
}
v8::Maybe<void> FromV8Array(v8::Local<v8::Context> context,
v8::Local<v8::Array> js_array,
std::vector<v8::Global<v8::Value>>* out) {
uint32_t count = js_array->Length();
out->reserve(count);
ArrayIterationData data{out, context->GetIsolate()};
return js_array->Iterate(context, PushItemToVector, &data);
}
v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
std::string_view str,
v8::Isolate* isolate) {
if (isolate == nullptr) isolate = context->GetIsolate();
if (UNLIKELY(str.size() >= static_cast<size_t>(v8::String::kMaxLength))) {
// V8 only has a TODO comment about adding an exception when the maximum
// string size is exceeded.
ThrowErrStringTooLong(isolate);
return v8::MaybeLocal<v8::Value>();
}
return v8::String::NewFromUtf8(
isolate, str.data(), v8::NewStringType::kNormal, str.size())
.FromMaybe(v8::Local<v8::String>());
}
template <typename T>
v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
const std::vector<T>& vec,
v8::Isolate* isolate) {
if (isolate == nullptr) isolate = context->GetIsolate();
v8::EscapableHandleScope handle_scope(isolate);
MaybeStackBuffer<v8::Local<v8::Value>, 128> arr(vec.size());
arr.SetLength(vec.size());
for (size_t i = 0; i < vec.size(); ++i) {
if (!ToV8Value(context, vec[i], isolate).ToLocal(&arr[i]))
return v8::MaybeLocal<v8::Value>();
}
return handle_scope.Escape(v8::Array::New(isolate, arr.out(), arr.length()));
}
template <typename T>
v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
const std::set<T>& set,
v8::Isolate* isolate) {
if (isolate == nullptr) isolate = context->GetIsolate();
v8::Local<v8::Set> set_js = v8::Set::New(isolate);
v8::HandleScope handle_scope(isolate);
for (const T& entry : set) {
v8::Local<v8::Value> value;
if (!ToV8Value(context, entry, isolate).ToLocal(&value))
return {};
if (set_js->Add(context, value).IsEmpty())
return {};
}
return set_js;
}
template <typename T, typename U>
v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
const std::unordered_map<T, U>& map,
v8::Isolate* isolate) {
if (isolate == nullptr) isolate = context->GetIsolate();
v8::EscapableHandleScope handle_scope(isolate);
v8::Local<v8::Map> ret = v8::Map::New(isolate);
for (const auto& item : map) {
v8::Local<v8::Value> first, second;
if (!ToV8Value(context, item.first, isolate).ToLocal(&first) ||
!ToV8Value(context, item.second, isolate).ToLocal(&second) ||
ret->Set(context, first, second).IsEmpty()) {
return v8::MaybeLocal<v8::Value>();
}
}
return handle_scope.Escape(ret);
}
template <typename T, typename >
v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
const T& number,
v8::Isolate* isolate) {
if (isolate == nullptr) isolate = context->GetIsolate();
using Limits = std::numeric_limits<T>;
// Choose Uint32, Int32, or Double depending on range checks.
// These checks should all collapse at compile time.
if (static_cast<uint32_t>(Limits::max()) <=
std::numeric_limits<uint32_t>::max() &&
static_cast<uint32_t>(Limits::min()) >=
std::numeric_limits<uint32_t>::min() && Limits::is_exact) {
return v8::Integer::NewFromUnsigned(isolate, static_cast<uint32_t>(number));
}
if (static_cast<int32_t>(Limits::max()) <=
std::numeric_limits<int32_t>::max() &&
static_cast<int32_t>(Limits::min()) >=
std::numeric_limits<int32_t>::min() && Limits::is_exact) {
return v8::Integer::New(isolate, static_cast<int32_t>(number));
}
return v8::Number::New(isolate, static_cast<double>(number));
}
SlicedArguments::SlicedArguments(
const v8::FunctionCallbackInfo<v8::Value>& args, size_t start) {
const size_t length = static_cast<size_t>(args.Length());
if (start >= length) return;
const size_t size = length - start;
AllocateSufficientStorage(size);
for (size_t i = 0; i < size; ++i)
(*this)[i] = args[i + start];
}
template <typename T, size_t kStackStorageSize>
void MaybeStackBuffer<T, kStackStorageSize>::AllocateSufficientStorage(
size_t storage) {
CHECK(!IsInvalidated());
if (storage > capacity()) {
bool was_allocated = IsAllocated();
T* allocated_ptr = was_allocated ? buf_ : nullptr;
buf_ = Realloc(allocated_ptr, storage);
capacity_ = storage;
if (!was_allocated && length_ > 0)
memcpy(buf_, buf_st_, length_ * sizeof(buf_[0]));
}
length_ = storage;
}
template <typename T, size_t S>
ArrayBufferViewContents<T, S>::ArrayBufferViewContents(
v8::Local<v8::Value> value) {
DCHECK(value->IsArrayBufferView() || value->IsSharedArrayBuffer() ||
value->IsArrayBuffer());
ReadValue(value);
}
template <typename T, size_t S>
ArrayBufferViewContents<T, S>::ArrayBufferViewContents(
v8::Local<v8::Object> value) {
CHECK(value->IsArrayBufferView());
Read(value.As<v8::ArrayBufferView>());
}
template <typename T, size_t S>
ArrayBufferViewContents<T, S>::ArrayBufferViewContents(
v8::Local<v8::ArrayBufferView> abv) {
Read(abv);
}
template <typename T, size_t S>
void ArrayBufferViewContents<T, S>::Read(v8::Local<v8::ArrayBufferView> abv) {
static_assert(sizeof(T) == 1, "Only supports one-byte data at the moment");
length_ = abv->ByteLength();
if (length_ > sizeof(stack_storage_) || abv->HasBuffer()) {
data_ = static_cast<T*>(abv->Buffer()->Data()) + abv->ByteOffset();
} else {
abv->CopyContents(stack_storage_, sizeof(stack_storage_));
data_ = stack_storage_;
}
}
template <typename T, size_t S>
void ArrayBufferViewContents<T, S>::ReadValue(v8::Local<v8::Value> buf) {
static_assert(sizeof(T) == 1, "Only supports one-byte data at the moment");
DCHECK(buf->IsArrayBufferView() || buf->IsSharedArrayBuffer() ||
buf->IsArrayBuffer());
if (buf->IsArrayBufferView()) {
Read(buf.As<v8::ArrayBufferView>());
} else if (buf->IsArrayBuffer()) {
auto ab = buf.As<v8::ArrayBuffer>();
length_ = ab->ByteLength();
data_ = static_cast<T*>(ab->Data());
was_detached_ = ab->WasDetached();
} else {
CHECK(buf->IsSharedArrayBuffer());
auto sab = buf.As<v8::SharedArrayBuffer>();
length_ = sab->ByteLength();
data_ = static_cast<T*>(sab->Data());
}
}
// ECMA-262, 15th edition, 21.1.2.5. Number.isSafeInteger
inline bool IsSafeJsInt(v8::Local<v8::Value> v) {
if (!v->IsNumber()) return false;
double v_d = v.As<v8::Number>()->Value();
if (std::isnan(v_d)) return false;
if (std::isinf(v_d)) return false;
if (std::trunc(v_d) != v_d) return false; // not int
if (std::abs(v_d) <= static_cast<double>(kMaxSafeJsInteger)) return true;
return false;
}
constexpr size_t FastStringKey::HashImpl(std::string_view str) {
// Low-quality hash (djb2), but just fine for current use cases.
size_t h = 5381;
for (const char c : str) {
h = h * 33 + c;
}
return h;
}
constexpr size_t FastStringKey::Hash::operator()(
const FastStringKey& key) const {
return key.cached_hash_;
}
constexpr bool FastStringKey::operator==(const FastStringKey& other) const {
return name_ == other.name_;
}
constexpr FastStringKey::FastStringKey(std::string_view name)
: name_(name), cached_hash_(HashImpl(name)) {}
constexpr std::string_view FastStringKey::as_string_view() const {
return name_;
}
// Inline so the compiler can fully optimize it away on Unix platforms.
bool IsWindowsBatchFile(const char* filename) {
#ifdef _WIN32
static constexpr bool kIsWindows = true;
#else
static constexpr bool kIsWindows = false;
#endif // _WIN32
if (kIsWindows) {
std::string file_with_extension = filename;
// Regex to match the last extension part after the last dot, ignoring
// trailing spaces and dots
std::regex extension_regex(R"(\.([a-zA-Z0-9]+)\s*[\.\s]*$)");
std::smatch match;
std::string extension;
if (std::regex_search(file_with_extension, match, extension_regex)) {
extension = ToLower(match[1].str());
}
return !extension.empty() && (extension == "cmd" || extension == "bat");
}
return false;
}
} // namespace node
#endif // defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
#endif // SRC_UTIL_INL_H_