// Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. #ifndef SRC_UTIL_INL_H_ #define SRC_UTIL_INL_H_ #if defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS #include #include #include #include // NOLINT(build/c++11) #include "node_revert.h" #include "util.h" #define CHAR_TEST(bits, name, expr) \ template \ bool name(const T ch) { \ static_assert(sizeof(ch) >= (bits) / 8, \ "Character must be wider than " #bits " bits"); \ return (expr); \ } namespace node { template ListNode::ListNode() : prev_(this), next_(this) {} template ListNode::~ListNode() { Remove(); } template void ListNode::Remove() { prev_->next_ = next_; next_->prev_ = prev_; prev_ = this; next_ = this; } template bool ListNode::IsEmpty() const { return prev_ == this; } template (T::*M)> ListHead::Iterator::Iterator(ListNode* node) : node_(node) {} template (T::*M)> T* ListHead::Iterator::operator*() const { return ContainerOf(M, node_); } template (T::*M)> const typename ListHead::Iterator& ListHead::Iterator::operator++() { node_ = node_->next_; return *this; } template (T::*M)> bool ListHead::Iterator::operator!=(const Iterator& that) const { return node_ != that.node_; } template (T::*M)> ListHead::~ListHead() { while (IsEmpty() == false) head_.next_->Remove(); } template (T::*M)> void ListHead::PushBack(T* element) { ListNode* that = &(element->*M); head_.prev_->next_ = that; that->prev_ = head_.prev_; that->next_ = &head_; head_.prev_ = that; } template (T::*M)> void ListHead::PushFront(T* element) { ListNode* that = &(element->*M); head_.next_->prev_ = that; that->prev_ = &head_; that->next_ = head_.next_; head_.next_ = that; } template (T::*M)> bool ListHead::IsEmpty() const { return head_.IsEmpty(); } template (T::*M)> T* ListHead::PopFront() { if (IsEmpty()) return nullptr; ListNode* node = head_.next_; node->Remove(); return ContainerOf(M, node); } template (T::*M)> typename ListHead::Iterator ListHead::begin() const { return Iterator(head_.next_); } template (T::*M)> typename ListHead::Iterator ListHead::end() const { return Iterator(const_cast*>(&head_)); } template constexpr uintptr_t OffsetOf(Inner Outer::*field) { return reinterpret_cast(&(static_cast(nullptr)->*field)); } template ContainerOfHelper::ContainerOfHelper(Inner Outer::*field, Inner* pointer) : pointer_( reinterpret_cast( reinterpret_cast(pointer) - OffsetOf(field))) {} template template ContainerOfHelper::operator TypeName*() const { return static_cast(pointer_); } template constexpr ContainerOfHelper ContainerOf(Inner Outer::*field, Inner* pointer) { return ContainerOfHelper(field, pointer); } inline v8::Local OneByteString(v8::Isolate* isolate, const char* data, int length) { return v8::String::NewFromOneByte(isolate, reinterpret_cast(data), v8::NewStringType::kNormal, length).ToLocalChecked(); } inline v8::Local OneByteString(v8::Isolate* isolate, const signed char* data, int length) { return v8::String::NewFromOneByte(isolate, reinterpret_cast(data), v8::NewStringType::kNormal, length).ToLocalChecked(); } inline v8::Local OneByteString(v8::Isolate* isolate, const unsigned char* data, int length) { return v8::String::NewFromOneByte( isolate, data, v8::NewStringType::kNormal, length) .ToLocalChecked(); } char ToLower(char c) { return std::tolower(c, std::locale::classic()); } std::string ToLower(const std::string& in) { std::string out(in.size(), 0); for (size_t i = 0; i < in.size(); ++i) out[i] = ToLower(in[i]); return out; } char ToUpper(char c) { return std::toupper(c, std::locale::classic()); } std::string ToUpper(const std::string& in) { std::string out(in.size(), 0); for (size_t i = 0; i < in.size(); ++i) out[i] = ToUpper(in[i]); return out; } bool StringEqualNoCase(const char* a, const char* b) { while (ToLower(*a) == ToLower(*b++)) { if (*a++ == '\0') return true; } return false; } bool StringEqualNoCaseN(const char* a, const char* b, size_t length) { for (size_t i = 0; i < length; i++) { if (ToLower(a[i]) != ToLower(b[i])) return false; if (a[i] == '\0') return true; } return true; } template inline T MultiplyWithOverflowCheck(T a, T b) { auto ret = a * b; if (a != 0) CHECK_EQ(b, ret / a); return ret; } // These should be used in our code as opposed to the native // versions as they abstract out some platform and or // compiler version specific functionality. // malloc(0) and realloc(ptr, 0) have implementation-defined behavior in // that the standard allows them to either return a unique pointer or a // nullptr for zero-sized allocation requests. Normalize by always using // a nullptr. template T* UncheckedRealloc(T* pointer, size_t n) { size_t full_size = MultiplyWithOverflowCheck(sizeof(T), n); if (full_size == 0) { free(pointer); return nullptr; } void* allocated = realloc(pointer, full_size); if (UNLIKELY(allocated == nullptr)) { // Tell V8 that memory is low and retry. LowMemoryNotification(); allocated = realloc(pointer, full_size); } return static_cast(allocated); } // As per spec realloc behaves like malloc if passed nullptr. template inline T* UncheckedMalloc(size_t n) { return UncheckedRealloc(nullptr, n); } template inline T* UncheckedCalloc(size_t n) { if (MultiplyWithOverflowCheck(sizeof(T), n) == 0) return nullptr; return static_cast(calloc(n, sizeof(T))); } template inline T* Realloc(T* pointer, size_t n) { T* ret = UncheckedRealloc(pointer, n); CHECK_IMPLIES(n > 0, ret != nullptr); return ret; } template inline T* Malloc(size_t n) { T* ret = UncheckedMalloc(n); CHECK_IMPLIES(n > 0, ret != nullptr); return ret; } template inline T* Calloc(size_t n) { T* ret = UncheckedCalloc(n); CHECK_IMPLIES(n > 0, ret != nullptr); return ret; } // Shortcuts for char*. inline char* Malloc(size_t n) { return Malloc(n); } inline char* Calloc(size_t n) { return Calloc(n); } inline char* UncheckedMalloc(size_t n) { return UncheckedMalloc(n); } inline char* UncheckedCalloc(size_t n) { return UncheckedCalloc(n); } // This is a helper in the .cc file so including util-inl.h doesn't include more // headers than we really need to. void ThrowErrStringTooLong(v8::Isolate* isolate); struct ArrayIterationData { std::vector>* out; v8::Isolate* isolate = nullptr; }; inline v8::Array::CallbackResult PushItemToVector(uint32_t index, v8::Local element, void* data) { auto vec = static_cast(data)->out; auto isolate = static_cast(data)->isolate; vec->push_back(v8::Global(isolate, element)); return v8::Array::CallbackResult::kContinue; } v8::Maybe FromV8Array(v8::Local context, v8::Local js_array, std::vector>* out) { uint32_t count = js_array->Length(); out->reserve(count); ArrayIterationData data{out, context->GetIsolate()}; return js_array->Iterate(context, PushItemToVector, &data); } v8::MaybeLocal ToV8Value(v8::Local context, std::string_view str, v8::Isolate* isolate) { if (isolate == nullptr) isolate = context->GetIsolate(); if (UNLIKELY(str.size() >= static_cast(v8::String::kMaxLength))) { // V8 only has a TODO comment about adding an exception when the maximum // string size is exceeded. ThrowErrStringTooLong(isolate); return v8::MaybeLocal(); } return v8::String::NewFromUtf8( isolate, str.data(), v8::NewStringType::kNormal, str.size()) .FromMaybe(v8::Local()); } template v8::MaybeLocal ToV8Value(v8::Local context, const std::vector& vec, v8::Isolate* isolate) { if (isolate == nullptr) isolate = context->GetIsolate(); v8::EscapableHandleScope handle_scope(isolate); MaybeStackBuffer, 128> arr(vec.size()); arr.SetLength(vec.size()); for (size_t i = 0; i < vec.size(); ++i) { if (!ToV8Value(context, vec[i], isolate).ToLocal(&arr[i])) return v8::MaybeLocal(); } return handle_scope.Escape(v8::Array::New(isolate, arr.out(), arr.length())); } template v8::MaybeLocal ToV8Value(v8::Local context, const std::set& set, v8::Isolate* isolate) { if (isolate == nullptr) isolate = context->GetIsolate(); v8::Local set_js = v8::Set::New(isolate); v8::HandleScope handle_scope(isolate); for (const T& entry : set) { v8::Local value; if (!ToV8Value(context, entry, isolate).ToLocal(&value)) return {}; if (set_js->Add(context, value).IsEmpty()) return {}; } return set_js; } template v8::MaybeLocal ToV8Value(v8::Local context, const std::unordered_map& map, v8::Isolate* isolate) { if (isolate == nullptr) isolate = context->GetIsolate(); v8::EscapableHandleScope handle_scope(isolate); v8::Local ret = v8::Map::New(isolate); for (const auto& item : map) { v8::Local first, second; if (!ToV8Value(context, item.first, isolate).ToLocal(&first) || !ToV8Value(context, item.second, isolate).ToLocal(&second) || ret->Set(context, first, second).IsEmpty()) { return v8::MaybeLocal(); } } return handle_scope.Escape(ret); } template v8::MaybeLocal ToV8Value(v8::Local context, const T& number, v8::Isolate* isolate) { if (isolate == nullptr) isolate = context->GetIsolate(); using Limits = std::numeric_limits; // Choose Uint32, Int32, or Double depending on range checks. // These checks should all collapse at compile time. if (static_cast(Limits::max()) <= std::numeric_limits::max() && static_cast(Limits::min()) >= std::numeric_limits::min() && Limits::is_exact) { return v8::Integer::NewFromUnsigned(isolate, static_cast(number)); } if (static_cast(Limits::max()) <= std::numeric_limits::max() && static_cast(Limits::min()) >= std::numeric_limits::min() && Limits::is_exact) { return v8::Integer::New(isolate, static_cast(number)); } return v8::Number::New(isolate, static_cast(number)); } SlicedArguments::SlicedArguments( const v8::FunctionCallbackInfo& args, size_t start) { const size_t length = static_cast(args.Length()); if (start >= length) return; const size_t size = length - start; AllocateSufficientStorage(size); for (size_t i = 0; i < size; ++i) (*this)[i] = args[i + start]; } template void MaybeStackBuffer::AllocateSufficientStorage( size_t storage) { CHECK(!IsInvalidated()); if (storage > capacity()) { bool was_allocated = IsAllocated(); T* allocated_ptr = was_allocated ? buf_ : nullptr; buf_ = Realloc(allocated_ptr, storage); capacity_ = storage; if (!was_allocated && length_ > 0) memcpy(buf_, buf_st_, length_ * sizeof(buf_[0])); } length_ = storage; } template ArrayBufferViewContents::ArrayBufferViewContents( v8::Local value) { DCHECK(value->IsArrayBufferView() || value->IsSharedArrayBuffer() || value->IsArrayBuffer()); ReadValue(value); } template ArrayBufferViewContents::ArrayBufferViewContents( v8::Local value) { CHECK(value->IsArrayBufferView()); Read(value.As()); } template ArrayBufferViewContents::ArrayBufferViewContents( v8::Local abv) { Read(abv); } template void ArrayBufferViewContents::Read(v8::Local abv) { static_assert(sizeof(T) == 1, "Only supports one-byte data at the moment"); length_ = abv->ByteLength(); if (length_ > sizeof(stack_storage_) || abv->HasBuffer()) { data_ = static_cast(abv->Buffer()->Data()) + abv->ByteOffset(); } else { abv->CopyContents(stack_storage_, sizeof(stack_storage_)); data_ = stack_storage_; } } template void ArrayBufferViewContents::ReadValue(v8::Local buf) { static_assert(sizeof(T) == 1, "Only supports one-byte data at the moment"); DCHECK(buf->IsArrayBufferView() || buf->IsSharedArrayBuffer() || buf->IsArrayBuffer()); if (buf->IsArrayBufferView()) { Read(buf.As()); } else if (buf->IsArrayBuffer()) { auto ab = buf.As(); length_ = ab->ByteLength(); data_ = static_cast(ab->Data()); was_detached_ = ab->WasDetached(); } else { CHECK(buf->IsSharedArrayBuffer()); auto sab = buf.As(); length_ = sab->ByteLength(); data_ = static_cast(sab->Data()); } } // ECMA-262, 15th edition, 21.1.2.5. Number.isSafeInteger inline bool IsSafeJsInt(v8::Local v) { if (!v->IsNumber()) return false; double v_d = v.As()->Value(); if (std::isnan(v_d)) return false; if (std::isinf(v_d)) return false; if (std::trunc(v_d) != v_d) return false; // not int if (std::abs(v_d) <= static_cast(kMaxSafeJsInteger)) return true; return false; } constexpr size_t FastStringKey::HashImpl(std::string_view str) { // Low-quality hash (djb2), but just fine for current use cases. size_t h = 5381; for (const char c : str) { h = h * 33 + c; } return h; } constexpr size_t FastStringKey::Hash::operator()( const FastStringKey& key) const { return key.cached_hash_; } constexpr bool FastStringKey::operator==(const FastStringKey& other) const { return name_ == other.name_; } constexpr FastStringKey::FastStringKey(std::string_view name) : name_(name), cached_hash_(HashImpl(name)) {} constexpr std::string_view FastStringKey::as_string_view() const { return name_; } // Inline so the compiler can fully optimize it away on Unix platforms. bool IsWindowsBatchFile(const char* filename) { #ifdef _WIN32 static constexpr bool kIsWindows = true; #else static constexpr bool kIsWindows = false; #endif // _WIN32 if (kIsWindows) { std::string file_with_extension = filename; // Regex to match the last extension part after the last dot, ignoring // trailing spaces and dots std::regex extension_regex(R"(\.([a-zA-Z0-9]+)\s*[\.\s]*$)"); std::smatch match; std::string extension; if (std::regex_search(file_with_extension, match, extension_regex)) { extension = ToLower(match[1].str()); } return !extension.empty() && (extension == "cmd" || extension == "bat"); } return false; } } // namespace node #endif // defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS #endif // SRC_UTIL_INL_H_