mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
synced 2025-08-26 21:52:20 +00:00

In the past %pK was preferable to %p as it would not leak raw pointer
values into the kernel log.
Since commit ad67b74d24
("printk: hash addresses printed with %p")
the regular %p has been improved to avoid this issue.
Furthermore, restricted pointers ("%pK") were never meant to be used
through printk(). They can still unintentionally leak raw pointers or
acquire sleeping locks in atomic contexts.
Switch to the regular pointer formatting which is safer and
easier to reason about.
There are still a few users of %pK left, but these use it through seq_file,
for which its usage is safe.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Link: https://lore.kernel.org/r/20250611-restricted-pointers-remoteproc-v1-1-f059097ba663@linutronix.de
Signed-off-by: Bjorn Andersson <andersson@kernel.org>
1492 lines
45 KiB
C
1492 lines
45 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* TI K3 R5F (MCU) Remote Processor driver
|
|
*
|
|
* Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/
|
|
* Suman Anna <s-anna@ti.com>
|
|
*/
|
|
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/err.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mailbox_client.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_reserved_mem.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/omap-mailbox.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/remoteproc.h>
|
|
#include <linux/reset.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "omap_remoteproc.h"
|
|
#include "remoteproc_internal.h"
|
|
#include "ti_sci_proc.h"
|
|
#include "ti_k3_common.h"
|
|
|
|
/* This address can either be for ATCM or BTCM with the other at address 0x0 */
|
|
#define K3_R5_TCM_DEV_ADDR 0x41010000
|
|
|
|
/* R5 TI-SCI Processor Configuration Flags */
|
|
#define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001
|
|
#define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002
|
|
#define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100
|
|
#define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200
|
|
#define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400
|
|
#define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800
|
|
#define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000
|
|
#define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000
|
|
/* Available from J7200 SoCs onwards */
|
|
#define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS 0x00004000
|
|
/* Applicable to only AM64x SoCs */
|
|
#define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE 0x00008000
|
|
|
|
/* R5 TI-SCI Processor Control Flags */
|
|
#define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001
|
|
|
|
/* R5 TI-SCI Processor Status Flags */
|
|
#define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001
|
|
#define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002
|
|
#define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004
|
|
#define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100
|
|
/* Applicable to only AM64x SoCs */
|
|
#define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY 0x00000200
|
|
|
|
/*
|
|
* All cluster mode values are not applicable on all SoCs. The following
|
|
* are the modes supported on various SoCs:
|
|
* Split mode : AM65x, J721E, J7200 and AM64x SoCs
|
|
* LockStep mode : AM65x, J721E and J7200 SoCs
|
|
* Single-CPU mode : AM64x SoCs only
|
|
* Single-Core mode : AM62x, AM62A SoCs
|
|
*/
|
|
enum cluster_mode {
|
|
CLUSTER_MODE_SPLIT = 0,
|
|
CLUSTER_MODE_LOCKSTEP,
|
|
CLUSTER_MODE_SINGLECPU,
|
|
CLUSTER_MODE_SINGLECORE
|
|
};
|
|
|
|
/**
|
|
* struct k3_r5_soc_data - match data to handle SoC variations
|
|
* @tcm_is_double: flag to denote the larger unified TCMs in certain modes
|
|
* @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC
|
|
* @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode
|
|
* @is_single_core: flag to denote if SoC/IP has only single core R5
|
|
* @core_data: pointer to R5-core-specific device data
|
|
*/
|
|
struct k3_r5_soc_data {
|
|
bool tcm_is_double;
|
|
bool tcm_ecc_autoinit;
|
|
bool single_cpu_mode;
|
|
bool is_single_core;
|
|
const struct k3_rproc_dev_data *core_data;
|
|
};
|
|
|
|
/**
|
|
* struct k3_r5_cluster - K3 R5F Cluster structure
|
|
* @dev: cached device pointer
|
|
* @mode: Mode to configure the Cluster - Split or LockStep
|
|
* @cores: list of R5 cores within the cluster
|
|
* @core_transition: wait queue to sync core state changes
|
|
* @soc_data: SoC-specific feature data for a R5FSS
|
|
*/
|
|
struct k3_r5_cluster {
|
|
struct device *dev;
|
|
enum cluster_mode mode;
|
|
struct list_head cores;
|
|
wait_queue_head_t core_transition;
|
|
const struct k3_r5_soc_data *soc_data;
|
|
};
|
|
|
|
/**
|
|
* struct k3_r5_core - K3 R5 core structure
|
|
* @elem: linked list item
|
|
* @dev: cached device pointer
|
|
* @kproc: K3 rproc handle representing this core
|
|
* @cluster: cached pointer to parent cluster structure
|
|
* @sram: on-chip SRAM memory regions data
|
|
* @num_sram: number of on-chip SRAM memory regions
|
|
* @atcm_enable: flag to control ATCM enablement
|
|
* @btcm_enable: flag to control BTCM enablement
|
|
* @loczrama: flag to dictate which TCM is at device address 0x0
|
|
* @released_from_reset: flag to signal when core is out of reset
|
|
*/
|
|
struct k3_r5_core {
|
|
struct list_head elem;
|
|
struct device *dev;
|
|
struct k3_rproc *kproc;
|
|
struct k3_r5_cluster *cluster;
|
|
struct k3_rproc_mem *sram;
|
|
int num_sram;
|
|
u32 atcm_enable;
|
|
u32 btcm_enable;
|
|
u32 loczrama;
|
|
bool released_from_reset;
|
|
};
|
|
|
|
static int k3_r5_split_reset(struct k3_rproc *kproc)
|
|
{
|
|
int ret;
|
|
|
|
ret = reset_control_assert(kproc->reset);
|
|
if (ret) {
|
|
dev_err(kproc->dev, "local-reset assert failed, ret = %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
|
|
kproc->ti_sci_id);
|
|
if (ret) {
|
|
dev_err(kproc->dev, "module-reset assert failed, ret = %d\n",
|
|
ret);
|
|
if (reset_control_deassert(kproc->reset))
|
|
dev_warn(kproc->dev, "local-reset deassert back failed\n");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int k3_r5_split_release(struct k3_rproc *kproc)
|
|
{
|
|
int ret;
|
|
|
|
ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
|
|
kproc->ti_sci_id);
|
|
if (ret) {
|
|
dev_err(kproc->dev, "module-reset deassert failed, ret = %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = reset_control_deassert(kproc->reset);
|
|
if (ret) {
|
|
dev_err(kproc->dev, "local-reset deassert failed, ret = %d\n",
|
|
ret);
|
|
if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
|
|
kproc->ti_sci_id))
|
|
dev_warn(kproc->dev, "module-reset assert back failed\n");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster)
|
|
{
|
|
struct k3_r5_core *core;
|
|
struct k3_rproc *kproc;
|
|
int ret;
|
|
|
|
/* assert local reset on all applicable cores */
|
|
list_for_each_entry(core, &cluster->cores, elem) {
|
|
ret = reset_control_assert(core->kproc->reset);
|
|
if (ret) {
|
|
dev_err(core->dev, "local-reset assert failed, ret = %d\n",
|
|
ret);
|
|
core = list_prev_entry(core, elem);
|
|
goto unroll_local_reset;
|
|
}
|
|
}
|
|
|
|
/* disable PSC modules on all applicable cores */
|
|
list_for_each_entry(core, &cluster->cores, elem) {
|
|
kproc = core->kproc;
|
|
ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
|
|
kproc->ti_sci_id);
|
|
if (ret) {
|
|
dev_err(core->dev, "module-reset assert failed, ret = %d\n",
|
|
ret);
|
|
goto unroll_module_reset;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
unroll_module_reset:
|
|
list_for_each_entry_continue_reverse(core, &cluster->cores, elem) {
|
|
kproc = core->kproc;
|
|
if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
|
|
kproc->ti_sci_id))
|
|
dev_warn(core->dev, "module-reset assert back failed\n");
|
|
}
|
|
core = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
|
|
unroll_local_reset:
|
|
list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
|
|
if (reset_control_deassert(core->kproc->reset))
|
|
dev_warn(core->dev, "local-reset deassert back failed\n");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster)
|
|
{
|
|
struct k3_r5_core *core;
|
|
struct k3_rproc *kproc;
|
|
int ret;
|
|
|
|
/* enable PSC modules on all applicable cores */
|
|
list_for_each_entry_reverse(core, &cluster->cores, elem) {
|
|
kproc = core->kproc;
|
|
ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
|
|
kproc->ti_sci_id);
|
|
if (ret) {
|
|
dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
|
|
ret);
|
|
core = list_next_entry(core, elem);
|
|
goto unroll_module_reset;
|
|
}
|
|
}
|
|
|
|
/* deassert local reset on all applicable cores */
|
|
list_for_each_entry_reverse(core, &cluster->cores, elem) {
|
|
ret = reset_control_deassert(core->kproc->reset);
|
|
if (ret) {
|
|
dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
|
|
ret);
|
|
goto unroll_local_reset;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
unroll_local_reset:
|
|
list_for_each_entry_continue(core, &cluster->cores, elem) {
|
|
if (reset_control_assert(core->kproc->reset))
|
|
dev_warn(core->dev, "local-reset assert back failed\n");
|
|
}
|
|
core = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
|
|
unroll_module_reset:
|
|
list_for_each_entry_from(core, &cluster->cores, elem) {
|
|
kproc = core->kproc;
|
|
if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
|
|
kproc->ti_sci_id))
|
|
dev_warn(core->dev, "module-reset assert back failed\n");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int k3_r5_core_halt(struct k3_rproc *kproc)
|
|
{
|
|
return ti_sci_proc_set_control(kproc->tsp,
|
|
PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0);
|
|
}
|
|
|
|
static inline int k3_r5_core_run(struct k3_rproc *kproc)
|
|
{
|
|
return ti_sci_proc_set_control(kproc->tsp,
|
|
0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT);
|
|
}
|
|
|
|
/*
|
|
* The R5F cores have controls for both a reset and a halt/run. The code
|
|
* execution from DDR requires the initial boot-strapping code to be run
|
|
* from the internal TCMs. This function is used to release the resets on
|
|
* applicable cores to allow loading into the TCMs. The .prepare() ops is
|
|
* invoked by remoteproc core before any firmware loading, and is followed
|
|
* by the .start() ops after loading to actually let the R5 cores run.
|
|
*
|
|
* The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to
|
|
* execute code, but combines the TCMs from both cores. The resets for both
|
|
* cores need to be released to make this possible, as the TCMs are in general
|
|
* private to each core. Only Core0 needs to be unhalted for running the
|
|
* cluster in this mode. The function uses the same reset logic as LockStep
|
|
* mode for this (though the behavior is agnostic of the reset release order).
|
|
* This callback is invoked only in remoteproc mode.
|
|
*/
|
|
static int k3_r5_rproc_prepare(struct rproc *rproc)
|
|
{
|
|
struct k3_rproc *kproc = rproc->priv;
|
|
struct k3_r5_core *core = kproc->priv, *core0, *core1;
|
|
struct k3_r5_cluster *cluster = core->cluster;
|
|
struct device *dev = kproc->dev;
|
|
u32 ctrl = 0, cfg = 0, stat = 0;
|
|
u64 boot_vec = 0;
|
|
bool mem_init_dis;
|
|
int ret;
|
|
|
|
/*
|
|
* R5 cores require to be powered on sequentially, core0 should be in
|
|
* higher power state than core1 in a cluster. So, wait for core0 to
|
|
* power up before proceeding to core1 and put timeout of 2sec. This
|
|
* waiting mechanism is necessary because rproc_auto_boot_callback() for
|
|
* core1 can be called before core0 due to thread execution order.
|
|
*
|
|
* By placing the wait mechanism here in .prepare() ops, this condition
|
|
* is enforced for rproc boot requests from sysfs as well.
|
|
*/
|
|
core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
|
|
core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
|
|
if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1 &&
|
|
!core0->released_from_reset) {
|
|
ret = wait_event_interruptible_timeout(cluster->core_transition,
|
|
core0->released_from_reset,
|
|
msecs_to_jiffies(2000));
|
|
if (ret <= 0) {
|
|
dev_err(dev, "can not power up core1 before core0");
|
|
return -EPERM;
|
|
}
|
|
}
|
|
|
|
ret = ti_sci_proc_get_status(kproc->tsp, &boot_vec, &cfg, &ctrl, &stat);
|
|
if (ret < 0)
|
|
return ret;
|
|
mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS);
|
|
|
|
/* Re-use LockStep-mode reset logic for Single-CPU mode */
|
|
ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
|
|
cluster->mode == CLUSTER_MODE_SINGLECPU) ?
|
|
k3_r5_lockstep_release(cluster) : k3_r5_split_release(kproc);
|
|
if (ret) {
|
|
dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Notify all threads in the wait queue when core0 state has changed so
|
|
* that threads waiting for this condition can be executed.
|
|
*/
|
|
core->released_from_reset = true;
|
|
if (core == core0)
|
|
wake_up_interruptible(&cluster->core_transition);
|
|
|
|
/*
|
|
* Newer IP revisions like on J7200 SoCs support h/w auto-initialization
|
|
* of TCMs, so there is no need to perform the s/w memzero. This bit is
|
|
* configurable through System Firmware, the default value does perform
|
|
* auto-init, but account for it in case it is disabled
|
|
*/
|
|
if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) {
|
|
dev_dbg(dev, "leveraging h/w init for TCM memories\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Zero out both TCMs unconditionally (access from v8 Arm core is not
|
|
* affected by ATCM & BTCM enable configuration values) so that ECC
|
|
* can be effective on all TCM addresses.
|
|
*/
|
|
dev_dbg(dev, "zeroing out ATCM memory\n");
|
|
memset_io(kproc->mem[0].cpu_addr, 0x00, kproc->mem[0].size);
|
|
|
|
dev_dbg(dev, "zeroing out BTCM memory\n");
|
|
memset_io(kproc->mem[1].cpu_addr, 0x00, kproc->mem[1].size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function implements the .unprepare() ops and performs the complimentary
|
|
* operations to that of the .prepare() ops. The function is used to assert the
|
|
* resets on all applicable cores for the rproc device (depending on LockStep
|
|
* or Split mode). This completes the second portion of powering down the R5F
|
|
* cores. The cores themselves are only halted in the .stop() ops, and the
|
|
* .unprepare() ops is invoked by the remoteproc core after the remoteproc is
|
|
* stopped.
|
|
*
|
|
* The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from
|
|
* both cores. The access is made possible only with releasing the resets for
|
|
* both cores, but with only Core0 unhalted. This function re-uses the same
|
|
* reset assert logic as LockStep mode for this mode (though the behavior is
|
|
* agnostic of the reset assert order). This callback is invoked only in
|
|
* remoteproc mode.
|
|
*/
|
|
static int k3_r5_rproc_unprepare(struct rproc *rproc)
|
|
{
|
|
struct k3_rproc *kproc = rproc->priv;
|
|
struct k3_r5_core *core = kproc->priv, *core0, *core1;
|
|
struct k3_r5_cluster *cluster = core->cluster;
|
|
struct device *dev = kproc->dev;
|
|
int ret;
|
|
|
|
/*
|
|
* Ensure power-down of cores is sequential in split mode. Core1 must
|
|
* power down before Core0 to maintain the expected state. By placing
|
|
* the wait mechanism here in .unprepare() ops, this condition is
|
|
* enforced for rproc stop or shutdown requests from sysfs and device
|
|
* removal as well.
|
|
*/
|
|
core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
|
|
core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
|
|
if (cluster->mode == CLUSTER_MODE_SPLIT && core == core0 &&
|
|
core1->released_from_reset) {
|
|
ret = wait_event_interruptible_timeout(cluster->core_transition,
|
|
!core1->released_from_reset,
|
|
msecs_to_jiffies(2000));
|
|
if (ret <= 0) {
|
|
dev_err(dev, "can not power down core0 before core1");
|
|
return -EPERM;
|
|
}
|
|
}
|
|
|
|
/* Re-use LockStep-mode reset logic for Single-CPU mode */
|
|
ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
|
|
cluster->mode == CLUSTER_MODE_SINGLECPU) ?
|
|
k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(kproc);
|
|
if (ret)
|
|
dev_err(dev, "unable to disable cores, ret = %d\n", ret);
|
|
|
|
/*
|
|
* Notify all threads in the wait queue when core1 state has changed so
|
|
* that threads waiting for this condition can be executed.
|
|
*/
|
|
core->released_from_reset = false;
|
|
if (core == core1)
|
|
wake_up_interruptible(&cluster->core_transition);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The R5F start sequence includes two different operations
|
|
* 1. Configure the boot vector for R5F core(s)
|
|
* 2. Unhalt/Run the R5F core(s)
|
|
*
|
|
* The sequence is different between LockStep and Split modes. The LockStep
|
|
* mode requires the boot vector to be configured only for Core0, and then
|
|
* unhalt both the cores to start the execution - Core1 needs to be unhalted
|
|
* first followed by Core0. The Split-mode requires that Core0 to be maintained
|
|
* always in a higher power state that Core1 (implying Core1 needs to be started
|
|
* always only after Core0 is started).
|
|
*
|
|
* The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
|
|
* code, so only Core0 needs to be unhalted. The function uses the same logic
|
|
* flow as Split-mode for this. This callback is invoked only in remoteproc
|
|
* mode.
|
|
*/
|
|
static int k3_r5_rproc_start(struct rproc *rproc)
|
|
{
|
|
struct k3_rproc *kproc = rproc->priv;
|
|
struct k3_r5_core *core = kproc->priv;
|
|
struct k3_r5_cluster *cluster = core->cluster;
|
|
struct device *dev = kproc->dev;
|
|
u32 boot_addr;
|
|
int ret;
|
|
|
|
boot_addr = rproc->bootaddr;
|
|
/* TODO: add boot_addr sanity checking */
|
|
dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr);
|
|
|
|
/* boot vector need not be programmed for Core1 in LockStep mode */
|
|
ret = ti_sci_proc_set_config(kproc->tsp, boot_addr, 0, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* unhalt/run all applicable cores */
|
|
if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
|
|
list_for_each_entry_reverse(core, &cluster->cores, elem) {
|
|
ret = k3_r5_core_run(core->kproc);
|
|
if (ret)
|
|
goto unroll_core_run;
|
|
}
|
|
} else {
|
|
ret = k3_r5_core_run(core->kproc);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
|
|
unroll_core_run:
|
|
list_for_each_entry_continue(core, &cluster->cores, elem) {
|
|
if (k3_r5_core_halt(core->kproc))
|
|
dev_warn(core->dev, "core halt back failed\n");
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The R5F stop function includes the following operations
|
|
* 1. Halt R5F core(s)
|
|
*
|
|
* The sequence is different between LockStep and Split modes, and the order
|
|
* of cores the operations are performed are also in general reverse to that
|
|
* of the start function. The LockStep mode requires each operation to be
|
|
* performed first on Core0 followed by Core1. The Split-mode requires that
|
|
* Core0 to be maintained always in a higher power state that Core1 (implying
|
|
* Core1 needs to be stopped first before Core0).
|
|
*
|
|
* The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
|
|
* code, so only Core0 needs to be halted. The function uses the same logic
|
|
* flow as Split-mode for this.
|
|
*
|
|
* Note that the R5F halt operation in general is not effective when the R5F
|
|
* core is running, but is needed to make sure the core won't run after
|
|
* deasserting the reset the subsequent time. The asserting of reset can
|
|
* be done here, but is preferred to be done in the .unprepare() ops - this
|
|
* maintains the symmetric behavior between the .start(), .stop(), .prepare()
|
|
* and .unprepare() ops, and also balances them well between sysfs 'state'
|
|
* flow and device bind/unbind or module removal. This callback is invoked
|
|
* only in remoteproc mode.
|
|
*/
|
|
static int k3_r5_rproc_stop(struct rproc *rproc)
|
|
{
|
|
struct k3_rproc *kproc = rproc->priv;
|
|
struct k3_r5_core *core = kproc->priv;
|
|
struct k3_r5_cluster *cluster = core->cluster;
|
|
int ret;
|
|
|
|
/* halt all applicable cores */
|
|
if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
|
|
list_for_each_entry(core, &cluster->cores, elem) {
|
|
ret = k3_r5_core_halt(core->kproc);
|
|
if (ret) {
|
|
core = list_prev_entry(core, elem);
|
|
goto unroll_core_halt;
|
|
}
|
|
}
|
|
} else {
|
|
ret = k3_r5_core_halt(core->kproc);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
return 0;
|
|
|
|
unroll_core_halt:
|
|
list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
|
|
if (k3_r5_core_run(core->kproc))
|
|
dev_warn(core->dev, "core run back failed\n");
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Internal Memory translation helper
|
|
*
|
|
* Custom function implementing the rproc .da_to_va ops to provide address
|
|
* translation (device address to kernel virtual address) for internal RAMs
|
|
* present in a DSP or IPU device). The translated addresses can be used
|
|
* either by the remoteproc core for loading, or by any rpmsg bus drivers.
|
|
*/
|
|
static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
|
|
{
|
|
struct k3_rproc *kproc = rproc->priv;
|
|
struct k3_r5_core *core = kproc->priv;
|
|
void __iomem *va = NULL;
|
|
u32 dev_addr, offset;
|
|
size_t size;
|
|
int i;
|
|
|
|
if (len == 0)
|
|
return NULL;
|
|
|
|
/* handle any SRAM regions using SoC-view addresses */
|
|
for (i = 0; i < core->num_sram; i++) {
|
|
dev_addr = core->sram[i].dev_addr;
|
|
size = core->sram[i].size;
|
|
|
|
if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
|
|
offset = da - dev_addr;
|
|
va = core->sram[i].cpu_addr + offset;
|
|
return (__force void *)va;
|
|
}
|
|
}
|
|
|
|
/* handle both TCM and DDR memory regions */
|
|
return k3_rproc_da_to_va(rproc, da, len, is_iomem);
|
|
}
|
|
|
|
static const struct rproc_ops k3_r5_rproc_ops = {
|
|
.prepare = k3_r5_rproc_prepare,
|
|
.unprepare = k3_r5_rproc_unprepare,
|
|
.start = k3_r5_rproc_start,
|
|
.stop = k3_r5_rproc_stop,
|
|
.kick = k3_rproc_kick,
|
|
.da_to_va = k3_r5_rproc_da_to_va,
|
|
};
|
|
|
|
/*
|
|
* Internal R5F Core configuration
|
|
*
|
|
* Each R5FSS has a cluster-level setting for configuring the processor
|
|
* subsystem either in a safety/fault-tolerant LockStep mode or a performance
|
|
* oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode
|
|
* as an alternate for LockStep mode that exercises only a single R5F core
|
|
* called Single-CPU mode. Each R5F core has a number of settings to either
|
|
* enable/disable each of the TCMs, control which TCM appears at the R5F core's
|
|
* address 0x0. These settings need to be configured before the resets for the
|
|
* corresponding core are released. These settings are all protected and managed
|
|
* by the System Processor.
|
|
*
|
|
* This function is used to pre-configure these settings for each R5F core, and
|
|
* the configuration is all done through various ti_sci_proc functions that
|
|
* communicate with the System Processor. The function also ensures that both
|
|
* the cores are halted before the .prepare() step.
|
|
*
|
|
* The function is called from k3_r5_cluster_rproc_init() and is invoked either
|
|
* once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support
|
|
* for LockStep-mode is dictated by an eFUSE register bit, and the config
|
|
* settings retrieved from DT are adjusted accordingly as per the permitted
|
|
* cluster mode. Another eFUSE register bit dictates if the R5F cluster only
|
|
* supports a Single-CPU mode. All cluster level settings like Cluster mode and
|
|
* TEINIT (exception handling state dictating ARM or Thumb mode) can only be set
|
|
* and retrieved using Core0.
|
|
*
|
|
* The function behavior is different based on the cluster mode. The R5F cores
|
|
* are configured independently as per their individual settings in Split mode.
|
|
* They are identically configured in LockStep mode using the primary Core0
|
|
* settings. However, some individual settings cannot be set in LockStep mode.
|
|
* This is overcome by switching to Split-mode initially and then programming
|
|
* both the cores with the same settings, before reconfiguing again for
|
|
* LockStep mode.
|
|
*/
|
|
static int k3_r5_rproc_configure(struct k3_rproc *kproc)
|
|
{
|
|
struct k3_r5_core *temp, *core0, *core = kproc->priv;
|
|
struct k3_r5_cluster *cluster = core->cluster;
|
|
struct device *dev = kproc->dev;
|
|
u32 ctrl = 0, cfg = 0, stat = 0;
|
|
u32 set_cfg = 0, clr_cfg = 0;
|
|
u64 boot_vec = 0;
|
|
bool lockstep_en;
|
|
bool single_cpu;
|
|
int ret;
|
|
|
|
core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
|
|
if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
|
|
cluster->mode == CLUSTER_MODE_SINGLECPU ||
|
|
cluster->mode == CLUSTER_MODE_SINGLECORE) {
|
|
core = core0;
|
|
} else {
|
|
core = kproc->priv;
|
|
}
|
|
|
|
ret = ti_sci_proc_get_status(core->kproc->tsp, &boot_vec, &cfg, &ctrl,
|
|
&stat);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
|
|
boot_vec, cfg, ctrl, stat);
|
|
|
|
single_cpu = !!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY);
|
|
lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED);
|
|
|
|
/* Override to single CPU mode if set in status flag */
|
|
if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) {
|
|
dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n");
|
|
cluster->mode = CLUSTER_MODE_SINGLECPU;
|
|
}
|
|
|
|
/* Override to split mode if lockstep enable bit is not set in status flag */
|
|
if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) {
|
|
dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n");
|
|
cluster->mode = CLUSTER_MODE_SPLIT;
|
|
}
|
|
|
|
/* always enable ARM mode and set boot vector to 0 */
|
|
boot_vec = 0x0;
|
|
if (core == core0) {
|
|
clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT;
|
|
/*
|
|
* Single-CPU configuration bit can only be configured
|
|
* on Core0 and system firmware will NACK any requests
|
|
* with the bit configured, so program it only on
|
|
* permitted cores
|
|
*/
|
|
if (cluster->mode == CLUSTER_MODE_SINGLECPU ||
|
|
cluster->mode == CLUSTER_MODE_SINGLECORE) {
|
|
set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE;
|
|
} else {
|
|
/*
|
|
* LockStep configuration bit is Read-only on Split-mode
|
|
* _only_ devices and system firmware will NACK any
|
|
* requests with the bit configured, so program it only
|
|
* on permitted devices
|
|
*/
|
|
if (lockstep_en)
|
|
clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
|
|
}
|
|
}
|
|
|
|
if (core->atcm_enable)
|
|
set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
|
|
else
|
|
clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
|
|
|
|
if (core->btcm_enable)
|
|
set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
|
|
else
|
|
clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
|
|
|
|
if (core->loczrama)
|
|
set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
|
|
else
|
|
clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
|
|
|
|
if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
|
|
/*
|
|
* work around system firmware limitations to make sure both
|
|
* cores are programmed symmetrically in LockStep. LockStep
|
|
* and TEINIT config is only allowed with Core0.
|
|
*/
|
|
list_for_each_entry(temp, &cluster->cores, elem) {
|
|
ret = k3_r5_core_halt(temp->kproc);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (temp != core) {
|
|
clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
|
|
clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT;
|
|
}
|
|
ret = ti_sci_proc_set_config(temp->kproc->tsp, boot_vec,
|
|
set_cfg, clr_cfg);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
|
|
clr_cfg = 0;
|
|
ret = ti_sci_proc_set_config(core->kproc->tsp, boot_vec,
|
|
set_cfg, clr_cfg);
|
|
} else {
|
|
ret = k3_r5_core_halt(core->kproc);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = ti_sci_proc_set_config(core->kproc->tsp, boot_vec,
|
|
set_cfg, clr_cfg);
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs,
|
|
* split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both
|
|
* cores are usable in Split-mode, but only the Core0 TCMs can be used in
|
|
* LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by
|
|
* leveraging the Core1 TCMs as well in certain modes where they would have
|
|
* otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on
|
|
* AM64x SoCs). This is done by making a Core1 TCM visible immediately after the
|
|
* corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for
|
|
* the Core0 TCMs, and the dts representation reflects this increased size on
|
|
* supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only
|
|
* half the original size in Split mode.
|
|
*/
|
|
static void k3_r5_adjust_tcm_sizes(struct k3_rproc *kproc)
|
|
{
|
|
struct k3_r5_core *core0, *core = kproc->priv;
|
|
struct k3_r5_cluster *cluster = core->cluster;
|
|
struct device *cdev = core->dev;
|
|
|
|
if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
|
|
cluster->mode == CLUSTER_MODE_SINGLECPU ||
|
|
cluster->mode == CLUSTER_MODE_SINGLECORE ||
|
|
!cluster->soc_data->tcm_is_double)
|
|
return;
|
|
|
|
core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
|
|
if (core == core0) {
|
|
WARN_ON(kproc->mem[0].size != SZ_64K);
|
|
WARN_ON(kproc->mem[1].size != SZ_64K);
|
|
|
|
kproc->mem[0].size /= 2;
|
|
kproc->mem[1].size /= 2;
|
|
|
|
dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n",
|
|
kproc->mem[0].size, kproc->mem[1].size);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function checks and configures a R5F core for IPC-only or remoteproc
|
|
* mode. The driver is configured to be in IPC-only mode for a R5F core when
|
|
* the core has been loaded and started by a bootloader. The IPC-only mode is
|
|
* detected by querying the System Firmware for reset, power on and halt status
|
|
* and ensuring that the core is running. Any incomplete steps at bootloader
|
|
* are validated and errored out.
|
|
*
|
|
* In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings
|
|
* and cluster mode parsed originally from kernel DT are updated to reflect the
|
|
* actual values configured by bootloader. The driver internal device memory
|
|
* addresses for TCMs are also updated.
|
|
*/
|
|
static int k3_r5_rproc_configure_mode(struct k3_rproc *kproc)
|
|
{
|
|
struct k3_r5_core *core0, *core = kproc->priv;
|
|
struct k3_r5_cluster *cluster = core->cluster;
|
|
struct device *cdev = core->dev;
|
|
bool r_state = false, c_state = false, lockstep_en = false, single_cpu = false;
|
|
u32 ctrl = 0, cfg = 0, stat = 0, halted = 0;
|
|
u64 boot_vec = 0;
|
|
u32 atcm_enable, btcm_enable, loczrama;
|
|
enum cluster_mode mode = cluster->mode;
|
|
int reset_ctrl_status;
|
|
int ret;
|
|
|
|
core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
|
|
|
|
ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id,
|
|
&r_state, &c_state);
|
|
if (ret) {
|
|
dev_err(cdev, "failed to get initial state, mode cannot be determined, ret = %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
if (r_state != c_state) {
|
|
dev_warn(cdev, "R5F core may have been powered on by a different host, programmed state (%d) != actual state (%d)\n",
|
|
r_state, c_state);
|
|
}
|
|
|
|
reset_ctrl_status = reset_control_status(kproc->reset);
|
|
if (reset_ctrl_status < 0) {
|
|
dev_err(cdev, "failed to get initial local reset status, ret = %d\n",
|
|
reset_ctrl_status);
|
|
return reset_ctrl_status;
|
|
}
|
|
|
|
/*
|
|
* Skip the waiting mechanism for sequential power-on of cores if the
|
|
* core has already been booted by another entity.
|
|
*/
|
|
core->released_from_reset = c_state;
|
|
|
|
ret = ti_sci_proc_get_status(kproc->tsp, &boot_vec, &cfg, &ctrl,
|
|
&stat);
|
|
if (ret < 0) {
|
|
dev_err(cdev, "failed to get initial processor status, ret = %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
atcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_ATCM_EN ? 1 : 0;
|
|
btcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_BTCM_EN ? 1 : 0;
|
|
loczrama = cfg & PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE ? 1 : 0;
|
|
single_cpu = cfg & PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE ? 1 : 0;
|
|
lockstep_en = cfg & PROC_BOOT_CFG_FLAG_R5_LOCKSTEP ? 1 : 0;
|
|
|
|
if (single_cpu && mode != CLUSTER_MODE_SINGLECORE)
|
|
mode = CLUSTER_MODE_SINGLECPU;
|
|
if (lockstep_en)
|
|
mode = CLUSTER_MODE_LOCKSTEP;
|
|
|
|
halted = ctrl & PROC_BOOT_CTRL_FLAG_R5_CORE_HALT;
|
|
|
|
/*
|
|
* IPC-only mode detection requires both local and module resets to
|
|
* be deasserted and R5F core to be unhalted. Local reset status is
|
|
* irrelevant if module reset is asserted (POR value has local reset
|
|
* deasserted), and is deemed as remoteproc mode
|
|
*/
|
|
if (c_state && !reset_ctrl_status && !halted) {
|
|
dev_info(cdev, "configured R5F for IPC-only mode\n");
|
|
kproc->rproc->state = RPROC_DETACHED;
|
|
ret = 1;
|
|
/* override rproc ops with only required IPC-only mode ops */
|
|
kproc->rproc->ops->prepare = NULL;
|
|
kproc->rproc->ops->unprepare = NULL;
|
|
kproc->rproc->ops->start = NULL;
|
|
kproc->rproc->ops->stop = NULL;
|
|
kproc->rproc->ops->attach = k3_rproc_attach;
|
|
kproc->rproc->ops->detach = k3_rproc_detach;
|
|
kproc->rproc->ops->get_loaded_rsc_table =
|
|
k3_get_loaded_rsc_table;
|
|
} else if (!c_state) {
|
|
dev_info(cdev, "configured R5F for remoteproc mode\n");
|
|
ret = 0;
|
|
} else {
|
|
dev_err(cdev, "mismatched mode: local_reset = %s, module_reset = %s, core_state = %s\n",
|
|
!reset_ctrl_status ? "deasserted" : "asserted",
|
|
c_state ? "deasserted" : "asserted",
|
|
halted ? "halted" : "unhalted");
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/* fixup TCMs, cluster & core flags to actual values in IPC-only mode */
|
|
if (ret > 0) {
|
|
if (core == core0)
|
|
cluster->mode = mode;
|
|
core->atcm_enable = atcm_enable;
|
|
core->btcm_enable = btcm_enable;
|
|
core->loczrama = loczrama;
|
|
kproc->mem[0].dev_addr = loczrama ? 0 : K3_R5_TCM_DEV_ADDR;
|
|
kproc->mem[1].dev_addr = loczrama ? K3_R5_TCM_DEV_ADDR : 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev,
|
|
struct k3_rproc *kproc)
|
|
{
|
|
const struct k3_rproc_dev_data *data = kproc->data;
|
|
struct device *dev = &pdev->dev;
|
|
struct k3_r5_core *core = kproc->priv;
|
|
int num_mems;
|
|
int i, ret;
|
|
|
|
num_mems = data->num_mems;
|
|
kproc->mem = devm_kcalloc(kproc->dev, num_mems, sizeof(*kproc->mem),
|
|
GFP_KERNEL);
|
|
if (!kproc->mem)
|
|
return -ENOMEM;
|
|
|
|
ret = k3_rproc_of_get_memories(pdev, kproc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < num_mems; i++) {
|
|
/*
|
|
* TODO:
|
|
* The R5F cores can place ATCM & BTCM anywhere in its address
|
|
* based on the corresponding Region Registers in the System
|
|
* Control coprocessor. For now, place ATCM and BTCM at
|
|
* addresses 0 and 0x41010000 (same as the bus address on AM65x
|
|
* SoCs) based on loczrama setting overriding default assignment
|
|
* done by k3_rproc_of_get_memories().
|
|
*/
|
|
if (!strcmp(data->mems[i].name, "atcm")) {
|
|
kproc->mem[i].dev_addr = core->loczrama ?
|
|
0 : K3_R5_TCM_DEV_ADDR;
|
|
} else {
|
|
kproc->mem[i].dev_addr = core->loczrama ?
|
|
K3_R5_TCM_DEV_ADDR : 0;
|
|
}
|
|
|
|
dev_dbg(dev, "Updating bus addr %pa of memory %5s\n",
|
|
&kproc->mem[i].bus_addr, data->mems[i].name);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev,
|
|
struct k3_r5_core *core)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
struct device *dev = &pdev->dev;
|
|
struct device_node *sram_np;
|
|
struct resource res;
|
|
int num_sram;
|
|
int i, ret;
|
|
|
|
num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
|
|
if (num_sram <= 0) {
|
|
dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n",
|
|
num_sram);
|
|
return 0;
|
|
}
|
|
|
|
core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL);
|
|
if (!core->sram)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < num_sram; i++) {
|
|
sram_np = of_parse_phandle(np, "sram", i);
|
|
if (!sram_np)
|
|
return -EINVAL;
|
|
|
|
if (!of_device_is_available(sram_np)) {
|
|
of_node_put(sram_np);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = of_address_to_resource(sram_np, 0, &res);
|
|
of_node_put(sram_np);
|
|
if (ret)
|
|
return -EINVAL;
|
|
|
|
core->sram[i].bus_addr = res.start;
|
|
core->sram[i].dev_addr = res.start;
|
|
core->sram[i].size = resource_size(&res);
|
|
core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start,
|
|
resource_size(&res));
|
|
if (!core->sram[i].cpu_addr) {
|
|
dev_err(dev, "failed to parse and map sram%d memory at %pad\n",
|
|
i, &res.start);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %p da 0x%x\n",
|
|
i, &core->sram[i].bus_addr,
|
|
core->sram[i].size, core->sram[i].cpu_addr,
|
|
core->sram[i].dev_addr);
|
|
}
|
|
core->num_sram = num_sram;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int k3_r5_cluster_rproc_init(struct platform_device *pdev)
|
|
{
|
|
struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
|
|
struct device *dev = &pdev->dev;
|
|
struct k3_rproc *kproc;
|
|
struct k3_r5_core *core, *core1;
|
|
struct device_node *np;
|
|
struct device *cdev;
|
|
const char *fw_name;
|
|
struct rproc *rproc;
|
|
int ret, ret1;
|
|
|
|
core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
|
|
list_for_each_entry(core, &cluster->cores, elem) {
|
|
cdev = core->dev;
|
|
np = dev_of_node(cdev);
|
|
ret = rproc_of_parse_firmware(cdev, 0, &fw_name);
|
|
if (ret) {
|
|
dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
|
|
ret);
|
|
goto out;
|
|
}
|
|
|
|
rproc = devm_rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops,
|
|
fw_name, sizeof(*kproc));
|
|
if (!rproc) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/* K3 R5s have a Region Address Translator (RAT) but no MMU */
|
|
rproc->has_iommu = false;
|
|
/* error recovery is not supported at present */
|
|
rproc->recovery_disabled = true;
|
|
|
|
kproc = rproc->priv;
|
|
kproc->priv = core;
|
|
kproc->dev = cdev;
|
|
kproc->rproc = rproc;
|
|
kproc->data = cluster->soc_data->core_data;
|
|
core->kproc = kproc;
|
|
|
|
kproc->ti_sci = devm_ti_sci_get_by_phandle(cdev, "ti,sci");
|
|
if (IS_ERR(kproc->ti_sci)) {
|
|
ret = dev_err_probe(cdev, PTR_ERR(kproc->ti_sci),
|
|
"failed to get ti-sci handle\n");
|
|
kproc->ti_sci = NULL;
|
|
goto out;
|
|
}
|
|
|
|
ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id);
|
|
if (ret) {
|
|
dev_err(cdev, "missing 'ti,sci-dev-id' property\n");
|
|
goto out;
|
|
}
|
|
|
|
kproc->reset = devm_reset_control_get_exclusive(cdev, NULL);
|
|
if (IS_ERR_OR_NULL(kproc->reset)) {
|
|
ret = PTR_ERR_OR_ZERO(kproc->reset);
|
|
if (!ret)
|
|
ret = -ENODEV;
|
|
dev_err_probe(cdev, ret, "failed to get reset handle\n");
|
|
goto out;
|
|
}
|
|
|
|
kproc->tsp = ti_sci_proc_of_get_tsp(cdev, kproc->ti_sci);
|
|
if (IS_ERR(kproc->tsp)) {
|
|
ret = dev_err_probe(cdev, PTR_ERR(kproc->tsp),
|
|
"failed to construct ti-sci proc control\n");
|
|
goto out;
|
|
}
|
|
|
|
ret = k3_r5_core_of_get_internal_memories(to_platform_device(cdev), kproc);
|
|
if (ret) {
|
|
dev_err(cdev, "failed to get internal memories, ret = %d\n",
|
|
ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = ti_sci_proc_request(kproc->tsp);
|
|
if (ret < 0) {
|
|
dev_err(cdev, "ti_sci_proc_request failed, ret = %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = devm_add_action_or_reset(cdev, k3_release_tsp, kproc->tsp);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
list_for_each_entry(core, &cluster->cores, elem) {
|
|
cdev = core->dev;
|
|
kproc = core->kproc;
|
|
rproc = kproc->rproc;
|
|
|
|
ret = k3_rproc_request_mbox(rproc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = k3_r5_rproc_configure_mode(kproc);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret)
|
|
goto init_rmem;
|
|
|
|
ret = k3_r5_rproc_configure(kproc);
|
|
if (ret) {
|
|
dev_err(cdev, "initial configure failed, ret = %d\n",
|
|
ret);
|
|
goto out;
|
|
}
|
|
|
|
init_rmem:
|
|
k3_r5_adjust_tcm_sizes(kproc);
|
|
|
|
ret = k3_reserved_mem_init(kproc);
|
|
if (ret) {
|
|
dev_err(cdev, "reserved memory init failed, ret = %d\n",
|
|
ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = devm_rproc_add(cdev, rproc);
|
|
if (ret) {
|
|
dev_err_probe(cdev, ret, "rproc_add failed\n");
|
|
goto out;
|
|
}
|
|
|
|
/* create only one rproc in lockstep, single-cpu or
|
|
* single core mode
|
|
*/
|
|
if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
|
|
cluster->mode == CLUSTER_MODE_SINGLECPU ||
|
|
cluster->mode == CLUSTER_MODE_SINGLECORE)
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_split:
|
|
if (rproc->state == RPROC_ATTACHED) {
|
|
ret1 = rproc_detach(rproc);
|
|
if (ret1) {
|
|
dev_err(kproc->dev, "failed to detach rproc, ret = %d\n",
|
|
ret1);
|
|
return ret1;
|
|
}
|
|
}
|
|
|
|
out:
|
|
/* undo core0 upon any failures on core1 in split-mode */
|
|
if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) {
|
|
core = list_prev_entry(core, elem);
|
|
kproc = core->kproc;
|
|
rproc = kproc->rproc;
|
|
goto err_split;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void k3_r5_cluster_rproc_exit(void *data)
|
|
{
|
|
struct k3_r5_cluster *cluster = platform_get_drvdata(data);
|
|
struct k3_rproc *kproc;
|
|
struct k3_r5_core *core;
|
|
struct rproc *rproc;
|
|
int ret;
|
|
|
|
/*
|
|
* lockstep mode and single-cpu modes have only one rproc associated
|
|
* with first core, whereas split-mode has two rprocs associated with
|
|
* each core, and requires that core1 be powered down first
|
|
*/
|
|
core = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
|
|
cluster->mode == CLUSTER_MODE_SINGLECPU) ?
|
|
list_first_entry(&cluster->cores, struct k3_r5_core, elem) :
|
|
list_last_entry(&cluster->cores, struct k3_r5_core, elem);
|
|
|
|
list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
|
|
kproc = core->kproc;
|
|
rproc = kproc->rproc;
|
|
|
|
if (rproc->state == RPROC_ATTACHED) {
|
|
ret = rproc_detach(rproc);
|
|
if (ret) {
|
|
dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret);
|
|
return;
|
|
}
|
|
}
|
|
|
|
mbox_free_channel(kproc->mbox);
|
|
}
|
|
}
|
|
|
|
static int k3_r5_core_of_init(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct device_node *np = dev_of_node(dev);
|
|
struct k3_r5_core *core;
|
|
int ret;
|
|
|
|
if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
|
|
if (!core) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
core->dev = dev;
|
|
/*
|
|
* Use SoC Power-on-Reset values as default if no DT properties are
|
|
* used to dictate the TCM configurations
|
|
*/
|
|
core->atcm_enable = 0;
|
|
core->btcm_enable = 1;
|
|
core->loczrama = 1;
|
|
|
|
ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable);
|
|
if (ret < 0 && ret != -EINVAL) {
|
|
dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n",
|
|
ret);
|
|
goto err;
|
|
}
|
|
|
|
ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable);
|
|
if (ret < 0 && ret != -EINVAL) {
|
|
dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n",
|
|
ret);
|
|
goto err;
|
|
}
|
|
|
|
ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama);
|
|
if (ret < 0 && ret != -EINVAL) {
|
|
dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
ret = k3_r5_core_of_get_sram_memories(pdev, core);
|
|
if (ret) {
|
|
dev_err(dev, "failed to get sram memories, ret = %d\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, core);
|
|
devres_close_group(dev, k3_r5_core_of_init);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
devres_release_group(dev, k3_r5_core_of_init);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* free the resources explicitly since driver model is not being used
|
|
* for the child R5F devices
|
|
*/
|
|
static void k3_r5_core_of_exit(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
|
|
platform_set_drvdata(pdev, NULL);
|
|
devres_release_group(dev, k3_r5_core_of_init);
|
|
}
|
|
|
|
static void k3_r5_cluster_of_exit(void *data)
|
|
{
|
|
struct k3_r5_cluster *cluster = platform_get_drvdata(data);
|
|
struct platform_device *cpdev;
|
|
struct k3_r5_core *core, *temp;
|
|
|
|
list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
|
|
list_del(&core->elem);
|
|
cpdev = to_platform_device(core->dev);
|
|
k3_r5_core_of_exit(cpdev);
|
|
}
|
|
}
|
|
|
|
static int k3_r5_cluster_of_init(struct platform_device *pdev)
|
|
{
|
|
struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
|
|
struct device *dev = &pdev->dev;
|
|
struct device_node *np = dev_of_node(dev);
|
|
struct platform_device *cpdev;
|
|
struct k3_r5_core *core;
|
|
int ret;
|
|
|
|
for_each_available_child_of_node_scoped(np, child) {
|
|
cpdev = of_find_device_by_node(child);
|
|
if (!cpdev) {
|
|
ret = -ENODEV;
|
|
dev_err(dev, "could not get R5 core platform device\n");
|
|
goto fail;
|
|
}
|
|
|
|
ret = k3_r5_core_of_init(cpdev);
|
|
if (ret) {
|
|
dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n",
|
|
ret);
|
|
put_device(&cpdev->dev);
|
|
goto fail;
|
|
}
|
|
|
|
core = platform_get_drvdata(cpdev);
|
|
core->cluster = cluster;
|
|
put_device(&cpdev->dev);
|
|
list_add_tail(&core->elem, &cluster->cores);
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
k3_r5_cluster_of_exit(pdev);
|
|
return ret;
|
|
}
|
|
|
|
static int k3_r5_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct device_node *np = dev_of_node(dev);
|
|
struct k3_r5_cluster *cluster;
|
|
const struct k3_r5_soc_data *data;
|
|
int ret;
|
|
int num_cores;
|
|
|
|
data = of_device_get_match_data(&pdev->dev);
|
|
if (!data) {
|
|
dev_err(dev, "SoC-specific data is not defined\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL);
|
|
if (!cluster)
|
|
return -ENOMEM;
|
|
|
|
cluster->dev = dev;
|
|
cluster->soc_data = data;
|
|
INIT_LIST_HEAD(&cluster->cores);
|
|
init_waitqueue_head(&cluster->core_transition);
|
|
|
|
ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode);
|
|
if (ret < 0 && ret != -EINVAL)
|
|
return dev_err_probe(dev, ret, "invalid format for ti,cluster-mode\n");
|
|
|
|
if (ret == -EINVAL) {
|
|
/*
|
|
* default to most common efuse configurations - Split-mode on AM64x
|
|
* and LockStep-mode on all others
|
|
* default to most common efuse configurations -
|
|
* Split-mode on AM64x
|
|
* Single core on AM62x
|
|
* LockStep-mode on all others
|
|
*/
|
|
if (!data->is_single_core)
|
|
cluster->mode = data->single_cpu_mode ?
|
|
CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP;
|
|
else
|
|
cluster->mode = CLUSTER_MODE_SINGLECORE;
|
|
}
|
|
|
|
if ((cluster->mode == CLUSTER_MODE_SINGLECPU && !data->single_cpu_mode) ||
|
|
(cluster->mode == CLUSTER_MODE_SINGLECORE && !data->is_single_core))
|
|
return dev_err_probe(dev, -EINVAL,
|
|
"Cluster mode = %d is not supported on this SoC\n",
|
|
cluster->mode);
|
|
|
|
num_cores = of_get_available_child_count(np);
|
|
if (num_cores != 2 && !data->is_single_core)
|
|
return dev_err_probe(dev, -ENODEV,
|
|
"MCU cluster requires both R5F cores to be enabled but num_cores is set to = %d\n",
|
|
num_cores);
|
|
|
|
if (num_cores != 1 && data->is_single_core)
|
|
return dev_err_probe(dev, -ENODEV,
|
|
"SoC supports only single core R5 but num_cores is set to %d\n",
|
|
num_cores);
|
|
|
|
platform_set_drvdata(pdev, cluster);
|
|
|
|
ret = devm_of_platform_populate(dev);
|
|
if (ret)
|
|
return dev_err_probe(dev, ret, "devm_of_platform_populate failed\n");
|
|
|
|
ret = k3_r5_cluster_of_init(pdev);
|
|
if (ret)
|
|
return dev_err_probe(dev, ret, "k3_r5_cluster_of_init failed\n");
|
|
|
|
ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = k3_r5_cluster_rproc_init(pdev);
|
|
if (ret)
|
|
return dev_err_probe(dev, ret, "k3_r5_cluster_rproc_init failed\n");
|
|
|
|
ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct k3_rproc_mem_data r5_mems[] = {
|
|
{ .name = "atcm", .dev_addr = 0x0 },
|
|
{ .name = "btcm", .dev_addr = K3_R5_TCM_DEV_ADDR },
|
|
};
|
|
|
|
static const struct k3_rproc_dev_data r5_data = {
|
|
.mems = r5_mems,
|
|
.num_mems = ARRAY_SIZE(r5_mems),
|
|
.boot_align_addr = 0,
|
|
.uses_lreset = true,
|
|
};
|
|
|
|
static const struct k3_r5_soc_data am65_j721e_soc_data = {
|
|
.tcm_is_double = false,
|
|
.tcm_ecc_autoinit = false,
|
|
.single_cpu_mode = false,
|
|
.is_single_core = false,
|
|
.core_data = &r5_data,
|
|
};
|
|
|
|
static const struct k3_r5_soc_data j7200_j721s2_soc_data = {
|
|
.tcm_is_double = true,
|
|
.tcm_ecc_autoinit = true,
|
|
.single_cpu_mode = false,
|
|
.is_single_core = false,
|
|
.core_data = &r5_data,
|
|
};
|
|
|
|
static const struct k3_r5_soc_data am64_soc_data = {
|
|
.tcm_is_double = true,
|
|
.tcm_ecc_autoinit = true,
|
|
.single_cpu_mode = true,
|
|
.is_single_core = false,
|
|
.core_data = &r5_data,
|
|
};
|
|
|
|
static const struct k3_r5_soc_data am62_soc_data = {
|
|
.tcm_is_double = false,
|
|
.tcm_ecc_autoinit = true,
|
|
.single_cpu_mode = false,
|
|
.is_single_core = true,
|
|
.core_data = &r5_data,
|
|
};
|
|
|
|
static const struct of_device_id k3_r5_of_match[] = {
|
|
{ .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, },
|
|
{ .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, },
|
|
{ .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, },
|
|
{ .compatible = "ti,am64-r5fss", .data = &am64_soc_data, },
|
|
{ .compatible = "ti,am62-r5fss", .data = &am62_soc_data, },
|
|
{ .compatible = "ti,j721s2-r5fss", .data = &j7200_j721s2_soc_data, },
|
|
{ /* sentinel */ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, k3_r5_of_match);
|
|
|
|
static struct platform_driver k3_r5_rproc_driver = {
|
|
.probe = k3_r5_probe,
|
|
.driver = {
|
|
.name = "k3_r5_rproc",
|
|
.of_match_table = k3_r5_of_match,
|
|
},
|
|
};
|
|
|
|
module_platform_driver(k3_r5_rproc_driver);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
|
|
MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
|