mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
synced 2025-09-01 15:14:52 +00:00
loongarch-next
1481 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
94dfa500e7 |
tracing: Fix NULL vs IS_ERR() check in enable_instances()
The trace_array_create_systems() function returns error pointers, not
NULL. Fix the check to match.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes:
|
||
![]() |
07714b4bb3 |
tracing: Handle old buffer mappings for event strings and functions
Use the saved text_delta and data_delta of a persistent memory mapped ring buffer that was saved from a previous boot, and use the delta in the trace event print output so that strings and functions show up normally. That is, for an event like trace_kmalloc() that prints the callsite via "%pS", if it used the address saved in the ring buffer it will not match the function that was saved in the previous boot if the kernel remaps itself between boots. For RCU events that point to saved static strings where only the address of the string is saved in the ring buffer, it too will be adjusted to point to where the string is on the current boot. Link: https://lkml.kernel.org/r/20240612232026.821020753@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineeth Pillai <vineeth@bitbyteword.org> Cc: Youssef Esmat <youssefesmat@google.com> Cc: Beau Belgrave <beaub@linux.microsoft.com> Cc: Alexander Graf <graf@amazon.com> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: David Howells <dhowells@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Ross Zwisler <zwisler@google.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
7a1d1e4b96 |
tracing/ring-buffer: Add last_boot_info file to boot instance
If an instance is mapped to memory on boot up, create a new file called "last_boot_info" that will hold information that can be used to properly parse the raw data in the ring buffer. It will export the delta of the addresses for text and data from what it was from the last boot. It does not expose actually addresses (unless you knew what the actual address was from the last boot). The output will look like: # cat last_boot_info text delta: -268435456 data delta: -268435456 The text and data are kept separate in case they are ever made different. Link: https://lkml.kernel.org/r/20240612232026.658680738@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineeth Pillai <vineeth@bitbyteword.org> Cc: Youssef Esmat <youssefesmat@google.com> Cc: Beau Belgrave <beaub@linux.microsoft.com> Cc: Alexander Graf <graf@amazon.com> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: David Howells <dhowells@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Ross Zwisler <zwisler@google.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
e645535a95 |
tracing: Add option to use memmapped memory for trace boot instance
Add an option to the trace_instance kernel command line parameter that allows it to use the reserved memory from memmap boot parameter. memmap=12M$0x284500000 trace_instance=boot_mapped@0x284500000:12M The above will reserves 12 megs at the physical address 0x284500000. The second parameter will create a "boot_mapped" instance and use the memory reserved as the memory for the ring buffer. That will create an instance called "boot_mapped": /sys/kernel/tracing/instances/boot_mapped Note, because the ring buffer is using a defined memory ranged, it will act just like a memory mapped ring buffer. It will not have a snapshot buffer, as it can't swap out the buffer. The snapshot files as well as any tracers that uses a snapshot will not be present in the boot_mapped instance. Link: https://lkml.kernel.org/r/20240612232026.329660169@goodmis.org Cc: linux-mm@kvack.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineeth Pillai <vineeth@bitbyteword.org> Cc: Youssef Esmat <youssefesmat@google.com> Cc: Beau Belgrave <beaub@linux.microsoft.com> Cc: Alexander Graf <graf@amazon.com> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: David Howells <dhowells@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Ross Zwisler <zwisler@google.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
950032ffce |
ring-buffer: Add output of ring buffer meta page
Add a buffer_meta per-cpu file for the trace instance that is mapped to boot memory. This shows the current meta-data and can be used by user space tools to record off the current mappings to help reconstruct the ring buffer after a reboot. It does not expose any virtual addresses, just indexes into the sub-buffer pages. Link: https://lkml.kernel.org/r/20240612232025.854471446@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineeth Pillai <vineeth@bitbyteword.org> Cc: Youssef Esmat <youssefesmat@google.com> Cc: Beau Belgrave <beaub@linux.microsoft.com> Cc: Alexander Graf <graf@amazon.com> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: David Howells <dhowells@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Ross Zwisler <zwisler@google.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
2124de79ad |
tracing: Implement creating an instance based on a given memory region
Allow for creating a new instance by passing in an address and size to map the ring buffer for the instance to. This will allow features like a pstore memory mapped region to be used for an tracing instance ring buffer that can be retrieved from one boot to the next. Link: https://lkml.kernel.org/r/20240612232025.692086240@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineeth Pillai <vineeth@bitbyteword.org> Cc: Youssef Esmat <youssefesmat@google.com> Cc: Beau Belgrave <beaub@linux.microsoft.com> Cc: Alexander Graf <graf@amazon.com> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: David Howells <dhowells@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Ross Zwisler <zwisler@google.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
53683e4080 |
tracing ring buffer updates for v6.10:
- Add ring_buffer memory mappings The tracing ring buffer was created based on being mostly used with the splice system call. It is broken up into page ordered sub-buffers and the reader swaps a new sub-buffer with an existing sub-buffer that's part of the write buffer. It then has total access to the swapped out sub-buffer and can do copyless movements of the memory into other mediums (file system, network, etc). The buffer is great for passing around the ring buffer contents in the kernel, but is not so good for when the consumer is the user space task itself. A new interface is added that allows user space to memory map the ring buffer. It will get all the write sub-buffers as well as reader sub-buffer (that is not written to). It can send an ioctl to change which sub-buffer is the new reader sub-buffer. The ring buffer is read only to user space. It only needs to call the ioctl when it is finished with a sub-buffer and needs a new sub-buffer that the writer will not write over. A self test program was also created for testing and can be used as an example for the interface to user space. The libtracefs (external to the kernel) also has code that interacts with this, although it is disabled until the interface is in a official release. It can be enabled by compiling the library with a special flag. This was used for testing applications that perform better with the buffer being mapped. Memory mapped buffers have limitations. The main one is that it can not be used with the snapshot logic. If the buffer is mapped, snapshots will be disabled. If any logic is set to trigger snapshots on a buffer, that buffer will not be allowed to be mapped. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZkYzDRQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qttNAQCj3I0OpeI1vms85ShIa7Eha2qes5uC Yml2fnapkmRSwAEAp5UTGxtDctycWOk9B9PA7/oJmLgATaQwRKoEeTUwfAA= =TyEB -----END PGP SIGNATURE----- Merge tag 'trace-ringbuffer-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing ring buffer updates from Steven Rostedt: "Add ring_buffer memory mappings. The tracing ring buffer was created based on being mostly used with the splice system call. It is broken up into page ordered sub-buffers and the reader swaps a new sub-buffer with an existing sub-buffer that's part of the write buffer. It then has total access to the swapped out sub-buffer and can do copyless movements of the memory into other mediums (file system, network, etc). The buffer is great for passing around the ring buffer contents in the kernel, but is not so good for when the consumer is the user space task itself. A new interface is added that allows user space to memory map the ring buffer. It will get all the write sub-buffers as well as reader sub-buffer (that is not written to). It can send an ioctl to change which sub-buffer is the new reader sub-buffer. The ring buffer is read only to user space. It only needs to call the ioctl when it is finished with a sub-buffer and needs a new sub-buffer that the writer will not write over. A self test program was also created for testing and can be used as an example for the interface to user space. The libtracefs (external to the kernel) also has code that interacts with this, although it is disabled until the interface is in a official release. It can be enabled by compiling the library with a special flag. This was used for testing applications that perform better with the buffer being mapped. Memory mapped buffers have limitations. The main one is that it can not be used with the snapshot logic. If the buffer is mapped, snapshots will be disabled. If any logic is set to trigger snapshots on a buffer, that buffer will not be allowed to be mapped" * tag 'trace-ringbuffer-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: ring-buffer: Add cast to unsigned long addr passed to virt_to_page() ring-buffer: Have mmapped ring buffer keep track of missed events ring-buffer/selftest: Add ring-buffer mapping test Documentation: tracing: Add ring-buffer mapping tracing: Allow user-space mapping of the ring-buffer ring-buffer: Introducing ring-buffer mapping functions ring-buffer: Allocate sub-buffers with __GFP_COMP |
||
![]() |
cf9f0f7c4c |
tracing: Allow user-space mapping of the ring-buffer
Currently, user-space extracts data from the ring-buffer via splice, which is handy for storage or network sharing. However, due to splice limitations, it is imposible to do real-time analysis without a copy. A solution for that problem is to let the user-space map the ring-buffer directly. The mapping is exposed via the per-CPU file trace_pipe_raw. The first element of the mapping is the meta-page. It is followed by each subbuffer constituting the ring-buffer, ordered by their unique page ID: * Meta-page -- include/uapi/linux/trace_mmap.h for a description * Subbuf ID 0 * Subbuf ID 1 ... It is therefore easy to translate a subbuf ID into an offset in the mapping: reader_id = meta->reader->id; reader_offset = meta->meta_page_size + reader_id * meta->subbuf_size; When new data is available, the mapper must call a newly introduced ioctl: TRACE_MMAP_IOCTL_GET_READER. This will update the Meta-page reader ID to point to the next reader containing unread data. Mapping will prevent snapshot and buffer size modifications. Link: https://lore.kernel.org/linux-trace-kernel/20240510140435.3550353-4-vdonnefort@google.com CC: <linux-mm@kvack.org> Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
20fe4d07bd |
tracing/probes: support '%pD' type for print struct file's name
As like '%pd' type, this patch supports print type '%pD' for print file's name. For example "name=$arg1:%pD" casts the `$arg1` as (struct file*), dereferences the "file.f_path.dentry.d_name.name" field and stores it to "name" argument as a kernel string. Here is an example: [tracing]# echo 'p:testprobe vfs_read name=$arg1:%pD' > kprobe_event [tracing]# echo 1 > events/kprobes/testprobe/enable [tracing]# grep -q "1" events/kprobes/testprobe/enable [tracing]# echo 0 > events/kprobes/testprobe/enable [tracing]# grep "vfs_read" trace | grep "enable" grep-15108 [003] ..... 5228.328609: testprobe: (vfs_read+0x4/0xbb0) name="enable" Note that this expects the given argument (e.g. $arg1) is an address of struct file. User must ensure it. Link: https://lore.kernel.org/all/20240322064308.284457-3-yebin10@huawei.com/ [Masami: replaced "previous patch" with '%pd' type] Signed-off-by: Ye Bin <yebin10@huawei.com> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> |
||
![]() |
d9b15224dd |
tracing/probes: support '%pd' type for print struct dentry's name
During fault locating, the file name needs to be printed based on the dentry address. The offset needs to be calculated each time, which is troublesome. Similar to printk, kprobe support print type '%pd' for print dentry's name. For example "name=$arg1:%pd" casts the `$arg1` as (struct dentry *), dereferences the "d_name.name" field and stores it to "name" argument as a kernel string. Here is an example: [tracing]# echo 'p:testprobe dput name=$arg1:%pd' > kprobe_events [tracing]# echo 1 > events/kprobes/testprobe/enable [tracing]# grep -q "1" events/kprobes/testprobe/enable [tracing]# echo 0 > events/kprobes/testprobe/enable [tracing]# cat trace | grep "enable" bash-14844 [002] ..... 16912.889543: testprobe: (dput+0x4/0x30) name="enable" grep-15389 [003] ..... 16922.834182: testprobe: (dput+0x4/0x30) name="enable" grep-15389 [003] ..... 16922.836103: testprobe: (dput+0x4/0x30) name="enable" bash-14844 [001] ..... 16931.820909: testprobe: (dput+0x4/0x30) name="enable" Note that this expects the given argument (e.g. $arg1) is an address of struct dentry. User must ensure it. Link: https://lore.kernel.org/all/20240322064308.284457-2-yebin10@huawei.com/ Signed-off-by: Ye Bin <yebin10@huawei.com> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> |
||
![]() |
19f0423fd5 |
tracing: Support to dump instance traces by ftrace_dump_on_oops
Currently ftrace only dumps the global trace buffer on an OOPs. For debugging a production usecase, instance trace will be helpful to check specific problems since global trace buffer may be used for other purposes. This patch extend the ftrace_dump_on_oops parameter to dump a specific or multiple trace instances: - ftrace_dump_on_oops=0: as before -- don't dump - ftrace_dump_on_oops[=1]: as before -- dump the global trace buffer on all CPUs - ftrace_dump_on_oops=2 or =orig_cpu: as before -- dump the global trace buffer on CPU that triggered the oops - ftrace_dump_on_oops=<instance_name>: new behavior -- dump the tracing instance matching <instance_name> - ftrace_dump_on_oops[=2/orig_cpu],<instance1_name>[=2/orig_cpu], <instrance2_name>[=2/orig_cpu]: new behavior -- dump the global trace buffer and multiple instance buffer on all CPUs, or only dump on CPU that triggered the oops if =2 or =orig_cpu is given Also, the sysctl node can handle the input accordingly. Link: https://lore.kernel.org/linux-trace-kernel/20240223083126.1817731-1-quic_hyiwei@quicinc.com Cc: Ross Zwisler <zwisler@google.com> Cc: <mhiramat@kernel.org> Cc: <mark.rutland@arm.com> Cc: <mcgrof@kernel.org> Cc: <keescook@chromium.org> Cc: <j.granados@samsung.com> Cc: <mathieu.desnoyers@efficios.com> Cc: <corbet@lwn.net> Signed-off-by: Huang Yiwei <quic_hyiwei@quicinc.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
cca990c7b5 |
tracing: Fix snapshot counter going between two tracers that use it
Running the ftrace selftests caused the ring buffer mapping test to fail. Investigating, I found that the snapshot counter would be incremented every time a tracer that uses the snapshot is enabled even if the snapshot was used by the previous tracer. That is: # cd /sys/kernel/tracing # echo wakeup_rt > current_tracer # echo wakeup_dl > current_tracer # echo nop > current_tracer would leave the snapshot counter at 1 and not zero. That's because the enabling of wakeup_dl would increment the counter again but the setting the tracer to nop would only decrement it once. Do not arm the snapshot for a tracer if the previous tracer already had it armed. Link: https://lore.kernel.org/linux-trace-kernel/20240223013344.570525723@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Fixes: 16f7e48ffc53a ("tracing: Add snapshot refcount") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
ed89683763 |
tracing: Use init_utsname()->release
Instead of using UTS_RELEASE, use init_utsname()->release, which means that we don't need to rebuild the code just for the git head commit changing. Link: https://lore.kernel.org/linux-trace-kernel/20240222124639.65629-1-john.g.garry@oracle.com Signed-off-by: John Garry <john.g.garry@oracle.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
180e4e3909 |
tracing: Add snapshot refcount
When a ring-buffer is memory mapped by user-space, no trace or ring-buffer swap is possible. This means the snapshot feature is mutually exclusive with the memory mapping. Having a refcount on snapshot users will help to know if a mapping is possible or not. Instead of relying on the global trace_types_lock, a new spinlock is introduced to serialize accesses to trace_array->snapshot. This intends to allow access to that variable in a context where the mmap lock is already held. Link: https://lore.kernel.org/linux-trace-kernel/20240220202310.2489614-4-vdonnefort@google.com Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
2cc621fd2e |
tracing: Move saved_cmdline code into trace_sched_switch.c
The code that handles saved_cmdlines is split between the trace.c file and the trace_sched_switch.c. There's some history to this. The trace_sched_switch.c was originally created to handle the sched_switch tracer that was deprecated due to sched_switch trace event making it obsolete. But that file did not get deleted as it had some code to help with saved_cmdlines. But trace.c has grown tremendously since then. Just move all the saved_cmdlines code into trace_sched_switch.c as that's the only reason that file still exists, and trace.c has gotten too big. No functional changes. Link: https://lore.kernel.org/linux-trace-kernel/20240220140703.497966629@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Mete Durlu <meted@linux.ibm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
e85d471c2b |
tracing: Move open coded processing of tgid_map into helper function
In preparation of moving the saved_cmdlines logic out of trace.c and into trace_sched_switch.c, replace the open coded manipulation of tgid_map in set_tracer_flag() into a helper function trace_alloc_tgid_map() so that it can be easily moved into trace_sched_switch.c without changing existing functions in trace.c. No functional changes. Link: https://lore.kernel.org/linux-trace-kernel/20240220140703.338116216@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Mete Durlu <meted@linux.ibm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
0b18c852cc |
tracing: Have saved_cmdlines arrays all in one allocation
The saved_cmdlines have three arrays for mapping PIDs to COMMs:
- map_pid_to_cmdline[]
- map_cmdline_to_pid[]
- saved_cmdlines
The map_pid_to_cmdline[] is PID_MAX_DEFAULT in size and holds the index
into the other arrays. The map_cmdline_to_pid[] is a mapping back to the
full pid as it can be larger than PID_MAX_DEFAULT. And the
saved_cmdlines[] just holds the COMMs associated to the pids.
Currently the map_pid_to_cmdline[] and saved_cmdlines[] are allocated
together (in reality the saved_cmdlines is just in the memory of the
rounding of the allocation of the structure as it is always allocated in
powers of two). The map_cmdline_to_pid[] array is allocated separately.
Since the rounding to a power of two is rather large (it allows for 8000
elements in saved_cmdlines), also include the map_cmdline_to_pid[] array.
(This drops it to 6000 by default, which is still plenty for most use
cases). This saves even more memory as the map_cmdline_to_pid[] array
doesn't need to be allocated.
Link: https://lore.kernel.org/linux-trace-kernel/20240212174011.068211d9@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20240220140703.182330529@goodmis.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes:
|
||
![]() |
63bd30f249 |
Tracing/ring-buffer fixes for 6.8 (to be applied in 6.9-rc):
- Do not update shortest_full in rb_watermark_hit() if the watermark is hit. The shortest_full field was being updated regardless if the task was going to wait or not. If the watermark is hit, then the task is not going to wait, so do not update the shortest_full field (used by the waker). - Update shortest_full field before setting the full_waiters_pending flag In the poll logic, the full_waiters_pending flag was being set before the shortest_full field was set. If the full_waiters_pending flag is set, writers will check the shortest_full field which has the least percentage of data that the ring buffer needs to be filled before waking up. The writer will check shortest_full if full_waiters_pending is set, and if the ring buffer percentage filled is greater than shortest full, then it will call the irq_work to wake up the waiters. The problem was that the poll logic set the full_waiters_pending flag before updating shortest_full, which when zero will always trigger the writer to call the irq_work to wake up the waiters. The irq_work will reset the shortest_full field back to zero as the woken waiters is suppose to reset it. - There's some optimized logic in the rb_watermark_hit() that is used in ring_buffer_wait(). Use that helper function in the poll logic as well. - Restructure ring_buffer_wait() to use wait_event_interruptible() The logic to wake up pending readers when the file descriptor is closed is racy. Restructure ring_buffer_wait() to allow callers to pass in conditions besides the ring buffer having enough data in it by using wait_event_interruptible(). - Update the tracing_wait_on_pipe() to call ring_buffer_wait() with its own conditions to exit the wait loop. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZfH6MRQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qtlwAP9ZoSIkvw2MVu7FclgAguaX2CaylGEw sv0wZaCy1kgAPgD8CFhezZcHrt/RwJibpMxVnUs+DDqYnGdJsHYLihlbWgg= =99FG -----END PGP SIGNATURE----- Merge tag 'trace-ring-buffer-v6.8-rc7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing updates from Steven Rostedt: - Do not update shortest_full in rb_watermark_hit() if the watermark is hit. The shortest_full field was being updated regardless if the task was going to wait or not. If the watermark is hit, then the task is not going to wait, so do not update the shortest_full field (used by the waker). - Update shortest_full field before setting the full_waiters_pending flag In the poll logic, the full_waiters_pending flag was being set before the shortest_full field was set. If the full_waiters_pending flag is set, writers will check the shortest_full field which has the least percentage of data that the ring buffer needs to be filled before waking up. The writer will check shortest_full if full_waiters_pending is set, and if the ring buffer percentage filled is greater than shortest full, then it will call the irq_work to wake up the waiters. The problem was that the poll logic set the full_waiters_pending flag before updating shortest_full, which when zero will always trigger the writer to call the irq_work to wake up the waiters. The irq_work will reset the shortest_full field back to zero as the woken waiters is suppose to reset it. - There's some optimized logic in the rb_watermark_hit() that is used in ring_buffer_wait(). Use that helper function in the poll logic as well. - Restructure ring_buffer_wait() to use wait_event_interruptible() The logic to wake up pending readers when the file descriptor is closed is racy. Restructure ring_buffer_wait() to allow callers to pass in conditions besides the ring buffer having enough data in it by using wait_event_interruptible(). - Update the tracing_wait_on_pipe() to call ring_buffer_wait() with its own conditions to exit the wait loop. * tag 'trace-ring-buffer-v6.8-rc7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: tracing/ring-buffer: Fix wait_on_pipe() race ring-buffer: Use wait_event_interruptible() in ring_buffer_wait() ring-buffer: Reuse rb_watermark_hit() for the poll logic ring-buffer: Fix full_waiters_pending in poll ring-buffer: Do not set shortest_full when full target is hit |
||
![]() |
01732755ee |
Probes updates for v6.9:
- x96/kprobes: Use boolean for some function return instead of 0 and 1. - x86/kprobes: Prohibit probing on INT/UD. This prevents user to put kprobe on INTn/INT1/INT3/INTO and UD0/UD1/UD2 because these are used for a special purpose in the kernel. - x86/kprobes: Boost Grp instructions. Because a few percent of kernel instructions are Grp 2/3/4/5 and those are safe to be executed without ip register fixup, allow those to be boosted (direct execution on the trampoline buffer with a JMP). - tracing/probes: Add function argument access from return events (kretprobe and fprobe). This allows user to compare how a data structure field is changed after executing a function. With BTF, return event also accepts function argument access by name. This also includes below patches; . Fix a wrong comment (using "Kretprobe" in fprobe) . Cleanup a big probe argument parser function into three parts, type parser, post-processing function, and main parser. . Cleanup to set nr_args field when initializing trace_probe instead of counting up it while parsing. . Cleanup a redundant #else block from tracefs/README source code. . Update selftests to check entry argument access from return probes. . Documentation update about entry argument access from return probes. -----BEGIN PGP SIGNATURE----- iQFPBAABCgA5FiEEh7BulGwFlgAOi5DV2/sHvwUrPxsFAmXwW4kbHG1hc2FtaS5o aXJhbWF0c3VAZ21haWwuY29tAAoJENv7B78FKz8bH80H/3H6JENlDAjaSLi4vYrP Qyw/cOGIuGu8cDEzkkOaFMol3TY23M7tQZH1lFefvV92gebZ0ttXnrQhSsKeO5XT PCZ6Eoift5rwJCY967W4V6O0DrAkOGHlPtlKs47APJnTXwn8RcFTqWlQmhWg1AfD g/FCWV7cs3eewZgV9iQcLydOoLLgRMr3G3rtPYQbCXhPzze0WTu4dSOXxCTjFe04 riHQy7R+ut6Cur8njpoqZl6bCMkQqAylByXf6wK96HjcS0+ZI7Ivi8Ey3l2aAFen EeIViMU2Bl02XzBszj7Xq2cT/ebYAgDonFW3/5ZKD1YMO6F7wPoVH5OHrQ518Xuw hQ8= =O6l5 -----END PGP SIGNATURE----- Merge tag 'probes-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull probes updates from Masami Hiramatsu: "x86 kprobes: - Use boolean for some function return instead of 0 and 1 - Prohibit probing on INT/UD. This prevents user to put kprobe on INTn/INT1/INT3/INTO and UD0/UD1/UD2 because these are used for a special purpose in the kernel - Boost Grp instructions. Because a few percent of kernel instructions are Grp 2/3/4/5 and those are safe to be executed without ip register fixup, allow those to be boosted (direct execution on the trampoline buffer with a JMP) tracing: - Add function argument access from return events (kretprobe and fprobe). This allows user to compare how a data structure field is changed after executing a function. With BTF, return event also accepts function argument access by name. - Fix a wrong comment (using "Kretprobe" in fprobe) - Cleanup a big probe argument parser function into three parts, type parser, post-processing function, and main parser - Cleanup to set nr_args field when initializing trace_probe instead of counting up it while parsing - Cleanup a redundant #else block from tracefs/README source code - Update selftests to check entry argument access from return probes - Documentation update about entry argument access from return probes" * tag 'probes-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: Documentation: tracing: Add entry argument access at function exit selftests/ftrace: Add test cases for entry args at function exit tracing/probes: Support $argN in return probe (kprobe and fprobe) tracing: Remove redundant #else block for BTF args from README tracing/probes: cleanup: Set trace_probe::nr_args at trace_probe_init tracing/probes: Cleanup probe argument parser tracing/fprobe-event: cleanup: Fix a wrong comment in fprobe event x86/kprobes: Boost more instructions from grp2/3/4/5 x86/kprobes: Prohibit kprobing on INT and UD x86/kprobes: Refactor can_{probe,boost} return type to bool |
||
![]() |
2aa043a55b |
tracing/ring-buffer: Fix wait_on_pipe() race
When the trace_pipe_raw file is closed, there should be no new readers on
the file descriptor. This is mostly handled with the waking and wait_index
fields of the iterator. But there's still a slight race.
CPU 0 CPU 1
----- -----
wait_index++;
index = wait_index;
ring_buffer_wake_waiters();
wait_on_pipe()
ring_buffer_wait();
The ring_buffer_wait() will miss the wakeup from CPU 1. The problem is
that the ring_buffer_wait() needs the logic of:
prepare_to_wait();
if (!condition)
schedule();
Where the missing condition check is the iter->wait_index update.
Have the ring_buffer_wait() take a conditional callback function and a
data parameter that can be used within the wait_event_interruptible() of
the ring_buffer_wait() function.
In wait_on_pipe(), pass a condition function that will check if the
wait_index has been updated, if it has, it will return true to break out
of the wait_event_interruptible() loop.
Create a new field "closed" in the trace_iterator and set it in the
.flush() callback before calling ring_buffer_wake_waiters().
This will keep any new readers from waiting on a closed file descriptor.
Have the wait_on_pipe() condition callback also check the closed field.
Change the wait_index field of the trace_iterator to atomic_t. There's no
reason it needs to be 'long' and making it atomic and using
atomic_read_acquire() and atomic_fetch_inc_release() will provide the
necessary memory barriers.
Add a "woken" flag to tracing_buffers_splice_read() to exit the loop after
one more try to fetch data. That is, if it waited for data and something
woke it up, it should try to collect any new data and then exit back to
user space.
Link: https://lore.kernel.org/linux-trace-kernel/CAHk-=wgsNgewHFxZAJiAQznwPMqEtQmi1waeS2O1v6L4c_Um5A@mail.gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240312121703.557950713@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes:
|
||
![]() |
e5d7c19165 |
tracing: Use .flush() call to wake up readers
The .release() function does not get called until all readers of a file
descriptor are finished.
If a thread is blocked on reading a file descriptor in ring_buffer_wait(),
and another thread closes the file descriptor, it will not wake up the
other thread as ring_buffer_wake_waiters() is called by .release(), and
that will not get called until the .read() is finished.
The issue originally showed up in trace-cmd, but the readers are actually
other processes with their own file descriptors. So calling close() would wake
up the other tasks because they are blocked on another descriptor then the
one that was closed(). But there's other wake ups that solve that issue.
When a thread is blocked on a read, it can still hang even when another
thread closed its descriptor.
This is what the .flush() callback is for. Have the .flush() wake up the
readers.
Link: https://lore.kernel.org/linux-trace-kernel/20240308202432.107909457@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes:
|
||
![]() |
095fe48912 |
tracing: Limit trace_marker writes to just 4K
Limit the max print event of trace_marker to just 4K string size. This must also be less than the amount that can be held by a trace_seq along with the text that is before the output (like the task name, PID, CPU, state, etc). As trace_seq is made to handle large events (some greater than 4K). Make the max size of a trace_marker write event be 4K which is guaranteed to fit in the trace_seq buffer. Link: https://lore.kernel.org/linux-trace-kernel/20240304223433.4ba47dff@gandalf.local.home Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
25f00e40ce |
tracing/probes: Support $argN in return probe (kprobe and fprobe)
Support accessing $argN in the return probe events. This will help users to record entry data in function return (exit) event for simplfing the function entry/exit information in one event, and record the result values (e.g. allocated object/initialized object) at function exit. For example, if we have a function `int init_foo(struct foo *obj, int param)` sometimes we want to check how `obj` is initialized. In such case, we can define a new return event like below; # echo 'r init_foo retval=$retval param=$arg2 field1=+0($arg1)' >> kprobe_events Thus it records the function parameter `param` and its result `obj->field1` (the dereference will be done in the function exit timing) value at once. This also support fprobe, BTF args and'$arg*'. So if CONFIG_DEBUG_INFO_BTF is enabled, we can trace both function parameters and the return value by following command. # echo 'f target_function%return $arg* $retval' >> dynamic_events Link: https://lore.kernel.org/all/170952365552.229804.224112990211602895.stgit@devnote2/ Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> |
||
![]() |
c18f9eabee |
tracing: Remove redundant #else block for BTF args from README
Remove redundant #else block for BTF args from README message. This is a cleanup, so no change on the message. Link: https://lore.kernel.org/all/170952364558.229804.17285528811097152410.stgit@devnote2/ Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
2394ac4145 |
tracing: Inform kmemleak of saved_cmdlines allocation
The allocation of the struct saved_cmdlines_buffer structure changed from:
s = kmalloc(sizeof(*s), GFP_KERNEL);
s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);
to:
orig_size = sizeof(*s) + val * TASK_COMM_LEN;
order = get_order(orig_size);
size = 1 << (order + PAGE_SHIFT);
page = alloc_pages(GFP_KERNEL, order);
if (!page)
return NULL;
s = page_address(page);
memset(s, 0, sizeof(*s));
s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);
Where that s->saved_cmdlines allocation looks to be a dangling allocation
to kmemleak. That's because kmemleak only keeps track of kmalloc()
allocations. For allocations that use page_alloc() directly, the kmemleak
needs to be explicitly informed about it.
Add kmemleak_alloc() and kmemleak_free() around the page allocation so
that it doesn't give the following false positive:
unreferenced object 0xffff8881010c8000 (size 32760):
comm "swapper", pid 0, jiffies 4294667296
hex dump (first 32 bytes):
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................
backtrace (crc ae6ec1b9):
[<ffffffff86722405>] kmemleak_alloc+0x45/0x80
[<ffffffff8414028d>] __kmalloc_large_node+0x10d/0x190
[<ffffffff84146ab1>] __kmalloc+0x3b1/0x4c0
[<ffffffff83ed7103>] allocate_cmdlines_buffer+0x113/0x230
[<ffffffff88649c34>] tracer_alloc_buffers.isra.0+0x124/0x460
[<ffffffff8864a174>] early_trace_init+0x14/0xa0
[<ffffffff885dd5ae>] start_kernel+0x12e/0x3c0
[<ffffffff885f5758>] x86_64_start_reservations+0x18/0x30
[<ffffffff885f582b>] x86_64_start_kernel+0x7b/0x80
[<ffffffff83a001c3>] secondary_startup_64_no_verify+0x15e/0x16b
Link: https://lore.kernel.org/linux-trace-kernel/87r0hfnr9r.fsf@kernel.org/
Link: https://lore.kernel.org/linux-trace-kernel/20240214112046.09a322d6@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Fixes:
|
||
![]() |
a6eaa24f1c |
tracing: Use ring_buffer_record_is_set_on() in tracer_tracing_is_on()
tracer_tracing_is_on() checks whether record_disabled is not zero. This checks both the record_disabled counter and the RB_BUFFER_OFF flag. Reading the source it looks like this function should only check for the RB_BUFFER_OFF flag. Therefore use ring_buffer_record_is_set_on(). This fixes spurious fails in the 'test for function traceon/off triggers' test from the ftrace testsuite when the system is under load. Link: https://lore.kernel.org/linux-trace-kernel/20240205065340.2848065-1-svens@linux.ibm.com Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Tested-By: Mete Durlu <meted@linux.ibm.com> Signed-off-by: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
44dc5c41b5 |
tracing: Fix wasted memory in saved_cmdlines logic
While looking at improving the saved_cmdlines cache I found a huge amount
of wasted memory that should be used for the cmdlines.
The tracing data saves pids during the trace. At sched switch, if a trace
occurred, it will save the comm of the task that did the trace. This is
saved in a "cache" that maps pids to comms and exposed to user space via
the /sys/kernel/tracing/saved_cmdlines file. Currently it only caches by
default 128 comms.
The structure that uses this creates an array to store the pids using
PID_MAX_DEFAULT (which is usually set to 32768). This causes the structure
to be of the size of 131104 bytes on 64 bit machines.
In hex: 131104 = 0x20020, and since the kernel allocates generic memory in
powers of two, the kernel would allocate 0x40000 or 262144 bytes to store
this structure. That leaves 131040 bytes of wasted space.
Worse, the structure points to an allocated array to store the comm names,
which is 16 bytes times the amount of names to save (currently 128), which
is 2048 bytes. Instead of allocating a separate array, make the structure
end with a variable length string and use the extra space for that.
This is similar to a recommendation that Linus had made about eventfs_inode names:
https://lore.kernel.org/all/20240130190355.11486-5-torvalds@linux-foundation.org/
Instead of allocating a separate string array to hold the saved comms,
have the structure end with: char saved_cmdlines[]; and round up to the
next power of two over sizeof(struct saved_cmdline_buffers) + num_cmdlines * TASK_COMM_LEN
It will use this extra space for the saved_cmdline portion.
Now, instead of saving only 128 comms by default, by using this wasted
space at the end of the structure it can save over 8000 comms and even
saves space by removing the need for allocating the other array.
Link: https://lore.kernel.org/linux-trace-kernel/20240209063622.1f7b6d5f@rorschach.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes:
|
||
![]() |
a2ded784cd |
tracing updates for 6.8:
- Allow kernel trace instance creation to specify what events are created Inside the kernel, a subsystem may create a tracing instance that it can use to send events to user space. This sub-system may not care about the thousands of events that exist in eventfs. Allow the sub-system to specify what sub-systems of events it cares about, and only those events are exposed to this instance. - Allow the ring buffer to be broken up into bigger sub-buffers than just the architecture page size. A new tracefs file called "buffer_subbuf_size_kb" is created. The user can now specify a minimum size the sub-buffer may be in kilobytes. Note, that the implementation currently make the sub-buffer size a power of 2 pages (1, 2, 4, 8, 16, ...) but the user only writes in kilobyte size, and the sub-buffer will be updated to the next size that it will can accommodate it. If the user writes in 10, it will change the size to be 4 pages on x86 (16K), as that is the next available size that can hold 10K pages. - Update the debug output when a corrupt time is detected in the ring buffer. If the ring buffer detects inconsistent timestamps, there's a debug config options that will dump the contents of the meta data of the sub-buffer that is used for debugging. Add some more information to this dump that helps with debugging. - Add more timestamp debugging checks (only triggers when the config is enabled) - Increase the trace_seq iterator to 2 page sizes. - Allow strings written into tracefs_marker to be larger. Up to just under 2 page sizes (based on what trace_seq can hold). - Increase the trace_maker_raw write to be as big as a sub-buffer can hold. - Remove 32 bit time stamp logic, now that the rb_time_cmpxchg() has been removed. - More selftests were added. - Some code clean ups as well. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZZ8p3BQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6ql2GAQDZg/zlFEiJHyTfWbCIE8pA3T5xbzKo 26TNxIZAxJJZpQEAvGFU5Smy14pG6soEoVMp8B6ZOANbqU8VVamhOL+r+Qw= =0OYG -----END PGP SIGNATURE----- Merge tag 'trace-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing updates from Steven Rostedt: - Allow kernel trace instance creation to specify what events are created Inside the kernel, a subsystem may create a tracing instance that it can use to send events to user space. This sub-system may not care about the thousands of events that exist in eventfs. Allow the sub-system to specify what sub-systems of events it cares about, and only those events are exposed to this instance. - Allow the ring buffer to be broken up into bigger sub-buffers than just the architecture page size. A new tracefs file called "buffer_subbuf_size_kb" is created. The user can now specify a minimum size the sub-buffer may be in kilobytes. Note, that the implementation currently make the sub-buffer size a power of 2 pages (1, 2, 4, 8, 16, ...) but the user only writes in kilobyte size, and the sub-buffer will be updated to the next size that it will can accommodate it. If the user writes in 10, it will change the size to be 4 pages on x86 (16K), as that is the next available size that can hold 10K pages. - Update the debug output when a corrupt time is detected in the ring buffer. If the ring buffer detects inconsistent timestamps, there's a debug config options that will dump the contents of the meta data of the sub-buffer that is used for debugging. Add some more information to this dump that helps with debugging. - Add more timestamp debugging checks (only triggers when the config is enabled) - Increase the trace_seq iterator to 2 page sizes. - Allow strings written into tracefs_marker to be larger. Up to just under 2 page sizes (based on what trace_seq can hold). - Increase the trace_maker_raw write to be as big as a sub-buffer can hold. - Remove 32 bit time stamp logic, now that the rb_time_cmpxchg() has been removed. - More selftests were added. - Some code clean ups as well. * tag 'trace-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (29 commits) ring-buffer: Remove stale comment from ring_buffer_size() tracing histograms: Simplify parse_actions() function tracing/selftests: Remove exec permissions from trace_marker.tc test ring-buffer: Use subbuf_order for buffer page masking tracing: Update subbuffer with kilobytes not page order ringbuffer/selftest: Add basic selftest to test changing subbuf order ring-buffer: Add documentation on the buffer_subbuf_order file ring-buffer: Just update the subbuffers when changing their allocation order ring-buffer: Keep the same size when updating the order tracing: Stop the tracing while changing the ring buffer subbuf size tracing: Update snapshot order along with main buffer order ring-buffer: Make sure the spare sub buffer used for reads has same size ring-buffer: Do no swap cpu buffers if order is different ring-buffer: Clear pages on error in ring_buffer_subbuf_order_set() failure ring-buffer: Read and write to ring buffers with custom sub buffer size ring-buffer: Set new size of the ring buffer sub page ring-buffer: Add interface for configuring trace sub buffer size ring-buffer: Page size per ring buffer ring-buffer: Have ring_buffer_print_page_header() be able to access ring_buffer_iter ring-buffer: Check if absolute timestamp goes backwards ... |
||
![]() |
39a7dc23a1 |
tracing: Fix blocked reader of snapshot buffer
If an application blocks on the snapshot or snapshot_raw files, expecting
to be woken up when a snapshot occurs, it will not happen. Or it may
happen with an unexpected result.
That result is that the application will be reading the main buffer
instead of the snapshot buffer. That is because when the snapshot occurs,
the main and snapshot buffers are swapped. But the reader has a descriptor
still pointing to the buffer that it originally connected to.
This is fine for the main buffer readers, as they may be blocked waiting
for a watermark to be hit, and when a snapshot occurs, the data that the
main readers want is now on the snapshot buffer.
But for waiters of the snapshot buffer, they are waiting for an event to
occur that will trigger the snapshot and they can then consume it quickly
to save the snapshot before the next snapshot occurs. But to do this, they
need to read the new snapshot buffer, not the old one that is now
receiving new data.
Also, it does not make sense to have a watermark "buffer_percent" on the
snapshot buffer, as the snapshot buffer is static and does not receive new
data except all at once.
Link: https://lore.kernel.org/linux-trace-kernel/20231228095149.77f5b45d@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Fixes:
|
||
![]() |
2f84b39f48 |
tracing: Update subbuffer with kilobytes not page order
Using page order for deciding what the size of the ring buffer sub buffers are is exposing a bit too much of the implementation. Although the sub buffers are only allocated in orders of pages, allow the user to specify the minimum size of each sub-buffer via kilobytes like they can with the buffer size itself. If the user specifies 3 via: echo 3 > buffer_subbuf_size_kb Then the sub-buffer size will round up to 4kb (on a 4kb page size system). If they specify: echo 6 > buffer_subbuf_size_kb The sub-buffer size will become 8kb. and so on. Link: https://lore.kernel.org/linux-trace-kernel/20231219185631.809766769@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
fa4b54af5b |
tracing: Stop the tracing while changing the ring buffer subbuf size
Because the main buffer and the snapshot buffer need to be the same for
some tracers, otherwise it will fail and disable all tracing, the tracers
need to be stopped while updating the sub buffer sizes so that the tracers
see the main and snapshot buffers with the same sub buffer size.
Link: https://lore.kernel.org/linux-trace-kernel/20231219185630.353222794@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Fixes:
|
||
![]() |
aa067682ad |
tracing: Update snapshot order along with main buffer order
When updating the order of the sub buffers for the main buffer, make sure that if the snapshot buffer exists, that it gets its order updated as well. Link: https://lore.kernel.org/linux-trace-kernel/20231219185630.054668186@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
4e958db34f |
ring-buffer: Make sure the spare sub buffer used for reads has same size
Now that the ring buffer specifies the size of its sub buffers, they all need to be the same size. When doing a read, a swap is done with a spare page. Make sure they are the same size before doing the swap, otherwise the read will fail. Link: https://lore.kernel.org/linux-trace-kernel/20231219185629.763664788@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
bce761d757 |
ring-buffer: Read and write to ring buffers with custom sub buffer size
As the size of the ring sub buffer page can be changed dynamically, the logic that reads and writes to the buffer should be fixed to take that into account. Some internal ring buffer APIs are changed: ring_buffer_alloc_read_page() ring_buffer_free_read_page() ring_buffer_read_page() A new API is introduced: ring_buffer_read_page_data() Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-6-tz.stoyanov@gmail.com Link: https://lore.kernel.org/linux-trace-kernel/20231219185628.875145995@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com> [ Fixed kerneldoc on data_page parameter in ring_buffer_free_read_page() ] Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
2808e31ec1 |
ring-buffer: Add interface for configuring trace sub buffer size
The trace ring buffer sub page size can be configured, per trace instance. A new ftrace file "buffer_subbuf_order" is added to get and set the size of the ring buffer sub page for current trace instance. The size must be an order of system page size, that's why the new interface works with system page order, instead of absolute page size: 0 means the ring buffer sub page is equal to 1 system page and so forth: 0 - 1 system page 1 - 2 system pages 2 - 4 system pages ... The ring buffer sub page size is limited between 1 and 128 system pages. The default value is 1 system page. New ring buffer APIs are introduced: ring_buffer_subbuf_order_set() ring_buffer_subbuf_order_get() ring_buffer_subbuf_size_get() Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-4-tz.stoyanov@gmail.com Link: https://lore.kernel.org/linux-trace-kernel/20231219185628.298324722@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
139f840021 |
ring-buffer: Page size per ring buffer
Currently the size of one sub buffer page is global for all buffers and it is hard coded to one system page. In order to introduce configurable ring buffer sub page size, the internal logic should be refactored to work with sub page size per ring buffer. Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-3-tz.stoyanov@gmail.com Link: https://lore.kernel.org/linux-trace-kernel/20231219185628.009147038@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
76ca20c748 |
tracing: Increase size of trace_marker_raw to max ring buffer entry
There's no reason to give an arbitrary limit to the size of a raw trace marker. Just let it be as big as the size that is allowed by the ring buffer itself. And there's also no reason to artificially break up the write to TRACE_BUF_SIZE, as that's not even used. Link: https://lore.kernel.org/linux-trace-kernel/20231213104218.2efc70c1@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
9482341d9b |
tracing: Have trace_marker break up by lines by size of trace_seq
If a trace_marker write is bigger than what trace_seq can hold, then it will print "LINE TOO BIG" message and not what was written. Instead, check if the write is bigger than the trace_seq and break it up by that size. Ideally, we could make the trace_seq dynamic that could hold this. But that's for another time. Link: https://lore.kernel.org/linux-trace-kernel/20231212190422.1eaf224f@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
40fc60e36c |
trace_seq: Increase the buffer size to almost two pages
Now that trace_marker can hold more than 1KB string, and can write as much as the ring buffer can hold, the trace_seq is not big enough to hold writes: ~# a="1234567890" ~# cnt=4080 ~# s="" ~# while [ $cnt -gt 10 ]; do ~# s="${s}${a}" ~# cnt=$((cnt-10)) ~# done ~# echo $s > trace_marker ~# cat trace # tracer: nop # # entries-in-buffer/entries-written: 2/2 #P:8 # # _-----=> irqs-off/BH-disabled # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / _-=> migrate-disable # |||| / delay # TASK-PID CPU# ||||| TIMESTAMP FUNCTION # | | | ||||| | | <...>-860 [002] ..... 105.543465: tracing_mark_write[LINE TOO BIG] <...>-860 [002] ..... 105.543496: tracing_mark_write: 789012345678901234567890 By increasing the trace_seq buffer to almost two pages, it can now print out the first line. This also subtracts the rest of the trace_seq fields from the buffer, so that the entire trace_seq is now PAGE_SIZE aligned. Link: https://lore.kernel.org/linux-trace-kernel/20231209175220.19867af4@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
8ec90be7f1 |
tracing: Allow for max buffer data size trace_marker writes
Allow a trace write to be as big as the ring buffer tracing data will allow. Currently, it only allows writes of 1KB in size, but there's no reason that it cannot allow what the ring buffer can hold. Link: https://lore.kernel.org/linux-trace-kernel/20231212131901.5f501e72@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
d23569979c |
tracing: Allow creating instances with specified system events
A trace instance may only need to enable specific events. As the eventfs directory of an instance currently creates all events which adds overhead, allow internal instances to be created with just the events in systems that they care about. This currently only deals with systems and not individual events, but this should bring down the overhead of creating instances for specific use cases quite bit. The trace_array_get_by_name() now has another parameter "systems". This parameter is a const string pointer of a comma/space separated list of event systems that should be created by the trace_array. (Note if the trace_array already exists, this parameter is ignored). The list of systems is saved and if a module is loaded, its events will not be added unless the system for those events also match the systems string. Link: https://lore.kernel.org/linux-trace-kernel/20231213093701.03fddec0@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Sean Paul <seanpaul@chromium.org> Cc: Arun Easi <aeasi@marvell.com> Cc: Daniel Wagner <dwagner@suse.de> Tested-by: Dmytro Maluka <dmaluka@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
1cc111b9cd |
tracing: Fix uaf issue when open the hist or hist_debug file
KASAN report following issue. The root cause is when opening 'hist' file of an instance and accessing 'trace_event_file' in hist_show(), but 'trace_event_file' has been freed due to the instance being removed. 'hist_debug' file has the same problem. To fix it, call tracing_{open,release}_file_tr() in file_operations callback to have the ref count and avoid 'trace_event_file' being freed. BUG: KASAN: slab-use-after-free in hist_show+0x11e0/0x1278 Read of size 8 at addr ffff242541e336b8 by task head/190 CPU: 4 PID: 190 Comm: head Not tainted 6.7.0-rc5-g26aff849438c #133 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0x98/0xf8 show_stack+0x1c/0x30 dump_stack_lvl+0x44/0x58 print_report+0xf0/0x5a0 kasan_report+0x80/0xc0 __asan_report_load8_noabort+0x1c/0x28 hist_show+0x11e0/0x1278 seq_read_iter+0x344/0xd78 seq_read+0x128/0x1c0 vfs_read+0x198/0x6c8 ksys_read+0xf4/0x1e0 __arm64_sys_read+0x70/0xa8 invoke_syscall+0x70/0x260 el0_svc_common.constprop.0+0xb0/0x280 do_el0_svc+0x44/0x60 el0_svc+0x34/0x68 el0t_64_sync_handler+0xb8/0xc0 el0t_64_sync+0x168/0x170 Allocated by task 188: kasan_save_stack+0x28/0x50 kasan_set_track+0x28/0x38 kasan_save_alloc_info+0x20/0x30 __kasan_slab_alloc+0x6c/0x80 kmem_cache_alloc+0x15c/0x4a8 trace_create_new_event+0x84/0x348 __trace_add_new_event+0x18/0x88 event_trace_add_tracer+0xc4/0x1a0 trace_array_create_dir+0x6c/0x100 trace_array_create+0x2e8/0x568 instance_mkdir+0x48/0x80 tracefs_syscall_mkdir+0x90/0xe8 vfs_mkdir+0x3c4/0x610 do_mkdirat+0x144/0x200 __arm64_sys_mkdirat+0x8c/0xc0 invoke_syscall+0x70/0x260 el0_svc_common.constprop.0+0xb0/0x280 do_el0_svc+0x44/0x60 el0_svc+0x34/0x68 el0t_64_sync_handler+0xb8/0xc0 el0t_64_sync+0x168/0x170 Freed by task 191: kasan_save_stack+0x28/0x50 kasan_set_track+0x28/0x38 kasan_save_free_info+0x34/0x58 __kasan_slab_free+0xe4/0x158 kmem_cache_free+0x19c/0x508 event_file_put+0xa0/0x120 remove_event_file_dir+0x180/0x320 event_trace_del_tracer+0xb0/0x180 __remove_instance+0x224/0x508 instance_rmdir+0x44/0x78 tracefs_syscall_rmdir+0xbc/0x140 vfs_rmdir+0x1cc/0x4c8 do_rmdir+0x220/0x2b8 __arm64_sys_unlinkat+0xc0/0x100 invoke_syscall+0x70/0x260 el0_svc_common.constprop.0+0xb0/0x280 do_el0_svc+0x44/0x60 el0_svc+0x34/0x68 el0t_64_sync_handler+0xb8/0xc0 el0t_64_sync+0x168/0x170 Link: https://lore.kernel.org/linux-trace-kernel/20231214012153.676155-1-zhengyejian1@huawei.com Suggested-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
d06aff1cb1 |
tracing: Update snapshot buffer on resize if it is allocated
The snapshot buffer is to mimic the main buffer so that when a snapshot is
needed, the snapshot and main buffer are swapped. When the snapshot buffer
is allocated, it is set to the minimal size that the ring buffer may be at
and still functional. When it is allocated it becomes the same size as the
main ring buffer, and when the main ring buffer changes in size, it should
do.
Currently, the resize only updates the snapshot buffer if it's used by the
current tracer (ie. the preemptirqsoff tracer). But it needs to be updated
anytime it is allocated.
When changing the size of the main buffer, instead of looking to see if
the current tracer is utilizing the snapshot buffer, just check if it is
allocated to know if it should be updated or not.
Also fix typo in comment just above the code change.
Link: https://lore.kernel.org/linux-trace-kernel/20231210225447.48476a6a@rorschach.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes:
|
||
![]() |
b55b0a0d7c |
tracing: Have large events show up as '[LINE TOO BIG]' instead of nothing
If a large event was added to the ring buffer that is larger than what the trace_seq can handle, it just drops the output: ~# cat /sys/kernel/tracing/trace # tracer: nop # # entries-in-buffer/entries-written: 2/2 #P:8 # # _-----=> irqs-off/BH-disabled # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / _-=> migrate-disable # |||| / delay # TASK-PID CPU# ||||| TIMESTAMP FUNCTION # | | | ||||| | | <...>-859 [001] ..... 141.118951: tracing_mark_write <...>-859 [001] ..... 141.148201: tracing_mark_write: 78901234 Instead, catch this case and add some context: ~# cat /sys/kernel/tracing/trace # tracer: nop # # entries-in-buffer/entries-written: 2/2 #P:8 # # _-----=> irqs-off/BH-disabled # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / _-=> migrate-disable # |||| / delay # TASK-PID CPU# ||||| TIMESTAMP FUNCTION # | | | ||||| | | <...>-852 [001] ..... 121.550551: tracing_mark_write[LINE TOO BIG] <...>-852 [001] ..... 121.550581: tracing_mark_write: 78901234 This now emulates the same output as trace_pipe. Link: https://lore.kernel.org/linux-trace-kernel/20231209171058.78c1a026@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
c0591b1ccc |
tracing: Fix a possible race when disabling buffered events
Function trace_buffered_event_disable() is responsible for freeing pages
backing buffered events and this process can run concurrently with
trace_event_buffer_lock_reserve().
The following race is currently possible:
* Function trace_buffered_event_disable() is called on CPU 0. It
increments trace_buffered_event_cnt on each CPU and waits via
synchronize_rcu() for each user of trace_buffered_event to complete.
* After synchronize_rcu() is finished, function
trace_buffered_event_disable() has the exclusive access to
trace_buffered_event. All counters trace_buffered_event_cnt are at 1
and all pointers trace_buffered_event are still valid.
* At this point, on a different CPU 1, the execution reaches
trace_event_buffer_lock_reserve(). The function calls
preempt_disable_notrace() and only now enters an RCU read-side
critical section. The function proceeds and reads a still valid
pointer from trace_buffered_event[CPU1] into the local variable
"entry". However, it doesn't yet read trace_buffered_event_cnt[CPU1]
which happens later.
* Function trace_buffered_event_disable() continues. It frees
trace_buffered_event[CPU1] and decrements
trace_buffered_event_cnt[CPU1] back to 0.
* Function trace_event_buffer_lock_reserve() continues. It reads and
increments trace_buffered_event_cnt[CPU1] from 0 to 1. This makes it
believe that it can use the "entry" that it already obtained but the
pointer is now invalid and any access results in a use-after-free.
Fix the problem by making a second synchronize_rcu() call after all
trace_buffered_event values are set to NULL. This waits on all potential
users in trace_event_buffer_lock_reserve() that still read a previous
pointer from trace_buffered_event.
Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-4-petr.pavlu@suse.com
Cc: stable@vger.kernel.org
Fixes:
|
||
![]() |
34209fe83e |
tracing: Fix a warning when allocating buffered events fails
Function trace_buffered_event_disable() produces an unexpected warning
when the previous call to trace_buffered_event_enable() fails to
allocate pages for buffered events.
The situation can occur as follows:
* The counter trace_buffered_event_ref is at 0.
* The soft mode gets enabled for some event and
trace_buffered_event_enable() is called. The function increments
trace_buffered_event_ref to 1 and starts allocating event pages.
* The allocation fails for some page and trace_buffered_event_disable()
is called for cleanup.
* Function trace_buffered_event_disable() decrements
trace_buffered_event_ref back to 0, recognizes that it was the last
use of buffered events and frees all allocated pages.
* The control goes back to trace_buffered_event_enable() which returns.
The caller of trace_buffered_event_enable() has no information that
the function actually failed.
* Some time later, the soft mode is disabled for the same event.
Function trace_buffered_event_disable() is called. It warns on
"WARN_ON_ONCE(!trace_buffered_event_ref)" and returns.
Buffered events are just an optimization and can handle failures. Make
trace_buffered_event_enable() exit on the first failure and left any
cleanup later to when trace_buffered_event_disable() is called.
Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-3-petr.pavlu@suse.com
Fixes:
|
||
![]() |
7fed14f7ac |
tracing: Fix incomplete locking when disabling buffered events
The following warning appears when using buffered events: [ 203.556451] WARNING: CPU: 53 PID: 10220 at kernel/trace/ring_buffer.c:3912 ring_buffer_discard_commit+0x2eb/0x420 [...] [ 203.670690] CPU: 53 PID: 10220 Comm: stress-ng-sysin Tainted: G E 6.7.0-rc2-default #4 56e6d0fcf5581e6e51eaaecbdaec2a2338c80f3a [ 203.670704] Hardware name: Intel Corp. GROVEPORT/GROVEPORT, BIOS GVPRCRB1.86B.0016.D04.1705030402 05/03/2017 [ 203.670709] RIP: 0010:ring_buffer_discard_commit+0x2eb/0x420 [ 203.735721] Code: 4c 8b 4a 50 48 8b 42 48 49 39 c1 0f 84 b3 00 00 00 49 83 e8 01 75 b1 48 8b 42 10 f0 ff 40 08 0f 0b e9 fc fe ff ff f0 ff 47 08 <0f> 0b e9 77 fd ff ff 48 8b 42 10 f0 ff 40 08 0f 0b e9 f5 fe ff ff [ 203.735734] RSP: 0018:ffffb4ae4f7b7d80 EFLAGS: 00010202 [ 203.735745] RAX: 0000000000000000 RBX: ffffb4ae4f7b7de0 RCX: ffff8ac10662c000 [ 203.735754] RDX: ffff8ac0c750be00 RSI: ffff8ac10662c000 RDI: ffff8ac0c004d400 [ 203.781832] RBP: ffff8ac0c039cea0 R08: 0000000000000000 R09: 0000000000000000 [ 203.781839] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 [ 203.781842] R13: ffff8ac10662c000 R14: ffff8ac0c004d400 R15: ffff8ac10662c008 [ 203.781846] FS: 00007f4cd8a67740(0000) GS:ffff8ad798880000(0000) knlGS:0000000000000000 [ 203.781851] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 203.781855] CR2: 0000559766a74028 CR3: 00000001804c4000 CR4: 00000000001506f0 [ 203.781862] Call Trace: [ 203.781870] <TASK> [ 203.851949] trace_event_buffer_commit+0x1ea/0x250 [ 203.851967] trace_event_raw_event_sys_enter+0x83/0xe0 [ 203.851983] syscall_trace_enter.isra.0+0x182/0x1a0 [ 203.851990] do_syscall_64+0x3a/0xe0 [ 203.852075] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ 203.852090] RIP: 0033:0x7f4cd870fa77 [ 203.982920] Code: 00 b8 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 90 b8 89 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d e9 43 0e 00 f7 d8 64 89 01 48 [ 203.982932] RSP: 002b:00007fff99717dd8 EFLAGS: 00000246 ORIG_RAX: 0000000000000089 [ 203.982942] RAX: ffffffffffffffda RBX: 0000558ea1d7b6f0 RCX: 00007f4cd870fa77 [ 203.982948] RDX: 0000000000000000 RSI: 00007fff99717de0 RDI: 0000558ea1d7b6f0 [ 203.982957] RBP: 00007fff99717de0 R08: 00007fff997180e0 R09: 00007fff997180e0 [ 203.982962] R10: 00007fff997180e0 R11: 0000000000000246 R12: 00007fff99717f40 [ 204.049239] R13: 00007fff99718590 R14: 0000558e9f2127a8 R15: 00007fff997180b0 [ 204.049256] </TASK> For instance, it can be triggered by running these two commands in parallel: $ while true; do echo hist:key=id.syscall:val=hitcount > \ /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger; done $ stress-ng --sysinfo $(nproc) The warning indicates that the current ring_buffer_per_cpu is not in the committing state. It happens because the active ring_buffer_event doesn't actually come from the ring_buffer_per_cpu but is allocated from trace_buffered_event. The bug is in function trace_buffered_event_disable() where the following normally happens: * The code invokes disable_trace_buffered_event() via smp_call_function_many() and follows it by synchronize_rcu(). This increments the per-CPU variable trace_buffered_event_cnt on each target CPU and grants trace_buffered_event_disable() the exclusive access to the per-CPU variable trace_buffered_event. * Maintenance is performed on trace_buffered_event, all per-CPU event buffers get freed. * The code invokes enable_trace_buffered_event() via smp_call_function_many(). This decrements trace_buffered_event_cnt and releases the access to trace_buffered_event. A problem is that smp_call_function_many() runs a given function on all target CPUs except on the current one. The following can then occur: * Task X executing trace_buffered_event_disable() runs on CPU 0. * The control reaches synchronize_rcu() and the task gets rescheduled on another CPU 1. * The RCU synchronization finishes. At this point, trace_buffered_event_disable() has the exclusive access to all trace_buffered_event variables except trace_buffered_event[CPU0] because trace_buffered_event_cnt[CPU0] is never incremented and if the buffer is currently unused, remains set to 0. * A different task Y is scheduled on CPU 0 and hits a trace event. The code in trace_event_buffer_lock_reserve() sees that trace_buffered_event_cnt[CPU0] is set to 0 and decides the use the buffer provided by trace_buffered_event[CPU0]. * Task X continues its execution in trace_buffered_event_disable(). The code incorrectly frees the event buffer pointed by trace_buffered_event[CPU0] and resets the variable to NULL. * Task Y writes event data to the now freed buffer and later detects the created inconsistency. The issue is observable since commit |
||
![]() |
b538bf7d0e |
tracing: Disable snapshot buffer when stopping instance tracers
It use to be that only the top level instance had a snapshot buffer (for
latency tracers like wakeup and irqsoff). When stopping a tracer in an
instance would not disable the snapshot buffer. This could have some
unintended consequences if the irqsoff tracer is enabled.
Consolidate the tracing_start/stop() with tracing_start/stop_tr() so that
all instances behave the same. The tracing_start/stop() functions will
just call their respective tracing_start/stop_tr() with the global_array
passed in.
Link: https://lkml.kernel.org/r/20231205220011.041220035@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes:
|
||
![]() |
d78ab79270 |
tracing: Stop current tracer when resizing buffer
When the ring buffer is being resized, it can cause side effects to the
running tracer. For instance, there's a race with irqsoff tracer that
swaps individual per cpu buffers between the main buffer and the snapshot
buffer. The resize operation modifies the main buffer and then the
snapshot buffer. If a swap happens in between those two operations it will
break the tracer.
Simply stop the running tracer before resizing the buffers and enable it
again when finished.
Link: https://lkml.kernel.org/r/20231205220010.748996423@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes:
|
||
![]() |
7be76461f3 |
tracing: Always update snapshot buffer size
It use to be that only the top level instance had a snapshot buffer (for
latency tracers like wakeup and irqsoff). The update of the ring buffer
size would check if the instance was the top level and if so, it would
also update the snapshot buffer as it needs to be the same as the main
buffer.
Now that lower level instances also has a snapshot buffer, they too need
to update their snapshot buffer sizes when the main buffer is changed,
otherwise the following can be triggered:
# cd /sys/kernel/tracing
# echo 1500 > buffer_size_kb
# mkdir instances/foo
# echo irqsoff > instances/foo/current_tracer
# echo 1000 > instances/foo/buffer_size_kb
Produces:
WARNING: CPU: 2 PID: 856 at kernel/trace/trace.c:1938 update_max_tr_single.part.0+0x27d/0x320
Which is:
ret = ring_buffer_swap_cpu(tr->max_buffer.buffer, tr->array_buffer.buffer, cpu);
if (ret == -EBUSY) {
[..]
}
WARN_ON_ONCE(ret && ret != -EAGAIN && ret != -EBUSY); <== here
That's because ring_buffer_swap_cpu() has:
int ret = -EINVAL;
[..]
/* At least make sure the two buffers are somewhat the same */
if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
goto out;
[..]
out:
return ret;
}
Instead, update all instances' snapshot buffer sizes when their main
buffer size is updated.
Link: https://lkml.kernel.org/r/20231205220010.454662151@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes:
|
||
![]() |
bb32500fb9 |
tracing: Have trace_event_file have ref counters
The following can crash the kernel:
# cd /sys/kernel/tracing
# echo 'p:sched schedule' > kprobe_events
# exec 5>>events/kprobes/sched/enable
# > kprobe_events
# exec 5>&-
The above commands:
1. Change directory to the tracefs directory
2. Create a kprobe event (doesn't matter what one)
3. Open bash file descriptor 5 on the enable file of the kprobe event
4. Delete the kprobe event (removes the files too)
5. Close the bash file descriptor 5
The above causes a crash!
BUG: kernel NULL pointer dereference, address: 0000000000000028
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 6 PID: 877 Comm: bash Not tainted 6.5.0-rc4-test-00008-g2c6b6b1029d4-dirty #186
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
RIP: 0010:tracing_release_file_tr+0xc/0x50
What happens here is that the kprobe event creates a trace_event_file
"file" descriptor that represents the file in tracefs to the event. It
maintains state of the event (is it enabled for the given instance?).
Opening the "enable" file gets a reference to the event "file" descriptor
via the open file descriptor. When the kprobe event is deleted, the file is
also deleted from the tracefs system which also frees the event "file"
descriptor.
But as the tracefs file is still opened by user space, it will not be
totally removed until the final dput() is called on it. But this is not
true with the event "file" descriptor that is already freed. If the user
does a write to or simply closes the file descriptor it will reference the
event "file" descriptor that was just freed, causing a use-after-free bug.
To solve this, add a ref count to the event "file" descriptor as well as a
new flag called "FREED". The "file" will not be freed until the last
reference is released. But the FREE flag will be set when the event is
removed to prevent any more modifications to that event from happening,
even if there's still a reference to the event "file" descriptor.
Link: https://lore.kernel.org/linux-trace-kernel/20231031000031.1e705592@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20231031122453.7a48b923@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Fixes:
|
||
![]() |
dcc4e5728e |
seq_buf: Introduce DECLARE_SEQ_BUF and seq_buf_str()
Solve two ergonomic issues with struct seq_buf; 1) Too much boilerplate is required to initialize: struct seq_buf s; char buf[32]; seq_buf_init(s, buf, sizeof(buf)); Instead, we can build this directly on the stack. Provide DECLARE_SEQ_BUF() macro to do this: DECLARE_SEQ_BUF(s, 32); 2) %NUL termination is fragile and requires 2 steps to get a valid C String (and is a layering violation exposing the "internals" of seq_buf): seq_buf_terminate(s); do_something(s->buffer); Instead, we can just return s->buffer directly after terminating it in the refactored seq_buf_terminate(), now known as seq_buf_str(): do_something(seq_buf_str(s)); Link: https://lore.kernel.org/linux-trace-kernel/20231027155634.make.260-kees@kernel.org Link: https://lore.kernel.org/linux-trace-kernel/20231026194033.it.702-kees@kernel.org/ Cc: Yosry Ahmed <yosryahmed@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Justin Stitt <justinstitt@google.com> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Petr Mladek <pmladek@suse.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Yun Zhou <yun.zhou@windriver.com> Cc: Jacob Keller <jacob.e.keller@intel.com> Cc: Zhen Lei <thunder.leizhen@huawei.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
d0ed46b603 |
tracing: Move readpos from seq_buf to trace_seq
To make seq_buf more lightweight as a string buf, move the readpos member from seq_buf to its container, trace_seq. That puts the responsibility of maintaining the readpos entirely in the tracing code. If some future users want to package up the readpos with a seq_buf, we can define a new struct then. Link: https://lore.kernel.org/linux-trace-kernel/20231020033545.2587554-2-willy@infradead.org Cc: Kees Cook <keescook@chromium.org> Cc: Justin Stitt <justinstitt@google.com> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Petr Mladek <pmladek@suse.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
5790b1fb3d |
eventfs: Remove eventfs_file and just use eventfs_inode
Instead of having a descriptor for every file represented in the eventfs directory, only have the directory itself represented. Change the API to send in a list of entries that represent all the files in the directory (but not other directories). The entry list contains a name and a callback function that will be used to create the files when they are accessed. struct eventfs_inode *eventfs_create_events_dir(const char *name, struct dentry *parent, const struct eventfs_entry *entries, int size, void *data); is used for the top level eventfs directory, and returns an eventfs_inode that will be used by: struct eventfs_inode *eventfs_create_dir(const char *name, struct eventfs_inode *parent, const struct eventfs_entry *entries, int size, void *data); where both of the above take an array of struct eventfs_entry entries for every file that is in the directory. The entries are defined by: typedef int (*eventfs_callback)(const char *name, umode_t *mode, void **data, const struct file_operations **fops); struct eventfs_entry { const char *name; eventfs_callback callback; }; Where the name is the name of the file and the callback gets called when the file is being created. The callback passes in the name (in case the same callback is used for multiple files), a pointer to the mode, data and fops. The data will be pointing to the data that was passed in eventfs_create_dir() or eventfs_create_events_dir() but may be overridden to point to something else, as it will be used to point to the inode->i_private that is created. The information passed back from the callback is used to create the dentry/inode. If the callback fills the data and the file should be created, it must return a positive number. On zero or negative, the file is ignored. This logic may also be used as a prototype to convert entire pseudo file systems into just-in-time allocation. The "show_events_dentry" file has been updated to show the directories, and any files they have. With just the eventfs_file allocations: Before after deltas for meminfo (in kB): MemFree: -14360 MemAvailable: -14260 Buffers: 40 Cached: 24 Active: 44 Inactive: 48 Inactive(anon): 28 Active(file): 44 Inactive(file): 20 Dirty: -4 AnonPages: 28 Mapped: 4 KReclaimable: 132 Slab: 1604 SReclaimable: 132 SUnreclaim: 1472 Committed_AS: 12 Before after deltas for slabinfo: <slab>: <objects> [ * <size> = <total>] ext4_inode_cache 27 [* 1184 = 31968 ] extent_status 102 [* 40 = 4080 ] tracefs_inode_cache 144 [* 656 = 94464 ] buffer_head 39 [* 104 = 4056 ] shmem_inode_cache 49 [* 800 = 39200 ] filp -53 [* 256 = -13568 ] dentry 251 [* 192 = 48192 ] lsm_file_cache 277 [* 32 = 8864 ] vm_area_struct -14 [* 184 = -2576 ] trace_event_file 1748 [* 88 = 153824 ] kmalloc-1k 35 [* 1024 = 35840 ] kmalloc-256 49 [* 256 = 12544 ] kmalloc-192 -28 [* 192 = -5376 ] kmalloc-128 -30 [* 128 = -3840 ] kmalloc-96 10581 [* 96 = 1015776 ] kmalloc-64 3056 [* 64 = 195584 ] kmalloc-32 1291 [* 32 = 41312 ] kmalloc-16 2310 [* 16 = 36960 ] kmalloc-8 9216 [* 8 = 73728 ] Free memory dropped by 14,360 kB Available memory dropped by 14,260 kB Total slab additions in size: 1,771,032 bytes With this change: Before after deltas for meminfo (in kB): MemFree: -12084 MemAvailable: -11976 Buffers: 32 Cached: 32 Active: 72 Inactive: 168 Inactive(anon): 176 Active(file): 72 Inactive(file): -8 Dirty: 24 AnonPages: 196 Mapped: 8 KReclaimable: 148 Slab: 836 SReclaimable: 148 SUnreclaim: 688 Committed_AS: 324 Before after deltas for slabinfo: <slab>: <objects> [ * <size> = <total>] tracefs_inode_cache 144 [* 656 = 94464 ] shmem_inode_cache -23 [* 800 = -18400 ] filp -92 [* 256 = -23552 ] dentry 179 [* 192 = 34368 ] lsm_file_cache -3 [* 32 = -96 ] vm_area_struct -13 [* 184 = -2392 ] trace_event_file 1748 [* 88 = 153824 ] kmalloc-1k -49 [* 1024 = -50176 ] kmalloc-256 -27 [* 256 = -6912 ] kmalloc-128 1864 [* 128 = 238592 ] kmalloc-64 4685 [* 64 = 299840 ] kmalloc-32 -72 [* 32 = -2304 ] kmalloc-16 256 [* 16 = 4096 ] total = 721352 Free memory dropped by 12,084 kB Available memory dropped by 11,976 kB Total slab additions in size: 721,352 bytes That's over 2 MB in savings per instance for free and available memory, and over 1 MB in savings per instance of slab memory. Link: https://lore.kernel.org/linux-trace-kernel/20231003184059.4924468e@gandalf.local.home Link: https://lore.kernel.org/linux-trace-kernel/20231004165007.43d79161@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ajay Kaher <akaher@vmware.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
a1f157c7a3 |
tracing: Expand all ring buffers individually
The ring buffer of global_trace is set to the minimum size in order to save memory on boot up and then it will be expand when some trace feature enabled. However currently operations under an instance can also cause global_trace ring buffer being expanded, and the expanded memory would be wasted if global_trace then not being used. See following case, we enable 'sched_switch' event in instance 'A', then ring buffer of global_trace is unexpectedly expanded to be 1410KB, also the '(expanded: 1408)' from 'buffer_size_kb' of instance is confusing. # cd /sys/kernel/tracing # mkdir instances/A # cat buffer_size_kb 7 (expanded: 1408) # cat instances/A/buffer_size_kb 1410 (expanded: 1408) # echo sched:sched_switch > instances/A/set_event # cat buffer_size_kb 1410 # cat instances/A/buffer_size_kb 1410 To fix it, we can: - Make 'ring_buffer_expanded' as a member of 'struct trace_array'; - Make 'ring_buffer_expanded' of instance is defaultly true, global_trace is defaultly false; - In order not to expose 'global_trace' outside of file 'kernel/trace/trace.c', introduce trace_set_ring_buffer_expanded() to set 'ring_buffer_expanded' as 'true'; - Pass the expected trace_array to tracing_update_buffers(). Link: https://lore.kernel.org/linux-trace-kernel/20230906091837.3998020-1-zhengyejian1@huawei.com Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
99214f6778 |
Tracing fixes for 6.6:
- Add missing LOCKDOWN checks for eventfs callers When LOCKDOWN is active for tracing, it causes inconsistent state when some functions succeed and others fail. - Use dput() to free the top level eventfs descriptor There was a race between accesses and freeing it. - Fix a long standing bug that eventfs exposed due to changing timings by dynamically creating files. That is, If a event file is opened for an instance, there's nothing preventing the instance from being removed which will make accessing the files cause use-after-free bugs. - Fix a ring buffer race that happens when iterating over the ring buffer while writers are active. Check to make sure not to read the event meta data if it's beyond the end of the ring buffer sub buffer. - Fix the print trigger that disappeared because the test to create it was looking for the event dir field being filled, but now it has the "ef" field filled for the eventfs structure. - Remove the unused "dir" field from the event structure. - Fix the order of the trace_dynamic_info as it had it backwards for the offset and len fields for which one was for which endianess. - Fix NULL pointer dereference with eventfs_remove_rec() If an allocation fails in one of the eventfs_add_*() functions, the caller of it in event_subsystem_dir() or event_create_dir() assigns the result to the structure. But it's assigning the ERR_PTR and not NULL. This was passed to eventfs_remove_rec() which expects either a good pointer or a NULL, not ERR_PTR. The fix is to not assign the ERR_PTR to the structure, but to keep it NULL on error. - Fix list_for_each_rcu() to use list_for_each_srcu() in dcache_dir_open_wrapper(). One iteration of the code used RCU but because it had to call sleepable code, it had to be changed to use SRCU, but one of the iterations was missed. - Fix synthetic event print function to use "as_u64" instead of passing in a pointer to the union. To fix big/little endian issues, the u64 that represented several types was turned into a union to define the types properly. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZQCvoBQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qtgrAP9MiYiCMU+90oJ+61DFchbs3y7BNidP s3lLRDUMJ935NQD/SSAm54PqWb+YXMpD7m9+3781l6xqwfabBMXNaEl+FwA= =tlZu -----END PGP SIGNATURE----- Merge tag 'trace-v6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing fixes from Steven Rostedt: - Add missing LOCKDOWN checks for eventfs callers When LOCKDOWN is active for tracing, it causes inconsistent state when some functions succeed and others fail. - Use dput() to free the top level eventfs descriptor There was a race between accesses and freeing it. - Fix a long standing bug that eventfs exposed due to changing timings by dynamically creating files. That is, If a event file is opened for an instance, there's nothing preventing the instance from being removed which will make accessing the files cause use-after-free bugs. - Fix a ring buffer race that happens when iterating over the ring buffer while writers are active. Check to make sure not to read the event meta data if it's beyond the end of the ring buffer sub buffer. - Fix the print trigger that disappeared because the test to create it was looking for the event dir field being filled, but now it has the "ef" field filled for the eventfs structure. - Remove the unused "dir" field from the event structure. - Fix the order of the trace_dynamic_info as it had it backwards for the offset and len fields for which one was for which endianess. - Fix NULL pointer dereference with eventfs_remove_rec() If an allocation fails in one of the eventfs_add_*() functions, the caller of it in event_subsystem_dir() or event_create_dir() assigns the result to the structure. But it's assigning the ERR_PTR and not NULL. This was passed to eventfs_remove_rec() which expects either a good pointer or a NULL, not ERR_PTR. The fix is to not assign the ERR_PTR to the structure, but to keep it NULL on error. - Fix list_for_each_rcu() to use list_for_each_srcu() in dcache_dir_open_wrapper(). One iteration of the code used RCU but because it had to call sleepable code, it had to be changed to use SRCU, but one of the iterations was missed. - Fix synthetic event print function to use "as_u64" instead of passing in a pointer to the union. To fix big/little endian issues, the u64 that represented several types was turned into a union to define the types properly. * tag 'trace-v6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: eventfs: Fix the NULL pointer dereference bug in eventfs_remove_rec() tracefs/eventfs: Use list_for_each_srcu() in dcache_dir_open_wrapper() tracing/synthetic: Print out u64 values properly tracing/synthetic: Fix order of struct trace_dynamic_info selftests/ftrace: Fix dependencies for some of the synthetic event tests tracing: Remove unused trace_event_file dir field tracing: Use the new eventfs descriptor for print trigger ring-buffer: Do not attempt to read past "commit" tracefs/eventfs: Free top level files on removal ring-buffer: Avoid softlockup in ring_buffer_resize() tracing: Have event inject files inc the trace array ref count tracing: Have option files inc the trace array ref count tracing: Have current_trace inc the trace array ref count tracing: Have tracing_max_latency inc the trace array ref count tracing: Increase trace array ref count on enable and filter files tracefs/eventfs: Use dput to free the toplevel events directory tracefs/eventfs: Add missing lockdown checks tracefs: Add missing lockdown check to tracefs_create_dir() |
||
![]() |
1ef26d8b2c |
tracing: Use the new eventfs descriptor for print trigger
The check to create the print event "trigger" was using the obsolete "dir"
value of the trace_event_file to determine if it should create the trigger
or not. But that value will now be NULL because it uses the event file
descriptor.
Change it to test the "ef" field of the trace_event_file structure so that
the trace_marker "trigger" file appears again.
Link: https://lkml.kernel.org/r/20230908022001.371815239@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ajay Kaher <akaher@vmware.com>
Fixes:
|
||
![]() |
7e2cfbd2d3 |
tracing: Have option files inc the trace array ref count
The option files update the options for a given trace array. For an
instance, if the file is opened and the instance is deleted, reading or
writing to the file will cause a use after free.
Up the ref count of the trace_array when an option file is opened.
Link: https://lkml.kernel.org/r/20230907024804.086679464@goodmis.org
Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Zheng Yejian <zhengyejian1@huawei.com>
Fixes:
|
||
![]() |
9b37febc57 |
tracing: Have current_trace inc the trace array ref count
The current_trace updates the trace array tracer. For an instance, if the
file is opened and the instance is deleted, reading or writing to the file
will cause a use after free.
Up the ref count of the trace array when current_trace is opened.
Link: https://lkml.kernel.org/r/20230907024803.877687227@goodmis.org
Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Zheng Yejian <zhengyejian1@huawei.com>
Fixes:
|
||
![]() |
7d660c9b2b |
tracing: Have tracing_max_latency inc the trace array ref count
The tracing_max_latency file points to the trace_array max_latency field.
For an instance, if the file is opened and the instance is deleted,
reading or writing to the file will cause a use after free.
Up the ref count of the trace_array when tracing_max_latency is opened.
Link: https://lkml.kernel.org/r/20230907024803.666889383@goodmis.org
Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Zheng Yejian <zhengyejian1@huawei.com>
Fixes:
|
||
![]() |
f5ca233e2e |
tracing: Increase trace array ref count on enable and filter files
When the trace event enable and filter files are opened, increment the
trace array ref counter, otherwise they can be accessed when the trace
array is being deleted. The ref counter keeps the trace array from being
deleted while those files are opened.
Link: https://lkml.kernel.org/r/20230907024803.456187066@goodmis.org
Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes:
|
||
![]() |
b70100f2e6 |
Probes updates for v6.6:
- kprobes: use struct_size() for variable size kretprobe_instance data structure. - eprobe: Simplify trace_eprobe list iteration. - probe events: Data structure field access support on BTF argument. . Update BTF argument support on the functions in the kernel loadable modules (only loaded modules are supported). . Move generic BTF access function (search function prototype and get function parameters) to a separated file. . Add a function to search a member of data structure in BTF. . Support accessing BTF data structure member from probe args by C-like arrow('->') and dot('.') operators. e.g. 't sched_switch next=next->pid vruntime=next->se.vruntime' . Support accessing BTF data structure member from $retval. e.g. 'f getname_flags%return +0($retval->name):string' . Add string type checking if BTF type info is available. This will reject if user specify ":string" type for non "char pointer" type. . Automatically assume the fprobe event as a function return event if $retval is used. - selftests/ftrace: Add BTF data field access test cases. - Documentation: Update fprobe event example with BTF data field. -----BEGIN PGP SIGNATURE----- iQFPBAABCgA5FiEEh7BulGwFlgAOi5DV2/sHvwUrPxsFAmTycQkbHG1hc2FtaS5o aXJhbWF0c3VAZ21haWwuY29tAAoJENv7B78FKz8bqS8H/jeR1JhOzIXOvTw7XCFm MrSY/SKi8tQfV6lau2UmoYdbYvYjpqL34XLOQPNf2/lrcL2M9aNYXk9fbhlW8enx vkMyKQ0E5anixkF4vsTbEl9DaprxbpsPVACmZ/7VjQk2JuXIdyaNk8hno9LgIcEq udztb0o2HmDFqAXfRi0LvlSTAIwvXZ+usmEvYpaq1g2WwrCe7NHEYl42vMpj+h4H 9l4t5rA9JyPPX4yQUjtKGW5eRVTwDTm/Gn6DRzYfYzkkiBZv27qfovzBOt672LgG hyot+u7XeKvZx3jjnF7+mRWoH/m0dqyhyi/nPhpIE09VhgwclrbGAcDuR1x6sp01 PHY= =hBDN -----END PGP SIGNATURE----- Merge tag 'probes-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull probes updates from Masami Hiramatsu: - kprobes: use struct_size() for variable size kretprobe_instance data structure. - eprobe: Simplify trace_eprobe list iteration. - probe events: Data structure field access support on BTF argument. - Update BTF argument support on the functions in the kernel loadable modules (only loaded modules are supported). - Move generic BTF access function (search function prototype and get function parameters) to a separated file. - Add a function to search a member of data structure in BTF. - Support accessing BTF data structure member from probe args by C-like arrow('->') and dot('.') operators. e.g. 't sched_switch next=next->pid vruntime=next->se.vruntime' - Support accessing BTF data structure member from $retval. e.g. 'f getname_flags%return +0($retval->name):string' - Add string type checking if BTF type info is available. This will reject if user specify ":string" type for non "char pointer" type. - Automatically assume the fprobe event as a function return event if $retval is used. - selftests/ftrace: Add BTF data field access test cases. - Documentation: Update fprobe event example with BTF data field. * tag 'probes-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: Documentation: tracing: Update fprobe event example with BTF field selftests/ftrace: Add BTF fields access testcases tracing/fprobe-event: Assume fprobe is a return event by $retval tracing/probes: Add string type check with BTF tracing/probes: Support BTF field access from $retval tracing/probes: Support BTF based data structure field access tracing/probes: Add a function to search a member of a struct/union tracing/probes: Move finding func-proto API and getting func-param API to trace_btf tracing/probes: Support BTF argument on module functions tracing/eprobe: Iterate trace_eprobe directly kernel: kprobes: Use struct_size() |
||
![]() |
3d07fa1dd1 |
tracing: Zero the pipe cpumask on alloc to avoid spurious -EBUSY
The pipe cpumask used to serialize opens between the main and percpu
trace pipes is not zeroed or initialized. This can result in
spurious -EBUSY returns if underlying memory is not fully zeroed.
This has been observed by immediate failure to read the main
trace_pipe file on an otherwise newly booted and idle system:
# cat /sys/kernel/debug/tracing/trace_pipe
cat: /sys/kernel/debug/tracing/trace_pipe: Device or resource busy
Zero the allocation of pipe_cpumask to avoid the problem.
Link: https://lore.kernel.org/linux-trace-kernel/20230831125500.986862-1-bfoster@redhat.com
Cc: stable@vger.kernel.org
Fixes:
|
||
![]() |
3163f635b2 |
tracing: Fix race issue between cpu buffer write and swap
Warning happened in rb_end_commit() at code:
if (RB_WARN_ON(cpu_buffer, !local_read(&cpu_buffer->committing)))
WARNING: CPU: 0 PID: 139 at kernel/trace/ring_buffer.c:3142
rb_commit+0x402/0x4a0
Call Trace:
ring_buffer_unlock_commit+0x42/0x250
trace_buffer_unlock_commit_regs+0x3b/0x250
trace_event_buffer_commit+0xe5/0x440
trace_event_buffer_reserve+0x11c/0x150
trace_event_raw_event_sched_switch+0x23c/0x2c0
__traceiter_sched_switch+0x59/0x80
__schedule+0x72b/0x1580
schedule+0x92/0x120
worker_thread+0xa0/0x6f0
It is because the race between writing event into cpu buffer and swapping
cpu buffer through file per_cpu/cpu0/snapshot:
Write on CPU 0 Swap buffer by per_cpu/cpu0/snapshot on CPU 1
-------- --------
tracing_snapshot_write()
[...]
ring_buffer_lock_reserve()
cpu_buffer = buffer->buffers[cpu]; // 1. Suppose find 'cpu_buffer_a';
[...]
rb_reserve_next_event()
[...]
ring_buffer_swap_cpu()
if (local_read(&cpu_buffer_a->committing))
goto out_dec;
if (local_read(&cpu_buffer_b->committing))
goto out_dec;
buffer_a->buffers[cpu] = cpu_buffer_b;
buffer_b->buffers[cpu] = cpu_buffer_a;
// 2. cpu_buffer has swapped here.
rb_start_commit(cpu_buffer);
if (unlikely(READ_ONCE(cpu_buffer->buffer)
!= buffer)) { // 3. This check passed due to 'cpu_buffer->buffer'
[...] // has not changed here.
return NULL;
}
cpu_buffer_b->buffer = buffer_a;
cpu_buffer_a->buffer = buffer_b;
[...]
// 4. Reserve event from 'cpu_buffer_a'.
ring_buffer_unlock_commit()
[...]
cpu_buffer = buffer->buffers[cpu]; // 5. Now find 'cpu_buffer_b' !!!
rb_commit(cpu_buffer)
rb_end_commit() // 6. WARN for the wrong 'committing' state !!!
Based on above analysis, we can easily reproduce by following testcase:
``` bash
#!/bin/bash
dmesg -n 7
sysctl -w kernel.panic_on_warn=1
TR=/sys/kernel/tracing
echo 7 > ${TR}/buffer_size_kb
echo "sched:sched_switch" > ${TR}/set_event
while [ true ]; do
echo 1 > ${TR}/per_cpu/cpu0/snapshot
done &
while [ true ]; do
echo 1 > ${TR}/per_cpu/cpu0/snapshot
done &
while [ true ]; do
echo 1 > ${TR}/per_cpu/cpu0/snapshot
done &
```
To fix it, IIUC, we can use smp_call_function_single() to do the swap on
the target cpu where the buffer is located, so that above race would be
avoided.
Link: https://lore.kernel.org/linux-trace-kernel/20230831132739.4070878-1-zhengyejian1@huawei.com
Cc: <mhiramat@kernel.org>
Fixes:
|
||
![]() |
34232fcfe9 |
Tracing updates for 6.6:
User visible changes: - Added a way to easier filter with cpumasks: # echo 'cpumask & CPUS{17-42}' > /sys/kernel/tracing/events/ipi_send_cpumask/filter - Show actual size of ring buffer after modifying the ring buffer size via buffer_size_kb. Currently it just returns what was written, but the actual size rounds up to the sub buffer size. Show that real size instead. Major changes: - Added "eventfs". This is the code that handles the inodes and dentries of tracefs/events directory. As there are thousands of events, and each event has several inodes and dentries that currently exist even when tracing is never used, they take up precious memory. Instead, eventfs will allocate the inodes and dentries in a JIT way (similar to what procfs does). There is now metadata that handles the events and subdirectories, and will create the inodes and dentries when they are used. Note, I also have patches that remove the subdirectory meta data, but will wait till the next merge window before applying them. It's a little more complex, and I want to make sure the dynamic code works properly before adding more complexity, making it easier to revert if need be. Minor changes: - Optimization to user event list traversal. - Remove intermediate permission of tracefs files (note the intermediate permission removes all access to the files so it is not a security concern, but just a clean up.) - Add the complex fix to FORTIFY_SOURCE to the kernel stack event logic. - Other minor clean ups. -----BEGIN PGP SIGNATURE----- iQJIBAABCgAyFiEEXtmkj8VMCiLR0IBM68Js21pW3nMFAmTwtAsUHHJvc3RlZHRA Z29vZG1pcy5vcmcACgkQ68Js21pW3nNOXRAAsslQT6alY4OeplC4x47+V6+6NiIA oDtOmWAqf7TsH9bukzRFD36rUly42O20RJDx9z0Q3iRc3vGxEawId8z6P0HmBwRb VSl5BryWvL5Wc5w94xS8EeCuC1MRfhVDyfbtVFmWigzfvd/f+hp71ViMPHUvrRJX KhzzNSBc4ir5E1lzfwa7meYTXzDwrQlZbYfdf5aH94IWAkqDj85PUZDJ7UmLZhXG CIglSpNFXZ0j19Wo/U6KZlHR1XfunBKungCzJ5Dbznc9YLWZTQXOIZF4YPKfPIJL ulRG9chwXY0nQWhG3xM1UHZLsAMSWw5i13a4ZN4d8FCNOgv8ttcJnfDk7ZYUS0Oz RmY1dGcSRKAZTUTjm8ZBtmyiUCc9kZAIk0fyEfIHtoDYXmhnvni3wuTnbRSdXaSi q4YkxPaLfX8Fn3QloCqqddt8iONu7BnbpZOhUCl2AtBib52gnTTF7+rQ6/0D3rjo SSuvEHhnjJhzk+3jM2odxjmTAztNT+yu6FbKXZUKPt1Kj9YHv1J9cEQw9/Etw+GV 8jQBe979D8hFJmDOJOT/O/TdPqE9mQoMNBt6Y8QnE4nbJWM+i/MBrThFpUSQhRCr 0Ya/HgR2QyRH7RmZW5o2H9mNtN+V9c7RxZW8erYzRbUs0YofK2OpGi9SrPzxWCke w6j0VVZHaxdPguM= =/s+e -----END PGP SIGNATURE----- Merge tag 'trace-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing updates from Steven Rostedt: "User visible changes: - Added a way to easier filter with cpumasks: # echo 'cpumask & CPUS{17-42}' > /sys/kernel/tracing/events/ipi_send_cpumask/filter - Show actual size of ring buffer after modifying the ring buffer size via buffer_size_kb. Currently it just returns what was written, but the actual size rounds up to the sub buffer size. Show that real size instead. Major changes: - Added "eventfs". This is the code that handles the inodes and dentries of tracefs/events directory. As there are thousands of events, and each event has several inodes and dentries that currently exist even when tracing is never used, they take up precious memory. Instead, eventfs will allocate the inodes and dentries in a JIT way (similar to what procfs does). There is now metadata that handles the events and subdirectories, and will create the inodes and dentries when they are used. Note, I also have patches that remove the subdirectory meta data, but will wait till the next merge window before applying them. It's a little more complex, and I want to make sure the dynamic code works properly before adding more complexity, making it easier to revert if need be. Minor changes: - Optimization to user event list traversal - Remove intermediate permission of tracefs files (note the intermediate permission removes all access to the files so it is not a security concern, but just a clean up) - Add the complex fix to FORTIFY_SOURCE to the kernel stack event logic - Other minor cleanups" * tag 'trace-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (29 commits) tracefs: Remove kerneldoc from struct eventfs_file tracefs: Avoid changing i_mode to a temp value tracing/user_events: Optimize safe list traversals ftrace: Remove empty declaration ftrace_enable_daemon() and ftrace_disable_daemon() tracing: Remove unused function declarations tracing/filters: Document cpumask filtering tracing/filters: Further optimise scalar vs cpumask comparison tracing/filters: Optimise CPU vs cpumask filtering when the user mask is a single CPU tracing/filters: Optimise scalar vs cpumask filtering when the user mask is a single CPU tracing/filters: Optimise cpumask vs cpumask filtering when user mask is a single CPU tracing/filters: Enable filtering the CPU common field by a cpumask tracing/filters: Enable filtering a scalar field by a cpumask tracing/filters: Enable filtering a cpumask field by another cpumask tracing/filters: Dynamically allocate filter_pred.regex test: ftrace: Fix kprobe test for eventfs eventfs: Move tracing/events to eventfs eventfs: Implement removal of meta data from eventfs eventfs: Implement functions to create files and dirs when accessed eventfs: Implement eventfs lookup, read, open functions eventfs: Implement eventfs file add functions ... |
||
![]() |
c440adfbe3 |
tracing/probes: Support BTF based data structure field access
Using BTF to access the fields of a data structure. You can use this for accessing the field with '->' or '.' operation with BTF argument. # echo 't sched_switch next=next->pid vruntime=next->se.vruntime' \ > dynamic_events # echo 1 > events/tracepoints/sched_switch/enable # head -n 40 trace | tail <idle>-0 [000] d..3. 272.565382: sched_switch: (__probestub_sched_switch+0x4/0x10) next=26 vruntime=956533179 kcompactd0-26 [000] d..3. 272.565406: sched_switch: (__probestub_sched_switch+0x4/0x10) next=0 vruntime=0 <idle>-0 [000] d..3. 273.069441: sched_switch: (__probestub_sched_switch+0x4/0x10) next=9 vruntime=956533179 kworker/0:1-9 [000] d..3. 273.069464: sched_switch: (__probestub_sched_switch+0x4/0x10) next=26 vruntime=956579181 kcompactd0-26 [000] d..3. 273.069480: sched_switch: (__probestub_sched_switch+0x4/0x10) next=0 vruntime=0 <idle>-0 [000] d..3. 273.141434: sched_switch: (__probestub_sched_switch+0x4/0x10) next=22 vruntime=956533179 kworker/u2:1-22 [000] d..3. 273.141461: sched_switch: (__probestub_sched_switch+0x4/0x10) next=0 vruntime=0 <idle>-0 [000] d..3. 273.480872: sched_switch: (__probestub_sched_switch+0x4/0x10) next=22 vruntime=956585857 kworker/u2:1-22 [000] d..3. 273.480905: sched_switch: (__probestub_sched_switch+0x4/0x10) next=70 vruntime=959533179 sh-70 [000] d..3. 273.481102: sched_switch: (__probestub_sched_switch+0x4/0x10) next=0 vruntime=0 Link: https://lore.kernel.org/all/169272157251.160970.9318175874130965571.stgit@devnote2/ Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Alan Maguire <alan.maguire@oracle.com> Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
c2489bb7e6 |
tracing: Introduce pipe_cpumask to avoid race on trace_pipes
There is race issue when concurrently splice_read main trace_pipe and per_cpu trace_pipes which will result in data read out being different from what actually writen. As suggested by Steven: > I believe we should add a ref count to trace_pipe and the per_cpu > trace_pipes, where if they are opened, nothing else can read it. > > Opening trace_pipe locks all per_cpu ref counts, if any of them are > open, then the trace_pipe open will fail (and releases any ref counts > it had taken). > > Opening a per_cpu trace_pipe will up the ref count for just that > CPU buffer. This will allow multiple tasks to read different per_cpu > trace_pipe files, but will prevent the main trace_pipe file from > being opened. But because we only need to know whether per_cpu trace_pipe is open or not, using a cpumask instead of using ref count may be easier. After this patch, users will find that: - Main trace_pipe can be opened by only one user, and if it is opened, all per_cpu trace_pipes cannot be opened; - Per_cpu trace_pipes can be opened by multiple users, but each per_cpu trace_pipe can only be opened by one user. And if one of them is opened, main trace_pipe cannot be opened. Link: https://lore.kernel.org/linux-trace-kernel/20230818022645.1948314-1-zhengyejian1@huawei.com Suggested-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
eecb91b9f9 |
tracing: Fix memleak due to race between current_tracer and trace
Kmemleak report a leak in graph_trace_open():
unreferenced object 0xffff0040b95f4a00 (size 128):
comm "cat", pid 204981, jiffies 4301155872 (age 99771.964s)
hex dump (first 32 bytes):
e0 05 e7 b4 ab 7d 00 00 0b 00 01 00 00 00 00 00 .....}..........
f4 00 01 10 00 a0 ff ff 00 00 00 00 65 00 10 00 ............e...
backtrace:
[<000000005db27c8b>] kmem_cache_alloc_trace+0x348/0x5f0
[<000000007df90faa>] graph_trace_open+0xb0/0x344
[<00000000737524cd>] __tracing_open+0x450/0xb10
[<0000000098043327>] tracing_open+0x1a0/0x2a0
[<00000000291c3876>] do_dentry_open+0x3c0/0xdc0
[<000000004015bcd6>] vfs_open+0x98/0xd0
[<000000002b5f60c9>] do_open+0x520/0x8d0
[<00000000376c7820>] path_openat+0x1c0/0x3e0
[<00000000336a54b5>] do_filp_open+0x14c/0x324
[<000000002802df13>] do_sys_openat2+0x2c4/0x530
[<0000000094eea458>] __arm64_sys_openat+0x130/0x1c4
[<00000000a71d7881>] el0_svc_common.constprop.0+0xfc/0x394
[<00000000313647bf>] do_el0_svc+0xac/0xec
[<000000002ef1c651>] el0_svc+0x20/0x30
[<000000002fd4692a>] el0_sync_handler+0xb0/0xb4
[<000000000c309c35>] el0_sync+0x160/0x180
The root cause is descripted as follows:
__tracing_open() { // 1. File 'trace' is being opened;
...
*iter->trace = *tr->current_trace; // 2. Tracer 'function_graph' is
// currently set;
...
iter->trace->open(iter); // 3. Call graph_trace_open() here,
// and memory are allocated in it;
...
}
s_start() { // 4. The opened file is being read;
...
*iter->trace = *tr->current_trace; // 5. If tracer is switched to
// 'nop' or others, then memory
// in step 3 are leaked!!!
...
}
To fix it, in s_start(), close tracer before switching then reopen the
new tracer after switching. And some tracers like 'wakeup' may not update
'iter->private' in some cases when reopen, then it should be cleared
to avoid being mistakenly closed again.
Link: https://lore.kernel.org/linux-trace-kernel/20230817125539.1646321-1-zhengyejian1@huawei.com
Fixes:
|
||
![]() |
b71645d6af |
tracing: Fix cpu buffers unavailable due to 'record_disabled' missed
Trace ring buffer can no longer record anything after executing
following commands at the shell prompt:
# cd /sys/kernel/tracing
# cat tracing_cpumask
fff
# echo 0 > tracing_cpumask
# echo 1 > snapshot
# echo fff > tracing_cpumask
# echo 1 > tracing_on
# echo "hello world" > trace_marker
-bash: echo: write error: Bad file descriptor
The root cause is that:
1. After `echo 0 > tracing_cpumask`, 'record_disabled' of cpu buffers
in 'tr->array_buffer.buffer' became 1 (see tracing_set_cpumask());
2. After `echo 1 > snapshot`, 'tr->array_buffer.buffer' is swapped
with 'tr->max_buffer.buffer', then the 'record_disabled' became 0
(see update_max_tr());
3. After `echo fff > tracing_cpumask`, the 'record_disabled' become -1;
Then array_buffer and max_buffer are both unavailable due to value of
'record_disabled' is not 0.
To fix it, enable or disable both array_buffer and max_buffer at the same
time in tracing_set_cpumask().
Link: https://lkml.kernel.org/r/20230805033816.3284594-2-zhengyejian1@huawei.com
Cc: <mhiramat@kernel.org>
Cc: <vnagarnaik@google.com>
Cc: <shuah@kernel.org>
Fixes:
|
||
![]() |
6d98a0f2ac |
tracing: Set actual size after ring buffer resize
Currently we can resize trace ringbuffer by writing a value into file 'buffer_size_kb', then by reading the file, we get the value that is usually what we wrote. However, this value may be not actual size of trace ring buffer because of the round up when doing resize in kernel, and the actual size would be more useful. Link: https://lore.kernel.org/linux-trace-kernel/20230705002705.576633-1-zhengyejian1@huawei.com Cc: <mhiramat@kernel.org> Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
6bba92881d |
tracing: Add free_trace_iter_content() helper function
As the trace iterator is created and used by various interfaces, the clean up of it needs to be consistent. Create a free_trace_iter_content() helper function that frees the content of the iterator and use that to clean it up in all places that it is used. Link: https://lkml.kernel.org/r/20230715141348.341887497@goodmis.org Cc: Mark Rutland <mark.rutland@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
9182b519b8 |
tracing: Remove unnecessary copying of tr->current_trace
The iterator allocated a descriptor to copy the current_trace. This was done
with the assumption that the function pointers might change. But this was a
false assuption, as it does not change. There's no reason to make a copy of the
current_trace and just use the pointer it points to. This removes needing to
manage freeing the descriptor. Worse yet, there's locations that the iterator
is used but does make a copy and just uses the pointer. This could cause the
actual pointer to the trace descriptor to be freed and not the allocated copy.
This is more of a clean up than a fix.
Link: https://lkml.kernel.org/r/20230715141348.135792275@goodmis.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes:
|
||
![]() |
e7186af7fb |
tracing: Add back FORTIFY_SOURCE logic to kernel_stack event structure
For backward compatibility, older tooling expects to see the kernel_stack event with a "caller" field that is a fixed size array of 8 addresses. The code now supports more than 8 with an added "size" field that states the real number of entries. But the "caller" field still just looks like a fixed size to user space. Since the tracing macros that create the user space format files also creates the structures that those files represent, the kernel_stack event structure had its "caller" field a fixed size of 8, but in reality, when it is allocated on the ring buffer, it can hold more if the stack trace is bigger that 8 functions. The copying of these entries was simply done with a memcpy(): size = nr_entries * sizeof(unsigned long); memcpy(entry->caller, fstack->calls, size); The FORTIFY_SOURCE logic noticed at runtime that when the nr_entries was larger than 8, that the memcpy() was writing more than what the structure stated it can hold and it complained about it. This is because the FORTIFY_SOURCE code is unaware that the amount allocated is actually enough to hold the size. It does not expect that a fixed size field will hold more than the fixed size. This was originally solved by hiding the caller assignment with some pointer arithmetic. ptr = ring_buffer_data(); entry = ptr; ptr += offsetof(typeof(*entry), caller); memcpy(ptr, fstack->calls, size); But it is considered bad form to hide from kernel hardening. Instead, make it work nicely with FORTIFY_SOURCE by adding a new __stack_array() macro that is specific for this one special use case. The macro will take 4 arguments: type, item, len, field (whereas the __array() macro takes just the first three). This macro will act just like the __array() macro when creating the code to deal with the format file that is exposed to user space. But for the kernel, it will turn the caller field into: type item[] __counted_by(field); or for this instance: unsigned long caller[] __counted_by(size); Now the kernel code can expose the assignment of the caller to the FORTIFY_SOURCE and everyone is happy! Link: https://lore.kernel.org/linux-trace-kernel/20230712105235.5fc441aa@gandalf.local.home/ Link: https://lore.kernel.org/linux-trace-kernel/20230713092605.2ddb9788@rorschach.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Suggested-by: Kees Cook <keescook@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Reviewed-by: Kees Cook <keescook@chromium.org> |
||
![]() |
8a96c0288d |
ring-buffer: Do not swap cpu_buffer during resize process
When ring_buffer_swap_cpu was called during resize process, the cpu buffer was swapped in the middle, resulting in incorrect state. Continuing to run in the wrong state will result in oops. This issue can be easily reproduced using the following two scripts: /tmp # cat test1.sh //#! /bin/sh for i in `seq 0 100000` do echo 2000 > /sys/kernel/debug/tracing/buffer_size_kb sleep 0.5 echo 5000 > /sys/kernel/debug/tracing/buffer_size_kb sleep 0.5 done /tmp # cat test2.sh //#! /bin/sh for i in `seq 0 100000` do echo irqsoff > /sys/kernel/debug/tracing/current_tracer sleep 1 echo nop > /sys/kernel/debug/tracing/current_tracer sleep 1 done /tmp # ./test1.sh & /tmp # ./test2.sh & A typical oops log is as follows, sometimes with other different oops logs. [ 231.711293] WARNING: CPU: 0 PID: 9 at kernel/trace/ring_buffer.c:2026 rb_update_pages+0x378/0x3f8 [ 231.713375] Modules linked in: [ 231.714735] CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W 6.5.0-rc1-00276-g20edcec23f92 #15 [ 231.716750] Hardware name: linux,dummy-virt (DT) [ 231.718152] Workqueue: events update_pages_handler [ 231.719714] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 231.721171] pc : rb_update_pages+0x378/0x3f8 [ 231.722212] lr : rb_update_pages+0x25c/0x3f8 [ 231.723248] sp : ffff800082b9bd50 [ 231.724169] x29: ffff800082b9bd50 x28: ffff8000825f7000 x27: 0000000000000000 [ 231.726102] x26: 0000000000000001 x25: fffffffffffff010 x24: 0000000000000ff0 [ 231.728122] x23: ffff0000c3a0b600 x22: ffff0000c3a0b5c0 x21: fffffffffffffe0a [ 231.730203] x20: ffff0000c3a0b600 x19: ffff0000c0102400 x18: 0000000000000000 [ 231.732329] x17: 0000000000000000 x16: 0000000000000000 x15: 0000ffffe7aa8510 [ 231.734212] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000002 [ 231.736291] x11: ffff8000826998a8 x10: ffff800082b9baf0 x9 : ffff800081137558 [ 231.738195] x8 : fffffc00030e82c8 x7 : 0000000000000000 x6 : 0000000000000001 [ 231.740192] x5 : ffff0000ffbafe00 x4 : 0000000000000000 x3 : 0000000000000000 [ 231.742118] x2 : 00000000000006aa x1 : 0000000000000001 x0 : ffff0000c0007208 [ 231.744196] Call trace: [ 231.744892] rb_update_pages+0x378/0x3f8 [ 231.745893] update_pages_handler+0x1c/0x38 [ 231.746893] process_one_work+0x1f0/0x468 [ 231.747852] worker_thread+0x54/0x410 [ 231.748737] kthread+0x124/0x138 [ 231.749549] ret_from_fork+0x10/0x20 [ 231.750434] ---[ end trace 0000000000000000 ]--- [ 233.720486] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 233.721696] Mem abort info: [ 233.721935] ESR = 0x0000000096000004 [ 233.722283] EC = 0x25: DABT (current EL), IL = 32 bits [ 233.722596] SET = 0, FnV = 0 [ 233.722805] EA = 0, S1PTW = 0 [ 233.723026] FSC = 0x04: level 0 translation fault [ 233.723458] Data abort info: [ 233.723734] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [ 233.724176] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 233.724589] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 233.725075] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000104943000 [ 233.725592] [0000000000000000] pgd=0000000000000000, p4d=0000000000000000 [ 233.726231] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [ 233.726720] Modules linked in: [ 233.727007] CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W 6.5.0-rc1-00276-g20edcec23f92 #15 [ 233.727777] Hardware name: linux,dummy-virt (DT) [ 233.728225] Workqueue: events update_pages_handler [ 233.728655] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 233.729054] pc : rb_update_pages+0x1a8/0x3f8 [ 233.729334] lr : rb_update_pages+0x154/0x3f8 [ 233.729592] sp : ffff800082b9bd50 [ 233.729792] x29: ffff800082b9bd50 x28: ffff8000825f7000 x27: 0000000000000000 [ 233.730220] x26: 0000000000000000 x25: ffff800082a8b840 x24: ffff0000c0102418 [ 233.730653] x23: 0000000000000000 x22: fffffc000304c880 x21: 0000000000000003 [ 233.731105] x20: 00000000000001f4 x19: ffff0000c0102400 x18: ffff800082fcbc58 [ 233.731727] x17: 0000000000000000 x16: 0000000000000001 x15: 0000000000000001 [ 233.732282] x14: ffff8000825fe0c8 x13: 0000000000000001 x12: 0000000000000000 [ 233.732709] x11: ffff8000826998a8 x10: 0000000000000ae0 x9 : ffff8000801b760c [ 233.733148] x8 : fefefefefefefeff x7 : 0000000000000018 x6 : ffff0000c03298c0 [ 233.733553] x5 : 0000000000000002 x4 : 0000000000000000 x3 : 0000000000000000 [ 233.733972] x2 : ffff0000c3a0b600 x1 : 0000000000000000 x0 : 0000000000000000 [ 233.734418] Call trace: [ 233.734593] rb_update_pages+0x1a8/0x3f8 [ 233.734853] update_pages_handler+0x1c/0x38 [ 233.735148] process_one_work+0x1f0/0x468 [ 233.735525] worker_thread+0x54/0x410 [ 233.735852] kthread+0x124/0x138 [ 233.736064] ret_from_fork+0x10/0x20 [ 233.736387] Code: 92400000 910006b5 aa000021 aa0303f7 (f9400060) [ 233.736959] ---[ end trace 0000000000000000 ]--- After analysis, the seq of the error is as follows [1-5]: int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, int cpu_id) { for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; //1. get cpu_buffer, aka cpu_buffer(A) ... ... schedule_work_on(cpu, &cpu_buffer->update_pages_work); //2. 'update_pages_work' is queue on 'cpu', cpu_buffer(A) is passed to // update_pages_handler, do the update process, set 'update_done' in // complete(&cpu_buffer->update_done) and to wakeup resize process. //----> //3. Just at this moment, ring_buffer_swap_cpu is triggered, //cpu_buffer(A) be swaped to cpu_buffer(B), the max_buffer. //ring_buffer_swap_cpu is called as the 'Call trace' below. Call trace: dump_backtrace+0x0/0x2f8 show_stack+0x18/0x28 dump_stack+0x12c/0x188 ring_buffer_swap_cpu+0x2f8/0x328 update_max_tr_single+0x180/0x210 check_critical_timing+0x2b4/0x2c8 tracer_hardirqs_on+0x1c0/0x200 trace_hardirqs_on+0xec/0x378 el0_svc_common+0x64/0x260 do_el0_svc+0x90/0xf8 el0_svc+0x20/0x30 el0_sync_handler+0xb0/0xb8 el0_sync+0x180/0x1c0 //<---- /* wait for all the updates to complete */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; //4. get cpu_buffer, cpu_buffer(B) is used in the following process, //the state of cpu_buffer(A) and cpu_buffer(B) is totally wrong. //for example, cpu_buffer(A)->update_done will leave be set 1, and will //not 'wait_for_completion' at the next resize round. if (!cpu_buffer->nr_pages_to_update) continue; if (cpu_online(cpu)) wait_for_completion(&cpu_buffer->update_done); cpu_buffer->nr_pages_to_update = 0; } ... } //5. the state of cpu_buffer(A) and cpu_buffer(B) is totally wrong, //Continuing to run in the wrong state, then oops occurs. Link: https://lore.kernel.org/linux-trace-kernel/202307191558478409990@zte.com.cn Signed-off-by: Chen Lin <chen.lin5@zte.com.cn> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
d5a8218963 |
tracing: Fix memory leak of iter->temp when reading trace_pipe
kmemleak reports:
unreferenced object 0xffff88814d14e200 (size 256):
comm "cat", pid 336, jiffies 4294871818 (age 779.490s)
hex dump (first 32 bytes):
04 00 01 03 00 00 00 00 08 00 00 00 00 00 00 00 ................
0c d8 c8 9b ff ff ff ff 04 5a ca 9b ff ff ff ff .........Z......
backtrace:
[<ffffffff9bdff18f>] __kmalloc+0x4f/0x140
[<ffffffff9bc9238b>] trace_find_next_entry+0xbb/0x1d0
[<ffffffff9bc9caef>] trace_print_lat_context+0xaf/0x4e0
[<ffffffff9bc94490>] print_trace_line+0x3e0/0x950
[<ffffffff9bc95499>] tracing_read_pipe+0x2d9/0x5a0
[<ffffffff9bf03a43>] vfs_read+0x143/0x520
[<ffffffff9bf04c2d>] ksys_read+0xbd/0x160
[<ffffffff9d0f0edf>] do_syscall_64+0x3f/0x90
[<ffffffff9d2000aa>] entry_SYSCALL_64_after_hwframe+0x6e/0xd8
when reading file 'trace_pipe', 'iter->temp' is allocated or relocated
in trace_find_next_entry() but not freed before 'trace_pipe' is closed.
To fix it, free 'iter->temp' in tracing_release_pipe().
Link: https://lore.kernel.org/linux-trace-kernel/20230713141435.1133021-1-zhengyejian1@huawei.com
Cc: stable@vger.kernel.org
Fixes:
|
||
![]() |
bec3c25c24 |
tracing: Stop FORTIFY_SOURCE complaining about stack trace caller
The stack_trace event is an event created by the tracing subsystem to store stack traces. It originally just contained a hard coded array of 8 words to hold the stack, and a "size" to know how many entries are there. This is exported to user space as: name: kernel_stack ID: 4 format: field:unsigned short common_type; offset:0; size:2; signed:0; field:unsigned char common_flags; offset:2; size:1; signed:0; field:unsigned char common_preempt_count; offset:3; size:1; signed:0; field:int common_pid; offset:4; size:4; signed:1; field:int size; offset:8; size:4; signed:1; field:unsigned long caller[8]; offset:16; size:64; signed:0; print fmt: "\t=> %ps\n\t=> %ps\n\t=> %ps\n" "\t=> %ps\n\t=> %ps\n\t=> %ps\n" "\t=> %ps\n\t=> %ps\n",i (void *)REC->caller[0], (void *)REC->caller[1], (void *)REC->caller[2], (void *)REC->caller[3], (void *)REC->caller[4], (void *)REC->caller[5], (void *)REC->caller[6], (void *)REC->caller[7] Where the user space tracers could parse the stack. The library was updated for this specific event to only look at the size, and not the array. But some older users still look at the array (note, the older code still checks to make sure the array fits inside the event that it read. That is, if only 4 words were saved, the parser would not read the fifth word because it will see that it was outside of the event size). This event was changed a while ago to be more dynamic, and would save a full stack even if it was greater than 8 words. It does this by simply allocating more ring buffer to hold the extra words. Then it copies in the stack via: memcpy(&entry->caller, fstack->calls, size); As the entry is struct stack_entry, that is created by a macro to both create the structure and export this to user space, it still had the caller field of entry defined as: unsigned long caller[8]. When the stack is greater than 8, the FORTIFY_SOURCE code notices that the amount being copied is greater than the source array and complains about it. It has no idea that the source is pointing to the ring buffer with the required allocation. To hide this from the FORTIFY_SOURCE logic, pointer arithmetic is used: ptr = ring_buffer_event_data(event); entry = ptr; ptr += offsetof(typeof(*entry), caller); memcpy(ptr, fstack->calls, size); Link: https://lore.kernel.org/all/20230612160748.4082850-1-svens@linux.ibm.com/ Link: https://lore.kernel.org/linux-trace-kernel/20230712105235.5fc441aa@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Reported-by: Sven Schnelle <svens@linux.ibm.com> Tested-by: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
8066178f53 |
Tracing fixes for 6.5:
- Fix bad git merge of #endif in arm64 code A merge of the arm64 tree caused #endif to go into the wrong place - Fix crash on lseek of write access to tracefs/error_log Opening error_log as write only, and then doing an lseek() causes a kernel panic, because the lseek() handle expects a "seq_file" to exist (which is not done on write only opens). Use tracing_lseek() that tests for this instead of calling the default seq lseek handler. - Check for negative instead of -E2BIG for error on strscpy() returns Instead of testing for -E2BIG from strscpy(), to be more robust, check for less than zero, which will make sure it catches any error that strscpy() may someday return. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZKbQUhQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qpWaAP9zQ1eLQSfMt0dHH01OBSJvc2mMd4QJ VZtWZ+xTSvk+4gD/axDzDS7Qisfrrli+1oQSPwVik2SXiz0SPJqJ25m9zw4= =xMlg -----END PGP SIGNATURE----- Merge tag 'trace-v6.5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing fixes from Steven Rostedt: - Fix bad git merge of #endif in arm64 code A merge of the arm64 tree caused #endif to go into the wrong place - Fix crash on lseek of write access to tracefs/error_log Opening error_log as write only, and then doing an lseek() causes a kernel panic, because the lseek() handle expects a "seq_file" to exist (which is not done on write only opens). Use tracing_lseek() that tests for this instead of calling the default seq lseek handler. - Check for negative instead of -E2BIG for error on strscpy() returns Instead of testing for -E2BIG from strscpy(), to be more robust, check for less than zero, which will make sure it catches any error that strscpy() may someday return. * tag 'trace-v6.5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: tracing/boot: Test strscpy() against less than zero for error arm64: ftrace: fix build error with CONFIG_FUNCTION_GRAPH_TRACER=n tracing: Fix null pointer dereference in tracing_err_log_open() |
||
![]() |
02b0095e2f |
tracing: Fix null pointer dereference in tracing_err_log_open()
Fix an issue in function 'tracing_err_log_open'.
The function doesn't call 'seq_open' if the file is opened only with
write permissions, which results in 'file->private_data' being left as null.
If we then use 'lseek' on that opened file, 'seq_lseek' dereferences
'file->private_data' in 'mutex_lock(&m->lock)', resulting in a kernel panic.
Writing to this node requires root privileges, therefore this bug
has very little security impact.
Tracefs node: /sys/kernel/tracing/error_log
Example Kernel panic:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000038
Call trace:
mutex_lock+0x30/0x110
seq_lseek+0x34/0xb8
__arm64_sys_lseek+0x6c/0xb8
invoke_syscall+0x58/0x13c
el0_svc_common+0xc4/0x10c
do_el0_svc+0x24/0x98
el0_svc+0x24/0x88
el0t_64_sync_handler+0x84/0xe4
el0t_64_sync+0x1b4/0x1b8
Code: d503201f aa0803e0 aa1f03e1 aa0103e9 (c8e97d02)
---[ end trace 561d1b49c12cf8a5 ]---
Kernel panic - not syncing: Oops: Fatal exception
Link: https://lore.kernel.org/linux-trace-kernel/20230703155237eucms1p4dfb6a19caa14c79eb6c823d127b39024@eucms1p4
Link: https://lore.kernel.org/linux-trace-kernel/20230704102706eucms1p30d7ecdcc287f46ad67679fc8491b2e0f@eucms1p3
Cc: stable@vger.kernel.org
Fixes:
|
||
![]() |
d2a6fd45c5 |
Probes updates for v6.5:
- fprobe: Pass return address to the fprobe entry/exit callbacks so that the callbacks don't need to analyze pt_regs/stack to find the function return address. - kprobe events: cleanup usage of TPARG_FL_FENTRY and TPARG_FL_RETURN flags so that those are not set at once. - fprobe events: . Add a new fprobe events for tracing arbitrary function entry and exit as a trace event. . Add a new tracepoint events for tracing raw tracepoint as a trace event. This allows user to trace non user-exposed tracepoints. . Move eprobe's event parser code into probe event common file. . Introduce BTF (BPF type format) support to kernel probe (kprobe, fprobe and tracepoint probe) events so that user can specify traced function arguments by name. This also applies the type of argument when fetching the argument. . Introduce '$arg*' wildcard support if BTF is available. This expands the '$arg*' meta argument to all function argument automatically. . Check the return value types by BTF. If the function returns 'void', '$retval' is rejected. . Add some selftest script for fprobe events, tracepoint events and BTF support. . Update documentation about the fprobe events. . Some fixes for above features, document and selftests. - selftests for ftrace (except for new fprobe events): . Add a test case for multiple consecutive probes in a function which checks if ftrace based kprobe, optimized kprobe and normal kprobe can be defined in the same target function. . Add a test case for optimized probe, which checks whether kprobe can be optimized or not. -----BEGIN PGP SIGNATURE----- iQEzBAABCgAdFiEEh7BulGwFlgAOi5DV2/sHvwUrPxsFAmSa+9MACgkQ2/sHvwUr PxsmOAgAmUOIWtvH5py7AZpIRhCj8B18F6KnT7w2hByCsRxf7SaCqMhpBCk9VnYv 9fJFBHpvYRJEmpHoH3o2ET5AGfKVNac9z96AGI2qJ4ECWITd6I5+WfTdZ5ueVn2d f6DQ10mHXDHSMFbuqfYWSHtkeivJpWpUNHhwzPb4doNOe06bZNfVuSgnksFg1at5 kq16HbvGnhPzdO4YHmvqwjmRHr5/nCI1KDE9xIBcqNtWFbiRigC11zaZEUkLX+vT F63ShyfCK718AiwDfnjXpGkXAiVOZuAIR8RELaSqQ92YHCFKq5k9K4++WllPR5f9 AxjVultFDiCd4oSPgYpQkjuZdFq9NA== =IhmY -----END PGP SIGNATURE----- Merge tag 'probes-v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull probes updates from Masami Hiramatsu: - fprobe: Pass return address to the fprobe entry/exit callbacks so that the callbacks don't need to analyze pt_regs/stack to find the function return address. - kprobe events: cleanup usage of TPARG_FL_FENTRY and TPARG_FL_RETURN flags so that those are not set at once. - fprobe events: - Add a new fprobe events for tracing arbitrary function entry and exit as a trace event. - Add a new tracepoint events for tracing raw tracepoint as a trace event. This allows user to trace non user-exposed tracepoints. - Move eprobe's event parser code into probe event common file. - Introduce BTF (BPF type format) support to kernel probe (kprobe, fprobe and tracepoint probe) events so that user can specify traced function arguments by name. This also applies the type of argument when fetching the argument. - Introduce '$arg*' wildcard support if BTF is available. This expands the '$arg*' meta argument to all function argument automatically. - Check the return value types by BTF. If the function returns 'void', '$retval' is rejected. - Add some selftest script for fprobe events, tracepoint events and BTF support. - Update documentation about the fprobe events. - Some fixes for above features, document and selftests. - selftests for ftrace (in addition to the new fprobe events): - Add a test case for multiple consecutive probes in a function which checks if ftrace based kprobe, optimized kprobe and normal kprobe can be defined in the same target function. - Add a test case for optimized probe, which checks whether kprobe can be optimized or not. * tag 'probes-v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: tracing/probes: Fix tracepoint event with $arg* to fetch correct argument Documentation: Fix typo of reference file name tracing/probes: Fix to return NULL and keep using current argc selftests/ftrace: Add new test case which checks for optimized probes selftests/ftrace: Add new test case which adds multiple consecutive probes in a function Documentation: tracing/probes: Add fprobe event tracing document selftests/ftrace: Add BTF arguments test cases selftests/ftrace: Add tracepoint probe test case tracing/probes: Add BTF retval type support tracing/probes: Add $arg* meta argument for all function args tracing/probes: Support function parameters if BTF is available tracing/probes: Move event parameter fetching code to common parser tracing/probes: Add tracepoint support on fprobe_events selftests/ftrace: Add fprobe related testcases tracing/probes: Add fprobe events for tracing function entry and exit. tracing/probes: Avoid setting TPARG_FL_FENTRY and TPARG_FL_RETURN fprobe: Pass return address to the handlers |
||
![]() |
582c161cf3 |
hardening updates for v6.5-rc1
- Fix KMSAN vs FORTIFY in strlcpy/strlcat (Alexander Potapenko) - Convert strreplace() to return string start (Andy Shevchenko) - Flexible array conversions (Arnd Bergmann, Wyes Karny, Kees Cook) - Add missing function prototypes seen with W=1 (Arnd Bergmann) - Fix strscpy() kerndoc typo (Arne Welzel) - Replace strlcpy() with strscpy() across many subsystems which were either Acked by respective maintainers or were trivial changes that went ignored for multiple weeks (Azeem Shaikh) - Remove unneeded cc-option test for UBSAN_TRAP (Nick Desaulniers) - Add KUnit tests for strcat()-family - Enable KUnit tests of FORTIFY wrappers under UML - Add more complete FORTIFY protections for strlcat() - Add missed disabling of FORTIFY for all arch purgatories. - Enable -fstrict-flex-arrays=3 globally - Tightening UBSAN_BOUNDS when using GCC - Improve checkpatch to check for strcpy, strncpy, and fake flex arrays - Improve use of const variables in FORTIFY - Add requested struct_size_t() helper for types not pointers - Add __counted_by macro for annotating flexible array size members -----BEGIN PGP SIGNATURE----- iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmSbftQWHGtlZXNjb29r QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJj0MD/9X9jzJzCmsAU+yNldeoAzC84Sk GVU3RBxGcTNysL1gZXynkIgigw7DWc4htMGeSABHHwQRVP65JCH1Kw/VqIkyumbx 9LdX6IklMJb4pRT4PVU3azebV4eNmSjlur2UxMeW54Czm91/6I8RHbJOyAPnOUmo 2oomGdP/hpEHtKR7hgy8Axc6w5ySwQixh2V5sVZG3VbvCS5WKTmTXbs6puuRT5hz iHt7v+7VtEg/Qf1W7J2oxfoghvVBsaRrSLrExWT/oZYh1ZxM7DsCAAoG/IsDgHGA 9LBXiRECgAFThbHVxLvvKZQMXdVk0i8iXLX43XMKC0wTA+NTyH7wlcQQ4RWNMuo8 sfA9Qm9gMArXaf64aymr3Uwn20Zan0391HdlbhOJZAE6v3PPJbleUnM58AzD2d3r 5Lz6AIFBxDImy+3f9iDWgacCT5/PkeiXTHzk9QnKhJyKKtRA58XJxj4q2+rPnGJP n4haXqoxD5FJbxdXiGKk31RS0U5HBug7wkOcUrTqDHUbc/QNU2b7dxTKUx+zYtCU uV5emPzpF4H4z+91WpO47n9gkMAfwV0lt9S2dwS8pxsgqctbmIan+Jgip7rsqZ2G OgLXBsb43eEs+6WgO8tVt/ZHYj9ivGMdrcNcsIfikzNs/xweUJ53k2xSEn2xEa5J cwANDmkL6QQK7yfeeg== =s0j1 -----END PGP SIGNATURE----- Merge tag 'hardening-v6.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull hardening updates from Kees Cook: "There are three areas of note: A bunch of strlcpy()->strscpy() conversions ended up living in my tree since they were either Acked by maintainers for me to carry, or got ignored for multiple weeks (and were trivial changes). The compiler option '-fstrict-flex-arrays=3' has been enabled globally, and has been in -next for the entire devel cycle. This changes compiler diagnostics (though mainly just -Warray-bounds which is disabled) and potential UBSAN_BOUNDS and FORTIFY _warning_ coverage. In other words, there are no new restrictions, just potentially new warnings. Any new FORTIFY warnings we've seen have been fixed (usually in their respective subsystem trees). For more details, see commit |
||
![]() |
3eccc0c886 |
for-6.5/splice-2023-06-23
-----BEGIN PGP SIGNATURE----- iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmSV8QgQHGF4Ym9lQGtl cm5lbC5kawAKCRD301j7KXHgpupIEADKEZvpxDyaxHjYZFFeoSJRkh+AEJHe0Xtr J5vUL8t8zmAV3F7i8XaoAEcR0dC0VQcoTc8fAOty71+5hsc7gvtyyNjqU/YWRVqK Xr+VJuSJ+OGx3MzpRWEkepagfPyqP5cyyCOK6gqIgqzc3IwqkR/3QHVRc6oR8YbY AQd7tqm2fQXK9WDHEy5hcaQeqb9uKZjQQoZejpPPerpJM+9RMgKxpCGtnLLIUhr/ sgl7KyLIQPBmveO2vfOR+dmsJBqsLqneqkXDKMAIfpeVEEkHHAlCH4E5Ne1XUS+s ie4If+reuyn1Ktt5Ry1t7w2wr8cX1fcay3K28tgwjE2Bvremc5YnYgb3pyUDW38f tXXkpg/eTXd/Pn0Crpagoa9zJ927tt5JXIO1/PagPEP1XOqUuthshDFsrVqfqbs+ 36gqX2JWB4NJTg9B9KBHA3+iVCJyZLjUqOqws7hOJOvhQytZVm/IwkGBg1Slhe1a J5WemBlqX8lTgXz0nM7cOhPYTZeKe6hazCcb5VwxTUTj9SGyYtsMfqqTwRJO9kiF j1VzbOAgExDYe+GvfqOFPh9VqZho66+DyOD/Xtca4eH7oYyHSmP66o8nhRyPBPZA maBxQhUkPQn4/V/0fL2TwIdWYKsbj8bUyINKPZ2L35YfeICiaYIctTwNJxtRmItB M3VxWD3GZQ== =KhW4 -----END PGP SIGNATURE----- Merge tag 'for-6.5/splice-2023-06-23' of git://git.kernel.dk/linux Pull splice updates from Jens Axboe: "This kills off ITER_PIPE to avoid a race between truncate, iov_iter_revert() on the pipe and an as-yet incomplete DMA to a bio with unpinned/unref'ed pages from an O_DIRECT splice read. This causes memory corruption. Instead, we either use (a) filemap_splice_read(), which invokes the buffered file reading code and splices from the pagecache into the pipe; (b) copy_splice_read(), which bulk-allocates a buffer, reads into it and then pushes the filled pages into the pipe; or (c) handle it in filesystem-specific code. Summary: - Rename direct_splice_read() to copy_splice_read() - Simplify the calculations for the number of pages to be reclaimed in copy_splice_read() - Turn do_splice_to() into a helper, vfs_splice_read(), so that it can be used by overlayfs and coda to perform the checks on the lower fs - Make vfs_splice_read() jump to copy_splice_read() to handle direct-I/O and DAX - Provide shmem with its own splice_read to handle non-existent pages in the pagecache. We don't want a ->read_folio() as we don't want to populate holes, but filemap_get_pages() requires it - Provide overlayfs with its own splice_read to call down to a lower layer as overlayfs doesn't provide ->read_folio() - Provide coda with its own splice_read to call down to a lower layer as coda doesn't provide ->read_folio() - Direct ->splice_read to copy_splice_read() in tty, procfs, kernfs and random files as they just copy to the output buffer and don't splice pages - Provide wrappers for afs, ceph, ecryptfs, ext4, f2fs, nfs, ntfs3, ocfs2, orangefs, xfs and zonefs to do locking and/or revalidation - Make cifs use filemap_splice_read() - Replace pointers to generic_file_splice_read() with pointers to filemap_splice_read() as DIO and DAX are handled in the caller; filesystems can still provide their own alternate ->splice_read() op - Remove generic_file_splice_read() - Remove ITER_PIPE and its paraphernalia as generic_file_splice_read was the only user" * tag 'for-6.5/splice-2023-06-23' of git://git.kernel.dk/linux: (31 commits) splice: kdoc for filemap_splice_read() and copy_splice_read() iov_iter: Kill ITER_PIPE splice: Remove generic_file_splice_read() splice: Use filemap_splice_read() instead of generic_file_splice_read() cifs: Use filemap_splice_read() trace: Convert trace/seq to use copy_splice_read() zonefs: Provide a splice-read wrapper xfs: Provide a splice-read wrapper orangefs: Provide a splice-read wrapper ocfs2: Provide a splice-read wrapper ntfs3: Provide a splice-read wrapper nfs: Provide a splice-read wrapper f2fs: Provide a splice-read wrapper ext4: Provide a splice-read wrapper ecryptfs: Provide a splice-read wrapper ceph: Provide a splice-read wrapper afs: Provide a splice-read wrapper 9p: Add splice_read wrapper net: Make sock_splice_read() use copy_splice_read() by default tty, proc, kernfs, random: Use copy_splice_read() ... |
||
![]() |
b576e09701 |
tracing/probes: Support function parameters if BTF is available
Support function or tracepoint parameters by name if BTF support is enabled and the event is for function entry (this feature can be used with kprobe- events, fprobe-events and tracepoint probe events.) Note that the BTF variable syntax does not require a prefix. If it starts with an alphabetic character or an underscore ('_') without a prefix like '$' and '%', it is considered as a BTF variable. If you specify only the BTF variable name, the argument name will also be the same name instead of 'arg*'. # echo 'p vfs_read count pos' >> dynamic_events # echo 'f vfs_write count pos' >> dynamic_events # echo 't sched_overutilized_tp rd overutilized' >> dynamic_events # cat dynamic_events p:kprobes/p_vfs_read_0 vfs_read count=count pos=pos f:fprobes/vfs_write__entry vfs_write count=count pos=pos t:tracepoints/sched_overutilized_tp sched_overutilized_tp rd=rd overutilized=overutilized Link: https://lore.kernel.org/all/168507474014.913472.16963996883278039183.stgit@mhiramat.roam.corp.google.com/ Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Alan Maguire <alan.maguire@oracle.com> Tested-by: Alan Maguire <alan.maguire@oracle.com> |
||
![]() |
e2d0d7b2f4 |
tracing/probes: Add tracepoint support on fprobe_events
Allow fprobe_events to trace raw tracepoints so that user can trace tracepoints which don't have traceevent wrappers. This new event is always available if the fprobe_events is enabled (thus no kconfig), because the fprobe_events depends on the trace-event and traceporint. e.g. # echo 't sched_overutilized_tp' >> dynamic_events # echo 't 9p_client_req' >> dynamic_events # cat dynamic_events t:tracepoints/sched_overutilized_tp sched_overutilized_tp t:tracepoints/_9p_client_req 9p_client_req The event name is based on the tracepoint name, but if it is started with digit character, an underscore '_' will be added. NOTE: to avoid further confusion, this renames TPARG_FL_TPOINT to TPARG_FL_TEVENT because this flag is used for eprobe (trace-event probe). And reuse TPARG_FL_TPOINT for this raw tracepoint probe. Link: https://lore.kernel.org/all/168507471874.913472.17214624519622959593.stgit@mhiramat.roam.corp.google.com/ Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/oe-kbuild-all/202305020453.afTJ3VVp-lkp@intel.com/ Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> |
||
![]() |
334e5519c3 |
tracing/probes: Add fprobe events for tracing function entry and exit.
Add fprobe events for tracing function entry and exit instead of kprobe events. With this change, we can continue to trace function entry/exit even if the CONFIG_KPROBES_ON_FTRACE is not available. Since CONFIG_KPROBES_ON_FTRACE requires the CONFIG_DYNAMIC_FTRACE_WITH_REGS, it is not available if the architecture only supports CONFIG_DYNAMIC_FTRACE_WITH_ARGS. And that means kprobe events can not probe function entry/exit effectively on such architecture. But this can be solved if the dynamic events supports fprobe events. The fprobe event is a new dynamic events which is only for the function (symbol) entry and exit. This event accepts non register fetch arguments so that user can trace the function arguments and return values. The fprobe events syntax is here; f[:[GRP/][EVENT]] FUNCTION [FETCHARGS] f[MAXACTIVE][:[GRP/][EVENT]] FUNCTION%return [FETCHARGS] E.g. # echo 'f vfs_read $arg1' >> dynamic_events # echo 'f vfs_read%return $retval' >> dynamic_events # cat dynamic_events f:fprobes/vfs_read__entry vfs_read arg1=$arg1 f:fprobes/vfs_read__exit vfs_read%return arg1=$retval # echo 1 > events/fprobes/enable # head -n 20 trace | tail # TASK-PID CPU# ||||| TIMESTAMP FUNCTION # | | | ||||| | | sh-142 [005] ...1. 448.386420: vfs_read__entry: (vfs_read+0x4/0x340) arg1=0xffff888007f7c540 sh-142 [005] ..... 448.386436: vfs_read__exit: (ksys_read+0x75/0x100 <- vfs_read) arg1=0x1 sh-142 [005] ...1. 448.386451: vfs_read__entry: (vfs_read+0x4/0x340) arg1=0xffff888007f7c540 sh-142 [005] ..... 448.386458: vfs_read__exit: (ksys_read+0x75/0x100 <- vfs_read) arg1=0x1 sh-142 [005] ...1. 448.386469: vfs_read__entry: (vfs_read+0x4/0x340) arg1=0xffff888007f7c540 sh-142 [005] ..... 448.386476: vfs_read__exit: (ksys_read+0x75/0x100 <- vfs_read) arg1=0x1 sh-142 [005] ...1. 448.602073: vfs_read__entry: (vfs_read+0x4/0x340) arg1=0xffff888007f7c540 sh-142 [005] ..... 448.602089: vfs_read__exit: (ksys_read+0x75/0x100 <- vfs_read) arg1=0x1 Link: https://lore.kernel.org/all/168507469754.913472.6112857614708350210.stgit@mhiramat.roam.corp.google.com/ Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/all/202302011530.7vm4O8Ro-lkp@intel.com/ Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> |
||
![]() |
ac9d2cb1d5 |
tracing: Only make selftest conditionals affect the global_trace
The tracing_selftest_running and tracing_selftest_disabled variables were to keep trace_printk() and other writes from affecting the tracing selftests, as the tracing selftests would examine the ring buffer to see if it contained what it expected or not. trace_printk() and friends could add to the ring buffer and cause the selftests to fail (and then disable the tracer that was being tested). To keep that from happening, these variables were added and would keep trace_printk() and friends from writing to the ring buffer while the tests were going on. But this was only the top level ring buffer (owned by the global_trace instance). There is no reason to prevent writing into ring buffers of other instances via the trace_array_printk() and friends. For the functions that could be used by other instances, check if the global_trace is the tracer instance that is being written to before deciding to not allow the write. Link: https://lkml.kernel.org/r/20230528051742.1325503-5-rostedt@goodmis.org Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
a3ae76d7ff |
tracing: Make tracing_selftest_running/delete nops when not used
There's no reason to test the condition variables tracing_selftest_running or tracing_selftest_delete when tracing selftests are not enabled. Make them define 0s when not the selftests are not configured in. Link: https://lkml.kernel.org/r/20230528051742.1325503-4-rostedt@goodmis.org Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
9da705d432 |
tracing: Have tracer selftests call cond_resched() before running
As there are more and more internal selftests being added to the Linux kernel (KSAN, lockdep, etc) the selftests are taking longer to run when these are enabled. Add a cond_resched() to the calling of do_run_tracer_selftest() to force a schedule if NEED_RESCHED is set, otherwise the soft lockup watchdog may trigger on boot up. Link: https://lkml.kernel.org/r/20230528051742.1325503-3-rostedt@goodmis.org Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
e8352cf577 |
tracing: Move setting of tracing_selftest_running out of register_tracer()
The variables tracing_selftest_running and tracing_selftest_disabled are only used for when CONFIG_FTRACE_STARTUP_TEST is enabled. Make them only visible within the selftest code. The setting of those variables are in the register_tracer() call, and set in a location where they do not need to be. Create a wrapper around run_tracer_selftest() called do_run_tracer_selftest() which sets those variables, and have register_tracer() call that instead. Having those variables only set within the CONFIG_FTRACE_STARTUP_TEST scope gets rid of them (and also the ability to remove testing against them) when the startup tests are not enabled (most cases). Link: https://lkml.kernel.org/r/20230528051742.1325503-2-rostedt@goodmis.org Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
c7dce4c5d9 |
tracing: Replace all non-returning strlcpy with strscpy
strlcpy() reads the entire source buffer first. This read may exceed the destination size limit. This is both inefficient and can lead to linear read overflows if a source string is not NUL-terminated [1]. In an effort to remove strlcpy() completely [2], replace strlcpy() here with strscpy(). No return values were used, so direct replacement with strlcpy is safe. [1] https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy [2] https://github.com/KSPP/linux/issues/89 Signed-off-by: Azeem Shaikh <azeemshaikh38@gmail.com> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20230516143956.1367827-1-azeemshaikh38@gmail.com |
||
![]() |
5bd4990f19 |
trace: Convert trace/seq to use copy_splice_read()
For the splice from the trace seq buffer, just use copy_splice_read(). In the future, something better can probably be done by gifting pages from seq->buf into the pipe, but that would require changing seq->buf into a vmap over an array of pages. Signed-off-by: David Howells <dhowells@redhat.com> cc: Christoph Hellwig <hch@lst.de> cc: Al Viro <viro@zeniv.linux.org.uk> cc: Jens Axboe <axboe@kernel.dk> cc: Steven Rostedt <rostedt@goodmis.org> cc: Masami Hiramatsu <mhiramat@kernel.org> cc: linux-kernel@vger.kernel.org cc: linux-trace-kernel@vger.kernel.org cc: linux-fsdevel@vger.kernel.org cc: linux-block@vger.kernel.org cc: linux-mm@kvack.org Link: https://lore.kernel.org/r/20230522135018.2742245-27-dhowells@redhat.com Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
![]() |
4b512860bd |
tracing: Rename stacktrace field to common_stacktrace
The histogram and synthetic events can use a pseudo event called "stacktrace" that will create a stacktrace at the time of the event and use it just like it was a normal field. We have other pseudo events such as "common_cpu" and "common_timestamp". To stay consistent with that, convert "stacktrace" to "common_stacktrace". As this was used in older kernels, to keep backward compatibility, this will act just like "common_cpu" did with "cpu". That is, "cpu" will be the same as "common_cpu" unless the event has a "cpu" field. In which case, the event's field is used. The same is true with "stacktrace". Also update the documentation to reflect this change. Link: https://lore.kernel.org/linux-trace-kernel/20230523230913.6860e28d@rorschach.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Tom Zanussi <zanussi@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
e919a3f705 |
Minor tracing updates:
- Make buffer_percent read/write. The buffer_percent file is how users can state how long to block on the tracing buffer depending on how much is in the buffer. When it hits the "buffer_percent" it will wake the task waiting on the buffer. For some reason it was set to read-only. This was not noticed because testing was done as root without SELinux, but with SELinux it will prevent even root to write to it without having CAP_DAC_OVERRIDE. - The "touched_functions" was added this merge window, but one of the reasons for adding it was not implemented. That was to show what functions were not only touched, but had either a direct trampoline attached to it, or a kprobe or live kernel patching that can "hijack" the function to run a different function. The point is to know if there's functions in the kernel that may not be behaving as the kernel code shows. This can be used for debugging. TODO: Add this information to kernel oops too. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZFUcrxQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qgOoAP0U2R6+jvA2ehQFb0UTCH9wEu2uEELA g2CkdPNdn6wJjAD+O1+v5nVkqSpsArjHOhv5OGYrgh+VSXK3Z8EpQ9vUVgg= =nfoh -----END PGP SIGNATURE----- Merge tag 'trace-v6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull more tracing updates from Steven Rostedt: - Make buffer_percent read/write. The buffer_percent file is how users can state how long to block on the tracing buffer depending on how much is in the buffer. When it hits the "buffer_percent" it will wake the task waiting on the buffer. For some reason it was set to read-only. This was not noticed because testing was done as root without SELinux, but with SELinux it will prevent even root to write to it without having CAP_DAC_OVERRIDE. - The "touched_functions" was added this merge window, but one of the reasons for adding it was not implemented. That was to show what functions were not only touched, but had either a direct trampoline attached to it, or a kprobe or live kernel patching that can "hijack" the function to run a different function. The point is to know if there's functions in the kernel that may not be behaving as the kernel code shows. This can be used for debugging. TODO: Add this information to kernel oops too. * tag 'trace-v6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: ftrace: Add MODIFIED flag to show if IPMODIFY or direct was attached tracing: Fix permissions for the buffer_percent file |
||
![]() |
4f94559f40 |
tracing: Fix permissions for the buffer_percent file
This file defines both read and write operations, yet it is being
created as read-only. This means that it can't be written to without the
CAP_DAC_OVERRIDE capability. Fix the permissions to allow root to write
to it without the need to override DAC perms.
Link: https://lore.kernel.org/linux-trace-kernel/20230503140114.3280002-1-omosnace@redhat.com
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Fixes:
|
||
![]() |
d579c468d7 |
tracing updates for 6.4:
- User events are finally ready! After lots of collaboration between various parties, we finally locked down on a stable interface for user events that can also work with user space only tracing. This is implemented by telling the kernel (or user space library, but that part is user space only and not part of this patch set), where the variable is that the application uses to know if something is listening to the trace. There's also an interface to tell the kernel about these events, which will show up in the /sys/kernel/tracing/events/user_events/ directory, where it can be enabled. When it's enabled, the kernel will update the variable, to tell the application to start writing to the kernel. See https://lwn.net/Articles/927595/ - Cleaned up the direct trampolines code to simplify arm64 addition of direct trampolines. Direct trampolines use the ftrace interface but instead of jumping to the ftrace trampoline, applications (mostly BPF) can register their own trampoline for performance reasons. - Some updates to the fprobe infrastructure. fprobes are more efficient than kprobes, as it does not need to save all the registers that kprobes on ftrace do. More work needs to be done before the fprobes will be exposed as dynamic events. - More updates to references to the obsolete path of /sys/kernel/debug/tracing for the new /sys/kernel/tracing path. - Add a seq_buf_do_printk() helper to seq_bufs, to print a large buffer line by line instead of all at once. There's users in production kernels that have a large data dump that originally used printk() directly, but the data dump was larger than what printk() allowed as a single print. Using seq_buf() to do the printing fixes that. - Add /sys/kernel/tracing/touched_functions that shows all functions that was every traced by ftrace or a direct trampoline. This is used for debugging issues where a traced function could have caused a crash by a bpf program or live patching. - Add a "fields" option that is similar to "raw" but outputs the fields of the events. It's easier to read by humans. - Some minor fixes and clean ups. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZEr36xQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6quZHAQCzuqnn2S8DsPd3Sy1vKIYaj0uajW5D Kz1oUJH4F0H7kgEA8XwXkdtfKpOXWc/ZH4LWfL7Orx2wJZJQMV9dVqEPDAE= =w0Z1 -----END PGP SIGNATURE----- Merge tag 'trace-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing updates from Steven Rostedt: - User events are finally ready! After lots of collaboration between various parties, we finally locked down on a stable interface for user events that can also work with user space only tracing. This is implemented by telling the kernel (or user space library, but that part is user space only and not part of this patch set), where the variable is that the application uses to know if something is listening to the trace. There's also an interface to tell the kernel about these events, which will show up in the /sys/kernel/tracing/events/user_events/ directory, where it can be enabled. When it's enabled, the kernel will update the variable, to tell the application to start writing to the kernel. See https://lwn.net/Articles/927595/ - Cleaned up the direct trampolines code to simplify arm64 addition of direct trampolines. Direct trampolines use the ftrace interface but instead of jumping to the ftrace trampoline, applications (mostly BPF) can register their own trampoline for performance reasons. - Some updates to the fprobe infrastructure. fprobes are more efficient than kprobes, as it does not need to save all the registers that kprobes on ftrace do. More work needs to be done before the fprobes will be exposed as dynamic events. - More updates to references to the obsolete path of /sys/kernel/debug/tracing for the new /sys/kernel/tracing path. - Add a seq_buf_do_printk() helper to seq_bufs, to print a large buffer line by line instead of all at once. There are users in production kernels that have a large data dump that originally used printk() directly, but the data dump was larger than what printk() allowed as a single print. Using seq_buf() to do the printing fixes that. - Add /sys/kernel/tracing/touched_functions that shows all functions that was every traced by ftrace or a direct trampoline. This is used for debugging issues where a traced function could have caused a crash by a bpf program or live patching. - Add a "fields" option that is similar to "raw" but outputs the fields of the events. It's easier to read by humans. - Some minor fixes and clean ups. * tag 'trace-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (41 commits) ring-buffer: Sync IRQ works before buffer destruction tracing: Add missing spaces in trace_print_hex_seq() ring-buffer: Ensure proper resetting of atomic variables in ring_buffer_reset_online_cpus recordmcount: Fix memory leaks in the uwrite function tracing/user_events: Limit max fault-in attempts tracing/user_events: Prevent same address and bit per process tracing/user_events: Ensure bit is cleared on unregister tracing/user_events: Ensure write index cannot be negative seq_buf: Add seq_buf_do_printk() helper tracing: Fix print_fields() for __dyn_loc/__rel_loc tracing/user_events: Set event filter_type from type ring-buffer: Clearly check null ptr returned by rb_set_head_page() tracing: Unbreak user events tracing/user_events: Use print_format_fields() for trace output tracing/user_events: Align structs with tabs for readability tracing/user_events: Limit global user_event count tracing/user_events: Charge event allocs to cgroups tracing/user_events: Update documentation for ABI tracing/user_events: Use write ABI in example tracing/user_events: Add ABI self-test ... |
||
![]() |
3357c6e429 |
tracing: Free error logs of tracing instances
When a tracing instance is removed, the error messages that hold errors
that occurred in the instance needs to be freed. The following reports a
memory leak:
# cd /sys/kernel/tracing
# mkdir instances/foo
# echo 'hist:keys=x' > instances/foo/events/sched/sched_switch/trigger
# cat instances/foo/error_log
[ 117.404795] hist:sched:sched_switch: error: Couldn't find field
Command: hist:keys=x
^
# rmdir instances/foo
Then check for memory leaks:
# echo scan > /sys/kernel/debug/kmemleak
# cat /sys/kernel/debug/kmemleak
unreferenced object 0xffff88810d8ec700 (size 192):
comm "bash", pid 869, jiffies 4294950577 (age 215.752s)
hex dump (first 32 bytes):
60 dd 68 61 81 88 ff ff 60 dd 68 61 81 88 ff ff `.ha....`.ha....
a0 30 8c 83 ff ff ff ff 26 00 0a 00 00 00 00 00 .0......&.......
backtrace:
[<00000000dae26536>] kmalloc_trace+0x2a/0xa0
[<00000000b2938940>] tracing_log_err+0x277/0x2e0
[<000000004a0e1b07>] parse_atom+0x966/0xb40
[<0000000023b24337>] parse_expr+0x5f3/0xdb0
[<00000000594ad074>] event_hist_trigger_parse+0x27f8/0x3560
[<00000000293a9645>] trigger_process_regex+0x135/0x1a0
[<000000005c22b4f2>] event_trigger_write+0x87/0xf0
[<000000002cadc509>] vfs_write+0x162/0x670
[<0000000059c3b9be>] ksys_write+0xca/0x170
[<00000000f1cddc00>] do_syscall_64+0x3e/0xc0
[<00000000868ac68c>] entry_SYSCALL_64_after_hwframe+0x72/0xdc
unreferenced object 0xffff888170c35a00 (size 32):
comm "bash", pid 869, jiffies 4294950577 (age 215.752s)
hex dump (first 32 bytes):
0a 20 20 43 6f 6d 6d 61 6e 64 3a 20 68 69 73 74 . Command: hist
3a 6b 65 79 73 3d 78 0a 00 00 00 00 00 00 00 00 :keys=x.........
backtrace:
[<000000006a747de5>] __kmalloc+0x4d/0x160
[<000000000039df5f>] tracing_log_err+0x29b/0x2e0
[<000000004a0e1b07>] parse_atom+0x966/0xb40
[<0000000023b24337>] parse_expr+0x5f3/0xdb0
[<00000000594ad074>] event_hist_trigger_parse+0x27f8/0x3560
[<00000000293a9645>] trigger_process_regex+0x135/0x1a0
[<000000005c22b4f2>] event_trigger_write+0x87/0xf0
[<000000002cadc509>] vfs_write+0x162/0x670
[<0000000059c3b9be>] ksys_write+0xca/0x170
[<00000000f1cddc00>] do_syscall_64+0x3e/0xc0
[<00000000868ac68c>] entry_SYSCALL_64_after_hwframe+0x72/0xdc
The problem is that the error log needs to be freed when the instance is
removed.
Link: https://lore.kernel.org/lkml/76134d9f-a5ba-6a0d-37b3-28310b4a1e91@alu.unizg.hr/
Link: https://lore.kernel.org/linux-trace-kernel/20230404194504.5790b95f@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Thorsten Leemhuis <regressions@leemhuis.info>
Cc: Ulf Hansson <ulf.hansson@linaro.org>
Cc: Eric Biggers <ebiggers@kernel.org>
Fixes:
|
||
![]() |
e94891641c |
tracing: Fix ftrace_boot_snapshot command line logic
The kernel command line ftrace_boot_snapshot by itself is supposed to
trigger a snapshot at the end of boot up of the main top level trace
buffer. A ftrace_boot_snapshot=foo will do the same for an instance called
foo that was created by trace_instance=foo,...
The logic was broken where if ftrace_boot_snapshot was by itself, it would
trigger a snapshot for all instances that had tracing enabled, regardless
if it asked for a snapshot or not.
When a snapshot is requested for a buffer, the buffer's
tr->allocated_snapshot is set to true. Use that to know if a trace buffer
wants a snapshot at boot up or not.
Since the top level buffer is part of the ftrace_trace_arrays list,
there's no reason to treat it differently than the other buffers. Just
iterate the list if ftrace_boot_snapshot was specified.
Link: https://lkml.kernel.org/r/20230405022341.895334039@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ross Zwisler <zwisler@google.com>
Fixes:
|
||
![]() |
9d52727f80 |
tracing: Have tracing_snapshot_instance_cond() write errors to the appropriate instance
If a trace instance has a failure with its snapshot code, the error
message is to be written to that instance's buffer. But currently, the
message is written to the top level buffer. Worse yet, it may also disable
the top level buffer and not the instance that had the issue.
Link: https://lkml.kernel.org/r/20230405022341.688730321@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ross Zwisler <zwisler@google.com>
Fixes:
|
||
![]() |
80a76994b2 |
tracing: Add "fields" option to show raw trace event fields
The hex, raw and bin formats come from the old PREEMPT_RT patch set latency tracer. That actually gave real alternatives to reading the ascii buffer. But they have started to bit rot and they do not give a good representation of the tracing data. Add "fields" option that will read the trace event fields and parse the data from how the fields are defined: With "fields" = 0 (default) echo 1 > events/sched/sched_switch/enable cat trace <idle>-0 [003] d..2. 540.078653: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/3:1 next_pid=83 next_prio=120 kworker/3:1-83 [003] d..2. 540.078860: sched_switch: prev_comm=kworker/3:1 prev_pid=83 prev_prio=120 prev_state=I ==> next_comm=swapper/3 next_pid=0 next_prio=120 <idle>-0 [003] d..2. 540.206423: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=sshd next_pid=807 next_prio=120 sshd-807 [003] d..2. 540.206531: sched_switch: prev_comm=sshd prev_pid=807 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120 <idle>-0 [001] d..2. 540.206597: sched_switch: prev_comm=swapper/1 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/u16:4 next_pid=58 next_prio=120 kworker/u16:4-58 [001] d..2. 540.206617: sched_switch: prev_comm=kworker/u16:4 prev_pid=58 prev_prio=120 prev_state=I ==> next_comm=bash next_pid=830 next_prio=120 bash-830 [001] d..2. 540.206678: sched_switch: prev_comm=bash prev_pid=830 prev_prio=120 prev_state=R ==> next_comm=kworker/u16:4 next_pid=58 next_prio=120 kworker/u16:4-58 [001] d..2. 540.206696: sched_switch: prev_comm=kworker/u16:4 prev_pid=58 prev_prio=120 prev_state=I ==> next_comm=bash next_pid=830 next_prio=120 bash-830 [001] d..2. 540.206713: sched_switch: prev_comm=bash prev_pid=830 prev_prio=120 prev_state=R ==> next_comm=kworker/u16:4 next_pid=58 next_prio=120 echo 1 > options/fields <...>-998 [002] d..2. 538.643732: sched_switch: next_prio=0x78 (120) next_pid=0x0 (0) next_comm=swapper/2 prev_state=0x20 (32) prev_prio=0x78 (120) prev_pid=0x3e6 (998) prev_comm=trace-cmd <idle>-0 [001] d..2. 538.643806: sched_switch: next_prio=0x78 (120) next_pid=0x33e (830) next_comm=bash prev_state=0x0 (0) prev_prio=0x78 (120) prev_pid=0x0 (0) prev_comm=swapper/1 bash-830 [001] d..2. 538.644106: sched_switch: next_prio=0x78 (120) next_pid=0x3a (58) next_comm=kworker/u16:4 prev_state=0x0 (0) prev_prio=0x78 (120) prev_pid=0x33e (830) prev_comm=bash kworker/u16:4-58 [001] d..2. 538.644130: sched_switch: next_prio=0x78 (120) next_pid=0x33e (830) next_comm=bash prev_state=0x80 (128) prev_prio=0x78 (120) prev_pid=0x3a (58) prev_comm=kworker/u16:4 bash-830 [001] d..2. 538.644180: sched_switch: next_prio=0x78 (120) next_pid=0x3a (58) next_comm=kworker/u16:4 prev_state=0x0 (0) prev_prio=0x78 (120) prev_pid=0x33e (830) prev_comm=bash kworker/u16:4-58 [001] d..2. 538.644185: sched_switch: next_prio=0x78 (120) next_pid=0x33e (830) next_comm=bash prev_state=0x80 (128) prev_prio=0x78 (120) prev_pid=0x3a (58) prev_comm=kworker/u16:4 bash-830 [001] d..2. 538.644204: sched_switch: next_prio=0x78 (120) next_pid=0x0 (0) next_comm=swapper/1 prev_state=0x1 (1) prev_prio=0x78 (120) prev_pid=0x33e (830) prev_comm=bash <idle>-0 [003] d..2. 538.644211: sched_switch: next_prio=0x78 (120) next_pid=0x327 (807) next_comm=sshd prev_state=0x0 (0) prev_prio=0x78 (120) prev_pid=0x0 (0) prev_comm=swapper/3 sshd-807 [003] d..2. 538.644340: sched_switch: next_prio=0x78 (120) next_pid=0x0 (0) next_comm=swapper/3 prev_state=0x1 (1) prev_prio=0x78 (120) prev_pid=0x327 (807) prev_comm=sshd It traces the data safely without using the trace print formatting. Link: https://lore.kernel.org/linux-trace-kernel/20230328145156.497651be@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Beau Belgrave <beaub@linux.microsoft.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
eaba52d63b |
Tracing fixes for 6.3:
- Fix setting affinity of hwlat threads in containers Using sched_set_affinity() has unwanted side effects when being called within a container. Use set_cpus_allowed_ptr() instead. - Fix per cpu thread management of the hwlat tracer * Do not start per_cpu threads if one is already running for the CPU. * When starting per_cpu threads, do not clear the kthread variable as it may already be set to running per cpu threads - Fix return value for test_gen_kprobe_cmd() On error the return value was overwritten by being set to the result of the call from kprobe_event_delete(), which would likely succeed, and thus have the function return success. - Fix splice() reads from the trace file that was broken by |
||
![]() |
e400be674a |
tracing: Make splice_read available again
Since the commit |
||
![]() |
2b79eb73e2 |
probes updates for 6.3:
- Skip negative return code check for snprintf in eprobe. - Add recursive call test cases for kprobe unit test - Add 'char' type to probe events to show it as the character instead of value. - Update kselftest kprobe-event testcase to ignore '__pfx_' symbols. - Fix kselftest to check filter on eprobe event correctly. - Add filter on eprobe to the README file in tracefs. - Fix optprobes to check whether there is 'under unoptimizing' optprobe when optimizing another kprobe correctly. - Fix optprobe to check whether there is 'under unoptimizing' optprobe when fetching the original instruction correctly. - Fix optprobe to free 'forcibly unoptimized' optprobe correctly. -----BEGIN PGP SIGNATURE----- iQEzBAABCgAdFiEEh7BulGwFlgAOi5DV2/sHvwUrPxsFAmP0JdYACgkQ2/sHvwUr Pxt6sQf/TD9Kwqx3XG1tnLPev6yt2nuggUippHwWUFHlJtMyUaLV8aKFqByyEe+j tCQvrFIIJq242xg0Jac/MAf2exlWG9jsmVZPmvC1YzepOAbjXu2eBkIS7LsbeHjF JJypNnEceffWCpNoD6nlvR0xWXenqRbZJwdsGqo3u+fXnzTurEMY2GU2xOyv39tv S1uNLPANJxdMb/2iUsUE3hMbe82dqr8zPcApqWFtTBB6QPHI3B2SjuQHpQxwbTPl bzAl0yQkLSQXprVzT7xJ4xLnzbl1ljgJBci5aX8BFF+VD9oYkypdfYVczBH5VsP9 E3eT9T9lRf4Q99EqxNy5uw7NqQXGQg== =CMPb -----END PGP SIGNATURE----- Merge tag 'probes-v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull kprobes updates from Masami Hiramatsu: - Skip negative return code check for snprintf in eprobe - Add recursive call test cases for kprobe unit test - Add 'char' type to probe events to show it as the character instead of value - Update kselftest kprobe-event testcase to ignore '__pfx_' symbols - Fix kselftest to check filter on eprobe event correctly - Add filter on eprobe to the README file in tracefs - Fix optprobes to check whether there is 'under unoptimizing' optprobe when optimizing another kprobe correctly - Fix optprobe to check whether there is 'under unoptimizing' optprobe when fetching the original instruction correctly - Fix optprobe to free 'forcibly unoptimized' optprobe correctly * tag 'probes-v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: tracing/eprobe: no need to check for negative ret value for snprintf test_kprobes: Add recursed kprobe test case tracing/probe: add a char type to show the character value of traced arguments selftests/ftrace: Fix probepoint testcase to ignore __pfx_* symbols selftests/ftrace: Fix eprobe syntax test case to check filter support tracing/eprobe: Fix to add filter on eprobe description in README file x86/kprobes: Fix arch_check_optimized_kprobe check within optimized_kprobe range x86/kprobes: Fix __recover_optprobed_insn check optimizing logic kprobes: Fix to handle forcibly unoptimized kprobes on freeing_list |
||
![]() |
b72b5fecc1 |
tracing updates for 6.3:
- Add function names as a way to filter function addresses - Add sample module to test ftrace ops and dynamic trampolines - Allow stack traces to be passed from beginning event to end event for synthetic events. This will allow seeing the stack trace of when a task is scheduled out and recorded when it gets scheduled back in. - Add trace event helper __get_buf() to use as a temporary buffer when printing out trace event output. - Add kernel command line to create trace instances on boot up. - Add enabling of events to instances created at boot up. - Add trace_array_puts() to write into instances. - Allow boot instances to take a snapshot at the end of boot up. - Allow live patch modules to include trace events - Minor fixes and clean ups -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCY/PaaBQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qh5iAPoD0LKZzD33rhO5Ec4hoexE0DkqycP3 dvmOMbCBL8GkxwEA+d2gLz/EquSFm166hc4D79Sn3geCqvkwmy8vQWVjIQc= =M82D -----END PGP SIGNATURE----- Merge tag 'trace-v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing updates from Steven Rostedt: - Add function names as a way to filter function addresses - Add sample module to test ftrace ops and dynamic trampolines - Allow stack traces to be passed from beginning event to end event for synthetic events. This will allow seeing the stack trace of when a task is scheduled out and recorded when it gets scheduled back in. - Add trace event helper __get_buf() to use as a temporary buffer when printing out trace event output. - Add kernel command line to create trace instances on boot up. - Add enabling of events to instances created at boot up. - Add trace_array_puts() to write into instances. - Allow boot instances to take a snapshot at the end of boot up. - Allow live patch modules to include trace events - Minor fixes and clean ups * tag 'trace-v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (31 commits) tracing: Remove unnecessary NULL assignment tracepoint: Allow livepatch module add trace event tracing: Always use canonical ftrace path tracing/histogram: Fix stacktrace histogram Documententation tracing/histogram: Fix stacktrace key tracing/histogram: Fix a few problems with stacktrace variable printing tracing: Add BUILD_BUG() to make sure stacktrace fits in strings tracing/histogram: Don't use strlen to find length of stacktrace variables tracing: Allow boot instances to have snapshot buffers tracing: Add trace_array_puts() to write into instance tracing: Add enabling of events to boot instances tracing: Add creation of instances at boot command line tracing: Fix trace_event_raw_event_synth() if else statement samples: ftrace: Make some global variables static ftrace: sample: avoid open-coded 64-bit division samples: ftrace: Include the nospec-branch.h only for x86 tracing: Acquire buffer from temparary trace sequence tracing/histogram: Wrap remaining shell snippets in code blocks tracing/osnoise: No need for schedule_hrtimeout range bpf/tracing: Use stage6 of tracing to not duplicate macros ... |
||
![]() |
1f2d9ffc7a |
Scheduler updates in this cycle are:
- Improve the scalability of the CFS bandwidth unthrottling logic with large number of CPUs. - Fix & rework various cpuidle routines, simplify interaction with the generic scheduler code. Add __cpuidle methods as noinstr to objtool's noinstr detection and fix boatloads of cpuidle bugs & quirks. - Add new ABI: introduce MEMBARRIER_CMD_GET_REGISTRATIONS, to query previously issued registrations. - Limit scheduler slice duration to the sysctl_sched_latency period, to improve scheduling granularity with a large number of SCHED_IDLE tasks. - Debuggability enhancement on sys_exit(): warn about disabled IRQs, but also enable them to prevent a cascade of followup problems and repeat warnings. - Fix the rescheduling logic in prio_changed_dl(). - Micro-optimize cpufreq and sched-util methods. - Micro-optimize ttwu_runnable() - Micro-optimize the idle-scanning in update_numa_stats(), select_idle_capacity() and steal_cookie_task(). - Update the RSEQ code & self-tests - Constify various scheduler methods - Remove unused methods - Refine __init tags - Documentation updates - ... Misc other cleanups, fixes Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmPzbJwRHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1iIvA//ZcEaB8Z6ChLRQjM+bsaudKJu3pdLQbPK iYbP8Da+LsAfxbEfYuGV3m+jIp0LlBOtsI/EezxQrXV+V7FvNyAX9Y00eEu/zlj8 7Jn3LMy/DBYTwH7LwVdcU0MyIVI8ZPc6WNnkx0LOtGZn8n+qfHPSDzcP3CW+a5AV UvllPYpYyEmsX0Eby7CF4Ue8mSmbViw/xR3rNr8ZSve0c25XzKabw8O9kE3jiHxP d/zERJoAYeDyYUEuZqhfn5dTlB4an4IjNEkAfRE5SQ09RA8Gkxsa5Ar8gob9e9M1 eQsdd4/bdhnrkM8L5qDZczqmgCTZ2bukQrxkBXhRDhLgoFxwAn77b+2ZjmIW3Lae AyGqRcDSg1q2oxaYm5ZiuO/t26aDOZu9vPHyHRDGt95EGbZlrp+GgeePyfCigJYz UmPdZAAcHdSymnnnlcvdG37WVvaVkpgWZzd8LbtBi23QR+Zc4WQ2IlgnUS5WKNNf VOBcAcP6E1IslDotZDQCc2dPFFQoQQEssVooyUc5oMytm7BsvxXLOeHG+Ncu/8uc H+U8Qn8jnqTxJbC5hkWQIJlhVKCq2FJrHxxySYTKROfUNcDgCmxboFeAcXTCIU1K T0S+sdoTS/CvtLklRkG0j6B8N4N98mOd9cFwUV3tX+/gMLMep3hCQs5L76JagvC5 skkQXoONNaM= =l1nN -----END PGP SIGNATURE----- Merge tag 'sched-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: - Improve the scalability of the CFS bandwidth unthrottling logic with large number of CPUs. - Fix & rework various cpuidle routines, simplify interaction with the generic scheduler code. Add __cpuidle methods as noinstr to objtool's noinstr detection and fix boatloads of cpuidle bugs & quirks. - Add new ABI: introduce MEMBARRIER_CMD_GET_REGISTRATIONS, to query previously issued registrations. - Limit scheduler slice duration to the sysctl_sched_latency period, to improve scheduling granularity with a large number of SCHED_IDLE tasks. - Debuggability enhancement on sys_exit(): warn about disabled IRQs, but also enable them to prevent a cascade of followup problems and repeat warnings. - Fix the rescheduling logic in prio_changed_dl(). - Micro-optimize cpufreq and sched-util methods. - Micro-optimize ttwu_runnable() - Micro-optimize the idle-scanning in update_numa_stats(), select_idle_capacity() and steal_cookie_task(). - Update the RSEQ code & self-tests - Constify various scheduler methods - Remove unused methods - Refine __init tags - Documentation updates - Misc other cleanups, fixes * tag 'sched-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits) sched/rt: pick_next_rt_entity(): check list_entry sched/deadline: Add more reschedule cases to prio_changed_dl() sched/fair: sanitize vruntime of entity being placed sched/fair: Remove capacity inversion detection sched/fair: unlink misfit task from cpu overutilized objtool: mem*() are not uaccess safe cpuidle: Fix poll_idle() noinstr annotation sched/clock: Make local_clock() noinstr sched/clock/x86: Mark sched_clock() noinstr x86/pvclock: Improve atomic update of last_value in pvclock_clocksource_read() x86/atomics: Always inline arch_atomic64*() cpuidle: tracing, preempt: Squash _rcuidle tracing cpuidle: tracing: Warn about !rcu_is_watching() cpuidle: lib/bug: Disable rcu_is_watching() during WARN/BUG cpuidle: drivers: firmware: psci: Dont instrument suspend code KVM: selftests: Fix build of rseq test exit: Detect and fix irq disabled state in oops cpuidle, arm64: Fix the ARM64 cpuidle logic cpuidle: mvebu: Fix duplicate flags assignment sched/fair: Limit sched slice duration ... |
||
![]() |
8478cca1e3 |
tracing/probe: add a char type to show the character value of traced arguments
There are scenes that we want to show the character value of traced arguments other than a decimal or hexadecimal or string value for debug convinience. I add a new type named 'char' to do it and a new test case file named 'kprobe_args_char.tc' to do selftest for char type. For example: The to be traced function is 'void demo_func(char type, char *name);', we can add a kprobe event as follows to show argument values as we want: echo 'p:myprobe demo_func $arg1:char +0($arg2):char[5]' > kprobe_events we will get the following trace log: ... myprobe: (demo_func+0x0/0x29) arg1='A' arg2={'b','p','f','1',''} Link: https://lore.kernel.org/all/20221219110613.367098-1-dolinux.peng@gmail.com/ Signed-off-by: Donglin Peng <dolinux.peng@gmail.com> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> |
||
![]() |
133921530c |
tracing/eprobe: Fix to add filter on eprobe description in README file
Fix to add a description of the filter on eprobe in README file. This
is required to identify the kernel supports the filter on eprobe or not.
Link: https://lore.kernel.org/all/167309833728.640500.12232259238201433587.stgit@devnote3/
Fixes:
|
||
![]() |
2455f0e124 |
tracing: Always use canonical ftrace path
The canonical location for the tracefs filesystem is at /sys/kernel/tracing. But, from Documentation/trace/ftrace.rst: Before 4.1, all ftrace tracing control files were within the debugfs file system, which is typically located at /sys/kernel/debug/tracing. For backward compatibility, when mounting the debugfs file system, the tracefs file system will be automatically mounted at: /sys/kernel/debug/tracing Many comments and Kconfig help messages in the tracing code still refer to this older debugfs path, so let's update them to avoid confusion. Link: https://lore.kernel.org/linux-trace-kernel/20230215223350.2658616-2-zwisler@google.com Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com> Signed-off-by: Ross Zwisler <zwisler@google.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
9c1c251d67 |
tracing: Allow boot instances to have snapshot buffers
Add to ftrace_boot_snapshot, "=<instance>" name, where the instance will get a snapshot buffer, and will take a snapshot at the end of boot (which will save the boot traces). Link: https://lkml.kernel.org/r/20230207173026.792774721@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Ross Zwisler <zwisler@google.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
d503b8f747 |
tracing: Add trace_array_puts() to write into instance
Add a generic trace_array_puts() that can be used to "trace_puts()" into an allocated trace_array instance. This is just another variant of trace_array_printk(). Link: https://lkml.kernel.org/r/20230207173026.584717290@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Ross Zwisler <zwisler@google.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
c484648083 |
tracing: Add enabling of events to boot instances
Add the format of: trace_instance=foo,sched:sched_switch,irq_handler_entry,initcall That will create the "foo" instance and enable the sched_switch event (here were the "sched" system is explicitly specified), the irq_handler_entry event, and all events under the system initcall. Link: https://lkml.kernel.org/r/20230207173026.386114535@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Ross Zwisler <zwisler@google.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
cb1f98c5e5 |
tracing: Add creation of instances at boot command line
Add kernel command line to add tracing instances. This only creates instances at boot but still does not enable any events to them. Later changes will extend this command line to add enabling of events, filters, and triggers. As well as possibly redirecting trace_printk()! Link: https://lkml.kernel.org/r/20230207173026.186210158@goodmis.org Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Ross Zwisler <zwisler@google.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
3e46d910d8 |
tracing: Fix poll() and select() do not work on per_cpu trace_pipe and trace_pipe_raw
poll() and select() on per_cpu trace_pipe and trace_pipe_raw do not work since kernel 6.1-rc6. This issue is seen after the commit |
||
![]() |
57a30218fa |
Linux 6.2-rc6
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmPW7E8eHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGf7MIAI0JnHN9WvtEukSZ E6j6+cEGWxsvD6q0g3GPolaKOCw7hlv0pWcFJFcUAt0jebspMdxV2oUGJ8RYW7Lg nCcHvEVswGKLAQtQSWw52qotW6fUfMPsNYYB5l31sm1sKH4Cgss0W7l2HxO/1LvG TSeNHX53vNAZ8pVnFYEWCSXC9bzrmU/VALF2EV00cdICmfvjlgkELGXoLKJJWzUp s63fBHYGGURSgwIWOKStoO6HNo0j/F/wcSMx8leY8qDUtVKHj4v24EvSgxUSDBER ch3LiSQ6qf4sw/z7pqruKFthKOrlNmcc0phjiES0xwwGiNhLv0z3rAhc4OM2cgYh SDc/Y/c= =zpaD -----END PGP SIGNATURE----- Merge tag 'v6.2-rc6' into sched/core, to pick up fixes Pick up fixes before merging another batch of cpuidle updates. Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
![]() |
b81a3a100c |
tracing/histogram: Add simple tests for stacktrace usage of synthetic events
Update the selftests to include a test of passing a stacktrace between the events of a synthetic event. Link: https://lkml.kernel.org/r/20230117152236.475439286@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Tom Zanussi <zanussi@kernel.org> Cc: Ross Zwisler <zwisler@google.com> Cc: Ching-lin Yu <chinglinyu@google.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
3bb06eb6e9 |
tracing: Make sure trace_printk() can output as soon as it can be used
Currently trace_printk() can be used as soon as early_trace_init() is
called from start_kernel(). But if a crash happens, and
"ftrace_dump_on_oops" is set on the kernel command line, all you get will
be:
[ 0.456075] <idle>-0 0dN.2. 347519us : Unknown type 6
[ 0.456075] <idle>-0 0dN.2. 353141us : Unknown type 6
[ 0.456075] <idle>-0 0dN.2. 358684us : Unknown type 6
This is because the trace_printk() event (type 6) hasn't been registered
yet. That gets done via an early_initcall(), which may be early, but not
early enough.
Instead of registering the trace_printk() event (and other ftrace events,
which are not trace events) via an early_initcall(), have them registered at
the same time that trace_printk() can be used. This way, if there is a
crash before early_initcall(), then the trace_printk()s will actually be
useful.
Link: https://lkml.kernel.org/r/20230104161412.019f6c55@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Fixes:
|
||
![]() |
408b961146 |
tracing: WARN on rcuidle
ARCH_WANTS_NO_INSTR (a superset of CONFIG_GENERIC_ENTRY) disallows any and all tracing when RCU isn't enabled. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Tony Lindgren <tony@atomide.com> Tested-by: Ulf Hansson <ulf.hansson@linaro.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20230112195541.416110581@infradead.org |
||
![]() |
af9b3fa15d |
Trace probes updates for 6.2:
- New "symstr" type for dynamic events that writes the name of the function+offset into the ring buffer and not just the address - Prevent kernel symbol processing on addresses in user space probes (uprobes). - And minor fixes and clean ups -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCY5yAHxQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qoWoAP9ZLmqgIqlH3Zcms31SR250kLXxsxT3 JHe82hiuI1I3fAD/Z93QLHw9wngLqIMx/wXsdFjTNOGGWdxfclSWI2qI6Q0= =KaJg -----END PGP SIGNATURE----- Merge tag 'trace-probes-v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull trace probes updates from Steven Rostedt: - New "symstr" type for dynamic events that writes the name of the function+offset into the ring buffer and not just the address - Prevent kernel symbol processing on addresses in user space probes (uprobes). - And minor fixes and clean ups * tag 'trace-probes-v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: tracing/probes: Reject symbol/symstr type for uprobe tracing/probes: Add symstr type for dynamic events kprobes: kretprobe events missing on 2-core KVM guest kprobes: Fix check for probe enabled in kill_kprobe() test_kprobes: Fix implicit declaration error of test_kprobes tracing: Fix race where eprobes can be called before the event |
||
![]() |
b26a124cbf |
tracing/probes: Add symstr type for dynamic events
Add 'symstr' type for storing the kernel symbol as a string data instead of the symbol address. This allows us to filter the events by wildcard symbol name. e.g. # echo 'e:wqfunc workqueue.workqueue_execute_start symname=$function:symstr' >> dynamic_events # cat events/eprobes/wqfunc/format name: wqfunc ID: 2110 format: field:unsigned short common_type; offset:0; size:2; signed:0; field:unsigned char common_flags; offset:2; size:1; signed:0; field:unsigned char common_preempt_count; offset:3; size:1; signed:0; field:int common_pid; offset:4; size:4; signed:1; field:__data_loc char[] symname; offset:8; size:4; signed:1; print fmt: " symname=\"%s\"", __get_str(symname) Note that there is already 'symbol' type which just change the print format (so it still stores the symbol address in the tracing ring buffer.) On the other hand, 'symstr' type stores the actual "symbol+offset/size" data as a string. Link: https://lore.kernel.org/all/166679930847.1528100.4124308529180235965.stgit@devnote3/ Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> |
||
![]() |
ea47666ca4 |
tracing: Improve panic/die notifiers
Currently the tracing dump_on_oops feature is implemented through separate notifiers, one for die/oops and the other for panic; given they have the same functionality, let's unify them. Also improve the function comment and change the priority of the notifier to make it execute earlier, avoiding showing useless trace data (like the callback names for the other notifiers); finally, we also removed an unnecessary header inclusion. Link: https://lkml.kernel.org/r/20220819221731.480795-7-gpiccoli@igalia.com Cc: Petr Mladek <pmladek@suse.com> Cc: Sergei Shtylyov <sergei.shtylyov@gmail.com> Signed-off-by: Guilherme G. Piccoli <gpiccoli@igalia.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
c1ac03af6e |
tracing: Fix infinite loop in tracing_read_pipe on overflowed print_trace_line
print_trace_line may overflow seq_file buffer. If the event is not
consumed, the while loop keeps peeking this event, causing a infinite loop.
Link: https://lkml.kernel.org/r/20221129113009.182425-1-yangjihong1@huawei.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: stable@vger.kernel.org
Fixes:
|
||
![]() |
e25e43a4e5 |
tracing: Fix complicated dependency of CONFIG_TRACER_MAX_TRACE
Both CONFIG_OSNOISE_TRACER and CONFIG_HWLAT_TRACER partially enables the
CONFIG_TRACER_MAX_TRACE code, but that is complicated and has
introduced a bug; It declares tracing_max_lat_fops data structure outside
of #ifdefs, but since it is defined only when CONFIG_TRACER_MAX_TRACE=y
or CONFIG_HWLAT_TRACER=y, if only CONFIG_OSNOISE_TRACER=y, that
declaration comes to a definition(!).
To fix this issue, and do not repeat the similar problem, makes
CONFIG_OSNOISE_TRACER and CONFIG_HWLAT_TRACER enables the
CONFIG_TRACER_MAX_TRACE always. It has there benefits;
- Fix the tracing_max_lat_fops bug
- Simplify the #ifdefs
- CONFIG_TRACER_MAX_TRACE code is fully enabled, or not.
Link: https://lore.kernel.org/linux-trace-kernel/167033628155.4111793.12185405690820208159.stgit@devnote3
Fixes:
|
||
![]() |
ccf47f5cc4 |
tracing: Add nohitcount option for suppressing display of raw hitcount
Add 'nohitcount' ('NOHC' for short) option for suppressing display of the raw hitcount column in the histogram. Note that you must specify at least one value except raw 'hitcount' when you specify this nohitcount option. # cd /sys/kernel/debug/tracing/ # echo hist:keys=pid:vals=runtime.percent,runtime.graph:sort=pid:NOHC > \ events/sched/sched_stat_runtime/trigger # sleep 10 # cat events/sched/sched_stat_runtime/hist # event histogram # # trigger info: hist:keys=pid:vals=runtime.percent,runtime.graph:sort=pid:size=2048:nohitcount [active] # { pid: 8 } runtime (%): 3.02 runtime: # { pid: 14 } runtime (%): 2.25 runtime: { pid: 16 } runtime (%): 2.25 runtime: { pid: 26 } runtime (%): 0.17 runtime: { pid: 61 } runtime (%): 11.52 runtime: #### { pid: 67 } runtime (%): 1.56 runtime: { pid: 68 } runtime (%): 0.84 runtime: { pid: 76 } runtime (%): 0.92 runtime: { pid: 117 } runtime (%): 2.50 runtime: # { pid: 146 } runtime (%): 49.88 runtime: #################### { pid: 157 } runtime (%): 16.63 runtime: ###### { pid: 158 } runtime (%): 8.38 runtime: ### Link: https://lore.kernel.org/linux-trace-kernel/166610814787.56030.4980636083486339906.stgit@devnote2 Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Tom Zanussi <zanussi@kernel.org> Tested-by: Tom Zanussi <zanussi@kernel.org> |
||
![]() |
a2c54256de |
tracing: Add .graph suffix option to histogram value
Add the .graph suffix which shows the bar graph of the histogram value. For example, the below example shows that the bar graph of the histogram of the runtime for each tasks. ------ # cd /sys/kernel/debug/tracing/ # echo hist:keys=pid:vals=runtime.graph:sort=pid > \ events/sched/sched_stat_runtime/trigger # sleep 10 # cat events/sched/sched_stat_runtime/hist # event histogram # # trigger info: hist:keys=pid:vals=hitcount,runtime.graph:sort=pid:size=2048 [active] # { pid: 14 } hitcount: 2 runtime: { pid: 16 } hitcount: 8 runtime: { pid: 26 } hitcount: 1 runtime: { pid: 57 } hitcount: 3 runtime: { pid: 61 } hitcount: 20 runtime: ### { pid: 66 } hitcount: 2 runtime: { pid: 70 } hitcount: 3 runtime: { pid: 72 } hitcount: 2 runtime: { pid: 145 } hitcount: 14 runtime: #################### { pid: 152 } hitcount: 5 runtime: ####### { pid: 153 } hitcount: 2 runtime: #### Totals: Hits: 62 Entries: 11 Dropped: 0 ------- Link: https://lore.kernel.org/linux-trace-kernel/166610813953.56030.10944148382315789485.stgit@devnote2 Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Tom Zanussi <zanussi@kernel.org> Tested-by: Tom Zanussi <zanussi@kernel.org> |
||
![]() |
abaa5258ce |
tracing: Add .percent suffix option to histogram values
Add .percent suffix option to show the histogram values in percentage. This feature is useful when we need yo undersntand the overall trend for the histograms of large values. E.g. this shows the runtime percentage for each tasks. ------ # cd /sys/kernel/debug/tracing/ # echo hist:keys=pid:vals=hitcount,runtime.percent:sort=pid > \ events/sched/sched_stat_runtime/trigger # sleep 10 # cat events/sched/sched_stat_runtime/hist # event histogram # # trigger info: hist:keys=pid:vals=hitcount,runtime.percent:sort=pid:size=2048 [active] # { pid: 8 } hitcount: 7 runtime (%): 4.14 { pid: 14 } hitcount: 5 runtime (%): 3.69 { pid: 16 } hitcount: 11 runtime (%): 3.41 { pid: 61 } hitcount: 41 runtime (%): 19.75 { pid: 65 } hitcount: 4 runtime (%): 1.48 { pid: 70 } hitcount: 6 runtime (%): 3.60 { pid: 72 } hitcount: 2 runtime (%): 1.10 { pid: 144 } hitcount: 10 runtime (%): 32.01 { pid: 151 } hitcount: 8 runtime (%): 22.66 { pid: 152 } hitcount: 2 runtime (%): 8.10 Totals: Hits: 96 Entries: 10 Dropped: 0 ----- Link: https://lore.kernel.org/linux-trace-kernel/166610813077.56030.4238090506973562347.stgit@devnote2 Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Tom Zanussi <zanussi@kernel.org> Tested-by: Tom Zanussi <zanussi@kernel.org> |
||
![]() |
a76d4648a0 |
tracing: Make tracepoint_print_iter static
After change in commit
|
||
![]() |
04aabc32fb |
ring_buffer: Remove unused "event" parameter
After commit
|
||
![]() |
e18eb8783e |
tracing: Add tracing_reset_all_online_cpus_unlocked() function
Currently the tracing_reset_all_online_cpus() requires the trace_types_lock held. But only one caller of this function actually has that lock held before calling it, and the other just takes the lock so that it can call it. More users of this function is needed where the lock is not held. Add a tracing_reset_all_online_cpus_unlocked() function for the one use case that calls it without being held, and also add a lockdep_assert to make sure it is held when called. Then have tracing_reset_all_online_cpus() take the lock internally, such that callers do not need to worry about taking it. Link: https://lkml.kernel.org/r/20221123192741.658273220@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
067df9e0ad |
tracing: Fix potential null-pointer-access of entry in list 'tr->err_log'
Entries in list 'tr->err_log' will be reused after entry number
exceed TRACING_LOG_ERRS_MAX.
The cmd string of the to be reused entry will be freed first then
allocated a new one. If the allocation failed, then the entry will
still be in list 'tr->err_log' but its 'cmd' field is set to be NULL,
later access of 'cmd' is risky.
Currently above problem can cause the loss of 'cmd' information of first
entry in 'tr->err_log'. When execute `cat /sys/kernel/tracing/error_log`,
reproduce logs like:
[ 37.495100] trace_kprobe: error: Maxactive is not for kprobe(null) ^
[ 38.412517] trace_kprobe: error: Maxactive is not for kprobe
Command: p4:myprobe2 do_sys_openat2
^
Link: https://lore.kernel.org/linux-trace-kernel/20221114104632.3547266-1-zhengyejian1@huawei.com
Fixes:
|
||
![]() |
649e72070c |
tracing: Fix memory leak in tracing_read_pipe()
kmemleak reports this issue:
unreferenced object 0xffff888105a18900 (size 128):
comm "test_progs", pid 18933, jiffies 4336275356 (age 22801.766s)
hex dump (first 32 bytes):
25 73 00 90 81 88 ff ff 26 05 00 00 42 01 58 04 %s......&...B.X.
03 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000560143a1>] __kmalloc_node_track_caller+0x4a/0x140
[<000000006af00822>] krealloc+0x8d/0xf0
[<00000000c309be6a>] trace_iter_expand_format+0x99/0x150
[<000000005a53bdb6>] trace_check_vprintf+0x1e0/0x11d0
[<0000000065629d9d>] trace_event_printf+0xb6/0xf0
[<000000009a690dc7>] trace_raw_output_bpf_trace_printk+0x89/0xc0
[<00000000d22db172>] print_trace_line+0x73c/0x1480
[<00000000cdba76ba>] tracing_read_pipe+0x45c/0x9f0
[<0000000015b58459>] vfs_read+0x17b/0x7c0
[<000000004aeee8ed>] ksys_read+0xed/0x1c0
[<0000000063d3d898>] do_syscall_64+0x3b/0x90
[<00000000a06dda7f>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
iter->fmt alloced in
tracing_read_pipe() -> .. ->trace_iter_expand_format(), but not
freed, to fix, add free in tracing_release_pipe()
Link: https://lkml.kernel.org/r/1667819090-4643-1-git-send-email-wangyufen@huawei.com
Cc: stable@vger.kernel.org
Fixes:
|
||
![]() |
42fb0a1e84 |
tracing/ring-buffer: Have polling block on watermark
Currently the way polling works on the ring buffer is broken. It will
return immediately if there's any data in the ring buffer whereas a read
will block until the watermark (defined by the tracefs buffer_percent file)
is hit.
That is, a select() or poll() will return as if there's data available,
but then the following read will block. This is broken for the way
select()s and poll()s are supposed to work.
Have the polling on the ring buffer also block the same way reads and
splice does on the ring buffer.
Link: https://lkml.kernel.org/r/20221020231427.41be3f26@gandalf.local.home
Cc: Linux Trace Kernel <linux-trace-kernel@vger.kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Primiano Tucci <primiano@google.com>
Cc: stable@vger.kernel.org
Fixes:
|
||
![]() |
a541a9559b |
tracing: Do not free snapshot if tracer is on cmdline
The ftrace_boot_snapshot and alloc_snapshot cmdline options allocate the
snapshot buffer at boot up for use later. The ftrace_boot_snapshot in
particular requires the snapshot to be allocated because it will take a
snapshot at the end of boot up allowing to see the traces that happened
during boot so that it's not lost when user space takes over.
When a tracer is registered (started) there's a path that checks if it
requires the snapshot buffer or not, and if it does not and it was
allocated it will do a synchronization and free the snapshot buffer.
This is only required if the previous tracer was using it for "max
latency" snapshots, as it needs to make sure all max snapshots are
complete before freeing. But this is only needed if the previous tracer
was using the snapshot buffer for latency (like irqoff tracer and
friends). But it does not make sense to free it, if the previous tracer
was not using it, and the snapshot was allocated by the cmdline
parameters. This basically takes away the point of allocating it in the
first place!
Note, the allocated snapshot worked fine for just trace events, but fails
when a tracer is enabled on the cmdline.
Further investigation, this goes back even further and it does not require
a tracer on the cmdline to fail. Simply enable snapshots and then enable a
tracer, and it will remove the snapshot.
Link: https://lkml.kernel.org/r/20221005113757.041df7fe@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Fixes:
|
||
![]() |
e841e8bfac |
tracing: Fix spelling mistake "preapre" -> "prepare"
There is a spelling mistake in the trace text. Fix it. Link: https://lkml.kernel.org/r/20220928215828.66325-1-colin.i.king@gmail.com Signed-off-by: Colin Ian King <colin.i.king@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
2b0fd9a59b |
tracing: Wake up waiters when tracing is disabled
When tracing is disabled, there's no reason that waiters should stay
waiting, wake them up, otherwise tasks get stuck when they should be
flushing the buffers.
Cc: stable@vger.kernel.org
Fixes:
|
||
![]() |
01b2a52171 |
tracing: Add ioctl() to force ring buffer waiters to wake up
If a process is waiting on the ring buffer for data, there currently isn't
a clean way to force it to wake up. Add an ioctl call that will force any
tasks that are waiting on the trace_pipe_raw file to wake up.
Link: https://lkml.kernel.org/r/20220929095029.117f913f@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes:
|
||
![]() |
f3ddb74ad0 |
tracing: Wake up ring buffer waiters on closing of the file
When the file that represents the ring buffer is closed, there may be
waiters waiting on more input from the ring buffer. Call
ring_buffer_wake_waiters() to wake up any waiters when the file is
closed.
Link: https://lkml.kernel.org/r/20220927231825.182416969@goodmis.org
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes:
|
||
![]() |
c0a581d712 |
tracing: Disable interrupt or preemption before acquiring arch_spinlock_t
It was found that some tracing functions in kernel/trace/trace.c acquire an arch_spinlock_t with preemption and irqs enabled. An example is the tracing_saved_cmdlines_size_read() function which intermittently causes a "BUG: using smp_processor_id() in preemptible" warning when the LTP read_all_proc test is run. That can be problematic in case preemption happens after acquiring the lock. Add the necessary preemption or interrupt disabling code in the appropriate places before acquiring an arch_spinlock_t. The convention here is to disable preemption for trace_cmdline_lock and interupt for max_lock. Link: https://lkml.kernel.org/r/20220922145622.1744826-1-longman@redhat.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Will Deacon <will@kernel.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: stable@vger.kernel.org Fixes: |
||
![]() |
965a9d75e3 |
Tracing updates for 5.20 / 6.0
- Runtime verification infrastructure This is the biggest change for this pull request. It introduces the runtime verification that is necessary for running Linux on safety critical systems. It allows for deterministic automata models to be inserted into the kernel that will attach to tracepoints, where the information on these tracepoints will move the model from state to state. If a state is encountered that does not belong to the model, it will then activate a given reactor, that could just inform the user or even panic the kernel (for which safety critical systems will detect and can recover from). - Two monitor models are also added: Wakeup In Preemptive (WIP - not to be confused with "work in progress"), and Wakeup While Not Running (WWNR). - Added __vstring() helper to the TRACE_EVENT() macro to replace several vsnprintf() usages that were all doing it wrong. - eprobes now can have their event autogenerated when the event name is left off. - The rest is various cleanups and fixes. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCYu0yzRQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qj4HAP4tQtV55rjj4DQ5XIXmtI3/64PmyRSJ +y4DEXi1UvEUCQD/QAuQfWoT/7gh35ltkfeS4t3ockzy14rrkP5drZigiQA= =kEtM -----END PGP SIGNATURE----- Merge tag 'trace-v6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing updates from Steven Rostedt: - Runtime verification infrastructure This is the biggest change here. It introduces the runtime verification that is necessary for running Linux on safety critical systems. It allows for deterministic automata models to be inserted into the kernel that will attach to tracepoints, where the information on these tracepoints will move the model from state to state. If a state is encountered that does not belong to the model, it will then activate a given reactor, that could just inform the user or even panic the kernel (for which safety critical systems will detect and can recover from). - Two monitor models are also added: Wakeup In Preemptive (WIP - not to be confused with "work in progress"), and Wakeup While Not Running (WWNR). - Added __vstring() helper to the TRACE_EVENT() macro to replace several vsnprintf() usages that were all doing it wrong. - eprobes now can have their event autogenerated when the event name is left off. - The rest is various cleanups and fixes. * tag 'trace-v6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (50 commits) rv: Unlock on error path in rv_unregister_reactor() tracing: Use alignof__(struct {type b;}) instead of offsetof() tracing/eprobe: Show syntax error logs in error_log file scripts/tracing: Fix typo 'the the' in comment tracepoints: It is CONFIG_TRACEPOINTS not CONFIG_TRACEPOINT tracing: Use free_trace_buffer() in allocate_trace_buffers() tracing: Use a struct alignof to determine trace event field alignment rv/reactor: Add the panic reactor rv/reactor: Add the printk reactor rv/monitor: Add the wwnr monitor rv/monitor: Add the wip monitor rv/monitor: Add the wip monitor skeleton created by dot2k Documentation/rv: Add deterministic automata instrumentation documentation Documentation/rv: Add deterministic automata monitor synthesis documentation tools/rv: Add dot2k Documentation/rv: Add deterministic automaton documentation tools/rv: Add dot2c Documentation/rv: Add a basic documentation rv/include: Add instrumentation helper functions rv/include: Add deterministic automata monitor definition via C macros ... |
||
![]() |
7d9d077c78 |
RCU pull request for v5.20 (or whatever)
This pull request contains the following branches: doc.2022.06.21a: Documentation updates. fixes.2022.07.19a: Miscellaneous fixes. nocb.2022.07.19a: Callback-offload updates, perhaps most notably a new RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to be offloaded at boot time, regardless of kernel boot parameters. This is useful to battery-powered systems such as ChromeOS and Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel boot parameter prevents offloaded callbacks from interfering with real-time workloads and with energy-efficiency mechanisms. poll.2022.07.21a: Polled grace-period updates, perhaps most notably making these APIs account for both normal and expedited grace periods. rcu-tasks.2022.06.21a: Tasks RCU updates, perhaps most notably reducing the CPU overhead of RCU tasks trace grace periods by more than a factor of two on a system with 15,000 tasks. The reduction is expected to increase with the number of tasks, so it seems reasonable to hypothesize that a system with 150,000 tasks might see a 20-fold reduction in CPU overhead. torture.2022.06.21a: Torture-test updates. ctxt.2022.07.05a: Updates that merge RCU's dyntick-idle tracking into context tracking, thus reducing the overhead of transitioning to kernel mode from either idle or nohz_full userspace execution for kernels that track context independently of RCU. This is expected to be helpful primarily for kernels built with CONFIG_NO_HZ_FULL=y. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmLgMcgTHHBhdWxtY2tA a2VybmVsLm9yZwAKCRCevxLzctn7jArXD/0fjbCwqpRjHVTzjMY8jN4zDkqZZD6m g8Fx27hZ4ToNFwRptyHwNezrNj14skjAJEXfdjaVw32W62ivXvf0HINvSzsTLCSq k2kWyBdXLc9CwY5p5W4smnpn5VoAScjg5PoPL59INoZ/Zziji323C7Zepl/1DYJt 0T6bPCQjo1ZQoDUCyVpSjDmAqxnderWG0MeJVt74GkLqmnYLANg0GH8c7mH4+9LL kVGlLp5nlPgNJ4FEoFdMwNU8T/ETmaVld/m2dkiawjkXjJzB2XKtBigU91DDmXz5 7DIdV4ABrxiy4kGNqtIe/jFgnKyVD7xiDpyfjd6KTeDr/rDS8u2ZH7+1iHsyz3g0 Np/tS3vcd0KR+gI/d0eXxPbgm5sKlCmKw/nU2eArpW/+4LmVXBUfHTG9Jg+LJmBc JrUh6aEdIZJZHgv/nOQBNig7GJW43IG50rjuJxAuzcxiZNEG5lUSS23ysaA9CPCL PxRWKSxIEfK3kdmvVO5IIbKTQmIBGWlcWMTcYictFSVfBgcCXpPAksGvqA5JiUkc egW+xLFo/7K+E158vSKsVqlWZcEeUbsNJ88QOlpqnRgH++I2Yv/LhK41XfJfpH+Y ALxVaDd+mAq6v+qSHNVq9wT3ozXIPy/zK1hDlMIqx40h2YvaEsH4je+521oSoN9r vX60+QNxvUBLwA== =vUNm -----END PGP SIGNATURE----- Merge tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu Pull RCU updates from Paul McKenney: - Documentation updates - Miscellaneous fixes - Callback-offload updates, perhaps most notably a new RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to be offloaded at boot time, regardless of kernel boot parameters. This is useful to battery-powered systems such as ChromeOS and Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel boot parameter prevents offloaded callbacks from interfering with real-time workloads and with energy-efficiency mechanisms - Polled grace-period updates, perhaps most notably making these APIs account for both normal and expedited grace periods - Tasks RCU updates, perhaps most notably reducing the CPU overhead of RCU tasks trace grace periods by more than a factor of two on a system with 15,000 tasks. The reduction is expected to increase with the number of tasks, so it seems reasonable to hypothesize that a system with 150,000 tasks might see a 20-fold reduction in CPU overhead - Torture-test updates - Updates that merge RCU's dyntick-idle tracking into context tracking, thus reducing the overhead of transitioning to kernel mode from either idle or nohz_full userspace execution for kernels that track context independently of RCU. This is expected to be helpful primarily for kernels built with CONFIG_NO_HZ_FULL=y * tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (98 commits) rcu: Add irqs-disabled indicator to expedited RCU CPU stall warnings rcu: Diagnose extended sync_rcu_do_polled_gp() loops rcu: Put panic_on_rcu_stall() after expedited RCU CPU stall warnings rcutorture: Test polled expedited grace-period primitives rcu: Add polled expedited grace-period primitives rcutorture: Verify that polled GP API sees synchronous grace periods rcu: Make Tiny RCU grace periods visible to polled APIs rcu: Make polled grace-period API account for expedited grace periods rcu: Switch polled grace-period APIs to ->gp_seq_polled rcu/nocb: Avoid polling when my_rdp->nocb_head_rdp list is empty rcu/nocb: Add option to opt rcuo kthreads out of RT priority rcu: Add nocb_cb_kthread check to rcu_is_callbacks_kthread() rcu/nocb: Add an option to offload all CPUs on boot rcu/nocb: Fix NOCB kthreads spawn failure with rcu_nocb_rdp_deoffload() direct call rcu/nocb: Invert rcu_state.barrier_mutex VS hotplug lock locking order rcu/nocb: Add/del rdp to iterate from rcuog itself rcu/tree: Add comment to describe GP-done condition in fqs loop rcu: Initialize first_gp_fqs at declaration in rcu_gp_fqs() rcu/kvfree: Remove useless monitor_todo flag rcu: Cleanup RCU urgency state for offline CPU ... |
||
![]() |
59927cbe3f |
tracing: Use free_trace_buffer() in allocate_trace_buffers()
In allocate_trace_buffers(), if allocating tr->max_buffer fails, we can directly call free_trace_buffer to free tr->array_buffer. Link: https://lkml.kernel.org/r/65f0702d-07f6-08de-2a07-4c50af56a67b@huawei.com Signed-off-by: Zhiqiang Liu <liuzhiqiang26@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
102227b970 |
rv: Add Runtime Verification (RV) interface
RV is a lightweight (yet rigorous) method that complements classical exhaustive verification techniques (such as model checking and theorem proving) with a more practical approach to complex systems. RV works by analyzing the trace of the system's actual execution, comparing it against a formal specification of the system behavior. RV can give precise information on the runtime behavior of the monitored system while enabling the reaction for unexpected events, avoiding, for example, the propagation of a failure on safety-critical systems. The development of this interface roots in the development of the paper: De Oliveira, Daniel Bristot; Cucinotta, Tommaso; De Oliveira, Romulo Silva. Efficient formal verification for the Linux kernel. In: International Conference on Software Engineering and Formal Methods. Springer, Cham, 2019. p. 315-332. And: De Oliveira, Daniel Bristot. Automata-based formal analysis and verification of the real-time Linux kernel. PhD Thesis, 2020. The RV interface resembles the tracing/ interface on purpose. The current path for the RV interface is /sys/kernel/tracing/rv/. It presents these files: "available_monitors" - List the available monitors, one per line. For example: # cat available_monitors wip wwnr "enabled_monitors" - Lists the enabled monitors, one per line; - Writing to it enables a given monitor; - Writing a monitor name with a '!' prefix disables it; - Truncating the file disables all enabled monitors. For example: # cat enabled_monitors # echo wip > enabled_monitors # echo wwnr >> enabled_monitors # cat enabled_monitors wip wwnr # echo '!wip' >> enabled_monitors # cat enabled_monitors wwnr # echo > enabled_monitors # cat enabled_monitors # Note that more than one monitor can be enabled concurrently. "monitoring_on" - It is an on/off general switcher for monitoring. Note that it does not disable enabled monitors or detach events, but stop the per-entity monitors of monitoring the events received from the system. It resembles the "tracing_on" switcher. "monitors/" Each monitor will have its one directory inside "monitors/". There the monitor specific files will be presented. The "monitors/" directory resembles the "events" directory on tracefs. For example: # cd monitors/wip/ # ls desc enable # cat desc wakeup in preemptive per-cpu testing monitor. # cat enable 0 For further information, see the comments in the header of kernel/trace/rv/rv.c from this patch. Link: https://lkml.kernel.org/r/a4bfe038f50cb047bfb343ad0e12b0e646ab308b.1659052063.git.bristot@kernel.org Cc: Wim Van Sebroeck <wim@linux-watchdog.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Marco Elver <elver@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: Shuah Khan <skhan@linuxfoundation.org> Cc: Gabriele Paoloni <gpaoloni@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Clark Williams <williams@redhat.com> Cc: Tao Zhou <tao.zhou@linux.dev> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: linux-trace-devel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
95c104c378 |
tracing: Auto generate event name when creating a group of events
Currently when creating a specific group of trace events, take kprobe event as example, the user must use the following format: p:GRP/EVENT [MOD:]KSYM[+OFFS]|KADDR [FETCHARGS], which means user must enter EVENT name, one example is: echo 'p:usb_gadget/config_usb_cfg_link config_usb_cfg_link $arg1' >> kprobe_events It is not simple if there are too many entries because the event name is the same as symbol name. This change allows user to specify no EVENT name, format changed as: p:GRP/ [MOD:]KSYM[+OFFS]|KADDR [FETCHARGS] It will generate event name automatically and one example is: echo 'p:usb_gadget/ config_usb_cfg_link $arg1' >> kprobe_events. Link: https://lore.kernel.org/all/1656296348-16111-4-git-send-email-quic_linyyuan@quicinc.com/ Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Tom Zanussi <zanussi@kernel.org> Signed-off-by: Linyu Yuan <quic_linyyuan@quicinc.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
495fcec864 |
tracing: Fix sleeping while atomic in kdb ftdump
If you drop into kdb and type "ftdump" you'll get a sleeping while atomic warning from memory allocation in trace_find_next_entry(). This appears to have been caused by commit |
||
![]() |
493c182282 |
context_tracking: Take NMI eqs entrypoints over RCU
The RCU dynticks counter is going to be merged into the context tracking subsystem. Prepare with moving the NMI extended quiescent states entrypoints to context tracking. For now those are dumb redirection to existing RCU calls. Acked-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Nicolas Saenz Julienne <nsaenz@kernel.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com> Cc: Yu Liao <liaoyu15@huawei.com> Cc: Phil Auld <pauld@redhat.com> Cc: Paul Gortmaker<paul.gortmaker@windriver.com> Cc: Alex Belits <abelits@marvell.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com> Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com> |
||
![]() |
6f0e6c1598 |
context_tracking: Take IRQ eqs entrypoints over RCU
The RCU dynticks counter is going to be merged into the context tracking subsystem. Prepare with moving the IRQ extended quiescent states entrypoints to context tracking. For now those are dumb redirection to existing RCU calls. [ paulmck: Apply Stephen Rothwell feedback from -next. ] [ paulmck: Apply Nathan Chancellor feedback. ] Acked-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Nicolas Saenz Julienne <nsaenz@kernel.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com> Cc: Yu Liao <liaoyu15@huawei.com> Cc: Phil Auld <pauld@redhat.com> Cc: Paul Gortmaker<paul.gortmaker@windriver.com> Cc: Alex Belits <abelits@marvell.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com> Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com> |
||
![]() |
f4b0d31809 |
tracing: Simplify conditional compilation code in tracing_set_tracer()
Two conditional compilation directives "#ifdef CONFIG_TRACER_MAX_TRACE" are used consecutively, and no other code in between. Simplify conditional the compilation code and only use one "#ifdef CONFIG_TRACER_MAX_TRACE". Link: https://lkml.kernel.org/r/20220602140613.545069-1-sunliming@kylinos.cn Signed-off-by: sunliming <sunliming@kylinos.cn> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
76bfd3de34 |
tracing updates for 5.19:
- The majority of the changes are for fixes and clean ups. Noticeable changes: - Rework trace event triggers code to be easier to interact with. - Support for embedding bootconfig with the kernel (as suppose to having it embedded in initram). This is useful for embedded boards without initram disks. - Speed up boot by parallelizing the creation of tracefs files. - Allow absolute ring buffer timestamps handle timestamps that use more than 59 bits. - Added new tracing clock "TAI" (International Atomic Time) - Have weak functions show up in available_filter_function list as: __ftrace_invalid_address___<invalid-offset> instead of using the name of the function before it. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCYpOgXRQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qjkKAQDbpemxvpFyJlZqT8KgEIXubu+ag2/q p0XDHaPS0zF9OQEAjTxg6GMEbnFYl6fzxZtOoEbiaQ7ppfdhRI8t6sSMVA8= =+nDD -----END PGP SIGNATURE----- Merge tag 'trace-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing updates from Steven Rostedt: "The majority of the changes are for fixes and clean ups. Notable changes: - Rework trace event triggers code to be easier to interact with. - Support for embedding bootconfig with the kernel (as suppose to having it embedded in initram). This is useful for embedded boards without initram disks. - Speed up boot by parallelizing the creation of tracefs files. - Allow absolute ring buffer timestamps handle timestamps that use more than 59 bits. - Added new tracing clock "TAI" (International Atomic Time) - Have weak functions show up in available_filter_function list as: __ftrace_invalid_address___<invalid-offset> instead of using the name of the function before it" * tag 'trace-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (52 commits) ftrace: Add FTRACE_MCOUNT_MAX_OFFSET to avoid adding weak function tracing: Fix comments for event_trigger_separate_filter() x86/traceponit: Fix comment about irq vector tracepoints x86,tracing: Remove unused headers ftrace: Clean up hash direct_functions on register failures tracing: Fix comments of create_filter() tracing: Disable kcov on trace_preemptirq.c tracing: Initialize integer variable to prevent garbage return value ftrace: Fix typo in comment ftrace: Remove return value of ftrace_arch_modify_*() tracing: Cleanup code by removing init "char *name" tracing: Change "char *" string form to "char []" tracing/timerlat: Do not wakeup the thread if the trace stops at the IRQ tracing/timerlat: Print stacktrace in the IRQ handler if needed tracing/timerlat: Notify IRQ new max latency only if stop tracing is set kprobes: Fix build errors with CONFIG_KRETPROBES=n tracing: Fix return value of trace_pid_write() tracing: Fix potential double free in create_var_ref() tracing: Use strim() to remove whitespace instead of doing it manually ftrace: Deal with error return code of the ftrace_process_locs() function ... |
||
![]() |
2decd16f47 |
tracing: Cleanup code by removing init "char *name"
The pointer is assigned to "type->name" anyway. no need to initialize with "preemption". Link: https://lkml.kernel.org/r/20220513075221.26275-1-liqiong@nfschina.com Signed-off-by: liqiong <liqiong@nfschina.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
2d601b9864 |
tracing: Change "char *" string form to "char []"
The "char []" string form declares a single variable. It is better than "char *" which creates two variables in the final assembly. Link: https://lkml.kernel.org/r/20220512143230.28796-1-liqiong@nfschina.com Signed-off-by: liqiong <liqiong@nfschina.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
b27f266f74 |
tracing: Fix return value of trace_pid_write()
Setting set_event_pid with trailing whitespace lead to endless write
system calls like below.
$ strace echo "123 " > /sys/kernel/debug/tracing/set_event_pid
execve("/usr/bin/echo", ["echo", "123 "], ...) = 0
...
write(1, "123 \n", 5) = 4
write(1, "\n", 1) = 0
write(1, "\n", 1) = 0
write(1, "\n", 1) = 0
write(1, "\n", 1) = 0
write(1, "\n", 1) = 0
....
This is because, the result of trace_get_user's are not returned when it
read at least one pid. To fix it, update read variable even if
parser->idx == 0.
The result of applied patch is below.
$ strace echo "123 " > /sys/kernel/debug/tracing/set_event_pid
execve("/usr/bin/echo", ["echo", "123 "], ...) = 0
...
write(1, "123 \n", 5) = 5
close(1) = 0
Link: https://lkml.kernel.org/r/20220503050546.288911-1-vvghjk1234@gmail.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Baik Song An <bsahn@etri.re.kr>
Cc: Hong Yeon Kim <kimhy@etri.re.kr>
Cc: Taeung Song <taeung@reallinux.co.kr>
Cc: linuxgeek@linuxgeek.io
Cc: stable@vger.kernel.org
Fixes:
|
||
![]() |
cb24693d94 |
tracing: Use strim() to remove whitespace instead of doing it manually
The tracing_set_trace_write() function just removes the trailing whitespace from the user supplied tracer name, but the leading whitespace should also be removed. In addition, if the user supplied tracer name contains only a few whitespace characters, the first one will not be removed using the current method, which results it a single whitespace character left in the buf. To fix all of these issues, we use strim() to correctly remove both the leading and trailing whitespace. Link: https://lkml.kernel.org/r/20220121095623.1826679-1-ytcoode@gmail.com Signed-off-by: Yuntao Wang <ytcoode@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
c575afe21c |
tracing: Introduce trace clock tai
A fast/NMI safe accessor for CLOCK_TAI has been introduced. Use it for adding the additional trace clock "tai". Link: https://lkml.kernel.org/r/20220414091805.89667-3-kurt@linutronix.de Signed-off-by: Kurt Kanzenbach <kurt@linutronix.de> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |