Commit Graph

1481 Commits

Author SHA1 Message Date
Steven Rostedt
b65334825f tracing: Have persistent trace instances save KASLR offset
There's no reason to save the KASLR offset for the ring buffer itself.
That is used by the tracer. Now that the tracer has a way to save data in
the persistent memory of the ring buffer, have the tracing infrastructure
take care of the saving of the KASLR offset.

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/20250305164608.792722274@goodmis.org
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2025-03-28 08:39:27 -04:00
Steven Rostedt
4af0a9c518 ring-buffer: Add ring_buffer_meta_scratch()
Now that there's one meta data at the start of the persistent memory used by
the ring buffer, allow the caller to request some memory right after that
data that it can use as its own persistent memory.

Also fix some white space issues with ring_buffer_alloc().

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/20250305164608.619631731@goodmis.org
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2025-03-28 08:39:27 -04:00
Steven Rostedt
bcba8d4dbe ring-buffer: Use kaslr address instead of text delta
Instead of saving off the text and data pointers and using them to compare
with the current boot's text and data pointers, just save off the KASLR
offset. Then that can be used to figure out how to read the previous boots
buffer.

The last_boot_info will now show this offset, but only if it is for a
previous boot:

  ~# cat instances/boot_mapped/last_boot_info
  39000000	[kernel]

  ~# echo function > instances/boot_mapped/current_tracer
  ~# cat instances/boot_mapped/last_boot_info
  # Current

If the KASLR offset saved is for the current boot, the last_boot_info will
show the value of "current".

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/20250305164608.274956504@goodmis.org
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2025-03-28 08:39:26 -04:00
Andy Shevchenko
196a062641 tracing: Mark binary printing functions with __printf() attribute
Binary printing functions are using printf() type of format, and compiler
is not happy about them as is:

kernel/trace/trace.c:3292:9: error: function ‘trace_vbprintk’ might be a candidate for ‘gnu_printf’ format attribute [-Werror=suggest-attribute=format]
kernel/trace/trace_seq.c:182:9: error: function ‘trace_seq_bprintf’ might be a candidate for ‘gnu_printf’ format attribute [-Werror=suggest-attribute=format]

Fix the compilation errors by adding __printf() attribute.

While at it, move existing __printf() attributes from the implementations
to the declarations. IT also fixes incorrect attribute parameters that are
used for trace_array_printk().

Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Kees Cook <kees@kernel.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20250321144822.324050-4-andriy.shevchenko@linux.intel.com
Signed-off-by: Petr Mladek <pmladek@suse.com>
2025-03-28 13:37:11 +01:00
Linus Torvalds
744fab2d9f tracing updates for v6.15:
- Add option traceoff_after_boot
 
   In order to debug kernel boot, it sometimes is helpful to enable tracing
   via the kernel command line. Unfortunately, by the time the login prompt
   appears, the trace is overwritten by the init process and other user space
   start up applications. Adding a "traceoff_after_boot" will disable tracing
   when the kernel passes control to init which will allow developers to be
   able to see the traces that occurred during boot.
 
 - Clean up the mmflags macros that display the GFP flags in trace events
 
   The macros to print the GFP flags for trace events had a bit of
   duplication. The code was restructured to remove duplication and in the
   process it also adds some flags that were missed before.
 
 - Removed some dead code and scripts/draw_functrace.py
 
   draw_functrace.py hasn't worked in years and as nobody complained
   about it, remove it.
 
 - Constify struct event_trigger_ops
 
   The event_trigger_ops is just a structure that has function pointers that
   are assigned when the variables are created. These variables should all be
   constants.
 
 - Other minor clean ups and fixes
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZ+V9IhQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qr4RAP9JhE3n69pGuOVaJTN/LGLr2Axl59n4
 KqZSZS1nUM76/gD6AxYpR7nxyxgJ7VjNkLptS9tSjJVdPDxGAl0v3eO04w4=
 =SU30
 -----END PGP SIGNATURE-----

Merge tag 'trace-v6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull tracing updates from Steven Rostedt:

 - Add option traceoff_after_boot

   In order to debug kernel boot, it sometimes is helpful to enable
   tracing via the kernel command line. Unfortunately, by the time the
   login prompt appears, the trace is overwritten by the init process
   and other user space start up applications.

   Adding a "traceoff_after_boot" will disable tracing when the kernel
   passes control to init which will allow developers to be able to see
   the traces that occurred during boot.

 - Clean up the mmflags macros that display the GFP flags in trace
   events

   The macros to print the GFP flags for trace events had a bit of
   duplication. The code was restructured to remove duplication and in
   the process it also adds some flags that were missed before.

 - Removed some dead code and scripts/draw_functrace.py

   draw_functrace.py hasn't worked in years and as nobody complained
   about it, remove it.

 - Constify struct event_trigger_ops

   The event_trigger_ops is just a structure that has function pointers
   that are assigned when the variables are created. These variables
   should all be constants.

 - Other minor clean ups and fixes

* tag 'trace-v6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  tracing: Replace strncpy with memcpy for fixed-length substring copy
  tracing: Fix synth event printk format for str fields
  tracing: Do not use PERF enums when perf is not defined
  tracing: Ensure module defining synth event cannot be unloaded while tracing
  tracing: fix return value in __ftrace_event_enable_disable for TRACE_REG_UNREGISTER
  tracing/osnoise: Fix possible recursive locking for cpus_read_lock()
  tracing: Align synth event print fmt
  tracing: gfp: vsprintf: Do not print "none" when using %pGg printf format
  tracepoint: Print the function symbol when tracepoint_debug is set
  tracing: Constify struct event_trigger_ops
  scripts/tracing: Remove scripts/tracing/draw_functrace.py
  tracing: Update MAINTAINERS file to include tracepoint.c
  tracing/user_events: Slightly simplify user_seq_show()
  tracing/user_events: Don't use %pK through printk
  tracing: gfp: Remove duplication of recording GFP flags
  tracing: Remove orphaned event_trace_printk
  ring-buffer: Fix typo in comment about header page pointer
  tracing: Add traceoff_after_boot option
2025-03-27 16:22:12 -07:00
Linus Torvalds
31eb415bf6 ftrace changes for v6.15:
- Record function parameters for function and function graph tracers
 
   An option has been added to function tracer (func-args) and the function
   graph tracer (funcgraph-args) that when set, the tracers will record the
   registers that hold the arguments into each function event. On reading of
   the trace, it will use BTF to print those arguments. Most archs support up
   to 6 arguments (depending on the complexity of the arguments) and those
   are printed. If a function has more arguments then what was recorded, the
   output will end with " ... )".
 
     Example of function graph tracer:
 
     6)              | dummy_xmit [dummy](skb = 0x8887c100, dev = 0x872ca000) {
     6)              |   consume_skb(skb = 0x8887c100) {
     6)              |     skb_release_head_state(skb = 0x8887c100) {
     6)  0.178 us    |       sock_wfree(skb = 0x8887c100)
     6)  0.627 us    |     }
 
 - The rest of the changes are minor clean ups and fixes
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZ+M9vRQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qrBGAP9NTn4Lpci69n8FJGfz+UKUEKbzOOeg
 QrkIZIxbm8N56gEA0RaUionWjt1znZXUdBTsE3h+en/Ik0//VZytQcmJBwM=
 =fxuG
 -----END PGP SIGNATURE-----

Merge tag 'ftrace-v6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull ftrace updates from Steven Rostedt:

 - Record function parameters for function and function graph tracers

   An option has been added to function tracer (func-args) and the
   function graph tracer (funcgraph-args) that when set, the tracers
   will record the registers that hold the arguments into each function
   event. On reading of the trace, it will use BTF to print those
   arguments. Most archs support up to 6 arguments (depending on the
   complexity of the arguments) and those are printed.

   If a function has more arguments then what was recorded, the output
   will end with " ... )".

   Example of function graph tracer:

	6)              | dummy_xmit [dummy](skb = 0x8887c100, dev = 0x872ca000) {
	6)              |   consume_skb(skb = 0x8887c100) {
	6)              |     skb_release_head_state(skb = 0x8887c100) {
	6)  0.178 us    |       sock_wfree(skb = 0x8887c100)
	6)  0.627 us    |     }

 - The rest of the changes are minor clean ups and fixes

* tag 'ftrace-v6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  tracing: Use hashtable.h for event_hash
  tracing: Fix use-after-free in print_graph_function_flags during tracer switching
  function_graph: Remove the unused variable func
  ftrace: Add arguments to function tracer
  ftrace: Have funcgraph-args take affect during tracing
  ftrace: Add support for function argument to graph tracer
  ftrace: Add print_function_args()
  ftrace: Have ftrace_free_filter() WARN and exit if ops is active
  fgraph: Correct typo in ftrace_return_to_handler comment
2025-03-27 15:57:29 -07:00
Sebastian Andrzej Siewior
3bffa47a02 tracing: Use preempt_model_str()
Use preempt_model_str() instead of manually conducting the preemption
model.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: "Steven Rostedt (Google)" <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20250314160810.2373416-10-bigeasy@linutronix.de
2025-03-17 11:23:41 +01:00
Sven Schnelle
76fe0337c2 ftrace: Add arguments to function tracer
Wire up the code to print function arguments in the function tracer.
This functionality can be enabled/disabled during runtime with
options/func-args.

        ping-689     [004] b....    77.170220: dummy_xmit(skb = 0x82904800, dev = 0x882d0000) <-dev_hard_start_xmit

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Guo Ren <guoren@kernel.org>
Cc: Donglin Peng <dolinux.peng@gmail.com>
Cc: Zheng Yejian <zhengyejian@huaweicloud.com>
Link: https://lore.kernel.org/20250227185823.154996172@goodmis.org
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Co-developed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2025-03-04 11:27:24 -05:00
Steven Rostedt
937fbf111a tracing: Add traceoff_after_boot option
Sometimes tracing is used to debug issues during the boot process. Since
the trace buffer has a limited amount of storage, it may be prudent to
disable tracing after the boot is finished, otherwise the critical
information may be overwritten.  With this option, the main tracing buffer
will be turned off at the end of the boot process.

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lore.kernel.org/20250208103017.48a7ec83@batman.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2025-02-25 13:46:40 -05:00
Steven Rostedt
129fe71881 tracing: Do not allow mmap() of persistent ring buffer
When trying to mmap a trace instance buffer that is attached to
reserve_mem, it would crash:

 BUG: unable to handle page fault for address: ffffe97bd00025c8
 #PF: supervisor read access in kernel mode
 #PF: error_code(0x0000) - not-present page
 PGD 2862f3067 P4D 2862f3067 PUD 0
 Oops: Oops: 0000 [#1] PREEMPT_RT SMP PTI
 CPU: 4 UID: 0 PID: 981 Comm: mmap-rb Not tainted 6.14.0-rc2-test-00003-g7f1a5e3fbf9e-dirty #233
 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
 RIP: 0010:validate_page_before_insert+0x5/0xb0
 Code: e2 01 89 d0 c3 cc cc cc cc 66 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44 00 00 <48> 8b 46 08 a8 01 75 67 66 90 48 89 f0 8b 50 34 85 d2 74 76 48 89
 RSP: 0018:ffffb148c2f3f968 EFLAGS: 00010246
 RAX: ffff9fa5d3322000 RBX: ffff9fa5ccff9c08 RCX: 00000000b879ed29
 RDX: ffffe97bd00025c0 RSI: ffffe97bd00025c0 RDI: ffff9fa5ccff9c08
 RBP: ffffb148c2f3f9f0 R08: 0000000000000004 R09: 0000000000000004
 R10: 0000000000000000 R11: 0000000000000200 R12: 0000000000000000
 R13: 00007f16a18d5000 R14: ffff9fa5c48db6a8 R15: 0000000000000000
 FS:  00007f16a1b54740(0000) GS:ffff9fa73df00000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: ffffe97bd00025c8 CR3: 00000001048c6006 CR4: 0000000000172ef0
 Call Trace:
  <TASK>
  ? __die_body.cold+0x19/0x1f
  ? __die+0x2e/0x40
  ? page_fault_oops+0x157/0x2b0
  ? search_module_extables+0x53/0x80
  ? validate_page_before_insert+0x5/0xb0
  ? kernelmode_fixup_or_oops.isra.0+0x5f/0x70
  ? __bad_area_nosemaphore+0x16e/0x1b0
  ? bad_area_nosemaphore+0x16/0x20
  ? do_kern_addr_fault+0x77/0x90
  ? exc_page_fault+0x22b/0x230
  ? asm_exc_page_fault+0x2b/0x30
  ? validate_page_before_insert+0x5/0xb0
  ? vm_insert_pages+0x151/0x400
  __rb_map_vma+0x21f/0x3f0
  ring_buffer_map+0x21b/0x2f0
  tracing_buffers_mmap+0x70/0xd0
  __mmap_region+0x6f0/0xbd0
  mmap_region+0x7f/0x130
  do_mmap+0x475/0x610
  vm_mmap_pgoff+0xf2/0x1d0
  ksys_mmap_pgoff+0x166/0x200
  __x64_sys_mmap+0x37/0x50
  x64_sys_call+0x1670/0x1d70
  do_syscall_64+0xbb/0x1d0
  entry_SYSCALL_64_after_hwframe+0x77/0x7f

The reason was that the code that maps the ring buffer pages to user space
has:

	page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);

And uses that in:

	vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);

But virt_to_page() does not work with vmap()'d memory which is what the
persistent ring buffer has. It is rather trivial to allow this, but for
now just disable mmap() of instances that have their ring buffer from the
reserve_mem option.

If an mmap() is performed on a persistent buffer it will return -ENODEV
just like it would if the .mmap field wasn't defined in the
file_operations structure.

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20250214115547.0d7287d3@gandalf.local.home
Fixes: 9b7bdf6f6e ("tracing: Have trace_printk not use binary prints if boot buffer")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2025-02-15 13:59:52 -05:00
Steven Rostedt
60b8f71114 tracing: Have the error of __tracing_resize_ring_buffer() passed to user
Currently if __tracing_resize_ring_buffer() returns an error, the
tracing_resize_ringbuffer() returns -ENOMEM. But it may not be a memory
issue that caused the function to fail. If the ring buffer is memory
mapped, then the resizing of the ring buffer will be disabled. But if the
user tries to resize the buffer, it will get an -ENOMEM returned, which is
confusing because there is plenty of memory. The actual error returned was
-EBUSY, which would make much more sense to the user.

Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20250213134132.7e4505d7@gandalf.local.home
Fixes: 117c39200d ("ring-buffer: Introducing ring-buffer mapping functions")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2025-02-14 12:50:27 -05:00
Linus Torvalds
e8744fbc83 tracing updates for v6.14:
- Cleanup with guard() and free() helpers
 
   There were several places in the code that had a lot of "goto out" in the
   error paths to either unlock a lock or free some memory that was
   allocated. But this is error prone. Convert the code over to use the
   guard() and free() helpers that let the compiler unlock locks or free
   memory when the function exits.
 
 - Update the Rust tracepoint code to use the C code too
 
   There was some duplication of the tracepoint code for Rust that did the
   same logic as the C code. Add a helper that makes it possible for both
   algorithms to use the same logic in one place.
 
 - Add poll to trace event hist files
 
   It is useful to know when an event is triggered, or even with some
   filtering. Since hist files of events get updated when active and the
   event is triggered, allow applications to poll the hist file and wake up
   when an event is triggered. This will let the application know that the
   event it is waiting for happened.
 
 - Add :mod: command to enable events for current or future modules
 
   The function tracer already has a way to enable functions to be traced in
   modules by writing ":mod:<module>" into set_ftrace_filter. That will
   enable either all the functions for the module if it is loaded, or if it
   is not, it will cache that command, and when the module is loaded that
   matches <module>, its functions will be enabled. This also allows init
   functions to be traced. But currently events do not have that feature.
 
   Add the command where if ':mod:<module>' is written into set_event, then
   either all the modules events are enabled if it is loaded, or cache it so
   that the module's events are enabled when it is loaded. This also works
   from the kernel command line, where "trace_event=:mod:<module>", when the
   module is loaded at boot up, its events will be enabled then.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZ5EbMxQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qkZsAP9Amgx9frSbR1pn1t0I3wVnQx7khgOu
 s/b8Ro+vjTx1/QD/RN2AA7f+HK4F27w3Aqfrs0nKXAPtXWsJ9Epp8raG5w8=
 =Pg+4
 -----END PGP SIGNATURE-----

Merge tag 'trace-v6.14-3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull tracing updates from Steven Rostedt:

 - Cleanup with guard() and free() helpers

   There were several places in the code that had a lot of "goto out" in
   the error paths to either unlock a lock or free some memory that was
   allocated. But this is error prone. Convert the code over to use the
   guard() and free() helpers that let the compiler unlock locks or free
   memory when the function exits.

 - Update the Rust tracepoint code to use the C code too

   There was some duplication of the tracepoint code for Rust that did
   the same logic as the C code. Add a helper that makes it possible for
   both algorithms to use the same logic in one place.

 - Add poll to trace event hist files

   It is useful to know when an event is triggered, or even with some
   filtering. Since hist files of events get updated when active and the
   event is triggered, allow applications to poll the hist file and wake
   up when an event is triggered. This will let the application know
   that the event it is waiting for happened.

 - Add :mod: command to enable events for current or future modules

   The function tracer already has a way to enable functions to be
   traced in modules by writing ":mod:<module>" into set_ftrace_filter.
   That will enable either all the functions for the module if it is
   loaded, or if it is not, it will cache that command, and when the
   module is loaded that matches <module>, its functions will be
   enabled. This also allows init functions to be traced. But currently
   events do not have that feature.

   Add the command where if ':mod:<module>' is written into set_event,
   then either all the modules events are enabled if it is loaded, or
   cache it so that the module's events are enabled when it is loaded.
   This also works from the kernel command line, where
   "trace_event=:mod:<module>", when the module is loaded at boot up,
   its events will be enabled then.

* tag 'trace-v6.14-3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (26 commits)
  tracing: Fix output of set_event for some cached module events
  tracing: Fix allocation of printing set_event file content
  tracing: Rename update_cache() to update_mod_cache()
  tracing: Fix #if CONFIG_MODULES to #ifdef CONFIG_MODULES
  selftests/ftrace: Add test that tests event :mod: commands
  tracing: Cache ":mod:" events for modules not loaded yet
  tracing: Add :mod: command to enabled module events
  selftests/tracing: Add hist poll() support test
  tracing/hist: Support POLLPRI event for poll on histogram
  tracing/hist: Add poll(POLLIN) support on hist file
  tracing: Fix using ret variable in tracing_set_tracer()
  tracepoint: Reduce duplication of __DO_TRACE_CALL
  tracing/string: Create and use __free(argv_free) in trace_dynevent.c
  tracing: Switch trace_stat.c code over to use guard()
  tracing: Switch trace_stack.c code over to use guard()
  tracing: Switch trace_osnoise.c code over to use guard() and __free()
  tracing: Switch trace_events_synth.c code over to use guard()
  tracing: Switch trace_events_filter.c code over to use guard()
  tracing: Switch trace_events_trigger.c code over to use guard()
  tracing: Switch trace_events_hist.c code over to use guard()
  ...
2025-01-23 17:51:16 -08:00
Linus Torvalds
2e04247f7c ftrace updates for v6.14:
- Have fprobes built on top of function graph infrastructure
 
   The fprobe logic is an optimized kprobe that uses ftrace to attach to
   functions when a probe is needed at the start or end of the function. The
   fprobe and kretprobe logic implements a similar method as the function
   graph tracer to trace the end of the function. That is to hijack the
   return address and jump to a trampoline to do the trace when the function
   exits. To do this, a shadow stack needs to be created to store the
   original return address.  Fprobes and function graph do this slightly
   differently. Fprobes (and kretprobes) has slots per callsite that are
   reserved to save the return address. This is fine when just a few points
   are traced. But users of fprobes, such as BPF programs, are starting to add
   many more locations, and this method does not scale.
 
   The function graph tracer was created to trace all functions in the
   kernel. In order to do this, when function graph tracing is started, every
   task gets its own shadow stack to hold the return address that is going to
   be traced. The function graph tracer has been updated to allow multiple
   users to use its infrastructure. Now have fprobes be one of those users.
   This will also allow for the fprobe and kretprobe methods to trace the
   return address to become obsolete. With new technologies like CFI that
   need to know about these methods of hijacking the return address, going
   toward a solution that has only one method of doing this will make the
   kernel less complex.
 
 - Cleanup with guard() and free() helpers
 
   There were several places in the code that had a lot of "goto out" in the
   error paths to either unlock a lock or free some memory that was
   allocated. But this is error prone. Convert the code over to use the
   guard() and free() helpers that let the compiler unlock locks or free
   memory when the function exits.
 
 - Remove disabling of interrupts in the function graph tracer
 
   When function graph tracer was first introduced, it could race with
   interrupts and NMIs. To prevent that race, it would disable interrupts and
   not trace NMIs. But the code has changed to allow NMIs and also
   interrupts. This change was done a long time ago, but the disabling of
   interrupts was never removed. Remove the disabling of interrupts in the
   function graph tracer is it is not needed. This greatly improves its
   performance.
 
 - Allow the :mod: command to enable tracing module functions on the kernel
   command line.
 
   The function tracer already has a way to enable functions to be traced in
   modules by writing ":mod:<module>" into set_ftrace_filter. That will
   enable either all the functions for the module if it is loaded, or if it
   is not, it will cache that command, and when the module is loaded that
   matches <module>, its functions will be enabled. This also allows init
   functions to be traced. But currently events do not have that feature.
 
   Because enabling function tracing can be done very early at boot up
   (before scheduling is enabled), the commands that can be done when
   function tracing is started is limited. Having the ":mod:" command to
   trace module functions as they are loaded is very useful. Update the
   kernel command line function filtering to allow it.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZ42E2RQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qqXSAPwOMxuhye8tb1GYG62QD9+w7e6nOmlC
 2GCPj4detnEM2QD/ciivkhespVKhHpZHRewAuSnJgHPSM45NQ3EVESzjWQ4=
 =snbx
 -----END PGP SIGNATURE-----

Merge tag 'ftrace-v6.14' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull ftrace updates from Steven Rostedt:

 - Have fprobes built on top of function graph infrastructure

   The fprobe logic is an optimized kprobe that uses ftrace to attach to
   functions when a probe is needed at the start or end of the function.
   The fprobe and kretprobe logic implements a similar method as the
   function graph tracer to trace the end of the function. That is to
   hijack the return address and jump to a trampoline to do the trace
   when the function exits. To do this, a shadow stack needs to be
   created to store the original return address. Fprobes and function
   graph do this slightly differently. Fprobes (and kretprobes) has
   slots per callsite that are reserved to save the return address. This
   is fine when just a few points are traced. But users of fprobes, such
   as BPF programs, are starting to add many more locations, and this
   method does not scale.

   The function graph tracer was created to trace all functions in the
   kernel. In order to do this, when function graph tracing is started,
   every task gets its own shadow stack to hold the return address that
   is going to be traced. The function graph tracer has been updated to
   allow multiple users to use its infrastructure. Now have fprobes be
   one of those users. This will also allow for the fprobe and kretprobe
   methods to trace the return address to become obsolete. With new
   technologies like CFI that need to know about these methods of
   hijacking the return address, going toward a solution that has only
   one method of doing this will make the kernel less complex.

 - Cleanup with guard() and free() helpers

   There were several places in the code that had a lot of "goto out" in
   the error paths to either unlock a lock or free some memory that was
   allocated. But this is error prone. Convert the code over to use the
   guard() and free() helpers that let the compiler unlock locks or free
   memory when the function exits.

 - Remove disabling of interrupts in the function graph tracer

   When function graph tracer was first introduced, it could race with
   interrupts and NMIs. To prevent that race, it would disable
   interrupts and not trace NMIs. But the code has changed to allow NMIs
   and also interrupts. This change was done a long time ago, but the
   disabling of interrupts was never removed. Remove the disabling of
   interrupts in the function graph tracer is it is not needed. This
   greatly improves its performance.

 - Allow the :mod: command to enable tracing module functions on the
   kernel command line.

   The function tracer already has a way to enable functions to be
   traced in modules by writing ":mod:<module>" into set_ftrace_filter.
   That will enable either all the functions for the module if it is
   loaded, or if it is not, it will cache that command, and when the
   module is loaded that matches <module>, its functions will be
   enabled. This also allows init functions to be traced. But currently
   events do not have that feature.

   Because enabling function tracing can be done very early at boot up
   (before scheduling is enabled), the commands that can be done when
   function tracing is started is limited. Having the ":mod:" command to
   trace module functions as they are loaded is very useful. Update the
   kernel command line function filtering to allow it.

* tag 'ftrace-v6.14' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (26 commits)
  ftrace: Implement :mod: cache filtering on kernel command line
  tracing: Adopt __free() and guard() for trace_fprobe.c
  bpf: Use ftrace_get_symaddr() for kprobe_multi probes
  ftrace: Add ftrace_get_symaddr to convert fentry_ip to symaddr
  Documentation: probes: Update fprobe on function-graph tracer
  selftests/ftrace: Add a test case for repeating register/unregister fprobe
  selftests: ftrace: Remove obsolate maxactive syntax check
  tracing/fprobe: Remove nr_maxactive from fprobe
  fprobe: Add fprobe_header encoding feature
  fprobe: Rewrite fprobe on function-graph tracer
  s390/tracing: Enable HAVE_FTRACE_GRAPH_FUNC
  ftrace: Add CONFIG_HAVE_FTRACE_GRAPH_FUNC
  bpf: Enable kprobe_multi feature if CONFIG_FPROBE is enabled
  tracing/fprobe: Enable fprobe events with CONFIG_DYNAMIC_FTRACE_WITH_ARGS
  tracing: Add ftrace_fill_perf_regs() for perf event
  tracing: Add ftrace_partial_regs() for converting ftrace_regs to pt_regs
  fprobe: Use ftrace_regs in fprobe exit handler
  fprobe: Use ftrace_regs in fprobe entry handler
  fgraph: Pass ftrace_regs to retfunc
  fgraph: Replace fgraph_ret_regs with ftrace_regs
  ...
2025-01-21 15:15:28 -08:00
Steven Rostedt
31f505dc70 ftrace: Implement :mod: cache filtering on kernel command line
Module functions can be set to set_ftrace_filter before the module is
loaded.

  # echo :mod:snd_hda_intel > set_ftrace_filter

This will enable all the functions for the module snd_hda_intel. If that
module is not loaded, it is "cached" in the trace array for when the
module is loaded, its functions will be traced.

But this is not implemented in the kernel command line. That's because the
kernel command line filtering is added very early in boot up as it is
needed to be done before boot time function tracing can start, which is
also available very early in boot up. The code used by the
"set_ftrace_filter" file can not be used that early as it depends on some
other initialization to occur first. But some of the functions can.

Implement the ":mod:" feature of "set_ftrace_filter" in the kernel command
line parsing. Now function tracing on just a single module that is loaded
at boot up can be done.

Adding:

 ftrace=function ftrace_filter=:mod:sna_hda_intel

To the kernel command line will only enable the sna_hda_intel module
functions when the module is loaded, and it will start tracing.

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20250116175832.34e39779@gandalf.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2025-01-16 21:27:10 -05:00
Steven Rostedt
b355247df1 tracing: Cache ":mod:" events for modules not loaded yet
When the :mod: command is written into /sys/kernel/tracing/set_event (or
that file within an instance), if the module specified after the ":mod:"
is not yet loaded, it will store that string internally. When the module
is loaded, it will enable the events as if the module was loaded when the
string was written into the set_event file.

This can also be useful to enable events that are in the init section of
the module, as the events are enabled before the init section is executed.

This also works on the kernel command line:

 trace_event=:mod:<module>

Will enable the events for <module> when it is loaded.

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/20250116143533.514730995@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2025-01-16 09:41:08 -05:00
Steven Rostedt
4c86bc531e tracing: Add :mod: command to enabled module events
Add a :mod: command to enable only events from a given module from the
set_events file.

  echo '*:mod:<module>' > set_events

Or

  echo ':mod:<module>' > set_events

Will enable all events for that module. Specific events can also be
enabled via:

  echo '<event>:mod:<module>' > set_events

Or

  echo '<system>:<event>:mod:<module>' > set_events

Or

  echo '*:<event>:mod:<module>' > set_events

The ":mod:" keyword is consistent with the function tracing filter to
enable functions from a given module.

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/20250116143533.214496360@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2025-01-16 09:41:07 -05:00
Shrikanth Hegde
24e0e61040 tracing: Print lazy preemption model
Print lazy preemption model in ftrace header when latency-format=1.

 # cat /sys/kernel/debug/sched/preempt
 none voluntary full (lazy)

Without patch:
  latency: 0 us, #232946/232946, CPU#40 | (M:unknown VP:0, KP:0, SP:0 HP:0 #P:80)
                                             ^^^^^^^

With Patch:
  latency: 0 us, #1897938/25566788, CPU#16 | (M:lazy VP:0, KP:0, SP:0 HP:0 #P:80)
                                                ^^^^

Now that lazy preemption is part of the kernel, make sure the tracing
infrastructure reflects that.

Link: https://lore.kernel.org/20250103093647.575919-1-sshegde@linux.ibm.com
Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2025-01-14 09:44:33 -05:00
Steven Rostedt
22bec11a56 tracing: Fix using ret variable in tracing_set_tracer()
When the function tracing_set_tracer() switched over to using the guard()
infrastructure, it did not need to save the 'ret' variable and would just
return the value when an error arised, instead of setting ret and jumping
to an out label.

When CONFIG_TRACER_SNAPSHOT is enabled, it had code that expected the
"ret" variable to be initialized to zero and had set 'ret' while holding
an arch_spin_lock() (not used by guard), and then upon releasing the lock
it would check 'ret' and exit if set. But because ret was only set when an
error occurred while holding the locks, 'ret' would be used uninitialized
if there was no error. The code in the CONFIG_TRACER_SNAPSHOT block should
be self contain. Make sure 'ret' is also set when no error occurred.

Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20250106111143.2f90ff65@gandalf.local.home
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Closes: https://lore.kernel.org/r/202412271654.nJVBuwmF-lkp@intel.com/
Fixes: d33b10c0c7 ("tracing: Switch trace.c code over to use guard()")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2025-01-07 11:39:46 -05:00
Steven Rostedt
d1e27ee9c6 tracing: Return -EINVAL if a boot tracer tries to enable the mmiotracer at boot
The mmiotracer is not set to be enabled at boot up from the kernel command
line. If the boot command line tries to enable that tracer, it will fail
to be enabled. The return code is currently zero when that happens so the
caller just thinks it was enabled. Return -EINVAL in this case.

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/20241219201344.854254394@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-12-26 10:38:36 -05:00
Steven Rostedt
d33b10c0c7 tracing: Switch trace.c code over to use guard()
There are several functions in trace.c that have "goto out;" or
equivalent on error in order to release locks or free values that were
allocated. This can be error prone or just simply make the code more
complex.

Switch every location that ends with unlocking a mutex or freeing on error
over to using the guard(mutex)() and __free() infrastructure to let the
compiler worry about releasing locks. This makes the code easier to read
and understand.

There's one place that should probably return an error but instead return
0. This does not change the return as the only changes are to do the
conversion without changing the logic. Fixing that location will have to
come later.

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Link: https://lore.kernel.org/20241224221413.7b8c68c3@batman.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-12-26 10:38:17 -05:00
Lizhi Xu
98feccbf32 tracing: Prevent bad count for tracing_cpumask_write
If a large count is provided, it will trigger a warning in bitmap_parse_user.
Also check zero for it.

Cc: stable@vger.kernel.org
Fixes: 9e01c1b74c ("cpumask: convert kernel trace functions")
Link: https://lore.kernel.org/20241216073238.2573704-1-lizhi.xu@windriver.com
Reported-by: syzbot+0aecfd34fb878546f3fd@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=0aecfd34fb878546f3fd
Tested-by: syzbot+0aecfd34fb878546f3fd@syzkaller.appspotmail.com
Signed-off-by: Lizhi Xu <lizhi.xu@windriver.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-12-23 21:59:15 -05:00
Linus Torvalds
5b83bcdea5 ring-buffer fixes for v6.13:
- Fix possible overflow of mmapped ring buffer with bad offset
 
   If the mmap() to the ring buffer passes in a start address that
   is passed the end of the mmapped file, it is not caught and
   a slab-out-of-bounds is triggered.
 
   Add a check to make sure the start address is within the bounds
 
 - Do not use TP_printk() to boot mapped ring buffers
 
   As a boot mapped ring buffer's data may have pointers that map to
   the previous boot's memory map, it is unsafe to allow the TP_printk()
   to be used to read the boot mapped buffer's events. If a TP_printk()
   points to a static string from within the kernel it will not match
   the current kernel mapping if KASLR is active, and it can fault.
 
   Have it simply print out the raw fields.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZ2QuXRQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qncvAQDf2s2WWsy4pYp2mpRtBXvAPf6tpBdi
 J9eceJQbwJVJHAEApQjEFfbUxLh2WgPU1Cn++PwDA+NLiru70+S0vtDLWwE=
 =OI+v
 -----END PGP SIGNATURE-----

Merge tag 'trace-ringbuffer-v6.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull ring-buffer fixes from Steven Rostedt:

 - Fix possible overflow of mmapped ring buffer with bad offset

   If the mmap() to the ring buffer passes in a start address that is
   passed the end of the mmapped file, it is not caught and a
   slab-out-of-bounds is triggered.

   Add a check to make sure the start address is within the bounds

 - Do not use TP_printk() to boot mapped ring buffers

   As a boot mapped ring buffer's data may have pointers that map to the
   previous boot's memory map, it is unsafe to allow the TP_printk() to
   be used to read the boot mapped buffer's events. If a TP_printk()
   points to a static string from within the kernel it will not match
   the current kernel mapping if KASLR is active, and it can fault.

   Have it simply print out the raw fields.

* tag 'trace-ringbuffer-v6.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  trace/ring-buffer: Do not use TP_printk() formatting for boot mapped buffers
  ring-buffer: Fix overflow in __rb_map_vma
2024-12-20 10:13:26 -08:00
Steven Rostedt
8cd63406d0 trace/ring-buffer: Do not use TP_printk() formatting for boot mapped buffers
The TP_printk() of a TRACE_EVENT() is a generic printf format that any
developer can create for their event. It may include pointers to strings
and such. A boot mapped buffer may contain data from a previous kernel
where the strings addresses are different.

One solution is to copy the event content and update the pointers by the
recorded delta, but a simpler solution (for now) is to just use the
print_fields() function to print these events. The print_fields() function
just iterates the fields and prints them according to what type they are,
and ignores the TP_printk() format from the event itself.

To understand the difference, when printing via TP_printk() the output
looks like this:

  4582.696626: kmem_cache_alloc: call_site=getname_flags+0x47/0x1f0 ptr=00000000e70e10e0 bytes_req=4096 bytes_alloc=4096 gfp_flags=GFP_KERNEL node=-1 accounted=false
  4582.696629: kmem_cache_alloc: call_site=alloc_empty_file+0x6b/0x110 ptr=0000000095808002 bytes_req=360 bytes_alloc=384 gfp_flags=GFP_KERNEL node=-1 accounted=false
  4582.696630: kmem_cache_alloc: call_site=security_file_alloc+0x24/0x100 ptr=00000000576339c3 bytes_req=16 bytes_alloc=16 gfp_flags=GFP_KERNEL|__GFP_ZERO node=-1 accounted=false
  4582.696653: kmem_cache_free: call_site=do_sys_openat2+0xa7/0xd0 ptr=00000000e70e10e0 name=names_cache

But when printing via print_fields() (echo 1 > /sys/kernel/tracing/options/fields)
the same event output looks like this:

  4582.696626: kmem_cache_alloc: call_site=0xffffffff92d10d97 (-1831793257) ptr=0xffff9e0e8571e000 (-107689771147264) bytes_req=0x1000 (4096) bytes_alloc=0x1000 (4096) gfp_flags=0xcc0 (3264) node=0xffffffff (-1) accounted=(0)
  4582.696629: kmem_cache_alloc: call_site=0xffffffff92d0250b (-1831852789) ptr=0xffff9e0e8577f800 (-107689770747904) bytes_req=0x168 (360) bytes_alloc=0x180 (384) gfp_flags=0xcc0 (3264) node=0xffffffff (-1) accounted=(0)
  4582.696630: kmem_cache_alloc: call_site=0xffffffff92efca74 (-1829778828) ptr=0xffff9e0e8d35d3b0 (-107689640864848) bytes_req=0x10 (16) bytes_alloc=0x10 (16) gfp_flags=0xdc0 (3520) node=0xffffffff (-1) accounted=(0)
  4582.696653: kmem_cache_free: call_site=0xffffffff92cfbea7 (-1831879001) ptr=0xffff9e0e8571e000 (-107689771147264) name=names_cache

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241218141507.28389a1d@gandalf.local.home
Fixes: 07714b4bb3 ("tracing: Handle old buffer mappings for event strings and functions")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-12-18 14:20:38 -05:00
Steven Rostedt
afd2627f72 tracing: Check "%s" dereference via the field and not the TP_printk format
The TP_printk() portion of a trace event is executed at the time a event
is read from the trace. This can happen seconds, minutes, hours, days,
months, years possibly later since the event was recorded. If the print
format contains a dereference to a string via "%s", and that string was
allocated, there's a chance that string could be freed before it is read
by the trace file.

To protect against such bugs, there are two functions that verify the
event. The first one is test_event_printk(), which is called when the
event is created. It reads the TP_printk() format as well as its arguments
to make sure nothing may be dereferencing a pointer that was not copied
into the ring buffer along with the event. If it is, it will trigger a
WARN_ON().

For strings that use "%s", it is not so easy. The string may not reside in
the ring buffer but may still be valid. Strings that are static and part
of the kernel proper which will not be freed for the life of the running
system, are safe to dereference. But to know if it is a pointer to a
static string or to something on the heap can not be determined until the
event is triggered.

This brings us to the second function that tests for the bad dereferencing
of strings, trace_check_vprintf(). It would walk through the printf format
looking for "%s", and when it finds it, it would validate that the pointer
is safe to read. If not, it would produces a WARN_ON() as well and write
into the ring buffer "[UNSAFE-MEMORY]".

The problem with this is how it used va_list to have vsnprintf() handle
all the cases that it didn't need to check. Instead of re-implementing
vsnprintf(), it would make a copy of the format up to the %s part, and
call vsnprintf() with the current va_list ap variable, where the ap would
then be ready to point at the string in question.

For architectures that passed va_list by reference this was possible. For
architectures that passed it by copy it was not. A test_can_verify()
function was used to differentiate between the two, and if it wasn't
possible, it would disable it.

Even for architectures where this was feasible, it was a stretch to rely
on such a method that is undocumented, and could cause issues later on
with new optimizations of the compiler.

Instead, the first function test_event_printk() was updated to look at
"%s" as well. If the "%s" argument is a pointer outside the event in the
ring buffer, it would find the field type of the event that is the problem
and mark the structure with a new flag called "needs_test". The event
itself will be marked by TRACE_EVENT_FL_TEST_STR to let it be known that
this event has a field that needs to be verified before the event can be
printed using the printf format.

When the event fields are created from the field type structure, the
fields would copy the field type's "needs_test" value.

Finally, before being printed, a new function ignore_event() is called
which will check if the event has the TEST_STR flag set (if not, it
returns false). If the flag is set, it then iterates through the events
fields looking for the ones that have the "needs_test" flag set.

Then it uses the offset field from the field structure to find the pointer
in the ring buffer event. It runs the tests to make sure that pointer is
safe to print and if not, it triggers the WARN_ON() and also adds to the
trace output that the event in question has an unsafe memory access.

The ignore_event() makes the trace_check_vprintf() obsolete so it is
removed.

Link: https://lore.kernel.org/all/CAHk-=wh3uOnqnZPpR0PeLZZtyWbZLboZ7cHLCKRWsocvs9Y7hQ@mail.gmail.com/

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241217024720.848621576@goodmis.org
Fixes: 5013f454a3 ("tracing: Add check of trace event print fmts for dereferencing pointers")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-12-17 11:40:11 -05:00
Thomas Gleixner
0172afefbf tracing: Record task flag NEED_RESCHED_LAZY.
The scheduler added NEED_RESCHED_LAZY scheduling. Record this state as
part of trace flags and expose it in the need_resched field.

Record and expose NEED_RESCHED_LAZY.

[bigeasy: Commit description, documentation bits.]

Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241122202849.7DfYpJR0@linutronix.de
Reviewed-by: Ankur Arora <ankur.a.arora@oracle.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-11-22 17:49:39 -05:00
Linus Torvalds
06afb0f361 tracing updates for v6.13:
- Addition of faultable tracepoints
 
   There's a tracepoint attached to both a system call entry and exit. This
   location is known to allow page faults. The tracepoints are called under
   an rcu_read_lock() which does not allow faults that can sleep. This limits
   the ability of tracepoint handlers to page fault in user space system call
   parameters. Now these tracepoints have been made "faultable", allowing the
   callbacks to fault in user space parameters and record them.
 
   Note, only the infrastructure has been implemented. The consumers (perf,
   ftrace, BPF) now need to have their code modified to allow faults.
 
 - Fix up of BPF code for the tracepoint faultable logic
 
 - Update tracepoints to use the new static branch API
 
 - Remove trace_*_rcuidle() variants and the SRCU protection they used
 
 - Remove unused TRACE_EVENT_FL_FILTERED logic
 
 - Replace strncpy() with strscpy() and memcpy()
 
 - Use replace per_cpu_ptr(smp_processor_id()) with this_cpu_ptr()
 
 - Fix perf events to not duplicate samples when tracing is enabled
 
 - Replace atomic64_add_return(1, counter) with atomic64_inc_return(counter)
 
 - Make stack trace buffer 4K instead of PAGE_SIZE
 
 - Remove TRACE_FLAG_IRQS_NOSUPPORT flag as it was never used
 
 - Get the true return address for function tracer when function graph tracer
   is also running.
 
   When function_graph trace is running along with function tracer,
   the parent function of the function tracer sometimes is
   "return_to_handler", which is the function graph trampoline to record
   the exit of the function. Use existing logic that calls into the
   fgraph infrastructure to find the real return address.
 
 - Remove (un)regfunc pointers out of tracepoint structure
 
 - Added last minute bug fix for setting pending modules in stack function
   filter.
 
   echo "write*:mod:ext3" > /sys/kernel/tracing/stack_trace_filter
 
   Would cause a kernel NULL dereference.
 
 - Minor clean ups
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZz6dehQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qlQsAP9aB0XGUV3UykvjZuKK84VDZ26a2hZH
 X2JDYsNA4luuPAEAz/BG2rnslfMZ04WTMAl8h1eh10lxcuHG0wQMHVBXIwI=
 =lzb5
 -----END PGP SIGNATURE-----

Merge tag 'trace-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull tracing updates from Steven Rostedt:

 - Addition of faultable tracepoints

   There's a tracepoint attached to both a system call entry and exit.
   This location is known to allow page faults. The tracepoints are
   called under an rcu_read_lock() which does not allow faults that can
   sleep. This limits the ability of tracepoint handlers to page fault
   in user space system call parameters. Now these tracepoints have been
   made "faultable", allowing the callbacks to fault in user space
   parameters and record them.

   Note, only the infrastructure has been implemented. The consumers
   (perf, ftrace, BPF) now need to have their code modified to allow
   faults.

 - Fix up of BPF code for the tracepoint faultable logic

 - Update tracepoints to use the new static branch API

 - Remove trace_*_rcuidle() variants and the SRCU protection they used

 - Remove unused TRACE_EVENT_FL_FILTERED logic

 - Replace strncpy() with strscpy() and memcpy()

 - Use replace per_cpu_ptr(smp_processor_id()) with this_cpu_ptr()

 - Fix perf events to not duplicate samples when tracing is enabled

 - Replace atomic64_add_return(1, counter) with
   atomic64_inc_return(counter)

 - Make stack trace buffer 4K instead of PAGE_SIZE

 - Remove TRACE_FLAG_IRQS_NOSUPPORT flag as it was never used

 - Get the true return address for function tracer when function graph
   tracer is also running.

   When function_graph trace is running along with function tracer, the
   parent function of the function tracer sometimes is
   "return_to_handler", which is the function graph trampoline to record
   the exit of the function. Use existing logic that calls into the
   fgraph infrastructure to find the real return address.

 - Remove (un)regfunc pointers out of tracepoint structure

 - Added last minute bug fix for setting pending modules in stack
   function filter.

     echo "write*:mod:ext3" > /sys/kernel/tracing/stack_trace_filter

   Would cause a kernel NULL dereference.

 - Minor clean ups

* tag 'trace-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (31 commits)
  ftrace: Fix regression with module command in stack_trace_filter
  tracing: Fix function name for trampoline
  ftrace: Get the true parent ip for function tracer
  tracing: Remove redundant check on field->field in histograms
  bpf: ensure RCU Tasks Trace GP for sleepable raw tracepoint BPF links
  bpf: decouple BPF link/attach hook and BPF program sleepable semantics
  bpf: put bpf_link's program when link is safe to be deallocated
  tracing: Replace strncpy() with strscpy() when copying comm
  tracing: Add might_fault() check in __DECLARE_TRACE_SYSCALL
  tracing: Fix syscall tracepoint use-after-free
  tracing: Introduce tracepoint_is_faultable()
  tracing: Introduce tracepoint extended structure
  tracing: Remove TRACE_FLAG_IRQS_NOSUPPORT
  tracing: Replace multiple deprecated strncpy with memcpy
  tracing: Make percpu stack trace buffer invariant to PAGE_SIZE
  tracing: Use atomic64_inc_return() in trace_clock_counter()
  trace/trace_event_perf: remove duplicate samples on the first tracepoint event
  tracing/bpf: Add might_fault check to syscall probes
  tracing/perf: Add might_fault check to syscall probes
  tracing/ftrace: Add might_fault check to syscall probes
  ...
2024-11-22 13:27:01 -08:00
Linus Torvalds
aad3a0d084 ftrace updates for v6.13:
- Merged tag ftrace-v6.12-rc4
 
   There was a fix to locking in register_ftrace_graph() for shadow stacks
   that was sent upstream. But this code was also being rewritten, and the
   locking fix was needed. Merging this fix was required to continue the
   work.
 
 - Restructure the function graph shadow stack to prepare it for use with
   kretprobes
 
   With the goal of merging the shadow stack logic of function graph and
   kretprobes, some more restructuring of the function shadow stack is
   required.
 
   Move out function graph specific fields from the fgraph infrastructure and
   store it on the new stack variables that can pass data from the entry
   callback to the exit callback.
 
   Hopefully, with this change, the merge of kretprobes to use fgraph shadow
   stacks will be ready by the next merge window.
 
 - Make shadow stack 4k instead of using PAGE_SIZE.
 
   Some architectures have very large PAGE_SIZE values which make its use for
   shadow stacks waste a lot of memory.
 
 - Give shadow stacks its own kmem cache.
 
   When function graph is started, every task on the system gets a shadow
   stack. In the future, shadow stacks may not be 4K in size. Have it have
   its own kmem cache so that whatever size it becomes will still be
   efficient in allocations.
 
 - Initialize profiler graph ops as it will be needed for new updates to fgraph
 
 - Convert to use guard(mutex) for several ftrace and fgraph functions
 
 - Add more comments and documentation
 
 - Show function return address in function graph tracer
 
   Add an option to show the caller of a function at each entry of the
   function graph tracer, similar to what the function tracer does.
 
 - Abstract out ftrace_regs from being used directly like pt_regs
 
   ftrace_regs was created to store a partial pt_regs. It holds only the
   registers and stack information to get to the function arguments and
   return values. On several archs, it is simply a wrapper around pt_regs.
   But some users would access ftrace_regs directly to get the pt_regs which
   will not work on all archs. Make ftrace_regs an abstract structure that
   requires all access to its fields be through accessor functions.
 
 - Show how long it takes to do function code modifications
 
   When code modification for function hooks happen, it always had the time
   recorded in how long it took to do the conversion. But this value was
   never exported. Recently the code was touched due to new ROX modification
   handling that caused a large slow down in doing the modifications and
   had a significant impact on boot times.
 
   Expose the timings in the dyn_ftrace_total_info file. This file was
   created a while ago to show information about memory usage and such to
   implement dynamic function tracing. It's also an appropriate file to store
   the timings of this modification as well. This will make it easier to see
   the impact of changes to code modification on boot up timings.
 
 - Other clean ups and small fixes
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZztrUxQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qnnNAQD6w4q9VQ7oOE2qKLqtnj87h4c1GqKn
 SPkpEfC3n/ATEAD/fnYjT/eOSlHiGHuD/aTA+U/bETrT99bozGM/4mFKEgY=
 =6nCa
 -----END PGP SIGNATURE-----

Merge tag 'ftrace-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull ftrace updates from Steven Rostedt:

 - Restructure the function graph shadow stack to prepare it for use
   with kretprobes

   With the goal of merging the shadow stack logic of function graph and
   kretprobes, some more restructuring of the function shadow stack is
   required.

   Move out function graph specific fields from the fgraph
   infrastructure and store it on the new stack variables that can pass
   data from the entry callback to the exit callback.

   Hopefully, with this change, the merge of kretprobes to use fgraph
   shadow stacks will be ready by the next merge window.

 - Make shadow stack 4k instead of using PAGE_SIZE.

   Some architectures have very large PAGE_SIZE values which make its
   use for shadow stacks waste a lot of memory.

 - Give shadow stacks its own kmem cache.

   When function graph is started, every task on the system gets a
   shadow stack. In the future, shadow stacks may not be 4K in size.
   Have it have its own kmem cache so that whatever size it becomes will
   still be efficient in allocations.

 - Initialize profiler graph ops as it will be needed for new updates to
   fgraph

 - Convert to use guard(mutex) for several ftrace and fgraph functions

 - Add more comments and documentation

 - Show function return address in function graph tracer

   Add an option to show the caller of a function at each entry of the
   function graph tracer, similar to what the function tracer does.

 - Abstract out ftrace_regs from being used directly like pt_regs

   ftrace_regs was created to store a partial pt_regs. It holds only the
   registers and stack information to get to the function arguments and
   return values. On several archs, it is simply a wrapper around
   pt_regs. But some users would access ftrace_regs directly to get the
   pt_regs which will not work on all archs. Make ftrace_regs an
   abstract structure that requires all access to its fields be through
   accessor functions.

 - Show how long it takes to do function code modifications

   When code modification for function hooks happen, it always had the
   time recorded in how long it took to do the conversion. But this
   value was never exported. Recently the code was touched due to new
   ROX modification handling that caused a large slow down in doing the
   modifications and had a significant impact on boot times.

   Expose the timings in the dyn_ftrace_total_info file. This file was
   created a while ago to show information about memory usage and such
   to implement dynamic function tracing. It's also an appropriate file
   to store the timings of this modification as well. This will make it
   easier to see the impact of changes to code modification on boot up
   timings.

 - Other clean ups and small fixes

* tag 'ftrace-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (22 commits)
  ftrace: Show timings of how long nop patching took
  ftrace: Use guard to take ftrace_lock in ftrace_graph_set_hash()
  ftrace: Use guard to take the ftrace_lock in release_probe()
  ftrace: Use guard to lock ftrace_lock in cache_mod()
  ftrace: Use guard for match_records()
  fgraph: Use guard(mutex)(&ftrace_lock) for unregister_ftrace_graph()
  fgraph: Give ret_stack its own kmem cache
  fgraph: Separate size of ret_stack from PAGE_SIZE
  ftrace: Rename ftrace_regs_return_value to ftrace_regs_get_return_value
  selftests/ftrace: Fix check of return value in fgraph-retval.tc test
  ftrace: Use arch_ftrace_regs() for ftrace_regs_*() macros
  ftrace: Consolidate ftrace_regs accessor functions for archs using pt_regs
  ftrace: Make ftrace_regs abstract from direct use
  fgragh: No need to invoke the function call_filter_check_discard()
  fgraph: Simplify return address printing in function graph tracer
  function_graph: Remove unnecessary initialization in ftrace_graph_ret_addr()
  function_graph: Support recording and printing the function return address
  ftrace: Have calltime be saved in the fgraph storage
  ftrace: Use a running sleeptime instead of saving on shadow stack
  fgraph: Use fgraph data to store subtime for profiler
  ...
2024-11-20 11:34:10 -08:00
Tatsuya S
6ce5a6f0a0 tracing: Fix function name for trampoline
The issue that unrelated function name is shown on stack trace like
following even though it should be trampoline code address is caused by
the creation of trampoline code in the area where .init.text section
of module was freed after module is loaded.

bash-1344    [002] .....    43.644608: <stack trace>
=> (MODULE INIT FUNCTION)
=> vfs_write
=> ksys_write
=> do_syscall_64
=> entry_SYSCALL_64_after_hwframe

To resolve this, when function address of stack trace entry is in
trampoline, output without looking up symbol name.

Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241021071454.34610-2-tatsuya.s2862@gmail.com
Signed-off-by: Tatsuya S <tatsuya.s2862@gmail.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-11-18 15:08:10 -05:00
Linus Torvalds
b5a24181e4 Ring buffer fixes for 6.12:
- Revert: "ring-buffer: Do not have boot mapped buffers hook to CPU hotplug"
 
   A crash that happened on cpu hotplug was actually caused by the incorrect
   ref counting that was fixed by commit 2cf9733891 ("ring-buffer: Fix
   refcount setting of boot mapped buffers"). The removal of calling cpu
   hotplug callbacks on memory mapped buffers was not an issue even though
   the tests at the time pointed toward it. But in fact, there's a check in
   that code that tests to see if the buffers are already allocated or not,
   and will not allocate them again if they are. Not calling the cpu hotplug
   callbacks ended up not initializing the non boot CPU buffers.
 
   Simply remove that change.
 
 - Clear all CPU buffers when starting tracing in a boot mapped buffer
 
   To properly process events from a previous boot, the address space needs to
   be accounted for due to KASLR and the events in the buffer are updated
   accordingly when read. This also requires that when the buffer has tracing
   enabled again in the current boot that the buffers are reset so that events
   from the previous boot do not interact with the events of the current boot
   and cause confusing due to not having the proper meta data.
 
   It was found that if a CPU is taken offline, that its per CPU buffer is not
   reset when tracing starts. This allows for events to be from both the
   previous boot and the current boot to be in the buffer at the same time.
   Clear all CPU buffers when tracing is started in a boot mapped buffer.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZzdr5hQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qq3gAQDsqNNld3D3wW72VMJ52d9zdBXFUdrV
 hbszve+PSj/wuAD/TeCp0BcI8Az+G7/enMXnlEugLo3XKLr/YvPQ3nlb8QA=
 =VR4z
 -----END PGP SIGNATURE-----

Merge tag 'trace-ringbuffer-v6.12-rc7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull ring buffer fixes from Steven Rostedt:

 - Revert: "ring-buffer: Do not have boot mapped buffers hook to CPU
   hotplug"

   A crash that happened on cpu hotplug was actually caused by the
   incorrect ref counting that was fixed by commit 2cf9733891
   ("ring-buffer: Fix refcount setting of boot mapped buffers"). The
   removal of calling cpu hotplug callbacks on memory mapped buffers was
   not an issue even though the tests at the time pointed toward it. But
   in fact, there's a check in that code that tests to see if the
   buffers are already allocated or not, and will not allocate them
   again if they are. Not calling the cpu hotplug callbacks ended up not
   initializing the non boot CPU buffers.

   Simply remove that change.

 - Clear all CPU buffers when starting tracing in a boot mapped buffer

   To properly process events from a previous boot, the address space
   needs to be accounted for due to KASLR and the events in the buffer
   are updated accordingly when read. This also requires that when the
   buffer has tracing enabled again in the current boot that the buffers
   are reset so that events from the previous boot do not interact with
   the events of the current boot and cause confusing due to not having
   the proper meta data.

   It was found that if a CPU is taken offline, that its per CPU buffer
   is not reset when tracing starts. This allows for events to be from
   both the previous boot and the current boot to be in the buffer at
   the same time. Clear all CPU buffers when tracing is started in a
   boot mapped buffer.

* tag 'trace-ringbuffer-v6.12-rc7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  tracing/ring-buffer: Clear all memory mapped CPU ring buffers on first recording
  Revert: "ring-buffer: Do not have boot mapped buffers hook to CPU hotplug"
2024-11-16 08:12:43 -08:00
Steven Rostedt
09663753bb tracing/ring-buffer: Clear all memory mapped CPU ring buffers on first recording
The events of a memory mapped ring buffer from the previous boot should
not be mixed in with events from the current boot. There's meta data that
is used to handle KASLR so that function names can be shown properly.

Also, since the timestamps of the previous boot have no meaning to the
timestamps of the current boot, having them intermingled in a buffer can
also cause confusion because there could possibly be events in the future.

When a trace is activated the meta data is reset so that the pointers of
are now processed for the new address space. The trace buffers are reset
when tracing starts for the first time. The problem here is that the reset
only happens on online CPUs. If a CPU is offline, it does not get reset.

To demonstrate the issue, a previous boot had tracing enabled in the boot
mapped ring buffer on reboot. On the following boot, tracing has not been
started yet so the function trace from the previous boot is still visible.

 # trace-cmd show -B boot_mapped -c 3 | tail
          <idle>-0       [003] d.h2.   156.462395: __rcu_read_lock <-cpu_emergency_disable_virtualization
          <idle>-0       [003] d.h2.   156.462396: vmx_emergency_disable_virtualization_cpu <-cpu_emergency_disable_virtualization
          <idle>-0       [003] d.h2.   156.462396: __rcu_read_unlock <-__sysvec_reboot
          <idle>-0       [003] d.h2.   156.462397: stop_this_cpu <-__sysvec_reboot
          <idle>-0       [003] d.h2.   156.462397: set_cpu_online <-stop_this_cpu
          <idle>-0       [003] d.h2.   156.462397: disable_local_APIC <-stop_this_cpu
          <idle>-0       [003] d.h2.   156.462398: clear_local_APIC <-disable_local_APIC
          <idle>-0       [003] d.h2.   156.462574: mcheck_cpu_clear <-stop_this_cpu
          <idle>-0       [003] d.h2.   156.462575: mce_intel_feature_clear <-stop_this_cpu
          <idle>-0       [003] d.h2.   156.462575: lmce_supported <-mce_intel_feature_clear

Now, if CPU 3 is taken offline, and tracing is started on the memory
mapped ring buffer, the events from the previous boot in the CPU 3 ring
buffer is not reset. Now those events are using the meta data from the
current boot and produces just hex values.

 # echo 0 > /sys/devices/system/cpu/cpu3/online
 # trace-cmd start -B boot_mapped -p function
 # trace-cmd show -B boot_mapped -c 3 | tail
          <idle>-0       [003] d.h2.   156.462395: 0xffffffff9a1e3194 <-0xffffffff9a0f655e
          <idle>-0       [003] d.h2.   156.462396: 0xffffffff9a0a1d24 <-0xffffffff9a0f656f
          <idle>-0       [003] d.h2.   156.462396: 0xffffffff9a1e6bc4 <-0xffffffff9a0f7323
          <idle>-0       [003] d.h2.   156.462397: 0xffffffff9a0d12b4 <-0xffffffff9a0f732a
          <idle>-0       [003] d.h2.   156.462397: 0xffffffff9a1458d4 <-0xffffffff9a0d12e2
          <idle>-0       [003] d.h2.   156.462397: 0xffffffff9a0faed4 <-0xffffffff9a0d12e7
          <idle>-0       [003] d.h2.   156.462398: 0xffffffff9a0faaf4 <-0xffffffff9a0faef2
          <idle>-0       [003] d.h2.   156.462574: 0xffffffff9a0e3444 <-0xffffffff9a0d12ef
          <idle>-0       [003] d.h2.   156.462575: 0xffffffff9a0e4964 <-0xffffffff9a0d12ef
          <idle>-0       [003] d.h2.   156.462575: 0xffffffff9a0e3fb0 <-0xffffffff9a0e496f

Reset all CPUs when starting a boot mapped ring buffer for the first time,
and not just the online CPUs.

Fixes: 7a1d1e4b96 ("tracing/ring-buffer: Add last_boot_info file to boot instance")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-11-14 11:54:34 -05:00
Jinjie Ruan
242b32d807 tracing: Replace strncpy() with strscpy() when copying comm
Replace the depreciated[1] strncpy() calls with strscpy()
when copying comm.

Link: https://github.com/KSPP/linux/issues/90 [1]

Cc: <mhiramat@kernel.org>
Cc: <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241031120139.1343025-1-ruanjinjie@huawei.com
Signed-off-by: Jinjie Ruan <ruanjinjie@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-11-01 14:37:31 -04:00
Kalesh Singh
fa17cb4b3b tracing: Document tracefs gid mount option
Commit ee7f366699 ("tracefs: Have new files inherit the ownership of
their parent") and commit 48b27b6b51 ("tracefs: Set all files to the
same group ownership as the mount option") introduced a new gid mount
option that allows specifying a group to apply to all entries in tracefs.

Document this in the tracing readme.

Cc: Eric Sandeen <sandeen@redhat.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Ali Zahraee <ahzahraee@gmail.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lore.kernel.org/20241030171928.4168869-3-kaleshsingh@google.com
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-11-01 08:57:17 -04:00
Ryan Roberts
2c33155ef6 tracing: Make percpu stack trace buffer invariant to PAGE_SIZE
Previously the size of "struct ftrace_stacks" depended upon PAGE_SIZE.
For the common 4K page size, on a 64-bit system, sizeof(struct
ftrace_stacks) was 32K. But for a 64K page size, sizeof(struct
ftrace_stacks) was 512K.

But ftrace stack usage requirements should be invariant to page size. So
let's redefine FTRACE_KSTACK_ENTRIES so that "struct ftrace_stacks" is
always sized at 32K for 64-bit and 16K for 32-bit.

As a side effect, it removes the PAGE_SIZE compile-time constant
assumption from this code, which is required to reach the goal of
boot-time page size selection.

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241021141832.3668264-1-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-30 19:41:07 -04:00
Steven Rostedt
36a367b891 ftrace: Show timings of how long nop patching took
Since the beginning of ftrace, the code that did the patching had its
timings saved on how long it took to complete. But this information was
never exposed. It was used for debugging and exposing it was always
something that was on the TODO list. Now it's time to expose it. There's
even a file that is where it should go!

Also include how long patching modules took as a separate value.

 # cat /sys/kernel/tracing/dyn_ftrace_total_info
 57680 pages:231 groups: 9
 ftrace boot update time = 14024666 (ns)
 ftrace module total update time = 126070 (ns)

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/20241017113105.1edfa943@gandalf.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-30 19:20:53 -04:00
Steven Rostedt
2cf9733891 ring-buffer: Fix refcount setting of boot mapped buffers
A ring buffer which has its buffered mapped at boot up to fixed memory
should not be freed. Other buffers can be. The ref counting setup was
wrong for both. It made the not mapped buffers ref count have zero, and the
boot mapped buffer a ref count of 1. But an normally allocated buffer
should be 1, where it can be removed.

Keep the ref count of a normal boot buffer with its setup ref count (do
not decrement it), and increment the fixed memory boot mapped buffer's ref
count.

Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241011165224.33dd2624@gandalf.local.home
Fixes: e645535a95 ("tracing: Add option to use memmapped memory for trace boot instance")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-14 14:30:59 -04:00
Zheng Yejian
49e4154f4b tracing: Remove TRACE_EVENT_FL_FILTERED logic
After commit dcb0b5575d ("tracing: Remove TRACE_EVENT_FL_USE_CALL_FILTER
 logic"), no one's going to set the TRACE_EVENT_FL_FILTERED or change the
call->filter, so remove related logic.

Link: https://lore.kernel.org/20240911010026.2302849-1-zhengyejian@huaweicloud.com
Signed-off-by: Zheng Yejian <zhengyejian@huaweicloud.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-08 15:24:49 -04:00
Steven Rostedt
50a3242d84 tracing: Fix trace_check_vprintf() when tp_printk is used
When the tp_printk kernel command line is used, the trace events go
directly to printk(). It is still checked via the trace_check_vprintf()
function to make sure the pointers of the trace event are legit.

The addition of reading buffers from previous boots required adding a
delta between the addresses of the previous boot and the current boot so
that the pointers in the old buffer can still be used. But this required
adding a trace_array pointer to acquire the delta offsets.

The tp_printk code does not provide a trace_array (tr) pointer, so when
the offsets were examined, a NULL pointer dereference happened and the
kernel crashed.

If the trace_array does not exist, just default the delta offsets to zero,
as that also means the trace event is not being read from a previous boot.

Link: https://lore.kernel.org/all/Zv3z5UsG_jsO9_Tb@aschofie-mobl2.lan/

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241003104925.4e1b1fd9@gandalf.local.home
Fixes: 07714b4bb3 ("tracing: Handle old buffer mappings for event strings and functions")
Reported-by: Alison Schofield <alison.schofield@intel.com>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-03 16:43:22 -04:00
Al Viro
cb787f4ac0 [tree-wide] finally take no_llseek out
no_llseek had been defined to NULL two years ago, in commit 868941b144
("fs: remove no_llseek")

To quote that commit,

  At -rc1 we'll need do a mechanical removal of no_llseek -

  git grep -l -w no_llseek | grep -v porting.rst | while read i; do
	sed -i '/\<no_llseek\>/d' $i
  done

  would do it.

Unfortunately, that hadn't been done.  Linus, could you do that now, so
that we could finally put that thing to rest? All instances are of the
form
	.llseek = no_llseek,
so it's obviously safe.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-09-27 08:18:43 -07:00
Linus Torvalds
af9c191ac2 ring-buffer: Updates for v6.12:
- Merged v6.11-rc3 into trace/ring-buffer/core
 
   The v6.10 ring buffer pull request was not made due to Mathieu Desnoyers
   making a comment to the pull request. Mathieu and I resolved it on IRC,
   but we did not let Linus know that it was resolved. Linus did not do the
   pull thinking it still had some unresolved issues.
 
   The ring buffer work for 6.12 was dependent on both this pull request as
   well as the reserve_mem kernel command line option that was going upstream
   through the memory management tree. The ring buffer repo was being used by
   others so it could not be rebased. In order to continue the work, the
   v6.11-rc3 branch was pulled in to get access to the reserve_mem work.
 
 This has the 6.11 pull request that did not make it into 6.11, which was:
 
   tracing/ring-buffer: Have persistent buffer across reboots
 
   This allows for the tracing instance ring buffer to stay persistent across
   reboots. The way this is done is by adding to the kernel command line:
 
     trace_instance=boot_map@0x285400000:12M
 
   This will reserve 12 megabytes at the address 0x285400000, and then map
   the tracing instance "boot_map" ring buffer to that memory. This will
   appear as a normal instance in the tracefs system:
 
     /sys/kernel/tracing/instances/boot_map
 
   A user could enable tracing in that instance, and on reboot or kernel
   crash, if the memory is not wiped by the firmware, it will recreate the
   trace in that instance. For example, if one was debugging a shutdown of a
   kernel reboot:
 
    # cd /sys/kernel/tracing
    # echo function > instances/boot_map/current_tracer
    # reboot
   [..]
    # cd /sys/kernel/tracing
    # tail instances/boot_map/trace
          swapper/0-1       [000] d..1.   164.549800: restore_boot_irq_mode <-native_machine_shutdown
          swapper/0-1       [000] d..1.   164.549801: native_restore_boot_irq_mode <-native_machine_shutdown
          swapper/0-1       [000] d..1.   164.549802: disconnect_bsp_APIC <-native_machine_shutdown
          swapper/0-1       [000] d..1.   164.549811: hpet_disable <-native_machine_shutdown
          swapper/0-1       [000] d..1.   164.549812: iommu_shutdown_noop <-native_machine_restart
          swapper/0-1       [000] d..1.   164.549813: native_machine_emergency_restart <-__do_sys_reboot
          swapper/0-1       [000] d..1.   164.549813: tboot_shutdown <-native_machine_emergency_restart
          swapper/0-1       [000] d..1.   164.549820: acpi_reboot <-native_machine_emergency_restart
          swapper/0-1       [000] d..1.   164.549821: acpi_reset <-acpi_reboot
          swapper/0-1       [000] d..1.   164.549822: acpi_os_write_port <-acpi_reboot
 
   On reboot, the buffer is examined to make sure it is valid. The validation
   check even steps through every event to make sure the meta data of the
   event is correct. If any test fails, it will simply reset the buffer, and
   the buffer will be empty on boot.
 
 The new changes for 6.12 are:
 
 - Allow the tracing persistent boot buffer to use the "reserve_mem" option
 
   Instead of having the admin find a physical address to store the persistent
   buffer, which can be very tedious if they have to administrate several
   different machines, allow them to use the "reserve_mem" option that will
   find a location for them. It is not as reliable because of KASLR, as the
   loading of the kernel in different locations can cause the memory
   allocated to be inconsistent. Booting with "nokaslr" can make reserve_mem
   more reliable.
 
 - Have function graph tracer handle offsets from a previous boot.
 
   The ring buffer output from a previous boot may have different addresses
   due to kaslr. Have the function graph tracer handle these by using the
   delta from the previous boot to the new boot address space.
 
 - Only reset the saved meta offset when the buffer is started or reset
 
   In the persistent memory meta data, it holds the previous address space
   information, so that it can calculate the delta to have function tracing
   work. But this gets updated after being read to hold the new address
   space. But if the buffer isn't used for that boot, on reboot, the delta is
   now calculated from the previous boot and not the boot that holds the data
   in the ring buffer. This causes the functions not to be shown. Do not save
   the address space information of the current kernel until it is being
   recorded.
 
 - Add a magic variable to test the valid meta data
 
   Add a magic variable in the meta data that can also be used for
   validation. The validator of the previous buffer doesn't need this magic
   data, but it can be used if the meta data is changed by a new kernel, which
   may have the same format that passes the validator but is used
   differently. This magic number can also be used as a "versioning" of the
   meta data.
 
 - Align user space mapped ring buffer sub buffers to improve TLB entries
 
   Linus mentioned that the mapped ring buffer sub buffers were misaligned
   between the meta page and the sub-buffers, so that if the sub-buffers were
   bigger than PAGE_SIZE, it wouldn't allow the TLB to use bigger entries.
 
 - Add new kernel command line "traceoff" to disable tracing on boot for instances
 
   If tracing is enabled for a boot instance, there needs a way to be able to
   disable it on boot so that new events do not get entered into the ring
   buffer and be mixed with events from a previous boot, as that can be
   confusing.
 
 - Allow trace_printk() to go to other instances
 
   Currently, trace_printk() can only go to the top level instance. When
   debugging with a persistent buffer, it is really useful to be able to add
   trace_printk() to go to that buffer, so that you have access to them after
   a crash.
 
 - Do not use "bin_printk()" for traces to a boot instance
 
   The bin_printk() saves only a pointer to the printk format in the ring
   buffer, as the reader of the buffer can still have access to it. But this
   is not the case if the buffer is from a previous boot. If the
   trace_printk() is going to a "persistent" buffer, it will use the slower
   version that writes the printk format into the buffer.
 
 - Add command line option to allow trace_printk() to go to an instance
 
   Allow the kernel command line to define which instance the trace_printk()
   goes to, instead of forcing the admin to set it for every boot via the
   tracefs options.
 
 - Start a document that explains how to use tracefs to debug the kernel
 
 - Add some more kernel selftests to test user mapped ring buffer
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZu/PxxQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qowiAQCx86Nm48aCACjrvGWCFb+jgQZn8QdO
 MeK15Fcc5C3b5gEAkJkDKqtul7ybI9+vq+3yNzdl7pO7Y7+pCNzz3PfVaQA=
 =Ce81
 -----END PGP SIGNATURE-----

Merge tag 'trace-ring-buffer-v6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull ring-buffer updates from Steven Rostedt:

 - tracing/ring-buffer: persistent buffer across reboots

   This allows for the tracing instance ring buffer to stay persistent
   across reboots. The way this is done is by adding to the kernel
   command line:

     trace_instance=boot_map@0x285400000:12M

   This will reserve 12 megabytes at the address 0x285400000, and then
   map the tracing instance "boot_map" ring buffer to that memory. This
   will appear as a normal instance in the tracefs system:

     /sys/kernel/tracing/instances/boot_map

   A user could enable tracing in that instance, and on reboot or kernel
   crash, if the memory is not wiped by the firmware, it will recreate
   the trace in that instance. For example, if one was debugging a
   shutdown of a kernel reboot:

     # cd /sys/kernel/tracing
     # echo function > instances/boot_map/current_tracer
     # reboot
     [..]
     # cd /sys/kernel/tracing
     # tail instances/boot_map/trace
           swapper/0-1       [000] d..1.   164.549800: restore_boot_irq_mode <-native_machine_shutdown
           swapper/0-1       [000] d..1.   164.549801: native_restore_boot_irq_mode <-native_machine_shutdown
           swapper/0-1       [000] d..1.   164.549802: disconnect_bsp_APIC <-native_machine_shutdown
           swapper/0-1       [000] d..1.   164.549811: hpet_disable <-native_machine_shutdown
           swapper/0-1       [000] d..1.   164.549812: iommu_shutdown_noop <-native_machine_restart
           swapper/0-1       [000] d..1.   164.549813: native_machine_emergency_restart <-__do_sys_reboot
           swapper/0-1       [000] d..1.   164.549813: tboot_shutdown <-native_machine_emergency_restart
           swapper/0-1       [000] d..1.   164.549820: acpi_reboot <-native_machine_emergency_restart
           swapper/0-1       [000] d..1.   164.549821: acpi_reset <-acpi_reboot
           swapper/0-1       [000] d..1.   164.549822: acpi_os_write_port <-acpi_reboot

   On reboot, the buffer is examined to make sure it is valid. The
   validation check even steps through every event to make sure the meta
   data of the event is correct. If any test fails, it will simply reset
   the buffer, and the buffer will be empty on boot.

 - Allow the tracing persistent boot buffer to use the "reserve_mem"
   option

   Instead of having the admin find a physical address to store the
   persistent buffer, which can be very tedious if they have to
   administrate several different machines, allow them to use the
   "reserve_mem" option that will find a location for them. It is not as
   reliable because of KASLR, as the loading of the kernel in different
   locations can cause the memory allocated to be inconsistent. Booting
   with "nokaslr" can make reserve_mem more reliable.

 - Have function graph tracer handle offsets from a previous boot.

   The ring buffer output from a previous boot may have different
   addresses due to kaslr. Have the function graph tracer handle these
   by using the delta from the previous boot to the new boot address
   space.

 - Only reset the saved meta offset when the buffer is started or reset

   In the persistent memory meta data, it holds the previous address
   space information, so that it can calculate the delta to have
   function tracing work. But this gets updated after being read to hold
   the new address space. But if the buffer isn't used for that boot, on
   reboot, the delta is now calculated from the previous boot and not
   the boot that holds the data in the ring buffer. This causes the
   functions not to be shown. Do not save the address space information
   of the current kernel until it is being recorded.

 - Add a magic variable to test the valid meta data

   Add a magic variable in the meta data that can also be used for
   validation. The validator of the previous buffer doesn't need this
   magic data, but it can be used if the meta data is changed by a new
   kernel, which may have the same format that passes the validator but
   is used differently. This magic number can also be used as a
   "versioning" of the meta data.

 - Align user space mapped ring buffer sub buffers to improve TLB
   entries

   Linus mentioned that the mapped ring buffer sub buffers were
   misaligned between the meta page and the sub-buffers, so that if the
   sub-buffers were bigger than PAGE_SIZE, it wouldn't allow the TLB to
   use bigger entries.

 - Add new kernel command line "traceoff" to disable tracing on boot for
   instances

   If tracing is enabled for a boot instance, there needs a way to be
   able to disable it on boot so that new events do not get entered into
   the ring buffer and be mixed with events from a previous boot, as
   that can be confusing.

 - Allow trace_printk() to go to other instances

   Currently, trace_printk() can only go to the top level instance. When
   debugging with a persistent buffer, it is really useful to be able to
   add trace_printk() to go to that buffer, so that you have access to
   them after a crash.

 - Do not use "bin_printk()" for traces to a boot instance

   The bin_printk() saves only a pointer to the printk format in the
   ring buffer, as the reader of the buffer can still have access to it.
   But this is not the case if the buffer is from a previous boot. If
   the trace_printk() is going to a "persistent" buffer, it will use the
   slower version that writes the printk format into the buffer.

 - Add command line option to allow trace_printk() to go to an instance

   Allow the kernel command line to define which instance the
   trace_printk() goes to, instead of forcing the admin to set it for
   every boot via the tracefs options.

 - Start a document that explains how to use tracefs to debug the kernel

 - Add some more kernel selftests to test user mapped ring buffer

* tag 'trace-ring-buffer-v6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (28 commits)
  selftests/ring-buffer: Handle meta-page bigger than the system
  selftests/ring-buffer: Verify the entire meta-page padding
  tracing/Documentation: Start a document on how to debug with tracing
  tracing: Add option to set an instance to be the trace_printk destination
  tracing: Have trace_printk not use binary prints if boot buffer
  tracing: Allow trace_printk() to go to other instance buffers
  tracing: Add "traceoff" flag to boot time tracing instances
  ring-buffer: Align meta-page to sub-buffers for improved TLB usage
  ring-buffer: Add magic and struct size to boot up meta data
  ring-buffer: Don't reset persistent ring-buffer meta saved addresses
  tracing/fgraph: Have fgraph handle previous boot function addresses
  tracing: Allow boot instances to use reserve_mem boot memory
  tracing: Fix ifdef of snapshots to not prevent last_boot_info file
  ring-buffer: Use vma_pages() helper function
  tracing: Fix NULL vs IS_ERR() check in enable_instances()
  tracing: Add last boot delta offset for stack traces
  tracing: Update function tracing output for previous boot buffer
  tracing: Handle old buffer mappings for event strings and functions
  tracing/ring-buffer: Add last_boot_info file to boot instance
  ring-buffer: Save text and data locations in mapped meta data
  ...
2024-09-22 09:47:16 -07:00
Andy Shevchenko
4e378158e5 tracing: Drop unused helper function to fix the build
A helper function defined but not used. This, in particular,
prevents kernel builds with clang, `make W=1` and CONFIG_WERROR=y:

kernel/trace/trace.c:2229:19: error: unused function 'run_tracer_selftest' [-Werror,-Wunused-function]
 2229 | static inline int run_tracer_selftest(struct tracer *type)
      |                   ^~~~~~~~~~~~~~~~~~~

Fix this by dropping unused functions.

See also commit 6863f5643d ("kbuild: allow Clang to find unused static
inline functions for W=1 build").

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Bill Wendling <morbo@google.com>
Cc: Justin Stitt <justinstitt@google.com>
Link: https://lore.kernel.org/20240909105314.928302-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-09-09 16:04:25 -04:00
Zheng Yejian
49aa8a1f4d tracing: Avoid possible softlockup in tracing_iter_reset()
In __tracing_open(), when max latency tracers took place on the cpu,
the time start of its buffer would be updated, then event entries with
timestamps being earlier than start of the buffer would be skipped
(see tracing_iter_reset()).

Softlockup will occur if the kernel is non-preemptible and too many
entries were skipped in the loop that reset every cpu buffer, so add
cond_resched() to avoid it.

Cc: stable@vger.kernel.org
Fixes: 2f26ebd549 ("tracing: use timestamp to determine start of latency traces")
Link: https://lore.kernel.org/20240827124654.3817443-1-zhengyejian@huaweicloud.com
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Zheng Yejian <zhengyejian@huaweicloud.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-09-05 10:18:48 -04:00
Steven Rostedt
ef2bd81d0c tracing: Add option to set an instance to be the trace_printk destination
Add a option "trace_printk_dest" that will make the tracing instance the
location that trace_printk() will go to. This is useful if the
trace_printk or one of the top level tracers is too noisy and there's a
need to separate the two. Then an instance can be created, the
trace_printk can be set to go there instead, where it will not be lost in
the noise of the top level tracer.

Note, only one instance can be the destination of trace_printk at a time.
If an instance sets this flag, the instance that had it set will have it
cleared. There is always one instance that has this set. By default, that
is the top instance. This flag cannot be cleared from the top instance.
Doing so will result in an -EINVAL. The only way this flag can be cleared
from the top instance is by another instance setting it.

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Alexander Aring <aahringo@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lgoncalv@redhat.com>
Cc: Tomas Glozar <tglozar@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Jonathan Corbet" <corbet@lwn.net>
Link: https://lore.kernel.org/20240823014019.545459018@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-08-26 13:54:08 -04:00
Steven Rostedt
9b7bdf6f6e tracing: Have trace_printk not use binary prints if boot buffer
If the persistent boot mapped ring buffer is used for trace_printk(),
force it to not use the binary versions. trace_printk() by default uses
bin_printf() that only saves the pointer to the format and not the format
itself inside the ring buffer. But for a persistent buffer that is read
after reboot, the pointers to the format strings may not be the same, or
worse, not even exist! Instead, just force the more robust, but slower,
version that does the formatting before saving into the ring buffer.

The boot mapped buffer can now be used for trace_printk and friends!

Using the trace_printk() and the persistent buffer was used to debug the
issue with the osnoise tracer:

Link: https://lore.kernel.org/all/20240822103443.6a6ae051@gandalf.local.home/

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Alexander Aring <aahringo@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lgoncalv@redhat.com>
Cc: Tomas Glozar <tglozar@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Jonathan Corbet" <corbet@lwn.net>
Link: https://lore.kernel.org/20240823014019.386925800@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-08-26 13:54:08 -04:00
Steven Rostedt
ddb8ea9e5a tracing: Allow trace_printk() to go to other instance buffers
Currently, trace_printk() just goes to the top level ring buffer. But
there may be times that it should go to one of the instances created by
the kernel command line.

Add a new trace_instance flag: traceprintk (also can use "printk" or
"trace_printk" as people tend to forget the actual flag name).

  trace_instance=foo^traceprintk

Will assign the trace_printk to this buffer at boot up.

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Alexander Aring <aahringo@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lgoncalv@redhat.com>
Cc: Tomas Glozar <tglozar@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Jonathan Corbet" <corbet@lwn.net>
Link: https://lore.kernel.org/20240823014019.226694946@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-08-26 13:54:08 -04:00
Steven Rostedt
b6fc31b687 tracing: Add "traceoff" flag to boot time tracing instances
Add a "flags" delimiter (^) to the "trace_instance" kernel command line
parameter, and add the "traceoff" flag. The format is:

   trace_instance=<name>[^<flag1>[^<flag2>]][@<memory>][,<events>]

The code allows for more than one flag to be added, but currently only
"traceoff" is done so.

The motivation for this change came from debugging with the persistent
ring buffer and having trace_printk() writing to it. The trace_printk
calls are always enabled, and the boot after the crash was having the
unwanted trace_printks from the current boot inject into the ring buffer
with the trace_printks of the crash kernel, making the output very
confusing.

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Alexander Aring <aahringo@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lgoncalv@redhat.com>
Cc: Tomas Glozar <tglozar@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Jonathan Corbet" <corbet@lwn.net>
Link: https://lore.kernel.org/20240823014019.053229958@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-08-26 13:54:08 -04:00
Steven Rostedt (Google)
29a02ec665 tracing: Allow boot instances to use reserve_mem boot memory
Allow boot instances to use memory reserved by the reserve_mem boot
option.

  reserve_mem=12M:4096:trace  trace_instance=boot_mapped@trace

The above will allocate 12 megs with 4096 alignment and label it "trace".
The second parameter will create a "boot_mapped" instance and use the
memory reserved and labeled as "trace" as the memory for the ring buffer.

That will create an instance called "boot_mapped":

  /sys/kernel/tracing/instances/boot_mapped

Note, because the ring buffer is using a defined memory ranged, it will
act just like a memory mapped ring buffer. It will not have a snapshot
buffer, as it can't swap out the buffer. The snapshot files as well as any
tracers that uses a snapshot will not be present in the boot_mapped
instance.

Also note that reserve_mem is not reliable in acquiring the same physical
memory at each soft reboot. It is possible that KALSR could map the kernel
at the previous boot memory location forcing the reserve_mem to return a
different memory location. In this case, the previous ring buffer will be
lost.

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20240815082811.669f7d8c@gandalf.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-08-15 08:34:48 -04:00
Steven Rostedt
6d02eefecc tracing: Fix ifdef of snapshots to not prevent last_boot_info file
The mapping of the ring buffer to memory allocated at boot up will also
expose a "last_boot_info" to help tooling to read the raw data from the
last boot. As instances that have their ring buffer mapped to fixed
memory cannot perform snapshots, they can either have the "snapshot" file
or the "last_boot_info" file, but not both.

The code that added the "last_boot_info" file failed to notice that the
"snapshot" creation was inside a "#ifdef CONFIG_TRACER_SNAPSHOT" and
incorrectly placed the creation of the "last_boot_info" file within the
ifdef block. Not only does it cause a warning when CONFIG_TRACER_SNAPSHOT
is not enabled, it also incorrectly prevents the file from appearing.

Link: https://lore.kernel.org/all/20240719102640.718554-1-arnd@kernel.org/

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reported-by: Arnd Bergmann <arnd@kernel.org>
Link: https://lore.kernel.org/20240719101312.3d4ac707@rorschach.local.home
Fixes: 7a1d1e4b96 ("tracing/ring-buffer: Add last_boot_info file to boot instance")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-08-14 17:01:03 -04:00
Steven Rostedt
ee057c8c19 Linux 6.11-rc3
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAma5LLIeHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGwUAIAJNwbkdgTIqEsyBU
 wsFcXGaFSsGJNbTulINJb34jl2gD2yr4pmnnrA0NePW1TUKOnx169hNMF8NWbr/A
 0cHIREV9cyfnm/kzAcnHn7cWLSmsKd+x3TnCbCyodDZQDJzdLmw3LQG+4dTNJbw1
 WtJO/EoaU4qaydW2VxtApw54sirq5bopZz7rpcRapA1afzbA2TUDbnnuEWjm9KCF
 5K+RZTJZA/xI9gqEwJB+/p5FglW4n/T3xcDwaQp5uFsDskgV5e1AUrRLM+icTsem
 0Egrs8Ca2Vp4oBM+r9miCSwjRu04jLKyuu20p7AN8zXLyN7WGAjduS15Dv+aHRZ/
 9XABZs0=
 =/T17
 -----END PGP SIGNATURE-----

Merge tag 'v6.11-rc3' into trace/ring-buffer/core

The "reserve_mem" kernel command line parameter has been pulled into
v6.11. Merge the latest -rc3 to allow the persistent ring buffer memory to
be able to be mapped at the address specified by the "reserve_mem" command
line parameter.

Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-08-14 16:59:28 -04:00
Steven Rostedt
d0949cd44a tracing: Return from tracing_buffers_read() if the file has been closed
When running the following:

 # cd /sys/kernel/tracing/
 # echo 1 > events/sched/sched_waking/enable
 # echo 1 > events/sched/sched_switch/enable
 # echo 0 > tracing_on
 # dd if=per_cpu/cpu0/trace_pipe_raw of=/tmp/raw0.dat

The dd task would get stuck in an infinite loop in the kernel. What would
happen is the following:

When ring_buffer_read_page() returns -1 (no data) then a check is made to
see if the buffer is empty (as happens when the page is not full), it will
call wait_on_pipe() to wait until the ring buffer has data. When it is it
will try again to read data (unless O_NONBLOCK is set).

The issue happens when there's a reader and the file descriptor is closed.
The wait_on_pipe() will return when that is the case. But this loop will
continue to try again and wait_on_pipe() will again return immediately and
the loop will continue and never stop.

Simply check if the file was closed before looping and exit out if it is.

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20240808235730.78bf63e5@rorschach.local.home
Fixes: 2aa043a55b ("tracing/ring-buffer: Fix wait_on_pipe() race")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-08-09 12:59:35 -04:00
Joel Granados
78eb4ea25c sysctl: treewide: constify the ctl_table argument of proc_handlers
const qualify the struct ctl_table argument in the proc_handler function
signatures. This is a prerequisite to moving the static ctl_table
structs into .rodata data which will ensure that proc_handler function
pointers cannot be modified.

This patch has been generated by the following coccinelle script:

```
  virtual patch

  @r1@
  identifier ctl, write, buffer, lenp, ppos;
  identifier func !~ "appldata_(timer|interval)_handler|sched_(rt|rr)_handler|rds_tcp_skbuf_handler|proc_sctp_do_(hmac_alg|rto_min|rto_max|udp_port|alpha_beta|auth|probe_interval)";
  @@

  int func(
  - struct ctl_table *ctl
  + const struct ctl_table *ctl
    ,int write, void *buffer, size_t *lenp, loff_t *ppos);

  @r2@
  identifier func, ctl, write, buffer, lenp, ppos;
  @@

  int func(
  - struct ctl_table *ctl
  + const struct ctl_table *ctl
    ,int write, void *buffer, size_t *lenp, loff_t *ppos)
  { ... }

  @r3@
  identifier func;
  @@

  int func(
  - struct ctl_table *
  + const struct ctl_table *
    ,int , void *, size_t *, loff_t *);

  @r4@
  identifier func, ctl;
  @@

  int func(
  - struct ctl_table *ctl
  + const struct ctl_table *ctl
    ,int , void *, size_t *, loff_t *);

  @r5@
  identifier func, write, buffer, lenp, ppos;
  @@

  int func(
  - struct ctl_table *
  + const struct ctl_table *
    ,int write, void *buffer, size_t *lenp, loff_t *ppos);

```

* Code formatting was adjusted in xfs_sysctl.c to comply with code
  conventions. The xfs_stats_clear_proc_handler,
  xfs_panic_mask_proc_handler and xfs_deprecated_dointvec_minmax where
  adjusted.

* The ctl_table argument in proc_watchdog_common was const qualified.
  This is called from a proc_handler itself and is calling back into
  another proc_handler, making it necessary to change it as part of the
  proc_handler migration.

Co-developed-by: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Co-developed-by: Joel Granados <j.granados@samsung.com>
Signed-off-by: Joel Granados <j.granados@samsung.com>
2024-07-24 20:59:29 +02:00
Dan Carpenter
94dfa500e7 tracing: Fix NULL vs IS_ERR() check in enable_instances()
The trace_array_create_systems() function returns error pointers, not
NULL.  Fix the check to match.

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: e645535a95 ("tracing: Add option to use memmapped memory for trace boot instance")
Link: https://lore.kernel.org/9b23ea03-d709-435f-a309-461c3d747457@moroto.mountain
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-07-15 14:55:02 -04:00
Steven Rostedt (Google)
07714b4bb3 tracing: Handle old buffer mappings for event strings and functions
Use the saved text_delta and data_delta of a persistent memory mapped ring
buffer that was saved from a previous boot, and use the delta in the trace
event print output so that strings and functions show up normally.

That is, for an event like trace_kmalloc() that prints the callsite via
"%pS", if it used the address saved in the ring buffer it will not match
the function that was saved in the previous boot if the kernel remaps
itself between boots.

For RCU events that point to saved static strings where only the address
of the string is saved in the ring buffer, it too will be adjusted to
point to where the string is on the current boot.

Link: https://lkml.kernel.org/r/20240612232026.821020753@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-06-14 12:28:22 -04:00
Steven Rostedt (Google)
7a1d1e4b96 tracing/ring-buffer: Add last_boot_info file to boot instance
If an instance is mapped to memory on boot up, create a new file called
"last_boot_info" that will hold information that can be used to properly
parse the raw data in the ring buffer.

It will export the delta of the addresses for text and data from what it
was from the last boot. It does not expose actually addresses (unless you
knew what the actual address was from the last boot).

The output will look like:

 # cat last_boot_info
 text delta:	-268435456
 data delta:	-268435456

The text and data are kept separate in case they are ever made different.

Link: https://lkml.kernel.org/r/20240612232026.658680738@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-06-14 12:28:22 -04:00
Steven Rostedt (Google)
e645535a95 tracing: Add option to use memmapped memory for trace boot instance
Add an option to the trace_instance kernel command line parameter that
allows it to use the reserved memory from memmap boot parameter.

  memmap=12M$0x284500000 trace_instance=boot_mapped@0x284500000:12M

The above will reserves 12 megs at the physical address 0x284500000.
The second parameter will create a "boot_mapped" instance and use the
memory reserved as the memory for the ring buffer.

That will create an instance called "boot_mapped":

  /sys/kernel/tracing/instances/boot_mapped

Note, because the ring buffer is using a defined memory ranged, it will
act just like a memory mapped ring buffer. It will not have a snapshot
buffer, as it can't swap out the buffer. The snapshot files as well as any
tracers that uses a snapshot will not be present in the boot_mapped
instance.

Link: https://lkml.kernel.org/r/20240612232026.329660169@goodmis.org

Cc: linux-mm@kvack.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-06-14 12:28:21 -04:00
Steven Rostedt (Google)
950032ffce ring-buffer: Add output of ring buffer meta page
Add a buffer_meta per-cpu file for the trace instance that is mapped to
boot memory. This shows the current meta-data and can be used by user
space tools to record off the current mappings to help reconstruct the
ring buffer after a reboot.

It does not expose any virtual addresses, just indexes into the sub-buffer
pages.

Link: https://lkml.kernel.org/r/20240612232025.854471446@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-06-14 12:28:21 -04:00
Steven Rostedt (Google)
2124de79ad tracing: Implement creating an instance based on a given memory region
Allow for creating a new instance by passing in an address and size to map
the ring buffer for the instance to.

This will allow features like a pstore memory mapped region to be used for
an tracing instance ring buffer that can be retrieved from one boot to the
next.

Link: https://lkml.kernel.org/r/20240612232025.692086240@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-06-14 12:28:21 -04:00
Linus Torvalds
53683e4080 tracing ring buffer updates for v6.10:
- Add ring_buffer memory mappings
 
   The tracing ring buffer was created based on being mostly used with the
   splice system call. It is broken up into page ordered sub-buffers and the
   reader swaps a new sub-buffer with an existing sub-buffer that's part
   of the write buffer. It then has total access to the swapped out
   sub-buffer and can do copyless movements of the memory into other mediums
   (file system, network, etc).
 
   The buffer is great for passing around the ring buffer contents in the
   kernel, but is not so good for when the consumer is the user space task
   itself.
 
   A new interface is added that allows user space to memory map the ring
   buffer. It will get all the write sub-buffers as well as reader sub-buffer
   (that is not written to). It can send an ioctl to change which sub-buffer
   is the new reader sub-buffer.
 
   The ring buffer is read only to user space. It only needs to call the
   ioctl when it is finished with a sub-buffer and needs a new sub-buffer
   that the writer will not write over.
 
   A self test program was also created for testing and can be used as
   an example for the interface to user space. The libtracefs (external
   to the kernel) also has code that interacts with this, although it is
   disabled until the interface is in a official release. It can be enabled
   by compiling the library with a special flag. This was used for testing
   applications that perform better with the buffer being mapped.
 
   Memory mapped buffers have limitations. The main one is that it can not be
   used with the snapshot logic. If the buffer is mapped, snapshots will be
   disabled. If any logic is set to trigger snapshots on a buffer, that
   buffer will not be allowed to be mapped.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZkYzDRQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qttNAQCj3I0OpeI1vms85ShIa7Eha2qes5uC
 Yml2fnapkmRSwAEAp5UTGxtDctycWOk9B9PA7/oJmLgATaQwRKoEeTUwfAA=
 =TyEB
 -----END PGP SIGNATURE-----

Merge tag 'trace-ringbuffer-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull tracing ring buffer updates from Steven Rostedt:
 "Add ring_buffer memory mappings.

  The tracing ring buffer was created based on being mostly used with
  the splice system call. It is broken up into page ordered sub-buffers
  and the reader swaps a new sub-buffer with an existing sub-buffer
  that's part of the write buffer. It then has total access to the
  swapped out sub-buffer and can do copyless movements of the memory
  into other mediums (file system, network, etc).

  The buffer is great for passing around the ring buffer contents in the
  kernel, but is not so good for when the consumer is the user space
  task itself.

  A new interface is added that allows user space to memory map the ring
  buffer. It will get all the write sub-buffers as well as reader
  sub-buffer (that is not written to). It can send an ioctl to change
  which sub-buffer is the new reader sub-buffer.

  The ring buffer is read only to user space. It only needs to call the
  ioctl when it is finished with a sub-buffer and needs a new sub-buffer
  that the writer will not write over.

  A self test program was also created for testing and can be used as an
  example for the interface to user space. The libtracefs (external to
  the kernel) also has code that interacts with this, although it is
  disabled until the interface is in a official release. It can be
  enabled by compiling the library with a special flag. This was used
  for testing applications that perform better with the buffer being
  mapped.

  Memory mapped buffers have limitations. The main one is that it can
  not be used with the snapshot logic. If the buffer is mapped,
  snapshots will be disabled. If any logic is set to trigger snapshots
  on a buffer, that buffer will not be allowed to be mapped"

* tag 'trace-ringbuffer-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  ring-buffer: Add cast to unsigned long addr passed to virt_to_page()
  ring-buffer: Have mmapped ring buffer keep track of missed events
  ring-buffer/selftest: Add ring-buffer mapping test
  Documentation: tracing: Add ring-buffer mapping
  tracing: Allow user-space mapping of the ring-buffer
  ring-buffer: Introducing ring-buffer mapping functions
  ring-buffer: Allocate sub-buffers with __GFP_COMP
2024-05-17 18:40:37 -07:00
Vincent Donnefort
cf9f0f7c4c tracing: Allow user-space mapping of the ring-buffer
Currently, user-space extracts data from the ring-buffer via splice,
which is handy for storage or network sharing. However, due to splice
limitations, it is imposible to do real-time analysis without a copy.

A solution for that problem is to let the user-space map the ring-buffer
directly.

The mapping is exposed via the per-CPU file trace_pipe_raw. The first
element of the mapping is the meta-page. It is followed by each
subbuffer constituting the ring-buffer, ordered by their unique page ID:

  * Meta-page -- include/uapi/linux/trace_mmap.h for a description
  * Subbuf ID 0
  * Subbuf ID 1
     ...

It is therefore easy to translate a subbuf ID into an offset in the
mapping:

  reader_id = meta->reader->id;
  reader_offset = meta->meta_page_size + reader_id * meta->subbuf_size;

When new data is available, the mapper must call a newly introduced ioctl:
TRACE_MMAP_IOCTL_GET_READER. This will update the Meta-page reader ID to
point to the next reader containing unread data.

Mapping will prevent snapshot and buffer size modifications.

Link: https://lore.kernel.org/linux-trace-kernel/20240510140435.3550353-4-vdonnefort@google.com

CC: <linux-mm@kvack.org>
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-05-13 18:09:56 -04:00
Ye Bin
20fe4d07bd tracing/probes: support '%pD' type for print struct file's name
As like '%pd' type, this patch supports print type '%pD' for print file's
name. For example "name=$arg1:%pD" casts the `$arg1` as (struct file*),
dereferences the "file.f_path.dentry.d_name.name" field and stores it to
"name" argument as a kernel string.
Here is an example:
[tracing]# echo 'p:testprobe vfs_read name=$arg1:%pD' > kprobe_event
[tracing]# echo 1 > events/kprobes/testprobe/enable
[tracing]# grep -q "1" events/kprobes/testprobe/enable
[tracing]# echo 0 > events/kprobes/testprobe/enable
[tracing]# grep "vfs_read" trace | grep "enable"
            grep-15108   [003] .....  5228.328609: testprobe: (vfs_read+0x4/0xbb0) name="enable"

Note that this expects the given argument (e.g. $arg1) is an address of struct
file. User must ensure it.

Link: https://lore.kernel.org/all/20240322064308.284457-3-yebin10@huawei.com/
[Masami: replaced "previous patch" with '%pd' type]

Signed-off-by: Ye Bin <yebin10@huawei.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2024-05-01 23:18:47 +09:00
Ye Bin
d9b15224dd tracing/probes: support '%pd' type for print struct dentry's name
During fault locating, the file name needs to be printed based on the
dentry  address. The offset needs to be calculated each time, which
is troublesome. Similar to printk, kprobe support print type '%pd' for
print dentry's name. For example "name=$arg1:%pd" casts the `$arg1`
as (struct dentry *), dereferences the "d_name.name" field and stores
it to "name" argument as a kernel string.
Here is an example:
[tracing]# echo 'p:testprobe dput name=$arg1:%pd' > kprobe_events
[tracing]# echo 1 > events/kprobes/testprobe/enable
[tracing]# grep -q "1" events/kprobes/testprobe/enable
[tracing]# echo 0 > events/kprobes/testprobe/enable
[tracing]# cat trace | grep "enable"
	    bash-14844   [002] ..... 16912.889543: testprobe: (dput+0x4/0x30) name="enable"
            grep-15389   [003] ..... 16922.834182: testprobe: (dput+0x4/0x30) name="enable"
            grep-15389   [003] ..... 16922.836103: testprobe: (dput+0x4/0x30) name="enable"
            bash-14844   [001] ..... 16931.820909: testprobe: (dput+0x4/0x30) name="enable"

Note that this expects the given argument (e.g. $arg1) is an address of struct
dentry. User must ensure it.

Link: https://lore.kernel.org/all/20240322064308.284457-2-yebin10@huawei.com/

Signed-off-by: Ye Bin <yebin10@huawei.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2024-05-01 23:18:47 +09:00
Huang Yiwei
19f0423fd5 tracing: Support to dump instance traces by ftrace_dump_on_oops
Currently ftrace only dumps the global trace buffer on an OOPs. For
debugging a production usecase, instance trace will be helpful to
check specific problems since global trace buffer may be used for
other purposes.

This patch extend the ftrace_dump_on_oops parameter to dump a specific
or multiple trace instances:

  - ftrace_dump_on_oops=0: as before -- don't dump
  - ftrace_dump_on_oops[=1]: as before -- dump the global trace buffer
  on all CPUs
  - ftrace_dump_on_oops=2 or =orig_cpu: as before -- dump the global
  trace buffer on CPU that triggered the oops
  - ftrace_dump_on_oops=<instance_name>: new behavior -- dump the
  tracing instance matching <instance_name>
  - ftrace_dump_on_oops[=2/orig_cpu],<instance1_name>[=2/orig_cpu],
  <instrance2_name>[=2/orig_cpu]: new behavior -- dump the global trace
  buffer and multiple instance buffer on all CPUs, or only dump on CPU
  that triggered the oops if =2 or =orig_cpu is given

Also, the sysctl node can handle the input accordingly.

Link: https://lore.kernel.org/linux-trace-kernel/20240223083126.1817731-1-quic_hyiwei@quicinc.com

Cc: Ross Zwisler <zwisler@google.com>
Cc: <mhiramat@kernel.org>
Cc: <mark.rutland@arm.com>
Cc: <mcgrof@kernel.org>
Cc: <keescook@chromium.org>
Cc: <j.granados@samsung.com>
Cc: <mathieu.desnoyers@efficios.com>
Cc: <corbet@lwn.net>
Signed-off-by: Huang Yiwei <quic_hyiwei@quicinc.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-18 10:33:06 -04:00
Steven Rostedt (Google)
cca990c7b5 tracing: Fix snapshot counter going between two tracers that use it
Running the ftrace selftests caused the ring buffer mapping test to fail.
Investigating, I found that the snapshot counter would be incremented
every time a tracer that uses the snapshot is enabled even if the snapshot
was used by the previous tracer.

That is:

 # cd /sys/kernel/tracing
 # echo wakeup_rt > current_tracer
 # echo wakeup_dl > current_tracer
 # echo nop > current_tracer

would leave the snapshot counter at 1 and not zero. That's because the
enabling of wakeup_dl would increment the counter again but the setting
the tracer to nop would only decrement it once.

Do not arm the snapshot for a tracer if the previous tracer already had it
armed.

Link: https://lore.kernel.org/linux-trace-kernel/20240223013344.570525723@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Fixes: 16f7e48ffc53a ("tracing: Add snapshot refcount")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-18 10:33:05 -04:00
John Garry
ed89683763 tracing: Use init_utsname()->release
Instead of using UTS_RELEASE, use init_utsname()->release, which means that
we don't need to rebuild the code just for the git head commit changing.

Link: https://lore.kernel.org/linux-trace-kernel/20240222124639.65629-1-john.g.garry@oracle.com

Signed-off-by: John Garry <john.g.garry@oracle.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-18 10:13:21 -04:00
Vincent Donnefort
180e4e3909 tracing: Add snapshot refcount
When a ring-buffer is memory mapped by user-space, no trace or
ring-buffer swap is possible. This means the snapshot feature is
mutually exclusive with the memory mapping. Having a refcount on
snapshot users will help to know if a mapping is possible or not.

Instead of relying on the global trace_types_lock, a new spinlock is
introduced to serialize accesses to trace_array->snapshot. This intends
to allow access to that variable in a context where the mmap lock is
already held.

Link: https://lore.kernel.org/linux-trace-kernel/20240220202310.2489614-4-vdonnefort@google.com

Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-18 10:12:47 -04:00
Steven Rostedt (Google)
2cc621fd2e tracing: Move saved_cmdline code into trace_sched_switch.c
The code that handles saved_cmdlines is split between the trace.c file and
the trace_sched_switch.c. There's some history to this. The
trace_sched_switch.c was originally created to handle the sched_switch
tracer that was deprecated due to sched_switch trace event making it
obsolete. But that file did not get deleted as it had some code to help
with saved_cmdlines. But trace.c has grown tremendously since then. Just
move all the saved_cmdlines code into trace_sched_switch.c as that's the
only reason that file still exists, and trace.c has gotten too big.

No functional changes.

Link: https://lore.kernel.org/linux-trace-kernel/20240220140703.497966629@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-17 07:58:53 -04:00
Steven Rostedt (Google)
e85d471c2b tracing: Move open coded processing of tgid_map into helper function
In preparation of moving the saved_cmdlines logic out of trace.c and into
trace_sched_switch.c, replace the open coded manipulation of tgid_map in
set_tracer_flag() into a helper function trace_alloc_tgid_map() so that it
can be easily moved into trace_sched_switch.c without changing existing
functions in trace.c.

No functional changes.

Link: https://lore.kernel.org/linux-trace-kernel/20240220140703.338116216@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-17 07:58:52 -04:00
Steven Rostedt (Google)
0b18c852cc tracing: Have saved_cmdlines arrays all in one allocation
The saved_cmdlines have three arrays for mapping PIDs to COMMs:

 - map_pid_to_cmdline[]
 - map_cmdline_to_pid[]
 - saved_cmdlines

The map_pid_to_cmdline[] is PID_MAX_DEFAULT in size and holds the index
into the other arrays. The map_cmdline_to_pid[] is a mapping back to the
full pid as it can be larger than PID_MAX_DEFAULT. And the
saved_cmdlines[] just holds the COMMs associated to the pids.

Currently the map_pid_to_cmdline[] and saved_cmdlines[] are allocated
together (in reality the saved_cmdlines is just in the memory of the
rounding of the allocation of the structure as it is always allocated in
powers of two). The map_cmdline_to_pid[] array is allocated separately.

Since the rounding to a power of two is rather large (it allows for 8000
elements in saved_cmdlines), also include the map_cmdline_to_pid[] array.
(This drops it to 6000 by default, which is still plenty for most use
cases). This saves even more memory as the map_cmdline_to_pid[] array
doesn't need to be allocated.

Link: https://lore.kernel.org/linux-trace-kernel/20240212174011.068211d9@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20240220140703.182330529@goodmis.org

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes: 44dc5c41b5 ("tracing: Fix wasted memory in saved_cmdlines logic")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-17 07:58:52 -04:00
Linus Torvalds
63bd30f249 Tracing/ring-buffer fixes for 6.8 (to be applied in 6.9-rc):
- Do not update shortest_full in rb_watermark_hit() if the watermark
   is hit. The shortest_full field was being updated regardless if
   the task was going to wait or not. If the watermark is hit, then
   the task is not going to wait, so do not update the shortest_full
   field (used by the waker).
 
 - Update shortest_full field before setting the full_waiters_pending flag
 
   In the poll logic, the full_waiters_pending flag was being set
   before the shortest_full field was set. If the full_waiters_pending
   flag is set, writers will check the shortest_full field which has
   the least percentage of data that the ring buffer needs to be
   filled before waking up. The writer will check shortest_full if
   full_waiters_pending is set, and if the ring buffer percentage filled
   is greater than shortest full, then it will call the irq_work to
   wake up the waiters.
 
   The problem was that the poll logic set the full_waiters_pending flag
   before updating shortest_full, which when zero will always trigger
   the writer to call the irq_work to wake up the waiters. The irq_work
   will reset the shortest_full field back to zero as the woken waiters
   is suppose to reset it.
 
 - There's some optimized logic in the rb_watermark_hit() that is used
   in ring_buffer_wait(). Use that helper function in the poll logic
   as well.
 
 - Restructure ring_buffer_wait() to use wait_event_interruptible()
 
   The logic to wake up pending readers when the file descriptor is
   closed is racy. Restructure ring_buffer_wait() to allow callers
   to pass in conditions besides the ring buffer having enough data
   in it by using wait_event_interruptible().
 
 - Update the tracing_wait_on_pipe() to call ring_buffer_wait() with
   its own conditions to exit the wait loop.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZfH6MRQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qtlwAP9ZoSIkvw2MVu7FclgAguaX2CaylGEw
 sv0wZaCy1kgAPgD8CFhezZcHrt/RwJibpMxVnUs+DDqYnGdJsHYLihlbWgg=
 =99FG
 -----END PGP SIGNATURE-----

Merge tag 'trace-ring-buffer-v6.8-rc7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull tracing updates from Steven Rostedt:

 - Do not update shortest_full in rb_watermark_hit() if the watermark is
   hit. The shortest_full field was being updated regardless if the task
   was going to wait or not. If the watermark is hit, then the task is
   not going to wait, so do not update the shortest_full field (used by
   the waker).

 - Update shortest_full field before setting the full_waiters_pending
   flag

   In the poll logic, the full_waiters_pending flag was being set before
   the shortest_full field was set. If the full_waiters_pending flag is
   set, writers will check the shortest_full field which has the least
   percentage of data that the ring buffer needs to be filled before
   waking up. The writer will check shortest_full if
   full_waiters_pending is set, and if the ring buffer percentage filled
   is greater than shortest full, then it will call the irq_work to wake
   up the waiters.

   The problem was that the poll logic set the full_waiters_pending flag
   before updating shortest_full, which when zero will always trigger
   the writer to call the irq_work to wake up the waiters. The irq_work
   will reset the shortest_full field back to zero as the woken waiters
   is suppose to reset it.

 - There's some optimized logic in the rb_watermark_hit() that is used
   in ring_buffer_wait(). Use that helper function in the poll logic as
   well.

 - Restructure ring_buffer_wait() to use wait_event_interruptible()

   The logic to wake up pending readers when the file descriptor is
   closed is racy. Restructure ring_buffer_wait() to allow callers to
   pass in conditions besides the ring buffer having enough data in it
   by using wait_event_interruptible().

 - Update the tracing_wait_on_pipe() to call ring_buffer_wait() with its
   own conditions to exit the wait loop.

* tag 'trace-ring-buffer-v6.8-rc7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  tracing/ring-buffer: Fix wait_on_pipe() race
  ring-buffer: Use wait_event_interruptible() in ring_buffer_wait()
  ring-buffer: Reuse rb_watermark_hit() for the poll logic
  ring-buffer: Fix full_waiters_pending in poll
  ring-buffer: Do not set shortest_full when full target is hit
2024-03-14 16:25:01 -07:00
Linus Torvalds
01732755ee Probes updates for v6.9:
- x96/kprobes: Use boolean for some function return instead of 0 and 1.
  - x86/kprobes: Prohibit probing on INT/UD. This prevents user to put kprobe on
     INTn/INT1/INT3/INTO and UD0/UD1/UD2 because these are used for a special
     purpose in the kernel.
  - x86/kprobes: Boost Grp instructions. Because a few percent of kernel
     instructions are Grp 2/3/4/5 and those are safe to be executed without
     ip register fixup, allow those to be boosted (direct execution on the
     trampoline buffer with a JMP).
 
  - tracing/probes: Add function argument access from return events (kretprobe
     and fprobe). This allows user to compare how a data structure field is
     changed after executing a function. With BTF, return event also accepts
     function argument access by name. This also includes below patches;
   . Fix a wrong comment (using "Kretprobe" in fprobe)
   . Cleanup a big probe argument parser function into three parts, type
      parser, post-processing function, and main parser.
   . Cleanup to set nr_args field when initializing trace_probe instead of
      counting up it while parsing.
   . Cleanup a redundant #else block from tracefs/README source code.
   . Update selftests to check entry argument access from return probes.
   . Documentation update about entry argument access from return probes.
 -----BEGIN PGP SIGNATURE-----
 
 iQFPBAABCgA5FiEEh7BulGwFlgAOi5DV2/sHvwUrPxsFAmXwW4kbHG1hc2FtaS5o
 aXJhbWF0c3VAZ21haWwuY29tAAoJENv7B78FKz8bH80H/3H6JENlDAjaSLi4vYrP
 Qyw/cOGIuGu8cDEzkkOaFMol3TY23M7tQZH1lFefvV92gebZ0ttXnrQhSsKeO5XT
 PCZ6Eoift5rwJCY967W4V6O0DrAkOGHlPtlKs47APJnTXwn8RcFTqWlQmhWg1AfD
 g/FCWV7cs3eewZgV9iQcLydOoLLgRMr3G3rtPYQbCXhPzze0WTu4dSOXxCTjFe04
 riHQy7R+ut6Cur8njpoqZl6bCMkQqAylByXf6wK96HjcS0+ZI7Ivi8Ey3l2aAFen
 EeIViMU2Bl02XzBszj7Xq2cT/ebYAgDonFW3/5ZKD1YMO6F7wPoVH5OHrQ518Xuw
 hQ8=
 =O6l5
 -----END PGP SIGNATURE-----

Merge tag 'probes-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull probes updates from Masami Hiramatsu:
 "x86 kprobes:

   - Use boolean for some function return instead of 0 and 1

   - Prohibit probing on INT/UD. This prevents user to put kprobe on
     INTn/INT1/INT3/INTO and UD0/UD1/UD2 because these are used for a
     special purpose in the kernel

   - Boost Grp instructions. Because a few percent of kernel
     instructions are Grp 2/3/4/5 and those are safe to be executed
     without ip register fixup, allow those to be boosted (direct
     execution on the trampoline buffer with a JMP)

  tracing:

   - Add function argument access from return events (kretprobe and
     fprobe). This allows user to compare how a data structure field is
     changed after executing a function. With BTF, return event also
     accepts function argument access by name.

   - Fix a wrong comment (using "Kretprobe" in fprobe)

   - Cleanup a big probe argument parser function into three parts, type
     parser, post-processing function, and main parser

   - Cleanup to set nr_args field when initializing trace_probe instead
     of counting up it while parsing

   - Cleanup a redundant #else block from tracefs/README source code

   - Update selftests to check entry argument access from return probes

   - Documentation update about entry argument access from return
     probes"

* tag 'probes-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  Documentation: tracing: Add entry argument access at function exit
  selftests/ftrace: Add test cases for entry args at function exit
  tracing/probes: Support $argN in return probe (kprobe and fprobe)
  tracing: Remove redundant #else block for BTF args from README
  tracing/probes: cleanup: Set trace_probe::nr_args at trace_probe_init
  tracing/probes: Cleanup probe argument parser
  tracing/fprobe-event: cleanup: Fix a wrong comment in fprobe event
  x86/kprobes: Boost more instructions from grp2/3/4/5
  x86/kprobes: Prohibit kprobing on INT and UD
  x86/kprobes: Refactor can_{probe,boost} return type to bool
2024-03-14 16:16:33 -07:00
Steven Rostedt (Google)
2aa043a55b tracing/ring-buffer: Fix wait_on_pipe() race
When the trace_pipe_raw file is closed, there should be no new readers on
the file descriptor. This is mostly handled with the waking and wait_index
fields of the iterator. But there's still a slight race.

     CPU 0                              CPU 1
     -----                              -----
                                   wait_index++;
   index = wait_index;
                                   ring_buffer_wake_waiters();
   wait_on_pipe()
     ring_buffer_wait();

The ring_buffer_wait() will miss the wakeup from CPU 1. The problem is
that the ring_buffer_wait() needs the logic of:

        prepare_to_wait();
        if (!condition)
                schedule();

Where the missing condition check is the iter->wait_index update.

Have the ring_buffer_wait() take a conditional callback function and a
data parameter that can be used within the wait_event_interruptible() of
the ring_buffer_wait() function.

In wait_on_pipe(), pass a condition function that will check if the
wait_index has been updated, if it has, it will return true to break out
of the wait_event_interruptible() loop.

Create a new field "closed" in the trace_iterator and set it in the
.flush() callback before calling ring_buffer_wake_waiters().
This will keep any new readers from waiting on a closed file descriptor.

Have the wait_on_pipe() condition callback also check the closed field.

Change the wait_index field of the trace_iterator to atomic_t. There's no
reason it needs to be 'long' and making it atomic and using
atomic_read_acquire() and atomic_fetch_inc_release() will provide the
necessary memory barriers.

Add a "woken" flag to tracing_buffers_splice_read() to exit the loop after
one more try to fetch data. That is, if it waited for data and something
woke it up, it should try to collect any new data and then exit back to
user space.

Link: https://lore.kernel.org/linux-trace-kernel/CAHk-=wgsNgewHFxZAJiAQznwPMqEtQmi1waeS2O1v6L4c_Um5A@mail.gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240312121703.557950713@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: f3ddb74ad0 ("tracing: Wake up ring buffer waiters on closing of the file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-12 12:44:48 -04:00
Steven Rostedt (Google)
e5d7c19165 tracing: Use .flush() call to wake up readers
The .release() function does not get called until all readers of a file
descriptor are finished.

If a thread is blocked on reading a file descriptor in ring_buffer_wait(),
and another thread closes the file descriptor, it will not wake up the
other thread as ring_buffer_wake_waiters() is called by .release(), and
that will not get called until the .read() is finished.

The issue originally showed up in trace-cmd, but the readers are actually
other processes with their own file descriptors. So calling close() would wake
up the other tasks because they are blocked on another descriptor then the
one that was closed(). But there's other wake ups that solve that issue.

When a thread is blocked on a read, it can still hang even when another
thread closed its descriptor.

This is what the .flush() callback is for. Have the .flush() wake up the
readers.

Link: https://lore.kernel.org/linux-trace-kernel/20240308202432.107909457@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: f3ddb74ad0 ("tracing: Wake up ring buffer waiters on closing of the file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-10 12:27:47 -04:00
Steven Rostedt (Google)
095fe48912 tracing: Limit trace_marker writes to just 4K
Limit the max print event of trace_marker to just 4K string size. This must
also be less than the amount that can be held by a trace_seq along with
the text that is before the output (like the task name, PID, CPU, state,
etc). As trace_seq is made to handle large events (some greater than 4K).
Make the max size of a trace_marker write event be 4K which is guaranteed
to fit in the trace_seq buffer.

Link: https://lore.kernel.org/linux-trace-kernel/20240304223433.4ba47dff@gandalf.local.home

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-06 13:27:26 -05:00
Masami Hiramatsu (Google)
25f00e40ce tracing/probes: Support $argN in return probe (kprobe and fprobe)
Support accessing $argN in the return probe events. This will help users to
record entry data in function return (exit) event for simplfing the function
entry/exit information in one event, and record the result values (e.g.
allocated object/initialized object) at function exit.

For example, if we have a function `int init_foo(struct foo *obj, int param)`
sometimes we want to check how `obj` is initialized. In such case, we can
define a new return event like below;

 # echo 'r init_foo retval=$retval param=$arg2 field1=+0($arg1)' >> kprobe_events

Thus it records the function parameter `param` and its result `obj->field1`
(the dereference will be done in the function exit timing) value at once.

This also support fprobe, BTF args and'$arg*'. So if CONFIG_DEBUG_INFO_BTF
is enabled, we can trace both function parameters and the return value
by following command.

 # echo 'f target_function%return $arg* $retval' >> dynamic_events

Link: https://lore.kernel.org/all/170952365552.229804.224112990211602895.stgit@devnote2/

Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2024-03-07 00:27:34 +09:00
Masami Hiramatsu (Google)
c18f9eabee tracing: Remove redundant #else block for BTF args from README
Remove redundant #else block for BTF args from README message.
This is a cleanup, so no change on the message.

Link: https://lore.kernel.org/all/170952364558.229804.17285528811097152410.stgit@devnote2/

Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-03-07 00:27:25 +09:00
Steven Rostedt (Google)
2394ac4145 tracing: Inform kmemleak of saved_cmdlines allocation
The allocation of the struct saved_cmdlines_buffer structure changed from:

        s = kmalloc(sizeof(*s), GFP_KERNEL);
	s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);

to:

	orig_size = sizeof(*s) + val * TASK_COMM_LEN;
	order = get_order(orig_size);
	size = 1 << (order + PAGE_SHIFT);
	page = alloc_pages(GFP_KERNEL, order);
	if (!page)
		return NULL;

	s = page_address(page);
	memset(s, 0, sizeof(*s));

	s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);

Where that s->saved_cmdlines allocation looks to be a dangling allocation
to kmemleak. That's because kmemleak only keeps track of kmalloc()
allocations. For allocations that use page_alloc() directly, the kmemleak
needs to be explicitly informed about it.

Add kmemleak_alloc() and kmemleak_free() around the page allocation so
that it doesn't give the following false positive:

unreferenced object 0xffff8881010c8000 (size 32760):
  comm "swapper", pid 0, jiffies 4294667296
  hex dump (first 32 bytes):
    ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff  ................
    ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff  ................
  backtrace (crc ae6ec1b9):
    [<ffffffff86722405>] kmemleak_alloc+0x45/0x80
    [<ffffffff8414028d>] __kmalloc_large_node+0x10d/0x190
    [<ffffffff84146ab1>] __kmalloc+0x3b1/0x4c0
    [<ffffffff83ed7103>] allocate_cmdlines_buffer+0x113/0x230
    [<ffffffff88649c34>] tracer_alloc_buffers.isra.0+0x124/0x460
    [<ffffffff8864a174>] early_trace_init+0x14/0xa0
    [<ffffffff885dd5ae>] start_kernel+0x12e/0x3c0
    [<ffffffff885f5758>] x86_64_start_reservations+0x18/0x30
    [<ffffffff885f582b>] x86_64_start_kernel+0x7b/0x80
    [<ffffffff83a001c3>] secondary_startup_64_no_verify+0x15e/0x16b

Link: https://lore.kernel.org/linux-trace-kernel/87r0hfnr9r.fsf@kernel.org/
Link: https://lore.kernel.org/linux-trace-kernel/20240214112046.09a322d6@gandalf.local.home

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Fixes: 44dc5c41b5 ("tracing: Fix wasted memory in saved_cmdlines logic")
Reported-by: Kalle Valo <kvalo@kernel.org>
Tested-by: Kalle Valo <kvalo@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-02-14 12:36:34 -05:00
Sven Schnelle
a6eaa24f1c tracing: Use ring_buffer_record_is_set_on() in tracer_tracing_is_on()
tracer_tracing_is_on() checks whether record_disabled is not zero. This
checks both the record_disabled counter and the RB_BUFFER_OFF flag.
Reading the source it looks like this function should only check for
the RB_BUFFER_OFF flag. Therefore use ring_buffer_record_is_set_on().
This fixes spurious fails in the 'test for function traceon/off triggers'
test from the ftrace testsuite when the system is under load.

Link: https://lore.kernel.org/linux-trace-kernel/20240205065340.2848065-1-svens@linux.ibm.com

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Tested-By: Mete Durlu <meted@linux.ibm.com>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-02-13 12:04:17 -05:00
Steven Rostedt (Google)
44dc5c41b5 tracing: Fix wasted memory in saved_cmdlines logic
While looking at improving the saved_cmdlines cache I found a huge amount
of wasted memory that should be used for the cmdlines.

The tracing data saves pids during the trace. At sched switch, if a trace
occurred, it will save the comm of the task that did the trace. This is
saved in a "cache" that maps pids to comms and exposed to user space via
the /sys/kernel/tracing/saved_cmdlines file. Currently it only caches by
default 128 comms.

The structure that uses this creates an array to store the pids using
PID_MAX_DEFAULT (which is usually set to 32768). This causes the structure
to be of the size of 131104 bytes on 64 bit machines.

In hex: 131104 = 0x20020, and since the kernel allocates generic memory in
powers of two, the kernel would allocate 0x40000 or 262144 bytes to store
this structure. That leaves 131040 bytes of wasted space.

Worse, the structure points to an allocated array to store the comm names,
which is 16 bytes times the amount of names to save (currently 128), which
is 2048 bytes. Instead of allocating a separate array, make the structure
end with a variable length string and use the extra space for that.

This is similar to a recommendation that Linus had made about eventfs_inode names:

  https://lore.kernel.org/all/20240130190355.11486-5-torvalds@linux-foundation.org/

Instead of allocating a separate string array to hold the saved comms,
have the structure end with: char saved_cmdlines[]; and round up to the
next power of two over sizeof(struct saved_cmdline_buffers) + num_cmdlines * TASK_COMM_LEN
It will use this extra space for the saved_cmdline portion.

Now, instead of saving only 128 comms by default, by using this wasted
space at the end of the structure it can save over 8000 comms and even
saves space by removing the need for allocating the other array.

Link: https://lore.kernel.org/linux-trace-kernel/20240209063622.1f7b6d5f@rorschach.local.home

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes: 939c7a4f04 ("tracing: Introduce saved_cmdlines_size file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-02-09 06:43:21 -05:00
Linus Torvalds
a2ded784cd tracing updates for 6.8:
- Allow kernel trace instance creation to specify what events are created
   Inside the kernel, a subsystem may create a tracing instance that it can
   use to send events to user space. This sub-system may not care about the
   thousands of events that exist in eventfs. Allow the sub-system to specify
   what sub-systems of events it cares about, and only those events are exposed
   to this instance.
 
 - Allow the ring buffer to be broken up into bigger sub-buffers than just the
   architecture page size. A new tracefs file called "buffer_subbuf_size_kb"
   is created. The user can now specify a minimum size the sub-buffer may be
   in kilobytes. Note, that the implementation currently make the sub-buffer
   size a power of 2 pages (1, 2, 4, 8, 16, ...) but the user only writes in
   kilobyte size, and the sub-buffer will be updated to the next size that
   it will can accommodate it. If the user writes in 10, it will change the
   size to be 4 pages on x86 (16K), as that is the next available size that
   can hold 10K pages.
 
 - Update the debug output when a corrupt time is detected in the ring buffer.
   If the ring buffer detects inconsistent timestamps, there's a debug config
   options that will dump the contents of the meta data of the sub-buffer that
   is used for debugging. Add some more information to this dump that helps
   with debugging.
 
 - Add more timestamp debugging checks (only triggers when the config is enabled)
 
 - Increase the trace_seq iterator to 2 page sizes.
 
 - Allow strings written into tracefs_marker to be larger. Up to just under
   2 page sizes (based on what trace_seq can hold).
 
 - Increase the trace_maker_raw write to be as big as a sub-buffer can hold.
 
 - Remove 32 bit time stamp logic, now that the rb_time_cmpxchg() has been
   removed.
 
 - More selftests were added.
 
 - Some code clean ups as well.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZZ8p3BQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6ql2GAQDZg/zlFEiJHyTfWbCIE8pA3T5xbzKo
 26TNxIZAxJJZpQEAvGFU5Smy14pG6soEoVMp8B6ZOANbqU8VVamhOL+r+Qw=
 =0OYG
 -----END PGP SIGNATURE-----

Merge tag 'trace-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull tracing updates from Steven Rostedt:

 - Allow kernel trace instance creation to specify what events are
   created

   Inside the kernel, a subsystem may create a tracing instance that it
   can use to send events to user space. This sub-system may not care
   about the thousands of events that exist in eventfs. Allow the
   sub-system to specify what sub-systems of events it cares about, and
   only those events are exposed to this instance.

 - Allow the ring buffer to be broken up into bigger sub-buffers than
   just the architecture page size.

   A new tracefs file called "buffer_subbuf_size_kb" is created. The
   user can now specify a minimum size the sub-buffer may be in
   kilobytes. Note, that the implementation currently make the
   sub-buffer size a power of 2 pages (1, 2, 4, 8, 16, ...) but the user
   only writes in kilobyte size, and the sub-buffer will be updated to
   the next size that it will can accommodate it. If the user writes in
   10, it will change the size to be 4 pages on x86 (16K), as that is
   the next available size that can hold 10K pages.

 - Update the debug output when a corrupt time is detected in the ring
   buffer. If the ring buffer detects inconsistent timestamps, there's a
   debug config options that will dump the contents of the meta data of
   the sub-buffer that is used for debugging. Add some more information
   to this dump that helps with debugging.

 - Add more timestamp debugging checks (only triggers when the config is
   enabled)

 - Increase the trace_seq iterator to 2 page sizes.

 - Allow strings written into tracefs_marker to be larger. Up to just
   under 2 page sizes (based on what trace_seq can hold).

 - Increase the trace_maker_raw write to be as big as a sub-buffer can
   hold.

 - Remove 32 bit time stamp logic, now that the rb_time_cmpxchg() has
   been removed.

 - More selftests were added.

 - Some code clean ups as well.

* tag 'trace-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (29 commits)
  ring-buffer: Remove stale comment from ring_buffer_size()
  tracing histograms: Simplify parse_actions() function
  tracing/selftests: Remove exec permissions from trace_marker.tc test
  ring-buffer: Use subbuf_order for buffer page masking
  tracing: Update subbuffer with kilobytes not page order
  ringbuffer/selftest: Add basic selftest to test changing subbuf order
  ring-buffer: Add documentation on the buffer_subbuf_order file
  ring-buffer: Just update the subbuffers when changing their allocation order
  ring-buffer: Keep the same size when updating the order
  tracing: Stop the tracing while changing the ring buffer subbuf size
  tracing: Update snapshot order along with main buffer order
  ring-buffer: Make sure the spare sub buffer used for reads has same size
  ring-buffer: Do no swap cpu buffers if order is different
  ring-buffer: Clear pages on error in ring_buffer_subbuf_order_set() failure
  ring-buffer: Read and write to ring buffers with custom sub buffer size
  ring-buffer: Set new size of the ring buffer sub page
  ring-buffer: Add interface for configuring trace sub buffer size
  ring-buffer: Page size per ring buffer
  ring-buffer: Have ring_buffer_print_page_header() be able to access ring_buffer_iter
  ring-buffer: Check if absolute timestamp goes backwards
  ...
2024-01-18 14:35:29 -08:00
Steven Rostedt (Google)
39a7dc23a1 tracing: Fix blocked reader of snapshot buffer
If an application blocks on the snapshot or snapshot_raw files, expecting
to be woken up when a snapshot occurs, it will not happen. Or it may
happen with an unexpected result.

That result is that the application will be reading the main buffer
instead of the snapshot buffer. That is because when the snapshot occurs,
the main and snapshot buffers are swapped. But the reader has a descriptor
still pointing to the buffer that it originally connected to.

This is fine for the main buffer readers, as they may be blocked waiting
for a watermark to be hit, and when a snapshot occurs, the data that the
main readers want is now on the snapshot buffer.

But for waiters of the snapshot buffer, they are waiting for an event to
occur that will trigger the snapshot and they can then consume it quickly
to save the snapshot before the next snapshot occurs. But to do this, they
need to read the new snapshot buffer, not the old one that is now
receiving new data.

Also, it does not make sense to have a watermark "buffer_percent" on the
snapshot buffer, as the snapshot buffer is static and does not receive new
data except all at once.

Link: https://lore.kernel.org/linux-trace-kernel/20231228095149.77f5b45d@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Fixes: debdd57f51 ("tracing: Make a snapshot feature available from userspace")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-29 09:18:49 -05:00
Steven Rostedt (Google)
2f84b39f48 tracing: Update subbuffer with kilobytes not page order
Using page order for deciding what the size of the ring buffer sub buffers
are is exposing a bit too much of the implementation. Although the sub
buffers are only allocated in orders of pages, allow the user to specify
the minimum size of each sub-buffer via kilobytes like they can with the
buffer size itself.

If the user specifies 3 via:

  echo 3 > buffer_subbuf_size_kb

Then the sub-buffer size will round up to 4kb (on a 4kb page size system).

If they specify:

  echo 6 > buffer_subbuf_size_kb

The sub-buffer size will become 8kb.

and so on.

Link: https://lore.kernel.org/linux-trace-kernel/20231219185631.809766769@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-21 11:04:15 -05:00
Steven Rostedt (Google)
fa4b54af5b tracing: Stop the tracing while changing the ring buffer subbuf size
Because the main buffer and the snapshot buffer need to be the same for
some tracers, otherwise it will fail and disable all tracing, the tracers
need to be stopped while updating the sub buffer sizes so that the tracers
see the main and snapshot buffers with the same sub buffer size.

Link: https://lore.kernel.org/linux-trace-kernel/20231219185630.353222794@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Fixes: 2808e31ec1 ("ring-buffer: Add interface for configuring trace sub buffer size")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-21 11:00:56 -05:00
Steven Rostedt (Google)
aa067682ad tracing: Update snapshot order along with main buffer order
When updating the order of the sub buffers for the main buffer, make sure
that if the snapshot buffer exists, that it gets its order updated as
well.

Link: https://lore.kernel.org/linux-trace-kernel/20231219185630.054668186@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-21 10:55:57 -05:00
Steven Rostedt (Google)
4e958db34f ring-buffer: Make sure the spare sub buffer used for reads has same size
Now that the ring buffer specifies the size of its sub buffers, they all
need to be the same size. When doing a read, a swap is done with a spare
page. Make sure they are the same size before doing the swap, otherwise
the read will fail.

Link: https://lore.kernel.org/linux-trace-kernel/20231219185629.763664788@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-21 10:55:04 -05:00
Tzvetomir Stoyanov (VMware)
bce761d757 ring-buffer: Read and write to ring buffers with custom sub buffer size
As the size of the ring sub buffer page can be changed dynamically,
the logic that reads and writes to the buffer should be fixed to take
that into account. Some internal ring buffer APIs are changed:
 ring_buffer_alloc_read_page()
 ring_buffer_free_read_page()
 ring_buffer_read_page()
A new API is introduced:
 ring_buffer_read_page_data()

Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-6-tz.stoyanov@gmail.com
Link: https://lore.kernel.org/linux-trace-kernel/20231219185628.875145995@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com>
[ Fixed kerneldoc on data_page parameter in ring_buffer_free_read_page() ]
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-20 07:54:56 -05:00
Tzvetomir Stoyanov (VMware)
2808e31ec1 ring-buffer: Add interface for configuring trace sub buffer size
The trace ring buffer sub page size can be configured, per trace
instance. A new ftrace file "buffer_subbuf_order" is added to get and
set the size of the ring buffer sub page for current trace instance.
The size must be an order of system page size, that's why the new
interface works with system page order, instead of absolute page size:
0 means the ring buffer sub page is equal to 1 system page and so
forth:
0 - 1 system page
1 - 2 system pages
2 - 4 system pages
...
The ring buffer sub page size is limited between 1 and 128 system
pages. The default value is 1 system page.
New ring buffer APIs are introduced:
 ring_buffer_subbuf_order_set()
 ring_buffer_subbuf_order_get()
 ring_buffer_subbuf_size_get()

Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-4-tz.stoyanov@gmail.com
Link: https://lore.kernel.org/linux-trace-kernel/20231219185628.298324722@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-20 07:54:55 -05:00
Tzvetomir Stoyanov (VMware)
139f840021 ring-buffer: Page size per ring buffer
Currently the size of one sub buffer page is global for all buffers and
it is hard coded to one system page. In order to introduce configurable
ring buffer sub page size, the internal logic should be refactored to
work with sub page size per ring buffer.

Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-3-tz.stoyanov@gmail.com
Link: https://lore.kernel.org/linux-trace-kernel/20231219185628.009147038@goodmis.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-20 07:54:55 -05:00
Steven Rostedt (Google)
76ca20c748 tracing: Increase size of trace_marker_raw to max ring buffer entry
There's no reason to give an arbitrary limit to the size of a raw trace
marker. Just let it be as big as the size that is allowed by the ring
buffer itself.

And there's also no reason to artificially break up the write to
TRACE_BUF_SIZE, as that's not even used.

Link: https://lore.kernel.org/linux-trace-kernel/20231213104218.2efc70c1@gandalf.local.home

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-18 23:14:16 -05:00
Steven Rostedt (Google)
9482341d9b tracing: Have trace_marker break up by lines by size of trace_seq
If a trace_marker write is bigger than what trace_seq can hold, then it
will print "LINE TOO BIG" message and not what was written.

Instead, check if the write is bigger than the trace_seq and break it
up by that size.

Ideally, we could make the trace_seq dynamic that could hold this. But
that's for another time.

Link: https://lore.kernel.org/linux-trace-kernel/20231212190422.1eaf224f@gandalf.local.home

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-18 23:14:16 -05:00
Steven Rostedt (Google)
40fc60e36c trace_seq: Increase the buffer size to almost two pages
Now that trace_marker can hold more than 1KB string, and can write as much
as the ring buffer can hold, the trace_seq is not big enough to hold
writes:

 ~# a="1234567890"
 ~# cnt=4080
 ~# s=""
 ~# while [ $cnt -gt 10 ]; do
 ~#	s="${s}${a}"
 ~#	cnt=$((cnt-10))
 ~# done
 ~# echo $s > trace_marker
 ~# cat trace
 # tracer: nop
 #
 # entries-in-buffer/entries-written: 2/2   #P:8
 #
 #                                _-----=> irqs-off/BH-disabled
 #                               / _----=> need-resched
 #                              | / _---=> hardirq/softirq
 #                              || / _--=> preempt-depth
 #                              ||| / _-=> migrate-disable
 #                              |||| /     delay
 #           TASK-PID     CPU#  |||||  TIMESTAMP  FUNCTION
 #              | |         |   |||||     |         |
            <...>-860     [002] .....   105.543465: tracing_mark_write[LINE TOO BIG]
            <...>-860     [002] .....   105.543496: tracing_mark_write: 789012345678901234567890

By increasing the trace_seq buffer to almost two pages, it can now print
out the first line.

This also subtracts the rest of the trace_seq fields from the buffer, so
that the entire trace_seq is now PAGE_SIZE aligned.

Link: https://lore.kernel.org/linux-trace-kernel/20231209175220.19867af4@gandalf.local.home

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-18 23:14:16 -05:00
Steven Rostedt (Google)
8ec90be7f1 tracing: Allow for max buffer data size trace_marker writes
Allow a trace write to be as big as the ring buffer tracing data will
allow. Currently, it only allows writes of 1KB in size, but there's no
reason that it cannot allow what the ring buffer can hold.

Link: https://lore.kernel.org/linux-trace-kernel/20231212131901.5f501e72@gandalf.local.home

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-18 23:14:16 -05:00
Steven Rostedt (Google)
d23569979c tracing: Allow creating instances with specified system events
A trace instance may only need to enable specific events. As the eventfs
directory of an instance currently creates all events which adds overhead,
allow internal instances to be created with just the events in systems
that they care about. This currently only deals with systems and not
individual events, but this should bring down the overhead of creating
instances for specific use cases quite bit.

The trace_array_get_by_name() now has another parameter "systems". This
parameter is a const string pointer of a comma/space separated list of
event systems that should be created by the trace_array. (Note if the
trace_array already exists, this parameter is ignored).

The list of systems is saved and if a module is loaded, its events will
not be added unless the system for those events also match the systems
string.

Link: https://lore.kernel.org/linux-trace-kernel/20231213093701.03fddec0@gandalf.local.home

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Sean Paul <seanpaul@chromium.org>
Cc: Arun Easi   <aeasi@marvell.com>
Cc: Daniel Wagner <dwagner@suse.de>
Tested-by: Dmytro Maluka <dmaluka@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-18 23:14:16 -05:00
Zheng Yejian
1cc111b9cd tracing: Fix uaf issue when open the hist or hist_debug file
KASAN report following issue. The root cause is when opening 'hist'
file of an instance and accessing 'trace_event_file' in hist_show(),
but 'trace_event_file' has been freed due to the instance being removed.
'hist_debug' file has the same problem. To fix it, call
tracing_{open,release}_file_tr() in file_operations callback to have
the ref count and avoid 'trace_event_file' being freed.

  BUG: KASAN: slab-use-after-free in hist_show+0x11e0/0x1278
  Read of size 8 at addr ffff242541e336b8 by task head/190

  CPU: 4 PID: 190 Comm: head Not tainted 6.7.0-rc5-g26aff849438c #133
  Hardware name: linux,dummy-virt (DT)
  Call trace:
   dump_backtrace+0x98/0xf8
   show_stack+0x1c/0x30
   dump_stack_lvl+0x44/0x58
   print_report+0xf0/0x5a0
   kasan_report+0x80/0xc0
   __asan_report_load8_noabort+0x1c/0x28
   hist_show+0x11e0/0x1278
   seq_read_iter+0x344/0xd78
   seq_read+0x128/0x1c0
   vfs_read+0x198/0x6c8
   ksys_read+0xf4/0x1e0
   __arm64_sys_read+0x70/0xa8
   invoke_syscall+0x70/0x260
   el0_svc_common.constprop.0+0xb0/0x280
   do_el0_svc+0x44/0x60
   el0_svc+0x34/0x68
   el0t_64_sync_handler+0xb8/0xc0
   el0t_64_sync+0x168/0x170

  Allocated by task 188:
   kasan_save_stack+0x28/0x50
   kasan_set_track+0x28/0x38
   kasan_save_alloc_info+0x20/0x30
   __kasan_slab_alloc+0x6c/0x80
   kmem_cache_alloc+0x15c/0x4a8
   trace_create_new_event+0x84/0x348
   __trace_add_new_event+0x18/0x88
   event_trace_add_tracer+0xc4/0x1a0
   trace_array_create_dir+0x6c/0x100
   trace_array_create+0x2e8/0x568
   instance_mkdir+0x48/0x80
   tracefs_syscall_mkdir+0x90/0xe8
   vfs_mkdir+0x3c4/0x610
   do_mkdirat+0x144/0x200
   __arm64_sys_mkdirat+0x8c/0xc0
   invoke_syscall+0x70/0x260
   el0_svc_common.constprop.0+0xb0/0x280
   do_el0_svc+0x44/0x60
   el0_svc+0x34/0x68
   el0t_64_sync_handler+0xb8/0xc0
   el0t_64_sync+0x168/0x170

  Freed by task 191:
   kasan_save_stack+0x28/0x50
   kasan_set_track+0x28/0x38
   kasan_save_free_info+0x34/0x58
   __kasan_slab_free+0xe4/0x158
   kmem_cache_free+0x19c/0x508
   event_file_put+0xa0/0x120
   remove_event_file_dir+0x180/0x320
   event_trace_del_tracer+0xb0/0x180
   __remove_instance+0x224/0x508
   instance_rmdir+0x44/0x78
   tracefs_syscall_rmdir+0xbc/0x140
   vfs_rmdir+0x1cc/0x4c8
   do_rmdir+0x220/0x2b8
   __arm64_sys_unlinkat+0xc0/0x100
   invoke_syscall+0x70/0x260
   el0_svc_common.constprop.0+0xb0/0x280
   do_el0_svc+0x44/0x60
   el0_svc+0x34/0x68
   el0t_64_sync_handler+0xb8/0xc0
   el0t_64_sync+0x168/0x170

Link: https://lore.kernel.org/linux-trace-kernel/20231214012153.676155-1-zhengyejian1@huawei.com

Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-13 23:29:59 -05:00
Steven Rostedt (Google)
d06aff1cb1 tracing: Update snapshot buffer on resize if it is allocated
The snapshot buffer is to mimic the main buffer so that when a snapshot is
needed, the snapshot and main buffer are swapped. When the snapshot buffer
is allocated, it is set to the minimal size that the ring buffer may be at
and still functional. When it is allocated it becomes the same size as the
main ring buffer, and when the main ring buffer changes in size, it should
do.

Currently, the resize only updates the snapshot buffer if it's used by the
current tracer (ie. the preemptirqsoff tracer). But it needs to be updated
anytime it is allocated.

When changing the size of the main buffer, instead of looking to see if
the current tracer is utilizing the snapshot buffer, just check if it is
allocated to know if it should be updated or not.

Also fix typo in comment just above the code change.

Link: https://lore.kernel.org/linux-trace-kernel/20231210225447.48476a6a@rorschach.local.home

Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: ad909e21bb ("tracing: Add internal tracing_snapshot() functions")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-12 19:00:38 -05:00
Steven Rostedt (Google)
b55b0a0d7c tracing: Have large events show up as '[LINE TOO BIG]' instead of nothing
If a large event was added to the ring buffer that is larger than what the
trace_seq can handle, it just drops the output:

 ~# cat /sys/kernel/tracing/trace
 # tracer: nop
 #
 # entries-in-buffer/entries-written: 2/2   #P:8
 #
 #                                _-----=> irqs-off/BH-disabled
 #                               / _----=> need-resched
 #                              | / _---=> hardirq/softirq
 #                              || / _--=> preempt-depth
 #                              ||| / _-=> migrate-disable
 #                              |||| /     delay
 #           TASK-PID     CPU#  |||||  TIMESTAMP  FUNCTION
 #              | |         |   |||||     |         |
            <...>-859     [001] .....   141.118951: tracing_mark_write           <...>-859     [001] .....   141.148201: tracing_mark_write: 78901234

Instead, catch this case and add some context:

 ~# cat /sys/kernel/tracing/trace
 # tracer: nop
 #
 # entries-in-buffer/entries-written: 2/2   #P:8
 #
 #                                _-----=> irqs-off/BH-disabled
 #                               / _----=> need-resched
 #                              | / _---=> hardirq/softirq
 #                              || / _--=> preempt-depth
 #                              ||| / _-=> migrate-disable
 #                              |||| /     delay
 #           TASK-PID     CPU#  |||||  TIMESTAMP  FUNCTION
 #              | |         |   |||||     |         |
            <...>-852     [001] .....   121.550551: tracing_mark_write[LINE TOO BIG]
            <...>-852     [001] .....   121.550581: tracing_mark_write: 78901234

This now emulates the same output as trace_pipe.

Link: https://lore.kernel.org/linux-trace-kernel/20231209171058.78c1a026@gandalf.local.home

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-12 19:00:36 -05:00
Petr Pavlu
c0591b1ccc tracing: Fix a possible race when disabling buffered events
Function trace_buffered_event_disable() is responsible for freeing pages
backing buffered events and this process can run concurrently with
trace_event_buffer_lock_reserve().

The following race is currently possible:

* Function trace_buffered_event_disable() is called on CPU 0. It
  increments trace_buffered_event_cnt on each CPU and waits via
  synchronize_rcu() for each user of trace_buffered_event to complete.

* After synchronize_rcu() is finished, function
  trace_buffered_event_disable() has the exclusive access to
  trace_buffered_event. All counters trace_buffered_event_cnt are at 1
  and all pointers trace_buffered_event are still valid.

* At this point, on a different CPU 1, the execution reaches
  trace_event_buffer_lock_reserve(). The function calls
  preempt_disable_notrace() and only now enters an RCU read-side
  critical section. The function proceeds and reads a still valid
  pointer from trace_buffered_event[CPU1] into the local variable
  "entry". However, it doesn't yet read trace_buffered_event_cnt[CPU1]
  which happens later.

* Function trace_buffered_event_disable() continues. It frees
  trace_buffered_event[CPU1] and decrements
  trace_buffered_event_cnt[CPU1] back to 0.

* Function trace_event_buffer_lock_reserve() continues. It reads and
  increments trace_buffered_event_cnt[CPU1] from 0 to 1. This makes it
  believe that it can use the "entry" that it already obtained but the
  pointer is now invalid and any access results in a use-after-free.

Fix the problem by making a second synchronize_rcu() call after all
trace_buffered_event values are set to NULL. This waits on all potential
users in trace_event_buffer_lock_reserve() that still read a previous
pointer from trace_buffered_event.

Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-4-petr.pavlu@suse.com

Cc: stable@vger.kernel.org
Fixes: 0fc1b09ff1 ("tracing: Use temp buffer when filtering events")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-05 17:17:00 -05:00
Petr Pavlu
34209fe83e tracing: Fix a warning when allocating buffered events fails
Function trace_buffered_event_disable() produces an unexpected warning
when the previous call to trace_buffered_event_enable() fails to
allocate pages for buffered events.

The situation can occur as follows:

* The counter trace_buffered_event_ref is at 0.

* The soft mode gets enabled for some event and
  trace_buffered_event_enable() is called. The function increments
  trace_buffered_event_ref to 1 and starts allocating event pages.

* The allocation fails for some page and trace_buffered_event_disable()
  is called for cleanup.

* Function trace_buffered_event_disable() decrements
  trace_buffered_event_ref back to 0, recognizes that it was the last
  use of buffered events and frees all allocated pages.

* The control goes back to trace_buffered_event_enable() which returns.
  The caller of trace_buffered_event_enable() has no information that
  the function actually failed.

* Some time later, the soft mode is disabled for the same event.
  Function trace_buffered_event_disable() is called. It warns on
  "WARN_ON_ONCE(!trace_buffered_event_ref)" and returns.

Buffered events are just an optimization and can handle failures. Make
trace_buffered_event_enable() exit on the first failure and left any
cleanup later to when trace_buffered_event_disable() is called.

Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-3-petr.pavlu@suse.com

Fixes: 0fc1b09ff1 ("tracing: Use temp buffer when filtering events")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-05 17:16:48 -05:00
Petr Pavlu
7fed14f7ac tracing: Fix incomplete locking when disabling buffered events
The following warning appears when using buffered events:

[  203.556451] WARNING: CPU: 53 PID: 10220 at kernel/trace/ring_buffer.c:3912 ring_buffer_discard_commit+0x2eb/0x420
[...]
[  203.670690] CPU: 53 PID: 10220 Comm: stress-ng-sysin Tainted: G            E      6.7.0-rc2-default #4 56e6d0fcf5581e6e51eaaecbdaec2a2338c80f3a
[  203.670704] Hardware name: Intel Corp. GROVEPORT/GROVEPORT, BIOS GVPRCRB1.86B.0016.D04.1705030402 05/03/2017
[  203.670709] RIP: 0010:ring_buffer_discard_commit+0x2eb/0x420
[  203.735721] Code: 4c 8b 4a 50 48 8b 42 48 49 39 c1 0f 84 b3 00 00 00 49 83 e8 01 75 b1 48 8b 42 10 f0 ff 40 08 0f 0b e9 fc fe ff ff f0 ff 47 08 <0f> 0b e9 77 fd ff ff 48 8b 42 10 f0 ff 40 08 0f 0b e9 f5 fe ff ff
[  203.735734] RSP: 0018:ffffb4ae4f7b7d80 EFLAGS: 00010202
[  203.735745] RAX: 0000000000000000 RBX: ffffb4ae4f7b7de0 RCX: ffff8ac10662c000
[  203.735754] RDX: ffff8ac0c750be00 RSI: ffff8ac10662c000 RDI: ffff8ac0c004d400
[  203.781832] RBP: ffff8ac0c039cea0 R08: 0000000000000000 R09: 0000000000000000
[  203.781839] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
[  203.781842] R13: ffff8ac10662c000 R14: ffff8ac0c004d400 R15: ffff8ac10662c008
[  203.781846] FS:  00007f4cd8a67740(0000) GS:ffff8ad798880000(0000) knlGS:0000000000000000
[  203.781851] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  203.781855] CR2: 0000559766a74028 CR3: 00000001804c4000 CR4: 00000000001506f0
[  203.781862] Call Trace:
[  203.781870]  <TASK>
[  203.851949]  trace_event_buffer_commit+0x1ea/0x250
[  203.851967]  trace_event_raw_event_sys_enter+0x83/0xe0
[  203.851983]  syscall_trace_enter.isra.0+0x182/0x1a0
[  203.851990]  do_syscall_64+0x3a/0xe0
[  203.852075]  entry_SYSCALL_64_after_hwframe+0x6e/0x76
[  203.852090] RIP: 0033:0x7f4cd870fa77
[  203.982920] Code: 00 b8 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 90 b8 89 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d e9 43 0e 00 f7 d8 64 89 01 48
[  203.982932] RSP: 002b:00007fff99717dd8 EFLAGS: 00000246 ORIG_RAX: 0000000000000089
[  203.982942] RAX: ffffffffffffffda RBX: 0000558ea1d7b6f0 RCX: 00007f4cd870fa77
[  203.982948] RDX: 0000000000000000 RSI: 00007fff99717de0 RDI: 0000558ea1d7b6f0
[  203.982957] RBP: 00007fff99717de0 R08: 00007fff997180e0 R09: 00007fff997180e0
[  203.982962] R10: 00007fff997180e0 R11: 0000000000000246 R12: 00007fff99717f40
[  204.049239] R13: 00007fff99718590 R14: 0000558e9f2127a8 R15: 00007fff997180b0
[  204.049256]  </TASK>

For instance, it can be triggered by running these two commands in
parallel:

 $ while true; do
    echo hist:key=id.syscall:val=hitcount > \
      /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger;
  done
 $ stress-ng --sysinfo $(nproc)

The warning indicates that the current ring_buffer_per_cpu is not in the
committing state. It happens because the active ring_buffer_event
doesn't actually come from the ring_buffer_per_cpu but is allocated from
trace_buffered_event.

The bug is in function trace_buffered_event_disable() where the
following normally happens:

* The code invokes disable_trace_buffered_event() via
  smp_call_function_many() and follows it by synchronize_rcu(). This
  increments the per-CPU variable trace_buffered_event_cnt on each
  target CPU and grants trace_buffered_event_disable() the exclusive
  access to the per-CPU variable trace_buffered_event.

* Maintenance is performed on trace_buffered_event, all per-CPU event
  buffers get freed.

* The code invokes enable_trace_buffered_event() via
  smp_call_function_many(). This decrements trace_buffered_event_cnt and
  releases the access to trace_buffered_event.

A problem is that smp_call_function_many() runs a given function on all
target CPUs except on the current one. The following can then occur:

* Task X executing trace_buffered_event_disable() runs on CPU 0.

* The control reaches synchronize_rcu() and the task gets rescheduled on
  another CPU 1.

* The RCU synchronization finishes. At this point,
  trace_buffered_event_disable() has the exclusive access to all
  trace_buffered_event variables except trace_buffered_event[CPU0]
  because trace_buffered_event_cnt[CPU0] is never incremented and if the
  buffer is currently unused, remains set to 0.

* A different task Y is scheduled on CPU 0 and hits a trace event. The
  code in trace_event_buffer_lock_reserve() sees that
  trace_buffered_event_cnt[CPU0] is set to 0 and decides the use the
  buffer provided by trace_buffered_event[CPU0].

* Task X continues its execution in trace_buffered_event_disable(). The
  code incorrectly frees the event buffer pointed by
  trace_buffered_event[CPU0] and resets the variable to NULL.

* Task Y writes event data to the now freed buffer and later detects the
  created inconsistency.

The issue is observable since commit dea499781a ("tracing: Fix warning
in trace_buffered_event_disable()") which moved the call of
trace_buffered_event_disable() in __ftrace_event_enable_disable()
earlier, prior to invoking call->class->reg(.. TRACE_REG_UNREGISTER ..).
The underlying problem in trace_buffered_event_disable() is however
present since the original implementation in commit 0fc1b09ff1
("tracing: Use temp buffer when filtering events").

Fix the problem by replacing the two smp_call_function_many() calls with
on_each_cpu_mask() which invokes a given callback on all CPUs.

Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-2-petr.pavlu@suse.com

Cc: stable@vger.kernel.org
Fixes: 0fc1b09ff1 ("tracing: Use temp buffer when filtering events")
Fixes: dea499781a ("tracing: Fix warning in trace_buffered_event_disable()")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-05 17:13:51 -05:00
Steven Rostedt (Google)
b538bf7d0e tracing: Disable snapshot buffer when stopping instance tracers
It use to be that only the top level instance had a snapshot buffer (for
latency tracers like wakeup and irqsoff). When stopping a tracer in an
instance would not disable the snapshot buffer. This could have some
unintended consequences if the irqsoff tracer is enabled.

Consolidate the tracing_start/stop() with tracing_start/stop_tr() so that
all instances behave the same. The tracing_start/stop() functions will
just call their respective tracing_start/stop_tr() with the global_array
passed in.

Link: https://lkml.kernel.org/r/20231205220011.041220035@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 6d9b3fa5e7 ("tracing: Move tracing_max_latency into trace_array")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-05 17:06:12 -05:00
Steven Rostedt (Google)
d78ab79270 tracing: Stop current tracer when resizing buffer
When the ring buffer is being resized, it can cause side effects to the
running tracer. For instance, there's a race with irqsoff tracer that
swaps individual per cpu buffers between the main buffer and the snapshot
buffer. The resize operation modifies the main buffer and then the
snapshot buffer. If a swap happens in between those two operations it will
break the tracer.

Simply stop the running tracer before resizing the buffers and enable it
again when finished.

Link: https://lkml.kernel.org/r/20231205220010.748996423@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 3928a8a2d9 ("ftrace: make work with new ring buffer")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-05 17:06:12 -05:00
Steven Rostedt (Google)
7be76461f3 tracing: Always update snapshot buffer size
It use to be that only the top level instance had a snapshot buffer (for
latency tracers like wakeup and irqsoff). The update of the ring buffer
size would check if the instance was the top level and if so, it would
also update the snapshot buffer as it needs to be the same as the main
buffer.

Now that lower level instances also has a snapshot buffer, they too need
to update their snapshot buffer sizes when the main buffer is changed,
otherwise the following can be triggered:

 # cd /sys/kernel/tracing
 # echo 1500 > buffer_size_kb
 # mkdir instances/foo
 # echo irqsoff > instances/foo/current_tracer
 # echo 1000 > instances/foo/buffer_size_kb

Produces:

 WARNING: CPU: 2 PID: 856 at kernel/trace/trace.c:1938 update_max_tr_single.part.0+0x27d/0x320

Which is:

	ret = ring_buffer_swap_cpu(tr->max_buffer.buffer, tr->array_buffer.buffer, cpu);

	if (ret == -EBUSY) {
		[..]
	}

	WARN_ON_ONCE(ret && ret != -EAGAIN && ret != -EBUSY);  <== here

That's because ring_buffer_swap_cpu() has:

	int ret = -EINVAL;

	[..]

	/* At least make sure the two buffers are somewhat the same */
	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
		goto out;

	[..]
 out:
	return ret;
 }

Instead, update all instances' snapshot buffer sizes when their main
buffer size is updated.

Link: https://lkml.kernel.org/r/20231205220010.454662151@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 6d9b3fa5e7 ("tracing: Move tracing_max_latency into trace_array")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-05 17:06:12 -05:00