Create a incompat flag so that we only attempt to process file mapping
exchange log items if the filesystem supports it, and a geometry flag to
advertise support if it's present.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Introduce a new ioctl to handle exchanging ranges of bytes
between files. The goal here is to perform the exchange atomically with
respect to applications -- either they see the file contents before the
exchange or they see that A-B is now B-A, even if the kernel crashes.
My original goal with all this code was to make it so that online repair
can build a replacement directory or xattr structure in a temporary file
and commit the repair by atomically exchanging all the data blocks
between the two files. However, I needed a way to test this mechanism
thoroughly, so I've been evolving an ioctl interface since then.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This predicate doesn't modify the structure that's being passed in, so
we can mark it const.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Allow callers to pass buffer lookup flags to xfs_read_agi and
xfs_ialloc_read_agi. This will be used in the next patch to fix a
deadlock in the online fsck inode scanner.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
If a filesystem has a busted stripe alignment configuration on disk
(e.g. because broken RAID firmware told mkfs that swidth was smaller
than sunit), then the filesystem will refuse to mount due to the
stripe validation failing. This failure is triggering during distro
upgrades from old kernels lacking this check to newer kernels with
this check, and currently the only way to fix it is with offline
xfs_db surgery.
This runtime validity checking occurs when we read the superblock
for the first time and causes the mount to fail immediately. This
prevents the rewrite of stripe unit/width via
mount options that occurs later in the mount process. Hence there is
no way to recover this situation without resorting to offline xfs_db
rewrite of the values.
However, we parse the mount options long before we read the
superblock, and we know if the mount has been asked to re-write the
stripe alignment configuration when we are reading the superblock
and verifying it for the first time. Hence we can conditionally
ignore stripe verification failures if the mount options specified
will correct the issue.
We validate that the new stripe unit/width are valid before we
overwrite the superblock values, so we can ignore the invalid config
at verification and fail the mount later if the new values are not
valid. This, at least, gives users the chance of correcting the
issue after a kernel upgrade without having to resort to xfs-db
hacks.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Chandan reported a AGI/AGF lock order hang on xfs/168 during recent
testing. The cause of the problem was the task running xfs_growfs
to shrink the filesystem. A failure occurred trying to remove the
free space from the btrees that the shrink would make disappear,
and that meant it ran the error handling for a partial failure.
This error path involves restoring the per-ag block reservations,
and that requires calculating the amount of space needed to be
reserved for the free inode btree. The growfs operation hung here:
[18679.536829] down+0x71/0xa0
[18679.537657] xfs_buf_lock+0xa4/0x290 [xfs]
[18679.538731] xfs_buf_find_lock+0xf7/0x4d0 [xfs]
[18679.539920] xfs_buf_lookup.constprop.0+0x289/0x500 [xfs]
[18679.542628] xfs_buf_get_map+0x2b3/0xe40 [xfs]
[18679.547076] xfs_buf_read_map+0xbb/0x900 [xfs]
[18679.562616] xfs_trans_read_buf_map+0x449/0xb10 [xfs]
[18679.569778] xfs_read_agi+0x1cd/0x500 [xfs]
[18679.573126] xfs_ialloc_read_agi+0xc2/0x5b0 [xfs]
[18679.578708] xfs_finobt_calc_reserves+0xe7/0x4d0 [xfs]
[18679.582480] xfs_ag_resv_init+0x2c5/0x490 [xfs]
[18679.586023] xfs_ag_shrink_space+0x736/0xd30 [xfs]
[18679.590730] xfs_growfs_data_private.isra.0+0x55e/0x990 [xfs]
[18679.599764] xfs_growfs_data+0x2f1/0x410 [xfs]
[18679.602212] xfs_file_ioctl+0xd1e/0x1370 [xfs]
trying to get the AGI lock. The AGI lock was held by a fstress task
trying to do an inode allocation, and it was waiting on the AGF
lock to allocate a new inode chunk on disk. Hence deadlock.
The fix for this is for the growfs code to hold the AGI over the
transaction roll it does in the error path. It already holds the AGF
locked across this, and that is what causes the lock order inversion
in the xfs_ag_resv_init() call.
Reported-by: Chandan Babu R <chandanbabu@kernel.org>
Fixes: 46141dc891 ("xfs: introduce xfs_ag_shrink_space()")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
This was missed in the conversion from KM* flags.
Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Fixes: 10634530f7 ("xfs: convert kmem_zalloc() to kzalloc()")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Move xfs_symlink_write_target to xfs_symlink_remote.c so that kernel and
mkfs can share the same function.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move xfs_readlink_bmap_ilocked to xfs_symlink_remote.c so that the
swapext code can use it to convert a remote format symlink back to
shortform format after a metadata repair. While we're at it, fix a
broken printf prefix.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move declarations for libxfs symlink functions into a separate header
file like we do for most everything else.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The deferred bmap work state and the log item can transmit unwritten
state, so the XFS_BMAP_MAP handler must map in extents with that
unwritten state.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The deferred bmap update log item has always supported the attr fork, so
plumb this in so that higher layers can access this.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Extend the bmap update (BUI) log items with a new realtime flag that
indicates that the updates apply against a realtime file's data fork.
We'll wire up the actual code later.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When XFS_BMAPI_REMAP is passed to bunmapi, that means that we want to
remove part of a block mapping without touching the allocator. For
realtime files with rtextsize > 1, that also means that we should skip
all the code that changes a partial remove request into an unwritten
extent conversion. IOWs, bunmapi in this mode should handle removing
the mapping from the rt file and nothing else.
Note that XFS_BMAPI_REMAP callers are required to decrement the
reference count and/or free the space manually.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the code that adds the incore xfs_bmap_item deferred work data to a
transaction live with the BUI log item code. This means that the file
mapping code no longer has to know about the inner workings of the BUI
log items.
As a consequence, we can hide the _get_group helper.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Pass the incore bmap structure to the tracepoints instead of open-coding
the argument passing.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Hook the regular rmap code when an rmapbt repair operation is running so
that we can unlock the AGF buffer to scan the filesystem and keep the
in-memory btree up to date during the scan.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create an in-memory btree of rmap records instead of an array. This
enables us to do live record collection instead of freezing the fs.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Rebuild the reverse mapping btree from all primary metadata. This first
patch establishes the bare mechanics of finding records and putting
together a new ondisk tree; more complex pieces are needed to make it
work properly.
Link: Documentation/filesystems/xfs-online-fsck-design.rst
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a helper so that we can stop open-coding this decision
everywhere.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
As we've noted in various places, all current users of in-memory btrees
are online fsck. Online fsck only stages a btree long enough to rebuild
an ondisk data structure, which means that the in-memory btree is
ephemeral. Furthermore, if we encounter /any/ errors while updating an
in-memory btree, all we do is tear down all the staged data and return
an errno to userspace. In-memory btrees need not be transactional, so
their buffers should not be committed to the ondisk log, nor should they
be checkpointed by the AIL. That's just as well since the ephemeral
nature of the btree means that the buftarg and the buffers may disappear
quickly anyway.
Therefore, we need a way to launder the btree buffers that get attached
to the transaction by the generic btree code. Because the buffers are
directly mapped to backing file pages, there's no need to bwrite them
back to the tmpfs file. All we need to do is clean enough of the buffer
log item state so that the bli can be detached from the buffer, remove
the bli from the transaction's log item list, and reset the transaction
dirty state as if the laundered items had never been there.
For simplicity, create xfbtree transaction commit and cancel helpers
that launder the in-memory btree buffers for callers. Once laundered,
call the write verifier on non-stale buffers to avoid integrity issues,
or punch a hole in the backing file for stale buffers.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Adapt the generic btree cursor code to be able to create a btree whose
buffers come from a (presumably in-memory) buftarg with a header block
that's specific to in-memory btrees. We'll connect this to other parts
of online scrub in the next patches.
Note that in-memory btrees always have a block size matching the system
memory page size for efficiency reasons. There are also a few things we
need to do to finalize a btree update; that's covered in the next patch.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This only has a single caller and thus might be a bit questionable,
but I think it really improves the readability of
xfs_btree_visit_block.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Currently, cached buffers are indexed by per-AG hashtables. This works
great for the data device, but won't work for in-memory btrees. To
handle that use case, buftargs will need to be able to index buffers
independently of other data structures.
We accomplish this by hoisting the rhashtable and its lock into a
separate xfs_buf_cache structure, make the buftarg point to the
_buf_cache structure, and rework various functions to use it. This
will enable the in-memory buftarg to come up with its own _buf_cache.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Despite its name, xfs_btree_read_bufl doesn't contain any btree-related
functionaliy and isn't used by the btree code. Move it to xfs_bmap.c,
hard code the refval and ops arguments and rename it to
xfs_bmap_read_buf.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs_btree_reada_bufl just wraps xfs_btree_readahead and a agblock
to daddr conversion. Just open code it's three callsites in the
two callers (One of which isn't even btree related).
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs_btree_reada_bufl just wraps xfs_btree_readahead and a fsblock
to daddr conversion. Just open code it's two callsites in the only
caller.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
This will allow sharing code with the in-memory block checking helper.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
All these helpers hardcode fsblocks or agblocks and not just the pointer
size. Rename them so that the names are still fitting when we add the
long format in-memory blocks and adjust the checks when calling them to
check the btree types and not just pointer length.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Add a __xfs_btree_check_block helper that can be called by the scrub code
to validate a btree block of any form, and move the duplicate error
handling code from xfs_btree_check_sblock and xfs_btree_check_lblock into
xfs_btree_check_block and thus remove these two helpers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Check that root blocks that sit in the inode fork and thus have a NULL
bp don't have siblings.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
crc is only used once, just use the xfs_has_crc check directly.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Remove the local crc variable that is only used once and remove the bp
NULL checking as it can't ever be NULL for short form blocks.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Merge xfs_btree_check_sptr and xfs_btree_check_lptr into a single
__xfs_btree_check_ptr that can be shared between xfs_btree_check_ptr
and the scrub code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs_bmap_btree_to_extents always passes a level of 1 to
xfs_btree_check_lptr, thus making the level check redundant.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Stop using xfs_btree_check_lptr in xfs_btree_check_lblock_siblings,
as it only duplicates the xfs_verify_fsbno call in the other leg of
if / else besides adding a tautological level check.
With this the cur and level arguments can be removed as they are
now unused.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Stop using xfs_btree_check_sptr in xfs_btree_check_sblock_siblings,
as it only duplicates the xfs_verify_agbno call in the other leg of
if / else besides adding a tautological level check.
With this the cur and level arguments can be removed as they are
now unused.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The last checks for bc_btnum can be replaced with helpers that check
the btree ops. This allows adding new btrees to XFS without having
to update a global enum.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
[djwong: complete the ops predicates]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
This is one of the last users of xfs_btnum_t and can only designate
either the inobt or finobt. Replace it with a simple bool.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Split xfs_inobt_init_cursor into separate routines for the inobt and
finobt to prepare for the removal of the xfs_btnum global enumeration
of btree types.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Split the finobt version that never merges and uses a different cursor
out of xfs_inobt_insert_sprec to prepare for removing xfs_btnum_t.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs_inobt_count_blocks is only used for the finobt. Hardcode the btnum
argument and rename the function to match that.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
This helper provides no real advantage over just open code the two
calls in it in the callers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Split xfs_allocbt_init_cursor into separate routines for the by-bno
and by-cnt btrees to prepare for the removal of the xfs_btnum global
enumeration of btree types.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Clean up xfs_btree_mark_sick by adding a sick_mask to the btree-ops
for all AG-root btrees.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The btnum in struct xfs_btree_ops is often used for printing a symbolic
name for the btree. Add a name field to the ops structure and use that
directly.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Using arrays of largely unrelated fields that use the btree number
as index is not very robust. Split the arrays into three separate
fields instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Just open code the two calls in the callers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Make the levels initialization in xfs_bmbt_init_cursor conditional
and merge the two helpers.
This requires the fakeroot case to now pass a -1 whichfork directly
into xfs_bmbt_init_cursor, and some special casing for that, but
at least this scheme to deal with the fake btree root is handled and
documented in once place now.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
[djwong: tidy up a multline ternary]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Don't open-code "-1" for whichfork when we're creating a staging btree
for a repair; let's define an actual symbol to make grepping and
understanding easier.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Remove the duplicate cur->bc_nlevels assignment in xfs_bmbt_stage_cursor,
and move the cur->bc_ino.forksize assignment into
xfs_btree_stage_ifakeroot as it is part of setting up the fake btree
root.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs_rmapbt_stage_cursor is currently unused, but future callers can
trivially open code the two calls.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Make the levels initialization in xfs_rmapbt_init_cursor conditional
and merge the two helpers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Just open code the two calls in the callers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Make the levels initialization in xfs_refcountbt_init_cursor conditional
and merge the two helpers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Just open code the two calls in the callers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Make the levels initialization in xfs_inobt_init_cursor conditional
and merge the two helpers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Just open code the two calls in the callers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Make the levels initialization in xfs_allocbt_init_cursor conditional
and merge the two helpers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Add a few conditionals for staging btrees to the core btree code instead
of overloading the bc_ops vector.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Inode-rooted btrees don't need to initialize the root pointer in the
->init_ptr_from_cur method as the root is found by the
xfs_btree_get_iroot method later. Make ->init_ptr_from_cur option
for inode rooted btrees by providing a helper that does the right
thing for the given btree type and also documents the semantics.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Move it to the relevant initialization of the ops structure instead
of a place that has nothing to do with the key size.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Create a predicate to decide if the given cursor and level point to the
root block in the inode immediate area instead of a disk block, and get
rid of the open-coded logic everywhere.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Split up the union that encodes btree-specific fields in struct
xfs_btree_cur. Most fields in there are specific to the btree type
encoded in xfs_btree_ops.type, and we can use the obviously named union
for that. But one field is specific to the bmapbt and two are shared by
the refcount and rtrefcountbt. Move those to a separate union to make
the usage clear and not need a separate struct for the refcount-related
fields.
This will also make unnecessary some very awkward btree cursor
refc/rtrefc switching logic in the rtrefcount patchset.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Two of the btree cursor flags are always used together and encode
the fundamental btree type. There currently are two such types:
1) an on-disk AG-rooted btree with 32-bit pointers
2) an on-disk inode-rooted btree with 64-bit pointers
and we're about to add:
3) an in-memory btree with 64-bit pointers
Introduce a new enum and a new type field in struct xfs_btree_geom
to encode this type directly instead of using flags and change most
code to switch on this enum.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
[djwong: make the pointer lengths explicit]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Make the pointer length an explicit field in the btree operations
structure so that the next patch (which introduces an explicit btree
type enum) doesn't have to play a bunch of awkward games with inferring
the pointer length from the enumeration.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Hoist the btree block owner check into a separate helper so that we
don't have an ugly multiline if statement.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Split out a helper to calculate the owner for a given btree instead of
duplicating the logic in two places. While we're at it, make the
bc_ag/bc_ino switch logic depend on the correct geometry flag.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
[djwong: break this up into two patches for the owner check]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The statistics offset is completely static, move it into the btree_ops
structure instead of the cursor.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Move the btree buffer LRU refcount to the btree ops structure so that we
can eliminate the last bc_btnum switch in the generic btree code. We're
about to create repair-specific btree types, and we don't want that
stuff cluttering up libxfs.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Set the btree block buffer ops in xfs_btree_init_buf since we already
have access to that information through the btree ops.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that all of the callers pass XFS_BUF_DADDR_NULL as the daddr
parameter, we can elide that too.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Convert any place we call xfs_btree_init_block with a buffer to use the
_init_buf function.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Rename xfs_btree_init_block_int to xfs_btree_init_block, and
xfs_btree_init_block to xfs_btree_init_buf so that the name suggests the
type that caller are supposed to pass in.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Notice now that the btree ops structure encodes btree geometry flags and
the magic number through the buffer ops. Refactor the btree block
initialization functions to use the btree ops so that we no longer have
to open code all that.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Expose these static btree ops structures so that we can reference them
in the AG initialization code in the next patch.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add a new XFS_BTREE_ALLOCBT_ACTIVE flag to replace the active field.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Add a single xfs_alloc_lookup helper to sort out the argument passing and
setting of the active flag instead of duplicating the logic three times.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Just move the two flags into bc_flags where there is plenty of space.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Certain btree flags never change for the life of a btree cursor because
they describe the geometry of the btree itself. Encode these in the
btree ops structure and reduce the amount of code required in each btree
type's init_cursor functions. This also frees up most of the bits in
bc_flags.
A previous version of this patch also converted the open-coded flags
logic to helpers. This was removed due to the pending refactoring (that
follows this patch) to eliminate most of the state flags.
Conversion script:
sed \
-e 's/XFS_BTREE_LONG_PTRS/XFS_BTGEO_LONG_PTRS/g' \
-e 's/XFS_BTREE_ROOT_IN_INODE/XFS_BTGEO_ROOT_IN_INODE/g' \
-e 's/XFS_BTREE_LASTREC_UPDATE/XFS_BTGEO_LASTREC_UPDATE/g' \
-e 's/XFS_BTREE_OVERLAPPING/XFS_BTGEO_OVERLAPPING/g' \
-e 's/cur->bc_flags & XFS_BTGEO_/cur->bc_ops->geom_flags \& XFS_BTGEO_/g' \
-i $(git ls-files fs/xfs/*.[ch] fs/xfs/libxfs/*.[ch] fs/xfs/scrub/*.[ch])
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
All existing btree types set XFS_BTREE_CRC_BLOCKS when running against a
V5 filesystem. All currently proposed btree types are V5 only and use
the richer XFS_BTREE_CRC_BLOCKS format. Therefore, we can drop this
flag and change the conditional to xfs_has_crc.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This is a precursor to putting more static data in the btree ops structure.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Don't waste tracepoint segment memory on per-btree block allocation
tracepoints when we can do it from the generic btree code.
With this patch applied, two tracepoints are collapsed into one
tracepoint, with the following effects on objdump -hx xfs.ko output:
Before:
10 __tracepoints_ptrs 00000b38 0000000000000000 0000000000000000 001412f0 2**2
14 __tracepoints_strings 00005433 0000000000000000 0000000000000000 001689a0 2**5
29 __tracepoints 00010d30 0000000000000000 0000000000000000 0023fe00 2**5
After:
10 __tracepoints_ptrs 00000b34 0000000000000000 0000000000000000 001417b0 2**2
14 __tracepoints_strings 00005413 0000000000000000 0000000000000000 00168e80 2**5
29 __tracepoints 00010cd0 0000000000000000 0000000000000000 00240760 2**5
Column 3 is the section size in bytes; removing these two tracepoints
reduces the size of the ELF segments by 132 bytes.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Don't waste memory on extra per-btree block freeing tracepoints when we
can do it from the generic btree code.
With this patch applied, two tracepoints are collapsed into one
tracepoint, with the following effects on objdump -hx xfs.ko output:
Before:
10 __tracepoints_ptrs 00000b3c 0000000000000000 0000000000000000 00140eb0 2**2
14 __tracepoints_strings 00005453 0000000000000000 0000000000000000 00168540 2**5
29 __tracepoints 00010d90 0000000000000000 0000000000000000 0023f5e0 2**5
After:
10 __tracepoints_ptrs 00000b38 0000000000000000 0000000000000000 001412f0 2**2
14 __tracepoints_strings 00005433 0000000000000000 0000000000000000 001689a0 2**5
29 __tracepoints 00010d30 0000000000000000 0000000000000000 0023fe00 2**5
Column 3 is the section size in bytes; removing these two tracepoints
reduces the size of the ELF segments by 132 bytes.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
If scrub finds that everything is ok with the filesystem, we need a way
to tell the health tracking that it can let go of indirect health flags,
since indirect flags only mean that at some point in the past we lost
some context.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
If an unhealthy inode gets inactivated, remember this fact in the
per-fs health summary.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Establish two more classes of health tracking bits:
* Indirect problems, which suggest problems in other health domains
that we weren't able to preserve.
* Secondary problems, which track state that's related to primary
evidence of health problems; and
The first class we'll use in an upcoming patch to record in the AG
health status the fact that we ran out of memory and had to inactivate
an inode with defective metadata. The second class we use to indicate
that repair knows that an inode is bad and we need to fix it later.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Whenever we encounter XFS_IS_CORRUPT failures, we should report that to
the health monitoring system for later reporting.
I started with this semantic patch and massaged everything until it
built:
@@
expression mp, test;
@@
- if (XFS_IS_CORRUPT(mp, test)) return -EFSCORRUPTED;
+ if (XFS_IS_CORRUPT(mp, test)) { xfs_btree_mark_sick(cur); return -EFSCORRUPTED; }
@@
expression mp, test;
identifier label, error;
@@
- if (XFS_IS_CORRUPT(mp, test)) { error = -EFSCORRUPTED; goto label; }
+ if (XFS_IS_CORRUPT(mp, test)) { xfs_btree_mark_sick(cur); error = -EFSCORRUPTED; goto label; }
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Whenever we encounter corrupt realtime metadat blocks, we should report
that to the health monitoring system for later reporting.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Whenever we encounter corrupt inode records, we should report that to
the health monitoring system for later reporting.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Whenever we encounter corrupt directory or extended attribute blocks, we
should report that to the health monitoring system for later reporting.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Whenever we encounter corrupt btree blocks, we should report that to the
health monitoring system for later reporting.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Whenever we encounter a corrupt block mapping, we should report that to
the health monitoring system for later reporting.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Whenever we encounter a corrupt AG header, we should report that to the
health monitoring system for later reporting. Buffer readers that don't
respond to corruption events with a _mark_sick call can be detected with
the following script:
#!/bin/bash
# Detect missing calls to xfs_*_mark_sick
filter=cat
tty -s && filter=less
git grep -A10 -E '( = xfs_trans_read_buf| = xfs_buf_read\()' fs/xfs/*.[ch] fs/xfs/libxfs/*.[ch] | awk '
BEGIN {
ignore = 0;
lineno = 0;
delete lines;
}
{
if ($0 == "--") {
if (!ignore) {
for (i = 0; i < lineno; i++) {
print(lines[i]);
}
printf("--\n");
}
delete lines;
lineno = 0;
ignore = 0;
} else if ($0 ~ /mark_sick/) {
ignore = 1;
} else {
lines[lineno++] = $0;
}
}
' | $filter
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Split the setting of the sick and checked masks into separate functions
as part of preparing to add the ability for regular runtime fs code
(i.e. not scrub) to mark metadata structures sick when corruptions are
found. Improve the documentation of libxfs' requirements for helper
behavior.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create the necessary scrub code to walk the filesystem's directory tree
so that we can compute file link counts. Similar to quotacheck, we
create an incore shadow array of link count information and then we walk
the filesystem a second time to compare the link counts. We need live
updates to keep the information up to date during the lengthy scan, so
this scrubber remains disabled until the next patch.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a new trio of scrub functions to check quota counters. While the
dquots themselves are filesystem metadata and should be checked early,
the dquot counter values are computed from other metadata and are
therefore summary counters. We don't plug these into the scrub dispatch
just yet, because we still need to be able to watch quota updates while
doing our scan.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create the XFS_DIR3_FTYPE_STR macro so that we can report ftype as
strings instead of numbers in tracepoints.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a simple predicate to determine if two xfs_names are the same
objects or have the exact same name. The comparison is always case
sensitive.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create an xfs_name_dot object so that upcoming scrub code can compare
against that. Offline repair already has such an object, so we're
really just hoisting it to the kernel.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
To use the new rwsem_assert_held()/rwsem_assert_held_write(), we can't
use the existing ASSERT macro. Add a new xfs_assert_ilocked() and
convert all the callers.
Fix an apparent bug in xfs_isilocked(): If the caller specifies
XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL, xfs_assert_ilocked() will check both
the IOLOCK and the ILOCK are held for write. xfs_isilocked() only
checked that the ILOCK was held for write.
xfs_assert_ilocked() is always on, even if DEBUG or XFS_WARN aren't
defined. It's a cheap check, so I don't think it's worth defining
it away.
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Noticed by inspection, simple factoring allows the same allocation
routine to be used for both transaction and recovery contexts.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
These few remaining GFP_NOFS callers do not need to use GFP_NOFS at
all. They are only called from a non-transactional context or cannot
be accessed from memory reclaim due to other constraints. Hence they
can just use GFP_KERNEL.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
When running in a transaction context, memory allocations are scoped
to GFP_NOFS. Hence we don't need to use GFP_NOFS contexts in pure
transaction context allocations - GFP_KERNEL will automatically get
converted to GFP_NOFS as appropriate.
Go through the code and convert all the obvious GFP_NOFS allocations
in transaction context to use GFP_KERNEL. This further reduces the
explicit use of GFP_NOFS in XFS.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
In the past we've had problems with lockdep false positives stemming
from inode locking occurring in memory reclaim contexts (e.g. from
superblock shrinkers). Lockdep doesn't know that inodes access from
above memory reclaim cannot be accessed from below memory reclaim
(and vice versa) but there has never been a good solution to solving
this problem with lockdep annotations.
This situation isn't unique to inode locks - buffers are also locked
above and below memory reclaim, and we have to maintain lock
ordering for them - and against inodes - appropriately. IOWs, the
same code paths and locks are taken both above and below memory
reclaim and so we always need to make sure the lock orders are
consistent. We are spared the lockdep problems this might cause
by the fact that semaphores and bit locks aren't covered by lockdep.
In general, this sort of lockdep false positive detection is cause
by code that runs GFP_KERNEL memory allocation with an actively
referenced inode locked. When it is run from a transaction, memory
allocation is automatically GFP_NOFS, so we don't have reclaim
recursion issues. So in the places where we do memory allocation
with inodes locked outside of a transaction, we have explicitly set
them to use GFP_NOFS allocations to prevent lockdep false positives
from being reported if the allocation dips into direct memory
reclaim.
More recently, __GFP_NOLOCKDEP was added to the memory allocation
flags to tell lockdep not to track that particular allocation for
the purposes of reclaim recursion detection. This is a much better
way of preventing false positives - it allows us to use GFP_KERNEL
context outside of transactions, and allows direct memory reclaim to
proceed normally without throwing out false positive deadlock
warnings.
The obvious places that lock inodes and do memory allocation are the
lookup paths and inode extent list initialisation. These occur in
non-transactional GFP_KERNEL contexts, and so can run direct reclaim
and lock inodes.
This patch makes a first path through all the explicit GFP_NOFS
allocations in XFS and converts the obvious ones to GFP_KERNEL |
__GFP_NOLOCKDEP as a first step towards removing explicit GFP_NOFS
allocations from the XFS code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
The remaining callers of kmem_free() are freeing heap memory, so
we can convert them directly to kfree() and get rid of kmem_free()
altogether.
This conversion was done with:
$ for f in `git grep -l kmem_free fs/xfs`; do
> sed -i s/kmem_free/kfree/ $f
> done
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
kmem_alloc() is just a thin wrapper around kmalloc() these days.
Convert everything to use kmalloc() so we can get rid of the
wrapper.
Note: the transaction region allocation in xlog_add_to_transaction()
can be a high order allocation. Converting it to use
kmalloc(__GFP_NOFAIL) results in warnings in the page allocation
code being triggered because the mm subsystem does not want us to
use __GFP_NOFAIL with high order allocations like we've been doing
with the kmem_alloc() wrapper for a couple of decades. Hence this
specific case gets converted to xlog_kvmalloc() rather than
kmalloc() to avoid this issue.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
There's no reason to keep the kmem_zalloc() around anymore, it's
just a thin wrapper around kmalloc(), so lets get rid of it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
I mistakenly turned off CONFIG_XFS_RT in the Kconfig file for arm64
variant of the djwong-wtf git branch. Unfortunately, it took me a good
hour to figure out that RT wasn't built because this is what got printed
to dmesg:
XFS (sda2): realtime geometry sanity check failed
XFS (sda2): Metadata corruption detected at xfs_sb_read_verify+0x170/0x190 [xfs], xfs_sb block 0x0
Whereas I would have expected:
XFS (sda2): Not built with CONFIG_XFS_RT
XFS (sda2): RT mount failed
The root cause of these problems is the conditional compilation of the
new functions xfs_validate_rtextents and xfs_compute_rextslog that I
introduced in the two commits listed below. The !RT versions of these
functions return false and 0, respectively, which causes primary
superblock validation to fail, which explains the first message.
Move the two functions to other parts of libxfs that are not
conditionally defined by CONFIG_XFS_RT and remove the broken stubs so
that validation works again.
Fixes: e14293803f ("xfs: don't allow overly small or large realtime volumes")
Fixes: a6a38f309a ("xfs: make rextslog computation consistent with mkfs")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
In XFS_DAS_NODE_REMOVE_ATTR case, xfs_attr_mode_remove_attr() sets
filter to XFS_ATTR_INCOMPLETE. The filter is then reset in
xfs_attr_complete_op() if XFS_DA_OP_REPLACE operation is performed.
The filter is not reset though if XFS just removes the attribute
(args->value == NULL) with xfs_attr_defer_remove(). attr code goes
to XFS_DAS_DONE state.
Fix this by always resetting XFS_ATTR_INCOMPLETE filter. The replace
operation already resets this filter in anyway and others are
completed at this step hence don't need it.
Fixes: fdaf1bb3ca ("xfs: ATTR_REPLACE algorithm with LARP enabled needs rework")
Signed-off-by: Andrey Albershteyn <aalbersh@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
We're only allocating from the realtime device if the inode is marked
for realtime and we're /not/ allocating into the attr fork.
Fixes: 5864346054 ("xfs: also use xfs_bmap_btalloc_accounting for RT allocations")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Instead of tracing the address of the recovery handler, use the name
in the defer op, similar to other defer ops related tracepoints.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
dfp will be freed by ->recover_work and thus the tracepoint in case
of an error can lead to a use after free.
Store the defer ops in a local variable to avoid that.
Fixes: 7f2f7531e0 ("xfs: store an ops pointer in struct xfs_defer_pending")
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Since commit deed951287 ("xfs: Check for -ENOATTR or -EEXIST"), the
high-level attr code does a lookup for any attr we're trying to set,
and does the checks to handle the create vs replace cases, which thus
never hit the low-level attr code.
Turn the checks in xfs_attr_shortform_addname as they must never trip.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Remove the last two users of the typedef.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
sparse complains about struct xfs_attr_shortform because it embeds a
structure with a variable sized array in a variable sized array.
Given that xfs_attr_shortform is not a very useful structure, and the
dir2 equivalent has been removed a long time ago, remove it as well.
Provide a xfs_attr_sf_firstentry helper that returns the first
xfs_attr_sf_entry behind a xfs_attr_sf_hdr to replace the structure
dereference.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
xfs_attr_shortform_getvalue duplicates the logic in xfs_attr_sf_findname.
Use the helper instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
xfs_attr_shortform_lookup is only used by xfs_attr_shortform_addname,
which is much better served by calling xfs_attr_sf_findname. Switch
it over and remove xfs_attr_shortform_lookup.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
xfs_attr_sf_findname has the simple job of finding a xfs_attr_sf_entry in
the attr fork, but the convoluted calling convention obfuscates that.
Return the found entry as the return value instead of an pointer
argument, as the -ENOATTR/-EEXIST can be trivally derived from that, and
remove the basep argument, as it is equivalent of the offset of sfe in
the data for if an sfe was found, or an offset of totsize if not was
found. To simplify the totsize computation add a xfs_attr_sf_endptr
helper that returns the imaginative xfs_attr_sf_entry at the end of
the current attrs.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
trace_xfs_attr_sf_lookup is currently only called by
xfs_attr_shortform_lookup, which despit it's name is a simple helper for
xfs_attr_shortform_addname, which has it's own tracing. Move the
callsite to xfs_attr_shortform_getvalue, which is the closest thing to
a high level lookup we have for the Linux xattr API.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Many of the xfs_idata_realloc callers need to set a local pointer to the
just reallocated if_data memory. Return the pointer to simplify them a
bit and use the opportunity to re-use krealloc for freeing if_data if the
size hits 0.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
The xfs_ifork structure currently has a union of the if_root void pointer
and the if_data char pointer. In either case it is an opaque pointer
that depends on the fork format. Replace the union with a single if_data
void pointer as that is what almost all callers want. Only the symlink
NULL termination code in xfs_init_local_fork actually needs a new local
variable now.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Use the kernel min/max helpers instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
xfs_format.h has a bunch odd wrappers for helper functions and mount
structure access using RT* prefixes. Replace them with their open coded
versions (for those that weren't entirely unused) and remove the wrappers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Inline the logic of xfs_rtmodify_summary_int into xfs_rtmodify_summary
and xfs_rtget_summary instead of having a somewhat awkward helper to
share a little bit of code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
xfs_rtmodify_summary_int is only used inside xfs_rtbitmap.c and to
implement xfs_rtget_summary. Move xfs_rtget_summary to xfs_rtbitmap.c
as the exported API and mark xfs_rtmodify_summary_int static.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Add a return value to xfs_bmap_adjacent to indicate if it did change
ap->blkno or not.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Just return -ENOSPC instead of returning 0 and setting the return rt
extent number to NULLRTEXTNO. This is turn removes all users of
NULLRTEXTNO, so remove that as well.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Make xfs_bmap_btalloc_accounting more generic by handling the RT quota
reservations and then also use it from xfs_bmap_rtalloc instead of
open coding the accounting logic there.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
xfs_bmap_btalloc_accounting only uses the len field from args, but that
has just been propagated to ap->length field by the caller.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
During growfs, if new ag in memory has been initialized, however
sb_agcount has not been updated, if an error occurs at this time it
will cause perag leaks as follows, these new AGs will not been freed
during umount , because of these new AGs are not visible(that is
included in mp->m_sb.sb_agcount).
unreferenced object 0xffff88810be40200 (size 512):
comm "xfs_growfs", pid 857, jiffies 4294909093
hex dump (first 32 bytes):
00 c0 c1 05 81 88 ff ff 04 00 00 00 00 00 00 00 ................
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 381741e2):
[<ffffffff8191aef6>] __kmalloc+0x386/0x4f0
[<ffffffff82553e65>] kmem_alloc+0xb5/0x2f0
[<ffffffff8238dac5>] xfs_initialize_perag+0xc5/0x810
[<ffffffff824f679c>] xfs_growfs_data+0x9bc/0xbc0
[<ffffffff8250b90e>] xfs_file_ioctl+0x5fe/0x14d0
[<ffffffff81aa5194>] __x64_sys_ioctl+0x144/0x1c0
[<ffffffff83c3d81f>] do_syscall_64+0x3f/0xe0
[<ffffffff83e00087>] entry_SYSCALL_64_after_hwframe+0x62/0x6a
unreferenced object 0xffff88810be40800 (size 512):
comm "xfs_growfs", pid 857, jiffies 4294909093
hex dump (first 32 bytes):
20 00 00 00 00 00 00 00 57 ef be dc 00 00 00 00 .......W.......
10 08 e4 0b 81 88 ff ff 10 08 e4 0b 81 88 ff ff ................
backtrace (crc bde50e2d):
[<ffffffff8191b43a>] __kmalloc_node+0x3da/0x540
[<ffffffff81814489>] kvmalloc_node+0x99/0x160
[<ffffffff8286acff>] bucket_table_alloc.isra.0+0x5f/0x400
[<ffffffff8286bdc5>] rhashtable_init+0x405/0x760
[<ffffffff8238dda3>] xfs_initialize_perag+0x3a3/0x810
[<ffffffff824f679c>] xfs_growfs_data+0x9bc/0xbc0
[<ffffffff8250b90e>] xfs_file_ioctl+0x5fe/0x14d0
[<ffffffff81aa5194>] __x64_sys_ioctl+0x144/0x1c0
[<ffffffff83c3d81f>] do_syscall_64+0x3f/0xe0
[<ffffffff83e00087>] entry_SYSCALL_64_after_hwframe+0x62/0x6a
Factor out xfs_free_unused_perag_range() from xfs_initialize_perag(),
used for freeing unused perag within a specified range in error handling,
included in the error path of the growfs failure.
Fixes: 1c1c6ebcf5 ("xfs: Replace per-ag array with a radix tree")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Take mp->m_perag_lock for deletions from the perag radix tree in
xfs_initialize_perag to prevent racing with tagging operations.
Lookups are fine - they are RCU protected so already deal with the
tree changing shape underneath the lookup - but tagging operations
require the tree to be stable while the tags are propagated back up
to the root.
Right now there's nothing stopping radix tree tagging from operating
while a growfs operation is progress and adding/removing new entries
into the radix tree.
Hence we can have traversals that require a stable tree occurring at
the same time we are removing unused entries from the radix tree which
causes the shape of the tree to change.
Likely this hasn't caused a problem in the past because we are only
doing append addition and removal so the active AG part of the tree
is not changing shape, but that doesn't mean it is safe. Just making
the radix tree modifications serialise against each other is obviously
correct.
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Upon a closer inspection of the quota record scrubber, I noticed that
dqiterate wasn't actually walking all possible dquots for the mapped
blocks in the quota file. This is due to xfs_qm_dqget_next skipping all
XFS_IS_DQUOT_UNINITIALIZED dquots.
For a fsck program, we really want to look at all the dquots, even if
all counters and limits in the dquot record are zero. Rewrite the
implementation to do this, as well as switching to an iterator paradigm
to reduce the number of indirect calls.
This enables removal of the old broken dqiterate code from xfs_dquot.c.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a new helper to unmap blocks from an inode's fork.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Implement ranged queries for refcount records. The next patch will use
this to scan refcount data.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Use the reverse-mapping btree information to rebuild an inode block map.
Update the btree bulk loading code as necessary to support inode rooted
btrees and fix some bitrot problems.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Determine if inode fork damage is responsible for the inode being unable
to pass the ifork verifiers in xfs_iget and zap the fork contents if
this is true. Once this is done the fork will be empty but we'll be
able to construct an in-core inode, and a subsequent call to the inode
fork repair ioctl will search the rmapbt to rebuild the records that
were in the fork.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In a few patches, we'll add some online repair code that tries to
massage the ondisk inode record just enough to get it to pass the inode
verifiers so that we can continue with more file repairs. Part of that
massaging can include zapping the ondisk forks to clear errors. After
that point, the bmap fork repair functions will rebuild the zapped
forks.
Christoph asked for stronger protections against online repair zapping a
fork to get the inode to load vs. other threads trying to access the
partially repaired file. Do this by adding a special "[DA]FORK_ZAPPED"
inode health flag whenever repair zaps a fork, and sprinkling checks for
that flag into the various file operations for things that don't like
handling an unexpected zero-extents fork.
In practice xfs_scrub will scrub and fix the forks almost immediately
after zapping them, so the window is very small. However, if a crash or
unmount should occur, we can still detect these zapped inode forks by
looking for a zero-extents fork when data was expected.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Code in the next patch will assign the return value of XFS_DFORK_*PTR
macros to a struct pointer. gcc complains about casting char* strings
to struct pointers, so let's fix the macro's cast to void* to shut up
the warnings.
While we're at it, fix one of the scrub tests that uses PTR to use BOFF
instead for a simpler integer comparison, since other linters whine
about char* and void* comparisons.
Can't satisfy all these dman bots.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Use the rmapbt to find inode chunks, query the chunks to compute hole
and free masks, and with that information rebuild the inobt and finobt.
Refer to the case study in
Documentation/filesystems/xfs-online-fsck-design.rst for more details.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Rebuild the free space btrees from the gaps in the rmap btree. Refer to
the case study in Documentation/filesystems/xfs-online-fsck-design.rst
for more details.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Constrain the number of dirty buffers that are locked by the btree
staging code at any given time by establishing a threshold at which we
put them all on the delwri queue and push them to disk. This limits
memory consumption while writing out new btrees.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When we're performing a bulk load of a btree, move the code that
actually stores the btree record in the new btree block out of the
generic code and into the individual ->get_record implementations.
This is preparation for being able to store multiple records with a
single indirect call.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When constructing a new btree, xfs_btree_bload_node needs to read the
btree blocks for level N to compute the keyptrs for the blocks that will
be loaded into level N+1. The level N blocks must be formatted at that
point.
A subsequent patch will change the btree bulkloader to write new btree
blocks in 256K chunks to moderate memory consumption if the new btree is
very large. As a consequence of that, it's possible that the buffers
for lower level blocks might have been reclaimed by the time the node
builder comes back to the block.
Therefore, change xfs_btree_bload_node to read the lower level blocks
to handle the reclaimed buffer case. As a side effect, the read will
increase the LRU refs, which will bias towards keeping new btree buffers
in memory after the new btree commits.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The btree bulkloading code calls xfs_buf_delwri_queue_here when it has
finished formatting a new btree block and wants to queue it to be
written to disk. Once the new btree root has been committed, the blocks
(and hence the buffers) will be accessible to the rest of the
filesystem. Mark each new buffer as DONE when adding it to the delwri
list so that the next btree traversal can skip reloading the contents
from disk.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
While stress-testing online repair of btrees, I noticed periodic
assertion failures from the buffer cache about buffers with incorrect
DELWRI_Q state. Looking further, I observed this race between the AIL
trying to write out a btree block and repair zapping a btree block after
the fact:
AIL: Repair0:
pin buffer X
delwri_queue:
set DELWRI_Q
add to delwri list
stale buf X:
clear DELWRI_Q
does not clear b_list
free space X
commit
delwri_submit # oops
Worse yet, I discovered that running the same repair over and over in a
tight loop can result in a second race that cause data integrity
problems with the repair:
AIL: Repair0: Repair1:
pin buffer X
delwri_queue:
set DELWRI_Q
add to delwri list
stale buf X:
clear DELWRI_Q
does not clear b_list
free space X
commit
find free space X
get buffer
rewrite buffer
delwri_queue:
set DELWRI_Q
already on a list, do not add
commit
BAD: committed tree root before all blocks written
delwri_submit # too late now
I traced this to my own misunderstanding of how the delwri lists work,
particularly with regards to the AIL's buffer list. If a buffer is
logged and committed, the buffer can end up on that AIL buffer list. If
btree repairs are run twice in rapid succession, it's possible that the
first repair will invalidate the buffer and free it before the next time
the AIL wakes up. Marking the buffer stale clears DELWRI_Q from the
buffer state without removing the buffer from its delwri list. The
buffer doesn't know which list it's on, so it cannot know which lock to
take to protect the list for a removal.
If the second repair allocates the same block, it will then recycle the
buffer to start writing the new btree block. Meanwhile, if the AIL
wakes up and walks the buffer list, it will ignore the buffer because it
can't lock it, and go back to sleep.
When the second repair calls delwri_queue to put the buffer on the
list of buffers to write before committing the new btree, it will set
DELWRI_Q again, but since the buffer hasn't been removed from the AIL's
buffer list, it won't add it to the bulkload buffer's list.
This is incorrect, because the bulkload caller relies on delwri_submit
to ensure that all the buffers have been sent to disk /before/
committing the new btree root pointer. This ordering requirement is
required for data consistency.
Worse, the AIL won't clear DELWRI_Q from the buffer when it does finally
drop it, so the next thread to walk through the btree will trip over a
debug assertion on that flag.
To fix this, create a new function that waits for the buffer to be
removed from any other delwri lists before adding the buffer to the
caller's delwri list. By waiting for the buffer to clear both the
delwri list and any potential delwri wait list, we can be sure that
repair will initiate writes of all buffers and report all write errors
back to userspace instead of committing the new structure.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Pass a pointer to the xfs_defer_op_type structure to xfs_defer_add and
remove the indirection through the xfs_defer_ops_type enum and a global
table of all possible operations.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
xfs_defer_start_recovery is only called from xlog_recover_intent_item,
and the callers of that all have the actual xfs_defer_ops_type operation
vector at hand. Pass that directly instead of looking it up from the
defer_op_types table.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
The dfp_type field in struct xfs_defer_pending is only used to either
look up the operations associated with the pending word or in trace
points. Replace it with a direct pointer to the operations vector,
and store a pretty name in the vector for tracing.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Consolidate the xfs_attr_defer_* helpers into a single xfs_attr_defer_add
one that picks the right dela_state based on the passed in operation.
Also move to a single trace point as the actual operation is visible
through the flags in the delta_state passed to the trace point.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Move xfs_ondisk.h to libxfs so that we can do the struct sanity checks
in userspace libxfs as well. This should allow us to retire the
somewhat fragile xfs/122 test on xfstests.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
This patch does not modify logic.
xfs_da_buf_copy() will copy one block from src xfs_buf to
dst xfs_buf, and update the block metadata in dst directly.
Signed-off-by: Zhang Tianci <zhangtianci.1997@bytedance.com>
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
xfs_da3_swap_lastblock() copy the last block content to the dead block,
but do not update the metadata in it. We need update some metadata
for some kinds of type block, such as dir3 leafn block records its
blkno, we shall update it to the dead block blkno. Otherwise,
before write the xfs_buf to disk, the verify_write() will fail in
blk_hdr->blkno != xfs_buf->b_bn, then xfs will be shutdown.
We will get this warning:
XFS (dm-0): Metadata corruption detected at xfs_dir3_leaf_verify+0xa8/0xe0 [xfs], xfs_dir3_leafn block 0x178
XFS (dm-0): Unmount and run xfs_repair
XFS (dm-0): First 128 bytes of corrupted metadata buffer:
00000000e80f1917: 00 80 00 0b 00 80 00 07 3d ff 00 00 00 00 00 00 ........=.......
000000009604c005: 00 00 00 00 00 00 01 a0 00 00 00 00 00 00 00 00 ................
000000006b6fb2bf: e4 44 e3 97 b5 64 44 41 8b 84 60 0e 50 43 d9 bf .D...dDA..`.PC..
00000000678978a2: 00 00 00 00 00 00 00 83 01 73 00 93 00 00 00 00 .........s......
00000000b28b247c: 99 29 1d 38 00 00 00 00 99 29 1d 40 00 00 00 00 .).8.....).@....
000000002b2a662c: 99 29 1d 48 00 00 00 00 99 49 11 00 00 00 00 00 .).H.....I......
00000000ea2ffbb8: 99 49 11 08 00 00 45 25 99 49 11 10 00 00 48 fe .I....E%.I....H.
0000000069e86440: 99 49 11 18 00 00 4c 6b 99 49 11 20 00 00 4d 97 .I....Lk.I. ..M.
XFS (dm-0): xfs_do_force_shutdown(0x8) called from line 1423 of file fs/xfs/xfs_buf.c. Return address = 00000000c0ff63c1
XFS (dm-0): Corruption of in-memory data detected. Shutting down filesystem
XFS (dm-0): Please umount the filesystem and rectify the problem(s)
>From the log above, we know xfs_buf->b_no is 0x178, but the block's hdr record
its blkno is 0x1a0.
Fixes: 24df33b45e ("xfs: add CRC checking to dir2 leaf blocks")
Signed-off-by: Zhang Tianci <zhangtianci.1997@bytedance.com>
Suggested-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
In the case of returning -ENOSPC, ensure logflagsp is initialized by 0.
Otherwise the caller __xfs_bunmapi will set uninitialized illegal
tmp_logflags value into xfs log, which might cause unpredictable error
in the log recovery procedure.
Also, remove the flags variable and set the *logflagsp directly, so that
the code should be more robust in the long run.
Fixes: 1b24b633aa ("xfs: move some more code into xfs_bmap_del_extent_real")
Signed-off-by: Jiachen Zhang <zhangjiachen.jaycee@bytedance.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Introduce the concept of a defer ops barrier to separate consecutively
queued pending work items of the same type. With a barrier in place,
the two work items will be tracked separately, and receive separate log
intent items. The goal here is to prevent reaping of old metadata
blocks from creating unnecessarily huge EFIs that could then run the
risk of overflowing the scrub transaction.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Remove these unused fields since nobody uses them. They should have
been removed years ago in a different cleanup series from Christoph
Hellwig.
Fixes: daf83964a3 ("xfs: move the per-fork nextents fields into struct xfs_ifork")
Fixes: f7e67b20ec ("xfs: move the fork format fields into struct xfs_ifork")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
As mentioned in the previous commit, online repair wants to allocate
space to write out a new metadata structure, and it also wants to hedge
against system crashes during repairs by logging (and later cancelling)
EFIs to free the space if we crash before committing the new data
structure.
Therefore, create a trio of functions to schedule automatic reaping of
freshly allocated unwritten space. xfs_alloc_schedule_autoreap creates
a paused EFI representing the space we just allocated. Once the
allocations are made and the autoreaps scheduled, we can start writing
to disk.
If the writes succeed, xfs_alloc_cancel_autoreap marks the EFI work
items as stale and unpauses the pending deferred work item. Assuming
that's done in the same transaction that commits the new structure into
the filesystem, we guarantee that either the new object is fully
visible, or that all the space gets reclaimed.
If the writes succeed but only part of an extent was used, repair must
call the same _cancel_autoreap function to kill the first EFI and then
log a new EFI to free the unused space. The first EFI is already
committed, so it cannot be changed.
For full extents that aren't used, xfs_alloc_commit_autoreap will
unpause the EFI, which results in the space being freed during the next
_defer_finish cycle.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
xfs_free_extent_later is a trivial helper, so remove it to reduce the
amount of thinking required to understand the deferred freeing
interface. This will make it easier to introduce automatic reaping of
speculative allocations in the next patch.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Traditionally, all pending deferred work attached to a transaction is
finished when one of the xfs_defer_finish* functions is called.
However, online repair wants to be able to allocate space for a new data
structure, format a new metadata structure into the allocated space, and
commit that into the filesystem.
As a hedge against system crashes during repairs, we also want to log
some EFI items for the allocated space speculatively, and cancel them if
we elect to commit the new data structure.
Therefore, introduce the idea of pausing a pending deferred work item.
Log intent items are still created for paused items and relogged as
necessary. However, paused items are pushed onto a side list before we
start calling ->finish_item, and the whole list is reattach to the
transaction afterwards. New work items are never attached to paused
pending items.
Modify xfs_defer_cancel to clean up pending deferred work items holding
a log intent item but not a log intent done item, since that is now
possible.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When someone tries to add a deferred work item to xfs_defer_add, it will
try to attach the work item to the most recently added xfs_defer_pending
object attached to the transaction. However, it doesn't check if the
pending object has a log intent item attached to it. This is incorrect
behavior because we cannot add more work to an object that has already
been committed to the ondisk log.
Therefore, change the behavior not to append to pending items with a non
null dfp_intent. In practice this has not been an issue because the
only way xfs_defer_add gets called after log intent items have been
committed is from the defer ops ->finish_item functions themselves, and
the @dop_pending isolation in xfs_defer_finish_noroll protects the
pending items that have already been logged.
However, the next patch will add the ability to pause a deferred extent
free object during online btree rebuilding, and any new extfree work
items need to have their own pending event.
While we're at it, hoist the predicate to its own static inline function
for readability.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Extended attribute updates use the deferred work machinery to manage
state across a chain of smaller transactions. All previous deferred
work users have employed log intent items and log done items to manage
restarting of interrupted operations, which means that ->create_intent
sets dfp_intent to a log intent item and ->create_done uses that item to
create a log intent done item.
However, xattrs have used the INCOMPLETE flag to deal with the lack of
recovery support for an interrupted transaction chain. Log items are
optional if the xattr update caller didn't set XFS_DA_OP_LOGGED to
require a restartable sequence.
In other words, ->create_intent can return NULL to say that there's no
log intent item. If that's the case, no log intent done item should be
created. Clean up xfs_defer_create_done not to do this, so that the
->create_done functions don't have to check for non-null dfp_intent
themselves.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Don't allow realtime volumes that are less than one rt extent long.
This has been broken across 4 LTS kernels with nobody noticing, so let's
just disable it.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
It's quite reasonable that some customer somewhere will want to
configure a realtime volume with more than 2^32 extents. If they try to
do this, the highbit32() call will truncate the upper bits of the
xfs_rtbxlen_t and produce the wrong value for rextslog. This in turn
causes the rsumlevels to be wrong, which results in a realtime summary
file that is the wrong length. Fix that.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
There's a weird discrepancy in xfsprogs dating back to the creation of
the Linux port -- if there are zero rt extents, mkfs will set
sb_rextents and sb_rextslog both to zero:
sbp->sb_rextslog =
(uint8_t)(rtextents ?
libxfs_highbit32((unsigned int)rtextents) : 0);
However, that's not the check that xfs_repair uses for nonzero rtblocks:
if (sb->sb_rextslog !=
libxfs_highbit32((unsigned int)sb->sb_rextents))
The difference here is that xfs_highbit32 returns -1 if its argument is
zero. Unfortunately, this means that in the weird corner case of a
realtime volume shorter than 1 rt extent, xfs_repair will immediately
flag a freshly formatted filesystem as corrupt. Because mkfs has been
writing ondisk artifacts like this for decades, we have to accept that
as "correct". TBH, zero rextslog for zero rtextents makes more sense to
me anyway.
Regrettably, the superblock verifier checks created in commit copied
xfs_repair even though mkfs has been writing out such filesystems for
ages. Fix the superblock verifier to accept what mkfs spits out; the
userspace version of this patch will have to fix xfs_repair as well.
Note that the new helper leaves the zeroday bug where the upper 32 bits
of sb_rextents is ripped off and fed to highbit32. This leads to a
seriously undersized rt summary file, which immediately breaks mkfs:
$ hugedisk.sh foo /dev/sdc $(( 0x100000080 * 4096))B
$ /sbin/mkfs.xfs -f /dev/sda -m rmapbt=0,reflink=0 -r rtdev=/dev/mapper/foo
meta-data=/dev/sda isize=512 agcount=4, agsize=1298176 blks
= sectsz=512 attr=2, projid32bit=1
= crc=1 finobt=1, sparse=1, rmapbt=0
= reflink=0 bigtime=1 inobtcount=1 nrext64=1
data = bsize=4096 blocks=5192704, imaxpct=25
= sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0, ftype=1
log =internal log bsize=4096 blocks=16384, version=2
= sectsz=512 sunit=0 blks, lazy-count=1
realtime =/dev/mapper/foo extsz=4096 blocks=4294967424, rtextents=4294967424
Discarding blocks...Done.
mkfs.xfs: Error initializing the realtime space [117 - Structure needs cleaning]
The next patch will drop support for rt volumes with fewer than 1 or
more than 2^32-1 rt extents, since they've clearly been broken forever.
Fixes: f8e566c0f5 ("xfs: validate the realtime geometry in xfs_validate_sb_common")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The only log items that need relogging are the ones created for deferred
work operations, and the only part of the code base that relogs log
items is the deferred work machinery. Move the function pointers.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Hoist this dirty flag setting to the ->iop_relog callsite to reduce
boilerplate.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that we have a helper to handle creating a log intent done item and
updating all the necessary state flags, use it to reduce boilerplate in
the ->iop_relog implementations.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Hoist the dirty flag setting code out of each ->create_intent
implementation up to the callsite to reduce boilerplate further.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Each log intent item's ->finish_item call chain inevitably includes some
code to set the dirty flag of the transaction. If there's an associated
log intent done item, it also sets the item's dirty flag and the
transaction's INTENT_DONE flag. This is repeated throughout the
codebase.
Reduce the LOC by moving all that to xfs_defer_finish_one.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Finish off the series by moving the intent item recovery function
pointer to the xfs_defer_op_type struct, since this is really a deferred
work function now.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Get rid of the open-coded calls to xfs_defer_finish_one. This also
means that the recovery transaction takes care of cleaning up the dfp,
and we have solved (I hope) all the ownership issues in recovery.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Recreate work items for each xfs_defer_pending object when we are
recovering intent items.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that we pass the xfs_defer_pending object into the intent item
recovery functions, we know exactly when ownership of the sole refcount
passes from the recovery context to the intent done item. At that
point, we need to null out dfp_intent so that the recovery mechanism
won't release it. This should fix the UAF problem reported by Long Li.
Note that we still want to recreate the full deferred work state. That
will be addressed in the next patches.
Fixes: 2e76f188fd ("xfs: cancel intents immediately if process_intents fails")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
One thing I never quite got around to doing is porting the log intent
item recovery code to reconstruct the deferred pending work state. As a
result, each intent item open codes xfs_defer_finish_one in its recovery
method, because that's what the EFI code did before xfs_defer.c even
existed.
This is a gross thing to have left unfixed -- if an EFI cannot proceed
due to busy extents, we end up creating separate new EFIs for each
unfinished work item, which is a change in behavior from what runtime
would have done.
Worse yet, Long Li pointed out that there's a UAF in the recovery code.
The ->commit_pass2 function adds the intent item to the AIL and drops
the refcount. The one remaining refcount is now owned by the recovery
mechanism (aka the log intent items in the AIL) with the intent of
giving the refcount to the intent done item in the ->iop_recover
function.
However, if something fails later in recovery, xlog_recover_finish will
walk the recovered intent items in the AIL and release them. If the CIL
hasn't been pushed before that point (which is possible since we don't
force the log until later) then the intent done release will try to free
its associated intent, which has already been freed.
This patch starts to address this mess by having the ->commit_pass2
functions recreate the xfs_defer_pending state. The next few patches
will fix the recovery functions.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Discovered when trying to track down a weird recovery corruption
issue that wasn't detected at recovery time.
The specific corruption was a zero extent count field when big
extent counts are in use, and it turns out the dinode verifier
doesn't detect that specific corruption case, either. So fix it too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
We've been seeing XFS errors like the following:
XFS: Internal error i != 1 at line 3526 of file fs/xfs/libxfs/xfs_btree.c. Caller xfs_btree_insert+0x1ec/0x280
...
Call Trace:
xfs_corruption_error+0x94/0xa0
xfs_btree_insert+0x221/0x280
xfs_alloc_fixup_trees+0x104/0x3e0
xfs_alloc_ag_vextent_size+0x667/0x820
xfs_alloc_fix_freelist+0x5d9/0x750
xfs_free_extent_fix_freelist+0x65/0xa0
__xfs_free_extent+0x57/0x180
...
This is the XFS_IS_CORRUPT() check in xfs_btree_insert() when
xfs_btree_insrec() fails.
After converting this into a panic and dissecting the core dump, I found
that xfs_btree_insrec() is failing because it's trying to split a leaf
node in the cntbt when the AG free list is empty. In particular, it's
failing to get a block from the AGFL _while trying to refill the AGFL_.
If a single operation splits every level of the bnobt and the cntbt (and
the rmapbt if it is enabled) at once, the free list will be empty. Then,
when the next operation tries to refill the free list, it allocates
space. If the allocation does not use a full extent, it will need to
insert records for the remaining space in the bnobt and cntbt. And if
those new records go in full leaves, the leaves (and potentially more
nodes up to the old root) need to be split.
Fix it by accounting for the additional splits that may be required to
refill the free list in the calculation for the minimum free list size.
P.S. As far as I can tell, this bug has existed for a long time -- maybe
back to xfs-history commit afdf80ae7405 ("Add XFS_AG_MAXLEVELS macros
...") in April 1994! It requires a very unlucky sequence of events, and
in fact we didn't hit it until a particular sparse mmap workload updated
from 5.12 to 5.19. But this bug existed in 5.12, so it must've been
exposed by some other change in allocation or writeback patterns. It's
also much less likely to be hit with the rmapbt enabled, since that
increases the minimum free list size and is unlikely to split at the
same time as the bnobt and cntbt.
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
When recovering intents, we capture newly created intent items as part of
committing recovered intent items. If intent recovery fails at a later
point, we forget to remove those newly created intent items from the AIL
and hang:
[root@localhost ~]# cat /proc/539/stack
[<0>] xfs_ail_push_all_sync+0x174/0x230
[<0>] xfs_unmount_flush_inodes+0x8d/0xd0
[<0>] xfs_mountfs+0x15f7/0x1e70
[<0>] xfs_fs_fill_super+0x10ec/0x1b20
[<0>] get_tree_bdev+0x3c8/0x730
[<0>] vfs_get_tree+0x89/0x2c0
[<0>] path_mount+0xecf/0x1800
[<0>] do_mount+0xf3/0x110
[<0>] __x64_sys_mount+0x154/0x1f0
[<0>] do_syscall_64+0x39/0x80
[<0>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
When newly created intent items fail to commit via transaction, intent
recovery hasn't created done items for these newly created intent items,
so the capture structure is the sole owner of the captured intent items.
We must release them explicitly or else they leak:
unreferenced object 0xffff888016719108 (size 432):
comm "mount", pid 529, jiffies 4294706839 (age 144.463s)
hex dump (first 32 bytes):
08 91 71 16 80 88 ff ff 08 91 71 16 80 88 ff ff ..q.......q.....
18 91 71 16 80 88 ff ff 18 91 71 16 80 88 ff ff ..q.......q.....
backtrace:
[<ffffffff8230c68f>] xfs_efi_init+0x18f/0x1d0
[<ffffffff8230c720>] xfs_extent_free_create_intent+0x50/0x150
[<ffffffff821b671a>] xfs_defer_create_intents+0x16a/0x340
[<ffffffff821bac3e>] xfs_defer_ops_capture_and_commit+0x8e/0xad0
[<ffffffff82322bb9>] xfs_cui_item_recover+0x819/0x980
[<ffffffff823289b6>] xlog_recover_process_intents+0x246/0xb70
[<ffffffff8233249a>] xlog_recover_finish+0x8a/0x9a0
[<ffffffff822eeafb>] xfs_log_mount_finish+0x2bb/0x4a0
[<ffffffff822c0f4f>] xfs_mountfs+0x14bf/0x1e70
[<ffffffff822d1f80>] xfs_fs_fill_super+0x10d0/0x1b20
[<ffffffff81a21fa2>] get_tree_bdev+0x3d2/0x6d0
[<ffffffff81a1ee09>] vfs_get_tree+0x89/0x2c0
[<ffffffff81a9f35f>] path_mount+0xecf/0x1800
[<ffffffff81a9fd83>] do_mount+0xf3/0x110
[<ffffffff81aa00e4>] __x64_sys_mount+0x154/0x1f0
[<ffffffff83968739>] do_syscall_64+0x39/0x80
Fix the problem above by abort intent items that don't have a done item
when recovery intents fail.
Fixes: e6fff81e48 ("xfs: proper replay of deferred ops queued during log recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Factor out xfs_defer_pending_abort() from xfs_defer_trans_abort(), which
not use transaction parameter, so it can be used after the transaction
life cycle.
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
* Realtime device subsystem
- Cleanup usage of xfs_rtblock_t and xfs_fsblock_t data types.
- Replace open coded conversions between rt blocks and rt extents with
calls to static inline helpers.
- Replace open coded realtime geometry compuation and macros with helper
functions.
- CPU usage optimizations for realtime allocator.
- Misc. Bug fixes associated with Realtime device.
* Allow read operations to execute while an FICLONE ioctl is being serviced.
* Misc. bug fixes
- Alert user when xfs_droplink() encounters an inode with a link count of zero.
- Handle the case where the allocator could return zero extents when
servicing an fallocate request.
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQjMC4mbgVeU7MxEIYH7y4RirJu9AUCZUEvIgAKCRAH7y4RirJu
9JnQAQCtnQAhZHbh9U2BNJI4hrpNm4Mh54DVlZvPFHW1N96AUAEA0Hnic/Zusrfc
9aaHQbzs4qGSZ5UJWOU6GxcWob/tggs=
=Ay05
-----END PGP SIGNATURE-----
Merge tag 'xfs-6.7-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Chandan Babu:
- Realtime device subsystem:
- Cleanup usage of xfs_rtblock_t and xfs_fsblock_t data types
- Replace open coded conversions between rt blocks and rt extents
with calls to static inline helpers
- Replace open coded realtime geometry compuation and macros with
helper functions
- CPU usage optimizations for realtime allocator
- Misc bug fixes associated with Realtime device
- Allow read operations to execute while an FICLONE ioctl is being
serviced
- Misc bug fixes:
- Alert user when xfs_droplink() encounters an inode with a link
count of zero
- Handle the case where the allocator could return zero extents when
servicing an fallocate request
* tag 'xfs-6.7-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (40 commits)
xfs: allow read IO and FICLONE to run concurrently
xfs: handle nimaps=0 from xfs_bmapi_write in xfs_alloc_file_space
xfs: introduce protection for drop nlink
xfs: don't look for end of extent further than necessary in xfs_rtallocate_extent_near()
xfs: don't try redundant allocations in xfs_rtallocate_extent_near()
xfs: limit maxlen based on available space in xfs_rtallocate_extent_near()
xfs: return maximum free size from xfs_rtany_summary()
xfs: invert the realtime summary cache
xfs: simplify rt bitmap/summary block accessor functions
xfs: simplify xfs_rtbuf_get calling conventions
xfs: cache last bitmap block in realtime allocator
xfs: use accessor functions for summary info words
xfs: consolidate realtime allocation arguments
xfs: create helpers for rtsummary block/wordcount computations
xfs: use accessor functions for bitmap words
xfs: create helpers for rtbitmap block/wordcount computations
xfs: create a helper to handle logging parts of rt bitmap/summary blocks
xfs: convert rt summary macros to helpers
xfs: convert open-coded xfs_rtword_t pointer accesses to helper
xfs: remove XFS_BLOCKWSIZE and XFS_BLOCKWMASK macros
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZTppYgAKCRCRxhvAZXjc
okIHAP9anLz1QDyMLH12ASuHjgBc0Of3jcB6NB97IWGpL4O21gEA46ohaD+vcJuC
YkBLU3lXqQ87nfu28ExFAzh10hG2jwM=
=m4pB
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.7.ctime' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs
Pull vfs inode time accessor updates from Christian Brauner:
"This finishes the conversion of all inode time fields to accessor
functions as discussed on list. Changing timestamps manually as we
used to do before is error prone. Using accessors function makes this
robust.
It does not contain the switch of the time fields to discrete 64 bit
integers to replace struct timespec and free up space in struct inode.
But after this, the switch can be trivially made and the patch should
only affect the vfs if we decide to do it"
* tag 'vfs-6.7.ctime' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs: (86 commits)
fs: rename inode i_atime and i_mtime fields
security: convert to new timestamp accessors
selinux: convert to new timestamp accessors
apparmor: convert to new timestamp accessors
sunrpc: convert to new timestamp accessors
mm: convert to new timestamp accessors
bpf: convert to new timestamp accessors
ipc: convert to new timestamp accessors
linux: convert to new timestamp accessors
zonefs: convert to new timestamp accessors
xfs: convert to new timestamp accessors
vboxsf: convert to new timestamp accessors
ufs: convert to new timestamp accessors
udf: convert to new timestamp accessors
ubifs: convert to new timestamp accessors
tracefs: convert to new timestamp accessors
sysv: convert to new timestamp accessors
squashfs: convert to new timestamp accessors
server: convert to new timestamp accessors
client: convert to new timestamp accessors
...
In commit 355e353213 ("xfs: cache minimum realtime summary level"), I
added a cache of the minimum level of the realtime summary that has any
free extents. However, it turns out that the _maximum_ level is more
useful for upcoming optimizations, and basically equivalent for the
existing usage. So, let's change the meaning of the cache to be the
maximum level + 1, or 0 if there are no free extents.
For example, if the cache contains:
{0, 4}
then there are no free extents starting in realtime bitmap block 0, and
there are no free extents larger than or equal to 2^4 blocks starting in
realtime bitmap block 1. The cache is a loose upper bound, so there may
or may not be free extents smaller than 2^4 blocks in realtime bitmap
block 1.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Simplify the calling convention of these functions since the
xfs_rtalloc_args structure contains the parameters we need.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that xfs_rtalloc_args holds references to the last-read bitmap and
summary blocks, we don't need to pass the buffer pointer out of
xfs_rtbuf_get.
Callers no longer have to xfs_trans_brelse on their own, though they are
required to call xfs_rtbuf_cache_relse before the xfs_rtalloc_args goes
out of scope.
While we're at it, create some trivial helpers so that we don't have to
remember if "0" means "bitmap" and "1" means "summary".
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Profiling a workload on a highly fragmented realtime device showed a ton
of CPU cycles being spent in xfs_trans_read_buf() called by
xfs_rtbuf_get(). Further tracing showed that much of that was repeated
calls to xfs_rtbuf_get() for the same block of the realtime bitmap.
These come from xfs_rtallocate_extent_block(): as it walks through
ranges of free bits in the bitmap, each call to xfs_rtcheck_range() and
xfs_rtfind_{forw,back}() gets the same bitmap block. If the bitmap block
is very fragmented, then this is _a lot_ of buffer lookups.
The realtime allocator already passes around a cache of the last used
realtime summary block to avoid repeated reads (the parameters rbpp and
rsb). We can do the same for the realtime bitmap.
This replaces rbpp and rsb with a struct xfs_rtbuf_cache, which caches
the most recently used block for both the realtime bitmap and summary.
xfs_rtbuf_get() now handles the caching instead of the callers, which
requires plumbing xfs_rtbuf_cache to more functions but also makes sure
we don't miss anything.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Consolidate the arguments passed around the rt allocator into a
struct xfs_rtalloc_arg similar to how the btree allocator arguments
are consolidated in a struct xfs_alloc_arg....
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create get and set functions for rtsummary words so that we can redefine
the ondisk format with a specific endianness. Note that this requires
the definition of a distinct type for ondisk summary info words so that
the compiler can perform proper typechecking.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create helper functions that compute the number of blocks or words
necessary to store the rt summary file.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create get and set functions for rtbitmap words so that we can redefine
the ondisk format with a specific endianness. Note that this requires
the definition of a distinct type for ondisk rtbitmap words so that the
compiler can perform proper typechecking as we go back and forth.
In the upcoming rtgroups feature, we're going to fix the problem that
rtwords are written in host endian order, which means we'll need the
distinct rtword/rtword_raw types.
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create an explicit helper function to log parts of rt bitmap and summary
blocks. While we're at it, fix an off-by-one error in two of the
rtbitmap logging calls that led to unnecessarily large log items but was
otherwise benign.
Note that the upcoming rtgroups patchset will add block headers to the
rtbitmap and rtsummary files. The helpers in this and the next few
patches take a less than direct route through xfs_rbmblock_wordptr and
xfs_rsumblock_infoptr to avoid helper churn in that patchset.
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create helper functions that compute the number of blocks or words
necessary to store the rt bitmap.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Convert the realtime summary file macros to helper functions so that we
can improve type checking.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
There are a bunch of places where we use open-coded logic to find a
pointer to an xfs_rtword_t within a rt bitmap buffer. Convert all that
to helper functions for better type safety.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Remove these trivial macros since they're not even part of the ondisk
format.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Replace these macros with typechecked helper functions. Eventually
we're going to add more logic to the helpers and it'll be easier if we
don't have to macro it up.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Avoid the costs of integer division (32-bit and 64-bit) if the realtime
extent size is a power of two.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a pair of functions to round rtblock numbers up or down to the
nearest rt extent.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Convert these calls to use the helpers, and clean up all these places
where the same variable can have different units depending on where it
is in the function.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create helpers to do unit conversions of rt block numbers to rt extent
numbers. There are three variations -- one to compute the rt extent
number from an rt block number; one to compute the offset of an rt block
within an rt extent; and one to extract both.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a helper to compute the realtime extent (xfs_rtxlen_t) from an
extent length (xfs_extlen_t) value.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a helper to compute the misalignment between a file extent
(xfs_extlen_t) and a realtime extent.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a helper to convert a realtime extent to a realtime block. Later
on we'll change the helper to use bit shifts when possible.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Further disambiguate the xfs_rtblock_t uses by creating a new type,
xfs_rtxnum_t, to store the position of an extent within the realtime
section, in units of rtextents.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This helper function validates that a range of *blocks* in the
realtime section is completely contained within the realtime section.
It does /not/ validate ranges of *rtextents*. Rename the function to
avoid suggesting that it does, and change the type of the @len parameter
since xfs_rtblock_t is a position unit, not a length unit.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
XFS uses xfs_rtblock_t for many different uses, which makes it much more
difficult to perform a unit analysis on the codebase. One of these
(ab)uses is when we need to store the length of a free space extent as
stored in the realtime bitmap. Because there can be up to 2^64 realtime
extents in a filesystem, we need a new type that is larger than
xfs_rtxlen_t for callers that are querying the bitmap directly. This
means scrub and growfs.
Create this type as "xfs_rtbxlen_t" and use it to store 64-bit rtx
lengths. 'b' stands for 'bitmap' or 'big'; reader's choice.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We should use xfs_fileoff_t to store the file block offset of any
location within the realtime bitmap or summary files.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In most of the filesystem, we use xfs_extlen_t to store the length of a
file (or AG) space mapping in units of fs blocks. Unfortunately, the
realtime allocator also uses it to store the length of a rt space
mapping in units of rt extents. This is confusing, since one rt extent
can consist of many fs blocks.
Separate the two by introducing a new type (xfs_rtxlen_t) to store the
length of a space mapping (in units of realtime extents) that would be
found in a file.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move all the declarations for functionality in xfs_rtbitmap.c into a
separate xfs_rtbitmap.h header file.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The unit conversions in this function do not make sense. First we
convert a block count to bytes, then divide that bytes value by
rextsize, which is in blocks, to get an rt extent count. You can't
divide bytes by blocks to get a (possibly multiblock) extent value.
Fortunately nobody uses delalloc on the rt volume so this hasn't
mattered.
Fixes: fa5c836ca8 ("xfs: refactor xfs_bunmapi_cow")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Currently, xfs_bmap_del_extent_real contains a bunch of code to convert
the physical extent of a data fork mapping for a realtime file into rt
extents and pass that to the rt extent freeing function. Since the
details of this aren't needed when CONFIG_XFS_REALTIME=n, move it to
xfs_rtbitmap.c to reduce code size when realtime isn't enabled.
This will (one day) enable realtime EFIs to reuse the same
unit-converting call with less code duplication.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The latest version of the fs geometry structure is v5. Bump this
constant so that xfs_db and mkfs calls to libxfs_fs_geometry will fill
out all the fields.
IOWs, this commit is a no-op for the kernel, but will be useful for
userspace reporting in later changes.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
If we reduce the number of blocks in an AG, we must update the incore
geometry values as well.
Fixes: 0800169e3e ("xfs: Pre-calculate per-AG agbno geometry")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
* Fix an integer overflow bug when processing an fsmap call.
* Fix crash due to CPU hot remove event racing with filesystem mount
operation.
* During read-only mount, XFS does not allow the contents of the log to be
recovered when there are one or more unrecognized rcompat features in the
primary superblock, since the log might have intent items which the kernel
does not know how to process.
* During recovery of log intent items, XFS now reserves log space sufficient
for one cycle of a permanent transaction to execute. Otherwise, this could
lead to livelocks due to non-availability of log space.
* On an fs which has an ondisk unlinked inode list, trying to delete a file
or allocating an O_TMPFILE file can cause the fs to the shutdown if the
first inode in the ondisk inode list is not present in the inode cache.
The bug is solved by explicitly loading the first inode in the ondisk
unlinked inode list into the inode cache if it is not already cached.
A similar problem arises when the uncached inode is present in the middle
of the ondisk unlinked inode list. This second bug is triggered when
executing operations like quotacheck and bulkstat. In this case, XFS now
reads in the entire ondisk unlinked inode list.
* Enable LARP mode only on recent v5 filesystems.
* Fix a out of bounds memory access in scrub.
* Fix a performance bug when locating the tail of the log during mounting a
filesystem.
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQjMC4mbgVeU7MxEIYH7y4RirJu9AUCZQkx4QAKCRAH7y4RirJu
9HrTAQD6QhvHkS43vueGOb4WISZPG/jMKJ/FjvwLZrIZ0erbJwEAtRWhClwFv3NZ
exJFtsmxrKC6Vifuo0pvfoCiK5mUvQ8=
=SrJR
-----END PGP SIGNATURE-----
Merge tag 'xfs-6.6-fixes-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs fixes from Chandan Babu:
- Fix an integer overflow bug when processing an fsmap call
- Fix crash due to CPU hot remove event racing with filesystem mount
operation
- During read-only mount, XFS does not allow the contents of the log to
be recovered when there are one or more unrecognized rcompat features
in the primary superblock, since the log might have intent items
which the kernel does not know how to process
- During recovery of log intent items, XFS now reserves log space
sufficient for one cycle of a permanent transaction to execute.
Otherwise, this could lead to livelocks due to non-availability of
log space
- On an fs which has an ondisk unlinked inode list, trying to delete a
file or allocating an O_TMPFILE file can cause the fs to the shutdown
if the first inode in the ondisk inode list is not present in the
inode cache. The bug is solved by explicitly loading the first inode
in the ondisk unlinked inode list into the inode cache if it is not
already cached
A similar problem arises when the uncached inode is present in the
middle of the ondisk unlinked inode list. This second bug is
triggered when executing operations like quotacheck and bulkstat. In
this case, XFS now reads in the entire ondisk unlinked inode list
- Enable LARP mode only on recent v5 filesystems
- Fix a out of bounds memory access in scrub
- Fix a performance bug when locating the tail of the log during
mounting a filesystem
* tag 'xfs-6.6-fixes-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: use roundup_pow_of_two instead of ffs during xlog_find_tail
xfs: only call xchk_stats_merge after validating scrub inputs
xfs: require a relatively recent V5 filesystem for LARP mode
xfs: make inode unlinked bucket recovery work with quotacheck
xfs: load uncached unlinked inodes into memory on demand
xfs: reserve less log space when recovering log intent items
xfs: fix log recovery when unknown rocompat bits are set
xfs: reload entire unlinked bucket lists
xfs: allow inode inactivation during a ro mount log recovery
xfs: use i_prev_unlinked to distinguish inodes that are not on the unlinked list
xfs: remove CPU hotplug infrastructure
xfs: remove the all-mounts list
xfs: use per-mount cpumask to track nonempty percpu inodegc lists
xfs: fix an agbno overflow in __xfs_getfsmap_datadev
xfs: fix per-cpu CIL structure aggregation racing with dying cpus
xfs: fix select in config XFS_ONLINE_SCRUB_STATS
This reverts commit e44df26647.
Users reported regressions due to enabling multi-grained timestamps
unconditionally. As no clear consensus on a solution has come up and the
discussion has gone back to the drawing board revert the infrastructure
changes for. If it isn't code that's here to stay, make it go away.
Message-ID: <20230920-keine-eile-c9755b5825db@brauner>
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Wengang Wang reports that a customer's system was running a number of
truncate operations on a filesystem with a very small log. Contention
on the reserve heads lead to other threads stalling on smaller updates
(e.g. mtime updates) long enough to result in the node being rebooted
on account of the lack of responsivenes. The node failed to recover
because log recovery of an EFI became stuck waiting for a grant of
reserve space. From Wengang's report:
"For the file deletion, log bytes are reserved basing on
xfs_mount->tr_itruncate which is:
tr_logres = 175488,
tr_logcount = 2,
tr_logflags = XFS_TRANS_PERM_LOG_RES,
"You see it's a permanent log reservation with two log operations (two
transactions in rolling mode). After calculation (xlog_calc_unit_res()
adds space for various log headers), the final log space needed per
transaction changes from 175488 to 180208 bytes. So the total log
space needed is 360416 bytes (180208 * 2). [That quantity] of log space
(360416 bytes) needs to be reserved for both run time inode removing
(xfs_inactive_truncate()) and EFI recover (xfs_efi_item_recover())."
In other words, runtime pre-reserves 360K of space in anticipation of
running a chain of two transactions in which each transaction gets a
180K reservation.
Now that we've allocated the transaction, we delete the bmap mapping,
log an EFI to free the space, and roll the transaction as part of
finishing the deferops chain. Rolling creates a new xfs_trans which
shares its ticket with the old transaction. Next, xfs_trans_roll calls
__xfs_trans_commit with regrant == true, which calls xlog_cil_commit
with the same regrant parameter.
xlog_cil_commit calls xfs_log_ticket_regrant, which decrements t_cnt and
subtracts t_curr_res from the reservation and write heads.
If the filesystem is fresh and the first transaction only used (say)
20K, then t_curr_res will be 160K, and we give that much reservation
back to the reservation head. Or if the file is really fragmented and
the first transaction actually uses 170K, then t_curr_res will be 10K,
and that's what we give back to the reservation.
Having done that, we're now headed into the second transaction with an
EFI and 180K of reservation. Other threads apparently consumed all the
reservation for smaller transactions, such as timestamp updates.
Now let's say the first transaction gets written to disk and we crash
without ever completing the second transaction. Now we remount the fs,
log recovery finds the unfinished EFI, and calls xfs_efi_recover to
finish the EFI. However, xfs_efi_recover starts a new tr_itruncate
tranasction, which asks for 360K log reservation. This is a lot more
than the 180K that we had reserved at the time of the crash. If the
first EFI to be recovered is also pinning the tail of the log, we will
be unable to free any space in the log, and recovery livelocks.
Wengang confirmed this:
"Now we have the second transaction which has 180208 log bytes reserved
too. The second transaction is supposed to process intents including
extent freeing. With my hacking patch, I blocked the extent freeing 5
hours. So in that 5 hours, 180208 (NOT 360416) log bytes are reserved.
"With my test case, other transactions (update timestamps) then happen.
As my hacking patch pins the journal tail, those timestamp-updating
transactions finally use up (almost) all the left available log space
(in memory in on disk). And finally the on disk (and in memory)
available log space goes down near to 180208 bytes. Those 180208 bytes
are reserved by [the] second (extent-free) transaction [in the chain]."
Wengang and I noticed that EFI recovery starts a transaction, completes
one step of the chain, and commits the transaction without completing
any other steps of the chain. Those subsequent steps are completed by
xlog_finish_defer_ops, which allocates yet another transaction to
finish the rest of the chain. That transaction gets the same tr_logres
as the head transaction, but with tr_logcount = 1 to force regranting
with every roll to avoid livelocks.
In other words, we already figured this out in commit 929b92f640
("xfs: xfs_defer_capture should absorb remaining transaction
reservation"), but should have applied that logic to each intent item's
recovery function. For Wengang's case, the xfs_trans_alloc call in the
EFI recovery function should only be asking for a single transaction's
worth of log reservation -- 180K, not 360K.
Quoting Wengang again:
"With log recovery, during EFI recovery, we use tr_itruncate again to
reserve two transactions that needs 360416 log bytes. Reserving 360416
bytes fails [stalls] because we now only have about 180208 available.
"Actually during the EFI recover, we only need one transaction to free
the extents just like the 2nd transaction at RUNTIME. So it only needs
to reserve 180208 rather than 360416 bytes. We have (a bit) more than
180208 available log bytes on disk, so [if we decrease the reservation
to 180K] the reservation goes and the recovery [finishes]. That is to
say: we can fix the log recover part to fix the issue. We can introduce
a new xfs_trans_res xfs_mount->tr_ext_free
{
tr_logres = 175488,
tr_logcount = 0,
tr_logflags = 0,
}
"and use tr_ext_free instead of tr_itruncate in EFI recover."
However, I don't think it quite makes sense to create an entirely new
transaction reservation type to handle single-stepping during log
recovery. Instead, we should copy the transaction reservation
information in the xfs_mount, change tr_logcount to 1, and pass that
into xfs_trans_alloc. We know this won't risk changing the min log size
computation since we always ask for a fraction of the reservation for
all known transaction types.
This looks like it's been lurking in the codebase since commit
3d3c8b5222, which changed the xfs_trans_reserve call in
xlog_recover_process_efi to use the tr_logcount in tr_itruncate.
That changed the EFI recovery transaction from making a
non-XFS_TRANS_PERM_LOG_RES request for one transaction's worth of log
space to a XFS_TRANS_PERM_LOG_RES request for two transactions worth.
Fixes: 3d3c8b5222 ("xfs: refactor xfs_trans_reserve() interface")
Complements: 929b92f640 ("xfs: xfs_defer_capture should absorb remaining transaction reservation")
Suggested-by: Wengang Wang <wen.gang.wang@oracle.com>
Cc: Srikanth C S <srikanth.c.s@oracle.com>
[djwong: apply the same transformation to all log intent recovery]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Log recovery has always run on read only mounts, even where the primary
superblock advertises unknown rocompat bits. Due to a misunderstanding
between Eric and Darrick back in 2018, we accidentally changed the
superblock write verifier to shutdown the fs over that exact scenario.
As a result, the log cleaning that occurs at the end of the mounting
process fails if there are unknown rocompat bits set.
As we now allow writing of the superblock if there are unknown rocompat
bits set on a RO mount, we no longer want to turn off RO state to allow
log recovery to succeed on a RO mount. Hence we also remove all the
(now unnecessary) RO state toggling from the log recovery path.
Fixes: 9e037cb797 ("xfs: check for unknown v5 feature bits in superblock write verifier"
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
* Chandan Babu will be taking over as the XFS release manager. He has
reviewed all the patches that are in this branch, though I'm signing
the branch one last time since I'm still technically maintainer. :P
* Create a maintainer entry profile for XFS in which we lay out the
various roles that I have played for many years. Aside from release
manager, the remaining roles are as yet unfilled.
* Start merging online repair -- we now have in-memory pageable memory
for staging btrees, a bunch of pending fixes, and we've started the
process of refactoring the scrub support code to support more of
repair. In particular, reaping of old blocks from damaged structures.
* Scrub the realtime summary file.
* Fix a bug where scrub's quota iteration only ever returned the root
dquot. Oooops.
* Fix some typos.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZOQE2AAKCRBKO3ySh0YR
pvmZAQDe+KceaVx6Dv2f9ihckeS2dILSpDTo1bh9BeXnt005VwD/ceHTaJxEl8lp
u/dixFDkRgp9RYtoTAK2WNiUxYetsAc=
=oZN6
-----END PGP SIGNATURE-----
Merge tag 'xfs-6.6-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Chandan Babu:
- Chandan Babu will be taking over as the XFS release manager. He has
reviewed all the patches that are in this branch, though I'm signing
the branch one last time since I'm still technically maintainer. :P
- Create a maintainer entry profile for XFS in which we lay out the
various roles that I have played for many years. Aside from release
manager, the remaining roles are as yet unfilled.
- Start merging online repair -- we now have in-memory pageable memory
for staging btrees, a bunch of pending fixes, and we've started the
process of refactoring the scrub support code to support more of
repair. In particular, reaping of old blocks from damaged structures.
- Scrub the realtime summary file.
- Fix a bug where scrub's quota iteration only ever returned the root
dquot. Oooops.
- Fix some typos.
[ Pull request from Chandan Babu, but signed tag and description from
Darrick Wong, thus the first person singular above is Darrick, not
Chandan ]
* tag 'xfs-6.6-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (37 commits)
fs/xfs: Fix typos in comments
xfs: fix dqiterate thinko
xfs: don't check reflink iflag state when checking cow fork
xfs: simplify returns in xchk_bmap
xfs: rewrite xchk_inode_is_allocated to work properly
xfs: hide xfs_inode_is_allocated in scrub common code
xfs: fix agf_fllast when repairing an empty AGFL
xfs: allow userspace to rebuild metadata structures
xfs: clear pagf_agflreset when repairing the AGFL
xfs: allow the user to cancel repairs before we start writing
xfs: don't complain about unfixed metadata when repairs were injected
xfs: implement online scrubbing of rtsummary info
xfs: always rescan allegedly healthy per-ag metadata after repair
xfs: move the realtime summary file scrubber to a separate source file
xfs: wrap ilock/iunlock operations on sc->ip
xfs: get our own reference to inodes that we want to scrub
xfs: track usage statistics of online fsck
xfs: improve xfarray quicksort pivot
xfs: create scaffolding for creating debugfs entries
xfs: cache pages used for xfarray quicksort convergence
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZOXTKAAKCRCRxhvAZXjc
oifJAQCzi/p+AdQu8LA/0XvR7fTwaq64ZDCibU4BISuLGT2kEgEAuGbuoFZa0rs2
XYD/s4+gi64p9Z01MmXm2XO1pu3GPg0=
=eJz5
-----END PGP SIGNATURE-----
Merge tag 'v6.6-vfs.ctime' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull vfs timestamp updates from Christian Brauner:
"This adds VFS support for multi-grain timestamps and converts tmpfs,
xfs, ext4, and btrfs to use them. This carries acks from all relevant
filesystems.
The VFS always uses coarse-grained timestamps when updating the ctime
and mtime after a change. This has the benefit of allowing filesystems
to optimize away a lot of metadata updates, down to around 1 per
jiffy, even when a file is under heavy writes.
Unfortunately, this has always been an issue when we're exporting via
NFSv3, which relies on timestamps to validate caches. A lot of changes
can happen in a jiffy, so timestamps aren't sufficient to help the
client decide to invalidate the cache.
Even with NFSv4, a lot of exported filesystems don't properly support
a change attribute and are subject to the same problems with timestamp
granularity. Other applications have similar issues with timestamps
(e.g., backup applications).
If we were to always use fine-grained timestamps, that would improve
the situation, but that becomes rather expensive, as the underlying
filesystem would have to log a lot more metadata updates.
This introduces fine-grained timestamps that are used when they are
actively queried.
This uses the 31st bit of the ctime tv_nsec field to indicate that
something has queried the inode for the mtime or ctime. When this flag
is set, on the next mtime or ctime update, the kernel will fetch a
fine-grained timestamp instead of the usual coarse-grained one.
As POSIX generally mandates that when the mtime changes, the ctime
must also change the kernel always stores normalized ctime values, so
only the first 30 bits of the tv_nsec field are ever used.
Filesytems can opt into this behavior by setting the FS_MGTIME flag in
the fstype. Filesystems that don't set this flag will continue to use
coarse-grained timestamps.
Various preparatory changes, fixes and cleanups are included:
- Fixup all relevant places where POSIX requires updating ctime
together with mtime. This is a wide-range of places and all
maintainers provided necessary Acks.
- Add new accessors for inode->i_ctime directly and change all
callers to rely on them. Plain accesses to inode->i_ctime are now
gone and it is accordingly rename to inode->__i_ctime and commented
as requiring accessors.
- Extend generic_fillattr() to pass in a request mask mirroring in a
sense the statx() uapi. This allows callers to pass in a request
mask to only get a subset of attributes filled in.
- Rework timestamp updates so it's possible to drop the @now
parameter the update_time() inode operation and associated helpers.
- Add inode_update_timestamps() and convert all filesystems to it
removing a bunch of open-coding"
* tag 'v6.6-vfs.ctime' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (107 commits)
btrfs: convert to multigrain timestamps
ext4: switch to multigrain timestamps
xfs: switch to multigrain timestamps
tmpfs: add support for multigrain timestamps
fs: add infrastructure for multigrain timestamps
fs: drop the timespec64 argument from update_time
xfs: have xfs_vn_update_time gets its own timestamp
fat: make fat_update_time get its own timestamp
fat: remove i_version handling from fat_update_time
ubifs: have ubifs_update_time use inode_update_timestamps
btrfs: have it use inode_update_timestamps
fs: drop the timespec64 arg from generic_update_time
fs: pass the request_mask to generic_fillattr
fs: remove silly warning from current_time
gfs2: fix timestamp handling on quota inodes
fs: rename i_ctime field to __i_ctime
selinux: convert to ctime accessor functions
security: convert to ctime accessor functions
apparmor: convert to ctime accessor functions
sunrpc: convert to ctime accessor functions
...
Enable multigrain timestamps, which should ensure that there is an
apparent change to the timestamp whenever it has been written after
being actively observed via getattr.
Also, anytime the mtime changes, the ctime must also change, and those
are now the only two options for xfs_trans_ichgtime. Have that function
unconditionally bump the ctime, and ASSERT that XFS_ICHGTIME_CHG is
always set.
Acked-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Message-Id: <20230807-mgctime-v7-11-d1dec143a704@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Add a new (superuser-only) flag to the online metadata repair ioctl to
force it to rebuild structures, even if they're not broken. We will use
this to move metadata structures out of the way during a free space
defragmentation operation.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In later patches, we're going to change how the inode's ctime field is
used. Switch to using accessor functions instead of raw accesses of
inode->i_ctime.
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Message-Id: <20230705190309.579783-80-jlayton@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
As of 6.5-rc1, UBSAN trips over the ondisk extended attribute shortform
definitions using an array length of 1 to pretend to be a flex array.
Kernel compilers have to support unbounded array declarations, so let's
correct this.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
As of 6.5-rc1, UBSAN trips over the ondisk extended attribute leaf block
definitions using an array length of 1 to pretend to be a flex array.
Kernel compilers have to support unbounded array declarations, so let's
correct this.
================================================================================
UBSAN: array-index-out-of-bounds in fs/xfs/libxfs/xfs_attr_leaf.c:2535:24
index 2 is out of range for type '__u8 [1]'
Call Trace:
<TASK>
dump_stack_lvl+0x33/0x50
__ubsan_handle_out_of_bounds+0x9c/0xd0
xfs_attr3_leaf_getvalue+0x2ce/0x2e0 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
xfs_attr_leaf_get+0x148/0x1c0 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
xfs_attr_get_ilocked+0xae/0x110 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
xfs_attr_get+0xee/0x150 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
xfs_xattr_get+0x7d/0xc0 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
__vfs_getxattr+0xa3/0x100
vfs_getxattr+0x87/0x1d0
do_getxattr+0x17a/0x220
getxattr+0x89/0xf0
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
As of 6.5-rc1, UBSAN trips over the attrlist ioctl definitions using an
array length of 1 to pretend to be a flex array. Kernel compilers have
to support unbounded array declarations, so let's correct this. This
may cause friction with userspace header declarations, but suck is life.
================================================================================
UBSAN: array-index-out-of-bounds in fs/xfs/xfs_ioctl.c:345:18
index 1 is out of range for type '__s32 [1]'
Call Trace:
<TASK>
dump_stack_lvl+0x33/0x50
__ubsan_handle_out_of_bounds+0x9c/0xd0
xfs_ioc_attr_put_listent+0x413/0x420 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
xfs_attr_list_ilocked+0x170/0x850 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
xfs_attr_list+0xb7/0x120 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
xfs_ioc_attr_list+0x13b/0x2e0 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
xfs_attrlist_by_handle+0xab/0x120 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
xfs_file_ioctl+0x1ff/0x15e0 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
vfs_ioctl+0x1f/0x60
The kernel and xfsprogs code that uses these structures will not have
problems, but the long tail of external user programs might.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
* Fix some ordering problems with log items during log recovery.
* Don't deadlock the system by trying to flush busy freed extents while
holding on to busy freed extents.
* Improve validation of log geometry parameters when reading the
primary superblock.
* Validate the length field in the AGF header.
* Fix recordset filtering bugs when re-calling GETFSMAP to return more
results when the resultset didn't previously fit in the caller's buffer.
* Fix integer overflows in GETFSMAP when working with rt volumes larger
than 2^32 fsblocks.
* Fix GETFSMAP reporting the undefined space beyond the last rtextent.
* Fix filtering bugs in GETFSMAP's log device backend if the log ever
becomes longer than 2^32 fsblocks.
* Improve validation of file offsets in the GETFSMAP range parameters.
* Fix an off by one bug in the pmem media failure notification
computation.
* Validate the length field in the AGI header too.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZKL9IwAKCRBKO3ySh0YR
prFLAQC+dp1bV5ShBPfYJMCSUS7gmZEge01QrLTqcpyu8mO5GgD/YLUdD2Iebc8t
AS1Awj1iec7AFtCWcd3bTeNZD7vL9w0=
=j/oi
-----END PGP SIGNATURE-----
Merge tag 'xfs-6.5-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull more xfs updates from Darrick Wong:
- Fix some ordering problems with log items during log recovery
- Don't deadlock the system by trying to flush busy freed extents while
holding on to busy freed extents
- Improve validation of log geometry parameters when reading the
primary superblock
- Validate the length field in the AGF header
- Fix recordset filtering bugs when re-calling GETFSMAP to return more
results when the resultset didn't previously fit in the caller's
buffer
- Fix integer overflows in GETFSMAP when working with rt volumes larger
than 2^32 fsblocks
- Fix GETFSMAP reporting the undefined space beyond the last rtextent
- Fix filtering bugs in GETFSMAP's log device backend if the log ever
becomes longer than 2^32 fsblocks
- Improve validation of file offsets in the GETFSMAP range parameters
- Fix an off by one bug in the pmem media failure notification
computation
- Validate the length field in the AGI header too
* tag 'xfs-6.5-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: Remove unneeded semicolon
xfs: AGI length should be bounds checked
xfs: fix the calculation for "end" and "length"
xfs: fix xfs_btree_query_range callers to initialize btree rec fully
xfs: validate fsmap offsets specified in the query keys
xfs: fix logdev fsmap query result filtering
xfs: clean up the rtbitmap fsmap backend
xfs: fix getfsmap reporting past the last rt extent
xfs: fix integer overflows in the fsmap rtbitmap and logdev backends
xfs: fix interval filtering in multi-step fsmap queries
xfs: fix bounds check in xfs_defer_agfl_block()
xfs: AGF length has never been bounds checked
xfs: journal geometry is not properly bounds checked
xfs: don't block in busy flushing when freeing extents
xfs: allow extent free intents to be retried
xfs: pass alloc flags through to xfs_extent_busy_flush()
xfs: use deferred frees for btree block freeing
xfs: don't reverse order of items in bulk AIL insertion
xfs: remove redundant initializations of pointers drop_leaf and save_leaf
Similar to the recent patch strengthening the AGF agf_length
verification, the AGI verifier does not check that the AGI length field
is within known good bounds. This isn't currently checked by runtime
kernel code, yet we assume in many places that it is correct and verify
other metadata against it.
Add length verification to the AGI verifier. Just like the AGF length
checking, the length of the AGI must be equal to the size of the AG
specified in the superblock, unless it is the last AG in the filesystem.
In that case, it must be less than or equal to sb->sb_agblocks and
greater than XFS_MIN_AG_BLOCKS, which is the smallest AG a growfs
operation will allow to exist.
There's only one place in the filesystem that actually uses agi_length,
but let's not leave it vulnerable to the same weird nonsense that
generates syzbot bugs, eh?
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Use struct initializers to ensure that the xfs_btree_irecs passed into
the query_range function are completely initialized. No functional
changes, just closing some sloppy hygiene.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
* Fix a problem where shrink would blow out the space reserve by
declining to shrink the filesystem.
* Drop the EXPERIMENTAL tag for the large extent counts feature.
* Set FMODE_CAN_ODIRECT and get rid of an address space op.
* Fix an AG count overflow bug in growfs if the new device size is
redonkulously large.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHQEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZIs45AAKCRBKO3ySh0YR
ps5NAP92oOaMlXeaxTTGLnbCe/sQhQiVfjE45sQL2BziHN/s2gD2OX01yn2w+Mpg
CdQ6HChUzL2fU3eleh1yMNR7McuaCA==
=hQX7
-----END PGP SIGNATURE-----
Merge tag 'xfs-6.5-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Darrick Wong:
"There's not much going on this cycle -- the large extent counts
feature graduated, so now users can create more extremely fragmented
files! :P
The rest are bug fixes; and I'll be sending more next week.
- Fix a problem where shrink would blow out the space reserve by
declining to shrink the filesystem
- Drop the EXPERIMENTAL tag for the large extent counts feature
- Set FMODE_CAN_ODIRECT and get rid of an address space op
- Fix an AG count overflow bug in growfs if the new device size is
redonkulously large"
* tag 'xfs-6.5-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: fix ag count overflow during growfs
xfs: set FMODE_CAN_ODIRECT instead of a dummy direct_IO method
xfs: drop EXPERIMENTAL tag for large extent counts
xfs: don't deplete the reserve pool when trying to shrink the fs
Need to happen before we allocate and then leak the xefi. Found by
coverity via an xfsprogs libxfs scan.
[djwong: This also fixes the type of the @agbno argument.]
Fixes: 7dfee17b13 ("xfs: validate block number being freed before adding to xefi")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The AGF verifier does not check that the AGF length field is within
known good bounds. This has never been checked by runtime kernel
code (i.e. the lack of verification goes back to 1993) yet we assume
in many places that it is correct and verify other metdata against
it.
Add length verification to the AGF verifier. The length of the AGF
must be equal to the size of the AG specified in the superblock,
unless it is the last AG in the filesystem. In that case, it must be
less than or equal to sb->sb_agblocks and greater than
XFS_MIN_AG_BLOCKS, which is the smallest AG a growfs operation will
allow to exist.
This requires a bit of rework of the verifier function. We want to
verify metadata before we use it to verify other metadata. Hence
we need to verify the AGF sequence numbers before using them to
verify the length of the AGF. Then we can verify the AGF length
before we verify AGFL fields. Then we can verifier other fields that
are bounds limited by the AGF length.
And, finally, by calculating agf_length only once into a local
variable, we can collapse repeated "if (xfs_has_foo() &&"
conditionaly checks into single checks. This makes the code much
easier to follow as all the checks for a given feature are obviously
in the same place.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
If the journal geometry results in a sector or log stripe unit
validation problem, it indicates that we cannot set the log up to
safely write to the the journal. In these cases, we must abort the
mount because the corruption needs external intervention to resolve.
Similarly, a journal that is too large cannot be written to safely,
either, so we shouldn't allow those geometries to mount, either.
If the log is too small, we risk having transaction reservations
overruning the available log space and the system hanging waiting
for space it can never provide. This is purely a runtime hang issue,
not a corruption issue as per the first cases listed above. We abort
mounts of the log is too small for V5 filesystems, but we must allow
v4 filesystems to mount because, historically, there was no log size
validity checking and so some systems may still be out there with
undersized logs.
The problem is that on V4 filesystems, when we discover a log
geometry problem, we skip all the remaining checks and then allow
the log to continue mounting. This mean that if one of the log size
checks fails, we skip the log stripe unit check. i.e. we allow the
mount because a "non-fatal" geometry is violated, and then fail to
check the hard fail geometries that should fail the mount.
Move all these fatal checks to the superblock verifier, and add a
new check for the two log sector size geometry variables having the
same values. This will prevent any attempt to mount a log that has
invalid or inconsistent geometries long before we attempt to mount
the log.
However, for the minimum log size checks, we can only do that once
we've setup up the log and calculated all the iclog sizes and
roundoffs. Hence this needs to remain in the log mount code after
the log has been initialised. It is also the only case where we
should allow a v4 filesystem to continue running, so leave that
handling in place, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
If the current transaction holds a busy extent and we are trying to
allocate a new extent to fix up the free list, we can deadlock if
the AG is entirely empty except for the busy extent held by the
transaction.
This can occur at runtime processing an XEFI with multiple extents
in this path:
__schedule+0x22f at ffffffff81f75e8f
schedule+0x46 at ffffffff81f76366
xfs_extent_busy_flush+0x69 at ffffffff81477d99
xfs_alloc_ag_vextent_size+0x16a at ffffffff8141711a
xfs_alloc_ag_vextent+0x19b at ffffffff81417edb
xfs_alloc_fix_freelist+0x22f at ffffffff8141896f
xfs_free_extent_fix_freelist+0x6a at ffffffff8141939a
__xfs_free_extent+0x99 at ffffffff81419499
xfs_trans_free_extent+0x3e at ffffffff814a6fee
xfs_extent_free_finish_item+0x24 at ffffffff814a70d4
xfs_defer_finish_noroll+0x1f7 at ffffffff81441407
xfs_defer_finish+0x11 at ffffffff814417e1
xfs_itruncate_extents_flags+0x13d at ffffffff8148b7dd
xfs_inactive_truncate+0xb9 at ffffffff8148bb89
xfs_inactive+0x227 at ffffffff8148c4f7
xfs_fs_destroy_inode+0xb8 at ffffffff81496898
destroy_inode+0x3b at ffffffff8127d2ab
do_unlinkat+0x1d1 at ffffffff81270df1
do_syscall_64+0x40 at ffffffff81f6b5f0
entry_SYSCALL_64_after_hwframe+0x44 at ffffffff8200007c
This can also happen in log recovery when processing an EFI
with multiple extents through this path:
context_switch() kernel/sched/core.c:3881
__schedule() kernel/sched/core.c:5111
schedule() kernel/sched/core.c:5186
xfs_extent_busy_flush() fs/xfs/xfs_extent_busy.c:598
xfs_alloc_ag_vextent_size() fs/xfs/libxfs/xfs_alloc.c:1641
xfs_alloc_ag_vextent() fs/xfs/libxfs/xfs_alloc.c:828
xfs_alloc_fix_freelist() fs/xfs/libxfs/xfs_alloc.c:2362
xfs_free_extent_fix_freelist() fs/xfs/libxfs/xfs_alloc.c:3029
__xfs_free_extent() fs/xfs/libxfs/xfs_alloc.c:3067
xfs_trans_free_extent() fs/xfs/xfs_extfree_item.c:370
xfs_efi_recover() fs/xfs/xfs_extfree_item.c:626
xlog_recover_process_efi() fs/xfs/xfs_log_recover.c:4605
xlog_recover_process_intents() fs/xfs/xfs_log_recover.c:4893
xlog_recover_finish() fs/xfs/xfs_log_recover.c:5824
xfs_log_mount_finish() fs/xfs/xfs_log.c:764
xfs_mountfs() fs/xfs/xfs_mount.c:978
xfs_fs_fill_super() fs/xfs/xfs_super.c:1908
mount_bdev() fs/super.c:1417
xfs_fs_mount() fs/xfs/xfs_super.c:1985
legacy_get_tree() fs/fs_context.c:647
vfs_get_tree() fs/super.c:1547
do_new_mount() fs/namespace.c:2843
do_mount() fs/namespace.c:3163
ksys_mount() fs/namespace.c:3372
__do_sys_mount() fs/namespace.c:3386
__se_sys_mount() fs/namespace.c:3383
__x64_sys_mount() fs/namespace.c:3383
do_syscall_64() arch/x86/entry/common.c:296
entry_SYSCALL_64() arch/x86/entry/entry_64.S:180
To avoid this deadlock, we should not block in
xfs_extent_busy_flush() if we hold a busy extent in the current
transaction.
Now that the EFI processing code can handle requeuing a partially
completed EFI, we can detect this situation in
xfs_extent_busy_flush() and return -EAGAIN rather than going to
sleep forever. The -EAGAIN get propagated back out to the
xfs_trans_free_extent() context, where the EFD is populated and the
transaction is rolled, thereby moving the busy extents into the CIL.
At this point, we can retry the extent free operation again with a
clean transaction. If we hit the same "all free extents are busy"
situation when trying to fix up the free list, we can safely call
xfs_extent_busy_flush() and wait for the busy extents to resolve
and wake us. At this point, the allocation search can make progress
again and we can fix up the free list.
This deadlock was first reported by Chandan in mid-2021, but I
couldn't make myself understood during review, and didn't have time
to fix it myself.
It was reported again in March 2023, and again I have found myself
unable to explain the complexities of the solution needed during
review.
As such, I don't have hours more time to waste trying to get the
fix written the way it needs to be written, so I'm just doing it
myself. This patchset is largely based on Wengang Wang's last patch,
but with all the unnecessary stuff removed, split up into multiple
patches and cleaned up somewhat.
Reported-by: Chandan Babu R <chandanrlinux@gmail.com>
Reported-by: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
To avoid blocking in xfs_extent_busy_flush() when freeing extents
and the only busy extents are held by the current transaction, we
need to pass the XFS_ALLOC_FLAG_FREEING flag context all the way
into xfs_extent_busy_flush().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Btrees that aren't freespace management trees use the normal extent
allocation and freeing routines for their blocks. Hence when a btree
block is freed, a direct call to xfs_free_extent() is made and the
extent is immediately freed. This puts the entire free space
management btrees under this path, so we are stacking btrees on
btrees in the call stack. The inobt, finobt and refcount btrees
all do this.
However, the bmap btree does not do this - it calls
xfs_free_extent_later() to defer the extent free operation via an
XEFI and hence it gets processed in deferred operation processing
during the commit of the primary transaction (i.e. via intent
chaining).
We need to change xfs_free_extent() to behave in a non-blocking
manner so that we can avoid deadlocks with busy extents near ENOSPC
in transactions that free multiple extents. Inserting or removing a
record from a btree can cause a multi-level tree merge operation and
that will free multiple blocks from the btree in a single
transaction. i.e. we can call xfs_free_extent() multiple times, and
hence the btree manipulation transaction is vulnerable to this busy
extent deadlock vector.
To fix this, convert all the remaining callers of xfs_free_extent()
to use xfs_free_extent_later() to queue XEFIs and hence defer
processing of the extent frees to a context that can be safely
restarted if a deadlock condition is detected.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Pointers drop_leaf and save_leaf are initialized with values that are never
read, they are being re-assigned later on just before they are used. Remove
the redundant early initializations and keep the later assignments at the
point where they are used. Cleans up two clang scan build warnings:
fs/xfs/libxfs/xfs_attr_leaf.c:2288:29: warning: Value stored to 'drop_leaf'
during its initialization is never read [deadcode.DeadStores]
fs/xfs/libxfs/xfs_attr_leaf.c:2289:29: warning: Value stored to 'save_leaf'
during its initialization is never read [deadcode.DeadStores]
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
- Fix KMSAN vs FORTIFY in strlcpy/strlcat (Alexander Potapenko)
- Convert strreplace() to return string start (Andy Shevchenko)
- Flexible array conversions (Arnd Bergmann, Wyes Karny, Kees Cook)
- Add missing function prototypes seen with W=1 (Arnd Bergmann)
- Fix strscpy() kerndoc typo (Arne Welzel)
- Replace strlcpy() with strscpy() across many subsystems which were
either Acked by respective maintainers or were trivial changes that
went ignored for multiple weeks (Azeem Shaikh)
- Remove unneeded cc-option test for UBSAN_TRAP (Nick Desaulniers)
- Add KUnit tests for strcat()-family
- Enable KUnit tests of FORTIFY wrappers under UML
- Add more complete FORTIFY protections for strlcat()
- Add missed disabling of FORTIFY for all arch purgatories.
- Enable -fstrict-flex-arrays=3 globally
- Tightening UBSAN_BOUNDS when using GCC
- Improve checkpatch to check for strcpy, strncpy, and fake flex arrays
- Improve use of const variables in FORTIFY
- Add requested struct_size_t() helper for types not pointers
- Add __counted_by macro for annotating flexible array size members
-----BEGIN PGP SIGNATURE-----
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmSbftQWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJj0MD/9X9jzJzCmsAU+yNldeoAzC84Sk
GVU3RBxGcTNysL1gZXynkIgigw7DWc4htMGeSABHHwQRVP65JCH1Kw/VqIkyumbx
9LdX6IklMJb4pRT4PVU3azebV4eNmSjlur2UxMeW54Czm91/6I8RHbJOyAPnOUmo
2oomGdP/hpEHtKR7hgy8Axc6w5ySwQixh2V5sVZG3VbvCS5WKTmTXbs6puuRT5hz
iHt7v+7VtEg/Qf1W7J2oxfoghvVBsaRrSLrExWT/oZYh1ZxM7DsCAAoG/IsDgHGA
9LBXiRECgAFThbHVxLvvKZQMXdVk0i8iXLX43XMKC0wTA+NTyH7wlcQQ4RWNMuo8
sfA9Qm9gMArXaf64aymr3Uwn20Zan0391HdlbhOJZAE6v3PPJbleUnM58AzD2d3r
5Lz6AIFBxDImy+3f9iDWgacCT5/PkeiXTHzk9QnKhJyKKtRA58XJxj4q2+rPnGJP
n4haXqoxD5FJbxdXiGKk31RS0U5HBug7wkOcUrTqDHUbc/QNU2b7dxTKUx+zYtCU
uV5emPzpF4H4z+91WpO47n9gkMAfwV0lt9S2dwS8pxsgqctbmIan+Jgip7rsqZ2G
OgLXBsb43eEs+6WgO8tVt/ZHYj9ivGMdrcNcsIfikzNs/xweUJ53k2xSEn2xEa5J
cwANDmkL6QQK7yfeeg==
=s0j1
-----END PGP SIGNATURE-----
Merge tag 'hardening-v6.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull hardening updates from Kees Cook:
"There are three areas of note:
A bunch of strlcpy()->strscpy() conversions ended up living in my tree
since they were either Acked by maintainers for me to carry, or got
ignored for multiple weeks (and were trivial changes).
The compiler option '-fstrict-flex-arrays=3' has been enabled
globally, and has been in -next for the entire devel cycle. This
changes compiler diagnostics (though mainly just -Warray-bounds which
is disabled) and potential UBSAN_BOUNDS and FORTIFY _warning_
coverage. In other words, there are no new restrictions, just
potentially new warnings. Any new FORTIFY warnings we've seen have
been fixed (usually in their respective subsystem trees). For more
details, see commit df8fc4e934.
The under-development compiler attribute __counted_by has been added
so that we can start annotating flexible array members with their
associated structure member that tracks the count of flexible array
elements at run-time. It is possible (likely?) that the exact syntax
of the attribute will change before it is finalized, but GCC and Clang
are working together to sort it out. Any changes can be made to the
macro while we continue to add annotations.
As an example of that last case, I have a treewide commit waiting with
such annotations found via Coccinelle:
https://git.kernel.org/linus/adc5b3cb48a049563dc673f348eab7b6beba8a9b
Also see commit dd06e72e68 for more details.
Summary:
- Fix KMSAN vs FORTIFY in strlcpy/strlcat (Alexander Potapenko)
- Convert strreplace() to return string start (Andy Shevchenko)
- Flexible array conversions (Arnd Bergmann, Wyes Karny, Kees Cook)
- Add missing function prototypes seen with W=1 (Arnd Bergmann)
- Fix strscpy() kerndoc typo (Arne Welzel)
- Replace strlcpy() with strscpy() across many subsystems which were
either Acked by respective maintainers or were trivial changes that
went ignored for multiple weeks (Azeem Shaikh)
- Remove unneeded cc-option test for UBSAN_TRAP (Nick Desaulniers)
- Add KUnit tests for strcat()-family
- Enable KUnit tests of FORTIFY wrappers under UML
- Add more complete FORTIFY protections for strlcat()
- Add missed disabling of FORTIFY for all arch purgatories.
- Enable -fstrict-flex-arrays=3 globally
- Tightening UBSAN_BOUNDS when using GCC
- Improve checkpatch to check for strcpy, strncpy, and fake flex
arrays
- Improve use of const variables in FORTIFY
- Add requested struct_size_t() helper for types not pointers
- Add __counted_by macro for annotating flexible array size members"
* tag 'hardening-v6.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (54 commits)
netfilter: ipset: Replace strlcpy with strscpy
uml: Replace strlcpy with strscpy
um: Use HOST_DIR for mrproper
kallsyms: Replace all non-returning strlcpy with strscpy
sh: Replace all non-returning strlcpy with strscpy
of/flattree: Replace all non-returning strlcpy with strscpy
sparc64: Replace all non-returning strlcpy with strscpy
Hexagon: Replace all non-returning strlcpy with strscpy
kobject: Use return value of strreplace()
lib/string_helpers: Change returned value of the strreplace()
jbd2: Avoid printing outside the boundary of the buffer
checkpatch: Check for 0-length and 1-element arrays
riscv/purgatory: Do not use fortified string functions
s390/purgatory: Do not use fortified string functions
x86/purgatory: Do not use fortified string functions
acpi: Replace struct acpi_table_slit 1-element array with flex-array
clocksource: Replace all non-returning strlcpy with strscpy
string: use __builtin_memcpy() in strlcpy/strlcat
staging: most: Replace all non-returning strlcpy with strscpy
drm/i2c: tda998x: Replace all non-returning strlcpy with strscpy
...
I found a corruption during growfs:
XFS (loop0): Internal error agbno >= mp->m_sb.sb_agblocks at line 3661 of
file fs/xfs/libxfs/xfs_alloc.c. Caller __xfs_free_extent+0x28e/0x3c0
CPU: 0 PID: 573 Comm: xfs_growfs Not tainted 6.3.0-rc7-next-20230420-00001-gda8c95746257
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
__xfs_free_extent+0x2c1/0x3c0
xfs_ag_extend_space+0x291/0x3e0
xfs_growfs_data+0xd72/0xe90
xfs_file_ioctl+0x5f9/0x14a0
__x64_sys_ioctl+0x13e/0x1c0
do_syscall_64+0x39/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
XFS (loop0): Corruption detected. Unmount and run xfs_repair
XFS (loop0): Internal error xfs_trans_cancel at line 1097 of file
fs/xfs/xfs_trans.c. Caller xfs_growfs_data+0x691/0xe90
CPU: 0 PID: 573 Comm: xfs_growfs Not tainted 6.3.0-rc7-next-20230420-00001-gda8c95746257
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_error_report+0x93/0xc0
xfs_trans_cancel+0x2c0/0x350
xfs_growfs_data+0x691/0xe90
xfs_file_ioctl+0x5f9/0x14a0
__x64_sys_ioctl+0x13e/0x1c0
do_syscall_64+0x39/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f2d86706577
The bug can be reproduced with the following sequence:
# truncate -s 1073741824 xfs_test.img
# mkfs.xfs -f -b size=1024 -d agcount=4 xfs_test.img
# truncate -s 2305843009213693952 xfs_test.img
# mount -o loop xfs_test.img /mnt/test
# xfs_growfs -D 1125899907891200 /mnt/test
The root cause is that during growfs, user space passed in a large value
of newblcoks to xfs_growfs_data_private(), due to current sb_agblocks is
too small, new AG count will exceed UINT_MAX. Because of AG number type
is unsigned int and it would overflow, that caused nagcount much smaller
than the actual value. During AG extent space, delta blocks in
xfs_resizefs_init_new_ags() will much larger than the actual value due to
incorrect nagcount, even exceed UINT_MAX. This will cause corruption and
be detected in __xfs_free_extent. Fix it by growing the filesystem to up
to the maximally allowed AGs and not return EINVAL when new AG count
overflow.
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Bad things happen in defered extent freeing operations if it is
passed a bad block number in the xefi. This can come from a bogus
agno/agbno pair from deferred agfl freeing, or just a bad fsbno
being passed to __xfs_free_extent_later(). Either way, it's very
difficult to diagnose where a null perag oops in EFI creation
is coming from when the operation that queued the xefi has already
been completed and there's no longer any trace of it around....
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If the agfl or the indexing in the AGF has been corrupted, getting a
block form the AGFL could return an invalid block number. If this
happens, bad things happen. Check the agbno we pull off the AGFL
and return -EFSCORRUPTED if we find somethign bad.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When a v4 filesystem has fl_last - fl_first != fl_count, we do not
not detect the corruption and allow the AGF to be used as it if was
fully valid. On V5 filesystems, we reset the AGFL to empty in these
cases and avoid the corruption at a small cost of leaked blocks.
If we don't catch the corruption on V4 filesystems, bad things
happen later when an allocation attempts to trim the free list
and either double-frees stale entries in the AGFl or tries to free
NULLAGBNO entries.
Either way, this is bad. Prevent this from happening by using the
AGFL_NEED_RESET logic for v4 filesysetms, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Lock order in XFS is AGI -> AGF, hence for operations involving
inode unlinked list operations we always lock the AGI first. Inode
unlinked list operations operate on the inode cluster buffer,
so the lock order there is AGI -> inode cluster buffer.
For O_TMPFILE operations, this now means the lock order set down in
xfs_rename and xfs_link is AGI -> inode cluster buffer -> AGF as the
unlinked ops are done before the directory modifications that may
allocate space and lock the AGF.
Unfortunately, we also now lock the inode cluster buffer when
logging an inode so that we can attach the inode to the cluster
buffer and pin it in memory. This creates a lock order of AGF ->
inode cluster buffer in directory operations as we have to log the
inode after we've allocated new space for it.
This creates a lock inversion between the AGF and the inode cluster
buffer. Because the inode cluster buffer is shared across multiple
inodes, the inversion is not specific to individual inodes but can
occur when inodes in the same cluster buffer are accessed in
different orders.
To fix this we need move all the inode log item cluster buffer
interactions to the end of the current transaction. Unfortunately,
xfs_trans_log_inode() calls are littered throughout the transactions
with no thought to ordering against other items or locking. This
makes it difficult to do anything that involves changing the call
sites of xfs_trans_log_inode() to change locking orders.
However, we do now have a mechanism that allows is to postpone dirty
item processing to just before we commit the transaction: the
->iop_precommit method. This will be called after all the
modifications are done and high level objects like AGI and AGF
buffers have been locked and modified, thereby providing a mechanism
that guarantees we don't lock the inode cluster buffer before those
high level objects are locked.
This change is largely moving the guts of xfs_trans_log_inode() to
xfs_inode_item_precommit() and providing an extra flag context in
the inode log item to track the dirty state of the inode in the
current transaction. This also means we do a lot less repeated work
in xfs_trans_log_inode() by only doing it once per transaction when
all the work is done.
Fixes: 298f7bec50 ("xfs: pin inode backing buffer to the inode log item")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
It was accidentally dropped when refactoring the allocation code,
resulting in the AG iteration always doing blocking AG iteration.
This results in a small performance regression for a specific fsmark
test that runs more user data writer threads than there are AGs.
Reported-by: kernel test robot <oliver.sang@intel.com>
Fixes: 2edf06a50f ("xfs: factor xfs_alloc_vextent_this_ag() for _iterate_ags()")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
While struct_size() is normally used in situations where the structure
type already has a pointer instance, there are places where no variable
is available. In the past, this has been worked around by using a typed
NULL first argument, but this is a bit ugly. Add a helper to do this,
and replace the handful of instances of the code pattern with it.
Instances were found with this Coccinelle script:
@struct_size_t@
identifier STRUCT, MEMBER;
expression COUNT;
@@
- struct_size((struct STRUCT *)\(0\|NULL\),
+ struct_size_t(struct STRUCT,
MEMBER, COUNT)
Suggested-by: Christoph Hellwig <hch@infradead.org>
Cc: Jesse Brandeburg <jesse.brandeburg@intel.com>
Cc: Tony Nguyen <anthony.l.nguyen@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Paolo Abeni <pabeni@redhat.com>
Cc: James Smart <james.smart@broadcom.com>
Cc: Keith Busch <kbusch@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Sagi Grimberg <sagi@grimberg.me>
Cc: HighPoint Linux Team <linux@highpoint-tech.com>
Cc: "James E.J. Bottomley" <jejb@linux.ibm.com>
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Kashyap Desai <kashyap.desai@broadcom.com>
Cc: Sumit Saxena <sumit.saxena@broadcom.com>
Cc: Shivasharan S <shivasharan.srikanteshwara@broadcom.com>
Cc: Don Brace <don.brace@microchip.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Guo Xuenan <guoxuenan@huawei.com>
Cc: Gwan-gyeong Mun <gwan-gyeong.mun@intel.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Daniel Latypov <dlatypov@google.com>
Cc: kernel test robot <lkp@intel.com>
Cc: intel-wired-lan@lists.osuosl.org
Cc: netdev@vger.kernel.org
Cc: linux-nvme@lists.infradead.org
Cc: linux-scsi@vger.kernel.org
Cc: megaraidlinux.pdl@broadcom.com
Cc: storagedev@microchip.com
Cc: linux-xfs@vger.kernel.org
Cc: linux-hardening@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Link: https://lore.kernel.org/r/20230522211810.never.421-kees@kernel.org
Through generic/300, I discovered that mkfs.xfs creates corrupt
filesystems when given these parameters:
# mkfs.xfs -d size=512M /dev/sda -f -d su=128k,sw=4 --unsupported
Filesystems formatted with --unsupported are not supported!!
meta-data=/dev/sda isize=512 agcount=8, agsize=16352 blks
= sectsz=512 attr=2, projid32bit=1
= crc=1 finobt=1, sparse=1, rmapbt=1
= reflink=1 bigtime=1 inobtcount=1 nrext64=1
data = bsize=4096 blocks=130816, imaxpct=25
= sunit=32 swidth=128 blks
naming =version 2 bsize=4096 ascii-ci=0, ftype=1
log =internal log bsize=4096 blocks=8192, version=2
= sectsz=512 sunit=32 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0
= rgcount=0 rgsize=0 blks
Discarding blocks...Done.
# xfs_repair -n /dev/sda
Phase 1 - find and verify superblock...
- reporting progress in intervals of 15 minutes
Phase 2 - using internal log
- zero log...
- 16:30:50: zeroing log - 16320 of 16320 blocks done
- scan filesystem freespace and inode maps...
agf_freeblks 25, counted 0 in ag 4
sb_fdblocks 8823, counted 8798
The root cause of this problem is the numrecs handling in
xfs_freesp_init_recs, which is used to initialize a new AG. Prior to
calling the function, we set up the new bnobt block with numrecs == 1
and rely on _freesp_init_recs to format that new record. If the last
record created has a blockcount of zero, then it sets numrecs = 0.
That last bit isn't correct if the AG contains the log, the start of the
log is not immediately after the initial blocks due to stripe alignment,
and the end of the log is perfectly aligned with the end of the AG. For
this case, we actually formatted a single bnobt record to handle the
free space before the start of the (stripe aligned) log, and incremented
arec to try to format a second record. That second record turned out to
be unnecessary, so what we really want is to leave numrecs at 1.
The numrecs handling itself is overly complicated because a different
function sets numrecs == 1. Change the bnobt creation code to start
with numrecs set to zero and only increment it after successfully
formatting a free space extent into the btree block.
Fixes: f327a00745 ("xfs: account for log space when formatting new AGs")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
On a filesystem with a non-zero stripe unit and a large sequential
write, delayed allocation will set a minimum allocation length of
the stripe unit. If allocation fails because there are no extents
long enough for an aligned minlen allocation, it is supposed to
fall back to unaligned allocation which allows single block extents
to be allocated.
When the allocator code was rewritting in the 6.3 cycle, this
fallback was broken - the old code used args->fsbno as the both the
allocation target and the allocation result, the new code passes the
target as a separate parameter. The conversion didn't handle the
aligned->unaligned fallback path correctly - it reset args->fsbno to
the target fsbno on failure which broke allocation failure detection
in the high level code and so it never fell back to unaligned
allocations.
This resulted in a loop in writeback trying to allocate an aligned
block, getting a false positive success, trying to insert the result
in the BMBT. This did nothing because the extent already was in the
BMBT (merge results in an unchanged extent) and so it returned the
prior extent to the conversion code as the current iomap.
Because the iomap returned didn't cover the offset we tried to map,
xfs_convert_blocks() then retries the allocation, which fails in the
same way and now we have a livelock.
Reported-and-tested-by: Brian Foster <bfoster@redhat.com>
Fixes: 8584332709 ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Last week, I was fiddling around with the metadump name obfuscation code
while writing a debugger command to generate directories full of names
that all have the same hash name. I had a few questions about how well
all that worked with ascii-ci mode, and discovered a nasty discrepancy
between the kernel and glibc's implementations of the tolower()
function.
I discovered that I could create a directory that is large enough to
require separate leaf index blocks. The hashes stored in the dabtree
use the ascii-ci specific hash function, which uses a library function
to convert the name to lowercase before hashing. If the kernel and C
library's versions of tolower do not behave exactly identically,
xfs_ascii_ci_hashname will not produce the same results for the same
inputs. xfs_repair will deem the leaf information corrupt and rebuild
the directory. After that, lookups in the kernel will fail because the
hash index doesn't work.
The kernel's tolower function will convert extended ascii uppercase
letters (e.g. A-with-umlaut) to extended ascii lowercase letters (e.g.
a-with-umlaut), whereas glibc's will only do that if you force LANG to
ascii. Tiny embedded libc implementations just plain won't do it at
all, and the result is a mess. Stabilize the behavior of the hash
function by encoding the name transformation function in libxfs, add it
to the selftest, and fix all the userspace tools, none of which handle
this transformation correctly.
The v1 series generated a /lot/ of discussion, in which several things
became very clear: (1) Linus is not enamored of case folding of any
kind; (2) Dave and Christoph don't seem to agree on whether the feature
is supposed to work for 7-bit ascii or latin1; (3) it trashes UTF8
encoded names if those happen to show up; and (4) I don't want to
maintain this mess any longer than I have to. Kill it in 2030.
v2: rename the functions to make it clear we're moving away from the
letters t, o, l, o, w, e, and r; and deprecate the whole feature once
we've fixed the bugs and added tests.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdqwAKCRBKO3ySh0YR
pi33AQC4MFCz0uP1aF64zRgE+wtU2YBGw5cGps7nWIljVptbkAEAubfoY88wAop8
/KHIgZ8pHIb7ooPrYKpPZL5m0udtMw8=
=3Up6
-----END PGP SIGNATURE-----
Merge tag 'fix-asciici-bugs-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next
xfs: fix ascii-ci problems, then kill it [v2]
Last week, I was fiddling around with the metadump name obfuscation code
while writing a debugger command to generate directories full of names
that all have the same hash name. I had a few questions about how well
all that worked with ascii-ci mode, and discovered a nasty discrepancy
between the kernel and glibc's implementations of the tolower()
function.
I discovered that I could create a directory that is large enough to
require separate leaf index blocks. The hashes stored in the dabtree
use the ascii-ci specific hash function, which uses a library function
to convert the name to lowercase before hashing. If the kernel and C
library's versions of tolower do not behave exactly identically,
xfs_ascii_ci_hashname will not produce the same results for the same
inputs. xfs_repair will deem the leaf information corrupt and rebuild
the directory. After that, lookups in the kernel will fail because the
hash index doesn't work.
The kernel's tolower function will convert extended ascii uppercase
letters (e.g. A-with-umlaut) to extended ascii lowercase letters (e.g.
a-with-umlaut), whereas glibc's will only do that if you force LANG to
ascii. Tiny embedded libc implementations just plain won't do it at
all, and the result is a mess. Stabilize the behavior of the hash
function by encoding the name transformation function in libxfs, add it
to the selftest, and fix all the userspace tools, none of which handle
this transformation correctly.
The v1 series generated a /lot/ of discussion, in which several things
became very clear: (1) Linus is not enamored of case folding of any
kind; (2) Dave and Christoph don't seem to agree on whether the feature
is supposed to work for 7-bit ascii or latin1; (3) it trashes UTF8
encoded names if those happen to show up; and (4) I don't want to
maintain this mess any longer than I have to. Kill it in 2030.
v2: rename the functions to make it clear we're moving away from the
letters t, o, l, o, w, e, and r; and deprecate the whole feature once
we've fixed the bugs and added tests.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
I started looking into performance problems with the data fork scrubber
in generic/333, and noticed a few things that needed improving. First,
due to design reasons, it's possible for file forks btrees to contain
multiple contiguous mappings to the same physical space. Instead of
checking each ondisk mapping individually, it's much faster to combine
them when possible and check the combined mapping because that's fewer
trips through the rmap btree, and we can drop this check-around
behavior that it does when an rmapbt lookup produces a record that
starts before or ends after a particular bmbt mapping.
Second, I noticed that the bmbt scrubber decides to walk every reverse
mapping in the filesystem if the file fork is in btree format. This is
very costly, and only necessary if the inode repair code had to zap a
fork to convince iget to work. Constraining the full-rmap scan to this
one case means we can skip it for normal files, which drives the runtime
of this test from 8 hours down to 45 minutes (observed with realtime
reflink and rebuild-all mode.)
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDdPcQAKCRBKO3ySh0YR
pl1UAPoDtMaFrsLvz7clh31S6Yi+X8oCB/iJZXWl7HXaNsIjUQEA253GuiOj80Rz
IHYo3t0KPYTm2Mc/7kBFQcctFbisDwE=
=zFQ+
-----END PGP SIGNATURE-----
Merge tag 'scrub-merge-bmap-records-6.4_2023-04-12' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next
xfs: merge bmap records for faster scrubs [v24.5]
I started looking into performance problems with the data fork scrubber
in generic/333, and noticed a few things that needed improving. First,
due to design reasons, it's possible for file forks btrees to contain
multiple contiguous mappings to the same physical space. Instead of
checking each ondisk mapping individually, it's much faster to combine
them when possible and check the combined mapping because that's fewer
trips through the rmap btree, and we can drop this check-around
behavior that it does when an rmapbt lookup produces a record that
starts before or ends after a particular bmbt mapping.
Second, I noticed that the bmbt scrubber decides to walk every reverse
mapping in the filesystem if the file fork is in btree format. This is
very costly, and only necessary if the inode repair code had to zap a
fork to convince iget to work. Constraining the full-rmap scan to this
one case means we can skip it for normal files, which drives the runtime
of this test from 8 hours down to 45 minutes (observed with realtime
reflink and rebuild-all mode.)
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Following in the theme of the last two patchsets, this one strengthens
the rmap btree record checking so that scrub can count the number of
space records that map to a given owner and that do not map to a given
owner. This enables us to determine exclusive ownership of space that
can't be shared.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdpAAKCRBKO3ySh0YR
pk9sAQDXcVPG4a2TvTd+j95UkkPovjYjTJekTTlJL/Xo91rAxgD/fEx3I8A8vNes
dxVeyT/CwiYOPRYxFE3g3UdJGbaeHQA=
=ux+s
-----END PGP SIGNATURE-----
Merge tag 'scrub-detect-rmapbt-gaps-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next
xfs: detect incorrect gaps in rmap btree [v24.5]
Following in the theme of the last two patchsets, this one strengthens
the rmap btree record checking so that scrub can count the number of
space records that map to a given owner and that do not map to a given
owner. This enables us to determine exclusive ownership of space that
can't be shared.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This series continues the corrections for a couple of problems I found
in the inode btree scrubber. The first problem is that we don't
directly check the inobt records have a direct correspondence with the
finobt records, and vice versa. The second problem occurs on
filesystems with sparse inode chunks -- the cross-referencing we do
detects sparseness, but it doesn't actually check the consistency
between the inobt hole records and the rmap data.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdowAKCRBKO3ySh0YR
pt2WAQDcHbg0JDyGDcTiSyYqTlT2xxzeaxtMRg75fWYpIRa2dQEAuatGejdp56in
AbH6jSmtS9f4M0wcy5JhHyHzZdZjcgc=
=1G5P
-----END PGP SIGNATURE-----
Merge tag 'scrub-detect-inobt-gaps-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next
xfs: detect incorrect gaps in inode btree [v24.5]
This series continues the corrections for a couple of problems I found
in the inode btree scrubber. The first problem is that we don't
directly check the inobt records have a direct correspondence with the
finobt records, and vice versa. The second problem occurs on
filesystems with sparse inode chunks -- the cross-referencing we do
detects sparseness, but it doesn't actually check the consistency
between the inobt hole records and the rmap data.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The next few patchsets address a deficiency in scrub that I found while
QAing the refcount btree scrubber. If there's a gap between refcount
records, we need to cross-reference that gap with the reverse mappings
to ensure that there are no overlapping records in the rmap btree. If
we find any, then the refcount btree is not consistent. This is not a
property that is specific to the refcount btree; they all need to have
this sort of keyspace scanning logic to detect inconsistencies.
To do this accurately, we need to be able to scan the keyspace of a
btree (which we already do) to be able to tell the caller if the
keyspace is empty, sparse, or fully covered by records. The first few
patches add the keyspace scanner to the generic btree code, along with
the ability to mask off parts of btree keys because when we scan the
rmapbt, we only care about space usage, not the owners.
The final patch closes the scanning gap in the refcountbt scanner.
v23.1: create helpers for the key extraction and comparison functions,
improve documentation, and eliminate the ->mask_key indirect
calls
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdogAKCRBKO3ySh0YR
pjDDAQC88qzAvA3j2JP8ZC9mnK89LsYpkOEX2i6HV2m4LWYdWgD/fWdGnp0BFoQj
is+V82X6oRhWi8SRnjOX28Mk8gCdDA8=
=fzga
-----END PGP SIGNATURE-----
Merge tag 'scrub-detect-refcount-gaps-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next
xfs: detect incorrect gaps in refcount btree [v24.5]
The next few patchsets address a deficiency in scrub that I found while
QAing the refcount btree scrubber. If there's a gap between refcount
records, we need to cross-reference that gap with the reverse mappings
to ensure that there are no overlapping records in the rmap btree. If
we find any, then the refcount btree is not consistent. This is not a
property that is specific to the refcount btree; they all need to have
this sort of keyspace scanning logic to detect inconsistencies.
To do this accurately, we need to be able to scan the keyspace of a
btree (which we already do) to be able to tell the caller if the
keyspace is empty, sparse, or fully covered by records. The first few
patches add the keyspace scanner to the generic btree code, along with
the ability to mask off parts of btree keys because when we scan the
rmapbt, we only care about space usage, not the owners.
The final patch closes the scanning gap in the refcountbt scanner.
v23.1: create helpers for the key extraction and comparison functions,
improve documentation, and eliminate the ->mask_key indirect
calls
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This series fixes numerous flag handling bugs in the rmapbt key code.
The most serious transgression is that key comparisons completely strip
out all flag bits from rm_offset, including the ones that participate in
record lookups. The second problem is that for years we've been letting
the unwritten flag (which is an attribute of a specific record and not
part of the record key) escape from leaf records into key records.
The solution to the second problem is to filter attribute flags when
creating keys from records, and the solution to the first problem is to
preserve *only* the flags used for key lookups. The ATTR and BMBT flags
are a part of the lookup key, and the UNWRITTEN flag is a record
attribute.
This has worked for years without generating user complaints because
ATTR and BMBT extents cannot be shared, so key comparisons succeed
solely on rm_startblock. Only file data fork extents can be shared, and
those records never set any of the three flag bits, so comparisons that
dig into rm_owner and rm_offset work just fine.
A filesystem written with an unpatched kernel and mounted on a patched
kernel will work correctly because the ATTR/BMBT flags have been
conveyed into keys correctly all along, and we still ignore the
UNWRITTEN flag in any key record. This was what doomed my previous
attempt to correct this problem in 2019.
A filesystem written with a patched kernel and mounted on an unpatched
kernel will also work correctly because unpatched kernels ignore all
flags.
With this patchset applied, the scrub code gains the ability to detect
rmap btrees with incorrectly set attr and bmbt flags in the key records.
After three years of testing, I haven't encountered any problems.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdoQAKCRBKO3ySh0YR
prUmAP9WiaLPxeMAnQiQcaZyqyAhaiqbwNoLkDMx0+1+SKDPCwD7BU6tPQpT039i
mrDag3g2x4N7g/e89N29SQp8EDGuQQQ=
=Chkt
-----END PGP SIGNATURE-----
Merge tag 'rmap-btree-fix-key-handling-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next
xfs: fix rmap btree key flag handling [v24.5]
This series fixes numerous flag handling bugs in the rmapbt key code.
The most serious transgression is that key comparisons completely strip
out all flag bits from rm_offset, including the ones that participate in
record lookups. The second problem is that for years we've been letting
the unwritten flag (which is an attribute of a specific record and not
part of the record key) escape from leaf records into key records.
The solution to the second problem is to filter attribute flags when
creating keys from records, and the solution to the first problem is to
preserve *only* the flags used for key lookups. The ATTR and BMBT flags
are a part of the lookup key, and the UNWRITTEN flag is a record
attribute.
This has worked for years without generating user complaints because
ATTR and BMBT extents cannot be shared, so key comparisons succeed
solely on rm_startblock. Only file data fork extents can be shared, and
those records never set any of the three flag bits, so comparisons that
dig into rm_owner and rm_offset work just fine.
A filesystem written with an unpatched kernel and mounted on a patched
kernel will work correctly because the ATTR/BMBT flags have been
conveyed into keys correctly all along, and we still ignore the
UNWRITTEN flag in any key record. This was what doomed my previous
attempt to correct this problem in 2019.
A filesystem written with a patched kernel and mounted on an unpatched
kernel will also work correctly because unpatched kernels ignore all
flags.
With this patchset applied, the scrub code gains the ability to detect
rmap btrees with incorrectly set attr and bmbt flags in the key records.
After three years of testing, I haven't encountered any problems.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
There are a few things about btree records that scrub checked but the
libxfs _get_rec functions didn't. Move these bits into libxfs so that
everyone can benefit.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdoAAKCRBKO3ySh0YR
pvbPAP9zGtY7B15ORWk9wcHELUoPgDhNZR39ye7MfxWNCBZJxgD6A8SzZpbZc5Gh
9a1/ImUDZ0ekFnAdx0dVRA+gnrO4Vwo=
=197l
-----END PGP SIGNATURE-----
Merge tag 'btree-hoist-scrub-checks-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next
xfs: hoist scrub record checks into libxfs [v24.5]
There are a few things about btree records that scrub checked but the
libxfs _get_rec functions didn't. Move these bits into libxfs so that
everyone can benefit.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
While I was cleaning things up for 6.1, I noticed that the btree
_query_range and _query_all functions don't perform the same checking
that the _get_rec functions perform. In fact, they don't perform /any/
sanity checking, which means that callers aren't warned about impossible
records.
Therefore, hoist the record validation and complaint logging code into
separate functions, and call them from any place where we convert an
ondisk record into an incore record. For online scrub, we can replace
checking code with a call to the record checking functions in libxfs,
thereby reducing the size of the codebase.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdnwAKCRBKO3ySh0YR
ppn6AQCOWjqsq7klLAQdvEDm3O8v4k94geKdn4Ruvbptwa2iUQD/WAJ5LwKnEPuQ
+eB5AfzsziMQMNX7DtUwncaDJm1RBgY=
=ys9Z
-----END PGP SIGNATURE-----
Merge tag 'btree-complain-bad-records-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next
xfs: standardize btree record checking code [v24.5]
While I was cleaning things up for 6.1, I noticed that the btree
_query_range and _query_all functions don't perform the same checking
that the _get_rec functions perform. In fact, they don't perform /any/
sanity checking, which means that callers aren't warned about impossible
records.
Therefore, hoist the record validation and complaint logging code into
separate functions, and call them from any place where we convert an
ondisk record into an incore record. For online scrub, we can replace
checking code with a call to the record checking functions in libxfs,
thereby reducing the size of the codebase.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The design doc for XFS online fsck contains a long discussion of the
eventual consistency models in use for XFS metadata. In that chapter,
we note that it is possible for scrub to collide with a chain of
deferred space metadata updates, and proposes a lightweight solution:
The use of a pending-intents counter so that scrub can wait for the
system to drain all chains.
This patchset implements that scrub drain. The first patch implements
the basic mechanism, and the subsequent patches reduce the runtime
overhead by converting the implementation to use sloppy counters and
introducing jump labels to avoid walking into scrub hooks when it isn't
running. This last paradigm repeats elsewhere in this megaseries.
v23.1: make intent items take an active ref to the perag structure and
document why we bump and drop the intent counts when we do
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdnwAKCRBKO3ySh0YR
poQmAQDAu0YNxoRGok7H/RGfQQHWBReSkLXT9RKGzjWn4G51EQD8DA/CpuqsC3yU
uJ55vGAb8jSCBFJITVF1/i8B9sfpngw=
=Nz0X
-----END PGP SIGNATURE-----
Merge tag 'scrub-drain-intents-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next
xfs: drain deferred work items when scrubbing [v24.5]
The design doc for XFS online fsck contains a long discussion of the
eventual consistency models in use for XFS metadata. In that chapter,
we note that it is possible for scrub to collide with a chain of
deferred space metadata updates, and proposes a lightweight solution:
The use of a pending-intents counter so that scrub can wait for the
system to drain all chains.
This patchset implements that scrub drain. The first patch implements
the basic mechanism, and the subsequent patches reduce the runtime
overhead by converting the implementation to use sloppy counters and
introducing jump labels to avoid walking into scrub hooks when it isn't
running. This last paradigm repeats elsewhere in this megaseries.
v23.1: make intent items take an active ref to the perag structure and
document why we bump and drop the intent counts when we do
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Avoid the cost of perag radix tree lookups by passing around active perag
references when possible.
v24.2: rework some of the naming and whatnot so there's less opencoding
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdnQAKCRBKO3ySh0YR
po/YAPsEFygm4/bQZBtOf0HFmVDtTXYAEujJeiXKbmEqzlMxpQEAhuCqFaTQ+Pnr
zpg1egeIcaw6dNTW4f2slcATaQgG0gM=
=8HsC
-----END PGP SIGNATURE-----
Merge tag 'pass-perag-refs-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next
xfs: pass perag references around when possible [v24.5]
Avoid the cost of perag radix tree lookups by passing around active perag
references when possible.
v24.2: rework some of the naming and whatnot so there's less opencoding
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that we've cleaned up some code warts in the deferred work item
processing code, let's make intent items take an active perag reference
from their creation until they are finally freed by the defer ops
machinery. This change facilitates the scrub drain in the next patchset
and will make it easier for the future AG removal code to detect a busy
AG in need of quiescing.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdnAAKCRBKO3ySh0YR
poBzAP9+tx/LNTZeLtmjj/d7tVLMm2/f8LPyhDmkF85JWnjknwEAnLQxkqRMfF9i
ah3ACAZ30o+Mp7Qe6tnYVIdOSD2xCAM=
=mRAy
-----END PGP SIGNATURE-----
Merge tag 'intents-perag-refs-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next
xfs: make intent items take a perag reference [v24.5]
Now that we've cleaned up some code warts in the deferred work item
processing code, let's make intent items take an active perag reference
from their creation until they are finally freed by the defer ops
machinery. This change facilitates the scrub drain in the next patchset
and will make it easier for the future AG removal code to detect a busy
AG in need of quiescing.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
While fuzzing the data fork extent count on a btree-format directory
with xfs/375, I observed the following (excerpted) splat:
XFS: Assertion failed: xfs_isilocked(ip, XFS_ILOCK_EXCL), file: fs/xfs/libxfs/xfs_bmap.c, line: 1208
------------[ cut here ]------------
WARNING: CPU: 0 PID: 43192 at fs/xfs/xfs_message.c:104 assfail+0x46/0x4a [xfs]
Call Trace:
<TASK>
xfs_iread_extents+0x1af/0x210 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
xchk_dir_walk+0xb8/0x190 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
xchk_parent_count_parent_dentries+0x41/0x80 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
xchk_parent_validate+0x199/0x2e0 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
xchk_parent+0xdf/0x130 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
xfs_scrub_metadata+0x2b8/0x730 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
xfs_scrubv_metadata+0x38b/0x4d0 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
xfs_ioc_scrubv_metadata+0x111/0x160 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
xfs_file_ioctl+0x367/0xf50 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
__x64_sys_ioctl+0x82/0xa0
do_syscall_64+0x2b/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
The cause of this is a race condition in xfs_ilock_data_map_shared,
which performs an unlocked access to the data fork to guess which lock
mode it needs:
Thread 0 Thread 1
xfs_need_iread_extents
<observe no iext tree>
xfs_ilock(..., ILOCK_EXCL)
xfs_iread_extents
<observe no iext tree>
<check ILOCK_EXCL>
<load bmbt extents into iext>
<notice iext size doesn't
match nextents>
xfs_need_iread_extents
<observe iext tree>
xfs_ilock(..., ILOCK_SHARED)
<tear down iext tree>
xfs_iunlock(..., ILOCK_EXCL)
xfs_iread_extents
<observe no iext tree>
<check ILOCK_EXCL>
*BOOM*
Fix this race by adding a flag to the xfs_ifork structure to indicate
that we have not yet read in the extent records and changing the
predicate to look at the flag state, not if_height. The memory barrier
ensures that the flag will not be set until the very end of the
function.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
In commit fe08cc5044 we reworked the valid superblock version
checks. If it is a V5 filesystem, it is always valid, then we
checked if the version was less than V4 (reject) and then checked
feature fields in the V4 flags to determine if it was valid.
What we missed was that if the version is not V4 at this point,
we shoudl reject the fs. i.e. the check current treats V6+
filesystems as if it was a v4 filesystem. Fix this.
cc: stable@vger.kernel.org
Fixes: fe08cc5044 ("xfs: open code sb verifier feature checks")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Back in the old days, the "ascii-ci" feature was created to implement
case-insensitive directory entry lookups for latin1-encoded names and
remove the large overhead of Samba's case-insensitive lookup code. UTF8
names were not allowed, but nobody explicitly wrote in the documentation
that this was only expected to work if the system used latin1 names.
The kernel tolower function was selected to prepare names for hashed
lookups.
There's a major discrepancy in the function that computes directory entry
hashes for filesystems that have ASCII case-insensitive lookups enabled.
The root of this is that the kernel and glibc's tolower implementations
have differing behavior for extended ASCII accented characters. I wrote
a program to spit out characters for which the tolower() return value is
different from the input:
glibc tolower:
65:A 66:B 67:C 68:D 69:E 70:F 71:G 72:H 73:I 74:J 75:K 76:L 77:M 78:N
79:O 80:P 81:Q 82:R 83:S 84:T 85:U 86:V 87:W 88:X 89:Y 90:Z
kernel tolower:
65:A 66:B 67:C 68:D 69:E 70:F 71:G 72:H 73:I 74:J 75:K 76:L 77:M 78:N
79:O 80:P 81:Q 82:R 83:S 84:T 85:U 86:V 87:W 88:X 89:Y 90:Z 192:À 193:Á
194:Â 195:Ã 196:Ä 197:Å 198:Æ 199:Ç 200:È 201:É 202:Ê 203:Ë 204:Ì 205:Í
206:Î 207:Ï 208:Ð 209:Ñ 210:Ò 211:Ó 212:Ô 213:Õ 214:Ö 215:× 216:Ø 217:Ù
218:Ú 219:Û 220:Ü 221:Ý 222:Þ
Which means that the kernel and userspace do not agree on the hash value
for a directory filename that contains those higher values. The hash
values are written into the leaf index block of directories that are
larger than two blocks in size, which means that xfs_repair will flag
these directories as having corrupted hash indexes and rewrite the index
with hash values that the kernel now will not recognize.
Because the ascii-ci feature is not frequently enabled and the kernel
touches filesystems far more frequently than xfs_repair does, fix this
by encoding the kernel's toupper predicate and tolower functions into
libxfs. Give the new functions less provocative names to make it really
obvious that this is a pre-hash name preparation function, and nothing
else. This change makes userspace's behavior consistent with the
kernel.
Found by auditing obfuscate_name in xfs_metadump as part of working on
parent pointers, wondering how it could possibly work correctly with ci
filesystems, writing a test tool to create a directory with
hash-colliding names, and watching xfs_repair flag it.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Currently, the bmap scrubber checks file fork mappings individually. In
the case that the file uses multiple mappings to a single contiguous
piece of space, the scrubber repeatedly locks the AG to check the
existence of a reverse mapping that overlaps this file mapping. If the
reverse mapping starts before or ends after the mapping we're checking,
it will also crawl around in the bmbt checking correspondence for
adjacent extents.
This is not very time efficient because it does the crawling while
holding the AGF buffer, and checks the middle mappings multiple times.
Instead, create a custom iextent record iterator function that combines
multiple adjacent allocated mappings into one large incore bmbt record.
This is feasible because the incore bmbt record length is 64-bits wide.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Convert the xfs_ialloc_has_inodes_at_extent function to return keyfill
scan results because for a given range of inode numbers, we might have
no indexed inodes at all; the entire region might be allocated ondisk
inodes; or there might be a mix of the two.
Unfortunately, sparse inodes adds to the complexity, because each inode
record can have holes, which means that we cannot use the generic btree
_scan_keyfill function because we must look for holes in individual
records to decide the result. On the plus side, online fsck can now
detect sub-chunk discrepancies in the inobt.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Strengthen online scrub's checking even further by enabling us to check
that a range of blocks are owned solely by a given owner.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In xfs_difree_inobt, the pag passed in was previously used to look up
the AGI buffer. There's no need to extract it again, so remove the
shadow variable and shut up -Wshadow.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
For keyspace fullness scans, we want to be able to mask off the parts of
the key that we don't care about. For most btree types we /do/ want the
full keyspace, but for checking that a given space usage also has a full
complement of rmapbt records (even if different/multiple owners) we need
this masking so that we only track sparseness of rm_startblock, not the
whole keyspace (which is extremely sparse).
Augment the ->diff_two_keys and ->keys_contiguous helpers to take a
third union xfs_btree_key argument, and wire up xfs_rmap_has_records to
pass this through. This third "mask" argument should contain a nonzero
value in each structure field that should be used in the key comparisons
done during the scan.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
The current implementation of xfs_btree_has_record returns true if it
finds /any/ record within the given range. Unfortunately, that's not
sufficient for scrub. We want to be able to tell if a range of keyspace
for a btree is devoid of records, is totally mapped to records, or is
somewhere in between. By forcing this to be a boolean, we conflated
sparseness and fullness, which caused scrub to return incorrect results.
Fix the API so that we can tell the caller which of those three is the
current state.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create wrapper functions around ->diff_two_keys so that we don't have to
remember what the return values mean, and adjust some of the code
comments to reflect the longtime code behavior. We're going to
introduce more uses of ->diff_two_keys in the next patch, so reduce the
cognitive load for readers by doing this refactoring now.
Suggested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
We keep doing these conversions to support btree queries, so refactor
this into a helper.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Keys for extent interval records in the reverse mapping btree are
supposed to be computed as follows:
(physical block, owner, fork, is_btree, offset)
This provides users the ability to look up a reverse mapping from a file
block mapping record -- start with the physical block; then if there are
multiple records for the same block, move on to the owner; then the
inode fork type; and so on to the file offset.
Unfortunately, the code that creates rmap lookup keys from rmap records
forgot to mask off the record attribute flags, leading to ondisk keys
that look like this:
(physical block, owner, fork, is_btree, unwritten state, offset)
Fortunately, this has all worked ok for the past six years because the
key comparison functions incorrectly ignore the fork/bmbt/unwritten
information that's encoded in the on-disk offset. This means that
lookup comparisons are only done with:
(physical block, owner, offset)
Queries can (theoretically) return incorrect results because of this
omission. On consistent filesystems this isn't an issue because xattr
and bmbt blocks cannot be shared and hence the comparisons succeed
purely on the contents of the rm_startblock field. For the one case
where we support sharing (written data fork blocks) all flag bits are
zero, so the omission in the comparison has no ill effects.
Unfortunately, this bug prevents scrub from detecting incorrect fork and
bmbt flag bits in the rmap btree, so we really do need to fix the
compare code. Old filesystems with the unwritten bit erroneously set in
the rmap key struct will work fine on new kernels since we still ignore
the unwritten bit. New filesystems on older kernels will work fine
since the old kernels never paid attention to the unwritten bit.
A previous version of this patch forgot to keep the (un)written state
flag masked during the comparison and caused a major regression in
5.9.x since unwritten extent conversion can update an rmap record
without requiring key updates.
Note that blocks cannot go directly from data fork to attr fork without
being deallocated and reallocated, nor can they be added to or removed
from a bmbt without a free/alloc cycle, so this should not cause any
regressions.
Found by fuzzing keys[1].attrfork = ones on xfs/371.
Fixes: 4b8ed67794 ("xfs: add rmap btree operations")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Move the inobt record alignment checks from xchk_iallocbt_rec into
xfs_inobt_check_irec so that they are applied everywhere.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Move the rmap record flag checks from xchk_rmapbt_rec into
xfs_rmap_check_irec so that they are applied everywhere.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Similar to what we've just done for the other btrees, create a function
to log corrupt bmbt records and call it whenever we encounter a bad
record in the ondisk btree.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Move the rmap record flag checks from xchk_rmapbt_rec into
xfs_rmap_check_irec so that they are applied everywhere.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
For every btree type except for the bmbt, refactor the code that
complains about bad records into a helper and make the ->query_range
helpers call it so that corruptions found via that avenue are logged.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create a xfs_rmap_check_irec function to detect corruption in btree
records. Fix all xfs_rmap_btrec_to_irec callsites to call the new
helper and bubble up corruption reports.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Currently, xfs_rmap_irec_offset_unpack returns only 0 or -EFSCORRUPTED.
Change this function to return the code address of a failed conversion
in preparation for the next patch, which standardizes localized record
checking and reporting code.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create a xfs_refcount_check_irec function to detect corruption in btree
records. Fix all xfs_refcount_btrec_to_irec callsites to call the new
helper and bubble up corruption reports.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create a xfs_inobt_check_irec function to detect corruption in btree
records. Fix all xfs_inobt_btrec_to_irec callsites to call the new
helper and bubble up corruption reports.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create a xfs_alloc_btrec_to_irec function to convert an ondisk record to
an incore record, and a xfs_alloc_check_irec function to detect
corruption. Replace all the open-coded logic with calls to the new
helpers and bubble up corruption reports.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
When a writer thread executes a chain of log intent items, the AG header
buffer locks will cycle during a transaction roll to get from one intent
item to the next in a chain. Although scrub takes all AG header buffer
locks, this isn't sufficient to guard against scrub checking an AG while
that writer thread is in the middle of finishing a chain because there's
no higher level locking primitive guarding allocation groups.
When there's a collision, cross-referencing between data structures
(e.g. rmapbt and refcountbt) yields false corruption events; if repair
is running, this results in incorrect repairs, which is catastrophic.
Fix this by adding to the perag structure the count of active intents
and make scrub wait until it has both AG header buffer locks and the
intent counter reaches zero.
One quirk of the drain code is that deferred bmap updates also bump and
drop the intent counter. A fundamental decision made during the design
phase of the reverse mapping feature is that updates to the rmapbt
records are always made by the same code that updates the primary
metadata. In other words, callers of bmapi functions expect that the
bmapi functions will queue deferred rmap updates.
Some parts of the reflink code queue deferred refcount (CUI) and bmap
(BUI) updates in the same head transaction, but the deferred work
manager completely finishes the CUI before the BUI work is started. As
a result, the CUI drops the intent count long before the deferred rmap
(RUI) update even has a chance to bump the intent count. The only way
to keep the intent count elevated between the CUI and RUI is for the BUI
to bump the counter until the RUI has been created.
A second quirk of the intent drain code is that deferred work items must
increment the intent counter as soon as the work item is added to the
transaction. When a BUI completes and queues an RUI, the RUI must
increment the counter before the BUI decrements it. The only way to
accomplish this is to require that the counter be bumped as soon as the
deferred work item is created in memory.
In the next patches we'll improve on this facility, but this patch
provides the basic functionality.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
There are a few places in the XFS codebase where a caller has either an
active or a passive reference to a perag structure and wants to give
a passive reference to some other piece of code. Btree cursor creation
and inode walks are good examples of this. Replace the open-coded logic
with a helper to do this.
The new function adds a few safeguards -- it checks that there's at
least one reference to the perag structure passed in, and it records the
refcount bump in the ftrace information. This makes it much easier to
debug perag refcounting problems.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Give the xfs_refcount_intent a passive reference to the perag structure
data. This reference will be used to enable scrub intent draining
functionality in subsequent patches. Any space being modified by a
refcount intent is already allocated, so we need to be able to operate
even if the AG is being shrunk or offlined.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Give the xfs_rmap_intent a passive reference to the perag structure
data. This reference will be used to enable scrub intent draining
functionality in subsequent patches. The space we're (reverse) mapping
is already allocated, so we need to be able to operate even if the AG is
being shrunk or offlined.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Give the xfs_extfree_intent an passive reference to the perag structure
data. This reference will be used to enable scrub intent draining
functionality in subsequent patches. The space being freed must already
be allocated, so we need to able to run even if the AG is being offlined
or shrunk.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Pass a reference to the per-AG structure to xfs_free_extent. Most
callers already have one, so we can eliminate unnecessary lookups. The
one exception to this is the EFI code, which the next patch will fix.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Give the xfs_bmap_intent an active reference to the perag structure
data. This reference will be used to enable scrub intent draining
functionality in subsequent patches. Later, shrink will use these
passive references to know if an AG is quiesced or not.
The reason why we take a passive ref for a file mapping operation is
simple: we're committing to some sort of action involving space in an
AG, so we want to indicate our interest in that AG. The space is
already allocated, so we need to be able to operate on AGs that are
offline or being shrunk.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
At some point in between sending this patch to the list and merging it
into for-next, the tracepoints got all mixed up because I've
over-reliant on automated tools not sucking. The end result is that the
tracepoints are all wrong, so fix them.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Prior to commit 7ac2ff8bb3, when we loaded the incore perag structure
with information from the AGF header, we would set or clear the
pagf_agfl_reset field based on whether or not the AGFL list was
misaligned within the block. IOWs, it's an incore state bit that's
supposed to cache something in the ondisk metadata. Therefore, the code
still needs to support clearing the incore bit if (somehow) the AGFL
were to correct itself.
It turns out that xfs_repair does exactly this -- phase 4 loads the AGF
to scan the rmapbt for corrupt records, which can set NEEDS_AGFL_RESET.
The scan unsets AGF_INIT but doesn't unset NEEDS_AGFL_RESET. Phase 5
totally rewrites the AGFL and fixes the alignment problem, didn't clear
NEEDS_AGFL_RESET historically, and reloads the perag state to fix the
freelist. This results in the AGFL being reset based on stale data,
which then causes the new AGFL blocks to be leaked. A subsequent
xfs_repair -n then complains about the leaks.
One could argue that phase 5 ought to clear this bit directly when it
reloads the perag AGF data after rewriting the AGFL, but libxfs used to
handle this for us, so it should go back to doing that.
Found by fuzzing flfirst = ones in xfs/352.
Fixes: 7ac2ff8bb3 ("xfs: perags need atomic operational state")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
There are now five separate space allocator interfaces exposed to the
rest of XFS for five different strategies to find space. Add
tracepoints for each of them so that I can tell from a trace dump
exactly which ones got called and what happened underneath them. Add a
sixth so it's more obvious if an allocation actually happened.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Callers of xfs_alloc_vextent_iterate_ags that pass in the TRYLOCK flag
want us to perform a non-blocking scan of the AGs for free space. There
are no ordering constraints for non-blocking AGF lock acquisition, so
the scan can freely start over at AG 0 even when minimum_agno > 0.
This manifests fairly reliably on xfs/294 on 6.3-rc2 with the parent
pointer patchset applied and the realtime volume enabled. I observed
the following sequence as part of an xfs_dir_createname call:
0. Fragment the free space, then allocate nearly all the free space in
all AGs except AG 0.
1. Create a directory in AG 2 and let it grow for a while.
2. Try to allocate 2 blocks to expand the dirent part of a directory.
The space will be allocated out of AG 0, but the allocation will not
be contiguous. This (I think) activates the LOWMODE allocator.
3. The bmapi call decides to convert from extents to bmbt format and
tries to allocate 1 block. This allocation request calls
xfs_alloc_vextent_start_ag with the inode number, which starts the
scan at AG 2. We ignore AG 0 (with all its free space) and instead
scrape AG 2 and 3 for more space. We find one block, but this now
kicks t_highest_agno to 3.
4. The createname call decides it needs to split the dabtree. It tries
to allocate even more space with xfs_alloc_vextent_start_ag, but now
we're constrained to AG 3, and we don't find the space. The
createname returns ENOSPC and the filesystem shuts down.
This change fixes the problem by making the trylock scan wrap around to
AG 0 if it doesn't like the AGs that it finds. Since the current
transaction itself holds AGF 0, the trylock of AGF 0 will succeed, and
we take space from the AG that has plenty.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In porting his development branch to 6.3-rc1, yours truly has
repeatedly screwed up the args->pag being fed to the xfs_alloc_vextent*
functions. Add some debugging assertions to test the preconditions
required of the callers.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Prior to the removal of xfs_ialloc_next_ag, we would increment the agi
rotor and return the *old* value. atomic_inc_return returns the new
value, which causes mkfs to allocate the root directory in AG 1. Put
back the old behavior (at least for mkfs) by subtracting 1 here.
Fixes: 20a5eab49d ("xfs: convert xfs_ialloc_next_ag() to an atomic")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Now that the filestreams AG selection tracks active perags, we need
to return an active perag to the core allocator code. This is
because the file allocation the filestreams code will run are AG
specific allocations and so need to pin the AG until the allocations
complete.
We cannot rely on the filestreams item reference to do this - the
filestreams association can be torn down at any time, hence we
need to have a separate reference for the allocation process to pin
the AG after it has been selected.
This means there is some perag juggling in allocation failure
fallback paths as they will do all AG scans in the case the AG
specific allocation fails. Hence we need to track the perag
reference that the filestream allocator returned to make sure we
don't leak it on repeated allocation failure.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
xfs_bmap_btalloc_filestreams() calls two filestreams functions to
select the AG to allocate from. Both those functions end up in
the same selection function that iterates all AGs multiple times.
Worst case, xfs_bmap_btalloc_filestreams() can iterate all AGs 4
times just to select the initial AG to allocate in.
Move the AG selection to fs/xfs/xfs_filestreams.c as a single
interface so that the inefficient AG interation is contained
entirely within the filestreams code. This will allow the
implementation to be simplified and made more efficient in future
patches.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
The code in xfs_bmap_longest_free_extent() is open coded in
xfs_filestream_pick_ag(). Export xfs_bmap_longest_free_extent and
call it from the filestreams code instead.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
It is only set if reading the AGF gets a EAGAIN error. Just return
the EAGAIN error and handle that error in the callers.
This means we can remove the not_init parameter from
xfs_bmap_select_minlen(), too, because the use of not_init there is
pessimistic. If we can't read the agf, it won't increase blen.
The only time we actually care whether we checked all the AGFs for
contiguous free space is when the best length is less than the
minimum allocation length. If not_init is set, then we ignore blen
and set the minimum alloc length to the absolute minimum, not the
best length we know already is present.
However, if blen is less than the minimum we're going to ignore it
anyway, regardless of whether we scanned all the AGFs or not. Hence
not_init can go away, because we only use if blen is good from
the scanned AGs otherwise we ignore it altogether and use minlen.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
There's many if (filestreams) {} else {} branches in this function.
Split it out into a filestreams specific function so that we can
then work directly on cleaning up the filestreams code without
impacting the rest of the allocation algorithms.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Now that the AG iteration code in the core allocation code has been
cleaned up, we can easily convert it to use a for_each_perag..()
variant to use active references and skip AGs that it can't get
active references on.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
All of the allocation functions now extract the minimum allowed AG
from the transaction and then use it in some way. The allocation
functions that are restricted to a single AG all check if the
AG requested can be allocated from and return an error if so. These
all set args->agno appropriately.
All the allocation functions that iterate AGs use it to calculate
the scan start AG. args->agno is not set until the iterator starts
walking AGs.
Hence we can easily set up a conditional check against the minimum
AG allowed in xfs_alloc_vextent_check_args() based on whether
args->agno contains NULLAGNUMBER or not and move all the repeated
setup code to xfs_alloc_vextent_check_args(), further simplifying
the allocation functions.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
We don't need the multiplexing xfs_alloc_ag_vextent() provided
anymore - we can just call the exact/near/size variants directly.
This allows us to remove args->type completely and stop using
args->fsbno as an input to the allocator algorithms.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Move it from xfs_alloc_ag_vextent() so we can get rid of that layer.
Rename xfs_alloc_vextent_set_fsbno() to xfs_alloc_vextent_finish()
to indicate that it's function is finishing off the allocation that
we've run now that it contains much more functionality.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Now that we have wrapper functions for each type of allocation we
can ask for, we can start unravelling xfs_alloc_ag_vextent(). That
is essentially just a prepare stage, the allocation multiplexer
and a post-allocation accounting step is the allocation proceeded.
The current xfs_alloc_vextent*() wrappers all have a prepare stage,
the allocation operation and a post-allocation accounting step.
We can consolidate this by moving the AG alloc prep code into the
wrapper functions, the accounting code in the wrapper accounting
functions, and cut out the multiplexer layer entirely.
This patch consolidates the AG preparation stage.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Two of the callers to xfs_alloc_vextent_this_ag() actually want
exact block number allocation, not anywhere-in-ag allocation. Split
this out from _this_ag() as a first class citizen so no external
extent allocation code needs to care about args->type anymore.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
The remaining callers of xfs_alloc_vextent() are all doing NEAR_BNO
allocations. We can replace that function with a new
xfs_alloc_vextent_near_bno() function that does this explicitly.
We also multiplex NEAR_BNO allocations through
xfs_alloc_vextent_this_ag via args->type. Replace all of these with
direct calls to xfs_alloc_vextent_near_bno(), too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Change obvious callers of single AG allocation to use
xfs_alloc_vextent_start_bno(). Callers no long need to specify
XFS_ALLOCTYPE_START_BNO, and so the type can be driven inward and
removed.
While doing this, also pass the allocation target fsb as a parameter
rather than encoding it in args->fsbno.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Change obvious callers of single AG allocation to use
xfs_alloc_vextent_first_ag(). This gets rid of
XFS_ALLOCTYPE_FIRST_AG as the type used within
xfs_alloc_vextent_first_ag() during iteration is _THIS_AG. Hence we
can remove the setting of args->type from all the callers of
_first_ag() and remove the alloctype.
While doing this, pass the allocation target fsb as a parameter
rather than encoding it in args->fsbno. This starts the process
of making args->fsbno an output only variable rather than
input/output.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
There are several different contexts xfs_bmap_btalloc() handles, and
large chunks of the code execute independent allocation contexts.
Try to untangle this mess a bit.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Change obvious callers of single AG allocation to use
xfs_alloc_vextent_this_ag(). Drive the per-ag grabbing out to the
callers, too, so that callers with active references don't need
to do new lookups just for an allocation in a context that already
has a perag reference.
The only remaining caller that does single AG allocation through
xfs_alloc_vextent() is xfs_bmap_btalloc() with
XFS_ALLOCTYPE_NEAR_BNO. That is going to need more untangling before
it can be converted cleanly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
There's a bit of a recursive conundrum around
xfs_alloc_ag_vextent(). We can't first call xfs_alloc_ag_vextent()
without preparing the AGFL for the allocation, and preparing the
AGFL calls xfs_alloc_ag_vextent() to prepare the AGFL for the
allocation. This "double allocation" requirement is not really clear
from the current xfs_alloc_fix_freelist() calls that are sprinkled
through the allocation code.
It's not helped that xfs_alloc_ag_vextent() can actually allocate
from the AGFL itself, but there's special code to prevent AGFL prep
allocations from allocating from the free list it's trying to prep.
The naming is also not consistent: args->wasfromfl is true when we
allocated _from_ the free list, but the indication that we are
allocating _for_ the free list is via checking that (args->resv ==
XFS_AG_RESV_AGFL).
So, lets make this "allocation required for allocation" situation
clear by moving it all inside xfs_alloc_ag_vextent(). The freelist
allocation is a specific XFS_ALLOCTYPE_THIS_AG allocation, which
translated directly to xfs_alloc_ag_vextent_size() allocation.
This enables us to replace __xfs_alloc_vextent_this_ag() with a call
to xfs_alloc_ag_vextent(), and we drive the freelist fixing further
into the per-ag allocation algorithm.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
The core of the per-ag iteration is effectively doing a "this ag"
allocation on one AG at a time. Use the same code to implement the
core "this ag" allocation in both xfs_alloc_vextent_this_ag()
and xfs_alloc_vextent_iterate_ags().
This means we only call xfs_alloc_ag_vextent() from one place so we
can easily collapse the call stack in future patches.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
It's a multiplexing mess that can be greatly simplified, and really
needs to be simplified to allow active per-ag references to
propagate from initial AG selection code the the bmapi code.
This splits the code out into separate a parameter checking
function, an iterator function, and allocation completion functions
and then implements the individual policies using these functions.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
In several places we iterate every AG from a specific start agno and
wrap back to the first AG when we reach the end of the filesystem to
continue searching. We don't have a primitive for this iteration
yet, so add one for conversion of these algorithms to per-ag based
iteration.
The filestream AG select code is a mess, and this initially makes it
worse. The per-ag selection needs to be driven completely into the
filestream code to clean this up and it will be done in a future
patch that makes the filestream allocator use active per-ag
references correctly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
We currently don't have any flags or operational state in the
xfs_perag except for the pagf_init and pagi_init flags. And the
agflreset flag. Oh, there's also the pagf_metadata and pagi_inodeok
flags, too.
For controlling per-ag operations, we are going to need some atomic
state flags. Hence add an opstate field similar to what we already
have in the mount and log, and convert all these state flags across
to atomic bit operations.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
This is currently a spinlock lock protected rotor which can be
implemented with a single atomic operation. Change it to be more
efficient and get rid of the m_agirotor_lock. Noticed while
converting the inode allocation AG selection loop to active perag
references.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Lots of code in the inobt infrastructure is passed both xfs_mount
and perags. We only need perags for the per-ag inode allocation
code, so reduce the duplication by passing only the perags as the
primary object.
This ends up reducing the code size by a bit:
text data bss dec hex filename
orig 1138878 323979 548 1463405 16546d (TOTALS)
patched 1138709 323979 548 1463236 1653c4 (TOTALS)
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Convert the inode allocation routines to use active perag references
or references held by callers rather than grab their own. Also drive
the perag further inwards to replace xfs_mounts when doing
operations on a specific AG.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Callers have referenced perags but they don't pass it into
xfs_imap() so it takes it's own reference. Fix that so we can change
inode allocation over to using active references.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
So that they all output the same information in the traces to make
debugging refcount issues easier.
This means that all the lookup/drop functions no longer need to use
the full memory barrier atomic operations (atomic*_return()) so
will have less overhead when tracing is off. The set/clear tag
tracepoints no longer abuse the reference count to pass the tag -
the tag being cleared is obvious from the _RET_IP_ that is recorded
in the trace point.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
We need to be able to dynamically remove instantiated AGs from
memory safely, either for shrinking the filesystem or paging AG
state in and out of memory (e.g. supporting millions of AGs). This
means we need to be able to safely exclude operations from accessing
perags while dynamic removal is in progress.
To do this, introduce the concept of active and passive references.
Active references are required for high level operations that make
use of an AG for a given operation (e.g. allocation) and pin the
perag in memory for the duration of the operation that is operating
on the perag (e.g. transaction scope). This means we can fail to get
an active reference to an AG, hence callers of the new active
reference API must be able to handle lookup failure gracefully.
Passive references are used in low level code, where we might need
to access the perag structure for the purposes of completing high
level operations. For example, buffers need to use passive
references because:
- we need to be able to do metadata IO during operations like grow
and shrink transactions where high level active references to the
AG have already been blocked
- buffers need to pin the perag until they are reclaimed from
memory, something that high level code has no direct control over.
- unused cached buffers should not prevent a shrink from being
started.
Hence we have active references that will form exclusion barriers
for operations to be performed on an AG, and passive references that
will prevent reclaim of the perag until all objects with passive
references have been reclaimed themselves.
This patch introduce xfs_perag_grab()/xfs_perag_rele() as the API
for active AG reference functionality. We also need to convert the
for_each_perag*() iterators to use active references, which will
start the process of converting high level code over to using active
references. Conversion of non-iterator based code to active
references will be done in followup patches.
Note that the implementation using reference counting is really just
a development vehicle for the API to ensure we don't have any leaks
in the callers. Once we need to remove perag structures from memory
dyanmically, we will need a much more robust per-ag state transition
mechanism for preventing new references from being taken while we
wait for existing references to drain before removal from memory can
occur....
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
The tp->t_firstblock field is now raelly tracking the highest AG we
have locked, not the block number of the highest allocation we've
made. It's purpose is to prevent AGF locking deadlocks, so rename it
to "highest AG" and simplify the implementation to just track the
agno rather than a fsbno.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Now that xfs_alloc_vextent() does all the AGF deadlock prevention
filtering for multiple allocations in a single transaction, we no
longer need the allocation setup code to care about what AGs we
might already have locked.
Hence we can remove all the "nullfb" conditional logic in places
like xfs_bmap_btalloc() and instead have them focus simply on
setting up locality constraints. If the allocation fails due to
AGF lock filtering in xfs_alloc_vextent, then we just fall back as
we normally do to more relaxed allocation constraints.
As a result, any allocation that allows AG scanning (i.e. not
confined to a single AG) and does not force a worst case full
filesystem scan will now be able to attempt allocation from AGs
lower than that defined by tp->t_firstblock. This is because
xfs_alloc_vextent() allows try-locking of the AGFs and hence enables
low space algorithms to at least -try- to get space from AGs lower
than the one that we have currently locked and allocated from. This
is a significant improvement in the low space allocation algorithm.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
When we enter xfs_bmbt_alloc_block() without having first allocated
a data extent (i.e. tp->t_firstblock == NULLFSBLOCK) because we
are doing something like unwritten extent conversion, the transaction
block reservation is used as the minleft value.
This works for operations like unwritten extent conversion, but it
assumes that the block reservation is only for a BMBT split. THis is
not always true, and sometimes results in larger than necessary
minleft values being set. We only actually need enough space for a
btree split, something we already handle correctly in
xfs_bmapi_write() via the xfs_bmapi_minleft() calculation.
We should use xfs_bmapi_minleft() in xfs_bmbt_alloc_block() to
calculate the number of blocks a BMBT split on this inode is going to
require, not use the transaction block reservation that contains the
maximum number of blocks this transaction may consume in it...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
When an XFS filesystem has free inodes in chunks already allocated
on disk, it will still allocate new inode chunks if the target AG
has no free inodes in it. Normally, this is a good idea as it
preserves locality of all the inodes in a given directory.
However, at ENOSPC this can lead to using the last few remaining
free filesystem blocks to allocate a new chunk when there are many,
many free inodes that could be allocated without consuming free
space. This results in speeding up the consumption of the last few
blocks and inode create operations then returning ENOSPC when there
free inodes available because we don't have enough block left in the
filesystem for directory creation reservations to proceed.
Hence when we are near ENOSPC, we should be attempting to preserve
the remaining blocks for directory block allocation rather than
using them for unnecessary inode chunk creation.
This particular behaviour is exposed by xfs/294, when it drives to
ENOSPC on empty file creation whilst there are still thousands of
free inodes available for allocation in other AGs in the filesystem.
Hence, when we are within 1% of ENOSPC, change the inode allocation
behaviour to prefer to use existing free inodes over allocating new
inode chunks, even though it results is poorer locality of the data
set. It is more important for the allocations to be space efficient
near ENOSPC than to have optimal locality for performance, so lets
modify the inode AG selection code to reflect that fact.
This allows generic/294 to not only pass with this allocator rework
patchset, but to increase the number of post-ENOSPC empty inode
allocations to from ~600 to ~9080 before we hit ENOSPC on the
directory create transaction reservation.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
I've recently encountered an ABBA deadlock with g/476. The upcoming
changes seem to make this much easier to hit, but the underlying
problem is a pre-existing one.
Essentially, if we select an AG for allocation, then lock the AGF
and then fail to allocate for some reason (e.g. minimum length
requirements cannot be satisfied), then we drop out of the
allocation with the AGF still locked.
The caller then modifies the allocation constraints - usually
loosening them up - and tries again. This can result in trying to
access AGFs that are lower than the AGF we already have locked from
the failed attempt. e.g. the failed attempt skipped several AGs
before failing, so we have locks an AG higher than the start AG.
Retrying the allocation from the start AG then causes us to violate
AGF lock ordering and this can lead to deadlocks.
The deadlock exists even if allocation succeeds - we can do a
followup allocations in the same transaction for BMBT blocks that
aren't guaranteed to be in the same AG as the original, and can move
into higher AGs. Hence we really need to move the tp->t_firstblock
tracking down into xfs_alloc_vextent() where it can be set when we
exit with a locked AG.
xfs_alloc_vextent() can also check there if the requested
allocation falls within the allow range of AGs set by
tp->t_firstblock. If we can't allocate within the range set, we have
to fail the allocation. If we are allowed to to non-blocking AGF
locking, we can ignore the AG locking order limitations as we can
use try-locks for the first iteration over requested AG range.
This invalidates a set of post allocation asserts that check that
the allocation is always above tp->t_firstblock if it is set.
Because we can use try-locks to avoid the deadlock in some
circumstances, having a pre-existing locked AGF doesn't always
prevent allocation from lower order AGFs. Hence those ASSERTs need
to be removed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
When we split a BMBT due to record insertion, we offload it to a
worker thread because we can be deep in the stack when we try to
allocate a new block for the BMBT. Allocation can use several
kilobytes of stack (full memory reclaim, swap and/or IO path can
end up on the stack during allocation) and we can already be several
kilobytes deep in the stack when we need to split the BMBT.
A recent workload demonstrated a deadlock in this BMBT split
offload. It requires several things to happen at once:
1. two inodes need a BMBT split at the same time, one must be
unwritten extent conversion from IO completion, the other must be
from extent allocation.
2. there must be a no available xfs_alloc_wq worker threads
available in the worker pool.
3. There must be sustained severe memory shortages such that new
kworker threads cannot be allocated to the xfs_alloc_wq pool for
both threads that need split work to be run
4. The split work from the unwritten extent conversion must run
first.
5. when the BMBT block allocation runs from the split work, it must
loop over all AGs and not be able to either trylock an AGF
successfully, or each AGF is is able to lock has no space available
for a single block allocation.
6. The BMBT allocation must then attempt to lock the AGF that the
second task queued to the rescuer thread already has locked before
it finds an AGF it can allocate from.
At this point, we have an ABBA deadlock between tasks queued on the
xfs_alloc_wq rescuer thread and a locked AGF. i.e. The queued task
holding the AGF lock can't be run by the rescuer thread until the
task the rescuer thread is runing gets the AGF lock....
This is a highly improbably series of events, but there it is.
There's a couple of ways to fix this, but the easiest way to ensure
that we only punt tasks with a locked AGF that holds enough space
for the BMBT block allocations to the worker thread.
This works for unwritten extent conversion in IO completion (which
doesn't have a locked AGF and space reservations) because we have
tight control over the IO completion stack. It is typically only 6
functions deep when xfs_btree_split() is called because we've
already offloaded the IO completion work to a worker thread and
hence we don't need to worry about stack overruns here.
The other place we can be called for a BMBT split without a
preceeding allocation is __xfs_bunmapi() when punching out the
center of an existing extent. We don't remove extents in the IO
path, so these operations don't tend to be called with a lot of
stack consumed. Hence we don't really need to ship the split off to
a worker thread in these cases, either.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Pass the incore refcount intent through the CUI logging code instead of
repeatedly boxing and unboxing parameters.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Pass the incore rmap space mapping through the RUI logging code instead
of repeatedly boxing and unboxing parameters.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Change the name of all pointers to xfs_extent_item structures to "xefi"
to make the name consistent and because the current selections ("new"
and "free") mean other things in C.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Instead of repeatedly boxing and unboxing the incore extent mapping
structure as it passes through the BUI code, pass the pointer directly
through.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Lately I've been stress-testing extreme-sized rmap btrees by using the
(new) xfs_db bmap_inflate command to clone bmbt mappings billions of
times and then using xfs_repair to build new rmap and refcount btrees.
This of course is /much/ faster than actually FICLONEing a file billions
of times.
Unfortunately, xfs_repair fails in xfs_btree_bload_compute_geometry with
EOVERFLOW, which indicates that xfs_mount.m_rmap_maxlevels is not
sufficiently large for the test scenario. For a 1TB filesystem (~67
million AG blocks, 4 AGs) the btheight command reports:
$ xfs_db -c 'btheight -n 4400801200 -w min rmapbt' /dev/sda
rmapbt: worst case per 4096-byte block: 84 records (leaf) / 45 keyptrs (node)
level 0: 4400801200 records, 52390491 blocks
level 1: 52390491 records, 1164234 blocks
level 2: 1164234 records, 25872 blocks
level 3: 25872 records, 575 blocks
level 4: 575 records, 13 blocks
level 5: 13 records, 1 block
6 levels, 53581186 blocks total
The AG is sufficiently large to build this rmap btree. Unfortunately,
m_rmap_maxlevels is 5. Augmenting the loop in the space->height
function to report height, node blocks, and blocks remaining produces
this:
ht 1 node_blocks 45 blockleft 67108863
ht 2 node_blocks 2025 blockleft 67108818
ht 3 node_blocks 91125 blockleft 67106793
ht 4 node_blocks 4100625 blockleft 67015668
final height: 5
The goal of this function is to compute the maximum height btree that
can be stored in the given number of ondisk fsblocks. Starting with the
top level of the tree, each iteration through the loop adds the fanout
factor of the next level down until we run out of blocks. IOWs, maximum
height is achieved by using the smallest fanout factor that can apply
to that level.
However, the loop setup is not correct. Top level btree blocks are
allowed to contain fewer than minrecs items, so the computation is
incorrect because the first time through the loop it should be using a
fanout factor of 2. With this corrected, the above becomes:
ht 1 node_blocks 2 blockleft 67108863
ht 2 node_blocks 90 blockleft 67108861
ht 3 node_blocks 4050 blockleft 67108771
ht 4 node_blocks 182250 blockleft 67104721
ht 5 node_blocks 8201250 blockleft 66922471
final height: 6
Fixes: 9ec691205e ("xfs: compute the maximum height of the rmap btree when reflink enabled")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
- Fix a race condition w.r.t. percpu inode free counters
- Fix a broken error return in xfs_remove
- Print FS UUID at mount/unmount time
- Numerous fixes to the online fsck code
- Fix inode locking inconsistency problems when dealing with realtime
metadata files
- Actually merge pull requests so that we capture the cover letter
contents
- Fix a race between rebuilding VFS inode state and the AIL flushing
inodes that could cause corrupt inodes to be written to the
filesystem
- Fix a data corruption problem resulting from a write() to an
unwritten extent racing with writeback started on behalf of memory
reclaim changing the extent state
- Add debugging knobs so that we can test iomap invalidation
- Fix the blockdev pagecache contents being stale after unmounting the
filesystem, leading to spurious xfs_db errors and corrupt metadumps
- Fix a file mapping corruption bug due to ilock cycling when attaching
dquots to a file during delalloc reservation
- Fix a refcount btree corruption problem due to the refcount
adjustment code not handling MAXREFCOUNT correctly, resulting in
unnecessary record splits
- Fix COW staging extent alloctions not being classified as USERDATA,
which results in filestreams being ignored and possible data
corruption if the allocation was filled from the AGFL and the block
buffer is still being tracked in the AIL
- Fix new duplicated includes
- Fix a race between the dquot shrinker and dquot freeing that could
cause a UAF
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmOSEWsACgkQ+H93GTRK
tOvpsg//Y8pgue8GFwyXq0LYEYb1yjueGIxDGz9SwkfMP9vADsdDpXxquHmes5M+
Q9vMyFnfaizZs2oXD6Nw/+RJMyOa3ZQtNqjxJET5pTIBcWvdjsP9UGW+K+1uN7LT
NsM7lgpxy8RfQFHjvFHpOysxGIpT70n3lz98qlwy1yIGF/EFE52pkKcArGjpIu4A
wBdyL0hIBwXc27zLRahLxfwFaW/I40ka3D40EUYpNnAjE5Sy0YgLlsOCzrxN0UvY
a9dlq+WFJjWDsLp6vr11ruewXAmzYG2m/3RdP2aLbmDHDvo06UkesKkPNhexlClM
kRE/ZImmakqKlAqgtUbkxT06NbIKOxYslbcoOOLDneqb1grTcgk79J7jsMlLLU1s
s1WyPMWR3wb0jjclgGBxd3c1nprdkvJSkBpyEOwIYLhwdPNuwqTwEVsq7TvasRLI
dgals5/J6fBnIeTR7x2YObonQRd4FlkXFv+AVYpGVUJEI02eRgY3i7NJBZWyBKAS
+Gcd1Bq1F387b0FRqq1iVhGD+NpoHHiP84bOQED9R9t0jP1AHj9t47f+Uuvjj2hN
ByT7MpA0nZdbYGKU+rFyKsIvONyLdxyjL+jm6FkmrW+G25fJ1af2yhrVhZQhw7dm
zLb1ntSnXvNTj4OopfKSDD2MPGf+2C/o2XJvAAS501pmsQefKOM=
=plES
-----END PGP SIGNATURE-----
Merge tag 'xfs-6.2-merge-8' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull XFS updates from Darrick Wong:
"The highlight of this is a batch of fixes for the online metadata
checking code as we start the loooong march towards merging online
repair. I aim to merge that in time for the 2023 LTS.
There are also a large number of data corruption and race condition
fixes in this patchset. Most notably fixed are write() calls to
unwritten extents racing with writeback, which required some late(r
than I prefer) code changes to iomap to support the necessary
revalidations. I don't really like iomap changes going in past -rc4,
but Dave and I have been working on it long enough that I chose to
push it for 6.2 anyway.
There are also a number of other subtle problems fixed, including the
log racing with inode writeback to write inodes with incorrect link
count to disk; file data mapping corruptions as a result of incorrect
lock cycling when attaching dquots; refcount metadata corruption if
one actually manages to share a block 2^32 times; and the log
clobbering cow staging extents if they were formerly metadata blocks.
Summary:
- Fix a race condition w.r.t. percpu inode free counters
- Fix a broken error return in xfs_remove
- Print FS UUID at mount/unmount time
- Numerous fixes to the online fsck code
- Fix inode locking inconsistency problems when dealing with realtime
metadata files
- Actually merge pull requests so that we capture the cover letter
contents
- Fix a race between rebuilding VFS inode state and the AIL flushing
inodes that could cause corrupt inodes to be written to the
filesystem
- Fix a data corruption problem resulting from a write() to an
unwritten extent racing with writeback started on behalf of memory
reclaim changing the extent state
- Add debugging knobs so that we can test iomap invalidation
- Fix the blockdev pagecache contents being stale after unmounting
the filesystem, leading to spurious xfs_db errors and corrupt
metadumps
- Fix a file mapping corruption bug due to ilock cycling when
attaching dquots to a file during delalloc reservation
- Fix a refcount btree corruption problem due to the refcount
adjustment code not handling MAXREFCOUNT correctly, resulting in
unnecessary record splits
- Fix COW staging extent alloctions not being classified as USERDATA,
which results in filestreams being ignored and possible data
corruption if the allocation was filled from the AGFL and the block
buffer is still being tracked in the AIL
- Fix new duplicated includes
- Fix a race between the dquot shrinker and dquot freeing that could
cause a UAF"
* tag 'xfs-6.2-merge-8' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (50 commits)
xfs: dquot shrinker doesn't check for XFS_DQFLAG_FREEING
xfs: Remove duplicated include in xfs_iomap.c
xfs: invalidate xfs_bufs when allocating cow extents
xfs: get rid of assert from xfs_btree_islastblock
xfs: estimate post-merge refcounts correctly
xfs: hoist refcount record merge predicates
xfs: fix super block buf log item UAF during force shutdown
xfs: wait iclog complete before tearing down AIL
xfs: attach dquots to inode before reading data/cow fork mappings
xfs: shut up -Wuninitialized in xfsaild_push
xfs: use memcpy, not strncpy, to format the attr prefix during listxattr
xfs: invalidate block device page cache during unmount
xfs: add debug knob to slow down write for fun
xfs: add debug knob to slow down writeback for fun
xfs: drop write error injection is unfixable, remove it
xfs: use iomap_valid method to detect stale cached iomaps
iomap: write iomap validity checks
xfs: xfs_bmap_punch_delalloc_range() should take a byte range
iomap: buffered write failure should not truncate the page cache
xfs,iomap: move delalloc punching to iomap
...
While investigating test failures in xfs/17[1-3] in alwayscow mode, I
noticed through code inspection that xfs_bmap_alloc_userdata isn't
setting XFS_ALLOC_USERDATA when allocating extents for a file's CoW
fork. COW staging extents should be flagged as USERDATA, since user
data are persisted to these blocks before being remapped into a file.
This mis-classification has a few impacts on the behavior of the system.
First, the filestreams allocator is supposed to keep allocating from a
chosen AG until it runs out of space in that AG. However, it only does
that for USERDATA allocations, which means that COW allocations aren't
tied to the filestreams AG. Fortunately, few people use filestreams, so
nobody's noticed.
A more serious problem is that xfs_alloc_ag_vextent_small looks for a
buffer to invalidate *if* the USERDATA flag is set and the AG is so full
that the allocation had to come from the AGFL because the cntbt is
empty. The consequences of not invalidating the buffer are severe --
if the AIL incorrectly checkpoints a buffer that is now being used to
store user data, that action will clobber the user's written data.
Fix filestreams and yet another data corruption vector by flagging COW
allocations as USERDATA.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
xfs_btree_check_block contains debugging knobs. With XFS_DEBUG setting up,
turn on the debugging knob can trigger the assert of xfs_btree_islastblock,
test script as follows:
while true
do
mount $disk $mountpoint
fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null
echo 1 > /sys/fs/xfs/sda/errortag/btree_chk_sblk
sleep 10
umount $mountpoint
done
Kick off fsstress and only *then* turn on the debugging knob. If it
happens that the knob gets turned on after the cntbt lookup succeeds
but before the call to xfs_btree_islastblock, then we *can* end up in
the situation where a previously checked btree block suddenly starts
returning EFSCORRUPTED from xfs_btree_check_block. Kaboom.
Darrick give a very detailed explanation as follows:
Looking back at commit 27d9ee577d, I think the point of all this was
to make sure that the cursor has actually performed a lookup, and that
the btree block at whatever level we're asking about is ok.
If the caller hasn't ever done a lookup, the bc_levels array will be
empty, so cur->bc_levels[level].bp pointer will be NULL. The call to
xfs_btree_get_block will crash anyway, so the "ASSERT(block);" part is
pointless.
If the caller did a lookup but the lookup failed due to block
corruption, the corresponding cur->bc_levels[level].bp pointer will also
be NULL, and we'll still crash. The "ASSERT(xfs_btree_check_block);"
logic is also unnecessary.
If the cursor level points to an inode root, the block buffer will be
incore, so it had better always be consistent.
If the caller ignores a failed lookup after a successful one and calls
this function, the cursor state is garbage and the assert wouldn't have
tripped anyway. So get rid of the assert.
Fixes: 27d9ee577d ("xfs: actually check xfs_btree_check_block return in xfs_btree_islastblock")
Signed-off-by: Guo Xuenan <guoxuenan@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Upon enabling fsdax + reflink for XFS, xfs/179 began to report refcount
metadata corruptions after being run. Specifically, xfs_repair noticed
single-block refcount records that could be combined but had not been.
The root cause of this is improper MAXREFCOUNT edge case handling in
xfs_refcount_merge_extents. When we're trying to find candidates for a
refcount btree record merge, we compute the refcount attribute of the
merged record, but we fail to account for the fact that once a record
hits rc_refcount == MAXREFCOUNT, it is pinned that way forever. Hence
the computed refcount is wrong, and we fail to merge the extents.
Fix this by adjusting the merge predicates to compute the adjusted
refcount correctly.
Fixes: 3172725814 ("xfs: adjust refcount of an extent of blocks in refcount btree")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Xiao Yang <yangx.jy@fujitsu.com>
Hoist these multiline conditionals into separate static inline helpers
to improve readability and set the stage for corruption fixes that will
be introduced in the next patch.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Xiao Yang <yangx.jy@fujitsu.com>
Add a new error injection knob so that we can arbitrarily slow down
pagecache writes to test for race conditions and aberrant reclaim
behavior if the writeback mechanisms are slow to issue writeback. This
will enable functional testing for the ifork sequence counters
introduced in commit 304a68b9c6 ("xfs: use iomap_valid method to
detect stale cached iomaps") that fixes write racing with reclaim
writeback.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Add a new error injection knob so that we can arbitrarily slow down
writeback to test for race conditions and aberrant reclaim behavior if
the writeback mechanisms are slow to issue writeback. This will enable
functional testing for the ifork sequence counters introduced in commit
745b3f76d1 ("xfs: maintain a sequence count for inode fork
manipulations").
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
This patch series fixes a data corruption that occurs in a specific
multi-threaded write workload. The workload combined
racing unaligned adjacent buffered writes with low memory conditions
that caused both writeback and memory reclaim to race with the
writes.
The result of this was random partial blocks containing zeroes
instead of the correct data. The underlying problem is that iomap
caches the write iomap for the duration of the write() operation,
but it fails to take into account that the extent underlying the
iomap can change whilst the write is in progress.
The short story is that an iomap can span mutliple folios, and so
under low memory writeback can be cleaning folios the write()
overlaps. Whilst the overlapping data is cached in memory, this
isn't a problem, but because the folios are now clean they can be
reclaimed. Once reclaimed, the write() does the wrong thing when
re-instantiating partial folios because the iomap no longer reflects
the underlying state of the extent. e.g. it thinks the extent is
unwritten, so it zeroes the partial range, when in fact the
underlying extent is now written and so it should have read the data
from disk. This is how we get random zero ranges in the file
instead of the correct data.
The gory details of the race condition can be found here:
https://lore.kernel.org/linux-xfs/20220817093627.GZ3600936@dread.disaster.area/
Fixing the problem has two aspects. The first aspect of the problem
is ensuring that iomap can detect a stale cached iomap during a
write in a race-free manner. We already do this stale iomap
detection in the writeback path, so we have a mechanism for
detecting that the iomap backing the data range may have changed
and needs to be remapped.
In the case of the write() path, we have to ensure that the iomap is
validated at a point in time when the page cache is stable and
cannot be reclaimed from under us. We also need to validate the
extent before we start performing any modifications to the folio
state or contents. Combine these two requirements together, and the
only "safe" place to validate the iomap is after we have looked up
and locked the folio we are going to copy the data into, but before
we've performed any initialisation operations on that folio.
If the iomap fails validation, we then mark it stale, unlock the
folio and end the write. This effectively means a stale iomap
results in a short write. Filesystems should already be able to
handle this, as write operations can end short for many reasons and
need to iterate through another mapping cycle to be completed. Hence
the iomap changes needed to detect and handle stale iomaps during
write() operations is relatively simple...
However, the assumption is that filesystems should already be able
to handle write failures safely, and that's where the second
(first?) part of the problem exists. That is, handling a partial
write is harder than just "punching out the unused delayed
allocation extent". This is because mmap() based faults can race
with writes, and if they land in the delalloc region that the write
allocated, then punching out the delalloc region can cause data
corruption.
This data corruption problem is exposed by generic/346 when iomap is
converted to detect stale iomaps during write() operations. Hence
write failure in the filesytems needs to handle the fact that the
write() in progress doesn't necessarily own the data in the page
cache over the range of the delalloc extent it just allocated.
As a result, we can't just truncate the page cache over the range
the write() didn't reach and punch all the delalloc extent. We have
to walk the page cache over the untouched range and skip over any
dirty data region in the cache in that range. Which is ....
non-trivial.
That is, iterating the page cache has to handle partially populated
folios (i.e. block size < page size) that contain data. The data
might be discontiguous within a folio. Indeed, there might be
*multiple* discontiguous data regions within a single folio. And to
make matters more complex, multi-page folios mean we just don't know
how many sub-folio regions we might have to iterate to find all
these regions. All the corner cases between the conversions and
rounding between filesystem block size, folio size and multi-page
folio size combined with unaligned write offsets kept breaking my
brain.
However, if we convert the code to track the processed
write regions by byte ranges instead of fileystem block or page
cache index, we could simply use mapping_seek_hole_data() to find
the start and end of each discrete data region within the range we
needed to scan. SEEK_DATA finds the start of the cached data region,
SEEK_HOLE finds the end of the region. These are byte based
interfaces that understand partially uptodate folio regions, and so
can iterate discrete sub-folio data regions directly. This largely
solved the problem of discovering the dirty regions we need to keep
the delalloc extent over.
However, to use mapping_seek_hole_data() without needing to export
it, we have to move all the delalloc extent cleanup to the iomap
core and so now the iomap core can clean up delayed allocation
extents in a safe, sane and filesystem neutral manner.
With all this done, the original data corruption never occurs
anymore, and we now have a generic mechanism for ensuring that page
cache writes do not do the wrong thing when writeback and reclaim
change the state of the physical extent and/or page cache contents
whilst the write is in progress.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmOFSzwUHGRhdmlkQGZy
b21vcmJpdC5jb20ACgkQregpR/R1+h3djhAAwOf9VeLO7TW/0B1XfE3ktWGiDmEG
ekB8mkB7CAHB9SBq7TZMHjktJIJxY81q5+Iq9qHGiW3asoVbmWvkeRSJgXljhTby
D2KsUIT1NK/X6DhC9FhNjv/Q2GJ0nY6s65RLudUEkelYBFhGMM0kdXX+fZmtZ4yT
T/lRYk/KBFpeQCaGRcFXK55TnB/B9muOI9FyKvh2DNWe6r0Xu3Obb3a9k+snZA9R
EeUpAosDSrXzP4c2w2ovpU2eutUdo4eYTHIzXKGkhktbRhmCRLn4NlxvFCanoe8h
eSS85sb8DHUh2iyaaB8yrJ6LL3MuBytOi24rNBeyd1KAyEtT21+cTUK/QAahzble
pL8l6TA7ZXbhYcbk5uQvFEIAInR+0ffjde61uE14N55awq0Vdrym7C7D2ri60iw6
ts45AVYKYeF61coAbwvmaJyvqvQ0tUlmVZXI4lQzN2O17Lr6004gJFMjDRsXXU7H
eHLUt496Geq39rglw85y8G0vmxxGZ9iIGkeC1kUSSCmlvx/JfuJlbWBgyMGtNRBI
qzv0jmk67Ft1seQSMWQJttxCZs4uOF2gwERYGAF7iUR8F4PGob/N1e2/hpg75G8q
0S8u1N1p8Cv5u/jwybqy8FnSC2MlUZl6SQURaVQDy2DLMKHb4T1diu0jrCbiSPiF
JKfQ7aNQxaEZIJw=
=cv9i
-----END PGP SIGNATURE-----
Merge tag 'xfs-iomap-stale-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-6.2-mergeB
xfs, iomap: fix data corruption due to stale cached iomaps
This patch series fixes a data corruption that occurs in a specific
multi-threaded write workload. The workload combined
racing unaligned adjacent buffered writes with low memory conditions
that caused both writeback and memory reclaim to race with the
writes.
The result of this was random partial blocks containing zeroes
instead of the correct data. The underlying problem is that iomap
caches the write iomap for the duration of the write() operation,
but it fails to take into account that the extent underlying the
iomap can change whilst the write is in progress.
The short story is that an iomap can span mutliple folios, and so
under low memory writeback can be cleaning folios the write()
overlaps. Whilst the overlapping data is cached in memory, this
isn't a problem, but because the folios are now clean they can be
reclaimed. Once reclaimed, the write() does the wrong thing when
re-instantiating partial folios because the iomap no longer reflects
the underlying state of the extent. e.g. it thinks the extent is
unwritten, so it zeroes the partial range, when in fact the
underlying extent is now written and so it should have read the data
from disk. This is how we get random zero ranges in the file
instead of the correct data.
The gory details of the race condition can be found here:
https://lore.kernel.org/linux-xfs/20220817093627.GZ3600936@dread.disaster.area/
Fixing the problem has two aspects. The first aspect of the problem
is ensuring that iomap can detect a stale cached iomap during a
write in a race-free manner. We already do this stale iomap
detection in the writeback path, so we have a mechanism for
detecting that the iomap backing the data range may have changed
and needs to be remapped.
In the case of the write() path, we have to ensure that the iomap is
validated at a point in time when the page cache is stable and
cannot be reclaimed from under us. We also need to validate the
extent before we start performing any modifications to the folio
state or contents. Combine these two requirements together, and the
only "safe" place to validate the iomap is after we have looked up
and locked the folio we are going to copy the data into, but before
we've performed any initialisation operations on that folio.
If the iomap fails validation, we then mark it stale, unlock the
folio and end the write. This effectively means a stale iomap
results in a short write. Filesystems should already be able to
handle this, as write operations can end short for many reasons and
need to iterate through another mapping cycle to be completed. Hence
the iomap changes needed to detect and handle stale iomaps during
write() operations is relatively simple...
However, the assumption is that filesystems should already be able
to handle write failures safely, and that's where the second
(first?) part of the problem exists. That is, handling a partial
write is harder than just "punching out the unused delayed
allocation extent". This is because mmap() based faults can race
with writes, and if they land in the delalloc region that the write
allocated, then punching out the delalloc region can cause data
corruption.
This data corruption problem is exposed by generic/346 when iomap is
converted to detect stale iomaps during write() operations. Hence
write failure in the filesytems needs to handle the fact that the
write() in progress doesn't necessarily own the data in the page
cache over the range of the delalloc extent it just allocated.
As a result, we can't just truncate the page cache over the range
the write() didn't reach and punch all the delalloc extent. We have
to walk the page cache over the untouched range and skip over any
dirty data region in the cache in that range. Which is ....
non-trivial.
That is, iterating the page cache has to handle partially populated
folios (i.e. block size < page size) that contain data. The data
might be discontiguous within a folio. Indeed, there might be
*multiple* discontiguous data regions within a single folio. And to
make matters more complex, multi-page folios mean we just don't know
how many sub-folio regions we might have to iterate to find all
these regions. All the corner cases between the conversions and
rounding between filesystem block size, folio size and multi-page
folio size combined with unaligned write offsets kept breaking my
brain.
However, if we convert the code to track the processed
write regions by byte ranges instead of fileystem block or page
cache index, we could simply use mapping_seek_hole_data() to find
the start and end of each discrete data region within the range we
needed to scan. SEEK_DATA finds the start of the cached data region,
SEEK_HOLE finds the end of the region. These are byte based
interfaces that understand partially uptodate folio regions, and so
can iterate discrete sub-folio data regions directly. This largely
solved the problem of discovering the dirty regions we need to keep
the delalloc extent over.
However, to use mapping_seek_hole_data() without needing to export
it, we have to move all the delalloc extent cleanup to the iomap
core and so now the iomap core can clean up delayed allocation
extents in a safe, sane and filesystem neutral manner.
With all this done, the original data corruption never occurs
anymore, and we now have a generic mechanism for ensuring that page
cache writes do not do the wrong thing when writeback and reclaim
change the state of the physical extent and/or page cache contents
whilst the write is in progress.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
* tag 'xfs-iomap-stale-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs:
xfs: drop write error injection is unfixable, remove it
xfs: use iomap_valid method to detect stale cached iomaps
iomap: write iomap validity checks
xfs: xfs_bmap_punch_delalloc_range() should take a byte range
iomap: buffered write failure should not truncate the page cache
xfs,iomap: move delalloc punching to iomap
xfs: use byte ranges for write cleanup ranges
xfs: punching delalloc extents on write failure is racy
xfs: write page faults in iomap are not buffered writes
With the changes to scan the page cache for dirty data to avoid data
corruptions from partial write cleanup racing with other page cache
operations, the drop writes error injection no longer works the same
way it used to and causes xfs/196 to fail. This is because xfs/196
writes to the file and populates the page cache before it turns on
the error injection and starts failing -overwrites-.
The result is that the original drop-writes code failed writes only
-after- overwriting the data in the cache, followed by invalidates
the cached data, then punching out the delalloc extent from under
that data.
On the surface, this looks fine. The problem is that page cache
invalidation *doesn't guarantee that it removes anything from the
page cache* and it doesn't change the dirty state of the folio. When
block size == page size and we do page aligned IO (as xfs/196 does)
everything happens to align perfectly and page cache invalidation
removes the single page folios that span the written data. Hence the
followup delalloc punch pass does not find cached data over that
range and it can punch the extent out.
IOWs, xfs/196 "works" for block size == page size with the new
code. I say "works", because it actually only works for the case
where IO is page aligned, and no data was read from disk before
writes occur. Because the moment we actually read data first, the
readahead code allocates multipage folios and suddenly the
invalidate code goes back to zeroing subfolio ranges without
changing dirty state.
Hence, with multipage folios in play, block size == page size is
functionally identical to block size < page size behaviour, and
drop-writes is manifestly broken w.r.t to this case. Invalidation of
a subfolio range doesn't result in the folio being removed from the
cache, just the range gets zeroed. Hence after we've sequentially
walked over a folio that we've dirtied (via write data) and then
invalidated, we end up with a dirty folio full of zeroed data.
And because the new code skips punching ranges that have dirty
folios covering them, we end up leaving the delalloc range intact
after failing all the writes. Hence failed writes now end up
writing zeroes to disk in the cases where invalidation zeroes folios
rather than removing them from cache.
This is a fundamental change of behaviour that is needed to avoid
the data corruption vectors that exist in the old write fail path,
and it renders the drop-writes injection non-functional and
unworkable as it stands.
As it is, I think the error injection is also now unnecessary, as
partial writes that need delalloc extent are going to be a lot more
common with stale iomap detection in place. Hence this patch removes
the drop-writes error injection completely. xfs/196 can remain for
testing kernels that don't have this data corruption fix, but those
that do will report:
xfs/196 3s ... [not run] XFS error injection drop_writes unknown on this kernel.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Now that iomap supports a mechanism to validate cached iomaps for
buffered write operations, hook it up to the XFS buffered write ops
so that we can avoid data corruptions that result from stale cached
iomaps. See:
https://lore.kernel.org/linux-xfs/20220817093627.GZ3600936@dread.disaster.area/
or the ->iomap_valid() introduction commit for exact details of the
corruption vector.
The validity cookie we store in the iomap is based on the type of
iomap we return. It is expected that the iomap->flags we set in
xfs_bmbt_to_iomap() is not perturbed by the iomap core and are
returned to us in the iomap passed via the .iomap_valid() callback.
This ensures that the validity cookie is always checking the correct
inode fork sequence numbers to detect potential changes that affect
the extent cached by the iomap.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
This is a simple mechanical transformation done by:
@@
expression E;
@@
- prandom_u32_max
+ get_random_u32_below
(E)
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Reviewed-by: SeongJae Park <sj@kernel.org> # for damon
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> # for infiniband
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> # for arm
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
When lazysbcount is enabled, fsstress and loop mount/unmount test report
the following problems:
XFS (loop0): SB summary counter sanity check failed
XFS (loop0): Metadata corruption detected at xfs_sb_write_verify+0x13b/0x460,
xfs_sb block 0x0
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000: 58 46 53 42 00 00 10 00 00 00 00 00 00 28 00 00 XFSB.........(..
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 69 fb 7c cd 5f dc 44 af 85 74 e0 cc d4 e3 34 5a i.|._.D..t....4Z
00000030: 00 00 00 00 00 20 00 06 00 00 00 00 00 00 00 80 ..... ..........
00000040: 00 00 00 00 00 00 00 81 00 00 00 00 00 00 00 82 ................
00000050: 00 00 00 01 00 0a 00 00 00 00 00 04 00 00 00 00 ................
00000060: 00 00 0a 00 b4 b5 02 00 02 00 00 08 00 00 00 00 ................
00000070: 00 00 00 00 00 00 00 00 0c 09 09 03 14 00 00 19 ................
XFS (loop0): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply
+0xe1e/0x10e0 (fs/xfs/xfs_buf.c:1580). Shutting down filesystem.
XFS (loop0): Please unmount the filesystem and rectify the problem(s)
XFS (loop0): log mount/recovery failed: error -117
XFS (loop0): log mount failed
This corruption will shutdown the file system and the file system will
no longer be mountable. The following script can reproduce the problem,
but it may take a long time.
#!/bin/bash
device=/dev/sda
testdir=/mnt/test
round=0
function fail()
{
echo "$*"
exit 1
}
mkdir -p $testdir
while [ $round -lt 10000 ]
do
echo "******* round $round ********"
mkfs.xfs -f $device
mount $device $testdir || fail "mount failed!"
fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null &
sleep 4
killall -w fsstress
umount $testdir
xfs_repair -e $device > /dev/null
if [ $? -eq 2 ];then
echo "ERR CODE 2: Dirty log exception during repair."
exit 1
fi
round=$(($round+1))
done
With lazysbcount is enabled, There is no additional lock protection for
reading m_ifree and m_icount in xfs_log_sb(), if other cpu modifies the
m_ifree, this will make the m_ifree greater than m_icount. For example,
consider the following sequence and ifreedelta is postive:
CPU0 CPU1
xfs_log_sb xfs_trans_unreserve_and_mod_sb
---------- ------------------------------
percpu_counter_sum(&mp->m_icount)
percpu_counter_add_batch(&mp->m_icount,
idelta, XFS_ICOUNT_BATCH)
percpu_counter_add(&mp->m_ifree, ifreedelta);
percpu_counter_sum(&mp->m_ifree)
After this, incorrect inode count (sb_ifree > sb_icount) will be writen to
the log. In the subsequent writing of sb, incorrect inode count (sb_ifree >
sb_icount) will fail to pass the boundary check in xfs_validate_sb_write()
that cause the file system shutdown.
When lazysbcount is enabled, we don't need to guarantee that Lazy sb
counters are completely correct, but we do need to guarantee that sb_ifree
<= sb_icount. On the other hand, the constraint that m_ifree <= m_icount
must be satisfied any time that there /cannot/ be other threads allocating
or freeing inode chunks. If the constraint is violated under these
circumstances, sb_i{count,free} (the ondisk superblock inode counters)
maybe incorrect and need to be marked sick at unmount, the count will
be rebuilt on the next mount.
Fixes: 8756a5af18 ("libxfs: add more bounds checking to sb sanity checks")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
We've been (ab)using XFS_REFC_COW_START as both an integer quantity and
a bit flag, even though it's *only* a bit flag. Rename the variable to
reflect its nature and update the cast target since we're not supposed
to be comparing it to xfs_agblock_t now.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
We're supposed to initialize the list head of an object before adding it
to another list. Fix that, and stop using the kmem_{alloc,free} calls
from the Irix days.
Fixes: 174edb0e46 ("xfs: store in-progress CoW allocations in the refcount btree")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
As we've seen, refcount records use the upper bit of the rc_startblock
field to ensure that all the refcount records are at the right side of
the refcount btree. This works because an AG is never allowed to have
more than (1U << 31) blocks in it. If we ever encounter a filesystem
claiming to have that many blocks, we absolutely do not want reflink
touching it at all.
However, this test at the start of xfs_refcount_recover_cow_leftovers is
slightly incorrect -- it /should/ be checking that agblocks isn't larger
than the XFS_MAX_CRC_AG_BLOCKS constant, and it should check that the
constant is never large enough to conflict with that CoW flag.
Note that the V5 superblock verifier has not historically rejected
filesystems where agblocks >= XFS_MAX_CRC_AG_BLOCKS, which is why this
ended up in the COW recovery routine.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Now that we've separated the startblock and CoW/shared extent domain in
the incore refcount record structure, check the domain whenever we
retrieve a record to ensure that it's still in the domain that we want.
Depending on the circumstances, a change in domain either means we're
done processing or that we've found a corruption and need to fail out.
The refcount check in xchk_xref_is_cow_staging is redundant since
_get_rec has done that for a long time now, so we can get rid of it.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Now that we have an explicit enum for shared and CoW staging extents, we
can get rid of the old FIND_RCEXT flags. Omit a couple of conversions
that disappear in the next patches.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create a helper function to ensure that CoW staging extent records have
a single refcount and that shared extent records have more than 1
refcount. We'll put this to more use in the next patch.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Now that we've broken out the startblock and shared/cow domain in the
incore refcount extent record structure, update the tracepoints to
report the domain.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Just prior to committing the reflink code into upstream, the xfs
maintainer at the time requested that I find a way to shard the refcount
records into two domains -- one for records tracking shared extents, and
a second for tracking CoW staging extents. The idea here was to
minimize mount time CoW reclamation by pushing all the CoW records to
the right edge of the keyspace, and it was accomplished by setting the
upper bit in rc_startblock. We don't allow AGs to have more than 2^31
blocks, so the bit was free.
Unfortunately, this was a very late addition to the codebase, so most of
the refcount record processing code still treats rc_startblock as a u32
and pays no attention to whether or not the upper bit (the cow flag) is
set. This is a weakness is theoretically exploitable, since we're not
fully validating the incoming metadata records.
Fuzzing demonstrates practical exploits of this weakness. If the cow
flag of a node block key record is corrupted, a lookup operation can go
to the wrong record block and start returning records from the wrong
cow/shared domain. This causes the math to go all wrong (since cow
domain is still implicit in the upper bit of rc_startblock) and we can
crash the kernel by tricking xfs into jumping into a nonexistent AG and
tripping over xfs_perag_get(mp, <nonexistent AG>) returning NULL.
To fix this, start tracking the domain as an explicit part of struct
xfs_refcount_irec, adjust all refcount functions to check the domain
of a returned record, and alter the function definitions to accept them
where necessary.
Found by fuzzing keys[2].cowflag = add in xfs/464.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Structure definitions for incore objects do not belong in the ondisk
format header. Move them to the incore types header where they belong.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
If we're in the middle of a deferred refcount operation and decide to
roll the transaction to avoid overflowing the transaction space, we need
to check the new agbno/aglen parameters that we're about to record in
the new intent. Specifically, we need to check that the new extent is
completely within the filesystem, and that continuation does not put us
into a different AG.
If the keys of a node block are wrong, the lookup to resume an
xfs_refcount_adjust_extents operation can put us into the wrong record
block. If this happens, we might not find that we run out of aglen at
an exact record boundary, which will cause the loop control to do the
wrong thing.
The previous patch should take care of that problem, but let's add this
extra sanity check to stop corruption problems sooner than later.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create a predicate function to verify that a given agbno/blockcount pair
fit entirely within a single allocation group and don't suffer
mathematical overflows. Refactor the existng open-coded logic; we're
going to add more calls to this function in the next patch.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Prior to calling xfs_refcount_adjust_extents, we trimmed agbno/aglen
such that the end of the range would not be in the middle of a refcount
record. If this is no longer the case, something is seriously wrong
with the btree. Bail out with a corruption error.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Refactor all the open-coded sizeof logic for EFI/EFD log item and log
format structures into common helper functions whose names reflect the
struct names.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Starting in 6.1, CONFIG_FORTIFY_SOURCE checks the length parameter of
memcpy. Since we're already fixing problems with BUI item copying, we
should fix it everything else.
An extra difficulty here is that the ef[id]_extents arrays are declared
as single-element arrays. This is not the convention for flex arrays in
the modern kernel, and it causes all manner of problems with static
checking tools, since they often cannot tell the difference between a
single element array and a flex array.
So for starters, change those array[1] declarations to array[]
declarations to signal that they are proper flex arrays and adjust all
the "size-1" expressions to fit the new declaration style.
Next, refactor the xfs_efi_copy_format function to handle the copying of
the head and the flex array members separately. While we're at it, fix
a minor validation deficiency in the recovery function.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
xfs_rename can update up to 5 inodes: src_dp, target_dp, src_ip, target_ip
and wip. So we need to increase the inode reservation to match.
Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The prandom_u32() function has been a deprecated inline wrapper around
get_random_u32() for several releases now, and compiles down to the
exact same code. Replace the deprecated wrapper with a direct call to
the real function. The same also applies to get_random_int(), which is
just a wrapper around get_random_u32(). This was done as a basic find
and replace.
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz> # for ext4
Acked-by: Toke Høiland-Jørgensen <toke@toke.dk> # for sch_cake
Acked-by: Chuck Lever <chuck.lever@oracle.com> # for nfsd
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com> # for thunderbolt
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Acked-by: Helge Deller <deller@gmx.de> # for parisc
Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Rather than incurring a division or requesting too many random bytes for
the given range, use the prandom_u32_max() function, which only takes
the minimum required bytes from the RNG and avoids divisions. This was
done mechanically with this coccinelle script:
@basic@
expression E;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u64;
@@
(
- ((T)get_random_u32() % (E))
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ((E) - 1))
+ prandom_u32_max(E * XXX_MAKE_SURE_E_IS_POW2)
|
- ((u64)(E) * get_random_u32() >> 32)
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ~PAGE_MASK)
+ prandom_u32_max(PAGE_SIZE)
)
@multi_line@
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
identifier RAND;
expression E;
@@
- RAND = get_random_u32();
... when != RAND
- RAND %= (E);
+ RAND = prandom_u32_max(E);
// Find a potential literal
@literal_mask@
expression LITERAL;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
position p;
@@
((T)get_random_u32()@p & (LITERAL))
// Add one to the literal.
@script:python add_one@
literal << literal_mask.LITERAL;
RESULT;
@@
value = None
if literal.startswith('0x'):
value = int(literal, 16)
elif literal[0] in '123456789':
value = int(literal, 10)
if value is None:
print("I don't know how to handle %s" % (literal))
cocci.include_match(False)
elif value == 2**32 - 1 or value == 2**31 - 1 or value == 2**24 - 1 or value == 2**16 - 1 or value == 2**8 - 1:
print("Skipping 0x%x for cleanup elsewhere" % (value))
cocci.include_match(False)
elif value & (value + 1) != 0:
print("Skipping 0x%x because it's not a power of two minus one" % (value))
cocci.include_match(False)
elif literal.startswith('0x'):
coccinelle.RESULT = cocci.make_expr("0x%x" % (value + 1))
else:
coccinelle.RESULT = cocci.make_expr("%d" % (value + 1))
// Replace the literal mask with the calculated result.
@plus_one@
expression literal_mask.LITERAL;
position literal_mask.p;
expression add_one.RESULT;
identifier FUNC;
@@
- (FUNC()@p & (LITERAL))
+ prandom_u32_max(RESULT)
@collapse_ret@
type T;
identifier VAR;
expression E;
@@
{
- T VAR;
- VAR = (E);
- return VAR;
+ return E;
}
@drop_var@
type T;
identifier VAR;
@@
{
- T VAR;
... when != VAR
}
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: KP Singh <kpsingh@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz> # for ext4 and sbitmap
Reviewed-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> # for drbd
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
xfs_dir2_isleaf is used to see if the directory is a single-leaf
form directory instead, as commented right above the function.
Besides getting rid of the broken comment, we rearrange the logic by
converting everything over to standard formatting and conventions,
at the same time, to make it easier to understand and self documenting.
Signed-off-by: Shida Zhang <zhangshida@kylinos.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Take a look at the for-loop in xfs_da_grow_inode_int:
======
for(){
nmap = min(XFS_BMAP_MAX_NMAP, count);
...
error = xfs_bmapi_write(...,&mapp[mapi], &nmap);//(..., $1, $2)
...
mapi += nmap;
}
=====
where $1 stands for the start address of the array,
while $2 is used to indicate the size of the array.
The array $1 will advance by $nmap in each iteration after
the allocation of extents.
But the size $2 still remains unchanged, which is determined by
min(XFS_BMAP_MAX_NMAP, count).
It seems that it has forgotten to trim the mapp array after each
iteration, so change it.
Signed-off-by: Shida Zhang <zhangshida@kylinos.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Return the value xfs_dir_cilookup_result() directly instead of storing it
in another redundant variable.
Reported-by: Zeal Robot <zealci@zte.com.cn>
Signed-off-by: ye xingchen <ye.xingchen@zte.com.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The "%Ld" specifier, which represents long long unsigned,
doesn't meet C language standard, and even more,
it makes people easily mistake with "%ld", which represent
long unsigned. So replace "%Ld" with "lld".
Do the same with "%Lu".
Signed-off-by: Zeng Heng <zengheng4@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
In 'fs/xfs/libxfs/xfs_trans_resv.c', the comment for transaction of removing a
directory entry writes:
/* fs/xfs/libxfs/xfs_trans_resv.c begin */
/*
* For removing a directory entry we can modify:
* the parent directory inode: inode size
* the removed inode: inode size
...
xfs_calc_remove_reservation(
struct xfs_mount *mp)
{
return XFS_DQUOT_LOGRES(mp) +
xfs_calc_iunlink_add_reservation(mp) +
max((xfs_calc_inode_res(mp, 1) +
...
/* fs/xfs/libxfs/xfs_trans_resv.c end */
There has 2 inode size of space to be reserverd, but the actual code
for inode reservation space writes.
There only count for 1 inode size to be reserved in
'xfs_calc_inode_res(mp, 1)', rather than 2.
Signed-off-by: hexiaole <hexiaole@kylinos.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
[djwong: remove redundant code citations]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Replace 'the the' with 'the' in the comment.
Signed-off-by: Slark Xiao <slark_xiao@163.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
I observed the following evidence of a memory leak while running xfs/399
from the xfs fsck test suite (edited for brevity):
XFS (sde): Metadata corruption detected at xfs_attr_shortform_verify_struct.part.0+0x7b/0xb0 [xfs], inode 0x1172 attr fork
XFS: Assertion failed: ip->i_af.if_u1.if_data == NULL, file: fs/xfs/libxfs/xfs_inode_fork.c, line: 315
------------[ cut here ]------------
WARNING: CPU: 2 PID: 91635 at fs/xfs/xfs_message.c:104 assfail+0x46/0x4a [xfs]
CPU: 2 PID: 91635 Comm: xfs_scrub Tainted: G W 5.19.0-rc7-xfsx #rc7 6e6475eb29fd9dda3181f81b7ca7ff961d277a40
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
RIP: 0010:assfail+0x46/0x4a [xfs]
Call Trace:
<TASK>
xfs_ifork_zap_attr+0x7c/0xb0
xfs_iformat_attr_fork+0x86/0x110
xfs_inode_from_disk+0x41d/0x480
xfs_iget+0x389/0xd70
xfs_bulkstat_one_int+0x5b/0x540
xfs_bulkstat_iwalk+0x1e/0x30
xfs_iwalk_ag_recs+0xd1/0x160
xfs_iwalk_run_callbacks+0xb9/0x180
xfs_iwalk_ag+0x1d8/0x2e0
xfs_iwalk+0x141/0x220
xfs_bulkstat+0x105/0x180
xfs_ioc_bulkstat.constprop.0.isra.0+0xc5/0x130
xfs_file_ioctl+0xa5f/0xef0
__x64_sys_ioctl+0x82/0xa0
do_syscall_64+0x2b/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
This newly-added assertion checks that there aren't any incore data
structures hanging off the incore fork when we're trying to reset its
contents. From the call trace, it is evident that iget was trying to
construct an incore inode from the ondisk inode, but the attr fork
verifier failed and we were trying to undo all the memory allocations
that we had done earlier.
The three assertions in xfs_ifork_zap_attr check that the caller has
already called xfs_idestroy_fork, which clearly has not been done here.
As the zap function then zeroes the pointers, we've effectively leaked
the memory.
The shortest change would have been to insert an extra call to
xfs_idestroy_fork, but it makes more sense to bundle the _idestroy_fork
call into _zap_attr, since all other callsites call _idestroy_fork
immediately prior to calling _zap_attr. IOWs, it eliminates one way to
fail.
Note: This change only applies cleanly to 2ed5b09b3e, since we just
reworked the attr fork lifetime. However, I think this memory leak has
existed since 0f45a1b20c, since the chain xfs_iformat_attr_fork ->
xfs_iformat_local -> xfs_init_local_fork will allocate
ifp->if_u1.if_data, but if xfs_ifork_verify_local_attr fails,
xfs_iformat_attr_fork will free i_afp without freeing any of the stuff
hanging off i_afp. The solution for older kernels I think is to add the
missing call to xfs_idestroy_fork just prior to calling kmem_cache_free.
Found by fuzzing a.sfattr.hdr.totsize = lastbit in xfs/399.
Fixes: 2ed5b09b3e ("xfs: make inode attribute forks a permanent part of struct xfs_inode")
Probably-Fixes: 0f45a1b20c ("xfs: improve local fork verification")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
These NULL check are no long needed after commit 2ed5b09b3e ("xfs:
make inode attribute forks a permanent part of struct xfs_inode").
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The 'ctime', 'mtime', and 'atime' for inode is the type of
'xfs_timestamp_t', which is a 64-bit type:
/* fs/xfs/libxfs/xfs_format.h begin */
typedef __be64 xfs_timestamp_t;
/* fs/xfs/libxfs/xfs_format.h end */
When the 'bigtime' feature is disabled, this 64-bit type is splitted
into two parts of 32-bit, one part is encoded for seconds since
1970-01-01 00:00:00 UTC, the other part is encoded for nanoseconds
above the seconds, this two parts are the type of
'xfs_legacy_timestamp' and the min and max time value of this type are
defined as macros 'XFS_LEGACY_TIME_MIN' and 'XFS_LEGACY_TIME_MAX':
/* fs/xfs/libxfs/xfs_format.h begin */
struct xfs_legacy_timestamp {
__be32 t_sec; /* timestamp seconds */
__be32 t_nsec; /* timestamp nanoseconds */
};
#define XFS_LEGACY_TIME_MIN ((int64_t)S32_MIN)
#define XFS_LEGACY_TIME_MAX ((int64_t)S32_MAX)
/* fs/xfs/libxfs/xfs_format.h end */
/* include/linux/limits.h begin */
#define U32_MAX ((u32)~0U)
#define S32_MAX ((s32)(U32_MAX >> 1))
#define S32_MIN ((s32)(-S32_MAX - 1))
/* include/linux/limits.h end */
'XFS_LEGACY_TIME_MIN' is the min time value of the
'xfs_legacy_timestamp', that is -(2^31) seconds relative to the
1970-01-01 00:00:00 UTC, it can be converted to human-friendly time
value by 'date' command:
/* command begin */
[root@~]# date --utc -d '@0' +'%Y-%m-%d %H:%M:%S'
1970-01-01 00:00:00
[root@~]# date --utc -d "@`echo '-(2^31)'|bc`" +'%Y-%m-%d %H:%M:%S'
1901-12-13 20:45:52
[root@~]#
/* command end */
When 'bigtime' feature is enabled, this 64-bit type becomes a 64-bit
nanoseconds counter, with the start time value is the min time value of
'xfs_legacy_timestamp'(start time means the value of 64-bit nanoseconds
counter is 0). We have already caculated the min time value of
'xfs_legacy_timestamp', that is 1901-12-13 20:45:52 UTC, but the comment
for the start time value of inode with 'bigtime' feature enabled writes
the value is 1901-12-31 20:45:52 UTC:
/* fs/xfs/libxfs/xfs_format.h begin */
/*
* XFS Timestamps
* ==============
* When the bigtime feature is enabled, ondisk inode timestamps become an
* unsigned 64-bit nanoseconds counter. This means that the bigtime inode
* timestamp epoch is the start of the classic timestamp range, which is
* Dec 31 20:45:52 UTC 1901. ...
...
*/
/* fs/xfs/libxfs/xfs_format.h end */
That is a typo, and this patch corrects the typo, from 'Dec 31' to
'Dec 13'.
Suggested-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Xiaole He <hexiaole@kylinos.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
This series fixes a use-after-free bug that syzbot uncovered. The UAF
itself is a result of a race condition between getxattr and removexattr
because callers to getxattr do not necessarily take any sort of locks
before calling into the filesystem.
Although the race condition itself can be fixed through clever use of a
memory barrier, further consideration of the use cases of extended
attributes shows that most files always have at least one attribute, so
we might as well make them permanent.
v2: Minor tweaks suggested by Dave, and convert some more macros to
helper functions.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmLQRsAACgkQ+H93GTRK
tOseOw/+JdSH2MU2xx+XoE5M/fStzGpw0UsoOqDo8kUPKDt3z12NwuczlL4OAiuw
XFrN/1IAnxBsTD9YxFYbqoCPNi/VR81ajfWV7JqD2B1Joj0aATsxGDdNUYJnxCdU
HMlMqP5o77XvArwkxFbgxYi7UGdAeNwXxqUJcJ8FopQo2lb8+SG6XzpLgGKnyrKT
FRNKXNObplhtzOs/Bv8qYAxJulmmjkktFJXhK2OAUJlIDjFwFY9Wo2T4QuOVe9w+
NXFOYyu0BqWLpDZQkYKWoCnF0GNsUavS8DP6zZYW3qJ6mX/f1jmtfbOLAkHNhlh8
uHy/3k3SeQhKztTqM28sPioe6mdj2xocorDCCVBgGXgWxVF6aWeM/PS4tMTWN/Bg
TWd1egERpeVC0Ymkm0LTCIDNuLqxsknK1G6sxXhwrQ8cw/70Gl08ePwgdyZ6hpD9
Q61iJQofcI7MJX189a2VSbbHRzFnZIA+uVK4oyhmdEkQVKTHgmzwHVP660oAv9bD
Y5hqkWEoyKTaaCsOWRAPVXG3k03lq+TNcaGggZgwFx11Gw4oMEx5hMUztoP54xX4
aEXb1HWcCmMxy8llnFY/82baW98ucwl8FwWF1qhNIPT40mYx9IobDmvkCtNrAoOC
41U7O8CxxPlt7XKxoRhafQOAhzp0ZzuhCdbaFIUENV7pTAJtq5Q=
=W3Ad
-----END PGP SIGNATURE-----
Merge tag 'make-attr-fork-permanent-5.20_2022-07-14' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into xfs-5.20-mergeB
xfs: make attr forks permanent
This series fixes a use-after-free bug that syzbot uncovered. The UAF
itself is a result of a race condition between getxattr and removexattr
because callers to getxattr do not necessarily take any sort of locks
before calling into the filesystem.
Although the race condition itself can be fixed through clever use of a
memory barrier, further consideration of the use cases of extended
attributes shows that most files always have at least one attribute, so
we might as well make them permanent.
v2: Minor tweaks suggested by Dave, and convert some more macros to
helper functions.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
* tag 'make-attr-fork-permanent-5.20_2022-07-14' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux:
xfs: replace inode fork size macros with functions
xfs: replace XFS_IFORK_Q with a proper predicate function
xfs: use XFS_IFORK_Q to determine the presence of an xattr fork
xfs: make inode attribute forks a permanent part of struct xfs_inode
xfs: convert XFS_IFORK_PTR to a static inline helper
Current work to merge the XFS inode life cycle with the VFS inode
life cycle is finding some interesting issues. If we have a path
that hits buffer trylocks fairly hard (e.g. a non-blocking
background inode freeing function), we end up hitting massive
contention on the buffer cache hash locks:
- 92.71% 0.05% [kernel] [k] xfs_inodegc_worker
- 92.67% xfs_inodegc_worker
- 92.13% xfs_inode_unlink
- 91.52% xfs_inactive_ifree
- 85.63% xfs_read_agi
- 85.61% xfs_trans_read_buf_map
- 85.59% xfs_buf_read_map
- xfs_buf_get_map
- 85.55% xfs_buf_find
- 72.87% _raw_spin_lock
- do_raw_spin_lock
71.86% __pv_queued_spin_lock_slowpath
- 8.74% xfs_buf_rele
- 7.88% _raw_spin_lock
- 7.88% do_raw_spin_lock
7.63% __pv_queued_spin_lock_slowpath
- 1.70% xfs_buf_trylock
- 1.68% down_trylock
- 1.41% _raw_spin_lock_irqsave
- 1.39% do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.76% _raw_spin_unlock
0.75% do_raw_spin_unlock
This is basically hammering the pag->pag_buf_lock from lots of CPUs
doing trylocks at the same time. Most of the buffer trylock
operations ultimately fail after we've done the lookup, so we're
really hammering the buf hash lock whilst making no progress.
We can also see significant spinlock traffic on the same lock just
under normal operation when lots of tasks are accessing metadata
from the same AG, so let's avoid all this by creating a lookup fast
path which leverages the rhashtable's ability to do RCU protected
lookups.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmLPvngUHGRhdmlkQGZy
b21vcmJpdC5jb20ACgkQregpR/R1+h0gTw/9EK1gj31QpurgGziYsL0JFI1Uq33Z
2rB/yTJXzxe+J7cE6B2RYuSj4EK7YI1aZXTRC5De5A8TqbFaNztrigqxNNpm3jh0
T0AbVQoY7XzjbvMHQ0VFPBcJGcVbQypA+rabSlLHfU9zfN3t4EnM+BmuaFqygGZj
1A6ZjkVChmEprGjd16846sgvMqdLa4yJ4/9Jsu5WlI+vPZj9gJX/7Mjc580Zljb5
gg9Cf8ziW78gpHzj3ufSWv2jBcWcMdyHpyCF/fNceROUaxmZKsMUDKcsia9TyQhB
yJXxw9Rnb3F23VJSYMJIcf4+RTd7iqd88GhEEFYxj41gI/jQxqRovlS1ljk2l20R
3i4TUs7yF24sLLQdL8YkJiGCOEvRqPPcNd4xfGwdioRwXwoEqB7L/vYpUheQ8qSZ
Tnn4vmGm+GQHNnQNhxiF8KkAd9gwcUslN36ZJn+h3zjvfgAFQFChsk+3CoFoxsth
BpbFT3lo4Hc6xJBDCp7Z3Gxurxq5fQ2CGYHxCBT4feNkZS5YOLd/Os2hIZVId8XA
jp66ZyELd8zj+CxMp4ZyYqsFETIao13B8KPEqvI2/obEDE6p/++olP8aqKIP1C8d
ASOjxP8KqWEHLe3or4W3m2WSDa5fp1b3G/mjS7r/jDKqIuTMZXYw4CJx1x3rTr4F
nXAnlWoGVq7HjWc=
=8UYp
-----END PGP SIGNATURE-----
Merge tag 'xfs-buf-lockless-lookup-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.20-mergeB
xfs: lockless buffer cache lookups
Current work to merge the XFS inode life cycle with the VFS inode
life cycle is finding some interesting issues. If we have a path
that hits buffer trylocks fairly hard (e.g. a non-blocking
background inode freeing function), we end up hitting massive
contention on the buffer cache hash locks:
- 92.71% 0.05% [kernel] [k] xfs_inodegc_worker
- 92.67% xfs_inodegc_worker
- 92.13% xfs_inode_unlink
- 91.52% xfs_inactive_ifree
- 85.63% xfs_read_agi
- 85.61% xfs_trans_read_buf_map
- 85.59% xfs_buf_read_map
- xfs_buf_get_map
- 85.55% xfs_buf_find
- 72.87% _raw_spin_lock
- do_raw_spin_lock
71.86% __pv_queued_spin_lock_slowpath
- 8.74% xfs_buf_rele
- 7.88% _raw_spin_lock
- 7.88% do_raw_spin_lock
7.63% __pv_queued_spin_lock_slowpath
- 1.70% xfs_buf_trylock
- 1.68% down_trylock
- 1.41% _raw_spin_lock_irqsave
- 1.39% do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.76% _raw_spin_unlock
0.75% do_raw_spin_unlock
This is basically hammering the pag->pag_buf_lock from lots of CPUs
doing trylocks at the same time. Most of the buffer trylock
operations ultimately fail after we've done the lookup, so we're
really hammering the buf hash lock whilst making no progress.
We can also see significant spinlock traffic on the same lock just
under normal operation when lots of tasks are accessing metadata
from the same AG, so let's avoid all this by creating a lookup fast
path which leverages the rhashtable's ability to do RCU protected
lookups.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
* tag 'xfs-buf-lockless-lookup-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs:
xfs: lockless buffer lookup
xfs: remove a superflous hash lookup when inserting new buffers
xfs: reduce the number of atomic when locking a buffer after lookup
xfs: merge xfs_buf_find() and xfs_buf_get_map()
xfs: break up xfs_buf_find() into individual pieces
xfs: rework xfs_buf_incore() API
To facilitate future improvements in inode logging and improving
inode cluster buffer locking order consistency, we need a new
mechanism for defering inode cluster buffer modifications during
unlinked list modifications.
The unlinked inode list buffer locking is complex. The unlinked
list is unordered - we add to the tail, remove from where-ever the
inode is in the list. Hence we might need to lock two inode buffers
here (previous inode in list and the one being removed). While we
can order the locking of these buffers correctly within the confines
of the unlinked list, there may be other inodes that need buffer
locking in the same transaction. e.g. O_TMPFILE being linked into a
directory also modifies the directory inode.
Hence we need a mechanism for defering unlinked inode list updates
until a point where we know that all modifications have been made
and all that remains is to lock and modify the cluster buffers.
We can do this by first observing that we serialise unlinked list
modifications by holding the AGI buffer lock. IOWs, the AGI is going
to be locked until the transaction commits any time we modify the
unlinked list. Hence it doesn't matter when in the unlink
transactions that we actually load, lock and modify the inode
cluster buffer.
We add an in-memory unlinked inode log item to defer the inode
cluster buffer update to transaction commit time where it can be
ordered with all the other inode cluster operations that need to be
done. Essentially all we need to do is record the inodes that need
to have their unlinked list pointer updated in a new log item that
we attached to the transaction.
This log item exists purely for the purpose of delaying the update
of the unlinked list pointer until the inode cluster buffer can be
locked in the correct order around the other inode cluster buffers.
It plays no part in the actual commit, and there's no change to
anything that is written to the log. i.e. the inode cluster buffers
still have to be fully logged here (not just ordered) as log
recovery depedends on this to replay mods to the unlinked inode
list.
Hence if we add a "precommit" hook into xfs_trans_commit()
to run a "precommit" operation on these iunlink log items, we can
delay the locking, modification and logging of the inode cluster
buffer until after all other modifications have been made. The
precommit hook reuires us to sort the items that are going to be run
so that we can lock precommit items in the correct order as we
perform the modifications they describe.
To make this unlinked inode list processing simpler and easier to
implement as a log item, we need to change the way we track the
unlinked list in memory. Starting from the observation that an inode
on the unlinked list is pinned in memory by the VFS, we can use the
xfs_inode itself to track the unlinked list. To do this efficiently,
we want the unlinked list to be a double linked list. The problem
here is that we need a list per AGI unlinked list, and there are 64
of these per AGI. The approach taken in this patchset is to shadow
the AGI unlinked list heads in the perag, and link inodes by agino,
hence requiring only 8 extra bytes per inode to track this state.
We can then use the agino pointers for lockless inode cache lookups
to retreive the inode. The aginos in the inode are modified only
under the AGI lock, just like the cluster buffer pointers, so we
don't need any extra locking here. The i_next_unlinked field tracks
the on-disk value of the unlinked list, and the i_prev_unlinked is a
purely in-memory pointer that enables us to efficiently remove
inodes from the middle of the list.
This results in moving a lot of the unlink modification work into
the precommit operations on the unlink log item. Tracking all the
unlinked inodes in the inodes themselves also gets rid of the
unlinked list reference hash table that is used to track this back
pointer relationship. This greatly simplifies the the unlinked list
modification code, and removes memory allocations in this hot path
to track back pointers. This, overall, slightly reduces the CPU
overhead of the unlink path.
The result of this log item means that we move all the actual
manipulation of objects to be logged out of the iunlink path and
into the iunlink item. This allows for future optimisation of this
mechanism without needing changes to high level unlink path, as
well as making the unlink lock ordering predictable and synchronised
with other operations that may require inode cluster locking.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmLPvZAUHGRhdmlkQGZy
b21vcmJpdC5jb20ACgkQregpR/R1+h2CDBAAj9QH4/XIe8JIx/mKgAGzcNNwQxu8
geBqb5S2ri0oB22pRXKc/3zArw/8zPwcgZF83ChkFrQ6tLn4JGkEEuvIKr3b8k50
2AEghYf8dqCaXRpkdvIGjJtdK54MFZIHv9TYRwHVzBp3WLtrz7uHmKeRf2qeSBMI
DLurzVIbcocMptvHxrZZCpf1ajuVdovXtuw8ExiORZZKLOeF+3xBGztenkfh2BTO
8Kh8qJVSNN41XQ8h87PWyQtmah6JouqURXXGERJcgLbr80pTSw2EBihJvmXUmn8y
qnoT27TCPAMOEDTWe+SHzLOVRLvhN+at/lFWbvas6PwOvDGAwQQtZkv/QyLTSgqD
6Zg9xJeeSgHhHP2kCeLlKmvW1dRptcUzhCWOrQ9Ry+WZnKK5ZenevkaAXAva6ucS
NXwIU1DnWfJ51SHIYQiQIci2g+vF+pnJRQq1DtYUuwtBSWfsmw1uquNZodgbA9Ue
k6hfk4qVua63k+vXsd5gVdCHT+Liw+1ldTInl2GNhT/riNzewO0HY3zmc1aZQyMM
mymHXKVcQJbLpJvwqB5SXq8a37fbpoQDYlycptSF/YxxBhiCKKWuc6q7Tl6Y9VSS
qpSHvh+MkJcP8PYtPjNUcJ9yeXhYJgkv1KK47zkIKzOD9a+zh4SIrfiBUflZbpQq
M9ubXGHVmFqS4Nk=
=59M0
-----END PGP SIGNATURE-----
Merge tag 'xfs-iunlink-item-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.20-mergeB
xfs: introduce in-memory inode unlink log items
To facilitate future improvements in inode logging and improving
inode cluster buffer locking order consistency, we need a new
mechanism for defering inode cluster buffer modifications during
unlinked list modifications.
The unlinked inode list buffer locking is complex. The unlinked
list is unordered - we add to the tail, remove from where-ever the
inode is in the list. Hence we might need to lock two inode buffers
here (previous inode in list and the one being removed). While we
can order the locking of these buffers correctly within the confines
of the unlinked list, there may be other inodes that need buffer
locking in the same transaction. e.g. O_TMPFILE being linked into a
directory also modifies the directory inode.
Hence we need a mechanism for defering unlinked inode list updates
until a point where we know that all modifications have been made
and all that remains is to lock and modify the cluster buffers.
We can do this by first observing that we serialise unlinked list
modifications by holding the AGI buffer lock. IOWs, the AGI is going
to be locked until the transaction commits any time we modify the
unlinked list. Hence it doesn't matter when in the unlink
transactions that we actually load, lock and modify the inode
cluster buffer.
We add an in-memory unlinked inode log item to defer the inode
cluster buffer update to transaction commit time where it can be
ordered with all the other inode cluster operations that need to be
done. Essentially all we need to do is record the inodes that need
to have their unlinked list pointer updated in a new log item that
we attached to the transaction.
This log item exists purely for the purpose of delaying the update
of the unlinked list pointer until the inode cluster buffer can be
locked in the correct order around the other inode cluster buffers.
It plays no part in the actual commit, and there's no change to
anything that is written to the log. i.e. the inode cluster buffers
still have to be fully logged here (not just ordered) as log
recovery depedends on this to replay mods to the unlinked inode
list.
Hence if we add a "precommit" hook into xfs_trans_commit()
to run a "precommit" operation on these iunlink log items, we can
delay the locking, modification and logging of the inode cluster
buffer until after all other modifications have been made. The
precommit hook reuires us to sort the items that are going to be run
so that we can lock precommit items in the correct order as we
perform the modifications they describe.
To make this unlinked inode list processing simpler and easier to
implement as a log item, we need to change the way we track the
unlinked list in memory. Starting from the observation that an inode
on the unlinked list is pinned in memory by the VFS, we can use the
xfs_inode itself to track the unlinked list. To do this efficiently,
we want the unlinked list to be a double linked list. The problem
here is that we need a list per AGI unlinked list, and there are 64
of these per AGI. The approach taken in this patchset is to shadow
the AGI unlinked list heads in the perag, and link inodes by agino,
hence requiring only 8 extra bytes per inode to track this state.
We can then use the agino pointers for lockless inode cache lookups
to retreive the inode. The aginos in the inode are modified only
under the AGI lock, just like the cluster buffer pointers, so we
don't need any extra locking here. The i_next_unlinked field tracks
the on-disk value of the unlinked list, and the i_prev_unlinked is a
purely in-memory pointer that enables us to efficiently remove
inodes from the middle of the list.
This results in moving a lot of the unlink modification work into
the precommit operations on the unlink log item. Tracking all the
unlinked inodes in the inodes themselves also gets rid of the
unlinked list reference hash table that is used to track this back
pointer relationship. This greatly simplifies the the unlinked list
modification code, and removes memory allocations in this hot path
to track back pointers. This, overall, slightly reduces the CPU
overhead of the unlink path.
The result of this log item means that we move all the actual
manipulation of objects to be logged out of the iunlink path and
into the iunlink item. This allows for future optimisation of this
mechanism without needing changes to high level unlink path, as
well as making the unlink lock ordering predictable and synchronised
with other operations that may require inode cluster locking.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
* tag 'xfs-iunlink-item-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs:
xfs: add in-memory iunlink log item
xfs: add log item precommit operation
xfs: combine iunlink inode update functions
xfs: clean up xfs_iunlink_update_inode()
xfs: double link the unlinked inode list
xfs: introduce xfs_iunlink_lookup
xfs: refactor xlog_recover_process_iunlinks()
xfs: track the iunlink list pointer in the xfs_inode
xfs: factor the xfs_iunlink functions
xfs: flush inode gc workqueue before clearing agi bucket
Now we have forwards traversal via the incore inode in place, we now
need to add back pointers to the incore inode to entirely replace
the back reference cache. We use the same lookup semantics and
constraints as for the forwards pointer lookups during unlinks, and
so we can look up any inode in the unlinked list directly and update
the list pointers, forwards or backwards, at any time.
The only wrinkle in converting the unlinked list manipulations to
use in-core previous pointers is that log recovery doesn't have the
incore inode state built up so it can't just read in an inode and
release it to finish off the unlink. Hence we need to modify the
traversal in recovery to read one inode ahead before we
release the inode at the head of the list. This populates the
next->prev relationship sufficient to be able to replay the unlinked
list and hence greatly simplify the runtime code.
This recovery algorithm also requires that we actually remove inodes
from the unlinked list one at a time as background inode
inactivation will result in unlinked list removal racing with the
building of the in-memory unlinked list state. We could serialise
this by holding the AGI buffer lock when constructing the in memory
state, but all that does is lockstep background processing with list
building. It is much simpler to flush the inodegc immediately after
releasing the inode so that it is unlinked immediately and there is
no races present at all.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Having direct access to the i_next_unlinked pointer in unlinked
inodes greatly simplifies the processing of inodes on the unlinked
list. We no longer need to look up the inode buffer just to find
next inode in the list if the xfs_inode is in memory. These
improvements will be realised over upcoming patches as other
dependencies on the inode buffer for unlinked list processing are
removed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Replace the shouty macros here with typechecked helper functions.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Replace this shouty macro with a real C function that has a more
descriptive name.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Modify xfs_ifork_ptr to return a NULL pointer if the caller asks for the
attribute fork but i_forkoff is zero. This eliminates the ambiguity
between i_forkoff and i_af.if_present, which should make it easier to
understand the lifetime of attr forks.
While we're at it, remove the if_present checks around calls to
xfs_idestroy_fork and xfs_ifork_zap_attr since they can both handle attr
forks that have already been torn down.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Syzkaller reported a UAF bug a while back:
==================================================================
BUG: KASAN: use-after-free in xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127
Read of size 4 at addr ffff88802cec919c by task syz-executor262/2958
CPU: 2 PID: 2958 Comm: syz-executor262 Not tainted
5.15.0-0.30.3-20220406_1406 #3
Hardware name: Red Hat KVM, BIOS 1.13.0-2.module+el8.3.0+7860+a7792d29
04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x82/0xa9 lib/dump_stack.c:106
print_address_description.constprop.9+0x21/0x2d5 mm/kasan/report.c:256
__kasan_report mm/kasan/report.c:442 [inline]
kasan_report.cold.14+0x7f/0x11b mm/kasan/report.c:459
xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127
xfs_attr_get+0x378/0x4c2 fs/xfs/libxfs/xfs_attr.c:159
xfs_xattr_get+0xe3/0x150 fs/xfs/xfs_xattr.c:36
__vfs_getxattr+0xdf/0x13d fs/xattr.c:399
cap_inode_need_killpriv+0x41/0x5d security/commoncap.c:300
security_inode_need_killpriv+0x4c/0x97 security/security.c:1408
dentry_needs_remove_privs.part.28+0x21/0x63 fs/inode.c:1912
dentry_needs_remove_privs+0x80/0x9e fs/inode.c:1908
do_truncate+0xc3/0x1e0 fs/open.c:56
handle_truncate fs/namei.c:3084 [inline]
do_open fs/namei.c:3432 [inline]
path_openat+0x30ab/0x396d fs/namei.c:3561
do_filp_open+0x1c4/0x290 fs/namei.c:3588
do_sys_openat2+0x60d/0x98c fs/open.c:1212
do_sys_open+0xcf/0x13c fs/open.c:1228
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0x0
RIP: 0033:0x7f7ef4bb753d
Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48
89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73
01 c3 48 8b 0d 1b 79 2c 00 f7 d8 64 89 01 48
RSP: 002b:00007f7ef52c2ed8 EFLAGS: 00000246 ORIG_RAX: 0000000000000055
RAX: ffffffffffffffda RBX: 0000000000404148 RCX: 00007f7ef4bb753d
RDX: 00007f7ef4bb753d RSI: 0000000000000000 RDI: 0000000020004fc0
RBP: 0000000000404140 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0030656c69662f2e
R13: 00007ffd794db37f R14: 00007ffd794db470 R15: 00007f7ef52c2fc0
</TASK>
Allocated by task 2953:
kasan_save_stack+0x19/0x38 mm/kasan/common.c:38
kasan_set_track mm/kasan/common.c:46 [inline]
set_alloc_info mm/kasan/common.c:434 [inline]
__kasan_slab_alloc+0x68/0x7c mm/kasan/common.c:467
kasan_slab_alloc include/linux/kasan.h:254 [inline]
slab_post_alloc_hook mm/slab.h:519 [inline]
slab_alloc_node mm/slub.c:3213 [inline]
slab_alloc mm/slub.c:3221 [inline]
kmem_cache_alloc+0x11b/0x3eb mm/slub.c:3226
kmem_cache_zalloc include/linux/slab.h:711 [inline]
xfs_ifork_alloc+0x25/0xa2 fs/xfs/libxfs/xfs_inode_fork.c:287
xfs_bmap_add_attrfork+0x3f2/0x9b1 fs/xfs/libxfs/xfs_bmap.c:1098
xfs_attr_set+0xe38/0x12a7 fs/xfs/libxfs/xfs_attr.c:746
xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59
__vfs_setxattr+0x11b/0x177 fs/xattr.c:180
__vfs_setxattr_noperm+0x128/0x5e0 fs/xattr.c:214
__vfs_setxattr_locked+0x1d4/0x258 fs/xattr.c:275
vfs_setxattr+0x154/0x33d fs/xattr.c:301
setxattr+0x216/0x29f fs/xattr.c:575
__do_sys_fsetxattr fs/xattr.c:632 [inline]
__se_sys_fsetxattr fs/xattr.c:621 [inline]
__x64_sys_fsetxattr+0x243/0x2fe fs/xattr.c:621
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0x0
Freed by task 2949:
kasan_save_stack+0x19/0x38 mm/kasan/common.c:38
kasan_set_track+0x1c/0x21 mm/kasan/common.c:46
kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:360
____kasan_slab_free mm/kasan/common.c:366 [inline]
____kasan_slab_free mm/kasan/common.c:328 [inline]
__kasan_slab_free+0xe2/0x10e mm/kasan/common.c:374
kasan_slab_free include/linux/kasan.h:230 [inline]
slab_free_hook mm/slub.c:1700 [inline]
slab_free_freelist_hook mm/slub.c:1726 [inline]
slab_free mm/slub.c:3492 [inline]
kmem_cache_free+0xdc/0x3ce mm/slub.c:3508
xfs_attr_fork_remove+0x8d/0x132 fs/xfs/libxfs/xfs_attr_leaf.c:773
xfs_attr_sf_removename+0x5dd/0x6cb fs/xfs/libxfs/xfs_attr_leaf.c:822
xfs_attr_remove_iter+0x68c/0x805 fs/xfs/libxfs/xfs_attr.c:1413
xfs_attr_remove_args+0xb1/0x10d fs/xfs/libxfs/xfs_attr.c:684
xfs_attr_set+0xf1e/0x12a7 fs/xfs/libxfs/xfs_attr.c:802
xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59
__vfs_removexattr+0x106/0x16a fs/xattr.c:468
cap_inode_killpriv+0x24/0x47 security/commoncap.c:324
security_inode_killpriv+0x54/0xa1 security/security.c:1414
setattr_prepare+0x1a6/0x897 fs/attr.c:146
xfs_vn_change_ok+0x111/0x15e fs/xfs/xfs_iops.c:682
xfs_vn_setattr_size+0x5f/0x15a fs/xfs/xfs_iops.c:1065
xfs_vn_setattr+0x125/0x2ad fs/xfs/xfs_iops.c:1093
notify_change+0xae5/0x10a1 fs/attr.c:410
do_truncate+0x134/0x1e0 fs/open.c:64
handle_truncate fs/namei.c:3084 [inline]
do_open fs/namei.c:3432 [inline]
path_openat+0x30ab/0x396d fs/namei.c:3561
do_filp_open+0x1c4/0x290 fs/namei.c:3588
do_sys_openat2+0x60d/0x98c fs/open.c:1212
do_sys_open+0xcf/0x13c fs/open.c:1228
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0x0
The buggy address belongs to the object at ffff88802cec9188
which belongs to the cache xfs_ifork of size 40
The buggy address is located 20 bytes inside of
40-byte region [ffff88802cec9188, ffff88802cec91b0)
The buggy address belongs to the page:
page:00000000c3af36a1 refcount:1 mapcount:0 mapping:0000000000000000
index:0x0 pfn:0x2cec9
flags: 0xfffffc0000200(slab|node=0|zone=1|lastcpupid=0x1fffff)
raw: 000fffffc0000200 ffffea00009d2580 0000000600000006 ffff88801a9ffc80
raw: 0000000000000000 0000000080490049 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff88802cec9080: fb fb fb fc fc fa fb fb fb fb fc fc fb fb fb fb
ffff88802cec9100: fb fc fc fb fb fb fb fb fc fc fb fb fb fb fb fc
>ffff88802cec9180: fc fa fb fb fb fb fc fc fa fb fb fb fb fc fc fb
^
ffff88802cec9200: fb fb fb fb fc fc fb fb fb fb fb fc fc fb fb fb
ffff88802cec9280: fb fb fc fc fa fb fb fb fb fc fc fa fb fb fb fb
==================================================================
The root cause of this bug is the unlocked access to xfs_inode.i_afp
from the getxattr code paths while trying to determine which ILOCK mode
to use to stabilize the xattr data. Unfortunately, the VFS does not
acquire i_rwsem when vfs_getxattr (or listxattr) call into the
filesystem, which means that getxattr can race with a removexattr that's
tearing down the attr fork and crash:
xfs_attr_set: xfs_attr_get:
xfs_attr_fork_remove: xfs_ilock_attr_map_shared:
xfs_idestroy_fork(ip->i_afp);
kmem_cache_free(xfs_ifork_cache, ip->i_afp);
if (ip->i_afp &&
ip->i_afp = NULL;
xfs_need_iread_extents(ip->i_afp))
<KABOOM>
ip->i_forkoff = 0;
Regrettably, the VFS is much more lax about i_rwsem and getxattr than
is immediately obvious -- not only does it not guarantee that we hold
i_rwsem, it actually doesn't guarantee that we *don't* hold it either.
The getxattr system call won't acquire the lock before calling XFS, but
the file capabilities code calls getxattr with and without i_rwsem held
to determine if the "security.capabilities" xattr is set on the file.
Fixing the VFS locking requires a treewide investigation into every code
path that could touch an xattr and what i_rwsem state it expects or sets
up. That could take years or even prove impossible; fortunately, we
can fix this UAF problem inside XFS.
An earlier version of this patch used smp_wmb in xfs_attr_fork_remove to
ensure that i_forkoff is always zeroed before i_afp is set to null and
changed the read paths to use smp_rmb before accessing i_forkoff and
i_afp, which avoided these UAF problems. However, the patch author was
too busy dealing with other problems in the meantime, and by the time he
came back to this issue, the situation had changed a bit.
On a modern system with selinux, each inode will always have at least
one xattr for the selinux label, so it doesn't make much sense to keep
incurring the extra pointer dereference. Furthermore, Allison's
upcoming parent pointer patchset will also cause nearly every inode in
the filesystem to have extended attributes. Therefore, make the inode
attribute fork structure part of struct xfs_inode, at a cost of 40 more
bytes.
This patch adds a clunky if_present field where necessary to maintain
the existing logic of xattr fork null pointer testing in the existing
codebase. The next patch switches the logic over to XFS_IFORK_Q and it
all goes away.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
We're about to make this logic do a bit more, so convert the macro to a
static inline function for better typechecking and fewer shouty macros.
No functional changes here.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
At line 1561, variable "state" is being compared
with NULL every loop iteration.
-------------------------------------------------------------------
1561 for (i = 0; state != NULL && i < state->path.active; i++) {
1562 xfs_trans_brelse(args->trans, state->path.blk[i].bp);
1563 state->path.blk[i].bp = NULL;
1564 }
-------------------------------------------------------------------
However, it cannot be NULL.
----------------------------------------
1546 state = xfs_da_state_alloc(args);
----------------------------------------
xfs_da_state_alloc calls kmem_cache_zalloc. kmem_cache_zalloc is
called with __GFP_NOFAIL flag and, therefore, it cannot return NULL.
--------------------------------------------------------------------------
struct xfs_da_state *
xfs_da_state_alloc(
struct xfs_da_args *args)
{
struct xfs_da_state *state;
state = kmem_cache_zalloc(xfs_da_state_cache, GFP_NOFS | __GFP_NOFAIL);
state->args = args;
state->mp = args->dp->i_mount;
return state;
}
--------------------------------------------------------------------------
Found by Linux Verification Center (linuxtesting.org) with SVACE.
Signed-off-by: Andrey Strachuk <strochuk@ispras.ru>
Fixes: 4d0cdd2bb8 ("xfs: clean up xfs_attr_node_hasname")
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Make it consistent with the other buffer APIs to return a error and
the buffer is placed in a parameter.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
We check if an ag contains the log in many places, so make this
a first class XFS helper by lifting it to fs/xfs/libxfs/xfs_ag.h and
renaming it xfs_ag_contains_log(). The convert all the places that
check if the AG contains the log to use this helper.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Many of the places that call xfs_ag_block_count() have a perag
available. These places can just read pag->block_count directly
instead of calculating the AG block count from first principles.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
There is a lot of overhead in functions like xfs_verify_agino() that
repeatedly calculate the geometry limits of an AG. These can be
pre-calculated as they are static and the verification context has
a per-ag context it can quickly reference.
In the case of xfs_verify_agino(), we now always have a perag
context handy, so we can store the minimum and maximum agino values
in the AG in the perag. This means we don't have to calculate
it on every call and it can be inlined in callers if we move it
to xfs_ag.h.
xfs_verify_agino_or_null() gets the same perag treatment.
xfs_agino_range() is moved to xfs_ag.c as it's not really a type
function, and it's use is largely restricted as the first and last
aginos can be grabbed straight from the perag in most cases.
Note that we leave the original xfs_verify_agino in place in
xfs_types.c as a static function as other callers in that file do
not have per-ag contexts so still need to go the long way. It's been
renamed to xfs_verify_agno_agino() to indicate it takes both an agno
and an agino to differentiate it from new function.
$ size --totals fs/xfs/built-in.a
text data bss dec hex filename
before 1482185 329588 572 1812345 1ba779 (TOTALS)
after 1481937 329588 572 1812097 1ba681 (TOTALS)
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
There is a lot of overhead in functions like xfs_verify_agbno() that
repeatedly calculate the geometry limits of an AG. These can be
pre-calculated as they are static and the verification context has
a per-ag context it can quickly reference.
In the case of xfs_verify_agbno(), we now always have a perag
context handy, so we can store the AG length and the minimum valid
block in the AG in the perag. This means we don't have to calculate
it on every call and it can be inlined in callers if we move it
to xfs_ag.h.
Move xfs_ag_block_count() to xfs_ag.c because it's really a
per-ag function and not an XFS type function. We need a little
bit of rework that is specific to xfs_initialise_perag() to allow
growfs to calculate the new perag sizes before we've updated the
primary superblock during the grow (chicken/egg situation).
Note that we leave the original xfs_verify_agbno in place in
xfs_types.c as a static function as other callers in that file do
not have per-ag contexts so still need to go the long way. It's been
renamed to xfs_verify_agno_agbno() to indicate it takes both an agno
and an agbno to differentiate it from new function.
Future commits will make similar changes for other per-ag geometry
validation functions.
Further:
$ size --totals fs/xfs/built-in.a
text data bss dec hex filename
before 1483006 329588 572 1813166 1baaae (TOTALS)
after 1482185 329588 572 1812345 1ba779 (TOTALS)
This rework reduces the binary size by ~820 bytes, indicating
that much less work is being done to bounds check the agbno values
against on per-ag geometry information.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
We have the perag in most places we call xfs_alloc_read_agfl, so
pass the perag instead of a mount/agno pair.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
It's available in all callers, so pass it in so that the perag can
be passed further down the stack.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
It's available in all callers, so pass it in so that the perag can
be passed further down the stack.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
We have the perag in most places we call xfs_read_agf, so pass the
perag instead of a mount/agno pair.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
We have the perag in most palces we call xfs_read_agi, so pass the
perag instead of a mount/agno pair.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
xfs_alloc_read_agf() initialises the perag if it hasn't been done
yet, so it makes sense to pass it the perag rather than pull a
reference from the buffer. This allows callers to be per-ag centric
rather than passing mount/agno pairs everywhere.
Whilst modifying the xfs_reflink_find_shared() function definition,
declare it static and remove the extern declaration as it is an
internal function only these days.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Trivial wrapper around xfs_alloc_read_agf(), can be easily replaced
by passing a NULL agfbp to xfs_alloc_read_agf().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
xfs_ialloc_read_agi() initialises the perag if it hasn't been done
yet, so it makes sense to pass it the perag rather than pull a
reference from the buffer. This allows callers to be per-ag centric
rather than passing mount/agno pairs everywhere.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
This is just a basic wrapper around xfs_ialloc_read_agi(), which can
be entirely handled by xfs_ialloc_read_agi() by passing a NULL
agibpp....
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Because the perag must exist for these operations, look it up as
part of the common shrink operations and pass it instead of the
mount/agno pair.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Now that we've established (again!) that empty xattr leaf buffers are
ok, we no longer need to bhold them to transactions when we're creating
new leaf blocks. Get rid of the entire mechanism, which should simplify
the xattr code quite a bit.
The original justification for using bhold here was to prevent the AIL
from trying to write the empty leaf block into the fs during the brief
time that we release the buffer lock. The reason for /that/ was to
prevent recovery from tripping over the empty ondisk block.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
TLDR: Revert commit 51e6104fdb ("xfs: detect empty attr leaf blocks in
xfs_attr3_leaf_verify") because it was wrong.
Every now and then we get a corruption report from the kernel or
xfs_repair about empty leaf blocks in the extended attribute structure.
We've long thought that these shouldn't be possible, but prior to 5.18
one would shake loose in the recoveryloop fstests about once a month.
A new addition to the xattr leaf block verifier in 5.19-rc1 makes this
happen every 7 minutes on my testing cloud. I added a ton of logging to
detect any time we set the header count on an xattr leaf block to zero.
This produced the following dmesg output on generic/388:
XFS (sda4): ino 0x21fcbaf leaf 0x129bf78 hdcount==0!
Call Trace:
<TASK>
dump_stack_lvl+0x34/0x44
xfs_attr3_leaf_create+0x187/0x230
xfs_attr_shortform_to_leaf+0xd1/0x2f0
xfs_attr_set_iter+0x73e/0xa90
xfs_xattri_finish_update+0x45/0x80
xfs_attr_finish_item+0x1b/0xd0
xfs_defer_finish_noroll+0x19c/0x770
__xfs_trans_commit+0x153/0x3e0
xfs_attr_set+0x36b/0x740
xfs_xattr_set+0x89/0xd0
__vfs_setxattr+0x67/0x80
__vfs_setxattr_noperm+0x6e/0x120
vfs_setxattr+0x97/0x180
setxattr+0x88/0xa0
path_setxattr+0xc3/0xe0
__x64_sys_setxattr+0x27/0x30
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
So now we know that someone is creating empty xattr leaf blocks as part
of converting a sf xattr structure into a leaf xattr structure. The
conversion routine logs any existing sf attributes in the same
transaction that creates the leaf block, so we know this is a setxattr
to a file that has no attributes at all.
Next, g/388 calls the shutdown ioctl and cycles the mount to trigger log
recovery. I also augmented buffer item recovery to call ->verify_struct
on any attr leaf blocks and complain if it finds a failure:
XFS (sda4): Unmounting Filesystem
XFS (sda4): Mounting V5 Filesystem
XFS (sda4): Starting recovery (logdev: internal)
XFS (sda4): xattr leaf daddr 0x129bf78 hdrcount == 0!
Call Trace:
<TASK>
dump_stack_lvl+0x34/0x44
xfs_attr3_leaf_verify+0x3b8/0x420
xlog_recover_buf_commit_pass2+0x60a/0x6c0
xlog_recover_items_pass2+0x4e/0xc0
xlog_recover_commit_trans+0x33c/0x350
xlog_recovery_process_trans+0xa5/0xe0
xlog_recover_process_data+0x8d/0x140
xlog_do_recovery_pass+0x19b/0x720
xlog_do_log_recovery+0x62/0xc0
xlog_do_recover+0x33/0x1d0
xlog_recover+0xda/0x190
xfs_log_mount+0x14c/0x360
xfs_mountfs+0x517/0xa60
xfs_fs_fill_super+0x6bc/0x950
get_tree_bdev+0x175/0x280
vfs_get_tree+0x1a/0x80
path_mount+0x6f5/0xaa0
__x64_sys_mount+0x103/0x140
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7fc61e241eae
And a moment later, the _delwri_submit of the recovered buffers trips
the same verifier and recovery fails:
XFS (sda4): Metadata corruption detected at xfs_attr3_leaf_verify+0x393/0x420 [xfs], xfs_attr3_leaf block 0x129bf78
XFS (sda4): Unmount and run xfs_repair
XFS (sda4): First 128 bytes of corrupted metadata buffer:
00000000: 00 00 00 00 00 00 00 00 3b ee 00 00 00 00 00 00 ........;.......
00000010: 00 00 00 00 01 29 bf 78 00 00 00 00 00 00 00 00 .....).x........
00000020: a5 1b d0 02 b2 9a 49 df 8e 9c fb 8d f8 31 3e 9d ......I......1>.
00000030: 00 00 00 00 02 1f cb af 00 00 00 00 10 00 00 00 ................
00000040: 00 50 0f b0 00 00 00 00 00 00 00 00 00 00 00 00 .P..............
00000050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
XFS (sda4): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply+0x37f/0x3b0 [xfs] (fs/xfs/xfs_buf.c:1518). Shutting down filesystem.
XFS (sda4): Please unmount the filesystem and rectify the problem(s)
XFS (sda4): log mount/recovery failed: error -117
XFS (sda4): log mount failed
I think I see what's going on here -- setxattr is racing with something
that shuts down the filesystem:
Thread 1 Thread 2
-------- --------
xfs_attr_sf_addname
xfs_attr_shortform_to_leaf
<create empty leaf>
xfs_trans_bhold(leaf)
xattri_dela_state = XFS_DAS_LEAF_ADD
<roll transaction>
<flush log>
<shut down filesystem>
xfs_trans_bhold_release(leaf)
<discover fs is dead, bail>
Thread 3
--------
<cycle mount, start recovery>
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
<replay empty leaf buffer from recovered buf item>
xfs_buf_delwri_queue(leaf)
xfs_buf_delwri_submit
_xfs_buf_ioapply(leaf)
xfs_attr3_leaf_write_verify
<trip over empty leaf buffer>
<fail recovery>
As you can see, the bhold keeps the leaf buffer locked and thus prevents
the *AIL* from tripping over the ichdr.count==0 check in the write
verifier. Unfortunately, it doesn't prevent the log from getting
flushed to disk, which sets up log recovery to fail.
So. It's clear that the kernel has always had the ability to persist
attr leaf blocks with ichdr.count==0, which means that it's part of the
ondisk format now.
Unfortunately, this check has been added and removed multiple times
throughout history. It first appeared in[1] kernel 3.10 as part of the
early V5 format patches. The check was later discovered to break log
recovery and hence disabled[2] during log recovery in kernel 4.10.
Simultaneously, the check was added[3] to xfs_repair 4.9.0 to try to
weed out the empty leaf blocks. This was still not correct because log
recovery would recover an empty attr leaf block successfully only for
regular xattr operations to trip over the empty block during of the
block during regular operation. Therefore, the check was removed
entirely[4] in kernel 5.7 but removal of the xfs_repair check was
forgotten. The continued complaints from xfs_repair lead to us
mistakenly re-adding[5] the verifier check for kernel 5.19. Remove it
once again.
[1] 517c22207b ("xfs: add CRCs to attr leaf blocks")
[2] 2e1d23370e ("xfs: ignore leaf attr ichdr.count in verifier
during log replay")
[3] f7140161 ("xfs_repair: junk leaf attribute if count == 0")
[4] f28cef9e4d ("xfs: don't fail verifier on empty attr3 leaf
block")
[5] 51e6104fdb ("xfs: detect empty attr leaf blocks in
xfs_attr3_leaf_verify")
Looking at the rest of the xattr code, it seems that files with empty
leaf blocks behave as expected -- listxattr reports no attributes;
getxattr on any xattr returns nothing as expected; removexattr does
nothing; and setxattr can add attributes just fine.
Original-bug: 517c22207b ("xfs: add CRCs to attr leaf blocks")
Still-not-fixed-by: 2e1d23370e ("xfs: ignore leaf attr ichdr.count in verifier during log replay")
Removed-in: f28cef9e4d ("xfs: don't fail verifier on empty attr3 leaf block")
Fixes: 51e6104fdb ("xfs: detect empty attr leaf blocks in xfs_attr3_leaf_verify")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
The variable @args is fed to a tracepoint, and that's the only place
it's used. This is fine for the kernel, but for userspace, tracepoints
are #define'd out of existence, which results in this warning on gcc
11.2:
xfs_attr.c: In function ‘xfs_attr_node_try_addname’:
xfs_attr.c:1440:42: warning: unused variable ‘args’ [-Wunused-variable]
1440 | struct xfs_da_args *args = attr->xattri_da_args;
| ^~~~
Clean this up.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
I found a race involving the larp control knob, aka the debugging knob
that lets developers enable logging of extended attribute updates:
Thread 1 Thread 2
echo 0 > /sys/fs/xfs/debug/larp
setxattr(REPLACE)
xfs_has_larp (returns false)
xfs_attr_set
echo 1 > /sys/fs/xfs/debug/larp
xfs_attr_defer_replace
xfs_attr_init_replace_state
xfs_has_larp (returns true)
xfs_attr_init_remove_state
<oops, wrong DAS state!>
This isn't a particularly severe problem right now because xattr logging
is only enabled when CONFIG_XFS_DEBUG=y, and developers *should* know
what they're doing.
However, the eventual intent is that callers should be able to ask for
the assistance of the log in persisting xattr updates. This capability
might not be required for /all/ callers, which means that dynamic
control must work correctly. Once an xattr update has decided whether
or not to use logged xattrs, it needs to stay in that mode until the end
of the operation regardless of what subsequent parallel operations might
do.
Therefore, it is an error to continue sampling xfs_globals.larp once
xfs_attr_change has made a decision about larp, and it was not correct
for me to have told Allison that ->create_intent functions can sample
the global log incompat feature bitfield to decide to elide a log item.
Instead, create a new op flag for the xfs_da_args structure, and convert
all other callers of xfs_has_larp and xfs_sb_version_haslogxattrs within
the attr update state machine to look for the operations flag.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
This series contains a two key cleanups for the new LARP code. Most
of it is refactoring and tweaking the code that creates kernel log
messages about enabling and disabling features -- we should be
warning about LARP being turned on once per mount, instead of once
per insmod cycle; we shouldn't be spamming the logs so aggressively
about turning *off* log incompat features.
The second part of the series refactors the LARP code responsible
for getting (and releasing) permission to use xattr log items. The
implementation code doesn't belong in xfs_log.c, and calls to
logging functions don't belong in libxfs -- they really should be
done by the VFS implementation functions before they start calling
into libraries.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
As part of solving the memory leaks and UAF problems in the new LARP
code, kmemleak also reported that log recovery will leak the table
used to hash buffer cancellations if the recovery fails. Fix this
problem by creating alloc/free helpers that initialize and free the
hashtable contents correctly.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The LARP patchset added an awkward coupling point between libxfs and
what would be libxlog, if the XFS log were actually its own library.
Move the code that sets up logged xattr updates out of libxfs and into
xfs_xattr.c so that libxfs no longer has to know about xlog_* functions.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The LARP patchset added an awkward coupling point between libxfs and
what would be libxlog, if the XFS log were actually its own library.
Move the code that enables logged xattr updates out of "lib"xlog and into
xfs_xattr.c so that it no longer has to know about xlog_* functions.
While we're at it, give xfs_xattr.c its own header file.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
While we're messing around with how recovery allocates and frees the
buffer cancellation table, convert the allocation to use kmalloc_array
instead of the old kmem_alloc APIs, and make it handle a null return,
even though that's not likely.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Move the code that allocates and frees the buffer cancellation tables
used by log recovery into the file that actually uses the tables. This
is a precursor to some cleanups and a memory leak fix.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The recent patch to improve btree cycle checking caused a regression
when I rebased the in-memory btree branch atop the 5.19 for-next branch,
because in-memory short-pointer btrees do not have AG numbers. This
produced the following complaint from kmemleak:
unreferenced object 0xffff88803d47dde8 (size 264):
comm "xfs_io", pid 4889, jiffies 4294906764 (age 24.072s)
hex dump (first 32 bytes):
90 4d 0b 0f 80 88 ff ff 00 a0 bd 05 80 88 ff ff .M..............
e0 44 3a a0 ff ff ff ff 00 df 08 06 80 88 ff ff .D:.............
backtrace:
[<ffffffffa0388059>] xfbtree_dup_cursor+0x49/0xc0 [xfs]
[<ffffffffa029887b>] xfs_btree_dup_cursor+0x3b/0x200 [xfs]
[<ffffffffa029af5d>] __xfs_btree_split+0x6ad/0x820 [xfs]
[<ffffffffa029b130>] xfs_btree_split+0x60/0x110 [xfs]
[<ffffffffa029f6da>] xfs_btree_make_block_unfull+0x19a/0x1f0 [xfs]
[<ffffffffa029fada>] xfs_btree_insrec+0x3aa/0x810 [xfs]
[<ffffffffa029fff3>] xfs_btree_insert+0xb3/0x240 [xfs]
[<ffffffffa02cb729>] xfs_rmap_insert+0x99/0x200 [xfs]
[<ffffffffa02cf142>] xfs_rmap_map_shared+0x192/0x5f0 [xfs]
[<ffffffffa02cf60b>] xfs_rmap_map_raw+0x6b/0x90 [xfs]
[<ffffffffa0384a85>] xrep_rmap_stash+0xd5/0x1d0 [xfs]
[<ffffffffa0384dc0>] xrep_rmap_visit_bmbt+0xa0/0xf0 [xfs]
[<ffffffffa0384fb6>] xrep_rmap_scan_iext+0x56/0xa0 [xfs]
[<ffffffffa03850d8>] xrep_rmap_scan_ifork+0xd8/0x160 [xfs]
[<ffffffffa0385195>] xrep_rmap_scan_inode+0x35/0x80 [xfs]
[<ffffffffa03852ee>] xrep_rmap_find_rmaps+0x10e/0x270 [xfs]
I noticed that xfs_btree_insrec has a bunch of debug code that return
out of the function immediately, without freeing the "new" btree cursor
that can be returned when _make_block_unfull calls xfs_btree_split. Fix
the error return in this function to free the btree cursor.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs/538 on a 1kB block filesystem failed with this assert:
XFS: Assertion failed: cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 || xfs_is_shutdown(cur->bc_mp), file: fs/xfs/libxfs/xfs_btree.c, line: 448
The problem was that an allocation failed unexpectedly in
xfs_bmbt_alloc_block() after roughly 150,000 minlen allocation error
injections, resulting in an EFSCORRUPTED error being returned to
xfs_bmapi_write(). The error occurred on extent-to-btree format
conversion allocating the new root block:
RIP: 0010:xfs_bmbt_alloc_block+0x177/0x210
Call Trace:
<TASK>
xfs_btree_new_iroot+0xdf/0x520
xfs_btree_make_block_unfull+0x10d/0x1c0
xfs_btree_insrec+0x364/0x790
xfs_btree_insert+0xaa/0x210
xfs_bmap_add_extent_hole_real+0x1fe/0x9a0
xfs_bmapi_allocate+0x34c/0x420
xfs_bmapi_write+0x53c/0x9c0
xfs_alloc_file_space+0xee/0x320
xfs_file_fallocate+0x36b/0x450
vfs_fallocate+0x148/0x340
__x64_sys_fallocate+0x3c/0x70
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa
Why the allocation failed at this point is unknown, but is likely
that we ran the transaction out of reserved space and filesystem out
of space with bmbt blocks because of all the minlen allocations
being done causing worst case fragmentation of a large allocation.
Regardless of the cause, we've then called xfs_bmapi_finish() which
calls xfs_btree_del_cursor(cur, error) to tear down the cursor.
So we have a failed operation, error != 0, cur->bc_ino.allocated > 0
and the filesystem is still up. The assert fails to take into
account that allocation can fail with an error and the transaction
teardown will shut the filesystem down if necessary. i.e. the
assert needs to check "|| error != 0" as well, because at this point
shutdown is pending because the current transaction is dirty....
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Not fatal, the assert is there to catch developer attention. I'm
seeing this occasionally during recoveryloop testing after a
shutdown, and I don't want this to stop an overnight recoveryloop
run as it is currently doing.
Convert the ASSERT to a XFS_IS_CORRUPT() check so it will dump a
corruption report into the log and cause a test failure that way,
but it won't stop the machine dead.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Commit dc04db2aa7 has caused a small aim7 regression, showing a
small increase in CPU usage in __xfs_btree_check_sblock() as a
result of the extra checking.
This is likely due to the endian conversion of the sibling poitners
being unconditional instead of relying on the compiler to endian
convert the NULL pointer at compile time and avoiding the runtime
conversion for this common case.
Rework the checks so that endian conversion of the sibling pointers
is only done if they are not null as the original code did.
.... and these need to be "inline" because the compiler completely
fails to inline them automatically like it should be doing.
$ size fs/xfs/libxfs/xfs_btree.o*
text data bss dec hex filename
51874 240 0 52114 cb92 fs/xfs/libxfs/xfs_btree.o.orig
51562 240 0 51802 ca5a fs/xfs/libxfs/xfs_btree.o.inline
Just when you think the tools have advanced sufficiently we don't
have to care about stuff like this anymore, along comes a reminder
that *our tools still suck*.
Fixes: dc04db2aa7 ("xfs: detect self referencing btree sibling pointers")
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
While running xfs/297 and generic/642, I noticed a crash in
xfs_attri_item_relog when it tries to copy the attr name to the new
xattri log item. I think what happened here was that we called
->iop_commit on the old attri item (which nulls out the pointers) as
part of a log force at the same time that a chained attr operation was
ongoing. The system was busy enough that at some later point, the defer
ops operation decided it was necessary to relog the attri log item, but
as we've detached the name buffer from the old attri log item, we can't
copy it to the new one, and kaboom.
I think there's a broader refcounting problem with LARP mode -- the
setxattr code can return to userspace before the CIL actually formats
and commits the log item, which results in a UAF bug. Therefore, the
xattr log item needs to be able to retain a reference to the name and
value buffers until the log items have completely cleared the log.
Furthermore, each time we create an intent log item, we allocate new
memory and (re)copy the contents; sharing here would be very useful.
Solve the UAF and the unnecessary memory allocations by having the log
code create a single refcounted buffer to contain the name and value
contents. This buffer can be passed from old to new during a relog
operation, and the logging code can (optionally) attach it to the
xfs_attr_item for reuse when LARP mode is enabled.
This also fixes a problem where the xfs_attri_log_item objects weren't
being freed back to the same cache where they came from.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
V4 superblocks do not contain the log_incompat feature bit, which means
that we cannot protect xattr log items against kernels that are too old
to know how to recover them. Turn off the log items for such
filesystems and adjust the "delayed" name to reflect what it's really
controlling.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Spelling mistake (triple letters) in comment.
Detected with the help of Coccinelle.
Signed-off-by: Julia Lawall <Julia.Lawall@inria.fr>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Everywhere else in XFS, structures that capture the state of an ongoing
deferred work item all have names that end with "_intent". The new
extended attribute deferred work items are not named as such, so fix it
to follow the naming convention used elsewhere.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The state variable is now a local variable pointing to a heap
allocation, so we don't need to zero-initialize it, nor do we need the
conditional to decide if we should free it.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Initialize and destroy the xattr log item caches in the same places that
we do all the other log item caches.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Nobody uses this field, so get rid of it and the unused flag definition.
Rearrange the structure layout to reduce its size from 104 to 96 bytes.
This gets us from 39 to 42 objects per page.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Create a separate slab cache for struct xfs_attr_item objects, since we
can pack the (104-byte) intent items more tightly than we can with the
general slab cache objects. On x86, this means 39 intents per memory
page instead of 32.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The flags that are stored in the extended attr intent log item really
should have a separate namespace from the rest of the XFS_ATTR_* flags.
Give them one to make it a little more obvious that they're intent item
flags.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The calling conventions of this function are a mess -- callers /can/
provide a pointer to a pointer to a state structure, but it's not
required, and as evidenced by the last two patches, the callers that do
weren't be careful enough about how to deal with an existing da state.
Push the allocation and freeing responsibilty to the callers, which
means that callers from the xattr node state machine steps now have the
visibility to allocate or free the da state structure as they please.
As a bonus, the node remove/add paths for larp-mode replaces can reset
the da state structure instead of freeing and immediately reallocating
it.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Make sure we screen the "attr flags" field of recovered xattr intent log
items to reject flag bits that we don't know about. This is really the
attr *filter* field from xfs_da_args, so rename the field and create
a mask to make checking for invalid bits easier.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If a setxattr operation finds an xattr structure in leaf format, adding
the attr can fail due to lack of space and hence requires an upgrade to
node format. After this happens, we'll roll the transaction and
re-enter the state machine, at which time we need to perform a second
lookup of the attribute name to find its new location. This lookup
attaches a new da state structure to the xfs_attr_item but doesn't free
the old one (from the leaf lookup) and leaks it. Fix that.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
kmemleak reported that we lost an xfs_da_state while removing xattrs in
generic/020:
unreferenced object 0xffff88801c0e4b40 (size 480):
comm "attr", pid 30515, jiffies 4294931061 (age 5.960s)
hex dump (first 32 bytes):
78 bc 65 07 00 c9 ff ff 00 30 60 1c 80 88 ff ff x.e......0`.....
02 00 00 00 00 00 00 00 80 18 83 4e 80 88 ff ff ...........N....
backtrace:
[<ffffffffa023ef4a>] xfs_da_state_alloc+0x1a/0x30 [xfs]
[<ffffffffa021b6f3>] xfs_attr_node_hasname+0x23/0x90 [xfs]
[<ffffffffa021c6f1>] xfs_attr_set_iter+0x441/0xa30 [xfs]
[<ffffffffa02b5104>] xfs_xattri_finish_update+0x44/0x80 [xfs]
[<ffffffffa02b515e>] xfs_attr_finish_item+0x1e/0x40 [xfs]
[<ffffffffa0244744>] xfs_defer_finish_noroll+0x184/0x740 [xfs]
[<ffffffffa02a6473>] __xfs_trans_commit+0x153/0x3e0 [xfs]
[<ffffffffa021d149>] xfs_attr_set+0x469/0x7e0 [xfs]
[<ffffffffa02a78d9>] xfs_xattr_set+0x89/0xd0 [xfs]
[<ffffffff812e6512>] __vfs_removexattr+0x52/0x70
[<ffffffff812e6a08>] __vfs_removexattr_locked+0xb8/0x150
[<ffffffff812e6af6>] vfs_removexattr+0x56/0x100
[<ffffffff812e6bf8>] removexattr+0x58/0x90
[<ffffffff812e6cce>] path_removexattr+0x9e/0xc0
[<ffffffff812e6d44>] __x64_sys_lremovexattr+0x14/0x20
[<ffffffff81786b35>] do_syscall_64+0x35/0x80
I think this is a consequence of xfs_attr_node_removename_setup
attaching a new da(btree) state to xfs_attr_item and never freeing it.
I /think/ it's the case that the remove paths could detach the da state
earlier in the remove state machine since nothing else accesses the
state. However, let's future-proof the new xattr code by adding a
catch-all when we free the xfs_attr_item to make sure we never leak the
da state.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_repair flags these as a corruption error, so the verifier should
catch software bugs that result in empty leaf blocks being written
to disk, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We can't use the same algorithm for replacing an existing attribute
when logging attributes. The existing algorithm is essentially:
1. create new attr w/ INCOMPLETE
2. atomically flip INCOMPLETE flags between old + new attribute
3. remove old attr which is marked w/ INCOMPLETE
This algorithm guarantees that we see either the old or new
attribute, and if we fail after the atomic flag flip, we don't have
to recover the removal of the old attr because we never see
INCOMPLETE attributes in lookups.
For logged attributes, however, this does not work. The logged
attribute intents do not track the work that has been done as the
transaction rolls, and hence the only recovery mechanism we have is
"run the replace operation from scratch".
This is further exacerbated by the attempt to avoid needing the
INCOMPLETE flag to create an atomic swap. This means we can create
a second active attribute of the same name before we remove the
original. If we fail at any point after the create but before the
removal has completed, we end up with duplicate attributes in
the attr btree and recovery only tries to replace one of them.
There are several other failure modes where we can leave partially
allocated remote attributes that expose stale data, partially free
remote attributes that enable UAF based stale data exposure, etc.
TO fix this, we need a different algorithm for replace operations
when LARP is enabled. Luckily, it's not that complex if we take the
right first step. That is, the first thing we log is the attri
intent with the new name/value pair and mark the old attr as
INCOMPLETE in the same transaction.
From there, we then remove the old attr and keep relogging the
new name/value in the intent, such that we always know that we have
to create the new attr in recovery. Once the old attr is removed,
we then run a normal ATTR_CREATE operation relogging the intent as
we go. If the new attr is local, then it gets created in a single
atomic transaction that also logs the final intent done. If the new
attr is remote, the we set INCOMPLETE on the new attr while we
allocate and set the remote value, and then we clear the INCOMPLETE
flag at in the last transaction taht logs the final intent done.
If we fail at any point in this algorithm, log recovery will always
see the same state on disk: the new name/value in the intent, and
either an INCOMPLETE attr or no attr in the attr btree. If we find
an INCOMPLETE attr, we run the full replace starting with removing
the INCOMPLETE attr. If we don't find it, then we simply create the
new attr.
Notably, recovery of a failed create that has an INCOMPLETE flag set
is now the same - we start with the lookup of the INCOMPLETE attr,
and if that exists then we do the full replace recovery process,
otherwise we just create the new attr.
Hence changing the way we do the replace operation when LARP is
enabled allows us to use the same log recovery algorithm for both
the ATTR_CREATE and ATTR_REPLACE operations. This is also the same
algorithm we use for runtime ATTR_REPLACE operations (except for the
step setting up the initial conditions).
The result is that:
- ATTR_CREATE uses the same algorithm regardless of whether LARP is
enabled or not
- ATTR_REPLACE with larp=0 is identical to the old algorithm
- ATTR_REPLACE with larp=1 runs an unmodified attr removal algorithm
from the larp=0 code and then runs the unmodified ATTR_CREATE
code.
- log recovery when larp=1 runs the same ATTR_REPLACE algorithm as
it uses at runtime.
Because the state machine is now quite clean, changing the algorithm
is really just a case of changing the initial state and how the
states link together for the ATTR_REPLACE case. Hence it's not a
huge amount of code for what is a fairly substantial rework
of the attr logging and recovery algorithm....
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We currently store the high level attr operation in
args->attr_flags. This field contains what the VFS is telling us to
do, but don't necessarily match what we are doing in the low level
modification state machine. e.g. XATTR_REPLACE implies both
XFS_DA_OP_ADDNAME and XFS_DA_OP_RENAME because it is doing both a
remove and adding a new attr.
However, deep in the individual state machine operations, we check
errors against this high level VFS op flags, not the low level
XFS_DA_OP flags. Indeed, we don't even have a low level flag for
a REMOVE operation, so the only way we know we are doing a remove
is the complete absence of XATTR_REPLACE, XATTR_CREATE,
XFS_DA_OP_ADDNAME and XFS_DA_OP_RENAME. And because there are other
flags in these fields, this is a pain to check if we need to.
As the XFS_DA_OP flags are only needed once the deferred operations
are set up, set these flags appropriately when we set the initial
operation state. We also introduce a XFS_DA_OP_REMOVE flag to make
it easy to know that we are doing a remove operation.
With these, we can remove the use of XATTR_REPLACE and XATTR_CREATE
in low level lookup operations, and manipulate the low level flags
according to the low level context that is operating. e.g. log
recovery does not have a VFS xattr operation state to copy into
args->attr_flags, and the low level state machine ops we do for
recovery do not match the high level VFS operations that were in
progress when the system failed...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_attri_remove_iter is not used anymore, so remove it and all the
infrastructure it uses and is needed to drive it. THe
xfs_attr_refillstate() function now throws an unused warning, so
isolate the xfs_attr_fillstate()/xfs_attr_refillstate() code pair
with an #if 0 and a comment explaining why we want to keep this code
and restore the optimisation it provides in the near future.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that xfs_attri_set_iter() has initial states for removing
attributes, switch the pure attribute removal code over to using it.
This requires attrs being removed to always be marked as INCOMPLETE
before we start the removal due to the fact we look up the attr to
remove again in xfs_attr_node_remove_attr().
Note: this drops the fillstate/refillstate optimisations from
the remove path that avoid having to look up the path again after
setting the incomplete flag and removing remote attrs. Restoring
that optimisation to this path is future Dave's problem.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We need to merge the add and remove code paths to enable safe
recovery of replace operations. Hoist the initial remove states from
xfs_attr_remove_iter into xfs_attr_set_iter. We will make use of
them in the next patches.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that the full xfs_attr_set_iter() state machine always
terminates with either the state being XFS_DAS_DONE on success or
an error on failure, we can get rid of the need for it to return
-EAGAIN whenever it needs to roll the transaction before running
the next state.
That is, we don't need to spray -EAGAIN return states everywhere,
the caller just check the state machine state for completion to
determine what action should be taken next. This greatly simplifies
the code within the state machine implementation as it now only has
to handle 0 for success or -errno for error and it doesn't need to
tell the caller to retry.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Clean up the final leaf/node states in xfs_attr_set_iter() to
further simplify the high level state machine and to set the
completion state correctly. As we are adding a separate state
for node format removal, we need to ensure that node formats
are collapsed back to shortform or empty correctly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We may not have a remote value for the old xattr we have to remove,
so skip over the remote value removal states and go straight to
the xattr name removal in the leaf/node block.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We can skip the REPLACE state when LARP is enabled, but that means
the XFS_DAS_FLIP_LFLAG state is now poorly named - it indicates
something that has been done rather than what the state is going to
do. Rename it to "REMOVE_OLD" to indicate that we are now going to
perform removal of the old attr.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we set a new xattr, we have three exit paths:
1. nothing else to do
2. allocate and set the remote xattr value
3. perform the rest of a replace operation
Currently we push both 2 and 3 into the same state, regardless of
whether we just set a remote attribute or not. Once we've set the
remote xattr, we have two exit states:
1. nothing else to do
2. perform the rest of a replace operation
Hence we can split the remote xattr allocation and setting into
their own states and factor it out of xfs_attr_set_iter() to further
clean up the state machine and the implementation of the state
machine.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The operations performed from XFS_DAS_FOUND_LBLK through to
XFS_DAS_RM_LBLK are now identical to XFS_DAS_FOUND_NBLK through to
XFS_DAS_RM_NBLK. We can collapse these down into a single set of
code.
To do this, define the states that leaf and node run through as
separate sets of sequential states. Then as we move to the next
state, we can use increments rather than specific state assignments
to move through the states. This means the state progression is set
by the initial state that enters the series and we don't need to
duplicate the code anymore.
At the exit point of the series we need to select the correct leaf
or node state, but that can also be done by state increment rather
than assignment.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We re-enter the XFS_DAS_FOUND_LBLK state when we have to allocate
multiple extents for a remote xattr. We currently have a flag
called XFS_DAC_LEAF_ADDNAME_INIT to avoid running the remote attr
hole finding code more than once.
However, for the node format tree, we have a separate state for this
so we never reenter the state machine at XFS_DAS_FOUND_NBLK and so
it does not need a special flag to skip over the remote attr hold
finding code.
Convert the leaf block code to use the same state machine as the
node blocks and kill the XFS_DAC_LEAF_ADDNAME_INIT flag.
This further points out that this "ALLOC" state is only traversed
if we have remote xattrs or we are doing a rename operation. Rename
both the leaf and node alloc states to _ALLOC_RMT to indicate they
are iterating to do allocation of remote xattr blocks.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We current use XFS_DAS_UNINIT for several steps in the attr_set
state machine. We use it for setting shortform xattrs, converting
from shortform to leaf, leaf add, leaf-to-node and leaf add. All of
these things are essentially known before we start the state machine
iterating, so we really should separate them out:
XFS_DAS_SF_ADD:
- tries to do a shortform add
- on success -> done
- on ENOSPC converts to leaf, -> XFS_DAS_LEAF_ADD
- on error, dies.
XFS_DAS_LEAF_ADD:
- tries to do leaf add
- on success:
- inline attr -> done
- remote xattr || REPLACE -> XFS_DAS_FOUND_LBLK
- on ENOSPC converts to node, -> XFS_DAS_NODE_ADD
- on error, dies
XFS_DAS_NODE_ADD:
- tries to do node add
- on success:
- inline attr -> done
- remote xattr || REPLACE -> XFS_DAS_FOUND_NBLK
- on error, dies
This makes it easier to understand how the state machine starts
up and sets us up on the path to further state machine
simplifications.
This also converts the DAS state tracepoints to use strings rather
than numbers, as converting between enums and numbers requires
manual counting rather than just reading the name.
This also introduces a XFS_DAS_DONE state so that we can trace
successful operation completions easily.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Warning counts are not used anywhere in the kernel. In addition, there
are no use cases, test coverage, or documentation for this functionality.
Remove the 'warnings' field from struct xfs_dquot_res and any other
related code.
Signed-off-by: Catherine Hoang <catherine.hoang@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Logged attribute intents only have set and remove types - there is
no separate intent type for a replace operation. We should have a
separate type for a replace operation, as it needs to perform
operations that neither SET or REMOVE can perform.
Add this type to the intent items and rearrange the deferred
operation setup to reflect the different operations we are
performing.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We currently set it and hold it when converting from short to leaf
form, then release it only to immediately look it back up again
to do the leaf insert.
Do a bit of refactoring to xfs_attr_leaf_try_add() to avoid this
messy handling of the newly allocated leaf buffer.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
generic/642 triggered a reproducable assert failure in
xlog_cil_commit() that resulted from a xfs_attr_set() committing
an empty but dirty transaction. When the CIL is empty and this
occurs, xlog_cil_commit() tries a background push and this triggers
a "pushing an empty CIL" assert.
XFS: Assertion failed: !list_empty(&cil->xc_cil), file: fs/xfs/xfs_log_cil.c, line: 1274
Call Trace:
<TASK>
xlog_cil_commit+0xa5a/0xad0
__xfs_trans_commit+0xb8/0x330
xfs_trans_commit+0x10/0x20
xfs_attr_set+0x3e2/0x4c0
xfs_xattr_set+0x8d/0xe0
__vfs_setxattr+0x6b/0x90
__vfs_setxattr_noperm+0x76/0x220
__vfs_setxattr_locked+0xdf/0x100
vfs_setxattr+0x94/0x170
setxattr+0x110/0x200
path_setxattr+0xbf/0xe0
__x64_sys_setxattr+0x2b/0x30
do_syscall_64+0x35/0x80
The problem is related to the breakdown of attribute addition in
xfs_attr_set_iter() and how it is called from deferred operations.
When we have a pure leaf xattr insert, we add the xattr to the leaf
and set the next state to XFS_DAS_FOUND_LBLK and return -EAGAIN.
This requeues the xattr defered work, rolls the transaction and
runs xfs_attr_set_iter() again. This then checks the xattr for
being remote (it's not) and whether a replace op is being done (this
is a create op) and if neither are true it returns without having
done anything.
xfs_xattri_finish_update() then unconditionally sets the transaction
dirty, and the deferops finishes and returns to __xfs_trans_commit()
which sees the transaction dirty and tries to commit it by calling
xlog_cil_commit(). The transaction is empty, and then the assert
fires if this happens when the CIL is empty.
This patch addresses the structure of xfs_attr_set_iter() that
requires re-entry on leaf add even when nothing will be done. This
gets rid of the trailing empty transaction and so doesn't trigger
the XFS_TRANS_DIRTY assignment in xfs_xattri_finish_update()
incorrectly. Addressing that is for a different patch.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add an error tag on xfs_attr3_leaf_to_node to test log attribute
recovery and replay.
Signed-off-by: Catherine Hoang <catherine.hoang@oracle.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add an error tag on xfs_da3_split to test log attribute recovery
and replay.
Signed-off-by: Catherine Hoang <catherine.hoang@oracle.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Quick helper function to collapse duplicate code to initialize
transactions for attributes
Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Suggested-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>