Commit Graph

2433 Commits

Author SHA1 Message Date
Darrick J. Wong
3c79e6a872 xfs: create a macro for decoding ftypes in tracepoints
Create the XFS_DIR3_FTYPE_STR macro so that we can report ftype as
strings instead of numbers in tracepoints.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-02-22 12:30:50 -08:00
Darrick J. Wong
d9c0775897 xfs: create a predicate to determine if two xfs_names are the same
Create a simple predicate to determine if two xfs_names are the same
objects or have the exact same name.  The comparison is always case
sensitive.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-02-22 12:30:49 -08:00
Darrick J. Wong
e99bfc9e68 xfs: create a static name for the dot entry too
Create an xfs_name_dot object so that upcoming scrub code can compare
against that.  Offline repair already has such an object, so we're
really just hoisting it to the kernel.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-02-22 12:30:48 -08:00
Matthew Wilcox (Oracle)
3fed24fffc xfs: Replace xfs_isilocked with xfs_assert_ilocked
To use the new rwsem_assert_held()/rwsem_assert_held_write(), we can't
use the existing ASSERT macro.  Add a new xfs_assert_ilocked() and
convert all the callers.

Fix an apparent bug in xfs_isilocked(): If the caller specifies
XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL, xfs_assert_ilocked() will check both
the IOLOCK and the ILOCK are held for write.  xfs_isilocked() only
checked that the ILOCK was held for write.

xfs_assert_ilocked() is always on, even if DEBUG or XFS_WARN aren't
defined.  It's a cheap check, so I don't think it's worth defining
it away.

Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-19 21:19:33 +05:30
Dave Chinner
57b98393b8 xfs: use xfs_defer_alloc a bit more
Noticed by inspection, simple factoring allows the same allocation
routine to be used for both transaction and recovery contexts.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-13 18:07:36 +05:30
Dave Chinner
204fae32d5 xfs: clean up remaining GFP_NOFS users
These few remaining GFP_NOFS callers do not need to use GFP_NOFS at
all. They are only called from a non-transactional context or cannot
be accessed from memory reclaim due to other constraints. Hence they
can just use GFP_KERNEL.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-13 18:07:35 +05:30
Dave Chinner
0b3a76e955 xfs: use GFP_KERNEL in pure transaction contexts
When running in a transaction context, memory allocations are scoped
to GFP_NOFS. Hence we don't need to use GFP_NOFS contexts in pure
transaction context allocations - GFP_KERNEL will automatically get
converted to GFP_NOFS as appropriate.

Go through the code and convert all the obvious GFP_NOFS allocations
in transaction context to use GFP_KERNEL. This further reduces the
explicit use of GFP_NOFS in XFS.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-13 18:07:35 +05:30
Dave Chinner
94a69db236 xfs: use __GFP_NOLOCKDEP instead of GFP_NOFS
In the past we've had problems with lockdep false positives stemming
from inode locking occurring in memory reclaim contexts (e.g. from
superblock shrinkers). Lockdep doesn't know that inodes access from
above memory reclaim cannot be accessed from below memory reclaim
(and vice versa) but there has never been a good solution to solving
this problem with lockdep annotations.

This situation isn't unique to inode locks - buffers are also locked
above and below memory reclaim, and we have to maintain lock
ordering for them - and against inodes - appropriately. IOWs, the
same code paths and locks are taken both above and below memory
reclaim and so we always need to make sure the lock orders are
consistent. We are spared the lockdep problems this might cause
by the fact that semaphores and bit locks aren't covered by lockdep.

In general, this sort of lockdep false positive detection is cause
by code that runs GFP_KERNEL memory allocation with an actively
referenced inode locked. When it is run from a transaction, memory
allocation is automatically GFP_NOFS, so we don't have reclaim
recursion issues. So in the places where we do memory allocation
with inodes locked outside of a transaction, we have explicitly set
them to use GFP_NOFS allocations to prevent lockdep false positives
from being reported if the allocation dips into direct memory
reclaim.

More recently, __GFP_NOLOCKDEP was added to the memory allocation
flags to tell lockdep not to track that particular allocation for
the purposes of reclaim recursion detection. This is a much better
way of preventing false positives - it allows us to use GFP_KERNEL
context outside of transactions, and allows direct memory reclaim to
proceed normally without throwing out false positive deadlock
warnings.

The obvious places that lock inodes and do memory allocation are the
lookup paths and inode extent list initialisation. These occur in
non-transactional GFP_KERNEL contexts, and so can run direct reclaim
and lock inodes.

This patch makes a first path through all the explicit GFP_NOFS
allocations in XFS and converts the obvious ones to GFP_KERNEL |
__GFP_NOLOCKDEP as a first step towards removing explicit GFP_NOFS
allocations from the XFS code.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-13 18:07:34 +05:30
Dave Chinner
d4c75a1b40 xfs: convert remaining kmem_free() to kfree()
The remaining callers of kmem_free() are freeing heap memory, so
we can convert them directly to kfree() and get rid of kmem_free()
altogether.

This conversion was done with:

$ for f in `git grep -l kmem_free fs/xfs`; do
> sed -i s/kmem_free/kfree/ $f
> done
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-13 18:07:34 +05:30
Dave Chinner
f078d4ea82 xfs: convert kmem_alloc() to kmalloc()
kmem_alloc() is just a thin wrapper around kmalloc() these days.
Convert everything to use kmalloc() so we can get rid of the
wrapper.

Note: the transaction region allocation in xlog_add_to_transaction()
can be a high order allocation. Converting it to use
kmalloc(__GFP_NOFAIL) results in warnings in the page allocation
code being triggered because the mm subsystem does not want us to
use __GFP_NOFAIL with high order allocations like we've been doing
with the kmem_alloc() wrapper for a couple of decades. Hence this
specific case gets converted to xlog_kvmalloc() rather than
kmalloc() to avoid this issue.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-13 18:07:34 +05:30
Dave Chinner
10634530f7 xfs: convert kmem_zalloc() to kzalloc()
There's no reason to keep the kmem_zalloc() around anymore, it's
just a thin wrapper around kmalloc(), so lets get rid of it.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-13 18:07:33 +05:30
Darrick J. Wong
881f78f472 xfs: remove conditional building of rt geometry validator functions
I mistakenly turned off CONFIG_XFS_RT in the Kconfig file for arm64
variant of the djwong-wtf git branch.  Unfortunately, it took me a good
hour to figure out that RT wasn't built because this is what got printed
to dmesg:

XFS (sda2): realtime geometry sanity check failed
XFS (sda2): Metadata corruption detected at xfs_sb_read_verify+0x170/0x190 [xfs], xfs_sb block 0x0

Whereas I would have expected:

XFS (sda2): Not built with CONFIG_XFS_RT
XFS (sda2): RT mount failed

The root cause of these problems is the conditional compilation of the
new functions xfs_validate_rtextents and xfs_compute_rextslog that I
introduced in the two commits listed below.  The !RT versions of these
functions return false and 0, respectively, which causes primary
superblock validation to fail, which explains the first message.

Move the two functions to other parts of libxfs that are not
conditionally defined by CONFIG_XFS_RT and remove the broken stubs so
that validation works again.

Fixes: e14293803f ("xfs: don't allow overly small or large realtime volumes")
Fixes: a6a38f309a ("xfs: make rextslog computation consistent with mkfs")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-01-30 14:04:43 +05:30
Andrey Albershteyn
82ef1a5356 xfs: reset XFS_ATTR_INCOMPLETE filter on node removal
In XFS_DAS_NODE_REMOVE_ATTR case, xfs_attr_mode_remove_attr() sets
filter to XFS_ATTR_INCOMPLETE. The filter is then reset in
xfs_attr_complete_op() if XFS_DA_OP_REPLACE operation is performed.

The filter is not reset though if XFS just removes the attribute
(args->value == NULL) with xfs_attr_defer_remove(). attr code goes
to XFS_DAS_DONE state.

Fix this by always resetting XFS_ATTR_INCOMPLETE filter. The replace
operation already resets this filter in anyway and others are
completed at this step hence don't need it.

Fixes: fdaf1bb3ca ("xfs: ATTR_REPLACE algorithm with LARP enabled needs rework")
Signed-off-by: Andrey Albershteyn <aalbersh@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-01-29 13:48:10 +05:30
Darrick J. Wong
d61b40bf15 xfs: fix backwards logic in xfs_bmap_alloc_account
We're only allocating from the realtime device if the inode is marked
for realtime and we're /not/ allocating into the attr fork.

Fixes: 5864346054 ("xfs: also use xfs_bmap_btalloc_accounting for RT allocations")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-01-11 10:34:01 +05:30
Christoph Hellwig
bcdfae6ee5 xfs: use the op name in trace_xlog_intent_recovery_failed
Instead of tracing the address of the recovery handler, use the name
in the defer op, similar to other defer ops related tracepoints.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-29 13:37:05 +05:30
Christoph Hellwig
4f6ac47b55 xfs: fix a use after free in xfs_defer_finish_recovery
dfp will be freed by ->recover_work and thus the tracepoint in case
of an error can lead to a use after free.

Store the defer ops in a local variable to avoid that.

Fixes: 7f2f7531e0 ("xfs: store an ops pointer in struct xfs_defer_pending")
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-29 13:37:05 +05:30
Christoph Hellwig
378b6aef9d xfs: turn the XFS_DA_OP_REPLACE checks in xfs_attr_shortform_addname into asserts
Since commit deed951287 ("xfs: Check for -ENOATTR or -EEXIST"), the
high-level attr code does a lookup for any attr we're trying to set,
and does the checks to handle the create vs replace cases, which thus
never hit the low-level attr code.

Turn the checks in xfs_attr_shortform_addname as they must never trip.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-29 13:37:05 +05:30
Christoph Hellwig
074aea4be1 xfs: remove xfs_attr_sf_hdr_t
Remove the last two users of the typedef.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-29 13:37:05 +05:30
Christoph Hellwig
4141472254 xfs: remove struct xfs_attr_shortform
sparse complains about struct xfs_attr_shortform because it embeds a
structure with a variable sized array in a variable sized array.

Given that xfs_attr_shortform is not a very useful structure, and the
dir2 equivalent has been removed a long time ago, remove it as well.

Provide a xfs_attr_sf_firstentry helper that returns the first
xfs_attr_sf_entry behind a xfs_attr_sf_hdr to replace the structure
dereference.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-29 13:37:05 +05:30
Christoph Hellwig
1fb4b0def7 xfs: use xfs_attr_sf_findname in xfs_attr_shortform_getvalue
xfs_attr_shortform_getvalue duplicates the logic in xfs_attr_sf_findname.
Use the helper instead.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-29 13:37:04 +05:30
Christoph Hellwig
22b7b1f597 xfs: remove xfs_attr_shortform_lookup
xfs_attr_shortform_lookup is only used by xfs_attr_shortform_addname,
which is much better served by calling xfs_attr_sf_findname.  Switch
it over and remove xfs_attr_shortform_lookup.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-29 13:37:04 +05:30
Christoph Hellwig
6c8d169bbd xfs: simplify xfs_attr_sf_findname
xfs_attr_sf_findname has the simple job of finding a xfs_attr_sf_entry in
the attr fork, but the convoluted calling convention obfuscates that.

Return the found entry as the return value instead of an pointer
argument, as the -ENOATTR/-EEXIST can be trivally derived from that, and
remove the basep argument, as it is equivalent of the offset of sfe in
the data for if an sfe was found, or an offset of totsize if not was
found.  To simplify the totsize computation add a xfs_attr_sf_endptr
helper that returns the imaginative xfs_attr_sf_entry at the end of
the current attrs.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-29 13:37:04 +05:30
Christoph Hellwig
14f2e4ab5d xfs: move the xfs_attr_sf_lookup tracepoint
trace_xfs_attr_sf_lookup is currently only called by
xfs_attr_shortform_lookup, which despit it's name is a simple helper for
xfs_attr_shortform_addname, which has it's own tracing.  Move the
callsite to xfs_attr_shortform_getvalue, which is the closest thing to
a high level lookup we have for the Linux xattr API.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-29 13:37:04 +05:30
Christoph Hellwig
45c76a2add xfs: return if_data from xfs_idata_realloc
Many of the xfs_idata_realloc callers need to set a local pointer to the
just reallocated if_data memory.  Return the pointer to simplify them a
bit and use the opportunity to re-use krealloc for freeing if_data if the
size hits 0.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-29 13:37:04 +05:30
Christoph Hellwig
6e145f943b xfs: make if_data a void pointer
The xfs_ifork structure currently has a union of the if_root void pointer
and the if_data char pointer.  In either case it is an opaque pointer
that depends on the fork format.  Replace the union with a single if_data
void pointer as that is what almost all callers want.  Only the symlink
NULL termination code in xfs_init_local_fork actually needs a new local
variable now.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-29 13:37:03 +05:30
Christoph Hellwig
a39f5ccc30 xfs: remove XFS_RTMIN/XFS_RTMAX
Use the kernel min/max helpers instead.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-22 11:18:14 +05:30
Christoph Hellwig
3abfe6c275 xfs: remove rt-wrappers from xfs_format.h
xfs_format.h has a bunch odd wrappers for helper functions and mount
structure access using RT* prefixes.  Replace them with their open coded
versions (for those that weren't entirely unused) and remove the wrappers.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-22 11:18:14 +05:30
Christoph Hellwig
b271b31411 xfs: split xfs_rtmodify_summary_int
Inline the logic of xfs_rtmodify_summary_int into xfs_rtmodify_summary
and xfs_rtget_summary instead of having a somewhat awkward helper to
share a little bit of code.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-22 11:18:12 +05:30
Christoph Hellwig
c2adcfa31f xfs: move xfs_rtget_summary to xfs_rtbitmap.c
xfs_rtmodify_summary_int is only used inside xfs_rtbitmap.c and to
implement xfs_rtget_summary.  Move xfs_rtget_summary to xfs_rtbitmap.c
as the exported API and mark xfs_rtmodify_summary_int static.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-22 11:18:12 +05:30
Christoph Hellwig
676544c27e xfs: indicate if xfs_bmap_adjacent changed ap->blkno
Add a return value to xfs_bmap_adjacent to indicate if it did change
ap->blkno or not.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-22 11:18:11 +05:30
Christoph Hellwig
ce42b5d375 xfs: return -ENOSPC from xfs_rtallocate_*
Just return -ENOSPC instead of returning 0 and setting the return rt
extent number to NULLRTEXTNO.  This is turn removes all users of
NULLRTEXTNO, so remove that as well.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-22 11:18:11 +05:30
Christoph Hellwig
5864346054 xfs: also use xfs_bmap_btalloc_accounting for RT allocations
Make xfs_bmap_btalloc_accounting more generic by handling the RT quota
reservations and then also use it from xfs_bmap_rtalloc instead of
open coding the accounting logic there.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-22 11:18:11 +05:30
Christoph Hellwig
eef519d746 xfs: remove the xfs_alloc_arg argument to xfs_bmap_btalloc_accounting
xfs_bmap_btalloc_accounting only uses the len field from args, but that
has just been propagated to ap->length field by the caller.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-22 11:18:11 +05:30
Long Li
7823921887 xfs: fix perag leak when growfs fails
During growfs, if new ag in memory has been initialized, however
sb_agcount has not been updated, if an error occurs at this time it
will cause perag leaks as follows, these new AGs will not been freed
during umount , because of these new AGs are not visible(that is
included in mp->m_sb.sb_agcount).

unreferenced object 0xffff88810be40200 (size 512):
  comm "xfs_growfs", pid 857, jiffies 4294909093
  hex dump (first 32 bytes):
    00 c0 c1 05 81 88 ff ff 04 00 00 00 00 00 00 00  ................
    01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  backtrace (crc 381741e2):
    [<ffffffff8191aef6>] __kmalloc+0x386/0x4f0
    [<ffffffff82553e65>] kmem_alloc+0xb5/0x2f0
    [<ffffffff8238dac5>] xfs_initialize_perag+0xc5/0x810
    [<ffffffff824f679c>] xfs_growfs_data+0x9bc/0xbc0
    [<ffffffff8250b90e>] xfs_file_ioctl+0x5fe/0x14d0
    [<ffffffff81aa5194>] __x64_sys_ioctl+0x144/0x1c0
    [<ffffffff83c3d81f>] do_syscall_64+0x3f/0xe0
    [<ffffffff83e00087>] entry_SYSCALL_64_after_hwframe+0x62/0x6a
unreferenced object 0xffff88810be40800 (size 512):
  comm "xfs_growfs", pid 857, jiffies 4294909093
  hex dump (first 32 bytes):
    20 00 00 00 00 00 00 00 57 ef be dc 00 00 00 00   .......W.......
    10 08 e4 0b 81 88 ff ff 10 08 e4 0b 81 88 ff ff  ................
  backtrace (crc bde50e2d):
    [<ffffffff8191b43a>] __kmalloc_node+0x3da/0x540
    [<ffffffff81814489>] kvmalloc_node+0x99/0x160
    [<ffffffff8286acff>] bucket_table_alloc.isra.0+0x5f/0x400
    [<ffffffff8286bdc5>] rhashtable_init+0x405/0x760
    [<ffffffff8238dda3>] xfs_initialize_perag+0x3a3/0x810
    [<ffffffff824f679c>] xfs_growfs_data+0x9bc/0xbc0
    [<ffffffff8250b90e>] xfs_file_ioctl+0x5fe/0x14d0
    [<ffffffff81aa5194>] __x64_sys_ioctl+0x144/0x1c0
    [<ffffffff83c3d81f>] do_syscall_64+0x3f/0xe0
    [<ffffffff83e00087>] entry_SYSCALL_64_after_hwframe+0x62/0x6a

Factor out xfs_free_unused_perag_range() from xfs_initialize_perag(),
used for freeing unused perag within a specified range in error handling,
included in the error path of the growfs failure.

Fixes: 1c1c6ebcf5 ("xfs: Replace per-ag array with a radix tree")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-22 10:52:42 +05:30
Long Li
07afd3173d xfs: add lock protection when remove perag from radix tree
Take mp->m_perag_lock for deletions from the perag radix tree in
xfs_initialize_perag to prevent racing with tagging operations.
Lookups are fine - they are RCU protected so already deal with the
tree changing shape underneath the lookup - but tagging operations
require the tree to be stable while the tags are propagated back up
to the root.

Right now there's nothing stopping radix tree tagging from operating
while a growfs operation is progress and adding/removing new entries
into the radix tree.

Hence we can have traversals that require a stable tree occurring at
the same time we are removing unused entries from the radix tree which
causes the shape of the tree to change.

Likely this hasn't caused a problem in the past because we are only
doing append addition and removal so the active AG part of the tree
is not changing shape, but that doesn't mean it is safe. Just making
the radix tree modifications serialise against each other is obviously
correct.

Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-22 10:52:42 +05:30
Darrick J. Wong
21d7500929 xfs: improve dquot iteration for scrub
Upon a closer inspection of the quota record scrubber, I noticed that
dqiterate wasn't actually walking all possible dquots for the mapped
blocks in the quota file.  This is due to xfs_qm_dqget_next skipping all
XFS_IS_DQUOT_UNINITIALIZED dquots.

For a fsck program, we really want to look at all the dquots, even if
all counters and limits in the dquot record are zero.  Rewrite the
implementation to do this, as well as switching to an iterator paradigm
to reduce the number of indirect calls.

This enables removal of the old broken dqiterate code from xfs_dquot.c.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-15 10:03:45 -08:00
Darrick J. Wong
a59eb5fc21 xfs: create a new inode fork block unmap helper
Create a new helper to unmap blocks from an inode's fork.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-15 10:03:43 -08:00
Darrick J. Wong
d12bf8bac8 xfs: create a ranged query function for refcount btrees
Implement ranged queries for refcount records.  The next patch will use
this to scan refcount data.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-15 10:03:40 -08:00
Darrick J. Wong
8f71bede8e xfs: repair inode fork block mapping data structures
Use the reverse-mapping btree information to rebuild an inode block map.
Update the btree bulk loading code as necessary to support inode rooted
btrees and fix some bitrot problems.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-15 10:03:39 -08:00
Darrick J. Wong
e744cef206 xfs: zap broken inode forks
Determine if inode fork damage is responsible for the inode being unable
to pass the ifork verifiers in xfs_iget and zap the fork contents if
this is true.  Once this is done the fork will be empty but we'll be
able to construct an in-core inode, and a subsequent call to the inode
fork repair ioctl will search the rmapbt to rebuild the records that
were in the fork.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-15 10:03:37 -08:00
Darrick J. Wong
d9041681dd xfs: set inode sick state flags when we zap either ondisk fork
In a few patches, we'll add some online repair code that tries to
massage the ondisk inode record just enough to get it to pass the inode
verifiers so that we can continue with more file repairs.  Part of that
massaging can include zapping the ondisk forks to clear errors.  After
that point, the bmap fork repair functions will rebuild the zapped
forks.

Christoph asked for stronger protections against online repair zapping a
fork to get the inode to load vs. other threads trying to access the
partially repaired file.  Do this by adding a special "[DA]FORK_ZAPPED"
inode health flag whenever repair zaps a fork, and sprinkling checks for
that flag into the various file operations for things that don't like
handling an unexpected zero-extents fork.

In practice xfs_scrub will scrub and fix the forks almost immediately
after zapping them, so the window is very small.  However, if a crash or
unmount should occur, we can still detect these zapped inode forks by
looking for a zero-extents fork when data was expected.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-15 10:03:35 -08:00
Darrick J. Wong
6b5d917780 xfs: dont cast to char * for XFS_DFORK_*PTR macros
Code in the next patch will assign the return value of XFS_DFORK_*PTR
macros to a struct pointer.  gcc complains about casting char* strings
to struct pointers, so let's fix the macro's cast to void* to shut up
the warnings.

While we're at it, fix one of the scrub tests that uses PTR to use BOFF
instead for a simpler integer comparison, since other linters whine
about char* and void* comparisons.

Can't satisfy all these dman bots.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-15 10:03:35 -08:00
Darrick J. Wong
9099cd3800 xfs: repair refcount btrees
Reconstruct the refcount data from the rmap btree.

Link: https://docs.kernel.org/filesystems/xfs-online-fsck-design.html#case-study-rebuilding-the-space-reference-counts
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-15 10:03:33 -08:00
Darrick J. Wong
dbfbf3bdf6 xfs: repair inode btrees
Use the rmapbt to find inode chunks, query the chunks to compute hole
and free masks, and with that information rebuild the inobt and finobt.
Refer to the case study in
Documentation/filesystems/xfs-online-fsck-design.rst for more details.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-15 10:03:32 -08:00
Darrick J. Wong
4bdfd7d157 xfs: repair free space btrees
Rebuild the free space btrees from the gaps in the rmap btree.  Refer to
the case study in Documentation/filesystems/xfs-online-fsck-design.rst
for more details.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-15 10:03:32 -08:00
Darrick J. Wong
e069d54970 xfs: constrain dirty buffers while formatting a staged btree
Constrain the number of dirty buffers that are locked by the btree
staging code at any given time by establishing a threshold at which we
put them all on the delwri queue and push them to disk.  This limits
memory consumption while writing out new btrees.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-15 10:03:29 -08:00
Darrick J. Wong
6dfeb0c2ec xfs: move btree bulkload record initialization to ->get_record implementations
When we're performing a bulk load of a btree, move the code that
actually stores the btree record in the new btree block out of the
generic code and into the individual ->get_record implementations.
This is preparation for being able to store multiple records with a
single indirect call.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-15 10:03:29 -08:00
Darrick J. Wong
26de64629d xfs: read leaf blocks when computing keys for bulkloading into node blocks
When constructing a new btree, xfs_btree_bload_node needs to read the
btree blocks for level N to compute the keyptrs for the blocks that will
be loaded into level N+1.  The level N blocks must be formatted at that
point.

A subsequent patch will change the btree bulkloader to write new btree
blocks in 256K chunks to moderate memory consumption if the new btree is
very large.  As a consequence of that, it's possible that the buffers
for lower level blocks might have been reclaimed by the time the node
builder comes back to the block.

Therefore, change xfs_btree_bload_node to read the lower level blocks
to handle the reclaimed buffer case.  As a side effect, the read will
increase the LRU refs, which will bias towards keeping new btree buffers
in memory after the new btree commits.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-15 10:03:28 -08:00
Darrick J. Wong
c1e0f8e6fb xfs: set XBF_DONE on newly formatted btree block that are ready for writing
The btree bulkloading code calls xfs_buf_delwri_queue_here when it has
finished formatting a new btree block and wants to queue it to be
written to disk.  Once the new btree root has been committed, the blocks
(and hence the buffers) will be accessible to the rest of the
filesystem.  Mark each new buffer as DONE when adding it to the delwri
list so that the next btree traversal can skip reloading the contents
from disk.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-15 10:03:27 -08:00
Darrick J. Wong
13ae04d8d4 xfs: force all buffers to be written during btree bulk load
While stress-testing online repair of btrees, I noticed periodic
assertion failures from the buffer cache about buffers with incorrect
DELWRI_Q state.  Looking further, I observed this race between the AIL
trying to write out a btree block and repair zapping a btree block after
the fact:

AIL:    Repair0:

pin buffer X
delwri_queue:
set DELWRI_Q
add to delwri list

        stale buf X:
        clear DELWRI_Q
        does not clear b_list
        free space X
        commit

delwri_submit   # oops

Worse yet, I discovered that running the same repair over and over in a
tight loop can result in a second race that cause data integrity
problems with the repair:

AIL:    Repair0:        Repair1:

pin buffer X
delwri_queue:
set DELWRI_Q
add to delwri list

        stale buf X:
        clear DELWRI_Q
        does not clear b_list
        free space X
        commit

                        find free space X
                        get buffer
                        rewrite buffer
                        delwri_queue:
                        set DELWRI_Q
                        already on a list, do not add
                        commit

                        BAD: committed tree root before all blocks written

delwri_submit   # too late now

I traced this to my own misunderstanding of how the delwri lists work,
particularly with regards to the AIL's buffer list.  If a buffer is
logged and committed, the buffer can end up on that AIL buffer list.  If
btree repairs are run twice in rapid succession, it's possible that the
first repair will invalidate the buffer and free it before the next time
the AIL wakes up.  Marking the buffer stale clears DELWRI_Q from the
buffer state without removing the buffer from its delwri list.  The
buffer doesn't know which list it's on, so it cannot know which lock to
take to protect the list for a removal.

If the second repair allocates the same block, it will then recycle the
buffer to start writing the new btree block.  Meanwhile, if the AIL
wakes up and walks the buffer list, it will ignore the buffer because it
can't lock it, and go back to sleep.

When the second repair calls delwri_queue to put the buffer on the
list of buffers to write before committing the new btree, it will set
DELWRI_Q again, but since the buffer hasn't been removed from the AIL's
buffer list, it won't add it to the bulkload buffer's list.

This is incorrect, because the bulkload caller relies on delwri_submit
to ensure that all the buffers have been sent to disk /before/
committing the new btree root pointer.  This ordering requirement is
required for data consistency.

Worse, the AIL won't clear DELWRI_Q from the buffer when it does finally
drop it, so the next thread to walk through the btree will trip over a
debug assertion on that flag.

To fix this, create a new function that waits for the buffer to be
removed from any other delwri lists before adding the buffer to the
caller's delwri list.  By waiting for the buffer to clear both the
delwri list and any potential delwri wait list, we can be sure that
repair will initiate writes of all buffers and report all write errors
back to userspace instead of committing the new structure.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-15 10:03:27 -08:00
Christoph Hellwig
603ce8ab12 xfs: pass the defer ops directly to xfs_defer_add
Pass a pointer to the xfs_defer_op_type structure to xfs_defer_add and
remove the indirection through the xfs_defer_ops_type enum and a global
table of all possible operations.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-14 11:13:52 +05:30
Christoph Hellwig
dc22af6436 xfs: pass the defer ops instead of type to xfs_defer_start_recovery
xfs_defer_start_recovery is only called from xlog_recover_intent_item,
and the callers of that all have the actual xfs_defer_ops_type operation
vector at hand.  Pass that directly instead of looking it up from the
defer_op_types table.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-14 11:13:38 +05:30
Christoph Hellwig
7f2f7531e0 xfs: store an ops pointer in struct xfs_defer_pending
The dfp_type field in struct xfs_defer_pending is only used to either
look up the operations associated with the pending word or in trace
points.  Replace it with a direct pointer to the operations vector,
and store a pretty name in the vector for tracing.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-14 11:10:34 +05:30
Christoph Hellwig
c00eebd09e xfs: consolidate the xfs_attr_defer_* helpers
Consolidate the xfs_attr_defer_* helpers into a single xfs_attr_defer_add
one that picks the right dela_state based on the passed in operation.
Also move to a single trace point as the actual operation is visible
through the flags in the delta_state passed to the trace point.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-14 11:10:33 +05:30
Christoph Hellwig
18793e0505 xfs: move xfs_ondisk.h to libxfs/
Move xfs_ondisk.h to libxfs so that we can do the struct sanity checks
in userspace libxfs as well.  This should allow us to retire the
somewhat fragile xfs/122 test on xfstests.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-07 15:15:29 +05:30
Zhang Tianci
fd45ddb9dd xfs: extract xfs_da_buf_copy() helper function
This patch does not modify logic.

xfs_da_buf_copy() will copy one block from src xfs_buf to
dst xfs_buf, and update the block metadata in dst directly.

Signed-off-by: Zhang Tianci <zhangtianci.1997@bytedance.com>
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-07 14:57:14 +05:30
Zhang Tianci
5759aa4f95 xfs: update dir3 leaf block metadata after swap
xfs_da3_swap_lastblock() copy the last block content to the dead block,
but do not update the metadata in it. We need update some metadata
for some kinds of type block, such as dir3 leafn block records its
blkno, we shall update it to the dead block blkno. Otherwise,
before write the xfs_buf to disk, the verify_write() will fail in
blk_hdr->blkno != xfs_buf->b_bn, then xfs will be shutdown.

We will get this warning:

  XFS (dm-0): Metadata corruption detected at xfs_dir3_leaf_verify+0xa8/0xe0 [xfs], xfs_dir3_leafn block 0x178
  XFS (dm-0): Unmount and run xfs_repair
  XFS (dm-0): First 128 bytes of corrupted metadata buffer:
  00000000e80f1917: 00 80 00 0b 00 80 00 07 3d ff 00 00 00 00 00 00  ........=.......
  000000009604c005: 00 00 00 00 00 00 01 a0 00 00 00 00 00 00 00 00  ................
  000000006b6fb2bf: e4 44 e3 97 b5 64 44 41 8b 84 60 0e 50 43 d9 bf  .D...dDA..`.PC..
  00000000678978a2: 00 00 00 00 00 00 00 83 01 73 00 93 00 00 00 00  .........s......
  00000000b28b247c: 99 29 1d 38 00 00 00 00 99 29 1d 40 00 00 00 00  .).8.....).@....
  000000002b2a662c: 99 29 1d 48 00 00 00 00 99 49 11 00 00 00 00 00  .).H.....I......
  00000000ea2ffbb8: 99 49 11 08 00 00 45 25 99 49 11 10 00 00 48 fe  .I....E%.I....H.
  0000000069e86440: 99 49 11 18 00 00 4c 6b 99 49 11 20 00 00 4d 97  .I....Lk.I. ..M.
  XFS (dm-0): xfs_do_force_shutdown(0x8) called from line 1423 of file fs/xfs/xfs_buf.c.  Return address = 00000000c0ff63c1
  XFS (dm-0): Corruption of in-memory data detected.  Shutting down filesystem
  XFS (dm-0): Please umount the filesystem and rectify the problem(s)

>From the log above, we know xfs_buf->b_no is 0x178, but the block's hdr record
its blkno is 0x1a0.

Fixes: 24df33b45e ("xfs: add CRC checking to dir2 leaf blocks")
Signed-off-by: Zhang Tianci <zhangtianci.1997@bytedance.com>
Suggested-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-07 14:57:14 +05:30
Jiachen Zhang
e6af9c98cb xfs: ensure logflagsp is initialized in xfs_bmap_del_extent_real
In the case of returning -ENOSPC, ensure logflagsp is initialized by 0.
Otherwise the caller __xfs_bunmapi will set uninitialized illegal
tmp_logflags value into xfs log, which might cause unpredictable error
in the log recovery procedure.

Also, remove the flags variable and set the *logflagsp directly, so that
the code should be more robust in the long run.

Fixes: 1b24b633aa ("xfs: move some more code into xfs_bmap_del_extent_real")
Signed-off-by: Jiachen Zhang <zhangjiachen.jaycee@bytedance.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-07 14:57:14 +05:30
Darrick J. Wong
3f3cec0310 xfs: force small EFIs for reaping btree extents
Introduce the concept of a defer ops barrier to separate consecutively
queued pending work items of the same type.  With a barrier in place,
the two work items will be tracked separately, and receive separate log
intent items.  The goal here is to prevent reaping of old metadata
blocks from creating unnecessarily huge EFIs that could then run the
risk of overflowing the scrub transaction.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:19 -08:00
Darrick J. Wong
4c8ecd1cfd xfs: remove unused fields from struct xbtree_ifakeroot
Remove these unused fields since nobody uses them.  They should have
been removed years ago in a different cleanup series from Christoph
Hellwig.

Fixes: daf83964a3 ("xfs: move the per-fork nextents fields into struct xfs_ifork")
Fixes: f7e67b20ec ("xfs: move the fork format fields into struct xfs_ifork")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-12-06 18:45:18 -08:00
Darrick J. Wong
e3042be36c xfs: automatic freeing of freshly allocated unwritten space
As mentioned in the previous commit, online repair wants to allocate
space to write out a new metadata structure, and it also wants to hedge
against system crashes during repairs by logging (and later cancelling)
EFIs to free the space if we crash before committing the new data
structure.

Therefore, create a trio of functions to schedule automatic reaping of
freshly allocated unwritten space.  xfs_alloc_schedule_autoreap creates
a paused EFI representing the space we just allocated.  Once the
allocations are made and the autoreaps scheduled, we can start writing
to disk.

If the writes succeed, xfs_alloc_cancel_autoreap marks the EFI work
items as stale and unpauses the pending deferred work item.  Assuming
that's done in the same transaction that commits the new structure into
the filesystem, we guarantee that either the new object is fully
visible, or that all the space gets reclaimed.

If the writes succeed but only part of an extent was used, repair must
call the same _cancel_autoreap function to kill the first EFI and then
log a new EFI to free the unused space.  The first EFI is already
committed, so it cannot be changed.

For full extents that aren't used, xfs_alloc_commit_autoreap will
unpause the EFI, which results in the space being freed during the next
_defer_finish cycle.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:18 -08:00
Darrick J. Wong
4c88fef3af xfs: remove __xfs_free_extent_later
xfs_free_extent_later is a trivial helper, so remove it to reduce the
amount of thinking required to understand the deferred freeing
interface.  This will make it easier to introduce automatic reaping of
speculative allocations in the next patch.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:18 -08:00
Darrick J. Wong
4dffb2cbb4 xfs: allow pausing of pending deferred work items
Traditionally, all pending deferred work attached to a transaction is
finished when one of the xfs_defer_finish* functions is called.
However, online repair wants to be able to allocate space for a new data
structure, format a new metadata structure into the allocated space, and
commit that into the filesystem.

As a hedge against system crashes during repairs, we also want to log
some EFI items for the allocated space speculatively, and cancel them if
we elect to commit the new data structure.

Therefore, introduce the idea of pausing a pending deferred work item.
Log intent items are still created for paused items and relogged as
necessary.  However, paused items are pushed onto a side list before we
start calling ->finish_item, and the whole list is reattach to the
transaction afterwards.  New work items are never attached to paused
pending items.

Modify xfs_defer_cancel to clean up pending deferred work items holding
a log intent item but not a log intent done item, since that is now
possible.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:18 -08:00
Darrick J. Wong
6b12613940 xfs: don't append work items to logged xfs_defer_pending objects
When someone tries to add a deferred work item to xfs_defer_add, it will
try to attach the work item to the most recently added xfs_defer_pending
object attached to the transaction.  However, it doesn't check if the
pending object has a log intent item attached to it.  This is incorrect
behavior because we cannot add more work to an object that has already
been committed to the ondisk log.

Therefore, change the behavior not to append to pending items with a non
null dfp_intent.  In practice this has not been an issue because the
only way xfs_defer_add gets called after log intent items have been
committed is from the defer ops ->finish_item functions themselves, and
the @dop_pending isolation in xfs_defer_finish_noroll protects the
pending items that have already been logged.

However, the next patch will add the ability to pause a deferred extent
free object during online btree rebuilding, and any new extfree work
items need to have their own pending event.

While we're at it, hoist the predicate to its own static inline function
for readability.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:18 -08:00
Darrick J. Wong
9c07bca793 xfs: elide ->create_done calls for unlogged deferred work
Extended attribute updates use the deferred work machinery to manage
state across a chain of smaller transactions.  All previous deferred
work users have employed log intent items and log done items to manage
restarting of interrupted operations, which means that ->create_intent
sets dfp_intent to a log intent item and ->create_done uses that item to
create a log intent done item.

However, xattrs have used the INCOMPLETE flag to deal with the lack of
recovery support for an interrupted transaction chain.  Log items are
optional if the xattr update caller didn't set XFS_DA_OP_LOGGED to
require a restartable sequence.

In other words, ->create_intent can return NULL to say that there's no
log intent item.  If that's the case, no log intent done item should be
created.  Clean up xfs_defer_create_done not to do this, so that the
->create_done functions don't have to check for non-null dfp_intent
themselves.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:17 -08:00
Darrick J. Wong
e14293803f xfs: don't allow overly small or large realtime volumes
Don't allow realtime volumes that are less than one rt extent long.
This has been broken across 4 LTS kernels with nobody noticing, so let's
just disable it.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:17 -08:00
Darrick J. Wong
cf8f0e6c14 xfs: fix 32-bit truncation in xfs_compute_rextslog
It's quite reasonable that some customer somewhere will want to
configure a realtime volume with more than 2^32 extents.  If they try to
do this, the highbit32() call will truncate the upper bits of the
xfs_rtbxlen_t and produce the wrong value for rextslog.  This in turn
causes the rsumlevels to be wrong, which results in a realtime summary
file that is the wrong length.  Fix that.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:17 -08:00
Darrick J. Wong
a6a38f309a xfs: make rextslog computation consistent with mkfs
There's a weird discrepancy in xfsprogs dating back to the creation of
the Linux port -- if there are zero rt extents, mkfs will set
sb_rextents and sb_rextslog both to zero:

	sbp->sb_rextslog =
		(uint8_t)(rtextents ?
			libxfs_highbit32((unsigned int)rtextents) : 0);

However, that's not the check that xfs_repair uses for nonzero rtblocks:

	if (sb->sb_rextslog !=
			libxfs_highbit32((unsigned int)sb->sb_rextents))

The difference here is that xfs_highbit32 returns -1 if its argument is
zero.  Unfortunately, this means that in the weird corner case of a
realtime volume shorter than 1 rt extent, xfs_repair will immediately
flag a freshly formatted filesystem as corrupt.  Because mkfs has been
writing ondisk artifacts like this for decades, we have to accept that
as "correct".  TBH, zero rextslog for zero rtextents makes more sense to
me anyway.

Regrettably, the superblock verifier checks created in commit copied
xfs_repair even though mkfs has been writing out such filesystems for
ages.  Fix the superblock verifier to accept what mkfs spits out; the
userspace version of this patch will have to fix xfs_repair as well.

Note that the new helper leaves the zeroday bug where the upper 32 bits
of sb_rextents is ripped off and fed to highbit32.  This leads to a
seriously undersized rt summary file, which immediately breaks mkfs:

$ hugedisk.sh foo /dev/sdc $(( 0x100000080 * 4096))B
$ /sbin/mkfs.xfs -f /dev/sda -m rmapbt=0,reflink=0 -r rtdev=/dev/mapper/foo
meta-data=/dev/sda               isize=512    agcount=4, agsize=1298176 blks
         =                       sectsz=512   attr=2, projid32bit=1
         =                       crc=1        finobt=1, sparse=1, rmapbt=0
         =                       reflink=0    bigtime=1 inobtcount=1 nrext64=1
data     =                       bsize=4096   blocks=5192704, imaxpct=25
         =                       sunit=0      swidth=0 blks
naming   =version 2              bsize=4096   ascii-ci=0, ftype=1
log      =internal log           bsize=4096   blocks=16384, version=2
         =                       sectsz=512   sunit=0 blks, lazy-count=1
realtime =/dev/mapper/foo        extsz=4096   blocks=4294967424, rtextents=4294967424
Discarding blocks...Done.
mkfs.xfs: Error initializing the realtime space [117 - Structure needs cleaning]

The next patch will drop support for rt volumes with fewer than 1 or
more than 2^32-1 rt extents, since they've clearly been broken forever.

Fixes: f8e566c0f5 ("xfs: validate the realtime geometry in xfs_validate_sb_common")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:17 -08:00
Darrick J. Wong
a49c708f9a xfs: move ->iop_relog to struct xfs_defer_op_type
The only log items that need relogging are the ones created for deferred
work operations, and the only part of the code base that relogs log
items is the deferred work machinery.  Move the function pointers.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:17 -08:00
Darrick J. Wong
b28852a5bd xfs: hoist xfs_trans_add_item calls to defer ops functions
Remove even more repeated boilerplate.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:16 -08:00
Darrick J. Wong
3e0958be21 xfs: clean out XFS_LI_DIRTY setting boilerplate from ->iop_relog
Hoist this dirty flag setting to the ->iop_relog callsite to reduce
boilerplate.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:16 -08:00
Darrick J. Wong
bd3a88f6b7 xfs: use xfs_defer_create_done for the relogging operation
Now that we have a helper to handle creating a log intent done item and
updating all the necessary state flags, use it to reduce boilerplate in
the ->iop_relog implementations.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:16 -08:00
Darrick J. Wong
f3fd7f6fce xfs: hoist ->create_intent boilerplate to its callsite
Hoist the dirty flag setting code out of each ->create_intent
implementation up to the callsite to reduce boilerplate further.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:16 -08:00
Darrick J. Wong
3dd75c8db1 xfs: hoist intent done flag setting to ->finish_item callsite
Each log intent item's ->finish_item call chain inevitably includes some
code to set the dirty flag of the transaction.  If there's an associated
log intent done item, it also sets the item's dirty flag and the
transaction's INTENT_DONE flag.  This is repeated throughout the
codebase.

Reduce the LOC by moving all that to xfs_defer_finish_one.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:15 -08:00
Darrick J. Wong
db7ccc0bac xfs: move ->iop_recover to xfs_defer_op_type
Finish off the series by moving the intent item recovery function
pointer to the xfs_defer_op_type struct, since this is really a deferred
work function now.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:15 -08:00
Darrick J. Wong
e5f1a5146e xfs: use xfs_defer_finish_one to finish recovered work items
Get rid of the open-coded calls to xfs_defer_finish_one.  This also
means that the recovery transaction takes care of cleaning up the dfp,
and we have solved (I hope) all the ownership issues in recovery.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:15 -08:00
Darrick J. Wong
e70fb328d5 xfs: recreate work items when recovering intent items
Recreate work items for each xfs_defer_pending object when we are
recovering intent items.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:15 -08:00
Darrick J. Wong
deb4cd8ba8 xfs: transfer recovered intent item ownership in ->iop_recover
Now that we pass the xfs_defer_pending object into the intent item
recovery functions, we know exactly when ownership of the sole refcount
passes from the recovery context to the intent done item.  At that
point, we need to null out dfp_intent so that the recovery mechanism
won't release it.  This should fix the UAF problem reported by Long Li.

Note that we still want to recreate the full deferred work state.  That
will be addressed in the next patches.

Fixes: 2e76f188fd ("xfs: cancel intents immediately if process_intents fails")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:14 -08:00
Darrick J. Wong
03f7767c9f xfs: use xfs_defer_pending objects to recover intent items
One thing I never quite got around to doing is porting the log intent
item recovery code to reconstruct the deferred pending work state.  As a
result, each intent item open codes xfs_defer_finish_one in its recovery
method, because that's what the EFI code did before xfs_defer.c even
existed.

This is a gross thing to have left unfixed -- if an EFI cannot proceed
due to busy extents, we end up creating separate new EFIs for each
unfinished work item, which is a change in behavior from what runtime
would have done.

Worse yet, Long Li pointed out that there's a UAF in the recovery code.
The ->commit_pass2 function adds the intent item to the AIL and drops
the refcount.  The one remaining refcount is now owned by the recovery
mechanism (aka the log intent items in the AIL) with the intent of
giving the refcount to the intent done item in the ->iop_recover
function.

However, if something fails later in recovery, xlog_recover_finish will
walk the recovered intent items in the AIL and release them.  If the CIL
hasn't been pushed before that point (which is possible since we don't
force the log until later) then the intent done release will try to free
its associated intent, which has already been freed.

This patch starts to address this mess by having the ->commit_pass2
functions recreate the xfs_defer_pending state.  The next few patches
will fix the recovery functions.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-06 18:45:14 -08:00
Dave Chinner
038ca189c0 xfs: inode recovery does not validate the recovered inode
Discovered when trying to track down a weird recovery corruption
issue that wasn't detected at recovery time.

The specific corruption was a zero extent count field when big
extent counts are in use, and it turns out the dinode verifier
doesn't detect that specific corruption case, either. So fix it too.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-11-13 09:11:41 +05:30
Omar Sandoval
f63a5b3769 xfs: fix internal error from AGFL exhaustion
We've been seeing XFS errors like the following:

XFS: Internal error i != 1 at line 3526 of file fs/xfs/libxfs/xfs_btree.c.  Caller xfs_btree_insert+0x1ec/0x280
...
Call Trace:
 xfs_corruption_error+0x94/0xa0
 xfs_btree_insert+0x221/0x280
 xfs_alloc_fixup_trees+0x104/0x3e0
 xfs_alloc_ag_vextent_size+0x667/0x820
 xfs_alloc_fix_freelist+0x5d9/0x750
 xfs_free_extent_fix_freelist+0x65/0xa0
 __xfs_free_extent+0x57/0x180
...

This is the XFS_IS_CORRUPT() check in xfs_btree_insert() when
xfs_btree_insrec() fails.

After converting this into a panic and dissecting the core dump, I found
that xfs_btree_insrec() is failing because it's trying to split a leaf
node in the cntbt when the AG free list is empty. In particular, it's
failing to get a block from the AGFL _while trying to refill the AGFL_.

If a single operation splits every level of the bnobt and the cntbt (and
the rmapbt if it is enabled) at once, the free list will be empty. Then,
when the next operation tries to refill the free list, it allocates
space. If the allocation does not use a full extent, it will need to
insert records for the remaining space in the bnobt and cntbt. And if
those new records go in full leaves, the leaves (and potentially more
nodes up to the old root) need to be split.

Fix it by accounting for the additional splits that may be required to
refill the free list in the calculation for the minimum free list size.

P.S. As far as I can tell, this bug has existed for a long time -- maybe
back to xfs-history commit afdf80ae7405 ("Add XFS_AG_MAXLEVELS macros
...") in April 1994! It requires a very unlucky sequence of events, and
in fact we didn't hit it until a particular sparse mmap workload updated
from 5.12 to 5.19. But this bug existed in 5.12, so it must've been
exposed by some other change in allocation or writeback patterns. It's
also much less likely to be hit with the rmapbt enabled, since that
increases the minimum free list size and is unlikely to split at the
same time as the bnobt and cntbt.

Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-11-13 09:11:40 +05:30
Long Li
f8f9d952e4 xfs: abort intent items when recovery intents fail
When recovering intents, we capture newly created intent items as part of
committing recovered intent items.  If intent recovery fails at a later
point, we forget to remove those newly created intent items from the AIL
and hang:

    [root@localhost ~]# cat /proc/539/stack
    [<0>] xfs_ail_push_all_sync+0x174/0x230
    [<0>] xfs_unmount_flush_inodes+0x8d/0xd0
    [<0>] xfs_mountfs+0x15f7/0x1e70
    [<0>] xfs_fs_fill_super+0x10ec/0x1b20
    [<0>] get_tree_bdev+0x3c8/0x730
    [<0>] vfs_get_tree+0x89/0x2c0
    [<0>] path_mount+0xecf/0x1800
    [<0>] do_mount+0xf3/0x110
    [<0>] __x64_sys_mount+0x154/0x1f0
    [<0>] do_syscall_64+0x39/0x80
    [<0>] entry_SYSCALL_64_after_hwframe+0x63/0xcd

When newly created intent items fail to commit via transaction, intent
recovery hasn't created done items for these newly created intent items,
so the capture structure is the sole owner of the captured intent items.
We must release them explicitly or else they leak:

unreferenced object 0xffff888016719108 (size 432):
  comm "mount", pid 529, jiffies 4294706839 (age 144.463s)
  hex dump (first 32 bytes):
    08 91 71 16 80 88 ff ff 08 91 71 16 80 88 ff ff  ..q.......q.....
    18 91 71 16 80 88 ff ff 18 91 71 16 80 88 ff ff  ..q.......q.....
  backtrace:
    [<ffffffff8230c68f>] xfs_efi_init+0x18f/0x1d0
    [<ffffffff8230c720>] xfs_extent_free_create_intent+0x50/0x150
    [<ffffffff821b671a>] xfs_defer_create_intents+0x16a/0x340
    [<ffffffff821bac3e>] xfs_defer_ops_capture_and_commit+0x8e/0xad0
    [<ffffffff82322bb9>] xfs_cui_item_recover+0x819/0x980
    [<ffffffff823289b6>] xlog_recover_process_intents+0x246/0xb70
    [<ffffffff8233249a>] xlog_recover_finish+0x8a/0x9a0
    [<ffffffff822eeafb>] xfs_log_mount_finish+0x2bb/0x4a0
    [<ffffffff822c0f4f>] xfs_mountfs+0x14bf/0x1e70
    [<ffffffff822d1f80>] xfs_fs_fill_super+0x10d0/0x1b20
    [<ffffffff81a21fa2>] get_tree_bdev+0x3d2/0x6d0
    [<ffffffff81a1ee09>] vfs_get_tree+0x89/0x2c0
    [<ffffffff81a9f35f>] path_mount+0xecf/0x1800
    [<ffffffff81a9fd83>] do_mount+0xf3/0x110
    [<ffffffff81aa00e4>] __x64_sys_mount+0x154/0x1f0
    [<ffffffff83968739>] do_syscall_64+0x39/0x80

Fix the problem above by abort intent items that don't have a done item
when recovery intents fail.

Fixes: e6fff81e48 ("xfs: proper replay of deferred ops queued during log recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-11-13 09:08:34 +05:30
Long Li
2a5db859c6 xfs: factor out xfs_defer_pending_abort
Factor out xfs_defer_pending_abort() from xfs_defer_trans_abort(), which
not use transaction parameter, so it can be used after the transaction
life cycle.

Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-11-13 09:08:33 +05:30
Linus Torvalds
34f7632627 New code for 6.7:
* Realtime device subsystem
     - Cleanup usage of xfs_rtblock_t and xfs_fsblock_t data types.
     - Replace open coded conversions between rt blocks and rt extents with
       calls to static inline helpers.
     - Replace open coded realtime geometry compuation and macros with helper
       functions.
     - CPU usage optimizations for realtime allocator.
     - Misc. Bug fixes associated with Realtime device.
   * Allow read operations to execute while an FICLONE ioctl is being serviced.
   * Misc. bug fixes
     - Alert user when xfs_droplink() encounters an inode with a link count of zero.
     - Handle the case where the allocator could return zero extents when
       servicing an fallocate request.
 
 Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQQjMC4mbgVeU7MxEIYH7y4RirJu9AUCZUEvIgAKCRAH7y4RirJu
 9JnQAQCtnQAhZHbh9U2BNJI4hrpNm4Mh54DVlZvPFHW1N96AUAEA0Hnic/Zusrfc
 9aaHQbzs4qGSZ5UJWOU6GxcWob/tggs=
 =Ay05
 -----END PGP SIGNATURE-----

Merge tag 'xfs-6.7-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs updates from Chandan Babu:

 - Realtime device subsystem:
    - Cleanup usage of xfs_rtblock_t and xfs_fsblock_t data types
    - Replace open coded conversions between rt blocks and rt extents
      with calls to static inline helpers
    - Replace open coded realtime geometry compuation and macros with
      helper functions
    - CPU usage optimizations for realtime allocator
    - Misc bug fixes associated with Realtime device

 - Allow read operations to execute while an FICLONE ioctl is being
   serviced

 - Misc bug fixes:
    - Alert user when xfs_droplink() encounters an inode with a link
      count of zero
    - Handle the case where the allocator could return zero extents when
      servicing an fallocate request

* tag 'xfs-6.7-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (40 commits)
  xfs: allow read IO and FICLONE to run concurrently
  xfs: handle nimaps=0 from xfs_bmapi_write in xfs_alloc_file_space
  xfs: introduce protection for drop nlink
  xfs: don't look for end of extent further than necessary in xfs_rtallocate_extent_near()
  xfs: don't try redundant allocations in xfs_rtallocate_extent_near()
  xfs: limit maxlen based on available space in xfs_rtallocate_extent_near()
  xfs: return maximum free size from xfs_rtany_summary()
  xfs: invert the realtime summary cache
  xfs: simplify rt bitmap/summary block accessor functions
  xfs: simplify xfs_rtbuf_get calling conventions
  xfs: cache last bitmap block in realtime allocator
  xfs: use accessor functions for summary info words
  xfs: consolidate realtime allocation arguments
  xfs: create helpers for rtsummary block/wordcount computations
  xfs: use accessor functions for bitmap words
  xfs: create helpers for rtbitmap block/wordcount computations
  xfs: create a helper to handle logging parts of rt bitmap/summary blocks
  xfs: convert rt summary macros to helpers
  xfs: convert open-coded xfs_rtword_t pointer accesses to helper
  xfs: remove XFS_BLOCKWSIZE and XFS_BLOCKWMASK macros
  ...
2023-11-08 13:22:16 -08:00
Linus Torvalds
14ab6d425e vfs-6.7.ctime
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZTppYgAKCRCRxhvAZXjc
 okIHAP9anLz1QDyMLH12ASuHjgBc0Of3jcB6NB97IWGpL4O21gEA46ohaD+vcJuC
 YkBLU3lXqQ87nfu28ExFAzh10hG2jwM=
 =m4pB
 -----END PGP SIGNATURE-----

Merge tag 'vfs-6.7.ctime' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs

Pull vfs inode time accessor updates from Christian Brauner:
 "This finishes the conversion of all inode time fields to accessor
  functions as discussed on list. Changing timestamps manually as we
  used to do before is error prone. Using accessors function makes this
  robust.

  It does not contain the switch of the time fields to discrete 64 bit
  integers to replace struct timespec and free up space in struct inode.
  But after this, the switch can be trivially made and the patch should
  only affect the vfs if we decide to do it"

* tag 'vfs-6.7.ctime' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs: (86 commits)
  fs: rename inode i_atime and i_mtime fields
  security: convert to new timestamp accessors
  selinux: convert to new timestamp accessors
  apparmor: convert to new timestamp accessors
  sunrpc: convert to new timestamp accessors
  mm: convert to new timestamp accessors
  bpf: convert to new timestamp accessors
  ipc: convert to new timestamp accessors
  linux: convert to new timestamp accessors
  zonefs: convert to new timestamp accessors
  xfs: convert to new timestamp accessors
  vboxsf: convert to new timestamp accessors
  ufs: convert to new timestamp accessors
  udf: convert to new timestamp accessors
  ubifs: convert to new timestamp accessors
  tracefs: convert to new timestamp accessors
  sysv: convert to new timestamp accessors
  squashfs: convert to new timestamp accessors
  server: convert to new timestamp accessors
  client: convert to new timestamp accessors
  ...
2023-10-30 09:47:13 -10:00
Omar Sandoval
e23aaf450d xfs: invert the realtime summary cache
In commit 355e353213 ("xfs: cache minimum realtime summary level"), I
added a cache of the minimum level of the realtime summary that has any
free extents. However, it turns out that the _maximum_ level is more
useful for upcoming optimizations, and basically equivalent for the
existing usage. So, let's change the meaning of the cache to be the
maximum level + 1, or 0 if there are no free extents.

For example, if the cache contains:

{0, 4}

then there are no free extents starting in realtime bitmap block 0, and
there are no free extents larger than or equal to 2^4 blocks starting in
realtime bitmap block 1. The cache is a loose upper bound, so there may
or may not be free extents smaller than 2^4 blocks in realtime bitmap
block 1.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-19 08:34:33 -07:00
Darrick J. Wong
e2cf427c91 xfs: simplify rt bitmap/summary block accessor functions
Simplify the calling convention of these functions since the
xfs_rtalloc_args structure contains the parameters we need.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-19 08:33:42 -07:00
Darrick J. Wong
5b1d0ae975 xfs: simplify xfs_rtbuf_get calling conventions
Now that xfs_rtalloc_args holds references to the last-read bitmap and
summary blocks, we don't need to pass the buffer pointer out of
xfs_rtbuf_get.

Callers no longer have to xfs_trans_brelse on their own, though they are
required to call xfs_rtbuf_cache_relse before the xfs_rtalloc_args goes
out of scope.

While we're at it, create some trivial helpers so that we don't have to
remember if "0" means "bitmap" and "1" means "summary".

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-19 08:33:40 -07:00
Omar Sandoval
e94b53ff69 xfs: cache last bitmap block in realtime allocator
Profiling a workload on a highly fragmented realtime device showed a ton
of CPU cycles being spent in xfs_trans_read_buf() called by
xfs_rtbuf_get(). Further tracing showed that much of that was repeated
calls to xfs_rtbuf_get() for the same block of the realtime bitmap.
These come from xfs_rtallocate_extent_block(): as it walks through
ranges of free bits in the bitmap, each call to xfs_rtcheck_range() and
xfs_rtfind_{forw,back}() gets the same bitmap block. If the bitmap block
is very fragmented, then this is _a lot_ of buffer lookups.

The realtime allocator already passes around a cache of the last used
realtime summary block to avoid repeated reads (the parameters rbpp and
rsb). We can do the same for the realtime bitmap.

This replaces rbpp and rsb with a struct xfs_rtbuf_cache, which caches
the most recently used block for both the realtime bitmap and summary.
xfs_rtbuf_get() now handles the caching instead of the callers, which
requires plumbing xfs_rtbuf_cache to more functions but also makes sure
we don't miss anything.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-19 08:22:36 -07:00
Dave Chinner
41f33d82cf xfs: consolidate realtime allocation arguments
Consolidate the arguments passed around the rt allocator into a
struct xfs_rtalloc_arg similar to how the btree allocator arguments
are consolidated in a struct xfs_alloc_arg....

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-18 16:53:00 -07:00
Darrick J. Wong
663b8db7b0 xfs: use accessor functions for summary info words
Create get and set functions for rtsummary words so that we can redefine
the ondisk format with a specific endianness.  Note that this requires
the definition of a distinct type for ondisk summary info words so that
the compiler can perform proper typechecking.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-18 16:53:00 -07:00
Darrick J. Wong
bd85af280d xfs: create helpers for rtsummary block/wordcount computations
Create helper functions that compute the number of blocks or words
necessary to store the rt summary file.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-18 16:53:00 -07:00
Darrick J. Wong
97e993830a xfs: use accessor functions for bitmap words
Create get and set functions for rtbitmap words so that we can redefine
the ondisk format with a specific endianness.  Note that this requires
the definition of a distinct type for ondisk rtbitmap words so that the
compiler can perform proper typechecking as we go back and forth.

In the upcoming rtgroups feature, we're going to fix the problem that
rtwords are written in host endian order, which means we'll need the
distinct rtword/rtword_raw types.

Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-18 11:46:19 -07:00
Darrick J. Wong
312d61021b xfs: create a helper to handle logging parts of rt bitmap/summary blocks
Create an explicit helper function to log parts of rt bitmap and summary
blocks.  While we're at it, fix an off-by-one error in two of the
rtbitmap logging calls that led to unnecessarily large log items but was
otherwise benign.

Note that the upcoming rtgroups patchset will add block headers to the
rtbitmap and rtsummary files.  The helpers in this and the next few
patches take a less than direct route through xfs_rbmblock_wordptr and
xfs_rsumblock_infoptr to avoid helper churn in that patchset.

Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-18 10:58:58 -07:00
Darrick J. Wong
d0448fe76a xfs: create helpers for rtbitmap block/wordcount computations
Create helper functions that compute the number of blocks or words
necessary to store the rt bitmap.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-18 10:58:58 -07:00
Jeff Layton
75d1e312bb
xfs: convert to new timestamp accessors
Convert to using the new inode timestamp accessor functions.

Signed-off-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20231004185347.80880-75-jlayton@kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-10-18 14:08:29 +02:00
Darrick J. Wong
097b4b7b64 xfs: convert rt summary macros to helpers
Convert the realtime summary file macros to helper functions so that we
can improve type checking.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 17:45:38 -07:00
Darrick J. Wong
a994862684 xfs: convert open-coded xfs_rtword_t pointer accesses to helper
There are a bunch of places where we use open-coded logic to find a
pointer to an xfs_rtword_t within a rt bitmap buffer.  Convert all that
to helper functions for better type safety.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 17:45:38 -07:00
Darrick J. Wong
add3cddaea xfs: remove XFS_BLOCKWSIZE and XFS_BLOCKWMASK macros
Remove these trivial macros since they're not even part of the ondisk
format.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 17:45:37 -07:00
Darrick J. Wong
90d98a6ada xfs: convert the rtbitmap block and bit macros to static inline functions
Replace these macros with typechecked helper functions.  Eventually
we're going to add more logic to the helpers and it'll be easier if we
don't have to macro it up.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 16:26:25 -07:00
Darrick J. Wong
ef5a83b7e5 xfs: use shifting and masking when converting rt extents, if possible
Avoid the costs of integer division (32-bit and 64-bit) if the realtime
extent size is a power of two.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 16:26:25 -07:00
Darrick J. Wong
5f57f7309d xfs: create rt extent rounding helpers for realtime extent blocks
Create a pair of functions to round rtblock numbers up or down to the
nearest rt extent.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 16:26:25 -07:00
Darrick J. Wong
055641248f xfs: convert do_div calls to xfs_rtb_to_rtx helper calls
Convert these calls to use the helpers, and clean up all these places
where the same variable can have different units depending on where it
is in the function.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 16:25:55 -07:00
Darrick J. Wong
5dc3a80d46 xfs: create helpers to convert rt block numbers to rt extent numbers
Create helpers to do unit conversions of rt block numbers to rt extent
numbers.  There are three variations -- one to compute the rt extent
number from an rt block number; one to compute the offset of an rt block
within an rt extent; and one to extract both.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 16:24:22 -07:00
Darrick J. Wong
2c2b981b73 xfs: create a helper to convert extlen to rtextlen
Create a helper to compute the realtime extent (xfs_rtxlen_t) from an
extent length (xfs_extlen_t) value.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 16:24:22 -07:00
Darrick J. Wong
68db60bf01 xfs: create a helper to compute leftovers of realtime extents
Create a helper to compute the misalignment between a file extent
(xfs_extlen_t) and a realtime extent.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 16:24:22 -07:00
Darrick J. Wong
fa5a387230 xfs: create a helper to convert rtextents to rtblocks
Create a helper to convert a realtime extent to a realtime block.  Later
on we'll change the helper to use bit shifts when possible.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 16:24:22 -07:00
Darrick J. Wong
2d5f216b77 xfs: convert rt extent numbers to xfs_rtxnum_t
Further disambiguate the xfs_rtblock_t uses by creating a new type,
xfs_rtxnum_t, to store the position of an extent within the realtime
section, in units of rtextents.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 16:24:22 -07:00
Darrick J. Wong
3d2b6d034f xfs: rename xfs_verify_rtext to xfs_verify_rtbext
This helper function validates that a range of *blocks* in the
realtime section is completely contained within the realtime section.
It does /not/ validate ranges of *rtextents*.  Rename the function to
avoid suggesting that it does, and change the type of the @len parameter
since xfs_rtblock_t is a position unit, not a length unit.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 16:24:22 -07:00
Darrick J. Wong
f29c3e745d xfs: convert rt bitmap extent lengths to xfs_rtbxlen_t
XFS uses xfs_rtblock_t for many different uses, which makes it much more
difficult to perform a unit analysis on the codebase.  One of these
(ab)uses is when we need to store the length of a free space extent as
stored in the realtime bitmap.  Because there can be up to 2^64 realtime
extents in a filesystem, we need a new type that is larger than
xfs_rtxlen_t for callers that are querying the bitmap directly.  This
means scrub and growfs.

Create this type as "xfs_rtbxlen_t" and use it to store 64-bit rtx
lengths.  'b' stands for 'bitmap' or 'big'; reader's choice.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 16:24:22 -07:00
Darrick J. Wong
03f4de332e xfs: convert rt bitmap/summary block numbers to xfs_fileoff_t
We should use xfs_fileoff_t to store the file block offset of any
location within the realtime bitmap or summary files.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 16:24:22 -07:00
Darrick J. Wong
a684c538bc xfs: convert xfs_extlen_t to xfs_rtxlen_t in the rt allocator
In most of the filesystem, we use xfs_extlen_t to store the length of a
file (or AG) space mapping in units of fs blocks.  Unfortunately, the
realtime allocator also uses it to store the length of a rt space
mapping in units of rt extents.  This is confusing, since one rt extent
can consist of many fs blocks.

Separate the two by introducing a new type (xfs_rtxlen_t) to store the
length of a space mapping (in units of realtime extents) that would be
found in a file.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 16:24:22 -07:00
Darrick J. Wong
13928113fc xfs: move the xfs_rtbitmap.c declarations to xfs_rtbitmap.h
Move all the declarations for functionality in xfs_rtbitmap.c into a
separate xfs_rtbitmap.h header file.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 16:24:22 -07:00
Darrick J. Wong
ddd98076d5 xfs: fix units conversion error in xfs_bmap_del_extent_delay
The unit conversions in this function do not make sense.  First we
convert a block count to bytes, then divide that bytes value by
rextsize, which is in blocks, to get an rt extent count.  You can't
divide bytes by blocks to get a (possibly multiblock) extent value.

Fortunately nobody uses delalloc on the rt volume so this hasn't
mattered.

Fixes: fa5c836ca8 ("xfs: refactor xfs_bunmapi_cow")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 16:23:49 -07:00
Darrick J. Wong
6c66448433 xfs: hoist freeing of rt data fork extent mappings
Currently, xfs_bmap_del_extent_real contains a bunch of code to convert
the physical extent of a data fork mapping for a realtime file into rt
extents and pass that to the rt extent freeing function.  Since the
details of this aren't needed when CONFIG_XFS_REALTIME=n, move it to
xfs_rtbitmap.c to reduce code size when realtime isn't enabled.

This will (one day) enable realtime EFIs to reuse the same
unit-converting call with less code duplication.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 08:40:54 -07:00
Darrick J. Wong
9488062805 xfs: bump max fsgeom struct version
The latest version of the fs geometry structure is v5.  Bump this
constant so that xfs_db and mkfs calls to libxfs_fs_geometry will fill
out all the fields.

IOWs, this commit is a no-op for the kernel, but will be useful for
userspace reporting in later changes.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-17 08:40:54 -07:00
Darrick J. Wong
6868b8505c xfs: adjust the incore perag block_count when shrinking
If we reduce the number of blocks in an AG, we must update the incore
geometry values as well.

Fixes: 0800169e3e ("xfs: Pre-calculate per-AG agbno geometry")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-11 12:35:20 -07:00
Linus Torvalds
3abc79dce6 Bug fixes for 6.6-rc3:
* Fix an integer overflow bug when processing an fsmap call.
 
  * Fix crash due to CPU hot remove event racing with filesystem mount
    operation.
 
  * During read-only mount, XFS does not allow the contents of the log to be
    recovered when there are one or more unrecognized rcompat features in the
    primary superblock, since the log might have intent items which the kernel
    does not know how to process.
 
  * During recovery of log intent items, XFS now reserves log space sufficient
    for one cycle of a permanent transaction to execute. Otherwise, this could
    lead to livelocks due to non-availability of log space.
 
  * On an fs which has an ondisk unlinked inode list, trying to delete a file
    or allocating an O_TMPFILE file can cause the fs to the shutdown if the
    first inode in the ondisk inode list is not present in the inode cache.
    The bug is solved by explicitly loading the first inode in the ondisk
    unlinked inode list into the inode cache if it is not already cached.
 
    A similar problem arises when the uncached inode is present in the middle
    of the ondisk unlinked inode list. This second bug is triggered when
    executing operations like quotacheck and bulkstat. In this case, XFS now
    reads in the entire ondisk unlinked inode list.
 
  * Enable LARP mode only on recent v5 filesystems.
 
  * Fix a out of bounds memory access in scrub.
 
  * Fix a performance bug when locating the tail of the log during mounting a
    filesystem.
 
 Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQQjMC4mbgVeU7MxEIYH7y4RirJu9AUCZQkx4QAKCRAH7y4RirJu
 9HrTAQD6QhvHkS43vueGOb4WISZPG/jMKJ/FjvwLZrIZ0erbJwEAtRWhClwFv3NZ
 exJFtsmxrKC6Vifuo0pvfoCiK5mUvQ8=
 =SrJR
 -----END PGP SIGNATURE-----

Merge tag 'xfs-6.6-fixes-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs fixes from Chandan Babu:

 - Fix an integer overflow bug when processing an fsmap call

 - Fix crash due to CPU hot remove event racing with filesystem mount
   operation

 - During read-only mount, XFS does not allow the contents of the log to
   be recovered when there are one or more unrecognized rcompat features
   in the primary superblock, since the log might have intent items
   which the kernel does not know how to process

 - During recovery of log intent items, XFS now reserves log space
   sufficient for one cycle of a permanent transaction to execute.
   Otherwise, this could lead to livelocks due to non-availability of
   log space

 - On an fs which has an ondisk unlinked inode list, trying to delete a
   file or allocating an O_TMPFILE file can cause the fs to the shutdown
   if the first inode in the ondisk inode list is not present in the
   inode cache. The bug is solved by explicitly loading the first inode
   in the ondisk unlinked inode list into the inode cache if it is not
   already cached

   A similar problem arises when the uncached inode is present in the
   middle of the ondisk unlinked inode list. This second bug is
   triggered when executing operations like quotacheck and bulkstat. In
   this case, XFS now reads in the entire ondisk unlinked inode list

 - Enable LARP mode only on recent v5 filesystems

 - Fix a out of bounds memory access in scrub

 - Fix a performance bug when locating the tail of the log during
   mounting a filesystem

* tag 'xfs-6.6-fixes-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
  xfs: use roundup_pow_of_two instead of ffs during xlog_find_tail
  xfs: only call xchk_stats_merge after validating scrub inputs
  xfs: require a relatively recent V5 filesystem for LARP mode
  xfs: make inode unlinked bucket recovery work with quotacheck
  xfs: load uncached unlinked inodes into memory on demand
  xfs: reserve less log space when recovering log intent items
  xfs: fix log recovery when unknown rocompat bits are set
  xfs: reload entire unlinked bucket lists
  xfs: allow inode inactivation during a ro mount log recovery
  xfs: use i_prev_unlinked to distinguish inodes that are not on the unlinked list
  xfs: remove CPU hotplug infrastructure
  xfs: remove the all-mounts list
  xfs: use per-mount cpumask to track nonempty percpu inodegc lists
  xfs: fix an agbno overflow in __xfs_getfsmap_datadev
  xfs: fix per-cpu CIL structure aggregation racing with dying cpus
  xfs: fix select in config XFS_ONLINE_SCRUB_STATS
2023-09-22 16:32:19 -07:00
Christian Brauner
f798accd59
Revert "xfs: switch to multigrain timestamps"
This reverts commit e44df26647.

Users reported regressions due to enabling multi-grained timestamps
unconditionally. As no clear consensus on a solution has come up and the
discussion has gone back to the drawing board revert the infrastructure
changes for. If it isn't code that's here to stay, make it go away.

Message-ID: <20230920-keine-eile-c9755b5825db@brauner>
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-09-20 18:05:31 +02:00
Darrick J. Wong
3c919b0910 xfs: reserve less log space when recovering log intent items
Wengang Wang reports that a customer's system was running a number of
truncate operations on a filesystem with a very small log.  Contention
on the reserve heads lead to other threads stalling on smaller updates
(e.g.  mtime updates) long enough to result in the node being rebooted
on account of the lack of responsivenes.  The node failed to recover
because log recovery of an EFI became stuck waiting for a grant of
reserve space.  From Wengang's report:

"For the file deletion, log bytes are reserved basing on
xfs_mount->tr_itruncate which is:

    tr_logres = 175488,
    tr_logcount = 2,
    tr_logflags = XFS_TRANS_PERM_LOG_RES,

"You see it's a permanent log reservation with two log operations (two
transactions in rolling mode).  After calculation (xlog_calc_unit_res()
adds space for various log headers), the final log space needed per
transaction changes from  175488 to 180208 bytes.  So the total log
space needed is 360416 bytes (180208 * 2).  [That quantity] of log space
(360416 bytes) needs to be reserved for both run time inode removing
(xfs_inactive_truncate()) and EFI recover (xfs_efi_item_recover())."

In other words, runtime pre-reserves 360K of space in anticipation of
running a chain of two transactions in which each transaction gets a
180K reservation.

Now that we've allocated the transaction, we delete the bmap mapping,
log an EFI to free the space, and roll the transaction as part of
finishing the deferops chain.  Rolling creates a new xfs_trans which
shares its ticket with the old transaction.  Next, xfs_trans_roll calls
__xfs_trans_commit with regrant == true, which calls xlog_cil_commit
with the same regrant parameter.

xlog_cil_commit calls xfs_log_ticket_regrant, which decrements t_cnt and
subtracts t_curr_res from the reservation and write heads.

If the filesystem is fresh and the first transaction only used (say)
20K, then t_curr_res will be 160K, and we give that much reservation
back to the reservation head.  Or if the file is really fragmented and
the first transaction actually uses 170K, then t_curr_res will be 10K,
and that's what we give back to the reservation.

Having done that, we're now headed into the second transaction with an
EFI and 180K of reservation.  Other threads apparently consumed all the
reservation for smaller transactions, such as timestamp updates.

Now let's say the first transaction gets written to disk and we crash
without ever completing the second transaction.  Now we remount the fs,
log recovery finds the unfinished EFI, and calls xfs_efi_recover to
finish the EFI.  However, xfs_efi_recover starts a new tr_itruncate
tranasction, which asks for 360K log reservation.  This is a lot more
than the 180K that we had reserved at the time of the crash.  If the
first EFI to be recovered is also pinning the tail of the log, we will
be unable to free any space in the log, and recovery livelocks.

Wengang confirmed this:

"Now we have the second transaction which has 180208 log bytes reserved
too. The second transaction is supposed to process intents including
extent freeing.  With my hacking patch, I blocked the extent freeing 5
hours. So in that 5 hours, 180208 (NOT 360416) log bytes are reserved.

"With my test case, other transactions (update timestamps) then happen.
As my hacking patch pins the journal tail, those timestamp-updating
transactions finally use up (almost) all the left available log space
(in memory in on disk).  And finally the on disk (and in memory)
available log space goes down near to 180208 bytes.  Those 180208 bytes
are reserved by [the] second (extent-free) transaction [in the chain]."

Wengang and I noticed that EFI recovery starts a transaction, completes
one step of the chain, and commits the transaction without completing
any other steps of the chain.  Those subsequent steps are completed by
xlog_finish_defer_ops, which allocates yet another transaction to
finish the rest of the chain.  That transaction gets the same tr_logres
as the head transaction, but with tr_logcount = 1 to force regranting
with every roll to avoid livelocks.

In other words, we already figured this out in commit 929b92f640
("xfs: xfs_defer_capture should absorb remaining transaction
reservation"), but should have applied that logic to each intent item's
recovery function.  For Wengang's case, the xfs_trans_alloc call in the
EFI recovery function should only be asking for a single transaction's
worth of log reservation -- 180K, not 360K.

Quoting Wengang again:

"With log recovery, during EFI recovery, we use tr_itruncate again to
reserve two transactions that needs 360416 log bytes.  Reserving 360416
bytes fails [stalls] because we now only have about 180208 available.

"Actually during the EFI recover, we only need one transaction to free
the extents just like the 2nd transaction at RUNTIME.  So it only needs
to reserve 180208 rather than 360416 bytes.  We have (a bit) more than
180208 available log bytes on disk, so [if we decrease the reservation
to 180K] the reservation goes and the recovery [finishes].  That is to
say: we can fix the log recover part to fix the issue. We can introduce
a new xfs_trans_res xfs_mount->tr_ext_free

{
  tr_logres = 175488,
  tr_logcount = 0,
  tr_logflags = 0,
}

"and use tr_ext_free instead of tr_itruncate in EFI recover."

However, I don't think it quite makes sense to create an entirely new
transaction reservation type to handle single-stepping during log
recovery.  Instead, we should copy the transaction reservation
information in the xfs_mount, change tr_logcount to 1, and pass that
into xfs_trans_alloc.  We know this won't risk changing the min log size
computation since we always ask for a fraction of the reservation for
all known transaction types.

This looks like it's been lurking in the codebase since commit
3d3c8b5222, which changed the xfs_trans_reserve call in
xlog_recover_process_efi to use the tr_logcount in tr_itruncate.
That changed the EFI recovery transaction from making a
non-XFS_TRANS_PERM_LOG_RES request for one transaction's worth of log
space to a XFS_TRANS_PERM_LOG_RES request for two transactions worth.

Fixes: 3d3c8b5222 ("xfs: refactor xfs_trans_reserve() interface")
Complements: 929b92f640 ("xfs: xfs_defer_capture should absorb remaining transaction reservation")
Suggested-by: Wengang Wang <wen.gang.wang@oracle.com>
Cc: Srikanth C S <srikanth.c.s@oracle.com>
[djwong: apply the same transformation to all log intent recovery]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-09-12 10:31:07 -07:00
Darrick J. Wong
74ad4693b6 xfs: fix log recovery when unknown rocompat bits are set
Log recovery has always run on read only mounts, even where the primary
superblock advertises unknown rocompat bits.  Due to a misunderstanding
between Eric and Darrick back in 2018, we accidentally changed the
superblock write verifier to shutdown the fs over that exact scenario.
As a result, the log cleaning that occurs at the end of the mounting
process fails if there are unknown rocompat bits set.

As we now allow writing of the superblock if there are unknown rocompat
bits set on a RO mount, we no longer want to turn off RO state to allow
log recovery to succeed on a RO mount.  Hence we also remove all the
(now unnecessary) RO state toggling from the log recovery path.

Fixes: 9e037cb797 ("xfs: check for unknown v5 feature bits in superblock write verifier"
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-09-12 10:31:07 -07:00
Linus Torvalds
53ea7f624f New code for 6.6:
* Chandan Babu will be taking over as the XFS release manager.  He has
    reviewed all the patches that are in this branch, though I'm signing
    the branch one last time since I'm still technically maintainer. :P
  * Create a maintainer entry profile for XFS in which we lay out the
    various roles that I have played for many years.  Aside from release
    manager, the remaining roles are as yet unfilled.
  * Start merging online repair -- we now have in-memory pageable memory
    for staging btrees, a bunch of pending fixes, and we've started the
    process of refactoring the scrub support code to support more of
    repair.  In particular, reaping of old blocks from damaged structures.
  * Scrub the realtime summary file.
  * Fix a bug where scrub's quota iteration only ever returned the root
    dquot.  Oooops.
  * Fix some typos.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZOQE2AAKCRBKO3ySh0YR
 pvmZAQDe+KceaVx6Dv2f9ihckeS2dILSpDTo1bh9BeXnt005VwD/ceHTaJxEl8lp
 u/dixFDkRgp9RYtoTAK2WNiUxYetsAc=
 =oZN6
 -----END PGP SIGNATURE-----

Merge tag 'xfs-6.6-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs updates from Chandan Babu:

 - Chandan Babu will be taking over as the XFS release manager. He has
   reviewed all the patches that are in this branch, though I'm signing
   the branch one last time since I'm still technically maintainer. :P

 - Create a maintainer entry profile for XFS in which we lay out the
   various roles that I have played for many years.  Aside from release
   manager, the remaining roles are as yet unfilled.

 - Start merging online repair -- we now have in-memory pageable memory
   for staging btrees, a bunch of pending fixes, and we've started the
   process of refactoring the scrub support code to support more of
   repair.  In particular, reaping of old blocks from damaged structures.

 - Scrub the realtime summary file.

 - Fix a bug where scrub's quota iteration only ever returned the root
   dquot.  Oooops.

 - Fix some typos.

[ Pull request from Chandan Babu, but signed tag and description from
  Darrick Wong, thus the first person singular above is Darrick, not
  Chandan ]

* tag 'xfs-6.6-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (37 commits)
  fs/xfs: Fix typos in comments
  xfs: fix dqiterate thinko
  xfs: don't check reflink iflag state when checking cow fork
  xfs: simplify returns in xchk_bmap
  xfs: rewrite xchk_inode_is_allocated to work properly
  xfs: hide xfs_inode_is_allocated in scrub common code
  xfs: fix agf_fllast when repairing an empty AGFL
  xfs: allow userspace to rebuild metadata structures
  xfs: clear pagf_agflreset when repairing the AGFL
  xfs: allow the user to cancel repairs before we start writing
  xfs: don't complain about unfixed metadata when repairs were injected
  xfs: implement online scrubbing of rtsummary info
  xfs: always rescan allegedly healthy per-ag metadata after repair
  xfs: move the realtime summary file scrubber to a separate source file
  xfs: wrap ilock/iunlock operations on sc->ip
  xfs: get our own reference to inodes that we want to scrub
  xfs: track usage statistics of online fsck
  xfs: improve xfarray quicksort pivot
  xfs: create scaffolding for creating debugfs entries
  xfs: cache pages used for xfarray quicksort convergence
  ...
2023-08-30 12:34:12 -07:00
Linus Torvalds
615e95831e v6.6-vfs.ctime
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZOXTKAAKCRCRxhvAZXjc
 oifJAQCzi/p+AdQu8LA/0XvR7fTwaq64ZDCibU4BISuLGT2kEgEAuGbuoFZa0rs2
 XYD/s4+gi64p9Z01MmXm2XO1pu3GPg0=
 =eJz5
 -----END PGP SIGNATURE-----

Merge tag 'v6.6-vfs.ctime' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs

Pull vfs timestamp updates from Christian Brauner:
 "This adds VFS support for multi-grain timestamps and converts tmpfs,
  xfs, ext4, and btrfs to use them. This carries acks from all relevant
  filesystems.

  The VFS always uses coarse-grained timestamps when updating the ctime
  and mtime after a change. This has the benefit of allowing filesystems
  to optimize away a lot of metadata updates, down to around 1 per
  jiffy, even when a file is under heavy writes.

  Unfortunately, this has always been an issue when we're exporting via
  NFSv3, which relies on timestamps to validate caches. A lot of changes
  can happen in a jiffy, so timestamps aren't sufficient to help the
  client decide to invalidate the cache.

  Even with NFSv4, a lot of exported filesystems don't properly support
  a change attribute and are subject to the same problems with timestamp
  granularity. Other applications have similar issues with timestamps
  (e.g., backup applications).

  If we were to always use fine-grained timestamps, that would improve
  the situation, but that becomes rather expensive, as the underlying
  filesystem would have to log a lot more metadata updates.

  This introduces fine-grained timestamps that are used when they are
  actively queried.

  This uses the 31st bit of the ctime tv_nsec field to indicate that
  something has queried the inode for the mtime or ctime. When this flag
  is set, on the next mtime or ctime update, the kernel will fetch a
  fine-grained timestamp instead of the usual coarse-grained one.

  As POSIX generally mandates that when the mtime changes, the ctime
  must also change the kernel always stores normalized ctime values, so
  only the first 30 bits of the tv_nsec field are ever used.

  Filesytems can opt into this behavior by setting the FS_MGTIME flag in
  the fstype. Filesystems that don't set this flag will continue to use
  coarse-grained timestamps.

  Various preparatory changes, fixes and cleanups are included:

   - Fixup all relevant places where POSIX requires updating ctime
     together with mtime. This is a wide-range of places and all
     maintainers provided necessary Acks.

   - Add new accessors for inode->i_ctime directly and change all
     callers to rely on them. Plain accesses to inode->i_ctime are now
     gone and it is accordingly rename to inode->__i_ctime and commented
     as requiring accessors.

   - Extend generic_fillattr() to pass in a request mask mirroring in a
     sense the statx() uapi. This allows callers to pass in a request
     mask to only get a subset of attributes filled in.

   - Rework timestamp updates so it's possible to drop the @now
     parameter the update_time() inode operation and associated helpers.

   - Add inode_update_timestamps() and convert all filesystems to it
     removing a bunch of open-coding"

* tag 'v6.6-vfs.ctime' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (107 commits)
  btrfs: convert to multigrain timestamps
  ext4: switch to multigrain timestamps
  xfs: switch to multigrain timestamps
  tmpfs: add support for multigrain timestamps
  fs: add infrastructure for multigrain timestamps
  fs: drop the timespec64 argument from update_time
  xfs: have xfs_vn_update_time gets its own timestamp
  fat: make fat_update_time get its own timestamp
  fat: remove i_version handling from fat_update_time
  ubifs: have ubifs_update_time use inode_update_timestamps
  btrfs: have it use inode_update_timestamps
  fs: drop the timespec64 arg from generic_update_time
  fs: pass the request_mask to generic_fillattr
  fs: remove silly warning from current_time
  gfs2: fix timestamp handling on quota inodes
  fs: rename i_ctime field to __i_ctime
  selinux: convert to ctime accessor functions
  security: convert to ctime accessor functions
  apparmor: convert to ctime accessor functions
  sunrpc: convert to ctime accessor functions
  ...
2023-08-28 09:31:32 -07:00
Jeff Layton
e44df26647
xfs: switch to multigrain timestamps
Enable multigrain timestamps, which should ensure that there is an
apparent change to the timestamp whenever it has been written after
being actively observed via getattr.

Also, anytime the mtime changes, the ctime must also change, and those
are now the only two options for xfs_trans_ichgtime. Have that function
unconditionally bump the ctime, and ASSERT that XFS_ICHGTIME_CHG is
always set.

Acked-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Message-Id: <20230807-mgctime-v7-11-d1dec143a704@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-08-11 09:04:57 +02:00
Darrick J. Wong
5c83df2e54 xfs: allow userspace to rebuild metadata structures
Add a new (superuser-only) flag to the online metadata repair ioctl to
force it to rebuild structures, even if they're not broken.  We will use
this to move metadata structures out of the way during a free space
defragmentation operation.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-08-10 07:48:11 -07:00
Jeff Layton
a0a415e34b xfs: convert to ctime accessor functions
In later patches, we're going to change how the inode's ctime field is
used. Switch to using accessor functions instead of raw accesses of
inode->i_ctime.

Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Message-Id: <20230705190309.579783-80-jlayton@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-07-24 10:30:06 +02:00
Darrick J. Wong
f6250e2056 xfs: convert flex-array declarations in xfs attr shortform objects
As of 6.5-rc1, UBSAN trips over the ondisk extended attribute shortform
definitions using an array length of 1 to pretend to be a flex array.
Kernel compilers have to support unbounded array declarations, so let's
correct this.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
2023-07-17 08:48:56 -07:00
Darrick J. Wong
a49bbce58e xfs: convert flex-array declarations in xfs attr leaf blocks
As of 6.5-rc1, UBSAN trips over the ondisk extended attribute leaf block
definitions using an array length of 1 to pretend to be a flex array.
Kernel compilers have to support unbounded array declarations, so let's
correct this.

================================================================================
UBSAN: array-index-out-of-bounds in fs/xfs/libxfs/xfs_attr_leaf.c:2535:24
index 2 is out of range for type '__u8 [1]'
Call Trace:
 <TASK>
 dump_stack_lvl+0x33/0x50
 __ubsan_handle_out_of_bounds+0x9c/0xd0
 xfs_attr3_leaf_getvalue+0x2ce/0x2e0 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
 xfs_attr_leaf_get+0x148/0x1c0 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
 xfs_attr_get_ilocked+0xae/0x110 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
 xfs_attr_get+0xee/0x150 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
 xfs_xattr_get+0x7d/0xc0 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
 __vfs_getxattr+0xa3/0x100
 vfs_getxattr+0x87/0x1d0
 do_getxattr+0x17a/0x220
 getxattr+0x89/0xf0

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
2023-07-17 08:48:56 -07:00
Darrick J. Wong
371baf5c97 xfs: convert flex-array declarations in struct xfs_attrlist*
As of 6.5-rc1, UBSAN trips over the attrlist ioctl definitions using an
array length of 1 to pretend to be a flex array.  Kernel compilers have
to support unbounded array declarations, so let's correct this.  This
may cause friction with userspace header declarations, but suck is life.

================================================================================
UBSAN: array-index-out-of-bounds in fs/xfs/xfs_ioctl.c:345:18
index 1 is out of range for type '__s32 [1]'
Call Trace:
 <TASK>
 dump_stack_lvl+0x33/0x50
 __ubsan_handle_out_of_bounds+0x9c/0xd0
 xfs_ioc_attr_put_listent+0x413/0x420 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
 xfs_attr_list_ilocked+0x170/0x850 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
 xfs_attr_list+0xb7/0x120 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
 xfs_ioc_attr_list+0x13b/0x2e0 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
 xfs_attrlist_by_handle+0xab/0x120 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
 xfs_file_ioctl+0x1ff/0x15e0 [xfs 4a986a89a77bb77402ab8a87a37da369ef6a3f09]
 vfs_ioctl+0x1f/0x60

The kernel and xfsprogs code that uses these structures will not have
problems, but the long tail of external user programs might.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
2023-07-17 08:48:56 -07:00
Linus Torvalds
bb8e7e9f0b More new code for 6.5:
* Fix some ordering problems with log items during log recovery.
  * Don't deadlock the system by trying to flush busy freed extents while
    holding on to busy freed extents.
  * Improve validation of log geometry parameters when reading the
    primary superblock.
  * Validate the length field in the AGF header.
  * Fix recordset filtering bugs when re-calling GETFSMAP to return more
    results when the resultset didn't previously fit in the caller's buffer.
  * Fix integer overflows in GETFSMAP when working with rt volumes larger
    than 2^32 fsblocks.
  * Fix GETFSMAP reporting the undefined space beyond the last rtextent.
  * Fix filtering bugs in GETFSMAP's log device backend if the log ever
    becomes longer than 2^32 fsblocks.
  * Improve validation of file offsets in the GETFSMAP range parameters.
  * Fix an off by one bug in the pmem media failure notification
    computation.
  * Validate the length field in the AGI header too.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZKL9IwAKCRBKO3ySh0YR
 prFLAQC+dp1bV5ShBPfYJMCSUS7gmZEge01QrLTqcpyu8mO5GgD/YLUdD2Iebc8t
 AS1Awj1iec7AFtCWcd3bTeNZD7vL9w0=
 =j/oi
 -----END PGP SIGNATURE-----

Merge tag 'xfs-6.5-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull more xfs updates from Darrick Wong:

 - Fix some ordering problems with log items during log recovery

 - Don't deadlock the system by trying to flush busy freed extents while
   holding on to busy freed extents

 - Improve validation of log geometry parameters when reading the
   primary superblock

 - Validate the length field in the AGF header

 - Fix recordset filtering bugs when re-calling GETFSMAP to return more
   results when the resultset didn't previously fit in the caller's
   buffer

 - Fix integer overflows in GETFSMAP when working with rt volumes larger
   than 2^32 fsblocks

 - Fix GETFSMAP reporting the undefined space beyond the last rtextent

 - Fix filtering bugs in GETFSMAP's log device backend if the log ever
   becomes longer than 2^32 fsblocks

 - Improve validation of file offsets in the GETFSMAP range parameters

 - Fix an off by one bug in the pmem media failure notification
   computation

 - Validate the length field in the AGI header too

* tag 'xfs-6.5-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
  xfs: Remove unneeded semicolon
  xfs: AGI length should be bounds checked
  xfs: fix the calculation for "end" and "length"
  xfs: fix xfs_btree_query_range callers to initialize btree rec fully
  xfs: validate fsmap offsets specified in the query keys
  xfs: fix logdev fsmap query result filtering
  xfs: clean up the rtbitmap fsmap backend
  xfs: fix getfsmap reporting past the last rt extent
  xfs: fix integer overflows in the fsmap rtbitmap and logdev backends
  xfs: fix interval filtering in multi-step fsmap queries
  xfs: fix bounds check in xfs_defer_agfl_block()
  xfs: AGF length has never been bounds checked
  xfs: journal geometry is not properly bounds checked
  xfs: don't block in busy flushing when freeing extents
  xfs: allow extent free intents to be retried
  xfs: pass alloc flags through to xfs_extent_busy_flush()
  xfs: use deferred frees for btree block freeing
  xfs: don't reverse order of items in bulk AIL insertion
  xfs: remove redundant initializations of pointers drop_leaf and save_leaf
2023-07-05 14:08:03 -07:00
Darrick J. Wong
2d7d1e7ea3 xfs: AGI length should be bounds checked
Similar to the recent patch strengthening the AGF agf_length
verification, the AGI verifier does not check that the AGI length field
is within known good bounds.  This isn't currently checked by runtime
kernel code, yet we assume in many places that it is correct and verify
other metadata against it.

Add length verification to the AGI verifier.  Just like the AGF length
checking, the length of the AGI must be equal to the size of the AG
specified in the superblock, unless it is the last AG in the filesystem.
In that case, it must be less than or equal to sb->sb_agblocks and
greater than XFS_MIN_AG_BLOCKS, which is the smallest AG a growfs
operation will allow to exist.

There's only one place in the filesystem that actually uses agi_length,
but let's not leave it vulnerable to the same weird nonsense that
generates syzbot bugs, eh?

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-07-03 09:48:17 -07:00
Darrick J. Wong
75dc034531 xfs: fix xfs_btree_query_range callers to initialize btree rec fully
Use struct initializers to ensure that the xfs_btree_irecs passed into
the query_range function are completely initialized.  No functional
changes, just closing some sloppy hygiene.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-07-02 09:26:19 -07:00
Linus Torvalds
9e06150d3c New code for 6.5:
* Fix a problem where shrink would blow out the space reserve by
    declining to shrink the filesystem.
  * Drop the EXPERIMENTAL tag for the large extent counts feature.
  * Set FMODE_CAN_ODIRECT and get rid of an address space op.
  * Fix an AG count overflow bug in growfs if the new device size is
    redonkulously large.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHQEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZIs45AAKCRBKO3ySh0YR
 ps5NAP92oOaMlXeaxTTGLnbCe/sQhQiVfjE45sQL2BziHN/s2gD2OX01yn2w+Mpg
 CdQ6HChUzL2fU3eleh1yMNR7McuaCA==
 =hQX7
 -----END PGP SIGNATURE-----

Merge tag 'xfs-6.5-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs updates from Darrick Wong:
 "There's not much going on this cycle -- the large extent counts
  feature graduated, so now users can create more extremely fragmented
  files! :P

  The rest are bug fixes; and I'll be sending more next week.

   - Fix a problem where shrink would blow out the space reserve by
     declining to shrink the filesystem

   - Drop the EXPERIMENTAL tag for the large extent counts feature

   - Set FMODE_CAN_ODIRECT and get rid of an address space op

   - Fix an AG count overflow bug in growfs if the new device size is
     redonkulously large"

* tag 'xfs-6.5-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
  xfs: fix ag count overflow during growfs
  xfs: set FMODE_CAN_ODIRECT instead of a dummy direct_IO method
  xfs: drop EXPERIMENTAL tag for large extent counts
  xfs: don't deplete the reserve pool when trying to shrink the fs
2023-06-29 13:23:32 -07:00
Dave Chinner
2bed0d82c2 xfs: fix bounds check in xfs_defer_agfl_block()
Need to happen before we allocate and then leak the xefi. Found by
coverity via an xfsprogs libxfs scan.

[djwong: This also fixes the type of the @agbno argument.]

Fixes: 7dfee17b13 ("xfs: validate block number being freed before adding to xefi")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-06-29 09:28:24 -07:00
Dave Chinner
edd8276dd7 xfs: AGF length has never been bounds checked
The AGF verifier does not check that the AGF length field is within
known good bounds. This has never been checked by runtime kernel
code (i.e. the lack of verification goes back to 1993) yet we assume
in many places that it is correct and verify other metdata against
it.

Add length verification to the AGF verifier. The length of the AGF
must be equal to the size of the AG specified in the superblock,
unless it is the last AG in the filesystem. In that case, it must be
less than or equal to sb->sb_agblocks and greater than
XFS_MIN_AG_BLOCKS, which is the smallest AG a growfs operation will
allow to exist.

This requires a bit of rework of the verifier function. We want to
verify metadata before we use it to verify other metadata. Hence
we need to verify the AGF sequence numbers before using them to
verify the length of the AGF. Then we can verify the AGF length
before we verify AGFL fields. Then we can verifier other fields that
are bounds limited by the AGF length.

And, finally, by calculating agf_length only once into a local
variable, we can collapse repeated "if (xfs_has_foo() &&"
conditionaly checks into single checks. This makes the code much
easier to follow as all the checks for a given feature are obviously
in the same place.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-06-29 09:28:24 -07:00
Dave Chinner
f1e1765aad xfs: journal geometry is not properly bounds checked
If the journal geometry results in a sector or log stripe unit
validation problem, it indicates that we cannot set the log up to
safely write to the the journal. In these cases, we must abort the
mount because the corruption needs external intervention to resolve.
Similarly, a journal that is too large cannot be written to safely,
either, so we shouldn't allow those geometries to mount, either.

If the log is too small, we risk having transaction reservations
overruning the available log space and the system hanging waiting
for space it can never provide. This is purely a runtime hang issue,
not a corruption issue as per the first cases listed above. We abort
mounts of the log is too small for V5 filesystems, but we must allow
v4 filesystems to mount because, historically, there was no log size
validity checking and so some systems may still be out there with
undersized logs.

The problem is that on V4 filesystems, when we discover a log
geometry problem, we skip all the remaining checks and then allow
the log to continue mounting. This mean that if one of the log size
checks fails, we skip the log stripe unit check. i.e. we allow the
mount because a "non-fatal" geometry is violated, and then fail to
check the hard fail geometries that should fail the mount.

Move all these fatal checks to the superblock verifier, and add a
new check for the two log sector size geometry variables having the
same values. This will prevent any attempt to mount a log that has
invalid or inconsistent geometries long before we attempt to mount
the log.

However, for the minimum log size checks, we can only do that once
we've setup up the log and calculated all the iclog sizes and
roundoffs. Hence this needs to remain in the log mount code after
the log has been initialised. It is also the only case where we
should allow a v4 filesystem to continue running, so leave that
handling in place, too.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-06-29 09:28:24 -07:00
Dave Chinner
8ebbf262d4 xfs: don't block in busy flushing when freeing extents
If the current transaction holds a busy extent and we are trying to
allocate a new extent to fix up the free list, we can deadlock if
the AG is entirely empty except for the busy extent held by the
transaction.

This can occur at runtime processing an XEFI with multiple extents
in this path:

__schedule+0x22f at ffffffff81f75e8f
schedule+0x46 at ffffffff81f76366
xfs_extent_busy_flush+0x69 at ffffffff81477d99
xfs_alloc_ag_vextent_size+0x16a at ffffffff8141711a
xfs_alloc_ag_vextent+0x19b at ffffffff81417edb
xfs_alloc_fix_freelist+0x22f at ffffffff8141896f
xfs_free_extent_fix_freelist+0x6a at ffffffff8141939a
__xfs_free_extent+0x99 at ffffffff81419499
xfs_trans_free_extent+0x3e at ffffffff814a6fee
xfs_extent_free_finish_item+0x24 at ffffffff814a70d4
xfs_defer_finish_noroll+0x1f7 at ffffffff81441407
xfs_defer_finish+0x11 at ffffffff814417e1
xfs_itruncate_extents_flags+0x13d at ffffffff8148b7dd
xfs_inactive_truncate+0xb9 at ffffffff8148bb89
xfs_inactive+0x227 at ffffffff8148c4f7
xfs_fs_destroy_inode+0xb8 at ffffffff81496898
destroy_inode+0x3b at ffffffff8127d2ab
do_unlinkat+0x1d1 at ffffffff81270df1
do_syscall_64+0x40 at ffffffff81f6b5f0
entry_SYSCALL_64_after_hwframe+0x44 at ffffffff8200007c

This can also happen in log recovery when processing an EFI
with multiple extents through this path:

context_switch() kernel/sched/core.c:3881
__schedule() kernel/sched/core.c:5111
schedule() kernel/sched/core.c:5186
xfs_extent_busy_flush() fs/xfs/xfs_extent_busy.c:598
xfs_alloc_ag_vextent_size() fs/xfs/libxfs/xfs_alloc.c:1641
xfs_alloc_ag_vextent() fs/xfs/libxfs/xfs_alloc.c:828
xfs_alloc_fix_freelist() fs/xfs/libxfs/xfs_alloc.c:2362
xfs_free_extent_fix_freelist() fs/xfs/libxfs/xfs_alloc.c:3029
__xfs_free_extent() fs/xfs/libxfs/xfs_alloc.c:3067
xfs_trans_free_extent() fs/xfs/xfs_extfree_item.c:370
xfs_efi_recover() fs/xfs/xfs_extfree_item.c:626
xlog_recover_process_efi() fs/xfs/xfs_log_recover.c:4605
xlog_recover_process_intents() fs/xfs/xfs_log_recover.c:4893
xlog_recover_finish() fs/xfs/xfs_log_recover.c:5824
xfs_log_mount_finish() fs/xfs/xfs_log.c:764
xfs_mountfs() fs/xfs/xfs_mount.c:978
xfs_fs_fill_super() fs/xfs/xfs_super.c:1908
mount_bdev() fs/super.c:1417
xfs_fs_mount() fs/xfs/xfs_super.c:1985
legacy_get_tree() fs/fs_context.c:647
vfs_get_tree() fs/super.c:1547
do_new_mount() fs/namespace.c:2843
do_mount() fs/namespace.c:3163
ksys_mount() fs/namespace.c:3372
__do_sys_mount() fs/namespace.c:3386
__se_sys_mount() fs/namespace.c:3383
__x64_sys_mount() fs/namespace.c:3383
do_syscall_64() arch/x86/entry/common.c:296
entry_SYSCALL_64() arch/x86/entry/entry_64.S:180

To avoid this deadlock, we should not block in
xfs_extent_busy_flush() if we hold a busy extent in the current
transaction.

Now that the EFI processing code can handle requeuing a partially
completed EFI, we can detect this situation in
xfs_extent_busy_flush() and return -EAGAIN rather than going to
sleep forever. The -EAGAIN get propagated back out to the
xfs_trans_free_extent() context, where the EFD is populated and the
transaction is rolled, thereby moving the busy extents into the CIL.

At this point, we can retry the extent free operation again with a
clean transaction. If we hit the same "all free extents are busy"
situation when trying to fix up the free list, we can safely call
xfs_extent_busy_flush() and wait for the busy extents to resolve
and wake us. At this point, the allocation search can make progress
again and we can fix up the free list.

This deadlock was first reported by Chandan in mid-2021, but I
couldn't make myself understood during review, and didn't have time
to fix it myself.

It was reported again in March 2023, and again I have found myself
unable to explain the complexities of the solution needed during
review.

As such, I don't have hours more time to waste trying to get the
fix written the way it needs to be written, so I'm just doing it
myself. This patchset is largely based on Wengang Wang's last patch,
but with all the unnecessary stuff removed, split up into multiple
patches and cleaned up somewhat.

Reported-by: Chandan Babu R <chandanrlinux@gmail.com>
Reported-by: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-06-29 09:28:24 -07:00
Dave Chinner
6a2a9d776c xfs: pass alloc flags through to xfs_extent_busy_flush()
To avoid blocking in xfs_extent_busy_flush() when freeing extents
and the only busy extents are held by the current transaction, we
need to pass the XFS_ALLOC_FLAG_FREEING flag context all the way
into xfs_extent_busy_flush().

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
2023-06-29 09:28:23 -07:00
Dave Chinner
b742d7b4f0 xfs: use deferred frees for btree block freeing
Btrees that aren't freespace management trees use the normal extent
allocation and freeing routines for their blocks. Hence when a btree
block is freed, a direct call to xfs_free_extent() is made and the
extent is immediately freed. This puts the entire free space
management btrees under this path, so we are stacking btrees on
btrees in the call stack. The inobt, finobt and refcount btrees
all do this.

However, the bmap btree does not do this - it calls
xfs_free_extent_later() to defer the extent free operation via an
XEFI and hence it gets processed in deferred operation processing
during the commit of the primary transaction (i.e. via intent
chaining).

We need to change xfs_free_extent() to behave in a non-blocking
manner so that we can avoid deadlocks with busy extents near ENOSPC
in transactions that free multiple extents. Inserting or removing a
record from a btree can cause a multi-level tree merge operation and
that will free multiple blocks from the btree in a single
transaction. i.e. we can call xfs_free_extent() multiple times, and
hence the btree manipulation transaction is vulnerable to this busy
extent deadlock vector.

To fix this, convert all the remaining callers of xfs_free_extent()
to use xfs_free_extent_later() to queue XEFIs and hence defer
processing of the extent frees to a context that can be safely
restarted if a deadlock condition is detected.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
2023-06-29 09:28:23 -07:00
Colin Ian King
347eb95b27 xfs: remove redundant initializations of pointers drop_leaf and save_leaf
Pointers drop_leaf and save_leaf are initialized with values that are never
read, they are being re-assigned later on just before they are used. Remove
the redundant early initializations and keep the later assignments at the
point where they are used. Cleans up two clang scan build warnings:

fs/xfs/libxfs/xfs_attr_leaf.c:2288:29: warning: Value stored to 'drop_leaf'
during its initialization is never read [deadcode.DeadStores]
fs/xfs/libxfs/xfs_attr_leaf.c:2289:29: warning: Value stored to 'save_leaf'
during its initialization is never read [deadcode.DeadStores]

Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-06-29 09:28:23 -07:00
Linus Torvalds
582c161cf3 hardening updates for v6.5-rc1
- Fix KMSAN vs FORTIFY in strlcpy/strlcat (Alexander Potapenko)
 
 - Convert strreplace() to return string start (Andy Shevchenko)
 
 - Flexible array conversions (Arnd Bergmann, Wyes Karny, Kees Cook)
 
 - Add missing function prototypes seen with W=1 (Arnd Bergmann)
 
 - Fix strscpy() kerndoc typo (Arne Welzel)
 
 - Replace strlcpy() with strscpy() across many subsystems which were
   either Acked by respective maintainers or were trivial changes that
   went ignored for multiple weeks (Azeem Shaikh)
 
 - Remove unneeded cc-option test for UBSAN_TRAP (Nick Desaulniers)
 
 - Add KUnit tests for strcat()-family
 
 - Enable KUnit tests of FORTIFY wrappers under UML
 
 - Add more complete FORTIFY protections for strlcat()
 
 - Add missed disabling of FORTIFY for all arch purgatories.
 
 - Enable -fstrict-flex-arrays=3 globally
 
 - Tightening UBSAN_BOUNDS when using GCC
 
 - Improve checkpatch to check for strcpy, strncpy, and fake flex arrays
 
 - Improve use of const variables in FORTIFY
 
 - Add requested struct_size_t() helper for types not pointers
 
 - Add __counted_by macro for annotating flexible array size members
 -----BEGIN PGP SIGNATURE-----
 
 iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmSbftQWHGtlZXNjb29r
 QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJj0MD/9X9jzJzCmsAU+yNldeoAzC84Sk
 GVU3RBxGcTNysL1gZXynkIgigw7DWc4htMGeSABHHwQRVP65JCH1Kw/VqIkyumbx
 9LdX6IklMJb4pRT4PVU3azebV4eNmSjlur2UxMeW54Czm91/6I8RHbJOyAPnOUmo
 2oomGdP/hpEHtKR7hgy8Axc6w5ySwQixh2V5sVZG3VbvCS5WKTmTXbs6puuRT5hz
 iHt7v+7VtEg/Qf1W7J2oxfoghvVBsaRrSLrExWT/oZYh1ZxM7DsCAAoG/IsDgHGA
 9LBXiRECgAFThbHVxLvvKZQMXdVk0i8iXLX43XMKC0wTA+NTyH7wlcQQ4RWNMuo8
 sfA9Qm9gMArXaf64aymr3Uwn20Zan0391HdlbhOJZAE6v3PPJbleUnM58AzD2d3r
 5Lz6AIFBxDImy+3f9iDWgacCT5/PkeiXTHzk9QnKhJyKKtRA58XJxj4q2+rPnGJP
 n4haXqoxD5FJbxdXiGKk31RS0U5HBug7wkOcUrTqDHUbc/QNU2b7dxTKUx+zYtCU
 uV5emPzpF4H4z+91WpO47n9gkMAfwV0lt9S2dwS8pxsgqctbmIan+Jgip7rsqZ2G
 OgLXBsb43eEs+6WgO8tVt/ZHYj9ivGMdrcNcsIfikzNs/xweUJ53k2xSEn2xEa5J
 cwANDmkL6QQK7yfeeg==
 =s0j1
 -----END PGP SIGNATURE-----

Merge tag 'hardening-v6.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull hardening updates from Kees Cook:
 "There are three areas of note:

  A bunch of strlcpy()->strscpy() conversions ended up living in my tree
  since they were either Acked by maintainers for me to carry, or got
  ignored for multiple weeks (and were trivial changes).

  The compiler option '-fstrict-flex-arrays=3' has been enabled
  globally, and has been in -next for the entire devel cycle. This
  changes compiler diagnostics (though mainly just -Warray-bounds which
  is disabled) and potential UBSAN_BOUNDS and FORTIFY _warning_
  coverage. In other words, there are no new restrictions, just
  potentially new warnings. Any new FORTIFY warnings we've seen have
  been fixed (usually in their respective subsystem trees). For more
  details, see commit df8fc4e934.

  The under-development compiler attribute __counted_by has been added
  so that we can start annotating flexible array members with their
  associated structure member that tracks the count of flexible array
  elements at run-time. It is possible (likely?) that the exact syntax
  of the attribute will change before it is finalized, but GCC and Clang
  are working together to sort it out. Any changes can be made to the
  macro while we continue to add annotations.

  As an example of that last case, I have a treewide commit waiting with
  such annotations found via Coccinelle:

    https://git.kernel.org/linus/adc5b3cb48a049563dc673f348eab7b6beba8a9b

  Also see commit dd06e72e68 for more details.

  Summary:

   - Fix KMSAN vs FORTIFY in strlcpy/strlcat (Alexander Potapenko)

   - Convert strreplace() to return string start (Andy Shevchenko)

   - Flexible array conversions (Arnd Bergmann, Wyes Karny, Kees Cook)

   - Add missing function prototypes seen with W=1 (Arnd Bergmann)

   - Fix strscpy() kerndoc typo (Arne Welzel)

   - Replace strlcpy() with strscpy() across many subsystems which were
     either Acked by respective maintainers or were trivial changes that
     went ignored for multiple weeks (Azeem Shaikh)

   - Remove unneeded cc-option test for UBSAN_TRAP (Nick Desaulniers)

   - Add KUnit tests for strcat()-family

   - Enable KUnit tests of FORTIFY wrappers under UML

   - Add more complete FORTIFY protections for strlcat()

   - Add missed disabling of FORTIFY for all arch purgatories.

   - Enable -fstrict-flex-arrays=3 globally

   - Tightening UBSAN_BOUNDS when using GCC

   - Improve checkpatch to check for strcpy, strncpy, and fake flex
     arrays

   - Improve use of const variables in FORTIFY

   - Add requested struct_size_t() helper for types not pointers

   - Add __counted_by macro for annotating flexible array size members"

* tag 'hardening-v6.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (54 commits)
  netfilter: ipset: Replace strlcpy with strscpy
  uml: Replace strlcpy with strscpy
  um: Use HOST_DIR for mrproper
  kallsyms: Replace all non-returning strlcpy with strscpy
  sh: Replace all non-returning strlcpy with strscpy
  of/flattree: Replace all non-returning strlcpy with strscpy
  sparc64: Replace all non-returning strlcpy with strscpy
  Hexagon: Replace all non-returning strlcpy with strscpy
  kobject: Use return value of strreplace()
  lib/string_helpers: Change returned value of the strreplace()
  jbd2: Avoid printing outside the boundary of the buffer
  checkpatch: Check for 0-length and 1-element arrays
  riscv/purgatory: Do not use fortified string functions
  s390/purgatory: Do not use fortified string functions
  x86/purgatory: Do not use fortified string functions
  acpi: Replace struct acpi_table_slit 1-element array with flex-array
  clocksource: Replace all non-returning strlcpy with strscpy
  string: use __builtin_memcpy() in strlcpy/strlcat
  staging: most: Replace all non-returning strlcpy with strscpy
  drm/i2c: tda998x: Replace all non-returning strlcpy with strscpy
  ...
2023-06-27 21:24:18 -07:00
Long Li
c3b880acad xfs: fix ag count overflow during growfs
I found a corruption during growfs:

 XFS (loop0): Internal error agbno >= mp->m_sb.sb_agblocks at line 3661 of
   file fs/xfs/libxfs/xfs_alloc.c.  Caller __xfs_free_extent+0x28e/0x3c0
 CPU: 0 PID: 573 Comm: xfs_growfs Not tainted 6.3.0-rc7-next-20230420-00001-gda8c95746257
 Call Trace:
  <TASK>
  dump_stack_lvl+0x50/0x70
  xfs_corruption_error+0x134/0x150
  __xfs_free_extent+0x2c1/0x3c0
  xfs_ag_extend_space+0x291/0x3e0
  xfs_growfs_data+0xd72/0xe90
  xfs_file_ioctl+0x5f9/0x14a0
  __x64_sys_ioctl+0x13e/0x1c0
  do_syscall_64+0x39/0x80
  entry_SYSCALL_64_after_hwframe+0x63/0xcd
 XFS (loop0): Corruption detected. Unmount and run xfs_repair
 XFS (loop0): Internal error xfs_trans_cancel at line 1097 of file
   fs/xfs/xfs_trans.c.  Caller xfs_growfs_data+0x691/0xe90
 CPU: 0 PID: 573 Comm: xfs_growfs Not tainted 6.3.0-rc7-next-20230420-00001-gda8c95746257
 Call Trace:
  <TASK>
  dump_stack_lvl+0x50/0x70
  xfs_error_report+0x93/0xc0
  xfs_trans_cancel+0x2c0/0x350
  xfs_growfs_data+0x691/0xe90
  xfs_file_ioctl+0x5f9/0x14a0
  __x64_sys_ioctl+0x13e/0x1c0
  do_syscall_64+0x39/0x80
  entry_SYSCALL_64_after_hwframe+0x63/0xcd
 RIP: 0033:0x7f2d86706577

The bug can be reproduced with the following sequence:

 # truncate -s  1073741824 xfs_test.img
 # mkfs.xfs -f -b size=1024 -d agcount=4 xfs_test.img
 # truncate -s 2305843009213693952  xfs_test.img
 # mount -o loop xfs_test.img /mnt/test
 # xfs_growfs -D  1125899907891200  /mnt/test

The root cause is that during growfs, user space passed in a large value
of newblcoks to xfs_growfs_data_private(), due to current sb_agblocks is
too small, new AG count will exceed UINT_MAX. Because of AG number type
is unsigned int and it would overflow, that caused nagcount much smaller
than the actual value. During AG extent space, delta blocks in
xfs_resizefs_init_new_ags() will much larger than the actual value due to
incorrect nagcount, even exceed UINT_MAX. This will cause corruption and
be detected in __xfs_free_extent. Fix it by growing the filesystem to up
to the maximally allowed AGs and not return EINVAL when new AG count
overflow.

Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-06-13 08:49:20 -07:00
Dave Chinner
7dfee17b13 xfs: validate block number being freed before adding to xefi
Bad things happen in defered extent freeing operations if it is
passed a bad block number in the xefi. This can come from a bogus
agno/agbno pair from deferred agfl freeing, or just a bad fsbno
being passed to __xfs_free_extent_later(). Either way, it's very
difficult to diagnose where a null perag oops in EFI creation
is coming from when the operation that queued the xefi has already
been completed and there's no longer any trace of it around....

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-06-05 14:48:15 +10:00
Dave Chinner
3148ebf2c0 xfs: validity check agbnos on the AGFL
If the agfl or the indexing in the AGF has been corrupted, getting a
block form the AGFL could return an invalid block number. If this
happens, bad things happen. Check the agbno we pull off the AGFL
and return -EFSCORRUPTED if we find somethign bad.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-06-05 14:48:15 +10:00
Dave Chinner
e0a8de7da3 xfs: fix agf/agfl verification on v4 filesystems
When a v4 filesystem has fl_last - fl_first != fl_count, we do not
not detect the corruption and allow the AGF to be used as it if was
fully valid. On V5 filesystems, we reset the AGFL to empty in these
cases and avoid the corruption at a small cost of leaked blocks.

If we don't catch the corruption on V4 filesystems, bad things
happen later when an allocation attempts to trim the free list
and either double-frees stale entries in the AGFl or tries to free
NULLAGBNO entries.

Either way, this is bad. Prevent this from happening by using the
AGFL_NEED_RESET logic for v4 filesysetms, too.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-06-05 14:48:15 +10:00
Dave Chinner
82842fee6e xfs: fix AGF vs inode cluster buffer deadlock
Lock order in XFS is AGI -> AGF, hence for operations involving
inode unlinked list operations we always lock the AGI first. Inode
unlinked list operations operate on the inode cluster buffer,
so the lock order there is AGI -> inode cluster buffer.

For O_TMPFILE operations, this now means the lock order set down in
xfs_rename and xfs_link is AGI -> inode cluster buffer -> AGF as the
unlinked ops are done before the directory modifications that may
allocate space and lock the AGF.

Unfortunately, we also now lock the inode cluster buffer when
logging an inode so that we can attach the inode to the cluster
buffer and pin it in memory. This creates a lock order of AGF ->
inode cluster buffer in directory operations as we have to log the
inode after we've allocated new space for it.

This creates a lock inversion between the AGF and the inode cluster
buffer. Because the inode cluster buffer is shared across multiple
inodes, the inversion is not specific to individual inodes but can
occur when inodes in the same cluster buffer are accessed in
different orders.

To fix this we need move all the inode log item cluster buffer
interactions to the end of the current transaction. Unfortunately,
xfs_trans_log_inode() calls are littered throughout the transactions
with no thought to ordering against other items or locking. This
makes it difficult to do anything that involves changing the call
sites of xfs_trans_log_inode() to change locking orders.

However, we do now have a mechanism that allows is to postpone dirty
item processing to just before we commit the transaction: the
->iop_precommit method. This will be called after all the
modifications are done and high level objects like AGI and AGF
buffers have been locked and modified, thereby providing a mechanism
that guarantees we don't lock the inode cluster buffer before those
high level objects are locked.

This change is largely moving the guts of xfs_trans_log_inode() to
xfs_inode_item_precommit() and providing an extra flag context in
the inode log item to track the dirty state of the inode in the
current transaction. This also means we do a lot less repeated work
in xfs_trans_log_inode() by only doing it once per transaction when
all the work is done.

Fixes: 298f7bec50 ("xfs: pin inode backing buffer to the inode log item")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-06-05 04:08:27 +10:00
Dave Chinner
00dcd17cfa xfs: restore allocation trylock iteration
It was accidentally dropped when refactoring the allocation code,
resulting in the AG iteration always doing blocking AG iteration.
This results in a small performance regression for a specific fsmark
test that runs more user data writer threads than there are AGs.

Reported-by: kernel test robot <oliver.sang@intel.com>
Fixes: 2edf06a50f ("xfs: factor xfs_alloc_vextent_this_ag() for _iterate_ags()")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-06-05 04:06:27 +10:00
Kees Cook
d67790ddf0 overflow: Add struct_size_t() helper
While struct_size() is normally used in situations where the structure
type already has a pointer instance, there are places where no variable
is available. In the past, this has been worked around by using a typed
NULL first argument, but this is a bit ugly. Add a helper to do this,
and replace the handful of instances of the code pattern with it.

Instances were found with this Coccinelle script:

@struct_size_t@
identifier STRUCT, MEMBER;
expression COUNT;
@@

-       struct_size((struct STRUCT *)\(0\|NULL\),
+       struct_size_t(struct STRUCT,
                MEMBER, COUNT)

Suggested-by: Christoph Hellwig <hch@infradead.org>
Cc: Jesse Brandeburg <jesse.brandeburg@intel.com>
Cc: Tony Nguyen <anthony.l.nguyen@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Paolo Abeni <pabeni@redhat.com>
Cc: James Smart <james.smart@broadcom.com>
Cc: Keith Busch <kbusch@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Sagi Grimberg <sagi@grimberg.me>
Cc: HighPoint Linux Team <linux@highpoint-tech.com>
Cc: "James E.J. Bottomley" <jejb@linux.ibm.com>
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Kashyap Desai <kashyap.desai@broadcom.com>
Cc: Sumit Saxena <sumit.saxena@broadcom.com>
Cc: Shivasharan S <shivasharan.srikanteshwara@broadcom.com>
Cc: Don Brace <don.brace@microchip.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Guo Xuenan <guoxuenan@huawei.com>
Cc: Gwan-gyeong Mun <gwan-gyeong.mun@intel.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Daniel Latypov <dlatypov@google.com>
Cc: kernel test robot <lkp@intel.com>
Cc: intel-wired-lan@lists.osuosl.org
Cc: netdev@vger.kernel.org
Cc: linux-nvme@lists.infradead.org
Cc: linux-scsi@vger.kernel.org
Cc: megaraidlinux.pdl@broadcom.com
Cc: storagedev@microchip.com
Cc: linux-xfs@vger.kernel.org
Cc: linux-hardening@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Link: https://lore.kernel.org/r/20230522211810.never.421-kees@kernel.org
2023-05-26 13:52:19 -07:00
Darrick J. Wong
8e698ee72c xfs: set bnobt/cntbt numrecs correctly when formatting new AGs
Through generic/300, I discovered that mkfs.xfs creates corrupt
filesystems when given these parameters:

# mkfs.xfs -d size=512M /dev/sda -f -d su=128k,sw=4 --unsupported
Filesystems formatted with --unsupported are not supported!!
meta-data=/dev/sda               isize=512    agcount=8, agsize=16352 blks
         =                       sectsz=512   attr=2, projid32bit=1
         =                       crc=1        finobt=1, sparse=1, rmapbt=1
         =                       reflink=1    bigtime=1 inobtcount=1 nrext64=1
data     =                       bsize=4096   blocks=130816, imaxpct=25
         =                       sunit=32     swidth=128 blks
naming   =version 2              bsize=4096   ascii-ci=0, ftype=1
log      =internal log           bsize=4096   blocks=8192, version=2
         =                       sectsz=512   sunit=32 blks, lazy-count=1
realtime =none                   extsz=4096   blocks=0, rtextents=0
         =                       rgcount=0    rgsize=0 blks
Discarding blocks...Done.
# xfs_repair -n /dev/sda
Phase 1 - find and verify superblock...
        - reporting progress in intervals of 15 minutes
Phase 2 - using internal log
        - zero log...
        - 16:30:50: zeroing log - 16320 of 16320 blocks done
        - scan filesystem freespace and inode maps...
agf_freeblks 25, counted 0 in ag 4
sb_fdblocks 8823, counted 8798

The root cause of this problem is the numrecs handling in
xfs_freesp_init_recs, which is used to initialize a new AG.  Prior to
calling the function, we set up the new bnobt block with numrecs == 1
and rely on _freesp_init_recs to format that new record.  If the last
record created has a blockcount of zero, then it sets numrecs = 0.

That last bit isn't correct if the AG contains the log, the start of the
log is not immediately after the initial blocks due to stripe alignment,
and the end of the log is perfectly aligned with the end of the AG.  For
this case, we actually formatted a single bnobt record to handle the
free space before the start of the (stripe aligned) log, and incremented
arec to try to format a second record.  That second record turned out to
be unnecessary, so what we really want is to leave numrecs at 1.

The numrecs handling itself is overly complicated because a different
function sets numrecs == 1.  Change the bnobt creation code to start
with numrecs set to zero and only increment it after successfully
formatting a free space extent into the btree block.

Fixes: f327a00745 ("xfs: account for log space when formatting new AGs")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-05-02 09:14:36 +10:00
Darrick J. Wong
b82a5c42a5 xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof
xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G        W          6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS:  00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
 <TASK>
 xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
 xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
 xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
 xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
 xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
 iomap_iter+0x132/0x2f0
 __iomap_dio_rw+0x2f8/0x840
 iomap_dio_rw+0xe/0x30
 xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
 xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
 vfs_write+0x2eb/0x410
 ksys_write+0x65/0xe0
 do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label.  We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL.  Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 8584332709 ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-05-02 09:14:27 +10:00
Dave Chinner
9419092fb2 xfs: fix livelock in delayed allocation at ENOSPC
On a filesystem with a non-zero stripe unit and a large sequential
write, delayed allocation will set a minimum allocation length of
the stripe unit. If allocation fails because there are no extents
long enough for an aligned minlen allocation, it is supposed to
fall back to unaligned allocation which allows single block extents
to be allocated.

When the allocator code was rewritting in the 6.3 cycle, this
fallback was broken - the old code used args->fsbno as the both the
allocation target and the allocation result, the new code passes the
target as a separate parameter. The conversion didn't handle the
aligned->unaligned fallback path correctly - it reset args->fsbno to
the target fsbno on failure which broke allocation failure detection
in the high level code and so it never fell back to unaligned
allocations.

This resulted in a loop in writeback trying to allocate an aligned
block, getting a false positive success, trying to insert the result
in the BMBT. This did nothing because the extent already was in the
BMBT (merge results in an unchanged extent) and so it returned the
prior extent to the conversion code as the current iomap.

Because the iomap returned didn't cover the offset we tried to map,
xfs_convert_blocks() then retries the allocation, which fails in the
same way and now we have a livelock.

Reported-and-tested-by: Brian Foster <bfoster@redhat.com>
Fixes: 8584332709 ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-04-27 09:02:11 +10:00
Dave Chinner
798352cb25 xfs: fix ascii-ci problems, then kill it [v2]
Last week, I was fiddling around with the metadump name obfuscation code
 while writing a debugger command to generate directories full of names
 that all have the same hash name.  I had a few questions about how well
 all that worked with ascii-ci mode, and discovered a nasty discrepancy
 between the kernel and glibc's implementations of the tolower()
 function.
 
 I discovered that I could create a directory that is large enough to
 require separate leaf index blocks.  The hashes stored in the dabtree
 use the ascii-ci specific hash function, which uses a library function
 to convert the name to lowercase before hashing.  If the kernel and C
 library's versions of tolower do not behave exactly identically,
 xfs_ascii_ci_hashname will not produce the same results for the same
 inputs.  xfs_repair will deem the leaf information corrupt and rebuild
 the directory.  After that, lookups in the kernel will fail because the
 hash index doesn't work.
 
 The kernel's tolower function will convert extended ascii uppercase
 letters (e.g. A-with-umlaut) to extended ascii lowercase letters (e.g.
 a-with-umlaut), whereas glibc's will only do that if you force LANG to
 ascii.  Tiny embedded libc implementations just plain won't do it at
 all, and the result is a mess.  Stabilize the behavior of the hash
 function by encoding the name transformation function in libxfs, add it
 to the selftest, and fix all the userspace tools, none of which handle
 this transformation correctly.
 
 The v1 series generated a /lot/ of discussion, in which several things
 became very clear: (1) Linus is not enamored of case folding of any
 kind; (2) Dave and Christoph don't seem to agree on whether the feature
 is supposed to work for 7-bit ascii or latin1; (3) it trashes UTF8
 encoded names if those happen to show up; and (4) I don't want to
 maintain this mess any longer than I have to.  Kill it in 2030.
 
 v2: rename the functions to make it clear we're moving away from the
 letters t, o, l, o, w, e, and r; and deprecate the whole feature once
 we've fixed the bugs and added tests.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdqwAKCRBKO3ySh0YR
 pi33AQC4MFCz0uP1aF64zRgE+wtU2YBGw5cGps7nWIljVptbkAEAubfoY88wAop8
 /KHIgZ8pHIb7ooPrYKpPZL5m0udtMw8=
 =3Up6
 -----END PGP SIGNATURE-----

Merge tag 'fix-asciici-bugs-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next

xfs: fix ascii-ci problems, then kill it [v2]

Last week, I was fiddling around with the metadump name obfuscation code
while writing a debugger command to generate directories full of names
that all have the same hash name.  I had a few questions about how well
all that worked with ascii-ci mode, and discovered a nasty discrepancy
between the kernel and glibc's implementations of the tolower()
function.

I discovered that I could create a directory that is large enough to
require separate leaf index blocks.  The hashes stored in the dabtree
use the ascii-ci specific hash function, which uses a library function
to convert the name to lowercase before hashing.  If the kernel and C
library's versions of tolower do not behave exactly identically,
xfs_ascii_ci_hashname will not produce the same results for the same
inputs.  xfs_repair will deem the leaf information corrupt and rebuild
the directory.  After that, lookups in the kernel will fail because the
hash index doesn't work.

The kernel's tolower function will convert extended ascii uppercase
letters (e.g. A-with-umlaut) to extended ascii lowercase letters (e.g.
a-with-umlaut), whereas glibc's will only do that if you force LANG to
ascii.  Tiny embedded libc implementations just plain won't do it at
all, and the result is a mess.  Stabilize the behavior of the hash
function by encoding the name transformation function in libxfs, add it
to the selftest, and fix all the userspace tools, none of which handle
this transformation correctly.

The v1 series generated a /lot/ of discussion, in which several things
became very clear: (1) Linus is not enamored of case folding of any
kind; (2) Dave and Christoph don't seem to agree on whether the feature
is supposed to work for 7-bit ascii or latin1; (3) it trashes UTF8
encoded names if those happen to show up; and (4) I don't want to
maintain this mess any longer than I have to.  Kill it in 2030.

v2: rename the functions to make it clear we're moving away from the
letters t, o, l, o, w, e, and r; and deprecate the whole feature once
we've fixed the bugs and added tests.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-04-14 07:11:43 +10:00
Dave Chinner
d808a8e6b9 xfs: merge bmap records for faster scrubs [v24.5]
I started looking into performance problems with the data fork scrubber
 in generic/333, and noticed a few things that needed improving.  First,
 due to design reasons, it's possible for file forks btrees to contain
 multiple contiguous mappings to the same physical space.  Instead of
 checking each ondisk mapping individually, it's much faster to combine
 them when possible and check the combined mapping because that's fewer
 trips through the rmap btree, and we can drop this check-around
 behavior that it does when an rmapbt lookup produces a record that
 starts before or ends after a particular bmbt mapping.
 
 Second, I noticed that the bmbt scrubber decides to walk every reverse
 mapping in the filesystem if the file fork is in btree format.  This is
 very costly, and only necessary if the inode repair code had to zap a
 fork to convince iget to work.  Constraining the full-rmap scan to this
 one case means we can skip it for normal files, which drives the runtime
 of this test from 8 hours down to 45 minutes (observed with realtime
 reflink and rebuild-all mode.)
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDdPcQAKCRBKO3ySh0YR
 pl1UAPoDtMaFrsLvz7clh31S6Yi+X8oCB/iJZXWl7HXaNsIjUQEA253GuiOj80Rz
 IHYo3t0KPYTm2Mc/7kBFQcctFbisDwE=
 =zFQ+
 -----END PGP SIGNATURE-----

Merge tag 'scrub-merge-bmap-records-6.4_2023-04-12' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next

xfs: merge bmap records for faster scrubs [v24.5]

I started looking into performance problems with the data fork scrubber
in generic/333, and noticed a few things that needed improving.  First,
due to design reasons, it's possible for file forks btrees to contain
multiple contiguous mappings to the same physical space.  Instead of
checking each ondisk mapping individually, it's much faster to combine
them when possible and check the combined mapping because that's fewer
trips through the rmap btree, and we can drop this check-around
behavior that it does when an rmapbt lookup produces a record that
starts before or ends after a particular bmbt mapping.

Second, I noticed that the bmbt scrubber decides to walk every reverse
mapping in the filesystem if the file fork is in btree format.  This is
very costly, and only necessary if the inode repair code had to zap a
fork to convince iget to work.  Constraining the full-rmap scan to this
one case means we can skip it for normal files, which drives the runtime
of this test from 8 hours down to 45 minutes (observed with realtime
reflink and rebuild-all mode.)

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-04-14 07:10:53 +10:00
Dave Chinner
b1bdab2526 xfs: detect incorrect gaps in rmap btree [v24.5]
Following in the theme of the last two patchsets, this one strengthens
 the rmap btree record checking so that scrub can count the number of
 space records that map to a given owner and that do not map to a given
 owner.  This enables us to determine exclusive ownership of space that
 can't be shared.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdpAAKCRBKO3ySh0YR
 pk9sAQDXcVPG4a2TvTd+j95UkkPovjYjTJekTTlJL/Xo91rAxgD/fEx3I8A8vNes
 dxVeyT/CwiYOPRYxFE3g3UdJGbaeHQA=
 =ux+s
 -----END PGP SIGNATURE-----

Merge tag 'scrub-detect-rmapbt-gaps-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next

xfs: detect incorrect gaps in rmap btree [v24.5]

Following in the theme of the last two patchsets, this one strengthens
the rmap btree record checking so that scrub can count the number of
space records that map to a given owner and that do not map to a given
owner.  This enables us to determine exclusive ownership of space that
can't be shared.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-04-14 07:10:13 +10:00
Dave Chinner
f1121b995c xfs: detect incorrect gaps in inode btree [v24.5]
This series continues the corrections for a couple of problems I found
 in the inode btree scrubber.  The first problem is that we don't
 directly check the inobt records have a direct correspondence with the
 finobt records, and vice versa.  The second problem occurs on
 filesystems with sparse inode chunks -- the cross-referencing we do
 detects sparseness, but it doesn't actually check the consistency
 between the inobt hole records and the rmap data.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdowAKCRBKO3ySh0YR
 pt2WAQDcHbg0JDyGDcTiSyYqTlT2xxzeaxtMRg75fWYpIRa2dQEAuatGejdp56in
 AbH6jSmtS9f4M0wcy5JhHyHzZdZjcgc=
 =1G5P
 -----END PGP SIGNATURE-----

Merge tag 'scrub-detect-inobt-gaps-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next

xfs: detect incorrect gaps in inode btree [v24.5]

This series continues the corrections for a couple of problems I found
in the inode btree scrubber.  The first problem is that we don't
directly check the inobt records have a direct correspondence with the
finobt records, and vice versa.  The second problem occurs on
filesystems with sparse inode chunks -- the cross-referencing we do
detects sparseness, but it doesn't actually check the consistency
between the inobt hole records and the rmap data.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-04-14 07:10:05 +10:00
Dave Chinner
e7cef2fe44 xfs: detect incorrect gaps in refcount btree [v24.5]
The next few patchsets address a deficiency in scrub that I found while
 QAing the refcount btree scrubber.  If there's a gap between refcount
 records, we need to cross-reference that gap with the reverse mappings
 to ensure that there are no overlapping records in the rmap btree.  If
 we find any, then the refcount btree is not consistent.  This is not a
 property that is specific to the refcount btree; they all need to have
 this sort of keyspace scanning logic to detect inconsistencies.
 
 To do this accurately, we need to be able to scan the keyspace of a
 btree (which we already do) to be able to tell the caller if the
 keyspace is empty, sparse, or fully covered by records.  The first few
 patches add the keyspace scanner to the generic btree code, along with
 the ability to mask off parts of btree keys because when we scan the
 rmapbt, we only care about space usage, not the owners.
 
 The final patch closes the scanning gap in the refcountbt scanner.
 
 v23.1: create helpers for the key extraction and comparison functions,
        improve documentation, and eliminate the ->mask_key indirect
        calls
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdogAKCRBKO3ySh0YR
 pjDDAQC88qzAvA3j2JP8ZC9mnK89LsYpkOEX2i6HV2m4LWYdWgD/fWdGnp0BFoQj
 is+V82X6oRhWi8SRnjOX28Mk8gCdDA8=
 =fzga
 -----END PGP SIGNATURE-----

Merge tag 'scrub-detect-refcount-gaps-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next

xfs: detect incorrect gaps in refcount btree [v24.5]

The next few patchsets address a deficiency in scrub that I found while
QAing the refcount btree scrubber.  If there's a gap between refcount
records, we need to cross-reference that gap with the reverse mappings
to ensure that there are no overlapping records in the rmap btree.  If
we find any, then the refcount btree is not consistent.  This is not a
property that is specific to the refcount btree; they all need to have
this sort of keyspace scanning logic to detect inconsistencies.

To do this accurately, we need to be able to scan the keyspace of a
btree (which we already do) to be able to tell the caller if the
keyspace is empty, sparse, or fully covered by records.  The first few
patches add the keyspace scanner to the generic btree code, along with
the ability to mask off parts of btree keys because when we scan the
rmapbt, we only care about space usage, not the owners.

The final patch closes the scanning gap in the refcountbt scanner.

v23.1: create helpers for the key extraction and comparison functions,
       improve documentation, and eliminate the ->mask_key indirect
       calls

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-04-14 07:09:55 +10:00
Dave Chinner
1ee7550532 xfs: fix rmap btree key flag handling [v24.5]
This series fixes numerous flag handling bugs in the rmapbt key code.
 The most serious transgression is that key comparisons completely strip
 out all flag bits from rm_offset, including the ones that participate in
 record lookups.  The second problem is that for years we've been letting
 the unwritten flag (which is an attribute of a specific record and not
 part of the record key) escape from leaf records into key records.
 
 The solution to the second problem is to filter attribute flags when
 creating keys from records, and the solution to the first problem is to
 preserve *only* the flags used for key lookups.  The ATTR and BMBT flags
 are a part of the lookup key, and the UNWRITTEN flag is a record
 attribute.
 
 This has worked for years without generating user complaints because
 ATTR and BMBT extents cannot be shared, so key comparisons succeed
 solely on rm_startblock.  Only file data fork extents can be shared, and
 those records never set any of the three flag bits, so comparisons that
 dig into rm_owner and rm_offset work just fine.
 
 A filesystem written with an unpatched kernel and mounted on a patched
 kernel will work correctly because the ATTR/BMBT flags have been
 conveyed into keys correctly all along, and we still ignore the
 UNWRITTEN flag in any key record.  This was what doomed my previous
 attempt to correct this problem in 2019.
 
 A filesystem written with a patched kernel and mounted on an unpatched
 kernel will also work correctly because unpatched kernels ignore all
 flags.
 
 With this patchset applied, the scrub code gains the ability to detect
 rmap btrees with incorrectly set attr and bmbt flags in the key records.
 After three years of testing, I haven't encountered any problems.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdoQAKCRBKO3ySh0YR
 prUmAP9WiaLPxeMAnQiQcaZyqyAhaiqbwNoLkDMx0+1+SKDPCwD7BU6tPQpT039i
 mrDag3g2x4N7g/e89N29SQp8EDGuQQQ=
 =Chkt
 -----END PGP SIGNATURE-----

Merge tag 'rmap-btree-fix-key-handling-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next

xfs: fix rmap btree key flag handling [v24.5]

This series fixes numerous flag handling bugs in the rmapbt key code.
The most serious transgression is that key comparisons completely strip
out all flag bits from rm_offset, including the ones that participate in
record lookups.  The second problem is that for years we've been letting
the unwritten flag (which is an attribute of a specific record and not
part of the record key) escape from leaf records into key records.

The solution to the second problem is to filter attribute flags when
creating keys from records, and the solution to the first problem is to
preserve *only* the flags used for key lookups.  The ATTR and BMBT flags
are a part of the lookup key, and the UNWRITTEN flag is a record
attribute.

This has worked for years without generating user complaints because
ATTR and BMBT extents cannot be shared, so key comparisons succeed
solely on rm_startblock.  Only file data fork extents can be shared, and
those records never set any of the three flag bits, so comparisons that
dig into rm_owner and rm_offset work just fine.

A filesystem written with an unpatched kernel and mounted on a patched
kernel will work correctly because the ATTR/BMBT flags have been
conveyed into keys correctly all along, and we still ignore the
UNWRITTEN flag in any key record.  This was what doomed my previous
attempt to correct this problem in 2019.

A filesystem written with a patched kernel and mounted on an unpatched
kernel will also work correctly because unpatched kernels ignore all
flags.

With this patchset applied, the scrub code gains the ability to detect
rmap btrees with incorrectly set attr and bmbt flags in the key records.
After three years of testing, I haven't encountered any problems.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-04-14 07:09:36 +10:00
Dave Chinner
b764ea207f xfs: hoist scrub record checks into libxfs [v24.5]
There are a few things about btree records that scrub checked but the
 libxfs _get_rec functions didn't.  Move these bits into libxfs so that
 everyone can benefit.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdoAAKCRBKO3ySh0YR
 pvbPAP9zGtY7B15ORWk9wcHELUoPgDhNZR39ye7MfxWNCBZJxgD6A8SzZpbZc5Gh
 9a1/ImUDZ0ekFnAdx0dVRA+gnrO4Vwo=
 =197l
 -----END PGP SIGNATURE-----

Merge tag 'btree-hoist-scrub-checks-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next

xfs: hoist scrub record checks into libxfs [v24.5]

There are a few things about btree records that scrub checked but the
libxfs _get_rec functions didn't.  Move these bits into libxfs so that
everyone can benefit.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-04-14 07:09:27 +10:00
Dave Chinner
01822a74ca xfs: standardize btree record checking code [v24.5]
While I was cleaning things up for 6.1, I noticed that the btree
 _query_range and _query_all functions don't perform the same checking
 that the _get_rec functions perform.  In fact, they don't perform /any/
 sanity checking, which means that callers aren't warned about impossible
 records.
 
 Therefore, hoist the record validation and complaint logging code into
 separate functions, and call them from any place where we convert an
 ondisk record into an incore record.  For online scrub, we can replace
 checking code with a call to the record checking functions in libxfs,
 thereby reducing the size of the codebase.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdnwAKCRBKO3ySh0YR
 ppn6AQCOWjqsq7klLAQdvEDm3O8v4k94geKdn4Ruvbptwa2iUQD/WAJ5LwKnEPuQ
 +eB5AfzsziMQMNX7DtUwncaDJm1RBgY=
 =ys9Z
 -----END PGP SIGNATURE-----

Merge tag 'btree-complain-bad-records-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next

xfs: standardize btree record checking code [v24.5]

While I was cleaning things up for 6.1, I noticed that the btree
_query_range and _query_all functions don't perform the same checking
that the _get_rec functions perform.  In fact, they don't perform /any/
sanity checking, which means that callers aren't warned about impossible
records.

Therefore, hoist the record validation and complaint logging code into
separate functions, and call them from any place where we convert an
ondisk record into an incore record.  For online scrub, we can replace
checking code with a call to the record checking functions in libxfs,
thereby reducing the size of the codebase.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-04-14 07:09:18 +10:00
Dave Chinner
b634abac59 xfs: drain deferred work items when scrubbing [v24.5]
The design doc for XFS online fsck contains a long discussion of the
 eventual consistency models in use for XFS metadata.  In that chapter,
 we note that it is possible for scrub to collide with a chain of
 deferred space metadata updates, and proposes a lightweight solution:
 The use of a pending-intents counter so that scrub can wait for the
 system to drain all chains.
 
 This patchset implements that scrub drain.  The first patch implements
 the basic mechanism, and the subsequent patches reduce the runtime
 overhead by converting the implementation to use sloppy counters and
 introducing jump labels to avoid walking into scrub hooks when it isn't
 running.  This last paradigm repeats elsewhere in this megaseries.
 
 v23.1: make intent items take an active ref to the perag structure and
        document why we bump and drop the intent counts when we do
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdnwAKCRBKO3ySh0YR
 poQmAQDAu0YNxoRGok7H/RGfQQHWBReSkLXT9RKGzjWn4G51EQD8DA/CpuqsC3yU
 uJ55vGAb8jSCBFJITVF1/i8B9sfpngw=
 =Nz0X
 -----END PGP SIGNATURE-----

Merge tag 'scrub-drain-intents-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next

xfs: drain deferred work items when scrubbing [v24.5]

The design doc for XFS online fsck contains a long discussion of the
eventual consistency models in use for XFS metadata.  In that chapter,
we note that it is possible for scrub to collide with a chain of
deferred space metadata updates, and proposes a lightweight solution:
The use of a pending-intents counter so that scrub can wait for the
system to drain all chains.

This patchset implements that scrub drain.  The first patch implements
the basic mechanism, and the subsequent patches reduce the runtime
overhead by converting the implementation to use sloppy counters and
introducing jump labels to avoid walking into scrub hooks when it isn't
running.  This last paradigm repeats elsewhere in this megaseries.

v23.1: make intent items take an active ref to the perag structure and
       document why we bump and drop the intent counts when we do

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-04-14 07:09:09 +10:00
Dave Chinner
1e5ffdc57d xfs: pass perag references around when possible [v24.5]
Avoid the cost of perag radix tree lookups by passing around active perag
 references when possible.
 
 v24.2: rework some of the naming and whatnot so there's less opencoding
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdnQAKCRBKO3ySh0YR
 po/YAPsEFygm4/bQZBtOf0HFmVDtTXYAEujJeiXKbmEqzlMxpQEAhuCqFaTQ+Pnr
 zpg1egeIcaw6dNTW4f2slcATaQgG0gM=
 =8HsC
 -----END PGP SIGNATURE-----

Merge tag 'pass-perag-refs-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next

xfs: pass perag references around when possible [v24.5]

Avoid the cost of perag radix tree lookups by passing around active perag
references when possible.

v24.2: rework some of the naming and whatnot so there's less opencoding

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-04-14 07:08:49 +10:00
Dave Chinner
826053db98 xfs: make intent items take a perag reference [v24.5]
Now that we've cleaned up some code warts in the deferred work item
 processing code, let's make intent items take an active perag reference
 from their creation until they are finally freed by the defer ops
 machinery.  This change facilitates the scrub drain in the next patchset
 and will make it easier for the future AG removal code to detect a busy
 AG in need of quiescing.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdnAAKCRBKO3ySh0YR
 poBzAP9+tx/LNTZeLtmjj/d7tVLMm2/f8LPyhDmkF85JWnjknwEAnLQxkqRMfF9i
 ah3ACAZ30o+Mp7Qe6tnYVIdOSD2xCAM=
 =mRAy
 -----END PGP SIGNATURE-----

Merge tag 'intents-perag-refs-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next

xfs: make intent items take a perag reference [v24.5]

Now that we've cleaned up some code warts in the deferred work item
processing code, let's make intent items take an active perag reference
from their creation until they are finally freed by the defer ops
machinery.  This change facilitates the scrub drain in the next patchset
and will make it easier for the future AG removal code to detect a busy
AG in need of quiescing.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-04-14 07:08:38 +10:00
Darrick J. Wong
c95356ca88 xfs: _{attr,data}_map_shared should take ILOCK_EXCL until iread_extents is completely done
While fuzzing the data fork extent count on a btree-format directory
with xfs/375, I observed the following (excerpted) splat:

XFS: Assertion failed: xfs_isilocked(ip, XFS_ILOCK_EXCL), file: fs/xfs/libxfs/xfs_bmap.c, line: 1208
------------[ cut here ]------------
WARNING: CPU: 0 PID: 43192 at fs/xfs/xfs_message.c:104 assfail+0x46/0x4a [xfs]
Call Trace:
 <TASK>
 xfs_iread_extents+0x1af/0x210 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
 xchk_dir_walk+0xb8/0x190 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
 xchk_parent_count_parent_dentries+0x41/0x80 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
 xchk_parent_validate+0x199/0x2e0 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
 xchk_parent+0xdf/0x130 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
 xfs_scrub_metadata+0x2b8/0x730 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
 xfs_scrubv_metadata+0x38b/0x4d0 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
 xfs_ioc_scrubv_metadata+0x111/0x160 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
 xfs_file_ioctl+0x367/0xf50 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
 __x64_sys_ioctl+0x82/0xa0
 do_syscall_64+0x2b/0x80
 entry_SYSCALL_64_after_hwframe+0x46/0xb0

The cause of this is a race condition in xfs_ilock_data_map_shared,
which performs an unlocked access to the data fork to guess which lock
mode it needs:

Thread 0                          Thread 1

xfs_need_iread_extents
<observe no iext tree>
xfs_ilock(..., ILOCK_EXCL)
xfs_iread_extents
<observe no iext tree>
<check ILOCK_EXCL>
<load bmbt extents into iext>
<notice iext size doesn't
 match nextents>
                                  xfs_need_iread_extents
                                  <observe iext tree>
                                  xfs_ilock(..., ILOCK_SHARED)
<tear down iext tree>
xfs_iunlock(..., ILOCK_EXCL)
                                  xfs_iread_extents
                                  <observe no iext tree>
                                  <check ILOCK_EXCL>
                                  *BOOM*

Fix this race by adding a flag to the xfs_ifork structure to indicate
that we have not yet read in the extent records and changing the
predicate to look at the flag state, not if_height.  The memory barrier
ensures that the flag will not be set until the very end of the
function.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-04-12 15:49:10 +10:00
Dave Chinner
aa88019851 xfs: don't consider future format versions valid
In commit fe08cc5044 we reworked the valid superblock version
checks. If it is a V5 filesystem, it is always valid, then we
checked if the version was less than V4 (reject) and then checked
feature fields in the V4 flags to determine if it was valid.

What we missed was that if the version is not V4 at this point,
we shoudl reject the fs. i.e. the check current treats V6+
filesystems as if it was a v4 filesystem. Fix this.

cc: stable@vger.kernel.org
Fixes: fe08cc5044 ("xfs: open code sb verifier feature checks")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-04-12 15:48:50 +10:00
Darrick J. Wong
a9248538fa xfs: stabilize the dirent name transformation function used for ascii-ci dir hash computation
Back in the old days, the "ascii-ci" feature was created to implement
case-insensitive directory entry lookups for latin1-encoded names and
remove the large overhead of Samba's case-insensitive lookup code.  UTF8
names were not allowed, but nobody explicitly wrote in the documentation
that this was only expected to work if the system used latin1 names.
The kernel tolower function was selected to prepare names for hashed
lookups.

There's a major discrepancy in the function that computes directory entry
hashes for filesystems that have ASCII case-insensitive lookups enabled.
The root of this is that the kernel and glibc's tolower implementations
have differing behavior for extended ASCII accented characters.  I wrote
a program to spit out characters for which the tolower() return value is
different from the input:

glibc tolower:
65:A 66:B 67:C 68:D 69:E 70:F 71:G 72:H 73:I 74:J 75:K 76:L 77:M 78:N
79:O 80:P 81:Q 82:R 83:S 84:T 85:U 86:V 87:W 88:X 89:Y 90:Z

kernel tolower:
65:A 66:B 67:C 68:D 69:E 70:F 71:G 72:H 73:I 74:J 75:K 76:L 77:M 78:N
79:O 80:P 81:Q 82:R 83:S 84:T 85:U 86:V 87:W 88:X 89:Y 90:Z 192:À 193:Á
194:Â 195:Ã 196:Ä 197:Å 198:Æ 199:Ç 200:È 201:É 202:Ê 203:Ë 204:Ì 205:Í
206:Î 207:Ï 208:Ð 209:Ñ 210:Ò 211:Ó 212:Ô 213:Õ 214:Ö 215:× 216:Ø 217:Ù
218:Ú 219:Û 220:Ü 221:Ý 222:Þ

Which means that the kernel and userspace do not agree on the hash value
for a directory filename that contains those higher values.  The hash
values are written into the leaf index block of directories that are
larger than two blocks in size, which means that xfs_repair will flag
these directories as having corrupted hash indexes and rewrite the index
with hash values that the kernel now will not recognize.

Because the ascii-ci feature is not frequently enabled and the kernel
touches filesystems far more frequently than xfs_repair does, fix this
by encoding the kernel's toupper predicate and tolower functions into
libxfs.  Give the new functions less provocative names to make it really
obvious that this is a pre-hash name preparation function, and nothing
else.  This change makes userspace's behavior consistent with the
kernel.

Found by auditing obfuscate_name in xfs_metadump as part of working on
parent pointers, wondering how it could possibly work correctly with ci
filesystems, writing a test tool to create a directory with
hash-colliding names, and watching xfs_repair flag it.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-04-11 19:05:04 -07:00
Darrick J. Wong
634d4a79e7 xfs: accumulate iextent records when checking bmap
Currently, the bmap scrubber checks file fork mappings individually.  In
the case that the file uses multiple mappings to a single contiguous
piece of space, the scrubber repeatedly locks the AG to check the
existence of a reverse mapping that overlaps this file mapping.  If the
reverse mapping starts before or ends after the mapping we're checking,
it will also crawl around in the bmbt checking correspondence for
adjacent extents.

This is not very time efficient because it does the crawling while
holding the AGF buffer, and checks the middle mappings multiple times.
Instead, create a custom iextent record iterator function that combines
multiple adjacent allocated mappings into one large incore bmbt record.
This is feasible because the incore bmbt record length is 64-bits wide.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:24 -07:00
Darrick J. Wong
efc0845f5d xfs: convert xfs_ialloc_has_inodes_at_extent to return keyfill scan results
Convert the xfs_ialloc_has_inodes_at_extent function to return keyfill
scan results because for a given range of inode numbers, we might have
no indexed inodes at all; the entire region might be allocated ondisk
inodes; or there might be a mix of the two.

Unfortunately, sparse inodes adds to the complexity, because each inode
record can have holes, which means that we cannot use the generic btree
_scan_keyfill function because we must look for holes in individual
records to decide the result.  On the plus side, online fsck can now
detect sub-chunk discrepancies in the inobt.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:15 -07:00
Darrick J. Wong
69115f775f xfs: teach scrub to check for sole ownership of metadata objects
Strengthen online scrub's checking even further by enabling us to check
that a range of blocks are owned solely by a given owner.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:15 -07:00
Darrick J. Wong
cc1207662d xfs: remove pointless shadow variable from xfs_difree_inobt
In xfs_difree_inobt, the pag passed in was previously used to look up
the AGI buffer.  There's no need to extract it again, so remove the
shadow variable and shut up -Wshadow.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:13 -07:00
Darrick J. Wong
4a200a0978 xfs: implement masked btree key comparisons for _has_records scans
For keyspace fullness scans, we want to be able to mask off the parts of
the key that we don't care about.  For most btree types we /do/ want the
full keyspace, but for checking that a given space usage also has a full
complement of rmapbt records (even if different/multiple owners) we need
this masking so that we only track sparseness of rm_startblock, not the
whole keyspace (which is extremely sparse).

Augment the ->diff_two_keys and ->keys_contiguous helpers to take a
third union xfs_btree_key argument, and wire up xfs_rmap_has_records to
pass this through.  This third "mask" argument should contain a nonzero
value in each structure field that should be used in the key comparisons
done during the scan.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:11 -07:00
Darrick J. Wong
6abc7aef85 xfs: replace xfs_btree_has_record with a general keyspace scanner
The current implementation of xfs_btree_has_record returns true if it
finds /any/ record within the given range.  Unfortunately, that's not
sufficient for scrub.  We want to be able to tell if a range of keyspace
for a btree is devoid of records, is totally mapped to records, or is
somewhere in between.  By forcing this to be a boolean, we conflated
sparseness and fullness, which caused scrub to return incorrect results.
Fix the API so that we can tell the caller which of those three is the
current state.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:10 -07:00
Darrick J. Wong
bd7e795108 xfs: refactor ->diff_two_keys callsites
Create wrapper functions around ->diff_two_keys so that we don't have to
remember what the return values mean, and adjust some of the code
comments to reflect the longtime code behavior.  We're going to
introduce more uses of ->diff_two_keys in the next patch, so reduce the
cognitive load for readers by doing this refactoring now.

Suggested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:10 -07:00
Darrick J. Wong
ee5fe8ff6d xfs: refactor converting btree irec to btree key
We keep doing these conversions to support btree queries, so refactor
this into a helper.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:09 -07:00
Darrick J. Wong
08c987deca xfs: fix rm_offset flag handling in rmap keys
Keys for extent interval records in the reverse mapping btree are
supposed to be computed as follows:

(physical block, owner, fork, is_btree, offset)

This provides users the ability to look up a reverse mapping from a file
block mapping record -- start with the physical block; then if there are
multiple records for the same block, move on to the owner; then the
inode fork type; and so on to the file offset.

Unfortunately, the code that creates rmap lookup keys from rmap records
forgot to mask off the record attribute flags, leading to ondisk keys
that look like this:

(physical block, owner, fork, is_btree, unwritten state, offset)

Fortunately, this has all worked ok for the past six years because the
key comparison functions incorrectly ignore the fork/bmbt/unwritten
information that's encoded in the on-disk offset.  This means that
lookup comparisons are only done with:

(physical block, owner, offset)

Queries can (theoretically) return incorrect results because of this
omission.  On consistent filesystems this isn't an issue because xattr
and bmbt blocks cannot be shared and hence the comparisons succeed
purely on the contents of the rm_startblock field.  For the one case
where we support sharing (written data fork blocks) all flag bits are
zero, so the omission in the comparison has no ill effects.

Unfortunately, this bug prevents scrub from detecting incorrect fork and
bmbt flag bits in the rmap btree, so we really do need to fix the
compare code.  Old filesystems with the unwritten bit erroneously set in
the rmap key struct will work fine on new kernels since we still ignore
the unwritten bit.  New filesystems on older kernels will work fine
since the old kernels never paid attention to the unwritten bit.

A previous version of this patch forgot to keep the (un)written state
flag masked during the comparison and caused a major regression in
5.9.x since unwritten extent conversion can update an rmap record
without requiring key updates.

Note that blocks cannot go directly from data fork to attr fork without
being deallocated and reallocated, nor can they be added to or removed
from a bmbt without a free/alloc cycle, so this should not cause any
regressions.

Found by fuzzing keys[1].attrfork = ones on xfs/371.

Fixes: 4b8ed67794 ("xfs: add rmap btree operations")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:07 -07:00
Darrick J. Wong
de1a9ce225 xfs: hoist inode record alignment checks from scrub
Move the inobt record alignment checks from xchk_iallocbt_rec into
xfs_inobt_check_irec so that they are applied everywhere.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:06 -07:00
Darrick J. Wong
e774b2ea0b xfs: hoist rmap record flag checks from scrub
Move the rmap record flag checks from xchk_rmapbt_rec into
xfs_rmap_check_irec so that they are applied everywhere.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:06 -07:00
Darrick J. Wong
6a3bd8fcf9 xfs: complain about bad file mapping records in the ondisk bmbt
Similar to what we've just done for the other btrees, create a function
to log corrupt bmbt records and call it whenever we encounter a bad
record in the ondisk btree.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:05 -07:00
Darrick J. Wong
7d7d6d2fd0 xfs: hoist rmap record flag checks from scrub
Move the rmap record flag checks from xchk_rmapbt_rec into
xfs_rmap_check_irec so that they are applied everywhere.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:05 -07:00
Darrick J. Wong
ee12eaaa43 xfs: complain about bad records in query_range helpers
For every btree type except for the bmbt, refactor the code that
complains about bad records into a helper and make the ->query_range
helpers call it so that corruptions found via that avenue are logged.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:04 -07:00
Darrick J. Wong
c4e34172da xfs: standardize ondisk to incore conversion for rmap btrees
Create a xfs_rmap_check_irec function to detect corruption in btree
records.  Fix all xfs_rmap_btrec_to_irec callsites to call the new
helper and bubble up corruption reports.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:03 -07:00
Darrick J. Wong
39ab26d59f xfs: return a failure address from xfs_rmap_irec_offset_unpack
Currently, xfs_rmap_irec_offset_unpack returns only 0 or -EFSCORRUPTED.
Change this function to return the code address of a failed conversion
in preparation for the next patch, which standardizes localized record
checking and reporting code.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:02 -07:00
Darrick J. Wong
2b30cc0bf0 xfs: standardize ondisk to incore conversion for refcount btrees
Create a xfs_refcount_check_irec function to detect corruption in btree
records.  Fix all xfs_refcount_btrec_to_irec callsites to call the new
helper and bubble up corruption reports.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:02 -07:00
Darrick J. Wong
366a0b8d49 xfs: standardize ondisk to incore conversion for inode btrees
Create a xfs_inobt_check_irec function to detect corruption in btree
records.  Fix all xfs_inobt_btrec_to_irec callsites to call the new
helper and bubble up corruption reports.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:01 -07:00
Darrick J. Wong
35e3b9a117 xfs: standardize ondisk to incore conversion for free space btrees
Create a xfs_alloc_btrec_to_irec function to convert an ondisk record to
an incore record, and a xfs_alloc_check_irec function to detect
corruption.  Replace all the open-coded logic with calls to the new
helpers and bubble up corruption reports.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:01 -07:00
Darrick J. Wong
d5c88131db xfs: allow queued AG intents to drain before scrubbing
When a writer thread executes a chain of log intent items, the AG header
buffer locks will cycle during a transaction roll to get from one intent
item to the next in a chain.  Although scrub takes all AG header buffer
locks, this isn't sufficient to guard against scrub checking an AG while
that writer thread is in the middle of finishing a chain because there's
no higher level locking primitive guarding allocation groups.

When there's a collision, cross-referencing between data structures
(e.g. rmapbt and refcountbt) yields false corruption events; if repair
is running, this results in incorrect repairs, which is catastrophic.

Fix this by adding to the perag structure the count of active intents
and make scrub wait until it has both AG header buffer locks and the
intent counter reaches zero.

One quirk of the drain code is that deferred bmap updates also bump and
drop the intent counter.  A fundamental decision made during the design
phase of the reverse mapping feature is that updates to the rmapbt
records are always made by the same code that updates the primary
metadata.  In other words, callers of bmapi functions expect that the
bmapi functions will queue deferred rmap updates.

Some parts of the reflink code queue deferred refcount (CUI) and bmap
(BUI) updates in the same head transaction, but the deferred work
manager completely finishes the CUI before the BUI work is started.  As
a result, the CUI drops the intent count long before the deferred rmap
(RUI) update even has a chance to bump the intent count.  The only way
to keep the intent count elevated between the CUI and RUI is for the BUI
to bump the counter until the RUI has been created.

A second quirk of the intent drain code is that deferred work items must
increment the intent counter as soon as the work item is added to the
transaction.  When a BUI completes and queues an RUI, the RUI must
increment the counter before the BUI decrements it.  The only way to
accomplish this is to require that the counter be bumped as soon as the
deferred work item is created in memory.

In the next patches we'll improve on this facility, but this patch
provides the basic functionality.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 18:59:58 -07:00
Darrick J. Wong
9b2e5a234c xfs: create traced helper to get extra perag references
There are a few places in the XFS codebase where a caller has either an
active or a passive reference to a perag structure and wants to give
a passive reference to some other piece of code.  Btree cursor creation
and inode walks are good examples of this.  Replace the open-coded logic
with a helper to do this.

The new function adds a few safeguards -- it checks that there's at
least one reference to the perag structure passed in, and it records the
refcount bump in the ftrace information.  This makes it much easier to
debug perag refcounting problems.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 18:59:55 -07:00
Darrick J. Wong
00e7b3bac1 xfs: give xfs_refcount_intent its own perag reference
Give the xfs_refcount_intent a passive reference to the perag structure
data.  This reference will be used to enable scrub intent draining
functionality in subsequent patches.  Any space being modified by a
refcount intent is already allocated, so we need to be able to operate
even if the AG is being shrunk or offlined.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 18:59:55 -07:00
Darrick J. Wong
c13418e8eb xfs: give xfs_rmap_intent its own perag reference
Give the xfs_rmap_intent a passive reference to the perag structure
data.  This reference will be used to enable scrub intent draining
functionality in subsequent patches.  The space we're (reverse) mapping
is already allocated, so we need to be able to operate even if the AG is
being shrunk or offlined.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 18:59:54 -07:00
Darrick J. Wong
f6b384631e xfs: give xfs_extfree_intent its own perag reference
Give the xfs_extfree_intent an passive reference to the perag structure
data.  This reference will be used to enable scrub intent draining
functionality in subsequent patches.  The space being freed must already
be allocated, so we need to able to run even if the AG is being offlined
or shrunk.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 18:59:54 -07:00
Darrick J. Wong
b2ccab3199 xfs: pass per-ag references to xfs_free_extent
Pass a reference to the per-AG structure to xfs_free_extent.  Most
callers already have one, so we can eliminate unnecessary lookups.  The
one exception to this is the EFI code, which the next patch will fix.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 18:59:53 -07:00
Darrick J. Wong
774a99b47b xfs: give xfs_bmap_intent its own perag reference
Give the xfs_bmap_intent an active reference to the perag structure
data.  This reference will be used to enable scrub intent draining
functionality in subsequent patches.  Later, shrink will use these
passive references to know if an AG is quiesced or not.

The reason why we take a passive ref for a file mapping operation is
simple: we're committing to some sort of action involving space in an
AG, so we want to indicate our interest in that AG.  The space is
already allocated, so we need to be able to operate on AGs that are
offline or being shrunk.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 18:59:53 -07:00
Darrick J. Wong
4dfb02d5ca xfs: fix mismerged tracepoints
At some point in between sending this patch to the list and merging it
into for-next, the tracepoints got all mixed up because I've
over-reliant on automated tools not sucking.  The end result is that the
tracepoints are all wrong, so fix them.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-03-24 13:16:01 -07:00
Darrick J. Wong
e2e63b071b xfs: clear incore AGFL_RESET state if it's not needed
Prior to commit 7ac2ff8bb3, when we loaded the incore perag structure
with information from the AGF header, we would set or clear the
pagf_agfl_reset field based on whether or not the AGFL list was
misaligned within the block.  IOWs, it's an incore state bit that's
supposed to cache something in the ondisk metadata.  Therefore, the code
still needs to support clearing the incore bit if (somehow) the AGFL
were to correct itself.

It turns out that xfs_repair does exactly this -- phase 4 loads the AGF
to scan the rmapbt for corrupt records, which can set NEEDS_AGFL_RESET.
The scan unsets AGF_INIT but doesn't unset NEEDS_AGFL_RESET.  Phase 5
totally rewrites the AGFL and fixes the alignment problem, didn't clear
NEEDS_AGFL_RESET historically, and reloads the perag state to fix the
freelist.  This results in the AGFL being reset based on stale data,
which then causes the new AGFL blocks to be leaked.  A subsequent
xfs_repair -n then complains about the leaks.

One could argue that phase 5 ought to clear this bit directly when it
reloads the perag AGF data after rewriting the AGFL, but libxfs used to
handle this for us, so it should go back to doing that.

Found by fuzzing flfirst = ones in xfs/352.

Fixes: 7ac2ff8bb3 ("xfs: perags need atomic operational state")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-03-24 08:40:02 -07:00
Darrick J. Wong
e6fbb7167e xfs: add tracepoints for each of the externally visible allocators
There are now five separate space allocator interfaces exposed to the
rest of XFS for five different strategies to find space.  Add
tracepoints for each of them so that I can tell from a trace dump
exactly which ones got called and what happened underneath them.  Add a
sixth so it's more obvious if an allocation actually happened.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-03-19 09:55:49 -07:00
Darrick J. Wong
9eb775968b xfs: walk all AGs if TRYLOCK passed to xfs_alloc_vextent_iterate_ags
Callers of xfs_alloc_vextent_iterate_ags that pass in the TRYLOCK flag
want us to perform a non-blocking scan of the AGs for free space.  There
are no ordering constraints for non-blocking AGF lock acquisition, so
the scan can freely start over at AG 0 even when minimum_agno > 0.

This manifests fairly reliably on xfs/294 on 6.3-rc2 with the parent
pointer patchset applied and the realtime volume enabled.  I observed
the following sequence as part of an xfs_dir_createname call:

0. Fragment the free space, then allocate nearly all the free space in
   all AGs except AG 0.

1. Create a directory in AG 2 and let it grow for a while.

2. Try to allocate 2 blocks to expand the dirent part of a directory.
   The space will be allocated out of AG 0, but the allocation will not
   be contiguous.  This (I think) activates the LOWMODE allocator.

3. The bmapi call decides to convert from extents to bmbt format and
   tries to allocate 1 block.  This allocation request calls
   xfs_alloc_vextent_start_ag with the inode number, which starts the
   scan at AG 2.  We ignore AG 0 (with all its free space) and instead
   scrape AG 2 and 3 for more space.  We find one block, but this now
   kicks t_highest_agno to 3.

4. The createname call decides it needs to split the dabtree.  It tries
   to allocate even more space with xfs_alloc_vextent_start_ag, but now
   we're constrained to AG 3, and we don't find the space.  The
   createname returns ENOSPC and the filesystem shuts down.

This change fixes the problem by making the trylock scan wrap around to
AG 0 if it doesn't like the AGs that it finds.  Since the current
transaction itself holds AGF 0, the trylock of AGF 0 will succeed, and
we take space from the AG that has plenty.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-03-19 09:55:48 -07:00
Darrick J. Wong
6de4b1ab47 xfs: try to idiot-proof the allocators
In porting his development branch to 6.3-rc1, yours truly has
repeatedly screwed up the args->pag being fed to the xfs_alloc_vextent*
functions.  Add some debugging assertions to test the preconditions
required of the callers.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-03-16 09:32:18 -07:00
Darrick J. Wong
6e2985c938 xfs: restore old agirotor behavior
Prior to the removal of xfs_ialloc_next_ag, we would increment the agi
rotor and return the *old* value.  atomic_inc_return returns the new
value, which causes mkfs to allocate the root directory in AG 1.  Put
back the old behavior (at least for mkfs) by subtracting 1 here.

Fixes: 20a5eab49d ("xfs: convert xfs_ialloc_next_ag() to an atomic")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-02-27 08:53:45 -08:00
Dave Chinner
f8f1ed1ab3 xfs: return a referenced perag from filestreams allocator
Now that the filestreams AG selection tracks active perags, we need
to return an active perag to the core allocator code. This is
because the file allocation the filestreams code will run are AG
specific allocations and so need to pin the AG until the allocations
complete.

We cannot rely on the filestreams item reference to do this - the
filestreams association can be torn down at any time, hence we
need to have a separate reference for the allocation process to pin
the AG after it has been selected.

This means there is some perag juggling in allocation failure
fallback paths as they will do all AG scans in the case the AG
specific allocation fails. Hence we need to track the perag
reference that the filestream allocator returned to make sure we
don't leak it on repeated allocation failure.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:56 +11:00
Dave Chinner
8f7747ad8c xfs: move xfs_bmap_btalloc_filestreams() to xfs_filestreams.c
xfs_bmap_btalloc_filestreams() calls two filestreams functions to
select the AG to allocate from. Both those functions end up in
the same selection function that iterates all AGs multiple times.
Worst case, xfs_bmap_btalloc_filestreams() can iterate all AGs 4
times just to select the initial AG to allocate in.

Move the AG selection to fs/xfs/xfs_filestreams.c as a single
interface so that the inefficient AG interation is contained
entirely within the filestreams code. This will allow the
implementation to be simplified and made more efficient in future
patches.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:55 +11:00
Dave Chinner
05cf492a8d xfs: use xfs_bmap_longest_free_extent() in filestreams
The code in xfs_bmap_longest_free_extent() is open coded in
xfs_filestream_pick_ag(). Export xfs_bmap_longest_free_extent and
call it from the filestreams code instead.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:55 +11:00
Dave Chinner
6b637ad0c7 xfs: get rid of notinit from xfs_bmap_longest_free_extent
It is only set if reading the AGF gets a EAGAIN error. Just return
the EAGAIN error and handle that error in the callers.

This means we can remove the not_init parameter from
xfs_bmap_select_minlen(), too, because the use of not_init there is
pessimistic. If we can't read the agf, it won't increase blen.

The only time we actually care whether we checked all the AGFs for
contiguous free space is when the best length is less than the
minimum allocation length. If not_init is set, then we ignore blen
and set the minimum alloc length to the absolute minimum, not the
best length we know already is present.

However, if blen is less than the minimum we're going to ignore it
anyway, regardless of whether we scanned all the AGFs or not.  Hence
not_init can go away, because we only use if blen is good from
the scanned AGs otherwise we ignore it altogether and use minlen.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:55 +11:00
Dave Chinner
89563e7dc0 xfs: factor out filestreams from xfs_bmap_btalloc_nullfb
There's many if (filestreams) {} else {} branches in this function.
Split it out into a filestreams specific function so that we can
then work directly on cleaning up the filestreams code without
impacting the rest of the allocation algorithms.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:54 +11:00
Dave Chinner
3432ef6111 xfs: convert xfs_alloc_vextent_iterate_ags() to use perag walker
Now that the AG iteration code in the core allocation code has been
cleaned up, we can easily convert it to use a for_each_perag..()
variant to use active references and skip AGs that it can't get
active references on.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:54 +11:00
Dave Chinner
8b81356825 xfs: move the minimum agno checks into xfs_alloc_vextent_check_args
All of the allocation functions now extract the minimum allowed AG
from the transaction and then use it in some way. The allocation
functions that are restricted to a single AG all check if the
AG requested can be allocated from and return an error if so. These
all set args->agno appropriately.

All the allocation functions that iterate AGs use it to calculate
the scan start AG. args->agno is not set until the iterator starts
walking AGs.

Hence we can easily set up a conditional check against the minimum
AG allowed in xfs_alloc_vextent_check_args() based on whether
args->agno contains NULLAGNUMBER or not and move all the repeated
setup code to xfs_alloc_vextent_check_args(), further simplifying
the allocation functions.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:54 +11:00
Dave Chinner
230e8fe846 xfs: fold xfs_alloc_ag_vextent() into callers
We don't need the multiplexing xfs_alloc_ag_vextent() provided
anymore - we can just call the exact/near/size variants directly.
This allows us to remove args->type completely and stop using
args->fsbno as an input to the allocator algorithms.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:54 +11:00
Dave Chinner
e4d1742607 xfs: move allocation accounting to xfs_alloc_vextent_set_fsbno()
Move it from xfs_alloc_ag_vextent() so we can get rid of that layer.
Rename xfs_alloc_vextent_set_fsbno() to xfs_alloc_vextent_finish()
to indicate that it's function is finishing off the allocation that
we've run now that it contains much more functionality.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:54 +11:00
Dave Chinner
74b9aa6319 xfs: introduce xfs_alloc_vextent_prepare()
Now that we have wrapper functions for each type of allocation we
can ask for, we can start unravelling xfs_alloc_ag_vextent(). That
is essentially just a prepare stage, the allocation multiplexer
and a post-allocation accounting step is the allocation proceeded.

The current xfs_alloc_vextent*() wrappers all have a prepare stage,
the allocation operation and a post-allocation accounting step.

We can consolidate this by moving the AG alloc prep code into the
wrapper functions, the accounting code in the wrapper accounting
functions, and cut out the multiplexer layer entirely.

This patch consolidates the AG preparation stage.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:54 +11:00
Dave Chinner
5f36b2ce79 xfs: introduce xfs_alloc_vextent_exact_bno()
Two of the callers to xfs_alloc_vextent_this_ag() actually want
exact block number allocation, not anywhere-in-ag allocation. Split
this out from _this_ag() as a first class citizen so no external
extent allocation code needs to care about args->type anymore.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:54 +11:00
Dave Chinner
db4710fd12 xfs: introduce xfs_alloc_vextent_near_bno()
The remaining callers of xfs_alloc_vextent() are all doing NEAR_BNO
allocations. We can replace that function with a new
xfs_alloc_vextent_near_bno() function that does this explicitly.

We also multiplex NEAR_BNO allocations through
xfs_alloc_vextent_this_ag via args->type. Replace all of these with
direct calls to xfs_alloc_vextent_near_bno(), too.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:54 +11:00
Dave Chinner
2a7f6d41d8 xfs: use xfs_alloc_vextent_start_bno() where appropriate
Change obvious callers of single AG allocation to use
xfs_alloc_vextent_start_bno(). Callers no long need to specify
XFS_ALLOCTYPE_START_BNO, and so the type can be driven inward and
removed.

While doing this, also pass the allocation target fsb as a parameter
rather than encoding it in args->fsbno.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:53 +11:00
Dave Chinner
319c9e874a xfs: use xfs_alloc_vextent_first_ag() where appropriate
Change obvious callers of single AG allocation to use
xfs_alloc_vextent_first_ag(). This gets rid of
XFS_ALLOCTYPE_FIRST_AG as the type used within
xfs_alloc_vextent_first_ag() during iteration is _THIS_AG. Hence we
can remove the setting of args->type from all the callers of
_first_ag() and remove the alloctype.

While doing this, pass the allocation target fsb as a parameter
rather than encoding it in args->fsbno. This starts the process
of making args->fsbno an output only variable rather than
input/output.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:53 +11:00
Dave Chinner
8584332709 xfs: factor xfs_bmap_btalloc()
There are several different contexts xfs_bmap_btalloc() handles, and
large chunks of the code execute independent allocation contexts.
Try to untangle this mess a bit.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:53 +11:00
Dave Chinner
74c36a8689 xfs: use xfs_alloc_vextent_this_ag() where appropriate
Change obvious callers of single AG allocation to use
xfs_alloc_vextent_this_ag(). Drive the per-ag grabbing out to the
callers, too, so that callers with active references don't need
to do new lookups just for an allocation in a context that already
has a perag reference.

The only remaining caller that does single AG allocation through
xfs_alloc_vextent() is xfs_bmap_btalloc() with
XFS_ALLOCTYPE_NEAR_BNO. That is going to need more untangling before
it can be converted cleanly.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:53 +11:00
Dave Chinner
4811c933ea xfs: combine __xfs_alloc_vextent_this_ag and xfs_alloc_ag_vextent
There's a bit of a recursive conundrum around
xfs_alloc_ag_vextent(). We can't first call xfs_alloc_ag_vextent()
without preparing the AGFL for the allocation, and preparing the
AGFL calls xfs_alloc_ag_vextent() to prepare the AGFL for the
allocation. This "double allocation" requirement is not really clear
from the current xfs_alloc_fix_freelist() calls that are sprinkled
through the allocation code.

It's not helped that xfs_alloc_ag_vextent() can actually allocate
from the AGFL itself, but there's special code to prevent AGFL prep
allocations from allocating from the free list it's trying to prep.
The naming is also not consistent: args->wasfromfl is true when we
allocated _from_ the free list, but the indication that we are
allocating _for_ the free list is via checking that (args->resv ==
XFS_AG_RESV_AGFL).

So, lets make this "allocation required for allocation" situation
clear by moving it all inside xfs_alloc_ag_vextent(). The freelist
allocation is a specific XFS_ALLOCTYPE_THIS_AG allocation, which
translated directly to xfs_alloc_ag_vextent_size() allocation.

This enables us to replace __xfs_alloc_vextent_this_ag() with a call
to xfs_alloc_ag_vextent(), and we drive the freelist fixing further
into the per-ag allocation algorithm.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:53 +11:00
Dave Chinner
2edf06a50f xfs: factor xfs_alloc_vextent_this_ag() for _iterate_ags()
The core of the per-ag iteration is effectively doing a "this ag"
allocation on one AG at a time. Use the same code to implement the
core "this ag" allocation in both xfs_alloc_vextent_this_ag()
and xfs_alloc_vextent_iterate_ags().

This means we only call xfs_alloc_ag_vextent() from one place so we
can easily collapse the call stack in future patches.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:53 +11:00
Dave Chinner
ecd788a924 xfs: rework xfs_alloc_vextent()
It's a multiplexing mess that can be greatly simplified, and really
needs to be simplified to allow active per-ag references to
propagate from initial AG selection code the the bmapi code.

This splits the code out into separate a parameter checking
function, an iterator function, and allocation completion functions
and then implements the individual policies using these functions.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:53 +11:00
Dave Chinner
76257a1587 xfs: introduce xfs_for_each_perag_wrap()
In several places we iterate every AG from a specific start agno and
wrap back to the first AG when we reach the end of the filesystem to
continue searching. We don't have a primitive for this iteration
yet, so add one for conversion of these algorithms to per-ag based
iteration.

The filestream AG select code is a mess, and this initially makes it
worse. The per-ag selection needs to be driven completely into the
filestream code to clean this up and it will be done in a future
patch that makes the filestream allocator use active per-ag
references correctly.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:53 +11:00
Dave Chinner
7ac2ff8bb3 xfs: perags need atomic operational state
We currently don't have any flags or operational state in the
xfs_perag except for the pagf_init and pagi_init flags. And the
agflreset flag. Oh, there's also the pagf_metadata and pagi_inodeok
flags, too.

For controlling per-ag operations, we are going to need some atomic
state flags. Hence add an opstate field similar to what we already
have in the mount and log, and convert all these state flags across
to atomic bit operations.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:52 +11:00
Dave Chinner
20a5eab49d xfs: convert xfs_ialloc_next_ag() to an atomic
This is currently a spinlock lock protected rotor which can be
implemented with a single atomic operation. Change it to be more
efficient and get rid of the m_agirotor_lock. Noticed while
converting the inode allocation AG selection loop to active perag
references.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:52 +11:00
Dave Chinner
bab8b79518 xfs: inobt can use perags in many more places than it does
Lots of code in the inobt infrastructure is passed both xfs_mount
and perags. We only need perags for the per-ag inode allocation
code, so reduce the duplication by passing only the perags as the
primary object.

This ends up reducing the code size by a bit:

	   text    data     bss     dec     hex filename
orig	1138878  323979     548 1463405  16546d (TOTALS)
patched	1138709  323979     548 1463236  1653c4 (TOTALS)

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:52 +11:00
Dave Chinner
dedab3e437 xfs: use active perag references for inode allocation
Convert the inode allocation routines to use active perag references
or references held by callers rather than grab their own. Also drive
the perag further inwards to replace xfs_mounts when doing
operations on a specific AG.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:52 +11:00
Dave Chinner
498f0adbcd xfs: convert xfs_imap() to take a perag
Callers have referenced perags but they don't pass it into
xfs_imap() so it takes it's own reference. Fix that so we can change
inode allocation over to using active references.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:52 +11:00
Dave Chinner
368e2d09b4 xfs: rework the perag trace points to be perag centric
So that they all output the same information in the traces to make
debugging refcount issues easier.

This means that all the lookup/drop functions no longer need to use
the full memory barrier atomic operations (atomic*_return()) so
will have less overhead when tracing is off. The set/clear tag
tracepoints no longer abuse the reference count to pass the tag -
the tag being cleared is obvious from the _RET_IP_ that is recorded
in the trace point.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:52 +11:00
Dave Chinner
c4d5660afb xfs: active perag reference counting
We need to be able to dynamically remove instantiated AGs from
memory safely, either for shrinking the filesystem or paging AG
state in and out of memory (e.g. supporting millions of AGs). This
means we need to be able to safely exclude operations from accessing
perags while dynamic removal is in progress.

To do this, introduce the concept of active and passive references.
Active references are required for high level operations that make
use of an AG for a given operation (e.g. allocation) and pin the
perag in memory for the duration of the operation that is operating
on the perag (e.g. transaction scope). This means we can fail to get
an active reference to an AG, hence callers of the new active
reference API must be able to handle lookup failure gracefully.

Passive references are used in low level code, where we might need
to access the perag structure for the purposes of completing high
level operations. For example, buffers need to use passive
references because:
- we need to be able to do metadata IO during operations like grow
  and shrink transactions where high level active references to the
  AG have already been blocked
- buffers need to pin the perag until they are reclaimed from
  memory, something that high level code has no direct control over.
- unused cached buffers should not prevent a shrink from being
  started.

Hence we have active references that will form exclusion barriers
for operations to be performed on an AG, and passive references that
will prevent reclaim of the perag until all objects with passive
references have been reclaimed themselves.

This patch introduce xfs_perag_grab()/xfs_perag_rele() as the API
for active AG reference functionality. We also need to convert the
for_each_perag*() iterators to use active references, which will
start the process of converting high level code over to using active
references. Conversion of non-iterator based code to active
references will be done in followup patches.

Note that the implementation using reference counting is really just
a development vehicle for the API to ensure we don't have any leaks
in the callers. Once we need to remove perag structures from memory
dyanmically, we will need a much more robust per-ag state transition
mechanism for preventing new references from being taken while we
wait for existing references to drain before removal from memory can
occur....

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:42 +11:00
Dave Chinner
692b6cddeb xfs: t_firstblock is tracking AGs not blocks
The tp->t_firstblock field is now raelly tracking the highest AG we
have locked, not the block number of the highest allocation we've
made. It's purpose is to prevent AGF locking deadlocks, so rename it
to "highest AG" and simplify the implementation to just track the
agno rather than a fsbno.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-11 04:11:06 +11:00
Dave Chinner
36b6ad2d9c xfs: drop firstblock constraints from allocation setup
Now that xfs_alloc_vextent() does all the AGF deadlock prevention
filtering for multiple allocations in a single transaction, we no
longer need the allocation setup code to care about what AGs we
might already have locked.

Hence we can remove all the "nullfb" conditional logic in places
like xfs_bmap_btalloc() and instead have them focus simply on
setting up locality constraints. If the allocation fails due to
AGF lock filtering in xfs_alloc_vextent, then we just fall back as
we normally do to more relaxed allocation constraints.

As a result, any allocation that allows AG scanning (i.e. not
confined to a single AG) and does not force a worst case full
filesystem scan will now be able to attempt allocation from AGs
lower than that defined by tp->t_firstblock. This is because
xfs_alloc_vextent() allows try-locking of the AGFs and hence enables
low space algorithms to at least -try- to get space from AGs lower
than the one that we have currently locked and allocated from. This
is a significant improvement in the low space allocation algorithm.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-11 04:10:06 +11:00
Dave Chinner
d5753847b2 xfs: block reservation too large for minleft allocation
When we enter xfs_bmbt_alloc_block() without having first allocated
a data extent (i.e. tp->t_firstblock == NULLFSBLOCK) because we
are doing something like unwritten extent conversion, the transaction
block reservation is used as the minleft value.

This works for operations like unwritten extent conversion, but it
assumes that the block reservation is only for a BMBT split. THis is
not always true, and sometimes results in larger than necessary
minleft values being set. We only actually need enough space for a
btree split, something we already handle correctly in
xfs_bmapi_write() via the xfs_bmapi_minleft() calculation.

We should use xfs_bmapi_minleft() in xfs_bmbt_alloc_block() to
calculate the number of blocks a BMBT split on this inode is going to
require, not use the transaction block reservation that contains the
maximum number of blocks this transaction may consume in it...

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-11 04:09:06 +11:00
Dave Chinner
f08f984c63 xfs: prefer free inodes at ENOSPC over chunk allocation
When an XFS filesystem has free inodes in chunks already allocated
on disk, it will still allocate new inode chunks if the target AG
has no free inodes in it. Normally, this is a good idea as it
preserves locality of all the inodes in a given directory.

However, at ENOSPC this can lead to using the last few remaining
free filesystem blocks to allocate a new chunk when there are many,
many free inodes that could be allocated without consuming free
space. This results in speeding up the consumption of the last few
blocks and inode create operations then returning ENOSPC when there
free inodes available because we don't have enough block left in the
filesystem for directory creation reservations to proceed.

Hence when we are near ENOSPC, we should be attempting to preserve
the remaining blocks for directory block allocation rather than
using them for unnecessary inode chunk creation.

This particular behaviour is exposed by xfs/294, when it drives to
ENOSPC on empty file creation whilst there are still thousands of
free inodes available for allocation in other AGs in the filesystem.

Hence, when we are within 1% of ENOSPC, change the inode allocation
behaviour to prefer to use existing free inodes over allocating new
inode chunks, even though it results is poorer locality of the data
set. It is more important for the allocations to be space efficient
near ENOSPC than to have optimal locality for performance, so lets
modify the inode AG selection code to reflect that fact.

This allows generic/294 to not only pass with this allocator rework
patchset, but to increase the number of post-ENOSPC empty inode
allocations to from ~600 to ~9080 before we hit ENOSPC on the
directory create transaction reservation.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-11 04:08:06 +11:00
Dave Chinner
1dd0510f6d xfs: fix low space alloc deadlock
I've recently encountered an ABBA deadlock with g/476. The upcoming
changes seem to make this much easier to hit, but the underlying
problem is a pre-existing one.

Essentially, if we select an AG for allocation, then lock the AGF
and then fail to allocate for some reason (e.g. minimum length
requirements cannot be satisfied), then we drop out of the
allocation with the AGF still locked.

The caller then modifies the allocation constraints - usually
loosening them up - and tries again. This can result in trying to
access AGFs that are lower than the AGF we already have locked from
the failed attempt. e.g. the failed attempt skipped several AGs
before failing, so we have locks an AG higher than the start AG.
Retrying the allocation from the start AG then causes us to violate
AGF lock ordering and this can lead to deadlocks.

The deadlock exists even if allocation succeeds - we can do a
followup allocations in the same transaction for BMBT blocks that
aren't guaranteed to be in the same AG as the original, and can move
into higher AGs. Hence we really need to move the tp->t_firstblock
tracking down into xfs_alloc_vextent() where it can be set when we
exit with a locked AG.

xfs_alloc_vextent() can also check there if the requested
allocation falls within the allow range of AGs set by
tp->t_firstblock. If we can't allocate within the range set, we have
to fail the allocation. If we are allowed to to non-blocking AGF
locking, we can ignore the AG locking order limitations as we can
use try-locks for the first iteration over requested AG range.

This invalidates a set of post allocation asserts that check that
the allocation is always above tp->t_firstblock if it is set.
Because we can use try-locks to avoid the deadlock in some
circumstances, having a pre-existing locked AGF doesn't always
prevent allocation from lower order AGFs. Hence those ASSERTs need
to be removed.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-11 04:07:06 +11:00
Dave Chinner
c85007e2e3 xfs: don't use BMBT btree split workers for IO completion
When we split a BMBT due to record insertion, we offload it to a
worker thread because we can be deep in the stack when we try to
allocate a new block for the BMBT. Allocation can use several
kilobytes of stack (full memory reclaim, swap and/or IO path can
end up on the stack during allocation) and we can already be several
kilobytes deep in the stack when we need to split the BMBT.

A recent workload demonstrated a deadlock in this BMBT split
offload. It requires several things to happen at once:

1. two inodes need a BMBT split at the same time, one must be
unwritten extent conversion from IO completion, the other must be
from extent allocation.

2. there must be a no available xfs_alloc_wq worker threads
available in the worker pool.

3. There must be sustained severe memory shortages such that new
kworker threads cannot be allocated to the xfs_alloc_wq pool for
both threads that need split work to be run

4. The split work from the unwritten extent conversion must run
first.

5. when the BMBT block allocation runs from the split work, it must
loop over all AGs and not be able to either trylock an AGF
successfully, or each AGF is is able to lock has no space available
for a single block allocation.

6. The BMBT allocation must then attempt to lock the AGF that the
second task queued to the rescuer thread already has locked before
it finds an AGF it can allocate from.

At this point, we have an ABBA deadlock between tasks queued on the
xfs_alloc_wq rescuer thread and a locked AGF. i.e. The queued task
holding the AGF lock can't be run by the rescuer thread until the
task the rescuer thread is runing gets the AGF lock....

This is a highly improbably series of events, but there it is.

There's a couple of ways to fix this, but the easiest way to ensure
that we only punt tasks with a locked AGF that holds enough space
for the BMBT block allocations to the worker thread.

This works for unwritten extent conversion in IO completion (which
doesn't have a locked AGF and space reservations) because we have
tight control over the IO completion stack. It is typically only 6
functions deep when xfs_btree_split() is called because we've
already offloaded the IO completion work to a worker thread and
hence we don't need to worry about stack overruns here.

The other place we can be called for a BMBT split without a
preceeding allocation is __xfs_bunmapi() when punching out the
center of an existing extent. We don't remove extents in the IO
path, so these operations don't tend to be called with a lot of
stack consumed. Hence we don't really need to ship the split off to
a worker thread in these cases, either.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-02-05 08:48:24 -08:00
Darrick J. Wong
0b11553ec5 xfs: pass refcount intent directly through the log intent code
Pass the incore refcount intent through the CUI logging code instead of
repeatedly boxing and unboxing parameters.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-02-05 08:48:11 -08:00
Darrick J. Wong
1534328bb4 xfs: pass rmap space mapping directly through the log intent code
Pass the incore rmap space mapping through the RUI logging code instead
of repeatedly boxing and unboxing parameters.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-02-05 08:48:11 -08:00
Darrick J. Wong
578c714b21 xfs: fix confusing xfs_extent_item variable names
Change the name of all pointers to xfs_extent_item structures to "xefi"
to make the name consistent and because the current selections ("new"
and "free") mean other things in C.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-02-05 08:48:11 -08:00
Darrick J. Wong
ddccb81b26 xfs: pass the xfs_bmbt_irec directly through the log intent code
Instead of repeatedly boxing and unboxing the incore extent mapping
structure as it passes through the BUI code, pass the pointer directly
through.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-02-05 08:48:11 -08:00
Darrick J. Wong
c0f399ff51 xfs: fix off-by-one error in xfs_btree_space_to_height
Lately I've been stress-testing extreme-sized rmap btrees by using the
(new) xfs_db bmap_inflate command to clone bmbt mappings billions of
times and then using xfs_repair to build new rmap and refcount btrees.
This of course is /much/ faster than actually FICLONEing a file billions
of times.

Unfortunately, xfs_repair fails in xfs_btree_bload_compute_geometry with
EOVERFLOW, which indicates that xfs_mount.m_rmap_maxlevels is not
sufficiently large for the test scenario.  For a 1TB filesystem (~67
million AG blocks, 4 AGs) the btheight command reports:

$ xfs_db -c 'btheight -n 4400801200 -w min rmapbt' /dev/sda
rmapbt: worst case per 4096-byte block: 84 records (leaf) / 45 keyptrs (node)
level 0: 4400801200 records, 52390491 blocks
level 1: 52390491 records, 1164234 blocks
level 2: 1164234 records, 25872 blocks
level 3: 25872 records, 575 blocks
level 4: 575 records, 13 blocks
level 5: 13 records, 1 block
6 levels, 53581186 blocks total

The AG is sufficiently large to build this rmap btree.  Unfortunately,
m_rmap_maxlevels is 5.  Augmenting the loop in the space->height
function to report height, node blocks, and blocks remaining produces
this:

ht 1 node_blocks 45 blockleft 67108863
ht 2 node_blocks 2025 blockleft 67108818
ht 3 node_blocks 91125 blockleft 67106793
ht 4 node_blocks 4100625 blockleft 67015668
final height: 5

The goal of this function is to compute the maximum height btree that
can be stored in the given number of ondisk fsblocks.  Starting with the
top level of the tree, each iteration through the loop adds the fanout
factor of the next level down until we run out of blocks.  IOWs, maximum
height is achieved by using the smallest fanout factor that can apply
to that level.

However, the loop setup is not correct.  Top level btree blocks are
allowed to contain fewer than minrecs items, so the computation is
incorrect because the first time through the loop it should be using a
fanout factor of 2.  With this corrected, the above becomes:

ht 1 node_blocks 2 blockleft 67108863
ht 2 node_blocks 90 blockleft 67108861
ht 3 node_blocks 4050 blockleft 67108771
ht 4 node_blocks 182250 blockleft 67104721
ht 5 node_blocks 8201250 blockleft 66922471
final height: 6

Fixes: 9ec691205e ("xfs: compute the maximum height of the rmap btree when reflink enabled")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-01-03 10:23:07 -08:00
Linus Torvalds
87be949912 New XFS code for 6.2:
- Fix a race condition w.r.t. percpu inode free counters
  - Fix a broken error return in xfs_remove
  - Print FS UUID at mount/unmount time
  - Numerous fixes to the online fsck code
  - Fix inode locking inconsistency problems when dealing with realtime
    metadata files
  - Actually merge pull requests so that we capture the cover letter
    contents
  - Fix a race between rebuilding VFS inode state and the AIL flushing
    inodes that could cause corrupt inodes to be written to the
    filesystem
  - Fix a data corruption problem resulting from a write() to an
    unwritten extent racing with writeback started on behalf of memory
    reclaim changing the extent state
  - Add debugging knobs so that we can test iomap invalidation
  - Fix the blockdev pagecache contents being stale after unmounting the
    filesystem, leading to spurious xfs_db errors and corrupt metadumps
  - Fix a file mapping corruption bug due to ilock cycling when attaching
    dquots to a file during delalloc reservation
  - Fix a refcount btree corruption problem due to the refcount
    adjustment code not handling MAXREFCOUNT correctly, resulting in
    unnecessary record splits
  - Fix COW staging extent alloctions not being classified as USERDATA,
    which results in filestreams being ignored and possible data
    corruption if the allocation was filled from the AGFL and the block
    buffer is still being tracked in the AIL
  - Fix new duplicated includes
  - Fix a race between the dquot shrinker and dquot freeing that could
    cause a UAF
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmOSEWsACgkQ+H93GTRK
 tOvpsg//Y8pgue8GFwyXq0LYEYb1yjueGIxDGz9SwkfMP9vADsdDpXxquHmes5M+
 Q9vMyFnfaizZs2oXD6Nw/+RJMyOa3ZQtNqjxJET5pTIBcWvdjsP9UGW+K+1uN7LT
 NsM7lgpxy8RfQFHjvFHpOysxGIpT70n3lz98qlwy1yIGF/EFE52pkKcArGjpIu4A
 wBdyL0hIBwXc27zLRahLxfwFaW/I40ka3D40EUYpNnAjE5Sy0YgLlsOCzrxN0UvY
 a9dlq+WFJjWDsLp6vr11ruewXAmzYG2m/3RdP2aLbmDHDvo06UkesKkPNhexlClM
 kRE/ZImmakqKlAqgtUbkxT06NbIKOxYslbcoOOLDneqb1grTcgk79J7jsMlLLU1s
 s1WyPMWR3wb0jjclgGBxd3c1nprdkvJSkBpyEOwIYLhwdPNuwqTwEVsq7TvasRLI
 dgals5/J6fBnIeTR7x2YObonQRd4FlkXFv+AVYpGVUJEI02eRgY3i7NJBZWyBKAS
 +Gcd1Bq1F387b0FRqq1iVhGD+NpoHHiP84bOQED9R9t0jP1AHj9t47f+Uuvjj2hN
 ByT7MpA0nZdbYGKU+rFyKsIvONyLdxyjL+jm6FkmrW+G25fJ1af2yhrVhZQhw7dm
 zLb1ntSnXvNTj4OopfKSDD2MPGf+2C/o2XJvAAS501pmsQefKOM=
 =plES
 -----END PGP SIGNATURE-----

Merge tag 'xfs-6.2-merge-8' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull XFS updates from Darrick Wong:
 "The highlight of this is a batch of fixes for the online metadata
  checking code as we start the loooong march towards merging online
  repair. I aim to merge that in time for the 2023 LTS.

  There are also a large number of data corruption and race condition
  fixes in this patchset. Most notably fixed are write() calls to
  unwritten extents racing with writeback, which required some late(r
  than I prefer) code changes to iomap to support the necessary
  revalidations. I don't really like iomap changes going in past -rc4,
  but Dave and I have been working on it long enough that I chose to
  push it for 6.2 anyway.

  There are also a number of other subtle problems fixed, including the
  log racing with inode writeback to write inodes with incorrect link
  count to disk; file data mapping corruptions as a result of incorrect
  lock cycling when attaching dquots; refcount metadata corruption if
  one actually manages to share a block 2^32 times; and the log
  clobbering cow staging extents if they were formerly metadata blocks.

  Summary:

   - Fix a race condition w.r.t. percpu inode free counters

   - Fix a broken error return in xfs_remove

   - Print FS UUID at mount/unmount time

   - Numerous fixes to the online fsck code

   - Fix inode locking inconsistency problems when dealing with realtime
     metadata files

   - Actually merge pull requests so that we capture the cover letter
     contents

   - Fix a race between rebuilding VFS inode state and the AIL flushing
     inodes that could cause corrupt inodes to be written to the
     filesystem

   - Fix a data corruption problem resulting from a write() to an
     unwritten extent racing with writeback started on behalf of memory
     reclaim changing the extent state

   - Add debugging knobs so that we can test iomap invalidation

   - Fix the blockdev pagecache contents being stale after unmounting
     the filesystem, leading to spurious xfs_db errors and corrupt
     metadumps

   - Fix a file mapping corruption bug due to ilock cycling when
     attaching dquots to a file during delalloc reservation

   - Fix a refcount btree corruption problem due to the refcount
     adjustment code not handling MAXREFCOUNT correctly, resulting in
     unnecessary record splits

   - Fix COW staging extent alloctions not being classified as USERDATA,
     which results in filestreams being ignored and possible data
     corruption if the allocation was filled from the AGFL and the block
     buffer is still being tracked in the AIL

   - Fix new duplicated includes

   - Fix a race between the dquot shrinker and dquot freeing that could
     cause a UAF"

* tag 'xfs-6.2-merge-8' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (50 commits)
  xfs: dquot shrinker doesn't check for XFS_DQFLAG_FREEING
  xfs: Remove duplicated include in xfs_iomap.c
  xfs: invalidate xfs_bufs when allocating cow extents
  xfs: get rid of assert from xfs_btree_islastblock
  xfs: estimate post-merge refcounts correctly
  xfs: hoist refcount record merge predicates
  xfs: fix super block buf log item UAF during force shutdown
  xfs: wait iclog complete before tearing down AIL
  xfs: attach dquots to inode before reading data/cow fork mappings
  xfs: shut up -Wuninitialized in xfsaild_push
  xfs: use memcpy, not strncpy, to format the attr prefix during listxattr
  xfs: invalidate block device page cache during unmount
  xfs: add debug knob to slow down write for fun
  xfs: add debug knob to slow down writeback for fun
  xfs: drop write error injection is unfixable, remove it
  xfs: use iomap_valid method to detect stale cached iomaps
  iomap: write iomap validity checks
  xfs: xfs_bmap_punch_delalloc_range() should take a byte range
  iomap: buffered write failure should not truncate the page cache
  xfs,iomap: move delalloc punching to iomap
  ...
2022-12-14 10:11:51 -08:00
Darrick J. Wong
ddfdd530e4 xfs: invalidate xfs_bufs when allocating cow extents
While investigating test failures in xfs/17[1-3] in alwayscow mode, I
noticed through code inspection that xfs_bmap_alloc_userdata isn't
setting XFS_ALLOC_USERDATA when allocating extents for a file's CoW
fork.  COW staging extents should be flagged as USERDATA, since user
data are persisted to these blocks before being remapped into a file.

This mis-classification has a few impacts on the behavior of the system.
First, the filestreams allocator is supposed to keep allocating from a
chosen AG until it runs out of space in that AG.  However, it only does
that for USERDATA allocations, which means that COW allocations aren't
tied to the filestreams AG.  Fortunately, few people use filestreams, so
nobody's noticed.

A more serious problem is that xfs_alloc_ag_vextent_small looks for a
buffer to invalidate *if* the USERDATA flag is set and the AG is so full
that the allocation had to come from the AGFL because the cntbt is
empty.  The consequences of not invalidating the buffer are severe --
if the AIL incorrectly checkpoints a buffer that is now being used to
store user data, that action will clobber the user's written data.

Fix filestreams and yet another data corruption vector by flagging COW
allocations as USERDATA.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-12-01 09:36:16 -08:00
Guo Xuenan
8c25febf23 xfs: get rid of assert from xfs_btree_islastblock
xfs_btree_check_block contains debugging knobs. With XFS_DEBUG setting up,
turn on the debugging knob can trigger the assert of xfs_btree_islastblock,
test script as follows:

while true
do
    mount $disk $mountpoint
    fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null
    echo 1 > /sys/fs/xfs/sda/errortag/btree_chk_sblk
    sleep 10
    umount $mountpoint
done

Kick off fsstress and only *then* turn on the debugging knob. If it
happens that the knob gets turned on after the cntbt lookup succeeds
but before the call to xfs_btree_islastblock, then we *can* end up in
the situation where a previously checked btree block suddenly starts
returning EFSCORRUPTED from xfs_btree_check_block. Kaboom.

Darrick give a very detailed explanation as follows:
Looking back at commit 27d9ee577d, I think the point of all this was
to make sure that the cursor has actually performed a lookup, and that
the btree block at whatever level we're asking about is ok.

If the caller hasn't ever done a lookup, the bc_levels array will be
empty, so cur->bc_levels[level].bp pointer will be NULL.  The call to
xfs_btree_get_block will crash anyway, so the "ASSERT(block);" part is
pointless.

If the caller did a lookup but the lookup failed due to block
corruption, the corresponding cur->bc_levels[level].bp pointer will also
be NULL, and we'll still crash.  The "ASSERT(xfs_btree_check_block);"
logic is also unnecessary.

If the cursor level points to an inode root, the block buffer will be
incore, so it had better always be consistent.

If the caller ignores a failed lookup after a successful one and calls
this function, the cursor state is garbage and the assert wouldn't have
tripped anyway. So get rid of the assert.

Fixes: 27d9ee577d ("xfs: actually check xfs_btree_check_block return in xfs_btree_islastblock")
Signed-off-by: Guo Xuenan <guoxuenan@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-12-01 09:36:16 -08:00
Darrick J. Wong
b25d1984aa xfs: estimate post-merge refcounts correctly
Upon enabling fsdax + reflink for XFS, xfs/179 began to report refcount
metadata corruptions after being run.  Specifically, xfs_repair noticed
single-block refcount records that could be combined but had not been.

The root cause of this is improper MAXREFCOUNT edge case handling in
xfs_refcount_merge_extents.  When we're trying to find candidates for a
refcount btree record merge, we compute the refcount attribute of the
merged record, but we fail to account for the fact that once a record
hits rc_refcount == MAXREFCOUNT, it is pinned that way forever.  Hence
the computed refcount is wrong, and we fail to merge the extents.

Fix this by adjusting the merge predicates to compute the adjusted
refcount correctly.

Fixes: 3172725814 ("xfs: adjust refcount of an extent of blocks in refcount btree")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Xiao Yang <yangx.jy@fujitsu.com>
2022-12-01 09:32:04 -08:00
Darrick J. Wong
9d720a5a65 xfs: hoist refcount record merge predicates
Hoist these multiline conditionals into separate static inline helpers
to improve readability and set the stage for corruption fixes that will
be introduced in the next patch.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Xiao Yang <yangx.jy@fujitsu.com>
2022-12-01 09:32:04 -08:00
Darrick J. Wong
254e345928 xfs: add debug knob to slow down write for fun
Add a new error injection knob so that we can arbitrarily slow down
pagecache writes to test for race conditions and aberrant reclaim
behavior if the writeback mechanisms are slow to issue writeback.  This
will enable functional testing for the ifork sequence counters
introduced in commit 304a68b9c6 ("xfs: use iomap_valid method to
detect stale cached iomaps") that fixes write racing with reclaim
writeback.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-28 17:54:49 -08:00
Darrick J. Wong
c2beff99eb xfs: add debug knob to slow down writeback for fun
Add a new error injection knob so that we can arbitrarily slow down
writeback to test for race conditions and aberrant reclaim behavior if
the writeback mechanisms are slow to issue writeback.  This will enable
functional testing for the ifork sequence counters introduced in commit
745b3f76d1 ("xfs: maintain a sequence count for inode fork
manipulations").

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-28 17:24:35 -08:00
Darrick J. Wong
7dd73802f9 xfs, iomap: fix data corruption due to stale cached iomaps
This patch series fixes a data corruption that occurs in a specific
 multi-threaded write workload. The workload combined
 racing unaligned adjacent buffered writes with low memory conditions
 that caused both writeback and memory reclaim to race with the
 writes.
 
 The result of this was random partial blocks containing zeroes
 instead of the correct data.  The underlying problem is that iomap
 caches the write iomap for the duration of the write() operation,
 but it fails to take into account that the extent underlying the
 iomap can change whilst the write is in progress.
 
 The short story is that an iomap can span mutliple folios, and so
 under low memory writeback can be cleaning folios the write()
 overlaps. Whilst the overlapping data is cached in memory, this
 isn't a problem, but because the folios are now clean they can be
 reclaimed. Once reclaimed, the write() does the wrong thing when
 re-instantiating partial folios because the iomap no longer reflects
 the underlying state of the extent. e.g. it thinks the extent is
 unwritten, so it zeroes the partial range, when in fact the
 underlying extent is now written and so it should have read the data
 from disk.  This is how we get random zero ranges in the file
 instead of the correct data.
 
 The gory details of the race condition can be found here:
 
 https://lore.kernel.org/linux-xfs/20220817093627.GZ3600936@dread.disaster.area/
 
 Fixing the problem has two aspects. The first aspect of the problem
 is ensuring that iomap can detect a stale cached iomap during a
 write in a race-free manner. We already do this stale iomap
 detection in the writeback path, so we have a mechanism for
 detecting that the iomap backing the data range may have changed
 and needs to be remapped.
 
 In the case of the write() path, we have to ensure that the iomap is
 validated at a point in time when the page cache is stable and
 cannot be reclaimed from under us. We also need to validate the
 extent before we start performing any modifications to the folio
 state or contents. Combine these two requirements together, and the
 only "safe" place to validate the iomap is after we have looked up
 and locked the folio we are going to copy the data into, but before
 we've performed any initialisation operations on that folio.
 
 If the iomap fails validation, we then mark it stale, unlock the
 folio and end the write. This effectively means a stale iomap
 results in a short write. Filesystems should already be able to
 handle this, as write operations can end short for many reasons and
 need to iterate through another mapping cycle to be completed. Hence
 the iomap changes needed to detect and handle stale iomaps during
 write() operations is relatively simple...
 
 However, the assumption is that filesystems should already be able
 to handle write failures safely, and that's where the second
 (first?) part of the problem exists. That is, handling a partial
 write is harder than just "punching out the unused delayed
 allocation extent". This is because mmap() based faults can race
 with writes, and if they land in the delalloc region that the write
 allocated, then punching out the delalloc region can cause data
 corruption.
 
 This data corruption problem is exposed by generic/346 when iomap is
 converted to detect stale iomaps during write() operations. Hence
 write failure in the filesytems needs to handle the fact that the
 write() in progress doesn't necessarily own the data in the page
 cache over the range of the delalloc extent it just allocated.
 
 As a result, we can't just truncate the page cache over the range
 the write() didn't reach and punch all the delalloc extent. We have
 to walk the page cache over the untouched range and skip over any
 dirty data region in the cache in that range. Which is ....
 non-trivial.
 
 That is, iterating the page cache has to handle partially populated
 folios (i.e. block size < page size) that contain data. The data
 might be discontiguous within a folio. Indeed, there might be
 *multiple* discontiguous data regions within a single folio. And to
 make matters more complex, multi-page folios mean we just don't know
 how many sub-folio regions we might have to iterate to find all
 these regions. All the corner cases between the conversions and
 rounding between filesystem block size, folio size and multi-page
 folio size combined with unaligned write offsets kept breaking my
 brain.
 
 However, if we convert the code to track the processed
 write regions by byte ranges instead of fileystem block or page
 cache index, we could simply use mapping_seek_hole_data() to find
 the start and end of each discrete data region within the range we
 needed to scan. SEEK_DATA finds the start of the cached data region,
 SEEK_HOLE finds the end of the region. These are byte based
 interfaces that understand partially uptodate folio regions, and so
 can iterate discrete sub-folio data regions directly. This largely
 solved the problem of discovering the dirty regions we need to keep
 the delalloc extent over.
 
 However, to use mapping_seek_hole_data() without needing to export
 it, we have to move all the delalloc extent cleanup to the iomap
 core and so now the iomap core can clean up delayed allocation
 extents in a safe, sane and filesystem neutral manner.
 
 With all this done, the original data corruption never occurs
 anymore, and we now have a generic mechanism for ensuring that page
 cache writes do not do the wrong thing when writeback and reclaim
 change the state of the physical extent and/or page cache contents
 whilst the write is in progress.
 
 Signed-off-by: Dave Chinner <dchinner@redhat.com>
 -----BEGIN PGP SIGNATURE-----
 
 iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmOFSzwUHGRhdmlkQGZy
 b21vcmJpdC5jb20ACgkQregpR/R1+h3djhAAwOf9VeLO7TW/0B1XfE3ktWGiDmEG
 ekB8mkB7CAHB9SBq7TZMHjktJIJxY81q5+Iq9qHGiW3asoVbmWvkeRSJgXljhTby
 D2KsUIT1NK/X6DhC9FhNjv/Q2GJ0nY6s65RLudUEkelYBFhGMM0kdXX+fZmtZ4yT
 T/lRYk/KBFpeQCaGRcFXK55TnB/B9muOI9FyKvh2DNWe6r0Xu3Obb3a9k+snZA9R
 EeUpAosDSrXzP4c2w2ovpU2eutUdo4eYTHIzXKGkhktbRhmCRLn4NlxvFCanoe8h
 eSS85sb8DHUh2iyaaB8yrJ6LL3MuBytOi24rNBeyd1KAyEtT21+cTUK/QAahzble
 pL8l6TA7ZXbhYcbk5uQvFEIAInR+0ffjde61uE14N55awq0Vdrym7C7D2ri60iw6
 ts45AVYKYeF61coAbwvmaJyvqvQ0tUlmVZXI4lQzN2O17Lr6004gJFMjDRsXXU7H
 eHLUt496Geq39rglw85y8G0vmxxGZ9iIGkeC1kUSSCmlvx/JfuJlbWBgyMGtNRBI
 qzv0jmk67Ft1seQSMWQJttxCZs4uOF2gwERYGAF7iUR8F4PGob/N1e2/hpg75G8q
 0S8u1N1p8Cv5u/jwybqy8FnSC2MlUZl6SQURaVQDy2DLMKHb4T1diu0jrCbiSPiF
 JKfQ7aNQxaEZIJw=
 =cv9i
 -----END PGP SIGNATURE-----

Merge tag 'xfs-iomap-stale-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-6.2-mergeB

xfs, iomap: fix data corruption due to stale cached iomaps

This patch series fixes a data corruption that occurs in a specific
multi-threaded write workload. The workload combined
racing unaligned adjacent buffered writes with low memory conditions
that caused both writeback and memory reclaim to race with the
writes.

The result of this was random partial blocks containing zeroes
instead of the correct data.  The underlying problem is that iomap
caches the write iomap for the duration of the write() operation,
but it fails to take into account that the extent underlying the
iomap can change whilst the write is in progress.

The short story is that an iomap can span mutliple folios, and so
under low memory writeback can be cleaning folios the write()
overlaps. Whilst the overlapping data is cached in memory, this
isn't a problem, but because the folios are now clean they can be
reclaimed. Once reclaimed, the write() does the wrong thing when
re-instantiating partial folios because the iomap no longer reflects
the underlying state of the extent. e.g. it thinks the extent is
unwritten, so it zeroes the partial range, when in fact the
underlying extent is now written and so it should have read the data
from disk.  This is how we get random zero ranges in the file
instead of the correct data.

The gory details of the race condition can be found here:

https://lore.kernel.org/linux-xfs/20220817093627.GZ3600936@dread.disaster.area/

Fixing the problem has two aspects. The first aspect of the problem
is ensuring that iomap can detect a stale cached iomap during a
write in a race-free manner. We already do this stale iomap
detection in the writeback path, so we have a mechanism for
detecting that the iomap backing the data range may have changed
and needs to be remapped.

In the case of the write() path, we have to ensure that the iomap is
validated at a point in time when the page cache is stable and
cannot be reclaimed from under us. We also need to validate the
extent before we start performing any modifications to the folio
state or contents. Combine these two requirements together, and the
only "safe" place to validate the iomap is after we have looked up
and locked the folio we are going to copy the data into, but before
we've performed any initialisation operations on that folio.

If the iomap fails validation, we then mark it stale, unlock the
folio and end the write. This effectively means a stale iomap
results in a short write. Filesystems should already be able to
handle this, as write operations can end short for many reasons and
need to iterate through another mapping cycle to be completed. Hence
the iomap changes needed to detect and handle stale iomaps during
write() operations is relatively simple...

However, the assumption is that filesystems should already be able
to handle write failures safely, and that's where the second
(first?) part of the problem exists. That is, handling a partial
write is harder than just "punching out the unused delayed
allocation extent". This is because mmap() based faults can race
with writes, and if they land in the delalloc region that the write
allocated, then punching out the delalloc region can cause data
corruption.

This data corruption problem is exposed by generic/346 when iomap is
converted to detect stale iomaps during write() operations. Hence
write failure in the filesytems needs to handle the fact that the
write() in progress doesn't necessarily own the data in the page
cache over the range of the delalloc extent it just allocated.

As a result, we can't just truncate the page cache over the range
the write() didn't reach and punch all the delalloc extent. We have
to walk the page cache over the untouched range and skip over any
dirty data region in the cache in that range. Which is ....
non-trivial.

That is, iterating the page cache has to handle partially populated
folios (i.e. block size < page size) that contain data. The data
might be discontiguous within a folio. Indeed, there might be
*multiple* discontiguous data regions within a single folio. And to
make matters more complex, multi-page folios mean we just don't know
how many sub-folio regions we might have to iterate to find all
these regions. All the corner cases between the conversions and
rounding between filesystem block size, folio size and multi-page
folio size combined with unaligned write offsets kept breaking my
brain.

However, if we convert the code to track the processed
write regions by byte ranges instead of fileystem block or page
cache index, we could simply use mapping_seek_hole_data() to find
the start and end of each discrete data region within the range we
needed to scan. SEEK_DATA finds the start of the cached data region,
SEEK_HOLE finds the end of the region. These are byte based
interfaces that understand partially uptodate folio regions, and so
can iterate discrete sub-folio data regions directly. This largely
solved the problem of discovering the dirty regions we need to keep
the delalloc extent over.

However, to use mapping_seek_hole_data() without needing to export
it, we have to move all the delalloc extent cleanup to the iomap
core and so now the iomap core can clean up delayed allocation
extents in a safe, sane and filesystem neutral manner.

With all this done, the original data corruption never occurs
anymore, and we now have a generic mechanism for ensuring that page
cache writes do not do the wrong thing when writeback and reclaim
change the state of the physical extent and/or page cache contents
whilst the write is in progress.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>

* tag 'xfs-iomap-stale-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs:
  xfs: drop write error injection is unfixable, remove it
  xfs: use iomap_valid method to detect stale cached iomaps
  iomap: write iomap validity checks
  xfs: xfs_bmap_punch_delalloc_range() should take a byte range
  iomap: buffered write failure should not truncate the page cache
  xfs,iomap: move delalloc punching to iomap
  xfs: use byte ranges for write cleanup ranges
  xfs: punching delalloc extents on write failure is racy
  xfs: write page faults in iomap are not buffered writes
2022-11-28 17:23:58 -08:00
Dave Chinner
6e8af15ccd xfs: drop write error injection is unfixable, remove it
With the changes to scan the page cache for dirty data to avoid data
corruptions from partial write cleanup racing with other page cache
operations, the drop writes error injection no longer works the same
way it used to and causes xfs/196 to fail. This is because xfs/196
writes to the file and populates the page cache before it turns on
the error injection and starts failing -overwrites-.

The result is that the original drop-writes code failed writes only
-after- overwriting the data in the cache, followed by invalidates
the cached data, then punching out the delalloc extent from under
that data.

On the surface, this looks fine. The problem is that page cache
invalidation *doesn't guarantee that it removes anything from the
page cache* and it doesn't change the dirty state of the folio. When
block size == page size and we do page aligned IO (as xfs/196 does)
everything happens to align perfectly and page cache invalidation
removes the single page folios that span the written data. Hence the
followup delalloc punch pass does not find cached data over that
range and it can punch the extent out.

IOWs, xfs/196 "works" for block size == page size with the new
code. I say "works", because it actually only works for the case
where IO is page aligned, and no data was read from disk before
writes occur. Because the moment we actually read data first, the
readahead code allocates multipage folios and suddenly the
invalidate code goes back to zeroing subfolio ranges without
changing dirty state.

Hence, with multipage folios in play, block size == page size is
functionally identical to block size < page size behaviour, and
drop-writes is manifestly broken w.r.t to this case. Invalidation of
a subfolio range doesn't result in the folio being removed from the
cache, just the range gets zeroed. Hence after we've sequentially
walked over a folio that we've dirtied (via write data) and then
invalidated, we end up with a dirty folio full of zeroed data.

And because the new code skips punching ranges that have dirty
folios covering them, we end up leaving the delalloc range intact
after failing all the writes. Hence failed writes now end up
writing zeroes to disk in the cases where invalidation zeroes folios
rather than removing them from cache.

This is a fundamental change of behaviour that is needed to avoid
the data corruption vectors that exist in the old write fail path,
and it renders the drop-writes injection non-functional and
unworkable as it stands.

As it is, I think the error injection is also now unnecessary, as
partial writes that need delalloc extent are going to be a lot more
common with stale iomap detection in place. Hence this patch removes
the drop-writes error injection completely. xfs/196 can remain for
testing kernels that don't have this data corruption fix, but those
that do will report:

xfs/196 3s ... [not run] XFS error injection drop_writes unknown on this kernel.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-11-29 09:09:17 +11:00
Dave Chinner
304a68b9c6 xfs: use iomap_valid method to detect stale cached iomaps
Now that iomap supports a mechanism to validate cached iomaps for
buffered write operations, hook it up to the XFS buffered write ops
so that we can avoid data corruptions that result from stale cached
iomaps. See:

https://lore.kernel.org/linux-xfs/20220817093627.GZ3600936@dread.disaster.area/

or the ->iomap_valid() introduction commit for exact details of the
corruption vector.

The validity cookie we store in the iomap is based on the type of
iomap we return. It is expected that the iomap->flags we set in
xfs_bmbt_to_iomap() is not perturbed by the iomap core and are
returned to us in the iomap passed via the .iomap_valid() callback.
This ensures that the validity cookie is always checking the correct
inode fork sequence numbers to detect potential changes that affect
the extent cached by the iomap.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-11-29 09:09:17 +11:00
Jason A. Donenfeld
8032bf1233 treewide: use get_random_u32_below() instead of deprecated function
This is a simple mechanical transformation done by:

@@
expression E;
@@
- prandom_u32_max
+ get_random_u32_below
  (E)

Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Reviewed-by: SeongJae Park <sj@kernel.org> # for damon
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> # for infiniband
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> # for arm
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-11-18 02:15:15 +01:00
Long Li
59f6ab40fd xfs: fix sb write verify for lazysbcount
When lazysbcount is enabled, fsstress and loop mount/unmount test report
the following problems:

XFS (loop0): SB summary counter sanity check failed
XFS (loop0): Metadata corruption detected at xfs_sb_write_verify+0x13b/0x460,
	xfs_sb block 0x0
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000: 58 46 53 42 00 00 10 00 00 00 00 00 00 28 00 00  XFSB.........(..
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00000020: 69 fb 7c cd 5f dc 44 af 85 74 e0 cc d4 e3 34 5a  i.|._.D..t....4Z
00000030: 00 00 00 00 00 20 00 06 00 00 00 00 00 00 00 80  ..... ..........
00000040: 00 00 00 00 00 00 00 81 00 00 00 00 00 00 00 82  ................
00000050: 00 00 00 01 00 0a 00 00 00 00 00 04 00 00 00 00  ................
00000060: 00 00 0a 00 b4 b5 02 00 02 00 00 08 00 00 00 00  ................
00000070: 00 00 00 00 00 00 00 00 0c 09 09 03 14 00 00 19  ................
XFS (loop0): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply
	+0xe1e/0x10e0 (fs/xfs/xfs_buf.c:1580).  Shutting down filesystem.
XFS (loop0): Please unmount the filesystem and rectify the problem(s)
XFS (loop0): log mount/recovery failed: error -117
XFS (loop0): log mount failed

This corruption will shutdown the file system and the file system will
no longer be mountable. The following script can reproduce the problem,
but it may take a long time.

 #!/bin/bash

 device=/dev/sda
 testdir=/mnt/test
 round=0

 function fail()
 {
	 echo "$*"
	 exit 1
 }

 mkdir -p $testdir
 while [ $round -lt 10000 ]
 do
	 echo "******* round $round ********"
	 mkfs.xfs -f $device
	 mount $device $testdir || fail "mount failed!"
	 fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null &
	 sleep 4
	 killall -w fsstress
	 umount $testdir
	 xfs_repair -e $device > /dev/null
	 if [ $? -eq 2 ];then
		 echo "ERR CODE 2: Dirty log exception during repair."
		 exit 1
	 fi
	 round=$(($round+1))
 done

With lazysbcount is enabled, There is no additional lock protection for
reading m_ifree and m_icount in xfs_log_sb(), if other cpu modifies the
m_ifree, this will make the m_ifree greater than m_icount. For example,
consider the following sequence and ifreedelta is postive:

 CPU0				 CPU1
 xfs_log_sb			 xfs_trans_unreserve_and_mod_sb
 ----------			 ------------------------------
 percpu_counter_sum(&mp->m_icount)
				 percpu_counter_add_batch(&mp->m_icount,
						idelta, XFS_ICOUNT_BATCH)
				 percpu_counter_add(&mp->m_ifree, ifreedelta);
 percpu_counter_sum(&mp->m_ifree)

After this, incorrect inode count (sb_ifree > sb_icount) will be writen to
the log. In the subsequent writing of sb, incorrect inode count (sb_ifree >
sb_icount) will fail to pass the boundary check in xfs_validate_sb_write()
that cause the file system shutdown.

When lazysbcount is enabled, we don't need to guarantee that Lazy sb
counters are completely correct, but we do need to guarantee that sb_ifree
<= sb_icount. On the other hand, the constraint that m_ifree <= m_icount
must be satisfied any time that there /cannot/ be other threads allocating
or freeing inode chunks. If the constraint is violated under these
circumstances, sb_i{count,free} (the ondisk superblock inode counters)
maybe incorrect and need to be marked sick at unmount, the count will
be rebuilt on the next mount.

Fixes: 8756a5af18 ("libxfs: add more bounds checking to sb sanity checks")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-11-16 19:20:20 -08:00
Darrick J. Wong
8b972158af xfs: rename XFS_REFC_COW_START to _COWFLAG
We've been (ab)using XFS_REFC_COW_START as both an integer quantity and
a bit flag, even though it's *only* a bit flag.  Rename the variable to
reflect its nature and update the cast target since we're not supposed
to be comparing it to xfs_agblock_t now.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-10-31 08:58:22 -07:00
Darrick J. Wong
c1ccf967bf xfs: fix uninitialized list head in struct xfs_refcount_recovery
We're supposed to initialize the list head of an object before adding it
to another list.  Fix that, and stop using the kmem_{alloc,free} calls
from the Irix days.

Fixes: 174edb0e46 ("xfs: store in-progress CoW allocations in the refcount btree")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-10-31 08:58:22 -07:00
Darrick J. Wong
f1fdc82078 xfs: fix agblocks check in the cow leftover recovery function
As we've seen, refcount records use the upper bit of the rc_startblock
field to ensure that all the refcount records are at the right side of
the refcount btree.  This works because an AG is never allowed to have
more than (1U << 31) blocks in it.  If we ever encounter a filesystem
claiming to have that many blocks, we absolutely do not want reflink
touching it at all.

However, this test at the start of xfs_refcount_recover_cow_leftovers is
slightly incorrect -- it /should/ be checking that agblocks isn't larger
than the XFS_MAX_CRC_AG_BLOCKS constant, and it should check that the
constant is never large enough to conflict with that CoW flag.

Note that the V5 superblock verifier has not historically rejected
filesystems where agblocks >= XFS_MAX_CRC_AG_BLOCKS, which is why this
ended up in the COW recovery routine.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-10-31 08:58:21 -07:00
Darrick J. Wong
f62ac3e0ac xfs: check record domain when accessing refcount records
Now that we've separated the startblock and CoW/shared extent domain in
the incore refcount record structure, check the domain whenever we
retrieve a record to ensure that it's still in the domain that we want.
Depending on the circumstances, a change in domain either means we're
done processing or that we've found a corruption and need to fail out.

The refcount check in xchk_xref_is_cow_staging is redundant since
_get_rec has done that for a long time now, so we can get rid of it.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-10-31 08:58:21 -07:00
Darrick J. Wong
68d0f38917 xfs: remove XFS_FIND_RCEXT_SHARED and _COW
Now that we have an explicit enum for shared and CoW staging extents, we
can get rid of the old FIND_RCEXT flags.  Omit a couple of conversions
that disappear in the next patches.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-10-31 08:58:21 -07:00
Darrick J. Wong
f492135df0 xfs: refactor domain and refcount checking
Create a helper function to ensure that CoW staging extent records have
a single refcount and that shared extent records have more than 1
refcount.  We'll put this to more use in the next patch.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-10-31 08:58:21 -07:00
Darrick J. Wong
571423a162 xfs: report refcount domain in tracepoints
Now that we've broken out the startblock and shared/cow domain in the
incore refcount extent record structure, update the tracepoints to
report the domain.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-10-31 08:58:21 -07:00
Darrick J. Wong
9a50ee4f8d xfs: track cow/shared record domains explicitly in xfs_refcount_irec
Just prior to committing the reflink code into upstream, the xfs
maintainer at the time requested that I find a way to shard the refcount
records into two domains -- one for records tracking shared extents, and
a second for tracking CoW staging extents.  The idea here was to
minimize mount time CoW reclamation by pushing all the CoW records to
the right edge of the keyspace, and it was accomplished by setting the
upper bit in rc_startblock.  We don't allow AGs to have more than 2^31
blocks, so the bit was free.

Unfortunately, this was a very late addition to the codebase, so most of
the refcount record processing code still treats rc_startblock as a u32
and pays no attention to whether or not the upper bit (the cow flag) is
set.  This is a weakness is theoretically exploitable, since we're not
fully validating the incoming metadata records.

Fuzzing demonstrates practical exploits of this weakness.  If the cow
flag of a node block key record is corrupted, a lookup operation can go
to the wrong record block and start returning records from the wrong
cow/shared domain.  This causes the math to go all wrong (since cow
domain is still implicit in the upper bit of rc_startblock) and we can
crash the kernel by tricking xfs into jumping into a nonexistent AG and
tripping over xfs_perag_get(mp, <nonexistent AG>) returning NULL.

To fix this, start tracking the domain as an explicit part of struct
xfs_refcount_irec, adjust all refcount functions to check the domain
of a returned record, and alter the function definitions to accept them
where necessary.

Found by fuzzing keys[2].cowflag = add in xfs/464.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-10-31 08:58:21 -07:00
Darrick J. Wong
9e7e2436c1 xfs: move _irec structs to xfs_types.h
Structure definitions for incore objects do not belong in the ondisk
format header.  Move them to the incore types header where they belong.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-10-31 08:58:20 -07:00
Darrick J. Wong
8edbe0cf8b xfs: check deferred refcount op continuation parameters
If we're in the middle of a deferred refcount operation and decide to
roll the transaction to avoid overflowing the transaction space, we need
to check the new agbno/aglen parameters that we're about to record in
the new intent.  Specifically, we need to check that the new extent is
completely within the filesystem, and that continuation does not put us
into a different AG.

If the keys of a node block are wrong, the lookup to resume an
xfs_refcount_adjust_extents operation can put us into the wrong record
block.  If this happens, we might not find that we run out of aglen at
an exact record boundary, which will cause the loop control to do the
wrong thing.

The previous patch should take care of that problem, but let's add this
extra sanity check to stop corruption problems sooner than later.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-10-31 08:58:20 -07:00
Darrick J. Wong
b65e08f83b xfs: create a predicate to verify per-AG extents
Create a predicate function to verify that a given agbno/blockcount pair
fit entirely within a single allocation group and don't suffer
mathematical overflows.  Refactor the existng open-coded logic; we're
going to add more calls to this function in the next patch.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-10-31 08:58:20 -07:00
Darrick J. Wong
f850995f60 xfs: make sure aglen never goes negative in xfs_refcount_adjust_extents
Prior to calling xfs_refcount_adjust_extents, we trimmed agbno/aglen
such that the end of the range would not be in the middle of a refcount
record.  If this is no longer the case, something is seriously wrong
with the btree.  Bail out with a corruption error.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-10-31 08:58:20 -07:00
Darrick J. Wong
3c5aaaced9 xfs: refactor all the EFI/EFD log item sizeof logic
Refactor all the open-coded sizeof logic for EFI/EFD log item and log
format structures into common helper functions whose names reflect the
struct names.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-10-31 08:58:20 -07:00
Darrick J. Wong
03a7485cd7 xfs: fix memcpy fortify errors in EFI log format copying
Starting in 6.1, CONFIG_FORTIFY_SOURCE checks the length parameter of
memcpy.  Since we're already fixing problems with BUI item copying, we
should fix it everything else.

An extra difficulty here is that the ef[id]_extents arrays are declared
as single-element arrays.  This is not the convention for flex arrays in
the modern kernel, and it causes all manner of problems with static
checking tools, since they often cannot tell the difference between a
single element array and a flex array.

So for starters, change those array[1] declarations to array[]
declarations to signal that they are proper flex arrays and adjust all
the "size-1" expressions to fit the new declaration style.

Next, refactor the xfs_efi_copy_format function to handle the copying of
the head and the flex array members separately.  While we're at it, fix
a minor validation deficiency in the recovery function.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-10-31 08:58:20 -07:00
Allison Henderson
e07ee6fe21 xfs: increase rename inode reservation
xfs_rename can update up to 5 inodes: src_dp, target_dp, src_ip, target_ip
and wip.  So we need to increase the inode reservation to match.

Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-26 13:02:24 -07:00
Guo Xuenan
13cf24e006 xfs: fix exception caused by unexpected illegal bestcount in leaf dir
For leaf dir, In most cases, there should be as many bestfree slots
as the dir data blocks that can fit under i_size (except for [1]).

Root cause is we don't examin the number bestfree slots, when the slots
number less than dir data blocks, if we need to allocate new dir data
block and update the bestfree array, we will use the dir block number as
index to assign bestfree array, while we did not check the leaf buf
boundary which may cause UAF or other memory access problem. This issue
can also triggered with test cases xfs/473 from fstests.

According to Dave Chinner & Darrick's suggestion, adding buffer verifier
to detect this abnormal situation in time.
Simplify the testcase for fstest xfs/554 [1]

The error log is shown as follows:
==================================================================
BUG: KASAN: use-after-free in xfs_dir2_leaf_addname+0x1995/0x1ac0
Write of size 2 at addr ffff88810168b000 by task touch/1552
CPU: 5 PID: 1552 Comm: touch Not tainted 6.0.0-rc3+ #101
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x4d/0x66
 print_report.cold+0xf6/0x691
 kasan_report+0xa8/0x120
 xfs_dir2_leaf_addname+0x1995/0x1ac0
 xfs_dir_createname+0x58c/0x7f0
 xfs_create+0x7af/0x1010
 xfs_generic_create+0x270/0x5e0
 path_openat+0x270b/0x3450
 do_filp_open+0x1cf/0x2b0
 do_sys_openat2+0x46b/0x7a0
 do_sys_open+0xb7/0x130
 do_syscall_64+0x35/0x80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7fe4d9e9312b
Code: 25 00 00 41 00 3d 00 00 41 00 74 4b 64 8b 04 25 18 00 00 00 85 c0
75 67 44 89 e2 48 89 ee bf 9c ff ff ff b8 01 01 00 00 0f 05 <48> 3d 00
f0 ff ff 0f 87 91 00 00 00 48 8b 4c 24 28 64 48 33 0c 25
RSP: 002b:00007ffda4c16c20 EFLAGS: 00000246 ORIG_RAX: 0000000000000101
RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007fe4d9e9312b
RDX: 0000000000000941 RSI: 00007ffda4c17f33 RDI: 00000000ffffff9c
RBP: 00007ffda4c17f33 R08: 0000000000000000 R09: 0000000000000000
R10: 00000000000001b6 R11: 0000000000000246 R12: 0000000000000941
R13: 00007fe4d9f631a4 R14: 00007ffda4c17f33 R15: 0000000000000000
 </TASK>

The buggy address belongs to the physical page:
page:ffffea000405a2c0 refcount:0 mapcount:0 mapping:0000000000000000
index:0x0 pfn:0x10168b
flags: 0x2fffff80000000(node=0|zone=2|lastcpupid=0x1fffff)
raw: 002fffff80000000 ffffea0004057788 ffffea000402dbc8 0000000000000000
raw: 0000000000000000 0000000000170000 00000000ffffffff 0000000000000000
page dumped because: kasan: bad access detected

Memory state around the buggy address:
 ffff88810168af00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ffff88810168af80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>ffff88810168b000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
                   ^
 ffff88810168b080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ffff88810168b100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
==================================================================
Disabling lock debugging due to kernel taint
00000000: 58 44 44 33 5b 53 35 c2 00 00 00 00 00 00 00 78
XDD3[S5........x
XFS (sdb): Internal error xfs_dir2_data_use_free at line 1200 of file
fs/xfs/libxfs/xfs_dir2_data.c.  Caller
xfs_dir2_data_use_free+0x28a/0xeb0
CPU: 5 PID: 1552 Comm: touch Tainted: G    B              6.0.0-rc3+
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
 <TASK>
 dump_stack_lvl+0x4d/0x66
 xfs_corruption_error+0x132/0x150
 xfs_dir2_data_use_free+0x198/0xeb0
 xfs_dir2_leaf_addname+0xa59/0x1ac0
 xfs_dir_createname+0x58c/0x7f0
 xfs_create+0x7af/0x1010
 xfs_generic_create+0x270/0x5e0
 path_openat+0x270b/0x3450
 do_filp_open+0x1cf/0x2b0
 do_sys_openat2+0x46b/0x7a0
 do_sys_open+0xb7/0x130
 do_syscall_64+0x35/0x80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7fe4d9e9312b
Code: 25 00 00 41 00 3d 00 00 41 00 74 4b 64 8b 04 25 18 00 00 00 85 c0
75 67 44 89 e2 48 89 ee bf 9c ff ff ff b8 01 01 00 00 0f 05 <48> 3d 00
f0 ff ff 0f 87 91 00 00 00 48 8b 4c 24 28 64 48 33 0c 25
RSP: 002b:00007ffda4c16c20 EFLAGS: 00000246 ORIG_RAX: 0000000000000101
RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007fe4d9e9312b
RDX: 0000000000000941 RSI: 00007ffda4c17f46 RDI: 00000000ffffff9c
RBP: 00007ffda4c17f46 R08: 0000000000000000 R09: 0000000000000001
R10: 00000000000001b6 R11: 0000000000000246 R12: 0000000000000941
R13: 00007fe4d9f631a4 R14: 00007ffda4c17f46 R15: 0000000000000000
 </TASK>
XFS (sdb): Corruption detected. Unmount and run xfs_repair

[1] https://lore.kernel.org/all/20220928095355.2074025-1-guoxuenan@huawei.com/
Reviewed-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Guo Xuenan <guoxuenan@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-20 09:42:56 -07:00
Jason A. Donenfeld
a251c17aa5 treewide: use get_random_u32() when possible
The prandom_u32() function has been a deprecated inline wrapper around
get_random_u32() for several releases now, and compiles down to the
exact same code. Replace the deprecated wrapper with a direct call to
the real function. The same also applies to get_random_int(), which is
just a wrapper around get_random_u32(). This was done as a basic find
and replace.

Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz> # for ext4
Acked-by: Toke Høiland-Jørgensen <toke@toke.dk> # for sch_cake
Acked-by: Chuck Lever <chuck.lever@oracle.com> # for nfsd
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com> # for thunderbolt
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Acked-by: Helge Deller <deller@gmx.de> # for parisc
Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-10-11 17:42:58 -06:00
Jason A. Donenfeld
81895a65ec treewide: use prandom_u32_max() when possible, part 1
Rather than incurring a division or requesting too many random bytes for
the given range, use the prandom_u32_max() function, which only takes
the minimum required bytes from the RNG and avoids divisions. This was
done mechanically with this coccinelle script:

@basic@
expression E;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u64;
@@
(
- ((T)get_random_u32() % (E))
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ((E) - 1))
+ prandom_u32_max(E * XXX_MAKE_SURE_E_IS_POW2)
|
- ((u64)(E) * get_random_u32() >> 32)
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ~PAGE_MASK)
+ prandom_u32_max(PAGE_SIZE)
)

@multi_line@
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
identifier RAND;
expression E;
@@

-       RAND = get_random_u32();
        ... when != RAND
-       RAND %= (E);
+       RAND = prandom_u32_max(E);

// Find a potential literal
@literal_mask@
expression LITERAL;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
position p;
@@

        ((T)get_random_u32()@p & (LITERAL))

// Add one to the literal.
@script:python add_one@
literal << literal_mask.LITERAL;
RESULT;
@@

value = None
if literal.startswith('0x'):
        value = int(literal, 16)
elif literal[0] in '123456789':
        value = int(literal, 10)
if value is None:
        print("I don't know how to handle %s" % (literal))
        cocci.include_match(False)
elif value == 2**32 - 1 or value == 2**31 - 1 or value == 2**24 - 1 or value == 2**16 - 1 or value == 2**8 - 1:
        print("Skipping 0x%x for cleanup elsewhere" % (value))
        cocci.include_match(False)
elif value & (value + 1) != 0:
        print("Skipping 0x%x because it's not a power of two minus one" % (value))
        cocci.include_match(False)
elif literal.startswith('0x'):
        coccinelle.RESULT = cocci.make_expr("0x%x" % (value + 1))
else:
        coccinelle.RESULT = cocci.make_expr("%d" % (value + 1))

// Replace the literal mask with the calculated result.
@plus_one@
expression literal_mask.LITERAL;
position literal_mask.p;
expression add_one.RESULT;
identifier FUNC;
@@

-       (FUNC()@p & (LITERAL))
+       prandom_u32_max(RESULT)

@collapse_ret@
type T;
identifier VAR;
expression E;
@@

 {
-       T VAR;
-       VAR = (E);
-       return VAR;
+       return E;
 }

@drop_var@
type T;
identifier VAR;
@@

 {
-       T VAR;
        ... when != VAR
 }

Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: KP Singh <kpsingh@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz> # for ext4 and sbitmap
Reviewed-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> # for drbd
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-10-11 17:42:55 -06:00
Shida Zhang
c098576f5f xfs: rearrange the logic and remove the broken comment for xfs_dir2_isxx
xfs_dir2_isleaf is used to see if the directory is a single-leaf
form directory instead, as commented right above the function.

Besides getting rid of the broken comment, we rearrange the logic by
converting everything over to standard formatting and conventions,
at the same time, to make it easier to understand and self documenting.

Signed-off-by: Shida Zhang <zhangshida@kylinos.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-10-04 16:39:58 +11:00
Shida Zhang
44159659df xfs: trim the mapp array accordingly in xfs_da_grow_inode_int
Take a look at the for-loop in xfs_da_grow_inode_int:
======
for(){
        nmap = min(XFS_BMAP_MAX_NMAP, count);
        ...
        error = xfs_bmapi_write(...,&mapp[mapi], &nmap);//(..., $1, $2)
        ...
        mapi += nmap;
}
=====
where $1 stands for the start address of the array,
while $2 is used to indicate the size of the array.

The array $1 will advance by $nmap in each iteration after
the allocation of extents.
But the size $2 still remains unchanged, which is determined by
min(XFS_BMAP_MAX_NMAP, count).

It seems that it has forgotten to trim the mapp array after each
iteration, so change it.

Signed-off-by: Shida Zhang <zhangshida@kylinos.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-10-04 16:39:42 +11:00
ye xingchen
abda5271f8 xfs: Remove the unneeded result variable
Return the value xfs_dir_cilookup_result() directly instead of storing it
in another redundant variable.

Reported-by: Zeal Robot <zealci@zte.com.cn>
Signed-off-by: ye xingchen <ye.xingchen@zte.com.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-09-19 06:52:14 +10:00
Zeng Heng
78b0f58bdf xfs: clean up "%Ld/%Lu" which doesn't meet C standard
The "%Ld" specifier, which represents long long unsigned,
doesn't meet C language standard, and even more,
it makes people easily mistake with "%ld", which represent
long unsigned. So replace "%Ld" with "lld".

Do the same with "%Lu".

Signed-off-by: Zeng Heng <zengheng4@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-09-19 06:47:14 +10:00
hexiaole
031d166f96 xfs: fix inode reservation space for removing transaction
In 'fs/xfs/libxfs/xfs_trans_resv.c', the comment for transaction of removing a
directory entry writes:

/* fs/xfs/libxfs/xfs_trans_resv.c begin */
/*
 * For removing a directory entry we can modify:
 *    the parent directory inode: inode size
 *    the removed inode: inode size
...
xfs_calc_remove_reservation(
        struct xfs_mount        *mp)
{
        return XFS_DQUOT_LOGRES(mp) +
                xfs_calc_iunlink_add_reservation(mp) +
                max((xfs_calc_inode_res(mp, 1) +
...
/* fs/xfs/libxfs/xfs_trans_resv.c end */

There has 2 inode size of space to be reserverd, but the actual code
for inode reservation space writes.

There only count for 1 inode size to be reserved in
'xfs_calc_inode_res(mp, 1)', rather than 2.

Signed-off-by: hexiaole <hexiaole@kylinos.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
[djwong: remove redundant code citations]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-08-10 17:43:49 -07:00
Slark Xiao
4869b6e84a xfs: Fix typo 'the the' in comment
Replace 'the the' with 'the' in the comment.

Signed-off-by: Slark Xiao <slark_xiao@163.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-07-22 10:58:39 -07:00
Darrick J. Wong
c78c2d0903 xfs: don't leak memory when attr fork loading fails
I observed the following evidence of a memory leak while running xfs/399
from the xfs fsck test suite (edited for brevity):

XFS (sde): Metadata corruption detected at xfs_attr_shortform_verify_struct.part.0+0x7b/0xb0 [xfs], inode 0x1172 attr fork
XFS: Assertion failed: ip->i_af.if_u1.if_data == NULL, file: fs/xfs/libxfs/xfs_inode_fork.c, line: 315
------------[ cut here ]------------
WARNING: CPU: 2 PID: 91635 at fs/xfs/xfs_message.c:104 assfail+0x46/0x4a [xfs]
CPU: 2 PID: 91635 Comm: xfs_scrub Tainted: G        W         5.19.0-rc7-xfsx #rc7 6e6475eb29fd9dda3181f81b7ca7ff961d277a40
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
RIP: 0010:assfail+0x46/0x4a [xfs]
Call Trace:
 <TASK>
 xfs_ifork_zap_attr+0x7c/0xb0
 xfs_iformat_attr_fork+0x86/0x110
 xfs_inode_from_disk+0x41d/0x480
 xfs_iget+0x389/0xd70
 xfs_bulkstat_one_int+0x5b/0x540
 xfs_bulkstat_iwalk+0x1e/0x30
 xfs_iwalk_ag_recs+0xd1/0x160
 xfs_iwalk_run_callbacks+0xb9/0x180
 xfs_iwalk_ag+0x1d8/0x2e0
 xfs_iwalk+0x141/0x220
 xfs_bulkstat+0x105/0x180
 xfs_ioc_bulkstat.constprop.0.isra.0+0xc5/0x130
 xfs_file_ioctl+0xa5f/0xef0
 __x64_sys_ioctl+0x82/0xa0
 do_syscall_64+0x2b/0x80
 entry_SYSCALL_64_after_hwframe+0x46/0xb0

This newly-added assertion checks that there aren't any incore data
structures hanging off the incore fork when we're trying to reset its
contents.  From the call trace, it is evident that iget was trying to
construct an incore inode from the ondisk inode, but the attr fork
verifier failed and we were trying to undo all the memory allocations
that we had done earlier.

The three assertions in xfs_ifork_zap_attr check that the caller has
already called xfs_idestroy_fork, which clearly has not been done here.
As the zap function then zeroes the pointers, we've effectively leaked
the memory.

The shortest change would have been to insert an extra call to
xfs_idestroy_fork, but it makes more sense to bundle the _idestroy_fork
call into _zap_attr, since all other callsites call _idestroy_fork
immediately prior to calling _zap_attr.  IOWs, it eliminates one way to
fail.

Note: This change only applies cleanly to 2ed5b09b3e, since we just
reworked the attr fork lifetime.  However, I think this memory leak has
existed since 0f45a1b20c, since the chain xfs_iformat_attr_fork ->
xfs_iformat_local -> xfs_init_local_fork will allocate
ifp->if_u1.if_data, but if xfs_ifork_verify_local_attr fails,
xfs_iformat_attr_fork will free i_afp without freeing any of the stuff
hanging off i_afp.  The solution for older kernels I think is to add the
missing call to xfs_idestroy_fork just prior to calling kmem_cache_free.

Found by fuzzing a.sfattr.hdr.totsize = lastbit in xfs/399.

Fixes: 2ed5b09b3e ("xfs: make inode attribute forks a permanent part of struct xfs_inode")
Probably-Fixes: 0f45a1b20c ("xfs: improve local fork verification")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-07-20 16:40:39 -07:00
Dan Carpenter
3f52e016af xfs: delete unnecessary NULL checks
These NULL check are no long needed after commit 2ed5b09b3e ("xfs:
make inode attribute forks a permanent part of struct xfs_inode").

Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-07-20 16:40:38 -07:00
Xiaole He
fdbae121b4 xfs: fix comment for start time value of inode with bigtime enabled
The 'ctime', 'mtime', and 'atime' for inode is the type of
'xfs_timestamp_t', which is a 64-bit type:

/* fs/xfs/libxfs/xfs_format.h begin */
typedef __be64 xfs_timestamp_t;
/* fs/xfs/libxfs/xfs_format.h end */

When the 'bigtime' feature is disabled, this 64-bit type is splitted
into two parts of 32-bit, one part is encoded for seconds since
1970-01-01 00:00:00 UTC, the other part is encoded for nanoseconds
above the seconds, this two parts are the type of
'xfs_legacy_timestamp' and the min and max time value of this type are
defined as macros 'XFS_LEGACY_TIME_MIN' and 'XFS_LEGACY_TIME_MAX':

/* fs/xfs/libxfs/xfs_format.h begin */
struct xfs_legacy_timestamp {
        __be32          t_sec;          /* timestamp seconds */
        __be32          t_nsec;         /* timestamp nanoseconds */
};
 #define XFS_LEGACY_TIME_MIN     ((int64_t)S32_MIN)
 #define XFS_LEGACY_TIME_MAX     ((int64_t)S32_MAX)
/* fs/xfs/libxfs/xfs_format.h end */
/* include/linux/limits.h begin */
 #define U32_MAX         ((u32)~0U)
 #define S32_MAX         ((s32)(U32_MAX >> 1))
 #define S32_MIN         ((s32)(-S32_MAX - 1))
/* include/linux/limits.h end */

'XFS_LEGACY_TIME_MIN' is the min time value of the
'xfs_legacy_timestamp', that is -(2^31) seconds relative to the
1970-01-01 00:00:00 UTC, it can be converted to human-friendly time
value by 'date' command:

/* command begin */
[root@~]# date --utc -d '@0' +'%Y-%m-%d %H:%M:%S'
1970-01-01 00:00:00
[root@~]# date --utc -d "@`echo '-(2^31)'|bc`" +'%Y-%m-%d %H:%M:%S'
1901-12-13 20:45:52
[root@~]#
/* command end */

When 'bigtime' feature is enabled, this 64-bit type becomes a 64-bit
nanoseconds counter, with the start time value is the min time value of
'xfs_legacy_timestamp'(start time means the value of 64-bit nanoseconds
counter is 0). We have already caculated the min time value of
'xfs_legacy_timestamp', that is 1901-12-13 20:45:52 UTC, but the comment
for the start time value of inode with 'bigtime' feature enabled writes
the value is 1901-12-31 20:45:52 UTC:

/* fs/xfs/libxfs/xfs_format.h begin */
/*
 * XFS Timestamps
 * ==============
 * When the bigtime feature is enabled, ondisk inode timestamps become an
 * unsigned 64-bit nanoseconds counter.  This means that the bigtime inode
 * timestamp epoch is the start of the classic timestamp range, which is
 * Dec 31 20:45:52 UTC 1901. ...
 ...
 */
/* fs/xfs/libxfs/xfs_format.h end */

That is a typo, and this patch corrects the typo, from 'Dec 31' to
'Dec 13'.

Suggested-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Xiaole He <hexiaole@kylinos.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-07-20 16:40:38 -07:00
Darrick J. Wong
6d200bdc01 xfs: make attr forks permanent
This series fixes a use-after-free bug that syzbot uncovered.  The UAF
 itself is a result of a race condition between getxattr and removexattr
 because callers to getxattr do not necessarily take any sort of locks
 before calling into the filesystem.
 
 Although the race condition itself can be fixed through clever use of a
 memory barrier, further consideration of the use cases of extended
 attributes shows that most files always have at least one attribute, so
 we might as well make them permanent.
 
 v2: Minor tweaks suggested by Dave, and convert some more macros to
 helper functions.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmLQRsAACgkQ+H93GTRK
 tOseOw/+JdSH2MU2xx+XoE5M/fStzGpw0UsoOqDo8kUPKDt3z12NwuczlL4OAiuw
 XFrN/1IAnxBsTD9YxFYbqoCPNi/VR81ajfWV7JqD2B1Joj0aATsxGDdNUYJnxCdU
 HMlMqP5o77XvArwkxFbgxYi7UGdAeNwXxqUJcJ8FopQo2lb8+SG6XzpLgGKnyrKT
 FRNKXNObplhtzOs/Bv8qYAxJulmmjkktFJXhK2OAUJlIDjFwFY9Wo2T4QuOVe9w+
 NXFOYyu0BqWLpDZQkYKWoCnF0GNsUavS8DP6zZYW3qJ6mX/f1jmtfbOLAkHNhlh8
 uHy/3k3SeQhKztTqM28sPioe6mdj2xocorDCCVBgGXgWxVF6aWeM/PS4tMTWN/Bg
 TWd1egERpeVC0Ymkm0LTCIDNuLqxsknK1G6sxXhwrQ8cw/70Gl08ePwgdyZ6hpD9
 Q61iJQofcI7MJX189a2VSbbHRzFnZIA+uVK4oyhmdEkQVKTHgmzwHVP660oAv9bD
 Y5hqkWEoyKTaaCsOWRAPVXG3k03lq+TNcaGggZgwFx11Gw4oMEx5hMUztoP54xX4
 aEXb1HWcCmMxy8llnFY/82baW98ucwl8FwWF1qhNIPT40mYx9IobDmvkCtNrAoOC
 41U7O8CxxPlt7XKxoRhafQOAhzp0ZzuhCdbaFIUENV7pTAJtq5Q=
 =W3Ad
 -----END PGP SIGNATURE-----

Merge tag 'make-attr-fork-permanent-5.20_2022-07-14' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into xfs-5.20-mergeB

xfs: make attr forks permanent

This series fixes a use-after-free bug that syzbot uncovered.  The UAF
itself is a result of a race condition between getxattr and removexattr
because callers to getxattr do not necessarily take any sort of locks
before calling into the filesystem.

Although the race condition itself can be fixed through clever use of a
memory barrier, further consideration of the use cases of extended
attributes shows that most files always have at least one attribute, so
we might as well make them permanent.

v2: Minor tweaks suggested by Dave, and convert some more macros to
helper functions.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>

* tag 'make-attr-fork-permanent-5.20_2022-07-14' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux:
  xfs: replace inode fork size macros with functions
  xfs: replace XFS_IFORK_Q with a proper predicate function
  xfs: use XFS_IFORK_Q to determine the presence of an xattr fork
  xfs: make inode attribute forks a permanent part of struct xfs_inode
  xfs: convert XFS_IFORK_PTR to a static inline helper
2022-07-14 09:46:37 -07:00
Darrick J. Wong
35c5a09f53 xfs: lockless buffer cache lookups
Current work to merge the XFS inode life cycle with the VFS inode
 life cycle is finding some interesting issues. If we have a path
 that hits buffer trylocks fairly hard (e.g. a non-blocking
 background inode freeing function), we end up hitting massive
 contention on the buffer cache hash locks:
 
 -   92.71%     0.05%  [kernel]                  [k] xfs_inodegc_worker
    - 92.67% xfs_inodegc_worker
       - 92.13% xfs_inode_unlink
          - 91.52% xfs_inactive_ifree
             - 85.63% xfs_read_agi
                - 85.61% xfs_trans_read_buf_map
                   - 85.59% xfs_buf_read_map
                      - xfs_buf_get_map
                         - 85.55% xfs_buf_find
                            - 72.87% _raw_spin_lock
                               - do_raw_spin_lock
                                    71.86% __pv_queued_spin_lock_slowpath
                            - 8.74% xfs_buf_rele
                               - 7.88% _raw_spin_lock
                                  - 7.88% do_raw_spin_lock
                                       7.63% __pv_queued_spin_lock_slowpath
                            - 1.70% xfs_buf_trylock
                               - 1.68% down_trylock
                                  - 1.41% _raw_spin_lock_irqsave
                                     - 1.39% do_raw_spin_lock
                                          __pv_queued_spin_lock_slowpath
                            - 0.76% _raw_spin_unlock
                                 0.75% do_raw_spin_unlock
 
 This is basically hammering the pag->pag_buf_lock from lots of CPUs
 doing trylocks at the same time. Most of the buffer trylock
 operations ultimately fail after we've done the lookup, so we're
 really hammering the buf hash lock whilst making no progress.
 
 We can also see significant spinlock traffic on the same lock just
 under normal operation when lots of tasks are accessing metadata
 from the same AG, so let's avoid all this by creating a lookup fast
 path which leverages the rhashtable's ability to do RCU protected
 lookups.
 
 Signed-off-by: Dave Chinner <dchinner@redhat.com>
 -----BEGIN PGP SIGNATURE-----
 
 iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmLPvngUHGRhdmlkQGZy
 b21vcmJpdC5jb20ACgkQregpR/R1+h0gTw/9EK1gj31QpurgGziYsL0JFI1Uq33Z
 2rB/yTJXzxe+J7cE6B2RYuSj4EK7YI1aZXTRC5De5A8TqbFaNztrigqxNNpm3jh0
 T0AbVQoY7XzjbvMHQ0VFPBcJGcVbQypA+rabSlLHfU9zfN3t4EnM+BmuaFqygGZj
 1A6ZjkVChmEprGjd16846sgvMqdLa4yJ4/9Jsu5WlI+vPZj9gJX/7Mjc580Zljb5
 gg9Cf8ziW78gpHzj3ufSWv2jBcWcMdyHpyCF/fNceROUaxmZKsMUDKcsia9TyQhB
 yJXxw9Rnb3F23VJSYMJIcf4+RTd7iqd88GhEEFYxj41gI/jQxqRovlS1ljk2l20R
 3i4TUs7yF24sLLQdL8YkJiGCOEvRqPPcNd4xfGwdioRwXwoEqB7L/vYpUheQ8qSZ
 Tnn4vmGm+GQHNnQNhxiF8KkAd9gwcUslN36ZJn+h3zjvfgAFQFChsk+3CoFoxsth
 BpbFT3lo4Hc6xJBDCp7Z3Gxurxq5fQ2CGYHxCBT4feNkZS5YOLd/Os2hIZVId8XA
 jp66ZyELd8zj+CxMp4ZyYqsFETIao13B8KPEqvI2/obEDE6p/++olP8aqKIP1C8d
 ASOjxP8KqWEHLe3or4W3m2WSDa5fp1b3G/mjS7r/jDKqIuTMZXYw4CJx1x3rTr4F
 nXAnlWoGVq7HjWc=
 =8UYp
 -----END PGP SIGNATURE-----

Merge tag 'xfs-buf-lockless-lookup-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.20-mergeB

xfs: lockless buffer cache lookups

Current work to merge the XFS inode life cycle with the VFS inode
life cycle is finding some interesting issues. If we have a path
that hits buffer trylocks fairly hard (e.g. a non-blocking
background inode freeing function), we end up hitting massive
contention on the buffer cache hash locks:

-   92.71%     0.05%  [kernel]                  [k] xfs_inodegc_worker
   - 92.67% xfs_inodegc_worker
      - 92.13% xfs_inode_unlink
         - 91.52% xfs_inactive_ifree
            - 85.63% xfs_read_agi
               - 85.61% xfs_trans_read_buf_map
                  - 85.59% xfs_buf_read_map
                     - xfs_buf_get_map
                        - 85.55% xfs_buf_find
                           - 72.87% _raw_spin_lock
                              - do_raw_spin_lock
                                   71.86% __pv_queued_spin_lock_slowpath
                           - 8.74% xfs_buf_rele
                              - 7.88% _raw_spin_lock
                                 - 7.88% do_raw_spin_lock
                                      7.63% __pv_queued_spin_lock_slowpath
                           - 1.70% xfs_buf_trylock
                              - 1.68% down_trylock
                                 - 1.41% _raw_spin_lock_irqsave
                                    - 1.39% do_raw_spin_lock
                                         __pv_queued_spin_lock_slowpath
                           - 0.76% _raw_spin_unlock
                                0.75% do_raw_spin_unlock

This is basically hammering the pag->pag_buf_lock from lots of CPUs
doing trylocks at the same time. Most of the buffer trylock
operations ultimately fail after we've done the lookup, so we're
really hammering the buf hash lock whilst making no progress.

We can also see significant spinlock traffic on the same lock just
under normal operation when lots of tasks are accessing metadata
from the same AG, so let's avoid all this by creating a lookup fast
path which leverages the rhashtable's ability to do RCU protected
lookups.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>

* tag 'xfs-buf-lockless-lookup-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs:
  xfs: lockless buffer lookup
  xfs: remove a superflous hash lookup when inserting new buffers
  xfs: reduce the number of atomic when locking a buffer after lookup
  xfs: merge xfs_buf_find() and xfs_buf_get_map()
  xfs: break up xfs_buf_find() into individual pieces
  xfs: rework xfs_buf_incore() API
2022-07-14 09:22:14 -07:00
Darrick J. Wong
4613b17cc4 xfs: introduce in-memory inode unlink log items
To facilitate future improvements in inode logging and improving
 inode cluster buffer locking order consistency, we need a new
 mechanism for defering inode cluster buffer modifications during
 unlinked list modifications.
 
 The unlinked inode list buffer locking is complex. The unlinked
 list is unordered - we add to the tail, remove from where-ever the
 inode is in the list. Hence we might need to lock two inode buffers
 here (previous inode in list and the one being removed). While we
 can order the locking of these buffers correctly within the confines
 of the unlinked list, there may be other inodes that need buffer
 locking in the same transaction. e.g. O_TMPFILE being linked into a
 directory also modifies the directory inode.
 
 Hence we need a mechanism for defering unlinked inode list updates
 until a point where we know that all modifications have been made
 and all that remains is to lock and modify the cluster buffers.
 
 We can do this by first observing that we serialise unlinked list
 modifications by holding the AGI buffer lock. IOWs, the AGI is going
 to be locked until the transaction commits any time we modify the
 unlinked list. Hence it doesn't matter when in the unlink
 transactions that we actually load, lock and modify the inode
 cluster buffer.
 
 We add an in-memory unlinked inode log item to defer the inode
 cluster buffer update to transaction commit time where it can be
 ordered with all the other inode cluster operations that need to be
 done. Essentially all we need to do is record the inodes that need
 to have their unlinked list pointer updated in a new log item that
 we attached to the transaction.
 
 This log item exists purely for the purpose of delaying the update
 of the unlinked list pointer until the inode cluster buffer can be
 locked in the correct order around the other inode cluster buffers.
 It plays no part in the actual commit, and there's no change to
 anything that is written to the log. i.e. the inode cluster buffers
 still have to be fully logged here (not just ordered) as log
 recovery depedends on this to replay mods to the unlinked inode
 list.
 
 Hence if we add a "precommit" hook into xfs_trans_commit()
 to run a "precommit" operation on these iunlink log items, we can
 delay the locking, modification and logging of the inode cluster
 buffer until after all other modifications have been made. The
 precommit hook reuires us to sort the items that are going to be run
 so that we can lock precommit items in the correct order as we
 perform the modifications they describe.
 
 To make this unlinked inode list processing simpler and easier to
 implement as a log item, we need to change the way we track the
 unlinked list in memory. Starting from the observation that an inode
 on the unlinked list is pinned in memory by the VFS, we can use the
 xfs_inode itself to track the unlinked list. To do this efficiently,
 we want the unlinked list to be a double linked list. The problem
 here is that we need a list per AGI unlinked list, and there are 64
 of these per AGI. The approach taken in this patchset is to shadow
 the AGI unlinked list heads in the perag, and link inodes by agino,
 hence requiring only 8 extra bytes per inode to track this state.
 
 We can then use the agino pointers for lockless inode cache lookups
 to retreive the inode. The aginos in the inode are modified only
 under the AGI lock, just like the cluster buffer pointers, so we
 don't need any extra locking here.  The i_next_unlinked field tracks
 the on-disk value of the unlinked list, and the i_prev_unlinked is a
 purely in-memory pointer that enables us to efficiently remove
 inodes from the middle of the list.
 
 This results in moving a lot of the unlink modification work into
 the precommit operations on the unlink log item. Tracking all the
 unlinked inodes in the inodes themselves also gets rid of the
 unlinked list reference hash table that is used to track this back
 pointer relationship. This greatly simplifies the the unlinked list
 modification code, and removes memory allocations in this hot path
 to track back pointers. This, overall, slightly reduces the CPU
 overhead of the unlink path.
 
 The result of this log item means that we move all the actual
 manipulation of objects to be logged out of the iunlink path and
 into the iunlink item. This allows for future optimisation of this
 mechanism without needing changes to high level unlink path, as
 well as making the unlink lock ordering predictable and synchronised
 with other operations that may require inode cluster locking.
 
 Signed-off-by: Dave Chinner <dchinner@redhat.com>
 -----BEGIN PGP SIGNATURE-----
 
 iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmLPvZAUHGRhdmlkQGZy
 b21vcmJpdC5jb20ACgkQregpR/R1+h2CDBAAj9QH4/XIe8JIx/mKgAGzcNNwQxu8
 geBqb5S2ri0oB22pRXKc/3zArw/8zPwcgZF83ChkFrQ6tLn4JGkEEuvIKr3b8k50
 2AEghYf8dqCaXRpkdvIGjJtdK54MFZIHv9TYRwHVzBp3WLtrz7uHmKeRf2qeSBMI
 DLurzVIbcocMptvHxrZZCpf1ajuVdovXtuw8ExiORZZKLOeF+3xBGztenkfh2BTO
 8Kh8qJVSNN41XQ8h87PWyQtmah6JouqURXXGERJcgLbr80pTSw2EBihJvmXUmn8y
 qnoT27TCPAMOEDTWe+SHzLOVRLvhN+at/lFWbvas6PwOvDGAwQQtZkv/QyLTSgqD
 6Zg9xJeeSgHhHP2kCeLlKmvW1dRptcUzhCWOrQ9Ry+WZnKK5ZenevkaAXAva6ucS
 NXwIU1DnWfJ51SHIYQiQIci2g+vF+pnJRQq1DtYUuwtBSWfsmw1uquNZodgbA9Ue
 k6hfk4qVua63k+vXsd5gVdCHT+Liw+1ldTInl2GNhT/riNzewO0HY3zmc1aZQyMM
 mymHXKVcQJbLpJvwqB5SXq8a37fbpoQDYlycptSF/YxxBhiCKKWuc6q7Tl6Y9VSS
 qpSHvh+MkJcP8PYtPjNUcJ9yeXhYJgkv1KK47zkIKzOD9a+zh4SIrfiBUflZbpQq
 M9ubXGHVmFqS4Nk=
 =59M0
 -----END PGP SIGNATURE-----

Merge tag 'xfs-iunlink-item-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.20-mergeB

xfs: introduce in-memory inode unlink log items

To facilitate future improvements in inode logging and improving
inode cluster buffer locking order consistency, we need a new
mechanism for defering inode cluster buffer modifications during
unlinked list modifications.

The unlinked inode list buffer locking is complex. The unlinked
list is unordered - we add to the tail, remove from where-ever the
inode is in the list. Hence we might need to lock two inode buffers
here (previous inode in list and the one being removed). While we
can order the locking of these buffers correctly within the confines
of the unlinked list, there may be other inodes that need buffer
locking in the same transaction. e.g. O_TMPFILE being linked into a
directory also modifies the directory inode.

Hence we need a mechanism for defering unlinked inode list updates
until a point where we know that all modifications have been made
and all that remains is to lock and modify the cluster buffers.

We can do this by first observing that we serialise unlinked list
modifications by holding the AGI buffer lock. IOWs, the AGI is going
to be locked until the transaction commits any time we modify the
unlinked list. Hence it doesn't matter when in the unlink
transactions that we actually load, lock and modify the inode
cluster buffer.

We add an in-memory unlinked inode log item to defer the inode
cluster buffer update to transaction commit time where it can be
ordered with all the other inode cluster operations that need to be
done. Essentially all we need to do is record the inodes that need
to have their unlinked list pointer updated in a new log item that
we attached to the transaction.

This log item exists purely for the purpose of delaying the update
of the unlinked list pointer until the inode cluster buffer can be
locked in the correct order around the other inode cluster buffers.
It plays no part in the actual commit, and there's no change to
anything that is written to the log. i.e. the inode cluster buffers
still have to be fully logged here (not just ordered) as log
recovery depedends on this to replay mods to the unlinked inode
list.

Hence if we add a "precommit" hook into xfs_trans_commit()
to run a "precommit" operation on these iunlink log items, we can
delay the locking, modification and logging of the inode cluster
buffer until after all other modifications have been made. The
precommit hook reuires us to sort the items that are going to be run
so that we can lock precommit items in the correct order as we
perform the modifications they describe.

To make this unlinked inode list processing simpler and easier to
implement as a log item, we need to change the way we track the
unlinked list in memory. Starting from the observation that an inode
on the unlinked list is pinned in memory by the VFS, we can use the
xfs_inode itself to track the unlinked list. To do this efficiently,
we want the unlinked list to be a double linked list. The problem
here is that we need a list per AGI unlinked list, and there are 64
of these per AGI. The approach taken in this patchset is to shadow
the AGI unlinked list heads in the perag, and link inodes by agino,
hence requiring only 8 extra bytes per inode to track this state.

We can then use the agino pointers for lockless inode cache lookups
to retreive the inode. The aginos in the inode are modified only
under the AGI lock, just like the cluster buffer pointers, so we
don't need any extra locking here.  The i_next_unlinked field tracks
the on-disk value of the unlinked list, and the i_prev_unlinked is a
purely in-memory pointer that enables us to efficiently remove
inodes from the middle of the list.

This results in moving a lot of the unlink modification work into
the precommit operations on the unlink log item. Tracking all the
unlinked inodes in the inodes themselves also gets rid of the
unlinked list reference hash table that is used to track this back
pointer relationship. This greatly simplifies the the unlinked list
modification code, and removes memory allocations in this hot path
to track back pointers. This, overall, slightly reduces the CPU
overhead of the unlink path.

The result of this log item means that we move all the actual
manipulation of objects to be logged out of the iunlink path and
into the iunlink item. This allows for future optimisation of this
mechanism without needing changes to high level unlink path, as
well as making the unlink lock ordering predictable and synchronised
with other operations that may require inode cluster locking.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>

* tag 'xfs-iunlink-item-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs:
  xfs: add in-memory iunlink log item
  xfs: add log item precommit operation
  xfs: combine iunlink inode update functions
  xfs: clean up xfs_iunlink_update_inode()
  xfs: double link the unlinked inode list
  xfs: introduce xfs_iunlink_lookup
  xfs: refactor xlog_recover_process_iunlinks()
  xfs: track the iunlink list pointer in the xfs_inode
  xfs: factor the xfs_iunlink functions
  xfs: flush inode gc workqueue before clearing agi bucket
2022-07-14 09:21:42 -07:00
Dave Chinner
2fd26cc07e xfs: double link the unlinked inode list
Now we have forwards traversal via the incore inode in place, we now
need to add back pointers to the incore inode to entirely replace
the back reference cache. We use the same lookup semantics and
constraints as for the forwards pointer lookups during unlinks, and
so we can look up any inode in the unlinked list directly and update
the list pointers, forwards or backwards, at any time.

The only wrinkle in converting the unlinked list manipulations to
use in-core previous pointers is that log recovery doesn't have the
incore inode state built up so it can't just read in an inode and
release it to finish off the unlink. Hence we need to modify the
traversal in recovery to read one inode ahead before we
release the inode at the head of the list. This populates the
next->prev relationship sufficient to be able to replay the unlinked
list and hence greatly simplify the runtime code.

This recovery algorithm also requires that we actually remove inodes
from the unlinked list one at a time as background inode
inactivation will result in unlinked list removal racing with the
building of the in-memory unlinked list state. We could serialise
this by holding the AGI buffer lock when constructing the in memory
state, but all that does is lockstep background processing with list
building. It is much simpler to flush the inodegc immediately after
releasing the inode so that it is unlinked immediately and there is
no races present at all.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-07-14 11:46:43 +10:00
Dave Chinner
4fcc94d653 xfs: track the iunlink list pointer in the xfs_inode
Having direct access to the i_next_unlinked pointer in unlinked
inodes greatly simplifies the processing of inodes on the unlinked
list. We no longer need to look up the inode buffer just to find
next inode in the list if the xfs_inode is in memory. These
improvements will be realised over upcoming patches as other
dependencies on the inode buffer for unlinked list processing are
removed.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-07-14 11:38:54 +10:00
Darrick J. Wong
c01147d929 xfs: replace inode fork size macros with functions
Replace the shouty macros here with typechecked helper functions.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-07-12 11:17:27 -07:00
Darrick J. Wong
932b42c66c xfs: replace XFS_IFORK_Q with a proper predicate function
Replace this shouty macro with a real C function that has a more
descriptive name.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-07-12 11:17:27 -07:00
Darrick J. Wong
e45d7cb235 xfs: use XFS_IFORK_Q to determine the presence of an xattr fork
Modify xfs_ifork_ptr to return a NULL pointer if the caller asks for the
attribute fork but i_forkoff is zero.  This eliminates the ambiguity
between i_forkoff and i_af.if_present, which should make it easier to
understand the lifetime of attr forks.

While we're at it, remove the if_present checks around calls to
xfs_idestroy_fork and xfs_ifork_zap_attr since they can both handle attr
forks that have already been torn down.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-07-09 15:17:21 -07:00
Darrick J. Wong
2ed5b09b3e xfs: make inode attribute forks a permanent part of struct xfs_inode
Syzkaller reported a UAF bug a while back:

==================================================================
BUG: KASAN: use-after-free in xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127
Read of size 4 at addr ffff88802cec919c by task syz-executor262/2958

CPU: 2 PID: 2958 Comm: syz-executor262 Not tainted
5.15.0-0.30.3-20220406_1406 #3
Hardware name: Red Hat KVM, BIOS 1.13.0-2.module+el8.3.0+7860+a7792d29
04/01/2014
Call Trace:
 <TASK>
 __dump_stack lib/dump_stack.c:88 [inline]
 dump_stack_lvl+0x82/0xa9 lib/dump_stack.c:106
 print_address_description.constprop.9+0x21/0x2d5 mm/kasan/report.c:256
 __kasan_report mm/kasan/report.c:442 [inline]
 kasan_report.cold.14+0x7f/0x11b mm/kasan/report.c:459
 xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127
 xfs_attr_get+0x378/0x4c2 fs/xfs/libxfs/xfs_attr.c:159
 xfs_xattr_get+0xe3/0x150 fs/xfs/xfs_xattr.c:36
 __vfs_getxattr+0xdf/0x13d fs/xattr.c:399
 cap_inode_need_killpriv+0x41/0x5d security/commoncap.c:300
 security_inode_need_killpriv+0x4c/0x97 security/security.c:1408
 dentry_needs_remove_privs.part.28+0x21/0x63 fs/inode.c:1912
 dentry_needs_remove_privs+0x80/0x9e fs/inode.c:1908
 do_truncate+0xc3/0x1e0 fs/open.c:56
 handle_truncate fs/namei.c:3084 [inline]
 do_open fs/namei.c:3432 [inline]
 path_openat+0x30ab/0x396d fs/namei.c:3561
 do_filp_open+0x1c4/0x290 fs/namei.c:3588
 do_sys_openat2+0x60d/0x98c fs/open.c:1212
 do_sys_open+0xcf/0x13c fs/open.c:1228
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x44/0x0
RIP: 0033:0x7f7ef4bb753d
Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48
89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73
01 c3 48 8b 0d 1b 79 2c 00 f7 d8 64 89 01 48
RSP: 002b:00007f7ef52c2ed8 EFLAGS: 00000246 ORIG_RAX: 0000000000000055
RAX: ffffffffffffffda RBX: 0000000000404148 RCX: 00007f7ef4bb753d
RDX: 00007f7ef4bb753d RSI: 0000000000000000 RDI: 0000000020004fc0
RBP: 0000000000404140 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0030656c69662f2e
R13: 00007ffd794db37f R14: 00007ffd794db470 R15: 00007f7ef52c2fc0
 </TASK>

Allocated by task 2953:
 kasan_save_stack+0x19/0x38 mm/kasan/common.c:38
 kasan_set_track mm/kasan/common.c:46 [inline]
 set_alloc_info mm/kasan/common.c:434 [inline]
 __kasan_slab_alloc+0x68/0x7c mm/kasan/common.c:467
 kasan_slab_alloc include/linux/kasan.h:254 [inline]
 slab_post_alloc_hook mm/slab.h:519 [inline]
 slab_alloc_node mm/slub.c:3213 [inline]
 slab_alloc mm/slub.c:3221 [inline]
 kmem_cache_alloc+0x11b/0x3eb mm/slub.c:3226
 kmem_cache_zalloc include/linux/slab.h:711 [inline]
 xfs_ifork_alloc+0x25/0xa2 fs/xfs/libxfs/xfs_inode_fork.c:287
 xfs_bmap_add_attrfork+0x3f2/0x9b1 fs/xfs/libxfs/xfs_bmap.c:1098
 xfs_attr_set+0xe38/0x12a7 fs/xfs/libxfs/xfs_attr.c:746
 xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59
 __vfs_setxattr+0x11b/0x177 fs/xattr.c:180
 __vfs_setxattr_noperm+0x128/0x5e0 fs/xattr.c:214
 __vfs_setxattr_locked+0x1d4/0x258 fs/xattr.c:275
 vfs_setxattr+0x154/0x33d fs/xattr.c:301
 setxattr+0x216/0x29f fs/xattr.c:575
 __do_sys_fsetxattr fs/xattr.c:632 [inline]
 __se_sys_fsetxattr fs/xattr.c:621 [inline]
 __x64_sys_fsetxattr+0x243/0x2fe fs/xattr.c:621
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x44/0x0

Freed by task 2949:
 kasan_save_stack+0x19/0x38 mm/kasan/common.c:38
 kasan_set_track+0x1c/0x21 mm/kasan/common.c:46
 kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:360
 ____kasan_slab_free mm/kasan/common.c:366 [inline]
 ____kasan_slab_free mm/kasan/common.c:328 [inline]
 __kasan_slab_free+0xe2/0x10e mm/kasan/common.c:374
 kasan_slab_free include/linux/kasan.h:230 [inline]
 slab_free_hook mm/slub.c:1700 [inline]
 slab_free_freelist_hook mm/slub.c:1726 [inline]
 slab_free mm/slub.c:3492 [inline]
 kmem_cache_free+0xdc/0x3ce mm/slub.c:3508
 xfs_attr_fork_remove+0x8d/0x132 fs/xfs/libxfs/xfs_attr_leaf.c:773
 xfs_attr_sf_removename+0x5dd/0x6cb fs/xfs/libxfs/xfs_attr_leaf.c:822
 xfs_attr_remove_iter+0x68c/0x805 fs/xfs/libxfs/xfs_attr.c:1413
 xfs_attr_remove_args+0xb1/0x10d fs/xfs/libxfs/xfs_attr.c:684
 xfs_attr_set+0xf1e/0x12a7 fs/xfs/libxfs/xfs_attr.c:802
 xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59
 __vfs_removexattr+0x106/0x16a fs/xattr.c:468
 cap_inode_killpriv+0x24/0x47 security/commoncap.c:324
 security_inode_killpriv+0x54/0xa1 security/security.c:1414
 setattr_prepare+0x1a6/0x897 fs/attr.c:146
 xfs_vn_change_ok+0x111/0x15e fs/xfs/xfs_iops.c:682
 xfs_vn_setattr_size+0x5f/0x15a fs/xfs/xfs_iops.c:1065
 xfs_vn_setattr+0x125/0x2ad fs/xfs/xfs_iops.c:1093
 notify_change+0xae5/0x10a1 fs/attr.c:410
 do_truncate+0x134/0x1e0 fs/open.c:64
 handle_truncate fs/namei.c:3084 [inline]
 do_open fs/namei.c:3432 [inline]
 path_openat+0x30ab/0x396d fs/namei.c:3561
 do_filp_open+0x1c4/0x290 fs/namei.c:3588
 do_sys_openat2+0x60d/0x98c fs/open.c:1212
 do_sys_open+0xcf/0x13c fs/open.c:1228
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x44/0x0

The buggy address belongs to the object at ffff88802cec9188
 which belongs to the cache xfs_ifork of size 40
The buggy address is located 20 bytes inside of
 40-byte region [ffff88802cec9188, ffff88802cec91b0)
The buggy address belongs to the page:
page:00000000c3af36a1 refcount:1 mapcount:0 mapping:0000000000000000
index:0x0 pfn:0x2cec9
flags: 0xfffffc0000200(slab|node=0|zone=1|lastcpupid=0x1fffff)
raw: 000fffffc0000200 ffffea00009d2580 0000000600000006 ffff88801a9ffc80
raw: 0000000000000000 0000000080490049 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected

Memory state around the buggy address:
 ffff88802cec9080: fb fb fb fc fc fa fb fb fb fb fc fc fb fb fb fb
 ffff88802cec9100: fb fc fc fb fb fb fb fb fc fc fb fb fb fb fb fc
>ffff88802cec9180: fc fa fb fb fb fb fc fc fa fb fb fb fb fc fc fb
                            ^
 ffff88802cec9200: fb fb fb fb fc fc fb fb fb fb fb fc fc fb fb fb
 ffff88802cec9280: fb fb fc fc fa fb fb fb fb fc fc fa fb fb fb fb
==================================================================

The root cause of this bug is the unlocked access to xfs_inode.i_afp
from the getxattr code paths while trying to determine which ILOCK mode
to use to stabilize the xattr data.  Unfortunately, the VFS does not
acquire i_rwsem when vfs_getxattr (or listxattr) call into the
filesystem, which means that getxattr can race with a removexattr that's
tearing down the attr fork and crash:

xfs_attr_set:                          xfs_attr_get:
xfs_attr_fork_remove:                  xfs_ilock_attr_map_shared:

xfs_idestroy_fork(ip->i_afp);
kmem_cache_free(xfs_ifork_cache, ip->i_afp);

                                       if (ip->i_afp &&

ip->i_afp = NULL;

                                           xfs_need_iread_extents(ip->i_afp))
                                       <KABOOM>

ip->i_forkoff = 0;

Regrettably, the VFS is much more lax about i_rwsem and getxattr than
is immediately obvious -- not only does it not guarantee that we hold
i_rwsem, it actually doesn't guarantee that we *don't* hold it either.
The getxattr system call won't acquire the lock before calling XFS, but
the file capabilities code calls getxattr with and without i_rwsem held
to determine if the "security.capabilities" xattr is set on the file.

Fixing the VFS locking requires a treewide investigation into every code
path that could touch an xattr and what i_rwsem state it expects or sets
up.  That could take years or even prove impossible; fortunately, we
can fix this UAF problem inside XFS.

An earlier version of this patch used smp_wmb in xfs_attr_fork_remove to
ensure that i_forkoff is always zeroed before i_afp is set to null and
changed the read paths to use smp_rmb before accessing i_forkoff and
i_afp, which avoided these UAF problems.  However, the patch author was
too busy dealing with other problems in the meantime, and by the time he
came back to this issue, the situation had changed a bit.

On a modern system with selinux, each inode will always have at least
one xattr for the selinux label, so it doesn't make much sense to keep
incurring the extra pointer dereference.  Furthermore, Allison's
upcoming parent pointer patchset will also cause nearly every inode in
the filesystem to have extended attributes.  Therefore, make the inode
attribute fork structure part of struct xfs_inode, at a cost of 40 more
bytes.

This patch adds a clunky if_present field where necessary to maintain
the existing logic of xattr fork null pointer testing in the existing
codebase.  The next patch switches the logic over to XFS_IFORK_Q and it
all goes away.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-07-09 15:17:21 -07:00
Darrick J. Wong
732436ef91 xfs: convert XFS_IFORK_PTR to a static inline helper
We're about to make this logic do a bit more, so convert the macro to a
static inline function for better typechecking and fewer shouty macros.
No functional changes here.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-07-09 15:17:21 -07:00
Andrey Strachuk
0f38063d7a xfs: removed useless condition in function xfs_attr_node_get
At line 1561, variable "state" is being compared
with NULL every loop iteration.

-------------------------------------------------------------------
1561	for (i = 0; state != NULL && i < state->path.active; i++) {
1562		xfs_trans_brelse(args->trans, state->path.blk[i].bp);
1563		state->path.blk[i].bp = NULL;
1564	}
-------------------------------------------------------------------

However, it cannot be NULL.

----------------------------------------
1546	state = xfs_da_state_alloc(args);
----------------------------------------

xfs_da_state_alloc calls kmem_cache_zalloc. kmem_cache_zalloc is
called with __GFP_NOFAIL flag and, therefore, it cannot return NULL.

--------------------------------------------------------------------------
	struct xfs_da_state *
	xfs_da_state_alloc(
	struct xfs_da_args	*args)
	{
		struct xfs_da_state	*state;

		state = kmem_cache_zalloc(xfs_da_state_cache, GFP_NOFS | __GFP_NOFAIL);
		state->args = args;
		state->mp = args->dp->i_mount;
		return state;
	}
--------------------------------------------------------------------------

Found by Linux Verification Center (linuxtesting.org) with SVACE.

Signed-off-by: Andrey Strachuk <strochuk@ispras.ru>

Fixes: 4d0cdd2bb8 ("xfs: clean up xfs_attr_node_hasname")
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-07-09 10:56:02 -07:00
Dave Chinner
85c73bf726 xfs: rework xfs_buf_incore() API
Make it consistent with the other buffer APIs to return a error and
the buffer is placed in a parameter.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 22:05:18 +10:00
Dave Chinner
36029dee38 xfs: make is_log_ag() a first class helper
We check if an ag contains the log in many places, so make this
a first class XFS helper by lifting it to fs/xfs/libxfs/xfs_ag.h and
renaming it xfs_ag_contains_log(). The convert all the places that
check if the AG contains the log to use this helper.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:13:21 +10:00
Dave Chinner
3829c9a10f xfs: replace xfs_ag_block_count() with perag accesses
Many of the places that call xfs_ag_block_count() have a perag
available. These places can just read pag->block_count directly
instead of calculating the AG block count from first principles.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:13:17 +10:00
Dave Chinner
2d6ca8321c xfs: Pre-calculate per-AG agino geometry
There is a lot of overhead in functions like xfs_verify_agino() that
repeatedly calculate the geometry limits of an AG. These can be
pre-calculated as they are static and the verification context has
a per-ag context it can quickly reference.

In the case of xfs_verify_agino(), we now always have a perag
context handy, so we can store the minimum and maximum agino values
in the AG in the perag. This means we don't have to calculate
it on every call and it can be inlined in callers if we move it
to xfs_ag.h.

xfs_verify_agino_or_null() gets the same perag treatment.

xfs_agino_range() is moved to xfs_ag.c as it's not really a type
function, and it's use is largely restricted as the first and last
aginos can be grabbed straight from the perag in most cases.

Note that we leave the original xfs_verify_agino in place in
xfs_types.c as a static function as other callers in that file do
not have per-ag contexts so still need to go the long way. It's been
renamed to xfs_verify_agno_agino() to indicate it takes both an agno
and an agino to differentiate it from new function.

$ size --totals fs/xfs/built-in.a
	   text    data     bss     dec     hex filename
before	1482185	 329588	    572	1812345	 1ba779	(TOTALS)
after	1481937	 329588	    572	1812097	 1ba681	(TOTALS)

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:13:10 +10:00
Dave Chinner
0800169e3e xfs: Pre-calculate per-AG agbno geometry
There is a lot of overhead in functions like xfs_verify_agbno() that
repeatedly calculate the geometry limits of an AG. These can be
pre-calculated as they are static and the verification context has
a per-ag context it can quickly reference.

In the case of xfs_verify_agbno(), we now always have a perag
context handy, so we can store the AG length and the minimum valid
block in the AG in the perag. This means we don't have to calculate
it on every call and it can be inlined in callers if we move it
to xfs_ag.h.

Move xfs_ag_block_count() to xfs_ag.c because it's really a
per-ag function and not an XFS type function. We need a little
bit of rework that is specific to xfs_initialise_perag() to allow
growfs to calculate the new perag sizes before we've updated the
primary superblock during the grow (chicken/egg situation).

Note that we leave the original xfs_verify_agbno in place in
xfs_types.c as a static function as other callers in that file do
not have per-ag contexts so still need to go the long way. It's been
renamed to xfs_verify_agno_agbno() to indicate it takes both an agno
and an agbno to differentiate it from new function.

Future commits will make similar changes for other per-ag geometry
validation functions.

Further:

$ size --totals fs/xfs/built-in.a
	   text    data     bss     dec     hex filename
before	1483006	 329588	    572	1813166	 1baaae	(TOTALS)
after	1482185	 329588	    572	1812345	 1ba779	(TOTALS)

This rework reduces the binary size by ~820 bytes, indicating
that much less work is being done to bounds check the agbno values
against on per-ag geometry information.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:13:02 +10:00
Dave Chinner
cec7bb7d58 xfs: pass perag to xfs_alloc_read_agfl
We have the perag in most places we call xfs_alloc_read_agfl, so
pass the perag instead of a mount/agno pair.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:08:15 +10:00
Dave Chinner
8c392eb27f xfs: pass perag to xfs_alloc_put_freelist
It's available in all callers, so pass it in so that the perag can
be passed further down the stack.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:08:08 +10:00
Dave Chinner
49f0d84ec1 xfs: pass perag to xfs_alloc_get_freelist
It's available in all callers, so pass it in so that the perag can
be passed further down the stack.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:08:01 +10:00
Dave Chinner
fa044ae70c xfs: pass perag to xfs_read_agf
We have the perag in most places we call xfs_read_agf, so pass the
perag instead of a mount/agno pair.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:54 +10:00
Dave Chinner
61021deb1f xfs: pass perag to xfs_read_agi
We have the perag in most palces we call xfs_read_agi, so pass the
perag instead of a mount/agno pair.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:47 +10:00
Dave Chinner
08d3e84fee xfs: pass perag to xfs_alloc_read_agf()
xfs_alloc_read_agf() initialises the perag if it hasn't been done
yet, so it makes sense to pass it the perag rather than pull a
reference from the buffer. This allows callers to be per-ag centric
rather than passing mount/agno pairs everywhere.

Whilst modifying the xfs_reflink_find_shared() function definition,
declare it static and remove the extern declaration as it is an
internal function only these days.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:40 +10:00
Dave Chinner
76b47e528e xfs: kill xfs_alloc_pagf_init()
Trivial wrapper around xfs_alloc_read_agf(), can be easily replaced
by passing a NULL agfbp to xfs_alloc_read_agf().

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:32 +10:00
Dave Chinner
99b13c7f0b xfs: pass perag to xfs_ialloc_read_agi()
xfs_ialloc_read_agi() initialises the perag if it hasn't been done
yet, so it makes sense to pass it the perag rather than pull a
reference from the buffer. This allows callers to be per-ag centric
rather than passing mount/agno pairs everywhere.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:24 +10:00
Dave Chinner
a95fee40e3 xfs: kill xfs_ialloc_pagi_init()
This is just a basic wrapper around xfs_ialloc_read_agi(), which can
be entirely handled by xfs_ialloc_read_agi() by passing a NULL
agibpp....

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:16 +10:00
Dave Chinner
c6aee24814 xfs: make last AG grow/shrink perag centric
Because the perag must exist for these operations, look it up as
part of the common shrink operations and pass it instead of the
mount/agno pair.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:09 +10:00
Darrick J. Wong
e53bcffad0 xfs: don't hold xattr leaf buffers across transaction rolls
Now that we've established (again!) that empty xattr leaf buffers are
ok, we no longer need to bhold them to transactions when we're creating
new leaf blocks.  Get rid of the entire mechanism, which should simplify
the xattr code quite a bit.

The original justification for using bhold here was to prevent the AIL
from trying to write the empty leaf block into the fs during the brief
time that we release the buffer lock.  The reason for /that/ was to
prevent recovery from tripping over the empty ondisk block.

Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-06-29 08:47:56 -07:00
Darrick J. Wong
7be3bd8856 xfs: empty xattr leaf header blocks are not corruption
TLDR: Revert commit 51e6104fdb ("xfs: detect empty attr leaf blocks in
xfs_attr3_leaf_verify") because it was wrong.

Every now and then we get a corruption report from the kernel or
xfs_repair about empty leaf blocks in the extended attribute structure.
We've long thought that these shouldn't be possible, but prior to 5.18
one would shake loose in the recoveryloop fstests about once a month.

A new addition to the xattr leaf block verifier in 5.19-rc1 makes this
happen every 7 minutes on my testing cloud.  I added a ton of logging to
detect any time we set the header count on an xattr leaf block to zero.
This produced the following dmesg output on generic/388:

XFS (sda4): ino 0x21fcbaf leaf 0x129bf78 hdcount==0!
Call Trace:
 <TASK>
 dump_stack_lvl+0x34/0x44
 xfs_attr3_leaf_create+0x187/0x230
 xfs_attr_shortform_to_leaf+0xd1/0x2f0
 xfs_attr_set_iter+0x73e/0xa90
 xfs_xattri_finish_update+0x45/0x80
 xfs_attr_finish_item+0x1b/0xd0
 xfs_defer_finish_noroll+0x19c/0x770
 __xfs_trans_commit+0x153/0x3e0
 xfs_attr_set+0x36b/0x740
 xfs_xattr_set+0x89/0xd0
 __vfs_setxattr+0x67/0x80
 __vfs_setxattr_noperm+0x6e/0x120
 vfs_setxattr+0x97/0x180
 setxattr+0x88/0xa0
 path_setxattr+0xc3/0xe0
 __x64_sys_setxattr+0x27/0x30
 do_syscall_64+0x35/0x80
 entry_SYSCALL_64_after_hwframe+0x46/0xb0

So now we know that someone is creating empty xattr leaf blocks as part
of converting a sf xattr structure into a leaf xattr structure.  The
conversion routine logs any existing sf attributes in the same
transaction that creates the leaf block, so we know this is a setxattr
to a file that has no attributes at all.

Next, g/388 calls the shutdown ioctl and cycles the mount to trigger log
recovery.  I also augmented buffer item recovery to call ->verify_struct
on any attr leaf blocks and complain if it finds a failure:

XFS (sda4): Unmounting Filesystem
XFS (sda4): Mounting V5 Filesystem
XFS (sda4): Starting recovery (logdev: internal)
XFS (sda4): xattr leaf daddr 0x129bf78 hdrcount == 0!
Call Trace:
 <TASK>
 dump_stack_lvl+0x34/0x44
 xfs_attr3_leaf_verify+0x3b8/0x420
 xlog_recover_buf_commit_pass2+0x60a/0x6c0
 xlog_recover_items_pass2+0x4e/0xc0
 xlog_recover_commit_trans+0x33c/0x350
 xlog_recovery_process_trans+0xa5/0xe0
 xlog_recover_process_data+0x8d/0x140
 xlog_do_recovery_pass+0x19b/0x720
 xlog_do_log_recovery+0x62/0xc0
 xlog_do_recover+0x33/0x1d0
 xlog_recover+0xda/0x190
 xfs_log_mount+0x14c/0x360
 xfs_mountfs+0x517/0xa60
 xfs_fs_fill_super+0x6bc/0x950
 get_tree_bdev+0x175/0x280
 vfs_get_tree+0x1a/0x80
 path_mount+0x6f5/0xaa0
 __x64_sys_mount+0x103/0x140
 do_syscall_64+0x35/0x80
 entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7fc61e241eae

And a moment later, the _delwri_submit of the recovered buffers trips
the same verifier and recovery fails:

XFS (sda4): Metadata corruption detected at xfs_attr3_leaf_verify+0x393/0x420 [xfs], xfs_attr3_leaf block 0x129bf78
XFS (sda4): Unmount and run xfs_repair
XFS (sda4): First 128 bytes of corrupted metadata buffer:
00000000: 00 00 00 00 00 00 00 00 3b ee 00 00 00 00 00 00  ........;.......
00000010: 00 00 00 00 01 29 bf 78 00 00 00 00 00 00 00 00  .....).x........
00000020: a5 1b d0 02 b2 9a 49 df 8e 9c fb 8d f8 31 3e 9d  ......I......1>.
00000030: 00 00 00 00 02 1f cb af 00 00 00 00 10 00 00 00  ................
00000040: 00 50 0f b0 00 00 00 00 00 00 00 00 00 00 00 00  .P..............
00000050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00000060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00000070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
XFS (sda4): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply+0x37f/0x3b0 [xfs] (fs/xfs/xfs_buf.c:1518).  Shutting down filesystem.
XFS (sda4): Please unmount the filesystem and rectify the problem(s)
XFS (sda4): log mount/recovery failed: error -117
XFS (sda4): log mount failed

I think I see what's going on here -- setxattr is racing with something
that shuts down the filesystem:

Thread 1				Thread 2
--------				--------
xfs_attr_sf_addname
xfs_attr_shortform_to_leaf
<create empty leaf>
xfs_trans_bhold(leaf)
xattri_dela_state = XFS_DAS_LEAF_ADD
<roll transaction>
					<flush log>
					<shut down filesystem>
xfs_trans_bhold_release(leaf)
<discover fs is dead, bail>

Thread 3
--------
<cycle mount, start recovery>
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
<replay empty leaf buffer from recovered buf item>
xfs_buf_delwri_queue(leaf)
xfs_buf_delwri_submit
_xfs_buf_ioapply(leaf)
xfs_attr3_leaf_write_verify
<trip over empty leaf buffer>
<fail recovery>

As you can see, the bhold keeps the leaf buffer locked and thus prevents
the *AIL* from tripping over the ichdr.count==0 check in the write
verifier.  Unfortunately, it doesn't prevent the log from getting
flushed to disk, which sets up log recovery to fail.

So.  It's clear that the kernel has always had the ability to persist
attr leaf blocks with ichdr.count==0, which means that it's part of the
ondisk format now.

Unfortunately, this check has been added and removed multiple times
throughout history.  It first appeared in[1] kernel 3.10 as part of the
early V5 format patches.  The check was later discovered to break log
recovery and hence disabled[2] during log recovery in kernel 4.10.
Simultaneously, the check was added[3] to xfs_repair 4.9.0 to try to
weed out the empty leaf blocks.  This was still not correct because log
recovery would recover an empty attr leaf block successfully only for
regular xattr operations to trip over the empty block during of the
block during regular operation.  Therefore, the check was removed
entirely[4] in kernel 5.7 but removal of the xfs_repair check was
forgotten.  The continued complaints from xfs_repair lead to us
mistakenly re-adding[5] the verifier check for kernel 5.19.  Remove it
once again.

[1] 517c22207b ("xfs: add CRCs to attr leaf blocks")
[2] 2e1d23370e ("xfs: ignore leaf attr ichdr.count in verifier
                   during log replay")
[3] f7140161 ("xfs_repair: junk leaf attribute if count == 0")
[4] f28cef9e4d ("xfs: don't fail verifier on empty attr3 leaf
                   block")
[5] 51e6104fdb ("xfs: detect empty attr leaf blocks in
                   xfs_attr3_leaf_verify")

Looking at the rest of the xattr code, it seems that files with empty
leaf blocks behave as expected -- listxattr reports no attributes;
getxattr on any xattr returns nothing as expected; removexattr does
nothing; and setxattr can add attributes just fine.

Original-bug: 517c22207b ("xfs: add CRCs to attr leaf blocks")
Still-not-fixed-by: 2e1d23370e ("xfs: ignore leaf attr ichdr.count in verifier during log replay")
Removed-in: f28cef9e4d ("xfs: don't fail verifier on empty attr3 leaf block")
Fixes: 51e6104fdb ("xfs: detect empty attr leaf blocks in xfs_attr3_leaf_verify")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-06-29 08:47:56 -07:00
Darrick J. Wong
10930b254d xfs: fix variable state usage
The variable @args is fed to a tracepoint, and that's the only place
it's used.  This is fine for the kernel, but for userspace, tracepoints
are #define'd out of existence, which results in this warning on gcc
11.2:

xfs_attr.c: In function ‘xfs_attr_node_try_addname’:
xfs_attr.c:1440:42: warning: unused variable ‘args’ [-Wunused-variable]
 1440 |         struct xfs_da_args              *args = attr->xattri_da_args;
      |                                          ^~~~

Clean this up.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
2022-06-15 23:13:32 -07:00
Darrick J. Wong
f4288f0182 xfs: fix TOCTOU race involving the new logged xattrs control knob
I found a race involving the larp control knob, aka the debugging knob
that lets developers enable logging of extended attribute updates:

Thread 1			Thread 2

echo 0 > /sys/fs/xfs/debug/larp
				setxattr(REPLACE)
				xfs_has_larp (returns false)
				xfs_attr_set

echo 1 > /sys/fs/xfs/debug/larp

				xfs_attr_defer_replace
				xfs_attr_init_replace_state
				xfs_has_larp (returns true)
				xfs_attr_init_remove_state

				<oops, wrong DAS state!>

This isn't a particularly severe problem right now because xattr logging
is only enabled when CONFIG_XFS_DEBUG=y, and developers *should* know
what they're doing.

However, the eventual intent is that callers should be able to ask for
the assistance of the log in persisting xattr updates.  This capability
might not be required for /all/ callers, which means that dynamic
control must work correctly.  Once an xattr update has decided whether
or not to use logged xattrs, it needs to stay in that mode until the end
of the operation regardless of what subsequent parallel operations might
do.

Therefore, it is an error to continue sampling xfs_globals.larp once
xfs_attr_change has made a decision about larp, and it was not correct
for me to have told Allison that ->create_intent functions can sample
the global log incompat feature bitfield to decide to elide a log item.

Instead, create a new op flag for the xfs_da_args structure, and convert
all other callers of xfs_has_larp and xfs_sb_version_haslogxattrs within
the attr update state machine to look for the operations flag.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
2022-06-15 23:13:32 -07:00
Dave Chinner
7146bda743 Merge branch 'guilt/xfs-5.19-larp-cleanups' into xfs-5.19-for-next
This series contains a two key cleanups for the new LARP code.  Most
of it is refactoring and tweaking the code that creates kernel log
messages about enabling and disabling features -- we should be
warning about LARP being turned on once per mount, instead of once
per insmod cycle; we shouldn't be spamming the logs so aggressively
about turning *off* log incompat features.

The second part of the series refactors the LARP code responsible
for getting (and releasing) permission to use xattr log items.  The
implementation code doesn't belong in xfs_log.c, and calls to
logging functions don't belong in libxfs -- they really should be
done by the VFS implementation functions before they start calling
into libraries.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-30 10:58:59 +10:00
Dave Chinner
621dc801df Merge branch 'guilt/xfs-5.19-recovery-buf-cancel' into xfs-5.19-for-next
As part of solving the memory leaks and UAF problems in the new LARP
code, kmemleak also reported that log recovery will leak the table
used to hash buffer cancellations if the recovery fails.  Fix this
problem by creating alloc/free helpers that initialize and free the
hashtable contents correctly.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-30 10:58:13 +10:00
Darrick J. Wong
efc2efeba1 xfs: move xfs_attr_use_log_assist usage out of libxfs
The LARP patchset added an awkward coupling point between libxfs and
what would be libxlog, if the XFS log were actually its own library.
Move the code that sets up logged xattr updates out of libxfs and into
xfs_xattr.c so that libxfs no longer has to know about xlog_* functions.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-27 10:34:04 +10:00
Darrick J. Wong
d9c61ccb3b xfs: move xfs_attr_use_log_assist out of xfs_log.c
The LARP patchset added an awkward coupling point between libxfs and
what would be libxlog, if the XFS log were actually its own library.
Move the code that enables logged xattr updates out of "lib"xlog and into
xfs_xattr.c so that it no longer has to know about xlog_* functions.

While we're at it, give xfs_xattr.c its own header file.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-27 10:33:29 +10:00
Darrick J. Wong
910bbdf2f4 xfs: convert buf_cancel_table allocation to kmalloc_array
While we're messing around with how recovery allocates and frees the
buffer cancellation table, convert the allocation to use kmalloc_array
instead of the old kmem_alloc APIs, and make it handle a null return,
even though that's not likely.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-27 10:27:19 +10:00
Darrick J. Wong
2723234923 xfs: refactor buffer cancellation table allocation
Move the code that allocates and frees the buffer cancellation tables
used by log recovery into the file that actually uses the tables.  This
is a precursor to some cleanups and a memory leak fix.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-27 10:26:17 +10:00
Darrick J. Wong
a54f78def7 xfs: don't leak btree cursor when insrec fails after a split
The recent patch to improve btree cycle checking caused a regression
when I rebased the in-memory btree branch atop the 5.19 for-next branch,
because in-memory short-pointer btrees do not have AG numbers.  This
produced the following complaint from kmemleak:

unreferenced object 0xffff88803d47dde8 (size 264):
  comm "xfs_io", pid 4889, jiffies 4294906764 (age 24.072s)
  hex dump (first 32 bytes):
    90 4d 0b 0f 80 88 ff ff 00 a0 bd 05 80 88 ff ff  .M..............
    e0 44 3a a0 ff ff ff ff 00 df 08 06 80 88 ff ff  .D:.............
  backtrace:
    [<ffffffffa0388059>] xfbtree_dup_cursor+0x49/0xc0 [xfs]
    [<ffffffffa029887b>] xfs_btree_dup_cursor+0x3b/0x200 [xfs]
    [<ffffffffa029af5d>] __xfs_btree_split+0x6ad/0x820 [xfs]
    [<ffffffffa029b130>] xfs_btree_split+0x60/0x110 [xfs]
    [<ffffffffa029f6da>] xfs_btree_make_block_unfull+0x19a/0x1f0 [xfs]
    [<ffffffffa029fada>] xfs_btree_insrec+0x3aa/0x810 [xfs]
    [<ffffffffa029fff3>] xfs_btree_insert+0xb3/0x240 [xfs]
    [<ffffffffa02cb729>] xfs_rmap_insert+0x99/0x200 [xfs]
    [<ffffffffa02cf142>] xfs_rmap_map_shared+0x192/0x5f0 [xfs]
    [<ffffffffa02cf60b>] xfs_rmap_map_raw+0x6b/0x90 [xfs]
    [<ffffffffa0384a85>] xrep_rmap_stash+0xd5/0x1d0 [xfs]
    [<ffffffffa0384dc0>] xrep_rmap_visit_bmbt+0xa0/0xf0 [xfs]
    [<ffffffffa0384fb6>] xrep_rmap_scan_iext+0x56/0xa0 [xfs]
    [<ffffffffa03850d8>] xrep_rmap_scan_ifork+0xd8/0x160 [xfs]
    [<ffffffffa0385195>] xrep_rmap_scan_inode+0x35/0x80 [xfs]
    [<ffffffffa03852ee>] xrep_rmap_find_rmaps+0x10e/0x270 [xfs]

I noticed that xfs_btree_insrec has a bunch of debug code that return
out of the function immediately, without freeing the "new" btree cursor
that can be returned when _make_block_unfull calls xfs_btree_split.  Fix
the error return in this function to free the btree cursor.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-27 10:22:56 +10:00
Dave Chinner
56486f3071 xfs: assert in xfs_btree_del_cursor should take into account error
xfs/538 on a 1kB block filesystem failed with this assert:

XFS: Assertion failed: cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 || xfs_is_shutdown(cur->bc_mp), file: fs/xfs/libxfs/xfs_btree.c, line: 448

The problem was that an allocation failed unexpectedly in
xfs_bmbt_alloc_block() after roughly 150,000 minlen allocation error
injections, resulting in an EFSCORRUPTED error being returned to
xfs_bmapi_write(). The error occurred on extent-to-btree format
conversion allocating the new root block:

 RIP: 0010:xfs_bmbt_alloc_block+0x177/0x210
 Call Trace:
  <TASK>
  xfs_btree_new_iroot+0xdf/0x520
  xfs_btree_make_block_unfull+0x10d/0x1c0
  xfs_btree_insrec+0x364/0x790
  xfs_btree_insert+0xaa/0x210
  xfs_bmap_add_extent_hole_real+0x1fe/0x9a0
  xfs_bmapi_allocate+0x34c/0x420
  xfs_bmapi_write+0x53c/0x9c0
  xfs_alloc_file_space+0xee/0x320
  xfs_file_fallocate+0x36b/0x450
  vfs_fallocate+0x148/0x340
  __x64_sys_fallocate+0x3c/0x70
  do_syscall_64+0x35/0x80
  entry_SYSCALL_64_after_hwframe+0x44/0xa

Why the allocation failed at this point is unknown, but is likely
that we ran the transaction out of reserved space and filesystem out
of space with bmbt blocks because of all the minlen allocations
being done causing worst case fragmentation of a large allocation.

Regardless of the cause, we've then called xfs_bmapi_finish() which
calls xfs_btree_del_cursor(cur, error) to tear down the cursor.

So we have a failed operation, error != 0, cur->bc_ino.allocated > 0
and the filesystem is still up. The assert fails to take into
account that allocation can fail with an error and the transaction
teardown will shut the filesystem down if necessary. i.e. the
assert needs to check "|| error != 0" as well, because at this point
shutdown is pending because the current transaction is dirty....

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-27 10:21:09 +10:00
Dave Chinner
5b55cbc2d7 xfs: don't assert fail on perag references on teardown
Not fatal, the assert is there to catch developer attention. I'm
seeing this occasionally during recoveryloop testing after a
shutdown, and I don't want this to stop an overnight recoveryloop
run as it is currently doing.

Convert the ASSERT to a XFS_IS_CORRUPT() check so it will dump a
corruption report into the log and cause a test failure that way,
but it won't stop the machine dead.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-27 10:21:04 +10:00
Dave Chinner
5672225e8f xfs: avoid unnecessary runtime sibling pointer endian conversions
Commit dc04db2aa7 has caused a small aim7 regression, showing a
small increase in CPU usage in __xfs_btree_check_sblock() as a
result of the extra checking.

This is likely due to the endian conversion of the sibling poitners
being unconditional instead of relying on the compiler to endian
convert the NULL pointer at compile time and avoiding the runtime
conversion for this common case.

Rework the checks so that endian conversion of the sibling pointers
is only done if they are not null as the original code did.

.... and these need to be "inline" because the compiler completely
fails to inline them automatically like it should be doing.

$ size fs/xfs/libxfs/xfs_btree.o*
   text	   data	    bss	    dec	    hex	filename
  51874	    240	      0	  52114	   cb92 fs/xfs/libxfs/xfs_btree.o.orig
  51562	    240	      0	  51802	   ca5a fs/xfs/libxfs/xfs_btree.o.inline

Just when you think the tools have advanced sufficiently we don't
have to care about stuff like this anymore, along comes a reminder
that *our tools still suck*.

Fixes: dc04db2aa7 ("xfs: detect self referencing btree sibling pointers")
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-27 10:20:45 +10:00
Dave Chinner
ab6a8d3f1a Merge branch 'guilt/xfs-5.19-misc-3' into xfs-5.19-for-next 2022-05-23 08:55:09 +10:00
Darrick J. Wong
4183e4f27f xfs: share xattr name and value buffers when logging xattr updates
While running xfs/297 and generic/642, I noticed a crash in
xfs_attri_item_relog when it tries to copy the attr name to the new
xattri log item.  I think what happened here was that we called
->iop_commit on the old attri item (which nulls out the pointers) as
part of a log force at the same time that a chained attr operation was
ongoing.  The system was busy enough that at some later point, the defer
ops operation decided it was necessary to relog the attri log item, but
as we've detached the name buffer from the old attri log item, we can't
copy it to the new one, and kaboom.

I think there's a broader refcounting problem with LARP mode -- the
setxattr code can return to userspace before the CIL actually formats
and commits the log item, which results in a UAF bug.  Therefore, the
xattr log item needs to be able to retain a reference to the name and
value buffers until the log items have completely cleared the log.
Furthermore, each time we create an intent log item, we allocate new
memory and (re)copy the contents; sharing here would be very useful.

Solve the UAF and the unnecessary memory allocations by having the log
code create a single refcounted buffer to contain the name and value
contents.  This buffer can be passed from old to new during a relog
operation, and the logging code can (optionally) attach it to the
xfs_attr_item for reuse when LARP mode is enabled.

This also fixes a problem where the xfs_attri_log_item objects weren't
being freed back to the same cache where they came from.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-23 08:43:46 +10:00
Darrick J. Wong
22a68ba724 xfs: do not use logged xattr updates on V4 filesystems
V4 superblocks do not contain the log_incompat feature bit, which means
that we cannot protect xattr log items against kernels that are too old
to know how to recover them.  Turn off the log items for such
filesystems and adjust the "delayed" name to reflect what it's really
controlling.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-23 08:41:03 +10:00
Julia Lawall
41bc61c02a xfs: fix typo in comment
Spelling mistake (triple letters) in comment.
Detected with the help of Coccinelle.

Signed-off-by: Julia Lawall <Julia.Lawall@inria.fr>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-22 16:46:38 +10:00
Darrick J. Wong
e3c5de2202 xfs: rename struct xfs_attr_item to xfs_attr_intent
Everywhere else in XFS, structures that capture the state of an ongoing
deferred work item all have names that end with "_intent".  The new
extended attribute deferred work items are not named as such, so fix it
to follow the naming convention used elsewhere.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-22 16:00:26 +10:00
Darrick J. Wong
3768f69857 xfs: clean up state variable usage in xfs_attr_node_remove_attr
The state variable is now a local variable pointing to a heap
allocation, so we don't need to zero-initialize it, nor do we need the
conditional to decide if we should free it.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-22 15:59:48 +10:00
Darrick J. Wong
4136e38af7 xfs: put attr[id] log item cache init with the others
Initialize and destroy the xattr log item caches in the same places that
we do all the other log item caches.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-22 15:59:48 +10:00
Darrick J. Wong
500a512c60 xfs: remove struct xfs_attr_item.xattri_flags
Nobody uses this field, so get rid of it and the unused flag definition.
Rearrange the structure layout to reduce its size from 104 to 96 bytes.
This gets us from 39 to 42 objects per page.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-22 15:59:48 +10:00
Darrick J. Wong
e2c78949b6 xfs: use a separate slab cache for deferred xattr work state
Create a separate slab cache for struct xfs_attr_item objects, since we
can pack the (104-byte) intent items more tightly than we can with the
general slab cache objects.  On x86, this means 39 intents per memory
page instead of 32.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-22 15:59:48 +10:00
Darrick J. Wong
b53d212b4b xfs: put the xattr intent item op flags in their own namespace
The flags that are stored in the extended attr intent log item really
should have a separate namespace from the rest of the XFS_ATTR_* flags.
Give them one to make it a little more obvious that they're intent item
flags.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-22 15:59:48 +10:00
Darrick J. Wong
4d0cdd2bb8 xfs: clean up xfs_attr_node_hasname
The calling conventions of this function are a mess -- callers /can/
provide a pointer to a pointer to a state structure, but it's not
required, and as evidenced by the last two patches, the callers that do
weren't be careful enough about how to deal with an existing da state.

Push the allocation and freeing responsibilty to the callers, which
means that callers from the xattr node state machine steps now have the
visibility to allocate or free the da state structure as they please.
As a bonus, the node remove/add paths for larp-mode replaces can reset
the da state structure instead of freeing and immediately reallocating
it.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-22 15:59:34 +10:00
Darrick J. Wong
85d76aec6b xfs: reject unknown xattri log item filter flags during recovery
Make sure we screen the "attr flags" field of recovered xattr intent log
items to reject flag bits that we don't know about.  This is really the
attr *filter* field from xfs_da_args, so rename the field and create
a mask to make checking for invalid bits easier.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-20 14:42:15 +10:00
Darrick J. Wong
a618acab13 xfs: don't leak the retained da state when doing a leaf to node conversion
If a setxattr operation finds an xattr structure in leaf format, adding
the attr can fail due to lack of space and hence requires an upgrade to
node format.  After this happens, we'll roll the transaction and
re-enter the state machine, at which time we need to perform a second
lookup of the attribute name to find its new location.  This lookup
attaches a new da state structure to the xfs_attr_item but doesn't free
the old one (from the leaf lookup) and leaks it.  Fix that.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-20 14:41:42 +10:00
Darrick J. Wong
309001c22c xfs: don't leak da state when freeing the attr intent item
kmemleak reported that we lost an xfs_da_state while removing xattrs in
generic/020:

unreferenced object 0xffff88801c0e4b40 (size 480):
  comm "attr", pid 30515, jiffies 4294931061 (age 5.960s)
  hex dump (first 32 bytes):
    78 bc 65 07 00 c9 ff ff 00 30 60 1c 80 88 ff ff  x.e......0`.....
    02 00 00 00 00 00 00 00 80 18 83 4e 80 88 ff ff  ...........N....
  backtrace:
    [<ffffffffa023ef4a>] xfs_da_state_alloc+0x1a/0x30 [xfs]
    [<ffffffffa021b6f3>] xfs_attr_node_hasname+0x23/0x90 [xfs]
    [<ffffffffa021c6f1>] xfs_attr_set_iter+0x441/0xa30 [xfs]
    [<ffffffffa02b5104>] xfs_xattri_finish_update+0x44/0x80 [xfs]
    [<ffffffffa02b515e>] xfs_attr_finish_item+0x1e/0x40 [xfs]
    [<ffffffffa0244744>] xfs_defer_finish_noroll+0x184/0x740 [xfs]
    [<ffffffffa02a6473>] __xfs_trans_commit+0x153/0x3e0 [xfs]
    [<ffffffffa021d149>] xfs_attr_set+0x469/0x7e0 [xfs]
    [<ffffffffa02a78d9>] xfs_xattr_set+0x89/0xd0 [xfs]
    [<ffffffff812e6512>] __vfs_removexattr+0x52/0x70
    [<ffffffff812e6a08>] __vfs_removexattr_locked+0xb8/0x150
    [<ffffffff812e6af6>] vfs_removexattr+0x56/0x100
    [<ffffffff812e6bf8>] removexattr+0x58/0x90
    [<ffffffff812e6cce>] path_removexattr+0x9e/0xc0
    [<ffffffff812e6d44>] __x64_sys_lremovexattr+0x14/0x20
    [<ffffffff81786b35>] do_syscall_64+0x35/0x80

I think this is a consequence of xfs_attr_node_removename_setup
attaching a new da(btree) state to xfs_attr_item and never freeing it.
I /think/ it's the case that the remove paths could detach the da state
earlier in the remove state machine since nothing else accesses the
state.  However, let's future-proof the new xattr code by adding a
catch-all when we free the xfs_attr_item to make sure we never leak the
da state.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-20 14:41:34 +10:00
Dave Chinner
efd409a432 Merge branch 'xfs-5.19-quota-warn-remove' into xfs-5.19-for-next 2022-05-12 15:23:07 +10:00
Dave Chinner
51e6104fdb xfs: detect empty attr leaf blocks in xfs_attr3_leaf_verify
xfs_repair flags these as a corruption error, so the verifier should
catch software bugs that result in empty leaf blocks being written
to disk, too.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-12 15:12:57 +10:00
Dave Chinner
fdaf1bb3ca xfs: ATTR_REPLACE algorithm with LARP enabled needs rework
We can't use the same algorithm for replacing an existing attribute
when logging attributes. The existing algorithm is essentially:

1. create new attr w/ INCOMPLETE
2. atomically flip INCOMPLETE flags between old + new attribute
3. remove old attr which is marked w/ INCOMPLETE

This algorithm guarantees that we see either the old or new
attribute, and if we fail after the atomic flag flip, we don't have
to recover the removal of the old attr because we never see
INCOMPLETE attributes in lookups.

For logged attributes, however, this does not work. The logged
attribute intents do not track the work that has been done as the
transaction rolls, and hence the only recovery mechanism we have is
"run the replace operation from scratch".

This is further exacerbated by the attempt to avoid needing the
INCOMPLETE flag to create an atomic swap. This means we can create
a second active attribute of the same name before we remove the
original. If we fail at any point after the create but before the
removal has completed, we end up with duplicate attributes in
the attr btree and recovery only tries to replace one of them.

There are several other failure modes where we can leave partially
allocated remote attributes that expose stale data, partially free
remote attributes that enable UAF based stale data exposure, etc.

TO fix this, we need a different algorithm for replace operations
when LARP is enabled. Luckily, it's not that complex if we take the
right first step. That is, the first thing we log is the attri
intent with the new name/value pair and mark the old attr as
INCOMPLETE in the same transaction.

From there, we then remove the old attr and keep relogging the
new name/value in the intent, such that we always know that we have
to create the new attr in recovery. Once the old attr is removed,
we then run a normal ATTR_CREATE operation relogging the intent as
we go. If the new attr is local, then it gets created in a single
atomic transaction that also logs the final intent done. If the new
attr is remote, the we set INCOMPLETE on the new attr while we
allocate and set the remote value, and then we clear the INCOMPLETE
flag at in the last transaction taht logs the final intent done.

If we fail at any point in this algorithm, log recovery will always
see the same state on disk: the new name/value in the intent, and
either an INCOMPLETE attr or no attr in the attr btree. If we find
an INCOMPLETE attr, we run the full replace starting with removing
the INCOMPLETE attr. If we don't find it, then we simply create the
new attr.

Notably, recovery of a failed create that has an INCOMPLETE flag set
is now the same - we start with the lookup of the INCOMPLETE attr,
and if that exists then we do the full replace recovery process,
otherwise we just create the new attr.

Hence changing the way we do the replace operation when LARP is
enabled allows us to use the same log recovery algorithm for both
the ATTR_CREATE and ATTR_REPLACE operations. This is also the same
algorithm we use for runtime ATTR_REPLACE operations (except for the
step setting up the initial conditions).

The result is that:

- ATTR_CREATE uses the same algorithm regardless of whether LARP is
  enabled or not
- ATTR_REPLACE with larp=0 is identical to the old algorithm
- ATTR_REPLACE with larp=1 runs an unmodified attr removal algorithm
  from the larp=0 code and then runs the unmodified ATTR_CREATE
  code.
- log recovery when larp=1 runs the same ATTR_REPLACE algorithm as
  it uses at runtime.

Because the state machine is now quite clean, changing the algorithm
is really just a case of changing the initial state and how the
states link together for the ATTR_REPLACE case. Hence it's not a
huge amount of code for what is a fairly substantial rework
of the attr logging and recovery algorithm....

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-12 15:12:56 +10:00
Dave Chinner
e7f358dee4 xfs: use XFS_DA_OP flags in deferred attr ops
We currently store the high level attr operation in
args->attr_flags. This field contains what the VFS is telling us to
do, but don't necessarily match what we are doing in the low level
modification state machine. e.g. XATTR_REPLACE implies both
XFS_DA_OP_ADDNAME and XFS_DA_OP_RENAME because it is doing both a
remove and adding a new attr.

However, deep in the individual state machine operations, we check
errors against this high level VFS op flags, not the low level
XFS_DA_OP flags. Indeed, we don't even have a low level flag for
a REMOVE operation, so the only way we know we are doing a remove
is the complete absence of XATTR_REPLACE, XATTR_CREATE,
XFS_DA_OP_ADDNAME and XFS_DA_OP_RENAME. And because there are other
flags in these fields, this is a pain to check if we need to.

As the XFS_DA_OP flags are only needed once the deferred operations
are set up, set these flags appropriately when we set the initial
operation state. We also introduce a XFS_DA_OP_REMOVE flag to make
it easy to know that we are doing a remove operation.

With these, we can remove the use of XATTR_REPLACE and XATTR_CREATE
in low level lookup operations, and manipulate the low level flags
according to the low level context that is operating. e.g. log
recovery does not have a VFS xattr operation state to copy into
args->attr_flags, and the low level state machine ops we do for
recovery do not match the high level VFS operations that were in
progress when the system failed...

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-12 15:12:56 +10:00
Dave Chinner
59782a236b xfs: remove xfs_attri_remove_iter
xfs_attri_remove_iter is not used anymore, so remove it and all the
infrastructure it uses and is needed to drive it. THe
xfs_attr_refillstate() function now throws an unused warning, so
isolate the xfs_attr_fillstate()/xfs_attr_refillstate() code pair
with an #if 0 and a comment explaining why we want to keep this code
and restore the optimisation it provides in the near future.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-12 15:12:56 +10:00
Dave Chinner
4b9879b19c xfs: switch attr remove to xfs_attri_set_iter
Now that xfs_attri_set_iter() has initial states for removing
attributes, switch the pure attribute removal code over to using it.
This requires attrs being removed to always be marked as INCOMPLETE
before we start the removal due to the fact we look up the attr to
remove again in xfs_attr_node_remove_attr().

Note: this drops the fillstate/refillstate optimisations from
the remove path that avoid having to look up the path again after
setting the incomplete flag and removing remote attrs. Restoring
that optimisation to this path is future Dave's problem.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-12 15:12:56 +10:00
Dave Chinner
e5d5596a2a xfs: introduce attr remove initial states into xfs_attr_set_iter
We need to merge the add and remove code paths to enable safe
recovery of replace operations. Hoist the initial remove states from
xfs_attr_remove_iter into xfs_attr_set_iter. We will make use of
them in the next patches.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-12 15:12:56 +10:00
Dave Chinner
4e3d96a57a xfs: xfs_attr_set_iter() does not need to return EAGAIN
Now that the full xfs_attr_set_iter() state machine always
terminates with either the state being XFS_DAS_DONE on success or
an error on failure, we can get rid of the need for it to return
-EAGAIN whenever it needs to roll the transaction before running
the next state.

That is, we don't need to spray -EAGAIN return states everywhere,
the caller just check the state machine state for completion to
determine what action should be taken next. This greatly simplifies
the code within the state machine implementation as it now only has
to handle 0 for success or -errno for error and it doesn't need to
tell the caller to retry.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-12 15:12:55 +10:00
Dave Chinner
b11fa61bc4 xfs: clean up final attr removal in xfs_attr_set_iter
Clean up the final leaf/node states in xfs_attr_set_iter() to
further simplify the high level state machine and to set the
completion state correctly. As we are adding a separate state
for node format removal, we need to ensure that node formats
are collapsed back to shortform or empty correctly.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-12 15:12:55 +10:00
Dave Chinner
2e7ef218e4 xfs: remote xattr removal in xfs_attr_set_iter() is conditional
We may not have a remote value for the old xattr we have to remove,
so skip over the remote value removal states and go straight to
the xattr name removal in the leaf/node block.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-12 15:12:55 +10:00
Dave Chinner
411b434a63 xfs: XFS_DAS_LEAF_REPLACE state only needed if !LARP
We can skip the REPLACE state when LARP is enabled, but that means
the XFS_DAS_FLIP_LFLAG state is now poorly named - it indicates
something that has been done rather than what the state is going to
do. Rename it to "REMOVE_OLD" to indicate that we are now going to
perform removal of the old attr.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-12 15:12:55 +10:00
Dave Chinner
7d03533629 xfs: split remote attr setting out from replace path
When we set a new xattr, we have three exit paths:

	1. nothing else to do
	2. allocate and set the remote xattr value
	3. perform the rest of a replace operation

Currently we push both 2 and 3 into the same state, regardless of
whether we just set a remote attribute or not. Once we've set the
remote xattr, we have two exit states:

	1. nothing else to do
	2. perform the rest of a replace operation

Hence we can split the remote xattr allocation and setting into
their own states and factor it out of xfs_attr_set_iter() to further
clean up the state machine and the implementation of the state
machine.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-12 15:12:55 +10:00
Dave Chinner
251b29c88e xfs: consolidate leaf/node states in xfs_attr_set_iter
The operations performed from XFS_DAS_FOUND_LBLK through to
XFS_DAS_RM_LBLK are now identical to XFS_DAS_FOUND_NBLK through to
XFS_DAS_RM_NBLK. We can collapse these down into a single set of
code.

To do this, define the states that leaf and node run through as
separate sets of sequential states. Then as we move to the next
state, we can use increments rather than specific state assignments
to move through the states. This means the state progression is set
by the initial state that enters the series and we don't need to
duplicate the code anymore.

At the exit point of the series we need to select the correct leaf
or node state, but that can also be done by state increment rather
than assignment.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-12 15:12:54 +10:00
Dave Chinner
2157d1699e xfs: kill XFS_DAC_LEAF_ADDNAME_INIT
We re-enter the XFS_DAS_FOUND_LBLK state when we have to allocate
multiple extents for a remote xattr. We currently have a flag
called XFS_DAC_LEAF_ADDNAME_INIT to avoid running the remote attr
hole finding code more than once.

However, for the node format tree, we have a separate state for this
so we never reenter the state machine at XFS_DAS_FOUND_NBLK and so
it does not need a special flag to skip over the remote attr hold
finding code.

Convert the leaf block code to use the same state machine as the
node blocks and kill the  XFS_DAC_LEAF_ADDNAME_INIT flag.

This further points out that this "ALLOC" state is only traversed
if we have remote xattrs or we are doing a rename operation. Rename
both the leaf and node alloc states to _ALLOC_RMT to indicate they
are iterating to do allocation of remote xattr blocks.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-12 15:12:54 +10:00
Dave Chinner
e0c41089b9 xfs: separate out initial attr_set states
We current use XFS_DAS_UNINIT for several steps in the attr_set
state machine. We use it for setting shortform xattrs, converting
from shortform to leaf, leaf add, leaf-to-node and leaf add. All of
these things are essentially known before we start the state machine
iterating, so we really should separate them out:

XFS_DAS_SF_ADD:
	- tries to do a shortform add
	- on success -> done
	- on ENOSPC converts to leaf, -> XFS_DAS_LEAF_ADD
	- on error, dies.

XFS_DAS_LEAF_ADD:
	- tries to do leaf add
	- on success:
		- inline attr -> done
		- remote xattr || REPLACE -> XFS_DAS_FOUND_LBLK
	- on ENOSPC converts to node, -> XFS_DAS_NODE_ADD
	- on error, dies

XFS_DAS_NODE_ADD:
	- tries to do node add
	- on success:
		- inline attr -> done
		- remote xattr || REPLACE -> XFS_DAS_FOUND_NBLK
	- on error, dies

This makes it easier to understand how the state machine starts
up and sets us up on the path to further state machine
simplifications.

This also converts the DAS state tracepoints to use strings rather
than numbers, as converting between enums and numbers requires
manual counting rather than just reading the name.

This also introduces a XFS_DAS_DONE state so that we can trace
successful operation completions easily.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-12 15:12:52 +10:00
Catherine Hoang
2e06df552a xfs: remove warning counters from struct xfs_dquot_res
Warning counts are not used anywhere in the kernel. In addition, there
are no use cases, test coverage, or documentation for this functionality.
Remove the 'warnings' field from struct xfs_dquot_res and any other
related code.

Signed-off-by: Catherine Hoang <catherine.hoang@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-11 17:12:09 +10:00
Dave Chinner
709c863259 xfs: rework deferred attribute operation setup
Logged attribute intents only have set and remove types - there is
no separate intent type for a replace operation. We should have a
separate type for a replace operation, as it needs to perform
operations that neither SET or REMOVE can perform.

Add this type to the intent items and rearrange the deferred
operation setup to reflect the different operations we are
performing.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-11 17:05:23 +10:00
Dave Chinner
e22b88de5b xfs: make xattri_leaf_bp more useful
We currently set it and hold it when converting from short to leaf
form, then release it only to immediately look it back up again
to do the leaf insert.

Do a bit of refactoring to xfs_attr_leaf_try_add() to avoid this
messy handling of the newly allocated leaf buffer.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-11 17:04:23 +10:00
Dave Chinner
a4b8917b06 xfs: avoid empty xattr transaction when attrs are inline
generic/642 triggered a reproducable assert failure in
xlog_cil_commit() that resulted from a xfs_attr_set() committing
an empty but dirty transaction. When the CIL is empty and this
occurs, xlog_cil_commit() tries a background push and this triggers
a "pushing an empty CIL" assert.

XFS: Assertion failed: !list_empty(&cil->xc_cil), file: fs/xfs/xfs_log_cil.c, line: 1274
Call Trace:
 <TASK>
 xlog_cil_commit+0xa5a/0xad0
 __xfs_trans_commit+0xb8/0x330
 xfs_trans_commit+0x10/0x20
 xfs_attr_set+0x3e2/0x4c0
 xfs_xattr_set+0x8d/0xe0
 __vfs_setxattr+0x6b/0x90
 __vfs_setxattr_noperm+0x76/0x220
 __vfs_setxattr_locked+0xdf/0x100
 vfs_setxattr+0x94/0x170
 setxattr+0x110/0x200
 path_setxattr+0xbf/0xe0
 __x64_sys_setxattr+0x2b/0x30
 do_syscall_64+0x35/0x80

The problem is related to the breakdown of attribute addition in
xfs_attr_set_iter() and how it is called from deferred operations.
When we have a pure leaf xattr insert, we add the xattr to the leaf
and set the next state to XFS_DAS_FOUND_LBLK and return -EAGAIN.
This requeues the xattr defered work, rolls the transaction and
runs xfs_attr_set_iter() again. This then checks the xattr for
being remote (it's not) and whether a replace op is being done (this
is a create op) and if neither are true it returns without having
done anything.

xfs_xattri_finish_update() then unconditionally sets the transaction
dirty, and the deferops finishes and returns to __xfs_trans_commit()
which sees the transaction dirty and tries to commit it by calling
xlog_cil_commit(). The transaction is empty, and then the assert
fires if this happens when the CIL is empty.

This patch addresses the structure of xfs_attr_set_iter() that
requires re-entry on leaf add even when nothing will be done. This
gets rid of the trailing empty transaction and so doesn't trigger
the XFS_TRANS_DIRTY assignment in xfs_xattri_finish_update()
incorrectly. Addressing that is for a different patch.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson<allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-11 17:02:23 +10:00
Allison Henderson
c5218a7cd9 xfs: add leaf to node error tag
Add an error tag on xfs_attr3_leaf_to_node to test log attribute
recovery and replay.

Signed-off-by: Catherine Hoang <catherine.hoang@oracle.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-11 17:01:23 +10:00
Allison Henderson
c3b948be34 xfs: add leaf split error tag
Add an error tag on xfs_da3_split to test log attribute recovery
and replay.

Signed-off-by: Catherine Hoang <catherine.hoang@oracle.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-11 17:01:23 +10:00
Allison Henderson
c3546cf5d1 xfs: Add helper function xfs_init_attr_trans
Quick helper function to collapse duplicate code to initialize
transactions for attributes

Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Suggested-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-11 17:01:23 +10:00
Allison Henderson
cd1549d6df xfs: Add helper function xfs_attr_leaf_addname
This patch adds a helper function xfs_attr_leaf_addname.  While this
does help to break down xfs_attr_set_iter, it does also hoist out some
of the state management.  This patch has been moved to the end of the
clean up series for further discussion.

Suggested-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-11 17:01:22 +10:00
Allison Henderson
d68c51e9a4 xfs: Merge xfs_delattr_context into xfs_attr_item
This is a clean up patch that merges xfs_delattr_context into
xfs_attr_item.  Now that the refactoring is complete and the delayed
operation infrastructure is in place, we can combine these to eliminate
the extra struct

Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-11 17:01:22 +10:00
Allison Henderson
535e2f75c4 xfs: Add larp debug option
This patch adds a debug option to enable log attribute replay. Eventually
this can be removed when delayed attrs becomes permanent.

Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-11 17:01:22 +10:00
Allison Henderson
abd61ca3c3 xfs: Add log attribute error tag
This patch adds an error tag that we can use to test log attribute
recovery and replay

Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-11 17:01:22 +10:00
Allison Henderson
73159fc27c xfs: Remove unused xfs_attr_*_args
Remove xfs_attr_set_args, xfs_attr_remove_args, and xfs_attr_trans_roll.
These high level loops are now driven by the delayed operations code,
and can be removed.

Additionally collapse in the leaf_bp parameter of xfs_attr_set_iter
since we only have one caller that passes dac->leaf_bp

Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-11 17:01:22 +10:00
Allison Henderson
f3f36c893f xfs: Add xfs_attr_set_deferred and xfs_attr_remove_deferred
These routines set up and queue a new deferred attribute operations.
These functions are meant to be called by any routine needing to
initiate a deferred attribute operation as opposed to the existing
inline operations. New helper function xfs_attr_item_init also added.

Finally enable delayed attributes in xfs_attr_set and xfs_attr_remove.

Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-11 17:01:13 +10:00
Allison Henderson
f38dc503d3 xfs: Skip flip flags for delayed attrs
This is a clean up patch that skips the flip flag logic for delayed attr
renames.  Since the log replay keeps the inode locked, we do not need to
worry about race windows with attr lookups.  So we can skip over
flipping the flag and the extra transaction roll for it

Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-09 19:09:10 +10:00
Allison Henderson
1d08e11d04 xfs: Implement attr logging and replay
This patch adds the needed routines to create, log and recover logged
extended attribute intents.

Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-09 19:09:07 +10:00
Allison Henderson
fd92000878 xfs: Set up infrastructure for log attribute replay
Currently attributes are modified directly across one or more
transactions. But they are not logged or replayed in the event of an
error. The goal of log attr replay is to enable logging and replaying
of attribute operations using the existing delayed operations
infrastructure.  This will later enable the attributes to become part of
larger multi part operations that also must first be recorded to the
log.  This is mostly of interest in the scheme of parent pointers which
would need to maintain an attribute containing parent inode information
any time an inode is moved, created, or removed.  Parent pointers would
then be of interest to any feature that would need to quickly derive an
inode path from the mount point. Online scrub, nfs lookups and fs grow
or shrink operations are all features that could take advantage of this.

This patch adds two new log item types for setting or removing
attributes as deferred operations.  The xfs_attri_log_item will log an
intent to set or remove an attribute.  The corresponding
xfs_attrd_log_item holds a reference to the xfs_attri_log_item and is
freed once the transaction is done.  Both log items use a generic
xfs_attr_log_format structure that contains the attribute name, value,
flags, inode, and an op_flag that indicates if the operations is a set
or remove.

[dchinner: added extra little bits needed for intent whiteouts]

Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-04 12:41:02 +10:00
Allison Henderson
9a39cdabc1 xfs: Return from xfs_attr_set_iter if there are no more rmtblks to process
During an attr rename operation, blocks are saved for later removal
as rmtblkno2. The rmtblkno is used in the case of needing to alloc
more blocks if not enough were available.  However, in the case
that no further blocks need to be added or removed, we can return as soon
as xfs_attr_node_addname completes, rather than rolling the transaction
with an -EAGAIN return.  This extra loop does not hurt anything right
now, but it will be a problem later when we get into log items because
we end up with an empty log transaction.  So, add a simple check to
cut out the unneeded iteration.

Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-04 12:40:02 +10:00
Allison Henderson
7b3ec2b20e xfs: Fix double unlock in defer capture code
The new deferred attr patch set uncovered a double unlock in the
recent port of the defer ops capture and continue code.  During log
recovery, we're allowed to hold buffers to a transaction that's being
used to replay an intent item.  When we capture the resources as part
of scheduling a continuation of an intent chain, we call xfs_buf_hold
to retain our reference to the buffer beyond the transaction commit,
but we do /not/ call xfs_trans_bhold to maintain the buffer lock.
This means that xfs_defer_ops_continue needs to relock the buffers
before xfs_defer_restore_resources joins then tothe new transaction.

Additionally, the buffers should not be passed back via the dres
structure since they need to remain locked unlike the inodes.  So
simply set dr_bufs to zero after populating the dres structure.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-04 12:39:02 +10:00
Dave Chinner
86810a9ebd Merge branch 'guilt/xfs-5.19-fuzz-fixes' into xfs-5.19-for-next 2022-05-04 12:38:02 +10:00
Dave Chinner
166afc45ed xfs: fix reflink inefficiencies
As Dave Chinner has complained about on IRC, there are a couple of
 things about reflink that are very inefficient.  First of all, we
 limited the size of all bunmapi operations to avoid flooding the log
 with defer ops in the worst case, but recent changes to the defer ops
 code have solved that problem, so get rid of the bunmapi length clamp.
 
 Second, the log reservations for reflink operations are far far larger
 than they need to be.  Shrink them to exactly what we need to handle
 each deferred RUI and CUI log item, and no more.  Also reduce logcount
 because we don't need 8 rolls per operation.  Introduce a transaction
 reservation compatibility layer to avoid changing the minimum log size
 calculations.
 
 v2: better document the use of EFIs to track when refcount updates
     should be continued in a new transaction, disentangle the alternate
     log space reservation code
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmJq5V4ACgkQ+H93GTRK
 tOtfRw//XDKmVXMIi8V9YINW5mY2B1C4q4RGCrzSvzqVDMH6ADbpKSV672kqdtly
 S2zbfoi/nJgWiZWup4Vs3WiAqqZJezrGQyIqb16nXyH/VT6FINmG1VwNBn5NAmsL
 eNKHQUEn69q5SnCNddu2niT9HJ+NQec3gV/qLIE9eo7K2PiQs6VX7zgRahgt3bfl
 1iQQIPaRnX3qTTgfKye7pYMxsaDopkYcEBQfZkfTe/jUGTPmdpjabYO51e2+jbTg
 7df3kGYHn5sdQp4KA5jtH4icICGpps2jtUqUFY3kVaSknrlY3eDSPNg0MHsnQMP7
 bxV0yKcAmvaSeZwrvMV8IxqlEmU8X2AQar6R3XkdKidHYmxqubAx8+IxowPNQeu5
 HeKmWIqtYWvuQsKjVcdGg32wsV55yJq9C42PxhMcov8HaJPQc8gBPFTULn7WH0gJ
 swTGOIba8RV459ZZzMznCayxjbnUO2jsNj6ewC5v+S2WXyerVA/APTCaMC4UBDfT
 BDN4IiSXCwn0UkseujERNZi4M4TKZ9fTMtVloadlnfQJWCy+GPqKmsHehRDQMOeW
 6737sF4vW1lj9VfTFY5oq/bpG6lKYMkL0tzLSoWjyh9VsinhHqt7Byl//V2kUlct
 Ndj4t6pBxbJJGhHVA6nFOy0ULG9cHxTDYqm1nb1OXM3LZK6Pd+c=
 =KU+/
 -----END PGP SIGNATURE-----

Merge tag 'reflink-speedups-5.19_2022-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into xfs-5.19-for-next

xfs: fix reflink inefficiencies

As Dave Chinner has complained about on IRC, there are a couple of
things about reflink that are very inefficient.  First of all, we
limited the size of all bunmapi operations to avoid flooding the log
with defer ops in the worst case, but recent changes to the defer
ops code have solved that problem, so get rid of the bunmapi length
clamp.

Second, the log reservations for reflink operations are far far
larger than they need to be.  Shrink them to exactly what we need to
handle each deferred RUI and CUI log item, and no more.  Also reduce
logcount because we don't need 8 rolls per operation.  Introduce a
transaction reservation compatibility layer to avoid changing the
minimum log size calculations.

Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-04 12:37:40 +10:00
Dave Chinner
956f1b8f80 xfs: fix rmap inefficiencies
Reduce the performance impact of the reverse mapping btree when reflink
 is enabled by using the much faster non-overlapped btree lookup
 functions when we're searching the rmap index with a fully specified
 key.  If we find the exact record we're looking for, great!  We don't
 have to perform the full overlapped scan.  For filesystems with high
 sharing factors this reduces the xfs_scrub runtime by a good 15%%.
 
 This has been shown to reduce the fstests runtime for realtime rmap
 configurations by 30%%, since the lack of AGs severely limits
 scalability.
 
 v2: simplify the non-overlapped lookup code per dave comments
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmJq5VkACgkQ+H93GTRK
 tOvpZBAAiwV94XsmJnQkffzLTvlVUy68vLevg+6zi3ALbg8QHN8XoXR/SgBYRAZ0
 8KjoLGbLEV35u7f6NVJOXRvFk1/7yzvwutziuSSYx24ajxUFLK/OCHel1/YAQ6wh
 sdcfGdCtK9/iiSPyc6HXSekpnz0bVhRRtfKiHtstZgGlL7qGXDR3+NTbAjkxgNcu
 gHnZpO+16Y3bqsZQK5itoPHNqrdLT4GnSfGexmTXykYdAukooF6ZOE2MUyh/vX1j
 Em/ZJ5agEPLTYhmHWu5n+Phqmb+vLueFtl3jkBf50VYojokm2dt/MU6Z6zctB4p4
 xh6UmkQ7LhGckvKTh3NW88RP3/sBt5YNFPGo9xpx1aPyu5Os+5NcOjKX7XEtp4Xo
 ufyLy9y1muzQrMheIsSfpWAkZmu3/BLSBGH7gFcyHxIVZiuVfzTfOm7WKteoOFoW
 FUr46H+SUXqKA1h4lXIUsaH6T+D6Z32XTh1RoUx6B2rYQsB1kIDT9wTNYUNeS44e
 FZPDe/zZ2FSVpqcndjyOhhQdv+llK6m2c93acgL/MMNvOvH9cIDCkLUX/irs9h33
 r5V4q1PlYm+QMLxd1/h597aYjQLYoJFBDeLIEtnWsoY4nvjLkcAE/Nyr39e5tqes
 YJ+k724XzW5vC7QGJjOH6gAXFO6zRGMOEIgn6+oUKiVS2EVG57w=
 =73GF
 -----END PGP SIGNATURE-----

Merge tag 'rmap-speedups-5.19_2022-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into xfs-5.19-for-next

xfs: fix rmap inefficiencies

Reduce the performance impact of the reverse mapping btree when
reflink is enabled by using the much faster non-overlapped btree
lookup functions when we're searching the rmap index with a fully
specified key.  If we find the exact record we're looking for,
great!  We don't have to perform the full overlapped scan.  For
filesystems with high sharing factors this reduces the xfs_scrub
runtime by a good 15%%.

This has been shown to reduce the fstests runtime for realtime rmap
configurations by 30%%, since the lack of AGs severely limits
scalability.

Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-04 12:37:18 +10:00
Dave Chinner
f0f5f65806 xfs: validate v5 feature fields
We don't check that the v4 feature flags taht v5 requires to be set
are actually set anywhere. Do this check when we see that the
filesystem is a v5 filesystem.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-04 12:17:18 +10:00
Dave Chinner
dd0d2f9755 xfs: set XFS_FEAT_NLINK correctly
While xfs_has_nlink() is not used in kernel, it is used in userspace
(e.g. by xfs_db) so we need to set the XFS_FEAT_NLINK flag correctly
in xfs_sb_version_to_features().

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-04 12:14:13 +10:00
Dave Chinner
1eb70f54c4 xfs: validate inode fork size against fork format
xfs_repair catches fork size/format mismatches, but the in-kernel
verifier doesn't, leading to null pointer failures when attempting
to perform operations on the fork. This can occur in the
xfs_dir_is_empty() where the in-memory fork format does not match
the size and so the fork data pointer is accessed incorrectly.

Note: this causes new failures in xfs/348 which is testing mode vs
ftype mismatches. We now detect a regular file that has been changed
to a directory or symlink mode as being corrupt because the data
fork is for a symlink or directory should be in local form when
there are only 3 bytes of data in the data fork. Hence the inode
verify for the regular file now fires w/ -EFSCORRUPTED because
the inode fork format does not match the format the corrupted mode
says it should be in.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-04 12:13:53 +10:00
Dave Chinner
dc04db2aa7 xfs: detect self referencing btree sibling pointers
To catch the obvious graph cycle problem and hence potential endless
looping.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-04 12:13:35 +10:00
Dave Chinner
bb7b1c9c5d xfs: tag transactions that contain intent done items
Intent whiteouts will require extra work to be done during
transaction commit if the transaction contains an intent done item.

To determine if a transaction contains an intent done item, we want
to avoid having to walk all the items in the transaction to check if
they are intent done items. Hence when we add an intent done item to
a transaction, tag the transaction to indicate that it contains such
an item.

We don't tag the transaction when the defer ops is relogging an
intent to move it forward in the log. Whiteouts will never apply to
these cases, so we don't need to bother looking for them.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-04 11:46:21 +10:00
Dave Chinner
5ddd658ea8 xfs: don't commit the first deferred transaction without intents
If the first operation in a string of defer ops has no intents,
then there is no reason to commit it before running the first call
to xfs_defer_finish_one(). This allows the defer ops to be used
effectively for non-intent based operations without requiring an
unnecessary extra transaction commit when first called.

This fixes a regression in per-attribute modification transaction
count when delayed attributes are not being used.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-04 11:46:00 +10:00
Dave Chinner
b2c28035ce xfs: hide log iovec alignment constraints
Callers currently have to round out the size of buffers to match the
aligment constraints of log iovecs and xlog_write(). They should not
need to know this detail, so introduce a new function to calculate
the iovec length (for use in ->iop_size implementations). Also
modify xlog_finish_iovec() to round up the length to the correct
alignment so the callers don't need to do this, either.

Convert the only user - inode forks - of this alignment rounding to
use the new interface.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-04 11:45:50 +10:00
Dave Chinner
cb512c9216 xfs: zero inode fork buffer at allocation
When we first allocate or resize an inline inode fork, we round up
the allocation to 4 byte alingment to make journal alignment
constraints. We don't clear the unused bytes, so we can copy up to
three uninitialised bytes into the journal. Zero those bytes so we
only ever copy zeros into the journal.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-04 11:44:55 +10:00
Darrick J. Wong
6ed7e509d2 xfs: rename xfs_*alloc*_log_count to _block_count
These functions return the maximum number of blocks that could be logged
in a particular transaction.  "log count" is confusing since there's a
separate concept of a log (operation) count in the reservation code, so
let's change it to "block count" to be less confusing.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-04-28 10:25:59 -07:00
Darrick J. Wong
b037c4eed2 xfs: reduce transaction reservations with reflink
Before to the introduction of deferred refcount operations, reflink
would try to cram refcount btree updates into the same transaction as an
allocation or a free event.  Mainline XFS has never actually done that,
but we never refactored the transaction reservations to reflect that we
now do all refcount updates in separate transactions.  Fix this to
reduce the transaction reservation size even farther, so that between
this patch and the previous one, we reduce the tr_write and tr_itruncate
sizes by 66%.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-04-28 10:25:42 -07:00
Darrick J. Wong
4ecf9e7c69 xfs: reduce the absurdly large log operation count
Back in the early days of reflink and rmap development I set the
transaction reservation sizes to be overly generous for rmap+reflink
filesystems, and a little under-generous for rmap-only filesystems.

Since we don't need *eight* transaction rolls to handle three new log
intent items, decrease the logcounts to what we actually need, and amend
the shadow reservation computation function to reflect what we used to
do so that the minimum log size doesn't change.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-04-28 10:25:33 -07:00
Darrick J. Wong
918247ce54 xfs: report "max_resp" used for min log size computation
Move the tracepoint that computes the size of the transaction used to
compute the minimum log size into xfs_log_get_max_trans_res so that we
only have to compute this stuff once.

Leave xfs_log_get_max_trans_res as a non-static function so that xfs_db
can call it to report the results of the userspace computation of the
same value to diagnose mkfs/kernel misinteractions.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-04-28 10:25:23 -07:00
Darrick J. Wong
52d8ea4f24 xfs: create shadow transaction reservations for computing minimum log size
Every time someone changes the transaction reservation sizes, they
introduce potential compatibility problems if the changes affect the
minimum log size that we validate at mount time.  If the minimum log
size gets larger (which should be avoided because doing so presents a
serious risk of log livelock), filesystems created with old mkfs will
not mount on a newer kernel; if the minimum size shrinks, filesystems
created with newer mkfs will not mount on older kernels.

Therefore, enable the creation of a shadow log reservation structure
where we can "undo" the effects of tweaks when computing minimum log
sizes.  These shadow reservations should never be used in practice, but
they insulate us from perturbations in minimum log size.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-04-28 10:25:15 -07:00
Darrick J. Wong
4ed6435cc3 xfs: stop artificially limiting the length of bunmap calls
In commit e1a4e37cc7, we clamped the length of bunmapi calls on the
data forks of shared files to avoid two failure scenarios: one where the
extent being unmapped is so sparsely shared that we exceed the
transaction reservation with the sheer number of refcount btree updates
and EFI intent items; and the other where we attach so many deferred
updates to the transaction that we pin the log tail and later the log
head meets the tail, causing the log to livelock.

We avoid triggering the first problem by tracking the number of ops in
the refcount btree cursor and forcing a requeue of the refcount intent
item any time we think that we might be close to overflowing.  This has
been baked into XFS since before the original e1a4 patch.

A recent patchset fixed the second problem by changing the deferred ops
code to finish all the work items created by each round of trying to
complete a refcount intent item, which eliminates the long chains of
deferred items (27dad); and causing long-running transactions to relog
their intent log items when space in the log gets low (74f4d).

Because this clamp affects /any/ unmapping request regardless of the
sharing factors of the component blocks, it degrades the performance of
all large unmapping requests -- whereas with an unshared file we can
unmap millions of blocks in one go, shared files are limited to
unmapping a few thousand blocks at a time, which causes the upper level
code to spin in a bunmapi loop even if it wasn't needed.

This also eliminates one more place where log recovery behavior can
differ from online behavior, because bunmapi operations no longer need
to requeue.  The fstest generic/447 was created to test the old fix, and
it still passes with this applied.

Partial-revert-of: e1a4e37cc7 ("xfs: try to avoid blowing out the transaction reservation when bunmaping a shared extent")
Depends: 27dada070d ("xfs: change the order in which child and parent defer ops ar finished")
Depends: 74f4d6a1e0 ("xfs: only relog deferred intent items if free space in the log gets low")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-04-28 10:24:59 -07:00
Darrick J. Wong
c47260d4ea xfs: count EFIs when deciding to ask for a continuation of a refcount update
A long time ago, I added to XFS the ability to use deferred reference
count operations as part of a transaction chain.  This enabled us to
avoid blowing out the transaction reservation when the blocks in a
physical extent all had different reference counts because we could ask
the deferred operation manager for a continuation, which would get us a
clean transaction.

The refcount code asks for a continuation when the number of refcount
record updates reaches the point where we think that the transaction has
logged enough full btree blocks due to refcount (and free space) btree
shape changes and refcount record updates that we're in danger of
overflowing the transaction.

We did not previously count the EFIs logged to the refcount update
transaction because the clamps on the length of a bunmap operation were
sufficient to avoid overflowing the transaction reservation even in the
worst case situation where every other block of the unmapped extent is
shared.

Unfortunately, the restrictions on bunmap length avoid failure in the
worst case by imposing a maximum unmap length of ~3000 blocks, even for
non-pathological cases.  This seriously limits performance when freeing
large extents.

Therefore, track EFIs with the same counter as refcount record updates,
and use that information as input into when we should ask for a
continuation.  This enables the next patch to drop the clumsy bunmap
limitation.

Depends: 27dada070d ("xfs: change the order in which child and parent defer ops ar finished")
Depends: 74f4d6a1e0 ("xfs: only relog deferred intent items if free space in the log gets low")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-04-28 10:24:50 -07:00
Darrick J. Wong
1edf805613 xfs: speed up write operations by using non-overlapped lookups when possible
Reverse mapping on a reflink-capable filesystem has some pretty high
overhead when performing file operations.  This is because the rmap
records for logically and physically adjacent extents might not be
adjacent in the rmap index due to data block sharing.  As a result, we
use expensive overlapped-interval btree search, which walks every record
that overlaps with the supplied key in the hopes of finding the record.

However, profiling data shows that when the index contains a record that
is an exact match for a query key, the non-overlapped btree search
function can find the record much faster than the overlapped version.
Try the non-overlapped lookup first when we're trying to find the left
neighbor rmap record for a given file mapping, which makes unwritten
extent conversion and remap operations run faster if data block sharing
is minimal in this part of the filesystem.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-04-28 10:24:38 -07:00
Darrick J. Wong
75d893d19c xfs: speed up rmap lookups by using non-overlapped lookups when possible
Reverse mapping on a reflink-capable filesystem has some pretty high
overhead when performing file operations.  This is because the rmap
records for logically and physically adjacent extents might not be
adjacent in the rmap index due to data block sharing.  As a result, we
use expensive overlapped-interval btree search, which walks every record
that overlaps with the supplied key in the hopes of finding the record.

However, profiling data shows that when the index contains a record that
is an exact match for a query key, the non-overlapped btree search
function can find the record much faster than the overlapped version.
Try the non-overlapped lookup first, which will make scrub run much
faster.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-04-27 10:47:19 -07:00
Darrick J. Wong
5b7ca8b313 xfs: simplify xfs_rmap_lookup_le call sites
Most callers of xfs_rmap_lookup_le will retrieve the btree record
immediately if the lookup succeeds.  The overlapped version of this
function (xfs_rmap_lookup_le_range) will return the record if the lookup
succeeds, so make the regular version do it too.  Get rid of the useless
len argument, since it's not part of the lookup key.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-04-27 10:47:19 -07:00
Dave Chinner
a44a027a8b Merge tag 'large-extent-counters-v9' of https://github.com/chandanr/linux into xfs-5.19-for-next
xfs: Large extent counters

The commit xfs: fix inode fork extent count overflow
(3f8a4f1d87) mentions that 10 billion
data fork extents should be possible to create. However the
corresponding on-disk field has a signed 32-bit type. Hence this
patchset extends the per-inode data fork extent counter to 64 bits
(out of which 48 bits are used to store the extent count).

Also, XFS has an attribute fork extent counter which is 16 bits
wide. A workload that,
1. Creates 1 million 255-byte sized xattrs,
2. Deletes 50% of these xattrs in an alternating manner,
3. Tries to insert 400,000 new 255-byte sized xattrs
   causes the xattr extent counter to overflow.

Dave tells me that there are instances where a single file has more
than 100 million hardlinks. With parent pointers being stored in
xattrs, we will overflow the signed 16-bits wide attribute extent
counter when large number of hardlinks are created. Hence this
patchset extends the on-disk field to 32-bits.

The following changes are made to accomplish this,
1. A 64-bit inode field is carved out of existing di_pad and
   di_flushiter fields to hold the 64-bit data fork extent counter.
2. The existing 32-bit inode data fork extent counter will be used to
   hold the attribute fork extent counter.
3. A new incompat superblock flag to prevent older kernels from mounting
   the filesystem.

Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-21 16:46:17 +10:00
Dave Chinner
463260d767 Merge branch 'guilt/xlog-write-rework' into xfs-5.19-for-next 2022-04-21 16:45:52 +10:00
Dave Chinner
898a768f54 Merge branch 'guilt/xfs-unsigned-flags-5.18' into xfs-5.19-for-next 2022-04-21 16:45:03 +10:00
Dave Chinner
b9f3082eee xfs: convert quota options flags to unsigned.
5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned
fields to be unsigned.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-21 10:47:32 +10:00
Dave Chinner
1005dd019c xfs: convert dquot flags to unsigned.
5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned
fields to be unsigned.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-21 10:46:55 +10:00
Dave Chinner
3402d93157 xfs: convert da btree operations flags to unsigned.
5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned
fields to be unsigned.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-21 10:46:47 +10:00
Dave Chinner
722db70fb2 xfs: convert btree buffer log flags to unsigned.
5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned
fields to be unsigned.

We also pass the fields to log to xfs_btree_offsets() as a uint32_t
all cases now. I have no idea why we made that parameter a int64_t
in the first place, but while we are fixing this up change it to
a uint32_t field, too.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-21 10:46:33 +10:00
Dave Chinner
0d1b976966 xfs: convert AGI log flags to unsigned.
5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned
fields to be unsigned.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-21 10:46:24 +10:00
Dave Chinner
f53dde11b4 xfs: convert AGF log flags to unsigned.
5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned
fields to be unsigned.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-21 10:46:16 +10:00
Dave Chinner
e7d410ac33 xfs: convert bmapi flags to unsigned.
5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned
fields to be unsigned.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-21 10:46:09 +10:00
Dave Chinner
0e5b8e4522 xfs: convert bmap extent type flags to unsigned.
5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned
fields to be unsigned.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-21 10:46:01 +10:00
Dave Chinner
79539c7c76 xfs: convert scrub type flags to unsigned.
5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned
fields to be unsigned.

This touches xfs_fs.h so affects the user API, but the user API
fields are also unsigned so the flags should really be unsigned,
too.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-21 10:45:52 +10:00
Dave Chinner
a4d98629c9 xfs: convert attr type flags to unsigned.
5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned
fields to be unsigned.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-21 10:45:41 +10:00
Dave Chinner
c7610dceed xfs: log tickets don't need log client id
We currently set the log ticket client ID when we reserve a
transaction. This client ID is only ever written to the log by
a CIL checkpoint or unmount records, and so anything using a high
level transaction allocated through xfs_trans_alloc() does not need
a log ticket client ID to be set.

For the CIL checkpoint, the client ID written to the journal is
always XFS_TRANSACTION, and for the unmount record it is always
XFS_LOG, and nothing else writes to the log. All of these operations
tell xlog_write() exactly what they need to write to the log (the
optype) and build their own opheaders for start, commit and unmount
records. Hence we no longer need to set the client id in either the
log ticket or the xfs_trans.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-21 10:34:33 +10:00
Chandan Babu R
973ac0eb3a xfs: Add XFS_SB_FEAT_INCOMPAT_NREXT64 to the list of supported flags
This commit enables XFS module to work with fs instances having 64-bit
per-inode extent counters by adding XFS_SB_FEAT_INCOMPAT_NREXT64 flag to the
list of supported incompat feature flags.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
2022-04-13 07:02:45 +00:00
Chandan Babu R
c3c4ecb529 xfs: Enable bulkstat ioctl to support 64-bit per-inode extent counters
The following changes are made to enable userspace to obtain 64-bit extent
counters,
1. Carve out a new 64-bit field xfs_bulkstat->bs_extents64 from
   xfs_bulkstat->bs_pad[] to hold 64-bit extent counter.
2. Define the new flag XFS_BULK_IREQ_BULKSTAT for userspace to indicate that
   it is capable of receiving 64-bit extent counters.

Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Suggested-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
2022-04-13 07:02:45 +00:00
Chandan Babu R
4f86bb4b66 xfs: Conditionally upgrade existing inodes to use large extent counters
This commit enables upgrading existing inodes to use large extent counters
provided that underlying filesystem's superblock has large extent counter
feature enabled.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
2022-04-13 07:02:44 +00:00
Chandan Babu R
83a21c1844 xfs: Directory's data fork extent counter can never overflow
The maximum file size that can be represented by the data fork extent counter
in the worst case occurs when all extents are 1 block in length and each block
is 1KB in size.

With XFS_MAX_EXTCNT_DATA_FORK_SMALL representing maximum extent count and with
1KB sized blocks, a file can reach upto,
(2^31) * 1KB = 2TB

This is much larger than the theoretical maximum size of a directory
i.e. XFS_DIR2_SPACE_SIZE * 3 = ~96GB.

Since a directory's inode can never overflow its data fork extent counter,
this commit removes all the overflow checks associated with
it. xfs_dinode_verify() now performs a rough check to verify if a diretory's
data fork is larger than 96GB.

Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
2022-04-13 07:02:07 +00:00
Darrick J. Wong
2229276c52 xfs: use a separate frextents counter for rt extent reservations
As mentioned in the previous commit, the kernel misuses sb_frextents in
the incore mount to reflect both incore reservations made by running
transactions as well as the actual count of free rt extents on disk.
This results in the superblock being written to the log with an
underestimate of the number of rt extents that are marked free in the
rtbitmap.

Teaching XFS to recompute frextents after log recovery avoids
operational problems in the current mount, but it doesn't solve the
problem of us writing undercounted frextents which are then recovered by
an older kernel that doesn't have that fix.

Create an incore percpu counter to mirror the ondisk frextents.  This
new counter will track transaction reservations and the only time we
will touch the incore super counter (i.e the one that gets logged) is
when those transactions commit updates to the rt bitmap.  This is in
contrast to the lazysbcount counters (e.g. fdblocks), where we know that
log recovery will always fix any incorrect counter that we log.
As a bonus, we only take m_sb_lock at transaction commit time.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-12 06:49:42 +10:00
Darrick J. Wong
f34061f554 xfs: pass explicit mount pointer to rtalloc query functions
Pass an explicit xfs_mount pointer to the rtalloc query functions so
that they can support transactionless queries.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-12 06:49:41 +10:00
Chandan Babu R
52a4a14842 xfs: Introduce per-inode 64-bit extent counters
This commit introduces new fields in the on-disk inode format to support
64-bit data fork extent counters and 32-bit attribute fork extent
counters. The new fields will be used only when an inode has
XFS_DIFLAG2_NREXT64 flag set. Otherwise we continue to use the regular 32-bit
data fork extent counters and 16-bit attribute fork extent counters.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Suggested-by: Dave Chinner <dchinner@redhat.com>
2022-04-11 04:11:20 +00:00
Chandan Babu R
df9ad5cc7a xfs: Introduce macros to represent new maximum extent counts for data/attr forks
This commit defines new macros to represent maximum extent counts allowed by
filesystems which have support for large per-inode extent counters.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
2022-04-11 04:11:19 +00:00
Chandan Babu R
0c35e7ba18 xfs: Use uint64_t to count maximum blocks that can be used by BMBT
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
2022-04-11 04:11:19 +00:00
Chandan Babu R
9b7d16e34b xfs: Introduce XFS_DIFLAG2_NREXT64 and associated helpers
This commit adds the new per-inode flag XFS_DIFLAG2_NREXT64 to indicate that
an inode supports 64-bit extent counters. This flag is also enabled by default
on newly created inodes when the corresponding filesystem has large extent
counter feature bit (i.e. XFS_FEAT_NREXT64) set.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
2022-04-11 04:11:19 +00:00
Chandan Babu R
7c05aa9d9d xfs: Introduce XFS_FSOP_GEOM_FLAGS_NREXT64
XFS_FSOP_GEOM_FLAGS_NREXT64 indicates that the current filesystem instance
supports 64-bit per-inode extent counters.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
2022-04-11 04:11:19 +00:00
Chandan Babu R
919819f5e1 xfs: Introduce XFS_SB_FEAT_INCOMPAT_NREXT64 and associated per-fs feature bit
XFS_SB_FEAT_INCOMPAT_NREXT64 incompat feature bit will be set on filesystems
which support large per-inode extent counters. This commit defines the new
incompat feature bit and the corresponding per-fs feature bit (along with
inline functions to work on it).

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
2022-04-11 04:11:18 +00:00
Chandan Babu R
755c38ffe1 xfs: Promote xfs_extnum_t and xfs_aextnum_t to 64 and 32-bits respectively
A future commit will introduce a 64-bit on-disk data extent counter and a
32-bit on-disk attr extent counter. This commit promotes xfs_extnum_t and
xfs_aextnum_t to 64 and 32-bits in order to correctly handle in-core versions
of these quantities.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
2022-04-11 04:11:18 +00:00
Chandan Babu R
1e7384f93d xfs: Use basic types to define xfs_log_dinode's di_nextents and di_anextents
A future commit will increase the width of xfs_extnum_t in order to facilitate
larger per-inode extent counters. Hence this patch now uses basic types to
define xfs_log_dinode->[di_nextents|dianextents].

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
2022-04-11 04:11:18 +00:00
Chandan Babu R
dd95a6ce31 xfs: Introduce xfs_dfork_nextents() helper
This commit replaces the macro XFS_DFORK_NEXTENTS() with the helper function
xfs_dfork_nextents(). As of this commit, xfs_dfork_nextents() returns the same
value as XFS_DFORK_NEXTENTS(). A future commit which extends inode's extent
counter fields will add more logic to this helper.

This commit also replaces direct accesses to xfs_dinode->di_[a]nextents
with calls to xfs_dfork_nextents().

No functional changes have been made.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
2022-04-11 04:11:18 +00:00
Chandan Babu R
bb1d50494c xfs: Use xfs_extnum_t instead of basic data types
xfs_extnum_t is the type to use to declare variables which have values
obtained from xfs_dinode->di_[a]nextents. This commit replaces basic
types (e.g. uint32_t) with xfs_extnum_t for such variables.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
2022-04-11 04:11:17 +00:00
Chandan Babu R
9feb8f1966 xfs: Introduce xfs_iext_max_nextents() helper
xfs_iext_max_nextents() returns the maximum number of extents possible for one
of data, cow or attribute fork. This helper will be extended further in a
future commit when maximum extent counts associated with data/attribute forks
are increased.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
2022-04-11 04:11:17 +00:00
Chandan Babu R
95f0b95e2b xfs: Define max extent length based on on-disk format definition
The maximum extent length depends on maximum block count that can be stored in
a BMBT record. Hence this commit defines MAXEXTLEN based on
BMBT_BLOCKCOUNT_BITLEN.

While at it, the commit also renames MAXEXTLEN to XFS_MAX_BMBT_EXTLEN.

Suggested-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
2022-04-11 04:11:17 +00:00
Chandan Babu R
3b0d9fd369 xfs: Move extent count limits to xfs_format.h
Maximum values associated with extent counters i.e. Maximum extent length,
Maximum data extents and Maximum xattr extents are dictated by the on-disk
format. Hence move these definitions over to xfs_format.h.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
2022-04-11 04:11:17 +00:00
Linus Torvalds
b32e3819a8 Bug fixes for 5.18:
- Fix an incorrect free space calculation in xfs_reserve_blocks that
   could lead to a request for free blocks that will never succeed.
 - Fix a hang in xfs_reserve_blocks caused by an infinite loop and the
   incorrect free space calculation.
 - Fix yet a third problem in xfs_reserve_blocks where multiple racing
   threads can overfill the reserve pool.
 - Fix an accounting error that lead to us reporting reserved space as
   "available".
 - Fix a race condition during abnormal fs shutdown that could cause UAF
   problems when memory reclaim and log shutdown try to clean up inodes.
 - Fix a bug where log shutdown can race with unmount to tear down the
   log, thereby causing UAF errors.
 - Disentangle log and filesystem shutdown to reduce confusion.
 - Fix some confusion in xfs_trans_commit such that a race between
   transaction commit and filesystem shutdown can cause unlogged dirty
   inode metadata to be committed, thereby corrupting the filesystem.
 - Remove a performance optimization in the log as it was discovered that
   certain storage hardware handle async log flushes so poorly as to
   cause serious performance regressions.  Recent restructuring of other
   parts of the logging code mean that no performance benefit is seen on
   hardware that handle it well.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmJEjg4ACgkQ+H93GTRK
 tOsUHRAAj5n65L1r80HSuayipWrwyuD2paa3cqtV76Y8n6CBck8CcnWjZ1t88NYO
 rvfRWKlkJAxkafc5dOiEQ4lm0AL2pHuAWeMrVu/EHvwzj9D+F/GXPrgWCJ1spsN/
 Osd8LgMrxrOaaHgPhENKGa4Ktc5dQoRfDD1IvbAyPEt2puLjoRm00STqUFMYuejR
 96yzreL8kLQdnErxKlQzo4ShsdckyBqA62AAQBIVr3B93+plefTXrWlp2HrblP11
 Upd/sdrIdVp/n104fAfaMT5pSamn3NGyV+8FaUjruBv/alC7pWrWrah6KuBl9omy
 ql8wvtO5KTQdESLx2wjYpC5odi9hQfJYDLCMN3B6gxXg26mcZVvOCfSNtrayPkYj
 ShfkT4mn+TFPFqG/NOgg8ebPp94fzXctKZ+ExVg1dGVAR9oz8QlUUmsqIdbq/4tx
 hrkGOKTa/oGBVoakHgGfbfY5Zz4yX5hVjGWN+l54YRKWHZwYDatRT/O4GkQEZqlU
 dgXsZFT0IZpz4WuTCan+VPJ85I+SKuoYsjh0n4rlGgfCcVK81uvtRB+Jn9rO0wHW
 Uzv1S6HrzblvBnUZGVt49z3co+APYwIRKY8mb+YHWmVNQqmZqyUj7KyFvxuTTkOm
 g0b8oK0/3hpC70v91aTFQmpA6R6cQAS2D4JsM4nXxjyluRWAphI=
 =6Vg8
 -----END PGP SIGNATURE-----

Merge tag 'xfs-5.18-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs fixes from Darrick Wong:
 "This fixes multiple problems in the reserve pool sizing functions: an
  incorrect free space calculation, a pointless infinite loop, and even
  more braindamage that could result in the pool being overfilled. The
  pile of patches from Dave fix myriad races and UAF bugs in the log
  recovery code that much to our mutual surprise nobody's tripped over.
  Dave also fixed a performance optimization that had turned into a
  regression.

  Dave Chinner is taking over as XFS maintainer starting Sunday and
  lasting until 5.19-rc1 is tagged so that I can focus on starting a
  massive design review for the (feature complete after five years)
  online repair feature. From then on, he and I will be moving XFS to a
  co-maintainership model by trading duties every other release.

  NOTE: I hope very strongly that the other pieces of the (X)FS
  ecosystem (fstests and xfsprogs) will make similar changes to spread
  their maintenance load.

  Summary:

   - Fix an incorrect free space calculation in xfs_reserve_blocks that
     could lead to a request for free blocks that will never succeed.

   - Fix a hang in xfs_reserve_blocks caused by an infinite loop and the
     incorrect free space calculation.

   - Fix yet a third problem in xfs_reserve_blocks where multiple racing
     threads can overfill the reserve pool.

   - Fix an accounting error that lead to us reporting reserved space as
     "available".

   - Fix a race condition during abnormal fs shutdown that could cause
     UAF problems when memory reclaim and log shutdown try to clean up
     inodes.

   - Fix a bug where log shutdown can race with unmount to tear down the
     log, thereby causing UAF errors.

   - Disentangle log and filesystem shutdown to reduce confusion.

   - Fix some confusion in xfs_trans_commit such that a race between
     transaction commit and filesystem shutdown can cause unlogged dirty
     inode metadata to be committed, thereby corrupting the filesystem.

   - Remove a performance optimization in the log as it was discovered
     that certain storage hardware handle async log flushes so poorly as
     to cause serious performance regressions. Recent restructuring of
     other parts of the logging code mean that no performance benefit is
     seen on hardware that handle it well"

* tag 'xfs-5.18-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
  xfs: drop async cache flushes from CIL commits.
  xfs: shutdown during log recovery needs to mark the log shutdown
  xfs: xfs_trans_commit() path must check for log shutdown
  xfs: xfs_do_force_shutdown needs to block racing shutdowns
  xfs: log shutdown triggers should only shut down the log
  xfs: run callbacks before waking waiters in xlog_state_shutdown_callbacks
  xfs: shutdown in intent recovery has non-intent items in the AIL
  xfs: aborting inodes on shutdown may need buffer lock
  xfs: don't report reserved bnobt space as available
  xfs: fix overfilling of reserve pool
  xfs: always succeed at setting the reserve pool size
  xfs: remove infinite loop when reserving free block pool
  xfs: don't include bnobt blocks when reserving free block pool
  xfs: document the XFS_ALLOC_AGFL_RESERVE constant
2022-04-01 19:30:44 -07:00
Linus Torvalds
b1b07ba356 New code for 5.18:
- Fix some incorrect mapping state being passed to iomap during COW
  - Don't create bogus selinux audit messages when deciding to degrade
    gracefully due to lack of privilege
  - Fix setattr implementation to use VFS helpers so that we drop setgid
    consistently with the other filesystems
  - Fix link/unlink/rename to check quota limits
  - Constify xfs_name_dotdot to prevent abuse of in-kernel symbols
  - Fix log livelock between the AIL and inodegc threads during recovery
  - Fix a log stall when the AIL races with pushers
  - Fix stalls in CIL flushes due to pinned inode cluster buffers during
    recovery
  - Fix log corruption due to incorrect usage of xfs_is_shutdown vs
    xlog_is_shutdown because during an induced fs shutdown, AIL writeback
    must continue until the log is shut down, even if the filesystem has
    already shut down
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmI3UQ8ACgkQ+H93GTRK
 tOttpBAAjz05QkClIYKlHREiWt4a2a0FnRBvkz2fvZb0Nk3kST/drJ14VAb1Q3g1
 HvvOGwssyJShkbd6DBGTqrp9AzZ0mfhSYPpARtCNwOvUNV4tXwLdiBZ86H4/l3qy
 seS1tXW4pUKm6xhN9fnMw1sk4oJmPXq67JW+1h35oDaE6tpdd9lehFMpMxaTMjED
 4WsU0UwKCWr4l1lKP1EXvh+ENJeo0QZpccNHV3ChLnWx0mPMRpf4tQP2A01oBPkh
 oXHSms0TV7FHDIv+Zil3kBgkfh266WhcPdZ4pfIqyQc51LzbgrxEqcrZHGI5XJjB
 zcQd8RkzOI68XIDchijOorOkQZmDEDIGlCgSY6q/JV4N2iFyF84hHedk2le5j97l
 Jmout2Xng3bgstl4963IjXk8SvPTebnI76a62XoEcHnf4KBROLKIU7wNCh5LXNvk
 CI6AWJGy6EAGEc3BHyPFZxZF72D9rUmRbPIJBc7rBhJgMoIy4L4sFlvVtyppbERb
 gMH9PNTLjY5/abQkV044iLOsEDh5FEPBIehoaENNo252vj2R/WsAAQL13l0cMsrN
 vAryGdAEelZEyg62k+HT4W87zjH0Kgtgli6zMdx7akYdjKbMOIZALEu61iBH7KT+
 heAz8pU/krTy+Q583XU13eCWnY1wPrHRMwdGF+i4WUGiKuJSoYg=
 =uHT0
 -----END PGP SIGNATURE-----

Merge tag 'xfs-5.18-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs updates from Darrick Wong:
 "The biggest change this cycle is bringing XFS' inode attribute setting
  code back towards alignment with what the VFS does. IOWs, setgid bit
  handling should be a closer match with ext4 and btrfs behavior.

  The rest of the branch is bug fixes around the filesystem -- patching
  gaps in quota enforcement, removing bogus selinux audit messages, and
  fixing log corruption and problems with log recovery. There will be a
  second pull request later on in the merge window with more bug fixes.

  Dave Chinner will be taking over as XFS maintainer for one release
  cycle, starting from the day 5.18-rc1 drops until 5.19-rc1 is tagged
  so that I can focus on starting a massive design review for the
  (feature complete after five years) online repair feature.

  Summary:

   - Fix some incorrect mapping state being passed to iomap during COW

   - Don't create bogus selinux audit messages when deciding to degrade
     gracefully due to lack of privilege

   - Fix setattr implementation to use VFS helpers so that we drop
     setgid consistently with the other filesystems

   - Fix link/unlink/rename to check quota limits

   - Constify xfs_name_dotdot to prevent abuse of in-kernel symbols

   - Fix log livelock between the AIL and inodegc threads during
     recovery

   - Fix a log stall when the AIL races with pushers

   - Fix stalls in CIL flushes due to pinned inode cluster buffers
     during recovery

   - Fix log corruption due to incorrect usage of xfs_is_shutdown vs
     xlog_is_shutdown because during an induced fs shutdown, AIL
     writeback must continue until the log is shut down, even if the
     filesystem has already shut down"

* tag 'xfs-5.18-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
  xfs: xfs_is_shutdown vs xlog_is_shutdown cage fight
  xfs: AIL should be log centric
  xfs: log items should have a xlog pointer, not a mount
  xfs: async CIL flushes need pending pushes to be made stable
  xfs: xfs_ail_push_all_sync() stalls when racing with updates
  xfs: check buffer pin state after locking in delwri_submit
  xfs: log worker needs to start before intent/unlink recovery
  xfs: constify xfs_name_dotdot
  xfs: constify the name argument to various directory functions
  xfs: reserve quota for target dir expansion when renaming files
  xfs: reserve quota for dir expansion when linking/unlinking files
  xfs: refactor user/group quota chown in xfs_setattr_nonsize
  xfs: use setattr_copy to set vfs inode attributes
  xfs: don't generate selinux audit messages for capability testing
  xfs: add missing cmap->br_state = XFS_EXT_NORM update
2022-03-24 18:28:01 -07:00
Hugh Dickins
b698f0a177 mm/fs: delete PF_SWAPWRITE
PF_SWAPWRITE has been redundant since v3.2 commit ee72886d8e ("mm:
vmscan: do not writeback filesystem pages in direct reclaim").

Coincidentally, NeilBrown's current patch "remove inode_congested()"
deletes may_write_to_inode(), which appeared to be the one function which
took notice of PF_SWAPWRITE.  But if you study the old logic, and the
conditions under which may_write_to_inode() was called, you discover that
flag and function have been pointless for a decade.

Link: https://lkml.kernel.org/r/75e80e7-742d-e3bd-531-614db8961e4@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Jan Kara <jack@suse.de>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:08 -07:00
Darrick J. Wong
93defd5a15 xfs: document the XFS_ALLOC_AGFL_RESERVE constant
Currently, we use this undocumented macro to encode the minimum number
of blocks needed to replenish a completely empty AGFL when an AG is
nearly full.  This has lead to confusion on the part of the maintainers,
so let's document what the value actually means, and move it to
xfs_alloc.c since it's not used outside of that module.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-03-21 13:57:45 -07:00
Darrick J. Wong
744e6c8ada xfs: constify xfs_name_dotdot
The symbol xfs_name_dotdot is a global variable that the xfs codebase
uses here and there to look up directory dotdot entries.  Currently it's
a non-const variable, which means that it's a mutable global variable.
So far nobody's abused this to cause problems, but let's use the
compiler to enforce that.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-03-14 10:23:17 -07:00
Darrick J. Wong
996b2329b2 xfs: constify the name argument to various directory functions
Various directory functions do not modify their @name parameter,
so mark it const to make that clear.  This will enable us to mark
the global xfs_name_dotdot variable as const to prevent mischief.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-03-14 10:23:17 -07:00
Linus Torvalds
31d949782e Withdraw the XFS_IOC_ALLOCSP* and XFS_IOC_FREESP* ioctl definitions.
Remove the header definitions for these ioctls.  The just-removed
 implementation has allowed callers to read stale disk contents for more
 than **21 years** and nobody noticed or complained, which implies a lack
 of users aside from exploit programs.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmHlp28ACgkQ+H93GTRK
 tOt77Q/+KP7XtwaloGbkBfMzk9JhVh4wISagQ8BxZ5Jb8cHg9ekWJz585he9siNY
 mfcuaLh5onWiBRsfqo4RXg03X4E3c/U+Q3oqe405O3TZkK2LOZMjkPE1ijDdTej6
 V9WhCTCRGuJA01sKgFuuwFJxJRjIROE29FPgRQP9EvLtEITIxLbHMFZRYKpYh143
 EhNwzQQwwPg/L4/m1qmWfC3L+Z7qTm6EQhOnpyzxlKxyX7qXIjBHi6WvErcDeJ3F
 pS7v1fwcZxctrh7PrKwhXSrkbMmd5J3p5qI/MrCtGEKWNXk+rv6AC0n4gcXvpJ/v
 wL0OTyik9pwA8V0XPQcuWvQXmrm8vR2XvMok6gXkHB1jCfzYAwJsrHQbop4pyCFe
 U3HU46x0g7UFXY7jUjztD8YNIT1+B+ducetCCGAhI97HiQrSsqSvgvPFZNle7Cef
 Oheab4iIs1zUblNrVzyGCQmK42ankypxPbfrrtvLi7SFrLRAGXeWeqDf1RXJnt5b
 xrOqCe1hgXR4RJrkTPWiiQindLlhDuywfa+Q1Y5fYZatsTtgceE/HIOg80x4pPgR
 4Ip7hW9lsjoDckpu0bC0bvYiqhrYM1eztpUToYdy7FeOkQKkPHO9xm/m1tHbqzmi
 bF3hkBo6bLByXiY/ZXzrQGrErJ6OTdNVpsR1vYjoaycrQt6wznI=
 =hq3i
 -----END PGP SIGNATURE-----

Merge tag 'xfs-5.17-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull more xfs irix ioctl housecleaning from Darrick Wong:
 "Withdraw the XFS_IOC_ALLOCSP* and XFS_IOC_FREESP* ioctl definitions.

  This is the third and final of a series of small pull requests that
  perform some long overdue housecleaning of XFS ioctls. This time,
  we're withdrawing all variants of the ALLOCSP and FREESP ioctls from
  XFS' userspace API. This might be a little premature since we've only
  just removed the functionality, but as I pointed out in the last pull
  request, nobody (including fstests) noticed that it was broken for 20
  years.

  In response to the patch, we received a single comment from someone
  who stated that they 'augment' the ioctl for their own purposes, but
  otherwise acquiesced to the withdrawal. I still want to try to clobber
  these old ioctl definitions in 5.17.

  So remove the header definitions for these ioctls. The just-removed
  implementation has allowed callers to read stale disk contents for
  more than **21 years** and nobody noticed or complained, which implies
  a lack of users aside from exploit programs"

* tag 'xfs-5.17-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
  xfs: remove the XFS_IOC_{ALLOC,FREE}SP* definitions
2022-01-21 08:51:48 +02:00
Linus Torvalds
12a8fb20f1 Withdraw the ioctl definition for the FSSETDM ioctl.
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmHlpbEACgkQ+H93GTRK
 tOs8MBAAjOyUswNqVMYgMB6eww7oT8j54jGdTmo+d+N2hIoX4OAV6GdCI6te/7DE
 yz6TtzbQ9fs9lDYsdRsMjfwr18R8N1m0D23cpFSJ6qq6e2NJi0mqVwmC8mPRNAJH
 68yL0p6O4Tk5jj7kae+zsv50nsSANXclfoHjsZQ0DGOuGagmPkNVqT82KIC4n3dn
 aw66xhuaiLLJE+4boLe4NexRVBbyOuHQ2uB7xUnKwc9tHvjAf8EFCIhUV1wp0qZf
 CfA2wg8+Jzwrqz/gVRKUZOjz7LeIY6E2qCBrA+DATv2dcv7QhmvGHaQ9OkrvIE72
 CbvI92IhvOcKFzpfMrRYGhOh7KE6SkxLGqsAXgnjPoFQkCDudgCaExBO96RMMd6u
 cX43mXWZbUl++Sh2GhPD/xkiskLRZFjiHJbKBX/5nwjU2BzTHQY/7Jy07fIkR4c4
 IrkKgiXfSJT4j/KeAMkBpZ7THMjRMSUgwliSWHL0QWUz5Bou8WRnHUl8CMsu9vDJ
 fYeekXDQYuAX+UrcsDlbA0UukigOLSIZiQTAEgSbIkd/+Zb6U6e0IF7pTTZJ9uFs
 bndLFYqZtEAySDrMCBM+W8VYmR48EDxfN8xsdS1kbZIqEdNhmkEMj9tMf0rs+FRi
 lo1vMi08O7VcuyiyNrKs0e1d1Gkd2jwmwIskSQweslP5BbfPzRE=
 =d+fT
 -----END PGP SIGNATURE-----

Merge tag 'xfs-5.17-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs ioctl housecleaning from Darrick Wong:
 "This is the first of a series of small pull requests that perform some
  long overdue housecleaning of XFS ioctls. This first pull request
  removes the FSSETDM ioctl, which was used to set DMAPI event
  attributes on XFS files. The DMAPI support has never been merged
  upstream and the implementation of FSSETDM itself was removed two
  years ago, so let's withdraw it completely.

   - Withdraw the ioctl definition for the FSSETDM ioctl"

* tag 'xfs-5.17-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
  xfs: remove the XFS_IOC_FSSETDM definitions
2022-01-21 08:44:07 +02:00
Darrick J. Wong
b3bb9413e7 xfs: remove the XFS_IOC_{ALLOC,FREE}SP* definitions
Now that we've made these ioctls defunct, move them from xfs_fs.h to
xfs_ioctl.c, which effectively removes them from the publicly supported
ioctl interfaces for XFS.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
2022-01-17 09:17:11 -08:00
Darrick J. Wong
9dec0368b9 xfs: remove the XFS_IOC_FSSETDM definitions
Remove the definitions for these ioctls, since the functionality (and,
weirdly, the 32-bit compat ioctl definitions) were removed from the
kernel in November 2019.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-01-17 09:16:40 -08:00
Linus Torvalds
3acbdbf42e dax + libnvdimm for v5.17
- Simplify the dax_operations API
   - Eliminate bdev_dax_pgoff() in favor of the filesystem maintaining
     and applying a partition offset to all its DAX iomap operations.
   - Remove wrappers and device-mapper stacked callbacks for
     ->copy_from_iter() and ->copy_to_iter() in favor of moving
     block_device relative offset responsibility to the
     dax_direct_access() caller.
   - Remove the need for an @bdev in filesystem-DAX infrastructure
   - Remove unused uio helpers copy_from_iter_flushcache() and
     copy_mc_to_iter() as only the non-check_copy_size() versions are
     used for DAX.
 - Prepare XFS for the pending (next merge window) DAX+reflink support
 - Remove deprecated DEV_DAX_PMEM_COMPAT support
 - Cleanup a straggling misuse of the GUID api
 
 Tags offered after the branch was cut:
 Reviewed-by: Mike Snitzer <snitzer@redhat.com>
 Link: https://lore.kernel.org/r/Ydb/3P+8nvjCjYfO@redhat.com
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQSbo+XnGs+rwLz9XGXfioYZHlFsZwUCYd3dTAAKCRDfioYZHlFs
 Z//UAP9zetoTE+O7zJG7CXja4jSopSadbdbh6QKSXaqfKBPvQQD+N4US3wA2bGv8
 f/qCY62j2Hj3hUTGHs9RvTyw3JsSYAA=
 =QvDs
 -----END PGP SIGNATURE-----

Merge tag 'libnvdimm-for-5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull dax and libnvdimm updates from Dan Williams:
 "The bulk of this is a rework of the dax_operations API after
  discovering the obstacles it posed to the work-in-progress DAX+reflink
  support for XFS and other copy-on-write filesystem mechanics.

  Primarily the need to plumb a block_device through the API to handle
  partition offsets was a sticking point and Christoph untangled that
  dependency in addition to other cleanups to make landing the
  DAX+reflink support easier.

  The DAX_PMEM_COMPAT option has been around for 4 years and not only
  are distributions shipping userspace that understand the current
  configuration API, but some are not even bothering to turn this option
  on anymore, so it seems a good time to remove it per the deprecation
  schedule. Recall that this was added after the device-dax subsystem
  moved from /sys/class/dax to /sys/bus/dax for its sysfs organization.
  All recent functionality depends on /sys/bus/dax.

  Some other miscellaneous cleanups and reflink prep patches are
  included as well.

  Summary:

   - Simplify the dax_operations API:

      - Eliminate bdev_dax_pgoff() in favor of the filesystem
        maintaining and applying a partition offset to all its DAX iomap
        operations.

      - Remove wrappers and device-mapper stacked callbacks for
        ->copy_from_iter() and ->copy_to_iter() in favor of moving
        block_device relative offset responsibility to the
        dax_direct_access() caller.

      - Remove the need for an @bdev in filesystem-DAX infrastructure

      - Remove unused uio helpers copy_from_iter_flushcache() and
        copy_mc_to_iter() as only the non-check_copy_size() versions are
        used for DAX.

   - Prepare XFS for the pending (next merge window) DAX+reflink support

   - Remove deprecated DEV_DAX_PMEM_COMPAT support

   - Cleanup a straggling misuse of the GUID api"

* tag 'libnvdimm-for-5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (38 commits)
  iomap: Fix error handling in iomap_zero_iter()
  ACPI: NFIT: Import GUID before use
  dax: remove the copy_from_iter and copy_to_iter methods
  dax: remove the DAXDEV_F_SYNC flag
  dax: simplify dax_synchronous and set_dax_synchronous
  uio: remove copy_from_iter_flushcache() and copy_mc_to_iter()
  iomap: turn the byte variable in iomap_zero_iter into a ssize_t
  memremap: remove support for external pgmap refcounts
  fsdax: don't require CONFIG_BLOCK
  iomap: build the block based code conditionally
  dax: fix up some of the block device related ifdefs
  fsdax: shift partition offset handling into the file systems
  dax: return the partition offset from fs_dax_get_by_bdev
  iomap: add a IOMAP_DAX flag
  xfs: pass the mapping flags to xfs_bmbt_to_iomap
  xfs: use xfs_direct_write_iomap_ops for DAX zeroing
  xfs: move dax device handling into xfs_{alloc,free}_buftarg
  ext4: cleanup the dax handling in ext4_fill_super
  ext2: cleanup the dax handling in ext2_fill_super
  fsdax: decouple zeroing from the iomap buffered I/O code
  ...
2022-01-12 15:46:11 -08:00
Christoph Hellwig
740fd671e0 xfs: pass the mapping flags to xfs_bmbt_to_iomap
To prepare for looking at the IOMAP_DAX flag in xfs_bmbt_to_iomap pass in
the input mapping flags to xfs_bmbt_to_iomap.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Link: https://lore.kernel.org/r/20211129102203.2243509-24-hch@lst.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-12-04 08:58:53 -08:00
Yang Xu
a1de97fe29 xfs: Fix the free logic of state in xfs_attr_node_hasname
When testing xfstests xfs/126 on lastest upstream kernel, it will hang on some machine.
Adding a getxattr operation after xattr corrupted, I can reproduce it 100%.

The deadlock as below:
[983.923403] task:setfattr        state:D stack:    0 pid:17639 ppid: 14687 flags:0x00000080
[  983.923405] Call Trace:
[  983.923410]  __schedule+0x2c4/0x700
[  983.923412]  schedule+0x37/0xa0
[  983.923414]  schedule_timeout+0x274/0x300
[  983.923416]  __down+0x9b/0xf0
[  983.923451]  ? xfs_buf_find.isra.29+0x3c8/0x5f0 [xfs]
[  983.923453]  down+0x3b/0x50
[  983.923471]  xfs_buf_lock+0x33/0xf0 [xfs]
[  983.923490]  xfs_buf_find.isra.29+0x3c8/0x5f0 [xfs]
[  983.923508]  xfs_buf_get_map+0x4c/0x320 [xfs]
[  983.923525]  xfs_buf_read_map+0x53/0x310 [xfs]
[  983.923541]  ? xfs_da_read_buf+0xcf/0x120 [xfs]
[  983.923560]  xfs_trans_read_buf_map+0x1cf/0x360 [xfs]
[  983.923575]  ? xfs_da_read_buf+0xcf/0x120 [xfs]
[  983.923590]  xfs_da_read_buf+0xcf/0x120 [xfs]
[  983.923606]  xfs_da3_node_read+0x1f/0x40 [xfs]
[  983.923621]  xfs_da3_node_lookup_int+0x69/0x4a0 [xfs]
[  983.923624]  ? kmem_cache_alloc+0x12e/0x270
[  983.923637]  xfs_attr_node_hasname+0x6e/0xa0 [xfs]
[  983.923651]  xfs_has_attr+0x6e/0xd0 [xfs]
[  983.923664]  xfs_attr_set+0x273/0x320 [xfs]
[  983.923683]  xfs_xattr_set+0x87/0xd0 [xfs]
[  983.923686]  __vfs_removexattr+0x4d/0x60
[  983.923688]  __vfs_removexattr_locked+0xac/0x130
[  983.923689]  vfs_removexattr+0x4e/0xf0
[  983.923690]  removexattr+0x4d/0x80
[  983.923693]  ? __check_object_size+0xa8/0x16b
[  983.923695]  ? strncpy_from_user+0x47/0x1a0
[  983.923696]  ? getname_flags+0x6a/0x1e0
[  983.923697]  ? _cond_resched+0x15/0x30
[  983.923699]  ? __sb_start_write+0x1e/0x70
[  983.923700]  ? mnt_want_write+0x28/0x50
[  983.923701]  path_removexattr+0x9b/0xb0
[  983.923702]  __x64_sys_removexattr+0x17/0x20
[  983.923704]  do_syscall_64+0x5b/0x1a0
[  983.923705]  entry_SYSCALL_64_after_hwframe+0x65/0xca
[  983.923707] RIP: 0033:0x7f080f10ee1b

When getxattr calls xfs_attr_node_get function, xfs_da3_node_lookup_int fails with EFSCORRUPTED in
xfs_attr_node_hasname because we have use blocktrash to random it in xfs/126. So it
free state in internal and xfs_attr_node_get doesn't do xfs_buf_trans release job.

Then subsequent removexattr will hang because of it.

This bug was introduced by kernel commit 07120f1abd ("xfs: Add xfs_has_attr and subroutines").
It adds xfs_attr_node_hasname helper and said caller will be responsible for freeing the state
in this case. But xfs_attr_node_hasname will free state itself instead of caller if
xfs_da3_node_lookup_int fails.

Fix this bug by moving the step of free state into caller.

Also, use "goto error/out" instead of returning error directly in xfs_attr_node_addname_find_attr and
xfs_attr_node_removename_setup function because we should free state ourselves.

Fixes: 07120f1abd ("xfs: Add xfs_has_attr and subroutines")
Signed-off-by: Yang Xu <xuyang2018.jy@fujitsu.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-11-24 10:06:02 -08:00
Darrick J. Wong
4a6b35b3b3 xfs: sync xfs_btree_split macros with userspace libxfs
Sync this one last bit of discrepancy between kernel and userspace
libxfs.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
2021-11-11 09:13:39 -08:00
Eric Sandeen
29f11fce21 xfs: #ifdef out perag code for userspace
The xfs_perag structure and initialization is unused in userspace,
so #ifdef it out with __KERNEL__ to facilitate the xfsprogs sync
and build.

Signed-off-by: Eric Sandeen <esandeen@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-11-10 09:37:38 -08:00
Yang Guang
5b068aadf6 xfs: use swap() to make dabtree code cleaner
Use the macro 'swap()' defined in 'include/linux/minmax.h' to avoid
opencoding it.

Reported-by: Zeal Robot <zealci@zte.com.cn>
Signed-off-by: Yang Guang <yang.guang5@zte.com.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-11-08 11:23:25 -08:00
Darrick J. Wong
c04c51c524 xfs: remove unused parameter from refcount code
The owner info parameter is always NULL, so get rid of the parameter.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
2021-10-22 16:04:36 -07:00
Darrick J. Wong
b3b5ff412a xfs: reduce the size of struct xfs_extent_free_item
We only use EFIs to free metadata blocks -- not regular data/attr fork
extents.  Remove all the fields that we never use, for a net reduction
of 16 bytes.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
2021-10-22 16:04:36 -07:00
Darrick J. Wong
c201d9ca53 xfs: rename xfs_bmap_add_free to xfs_free_extent_later
xfs_bmap_add_free isn't a block mapping function; it schedules deferred
freeing operations for a later point in a compound transaction chain.
While it's primarily used by bunmapi, its use has expanded beyond that.
Move it to xfs_alloc.c and rename the function since it's now general
freeing functionality.  Bring the slab cache bits in line with the
way we handle the other intent items.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
2021-10-22 16:04:36 -07:00
Darrick J. Wong
f3c799c22c xfs: create slab caches for frequently-used deferred items
Create slab caches for the high-level structures that coordinate
deferred intent items, since they're used fairly heavily.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
2021-10-22 16:04:36 -07:00
Darrick J. Wong
9e253954ac xfs: compact deferred intent item structures
Rearrange these structs to reduce the amount of unused padding bytes.
This saves eight bytes for each of the three structs changed here, which
means they're now all (rmap/bmap are 64 bytes, refc is 32 bytes) even
powers of two.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
2021-10-22 16:04:36 -07:00
Darrick J. Wong
182696fb02 xfs: rename _zone variables to _cache
Now that we've gotten rid of the kmem_zone_t typedef, rename the
variables to _cache since that's what they are.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
2021-10-22 16:04:20 -07:00
Darrick J. Wong
e7720afad0 xfs: remove kmem_zone typedef
Remove these typedefs by referencing kmem_cache directly.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
2021-10-22 16:00:31 -07:00
Darrick J. Wong
9fa47bdcd3 xfs: use separate btree cursor cache for each btree type
Now that we have the infrastructure to track the max possible height of
each btree type, we can create a separate slab cache for cursors of each
type of btree.  For smaller indices like the free space btrees, this
means that we can pack more cursors into a slab page, improving slab
utilization.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-10-19 11:45:16 -07:00
Darrick J. Wong
0ed5f7356d xfs: compute absolute maximum nlevels for each btree type
Add code for all five btree types so that we can compute the absolute
maximum possible btree height for each btree type.  This is a setup for
the next patch, which makes every btree type have its own cursor cache.

The functions are exported so that we can have xfs_db report the
absolute maximum btree heights for each btree type, rather than making
everyone run their own ad-hoc computations.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-10-19 11:45:16 -07:00
Darrick J. Wong
bc8883eb77 xfs: kill XFS_BTREE_MAXLEVELS
Nobody uses this symbol anymore, so kill it.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-10-19 11:45:16 -07:00
Darrick J. Wong
9ec691205e xfs: compute the maximum height of the rmap btree when reflink enabled
Instead of assuming that the hardcoded XFS_BTREE_MAXLEVELS value is big
enough to handle the maximally tall rmap btree when all blocks are in
use and maximally shared, let's compute the maximum height assuming the
rmapbt consumes as many blocks as possible.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-10-19 11:45:16 -07:00
Darrick J. Wong
1b236ad7ba xfs: clean up xfs_btree_{calc_size,compute_maxlevels}
During review of the next patch, Dave remarked that he found these two
btree geometry calculation functions lacking in documentation and that
they performed more work than was really necessary.

These functions take the same parameters and have nearly the same logic;
the only real difference is in the return values.  Reword the function
comment to make it clearer what each function does, and move them to be
adjacent to reinforce their relation.

Clean up both of them to stop opencoding the howmany functions, stop
using the uint typedefs, and make them both support computations for
more than 2^32 leaf records, since we're going to need all of the above
for files with large data forks and large rmap btrees.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-10-19 11:45:16 -07:00
Darrick J. Wong
b74e15d720 xfs: compute maximum AG btree height for critical reservation calculation
Compute the actual maximum AG btree height for deciding if a per-AG
block reservation is critically low.  This only affects the sanity check
condition, since we /generally/ will trigger on the 10% threshold.  This
is a long-winded way of saying that we're removing one more usage of
XFS_BTREE_MAXLEVELS.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-10-19 11:45:15 -07:00
Darrick J. Wong
7cb3efb4cf xfs: rename m_ag_maxlevels to m_allocbt_maxlevels
Years ago when XFS was thought to be much more simple, we introduced
m_ag_maxlevels to specify the maximum btree height of per-AG btrees for
a given filesystem mount.  Then we observed that inode btrees don't
actually have the same height and split that off; and now we have rmap
and refcount btrees with much different geometries and separate
maxlevels variables.

The 'ag' part of the name doesn't make much sense anymore, so rename
this to m_alloc_maxlevels to reinforce that this is the maximum height
of the *free space* btrees.  This sets us up for the next patch, which
will add a variable to track the maximum height of all AG btrees.

(Also take the opportunity to improve adjacent comments and fix minor
style problems.)

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-10-19 11:45:15 -07:00
Darrick J. Wong
c940a0c54a xfs: dynamically allocate cursors based on maxlevels
To support future btree code, we need to be able to size btree cursors
dynamically for very large btrees.  Switch the maxlevels computation to
use the precomputed values in the superblock, and create cursors that
can handle a certain height.  For now, we retain the btree cursor cache
that can handle up to 9-level btrees, though a subsequent patch
introduces separate caches for each btree type, where each cache's
objects will be exactly tall enough to handle the specific btree type.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-10-19 11:45:15 -07:00
Darrick J. Wong
c0643f6fdd xfs: encode the max btree height in the cursor
Encode the maximum btree height in the cursor, since we're soon going to
allow smaller cursors for AG btrees and larger cursors for file btrees.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-10-19 11:45:15 -07:00
Darrick J. Wong
56370ea6e5 xfs: refactor btree cursor allocation function
Refactor btree allocation to a common helper.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-10-19 11:45:15 -07:00
Darrick J. Wong
69724d920e xfs: rearrange xfs_btree_cur fields for better packing
Reduce the size of the btree cursor structure some more by rearranging
fields to eliminate unused space.  While we're at it, fix the ragged
indentation and a spelling error.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-10-19 11:45:14 -07:00
Darrick J. Wong
6ca444cfd6 xfs: prepare xfs_btree_cur for dynamic cursor heights
Split out the btree level information into a separate struct and put it
at the end of the cursor structure as a VLA.  Files with huge data forks
(and in the future, the realtime rmap btree) will require the ability to
support many more levels than a per-AG btree cursor, which means that
we're going to create per-btree type cursor caches to conserve memory
for the more common case.

Note that a subsequent patch actually introduces dynamic cursor heights.
This one merely rearranges the structure to prepare for that.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-10-19 11:45:14 -07:00
Darrick J. Wong
efb79ea310 xfs: reduce the size of nr_ops for refcount btree cursors
We're never going to run more than 4 billion btree operations on a
refcount cursor, so shrink the field to an unsigned int to reduce the
structure size.  Fix whitespace alignment too.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-10-19 11:45:14 -07:00
Darrick J. Wong
cc41174047 xfs: remove xfs_btree_cur.bc_blocklog
This field isn't used by anyone, so get rid of it.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-10-19 11:45:13 -07:00
Brian Foster
892a666faf xfs: fix perag reference leak on iteration race with growfs
The for_each_perag*() set of macros are hacky in that some (i.e.
those based on sb_agcount) rely on the assumption that perag
iteration terminates naturally with a NULL perag at the specified
end_agno. Others allow for the final AG to have a valid perag and
require the calling function to clean up any potential leftover
xfs_perag reference on termination of the loop.

Aside from providing a subtly inconsistent interface, the former
variant is racy with growfs because growfs can create discoverable
post-eofs perags before the final superblock update that completes
the grow operation and increases sb_agcount. This leads to the
following assert failure (reproduced by xfs/104) in the perag free
path during unmount:

 XFS: Assertion failed: atomic_read(&pag->pag_ref) == 0, file: fs/xfs/libxfs/xfs_ag.c, line: 195

This occurs because one of the many for_each_perag() loops in the
code that is expected to terminate with a NULL pag (and thus has no
post-loop xfs_perag_put() check) raced with a growfs and found a
non-NULL post-EOFS perag, but terminated naturally based on the
end_agno check without releasing the post-EOFS perag.

Rework the iteration logic to lift the agno check from the main for
loop conditional to the iteration helper function. The for loop now
purely terminates on a NULL pag and xfs_perag_next() avoids taking a
reference to any perag beyond end_agno in the first place.

Fixes: f250eedcf7 ("xfs: make for_each_perag... a first class citizen")
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-10-19 11:45:13 -07:00
Brian Foster
8ed004eb9d xfs: terminate perag iteration reliably on agcount
The for_each_perag_from() iteration macro relies on sb_agcount to
process every perag currently within EOFS from a given starting
point. It's perfectly valid to have perag structures beyond
sb_agcount, however, such as if a growfs is in progress. If a perag
loop happens to race with growfs in this manner, it will actually
attempt to process the post-EOFS perag where ->pag_agno ==
sb_agcount. This is reproduced by xfs/104 and manifests as the
following assert failure in superblock write verifier context:

 XFS: Assertion failed: agno < mp->m_sb.sb_agcount, file: fs/xfs/libxfs/xfs_types.c, line: 22

Update the corresponding macro to only process perags that are
within the current sb_agcount.

Fixes: 58d43a7e32 ("xfs: pass perags around in fsmap data dev functions")
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-10-19 11:45:13 -07:00
Brian Foster
f1788b5e5e xfs: rename the next_agno perag iteration variable
Rename the next_agno variable to be consistent across the several
iteration macros and shorten line length.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-10-19 11:45:13 -07:00
Brian Foster
bf2307b195 xfs: fold perag loop iteration logic into helper function
Fold the loop iteration logic into a helper in preparation for
further fixups. No functional change in this patch.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-10-19 11:45:12 -07:00
Christoph Hellwig
11a83f4c39 xfs: remove the xfs_dqblk_t typedef
Remove the few leftover instances of the xfs_dinode_t typedef.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-10-14 09:19:33 -07:00
Christoph Hellwig
ed67ebfd7c xfs: remove the xfs_dsb_t typedef
Remove the few leftover instances of the xfs_dinode_t typedef.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-10-14 09:19:33 -07:00
Christoph Hellwig
de38db7239 xfs: remove the xfs_dinode_t typedef
Remove the few leftover instances of the xfs_dinode_t typedef.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-10-14 09:19:33 -07:00
Darrick J. Wong
4c175af2cc xfs: check that bc_nlevels never overflows
Warn if we ever bump nlevels higher than the allowed maximum cursor
height.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-10-14 09:19:32 -07:00
Darrick J. Wong
ae127f087d xfs: remove xfs_btree_cur_t typedef
Get rid of this old typedef before we start changing other things.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-10-14 09:19:32 -07:00
Darrick J. Wong
78e8ec83a4 xfs: fix maxlevels comparisons in the btree staging code
The btree geometry computation function has an off-by-one error in that
it does not allow maximally tall btrees (nlevels == XFS_BTREE_MAXLEVELS).
This can result in repairs failing unnecessarily on very fragmented
filesystems.  Subsequent patches to remove MAXLEVELS usage in favor of
the per-btree type computations will make this a much more likely
occurrence.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-10-14 09:19:31 -07:00
Darrick J. Wong
512edfac85 xfs: port the defer ops capture and continue to resource capture
When log recovery tries to recover a transaction that had log intent
items attached to it, it has to save certain parts of the transaction
state (reservation, dfops chain, inodes with no automatic unlock) so
that it can finish single-stepping the recovered transactions before
finishing the chains.

This is done with the xfs_defer_ops_capture and xfs_defer_ops_continue
functions.  Right now they open-code this functionality, so let's port
this to the formalized resource capture structure that we introduced in
the previous patch.  This enables us to hold up to two inodes and two
buffers during log recovery, the same way we do for regular runtime.

With this patch applied, we'll be ready to support atomic extent swap
which holds two inodes; and logged xattrs which holds one inode and one
xattr leaf buffer.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
2021-10-14 09:19:31 -07:00
Darrick J. Wong
c5db9f937b xfs: formalize the process of holding onto resources across a defer roll
Transaction users are allowed to flag up to two buffers and two inodes
for ownership preservation across a deferred transaction roll.  Hoist
the variables and code responsible for this out of xfs_defer_trans_roll
so that we can use it for the defer capture mechanism.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
2021-10-14 09:19:31 -07:00
Dave Chinner
9343ee7690 xfs: convert bp->b_bn references to xfs_buf_daddr()
Stop directly referencing b_bn in code outside the buffer cache, as
b_bn is supposed to be used only as an internal cache index.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:15 -07:00
Dave Chinner
04fcad80cd xfs: introduce xfs_buf_daddr()
Introduce a helper function xfs_buf_daddr() to extract the disk
address of the buffer from the struct xfs_buf. This will replace
direct accesses to bp->b_bn and bp->b_maps[0].bm_bn, as well as
the XFS_BUF_ADDR() macro.

This patch introduces the helper function and replaces all uses of
XFS_BUF_ADDR() as this is just a simple sed replacement.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:14 -07:00
Dave Chinner
cf28e17c91 xfs: kill xfs_sb_version_has_v3inode()
All callers to xfs_dinode_good_version() and XFS_DINODE_SIZE() in
both the kernel and userspace have a xfs_mount structure available
which means they can use mount features checks instead looking
directly are the superblock.

Convert these functions to take a mount and use a xfs_has_v3inodes()
check and move it out of the libxfs/xfs_format.h file as it really
doesn't have anything to do with the definition of the on-disk
format.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:14 -07:00
Dave Chinner
d6837c1aab xfs: introduce xfs_sb_is_v5 helper
Rather than open coding XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5
checks everywhere, add a simple wrapper to encapsulate this and make
the code easier to read.

This allows us to remove the xfs_sb_version_has_v3inode() wrapper
which is only used in xfs_format.h now and is just a version number
check.

There are a couple of places where we should be checking the mount
feature bits rather than the superblock version (e.g. remount), so
those are converted to use xfs_has_crc(mp) instead.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:14 -07:00
Dave Chinner
2beb7b50dd xfs: remove unused xfs_sb_version_has wrappers
The vast majority of these wrappers are now unused. Remove them
leaving just the small subset of wrappers that are used to either
add feature bits or make the mount features field setup code
simpler.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:14 -07:00
Dave Chinner
ebd9027d08 xfs: convert xfs_sb_version_has checks to use mount features
This is a conversion of the remaining xfs_sb_version_has..(sbp)
checks to use xfs_has_..(mp) feature checks.

This was largely done with a vim replacement macro that did:

:0,$s/xfs_sb_version_has\(.*\)&\(.*\)->m_sb/xfs_has_\1\2/g<CR>

A couple of other variants were also used, and the rest touched up
by hand.

$ size -t fs/xfs/built-in.a
	   text    data     bss     dec     hex filename
before	1127533  311352     484 1439369  15f689 (TOTALS)
after	1125360  311352     484 1437196  15ee0c (TOTALS)

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:14 -07:00
Dave Chinner
fe08cc5044 xfs: open code sb verifier feature checks
The superblock verifiers are one of the last places that use the sb
version functions to do feature checks. This are all quite simple
uses, and there aren't many of them so open code them all.

Also, move the good version number check into xfs_sb.c instead of it
being an inline function in xfs_format.h

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:13 -07:00
Dave Chinner
03288b1909 xfs: convert xfs_fs_geometry to use mount feature checks
Reporting filesystem features to userspace is currently superblock
based. Now we have a general mount-based feature infrastructure,
switch to using the xfs_mount rather than the superblock directly.

This reduces the size of the function by over 300 bytes.

$ size -t fs/xfs/built-in.a
	text    data     bss     dec     hex filename
before	1127855  311352     484 1439691  15f7cb (TOTALS)
after	1127535  311352     484 1439371  15f68b (TOTALS)

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:13 -07:00
Dave Chinner
75c8c50fa1 xfs: replace XFS_FORCED_SHUTDOWN with xfs_is_shutdown
Remove the shouty macro and instead use the inline function that
matches other state/feature check wrapper naming. This conversion
was done with sed.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:13 -07:00
Dave Chinner
2e973b2cd4 xfs: convert remaining mount flags to state flags
The remaining mount flags kept in m_flags are actually runtime state
flags. These change dynamically, so they really should be updated
atomically so we don't potentially lose an update due to racing
modifications.

Convert these remaining flags to be stored in m_opstate and use
atomic bitops to set and clear the flags. This also adds a couple of
simple wrappers for common state checks - read only and shutdown.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:13 -07:00
Dave Chinner
0560f31a09 xfs: convert mount flags to features
Replace m_flags feature checks with xfs_has_<feature>() calls and
rework the setup code to set flags in m_features.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:12 -07:00
Dave Chinner
38c26bfd90 xfs: replace xfs_sb_version checks with feature flag checks
Convert the xfs_sb_version_hasfoo() to checks against
mp->m_features. Checks of the superblock itself during disk
operations (e.g. in the read/write verifiers and the to/from disk
formatters) are not converted - they operate purely on the
superblock state. Everything else should use the mount features.

Large parts of this conversion were done with sed with commands like
this:

for f in `git grep -l xfs_sb_version_has fs/xfs/*.c`; do
	sed -i -e 's/xfs_sb_version_has\(.*\)(&\(.*\)->m_sb)/xfs_has_\1(\2)/' $f
done

With manual cleanups for things like "xfs_has_extflgbit" and other
little inconsistencies in naming.

The result is ia lot less typing to check features and an XFS binary
size reduced by a bit over 3kB:

$ size -t fs/xfs/built-in.a
	text	   data	    bss	    dec	    hex	filenam
before	1130866  311352     484 1442702  16038e (TOTALS)
after	1127727  311352     484 1439563  15f74b (TOTALS)

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:12 -07:00
Dave Chinner
a1d86e8dec xfs: reflect sb features in xfs_mount
Currently on-disk feature checks require decoding the superblock
fileds and so can be non-trivial. We have almost 400 hundred
individual feature checks in the XFS code, so this is a significant
amount of code. To reduce runtime check overhead, pre-process all
the version flags into a features field in the xfs_mount at mount
time so we can convert all the feature checks to a simple flag
check.

There is also a need to convert the dynamic feature flags to update
the m_features field. This is required for attr, attr2 and quota
features. New xfs_mount based wrappers are added for this.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:12 -07:00
Dave Chinner
e23b55d537 xfs: rework attr2 feature and mount options
The attr2 feature is somewhat unique in that it has both a superblock
feature bit to enable it and mount options to enable and disable it.

Back when it was first introduced in 2005, attr2 was disabled unless
either the attr2 superblock feature bit was set, or the attr2 mount
option was set. If the superblock feature bit was not set but the
mount option was set, then when the first attr2 format inode fork
was created, it would set the superblock feature bit. This is as it
should be - the superblock feature bit indicated the presence of the
attr2 on disk format.

The noattr2 mount option, however, did not affect the superblock
feature bit. If noattr2 was specified, the on-disk superblock
feature bit was ignored and the code always just created attr1
format inode forks.  If neither of the attr2 or noattr2 mounts
option were specified, then the behaviour was determined by the
superblock feature bit.

This was all pretty sane.

Fast foward 3 years, and we are dealing with fallout from the
botched sb_features2 addition and having to deal with feature
mismatches between the sb_features2 and sb_bad_features2 fields. The
attr2 feature bit was one of these flags. The reconciliation was
done well after mount option parsing and, unfortunately, the feature
reconciliation had a bug where it ignored the noattr2 mount option.

For reasons lost to the mists of time, it was decided that resolving
this issue in commit 7c12f29650 ("[XFS] Fix up noattr2 so that it
will properly update the versionnum and features2 fields.") required
noattr2 to clear the superblock attr2 feature bit.  This greatly
complicated the attr2 behaviour and broke rules about feature bits
needing to be set when those specific features are present in the
filesystem.

By complicated, I mean that it introduced problems due to feature
bit interactions with log recovery. All of the superblock feature
bit checks are done prior to log recovery, but if we crash after
removing a feature bit, then on the next mount we see the feature
bit in the unrecovered superblock, only to have it go away after the
log has been replayed.  This means our mount time feature processing
could be all wrong.

Hence you can mount with noattr2, crash shortly afterwards, and
mount again without attr2 or noattr2 and still have attr2 enabled
because the second mount sees attr2 still enabled in the superblock
before recovery runs and removes the feature bit. It's just a mess.

Further, this is all legacy code as the v5 format requires attr2 to
be enabled at all times and it cannot be disabled.  i.e. the noattr2
mount option returns an error when used on v5 format filesystems.

To straighten this all out, this patch reverts the attr2/noattr2
mount option behaviour back to the original behaviour. There is no
reason for disabling attr2 these days, so we will only do this when
the noattr2 mount option is set. This will not remove the superblock
feature bit. The superblock bit will provide the default behaviour
and only track whether attr2 is present on disk or not. The attr2
mount option will enable the creation of attr2 format inode forks,
and if the superblock feature bit is not set it will be added when
the first attr2 inode fork is created.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:11 -07:00
Dave Chinner
51b495eba8 xfs: rename xfs_has_attr()
xfs_has_attr() is poorly named. It has global scope as it is defined
in a header file, but it has no namespace scope that tells us what
it is checking has attributes. It's not even clear what "has_attr"
means, because what it is actually doing is an attribute fork lookup
to see if the attribute exists.

Upcoming patches use this "xfs_has_<foo>" namespace for global
filesystem features, which conflicts with this function.

Rename xfs_has_attr() to xfs_attr_lookup() and make it a static
function, freeing up the "xfs_has_" namespace for global scope
usage.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:11 -07:00
Dave Chinner
8cf07f3dd5 xfs: sb verifier doesn't handle uncached sb buffer
The verifier checks explicitly for bp->b_bn == XFS_SB_DADDR to match
the primary superblock buffer, but the primary superblock is an
uncached buffer and so bp->b_bn is always -1ULL. Hence this never
matches and the CRC error reporting is wholly dependent on the
mount superblock already being populated so CRC feature checks pass
and allow CRC errors to be reported.

Fix this so that the primary superblock CRC error reporting is not
dependent on already having read the superblock into memory.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:11 -07:00
Darrick J. Wong
f93f85f77a xfs: resolve fork names in trace output
Emit whichfork values as text strings in the ftrace output.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
2021-08-19 10:07:10 -07:00
Darrick J. Wong
32816fd792 xfs: constify btree function parameters that are not modified
Constify the rest of the btree functions that take structure and union
pointers and are not supposed to modify them.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-08-18 18:46:02 -07:00
Darrick J. Wong
60e265f7f8 xfs: make the start pointer passed to btree update_lastrec functions const
This btree function is called when updating a record in the rightmost
block of a btree so that we can update the AGF's longest free extent
length field.  Neither parameter is supposed to be updated, so mark them
both const.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-08-18 18:46:02 -07:00
Darrick J. Wong
deb06b9ab6 xfs: make the start pointer passed to btree alloc_block functions const
The @start pointer passed to each per-AG btree type's ->alloc_block
function isn't supposed to be modified, since it's a hint about the
location of the btree block being split that is to be fed to the
allocator, so mark the parameter const.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-08-18 18:46:02 -07:00
Darrick J. Wong
b5a6e5fe0e xfs: make the pointer passed to btree set_root functions const
The pointer passed to each per-AG btree type's ->set_root function isn't
supposed to be modified (that function sets an external pointer to the
root block) so mark them const.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-08-18 18:46:02 -07:00
Darrick J. Wong
22ece4e836 xfs: mark the record passed into xchk_btree functions as const
xchk_btree calls a user-supplied function to validate each btree record
that it finds.  Those functions are not supposed to change the record
data, so mark the parameter const.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-08-18 18:46:01 -07:00
Darrick J. Wong
8e38dc88a6 xfs: make the keys and records passed to btree inorder functions const
The inorder functions are simple predicates, which means that they don't
modify the parameters.  Mark them all const.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-08-18 18:46:01 -07:00
Darrick J. Wong
23825cd148 xfs: mark the record passed into btree init_key functions as const
These functions initialize a key from a record, but they aren't supposed
to modify the record.  Mark it const.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-08-18 18:46:01 -07:00
Darrick J. Wong
159eb69dba xfs: make the record pointer passed to query_range functions const
The query_range functions are supposed to call a caller-supplied
function on each record found in the dataset.  These functions don't
own the memory storing the record, so don't let them change the record.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-08-18 18:46:01 -07:00
Darrick J. Wong
04dcb47482 xfs: make the key parameters to all btree query range functions const
Range query functions are not supposed to modify the query keys that are
being passed in, so mark them all const.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-08-18 18:46:01 -07:00
Darrick J. Wong
d29d557777 xfs: make the key parameters to all btree key comparison functions const
The btree key comparison functions are not allowed to change the keys
that are passed in, so mark them const.  We'll need this for the next
patch, which adds const to the btree range query functions.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-08-18 18:46:00 -07:00
Darrick J. Wong
c02f652986 xfs: make xfs_rtalloc_query_range input parameters const
In commit 8ad560d256, we changed xfs_rtalloc_query_range to constrain
the range of bits in the realtime bitmap file that would actually be
searched.  In commit a3a374bf18, we changed the range again
(incorrectly), leading to the fix in commit d88850bd55, which finally
corrected the range check code.  Unfortunately, the author never noticed
that the function modifies its input parameters, which is a totaly no-no
since none of the other range query functions change their input
parameters.

So, fix this function yet again to stash the upper end of the query
range (i.e. the high key) in a local variable and hope this is the last
time I have to fix my own function.  While we're at it, mark the key
inputs const so nobody makes this mistake again. :(

Fixes: 8ad560d256 ("xfs: strengthen rtalloc query range checks")
Not-fixed-by: a3a374bf18 ("xfs: fix off-by-one error in xfs_rtalloc_query_range")
Not-fixed-by: d88850bd55 ("xfs: fix high key handling in the rt allocator's query_range function")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
2021-08-18 18:46:00 -07:00
Allison Henderson
5e68b4c7fb xfs: Rename __xfs_attr_rmtval_remove
Now that xfs_attr_rmtval_remove is gone, rename __xfs_attr_rmtval_remove
to xfs_attr_rmtval_remove

Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-11 09:12:45 -07:00
Allison Henderson
df0826312a xfs: add attr state machine tracepoints
This is a quick patch to add a new xfs_attr_*_return tracepoints.  We
use these to track when ever a new state is set or -EAGAIN is returned

Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-09 16:16:40 -07:00
Darrick J. Wong
4bc619833f xfs: refactor xfs_iget calls from log intent recovery
Hoist the code from xfs_bui_item_recover that igets an inode and marks
it as being part of log intent recovery.  The next patch will want a
common function.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
2021-08-09 15:57:59 -07:00
Darrick J. Wong
908ce71e54 xfs: allow setting and clearing of log incompat feature flags
Log incompat feature flags in the superblock exist for one purpose: to
protect the contents of a dirty log from replay on a kernel that isn't
prepared to handle those dirty contents.  This means that they can be
cleared if (a) we know the log is clean and (b) we know that there
aren't any other threads in the system that might be setting or relying
upon a log incompat flag.

Therefore, clear the log incompat flags when we've finished recovering
the log, when we're unmounting cleanly, remounting read-only, or
freezing; and provide a function so that subsequent patches can start
using this.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
2021-08-09 15:57:59 -07:00
Dave Chinner
d634525db6 xfs: replace kmem_alloc_large() with kvmalloc()
There is no reason for this wrapper existing anymore. All the places
that use KM_NOFS allocation are within transaction contexts and
hence covered by memalloc_nofs_save/restore contexts. Hence we don't
need any special handling of vmalloc for large IOs anymore and
so special casing this code isn't necessary.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-09 15:57:43 -07:00
Darrick J. Wong
b7df7630cc xfs: fix silly whitespace problems with kernel libxfs
Fix a few whitespace errors such as spaces at the end of the line, etc.
This gets us back to something more closely resembling parity.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-08-09 11:13:17 -07:00
Christoph Hellwig
149e53afc8 xfs: remove the active vs running quota differentiation
These only made a difference when quotaoff supported disabling quota
accounting on a mounted file system, so we can switch everyone to use
a single set of flags and helpers now. Note that the *QUOTA_ON naming
for the helpers is kept as it was the much more commonly used one.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-06 11:05:37 -07:00
Christoph Hellwig
40b52225e5 xfs: remove support for disabling quota accounting on a mounted file system
Disabling quota accounting is hairy, racy code with all kinds of pitfalls.
And it has a very strange mind set, as quota accounting (unlike
enforcement) really is a propery of the on-disk format.  There is no good
use case for supporting this.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-06 11:05:36 -07:00
Linus Torvalds
aa6603266c Fixes for 5.14-rc4:
* Fix a number of coordination bugs relating to cache flushes for
    metadata writeback, cache flushes for multi-buffer log writes, and
    FUA writes for single-buffer log writes.
  * Fix a bug with incorrect replay of attr3 blocks.
  * Fix unnecessary stalls when flushing logs to disk.
  * Fix spoofing problems when recovering realtime bitmap blocks.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmEC2PgACgkQ+H93GTRK
 tOtEvg//XQTcqKgO+60lJzhfgfGD8HsYWGcAc0UW8vu0I6gPNstd/PHKBCYkhT66
 rp0l8CtZhbo3qj2ZJTIDvVxFeeAUcMhAIgU4gJB6OmW6/VV8NJlArfeyaA+85/lV
 lVYD53qBcc0IydDWlRD5oU8T55pqv9hg0W9WkpWrtjxoTlxPX5rDj7yrKEqiQs1M
 IUa5X4Qnwo/C2ATD/t2G3PIM7OxdCJ7YjyrZ27VWWRsUJW8DOqXtJX6HBs+VT9cM
 mh/IeIy60rmKgf2Ag2ZJCvrKnmqXqJFyGjEDzk6gXoqktQyWnUBLhQoyLh5r9UlA
 4ThLGvPwUh5QEFOoo3cpN72X0wUeHcebfh4DgY/G3PeEK4J1CVq1UXLB1a8Si7X4
 qf5ZqfUU4dr6v8C2AIqd9S/H6wm8v84hzA2uXca9tsw67rAcLc6N0rHydlLtn+n8
 DL4PQYcUmn0LGrhIi2t/4ec80SGBf7ad/iDbr3A0K5NsV5kMl8dReg2yCDl9kHM0
 yHFk8zLTKh5fs7fmmJXOORP33YMzstET9L1oKBv9cd9iMlHNUn27o9tpwwa2noM+
 v6E+UCKlRTauj/MTxZITdmNzgGEymgu5bpbb77N24OTF9jf48OEW+cr0ZzgrVYtk
 wGuj9RFGcwneJoWjVPGURu1xBuC1AX9PbqnR9NQXbqmuwd6BINk=
 =pLW3
 -----END PGP SIGNATURE-----

Merge tag 'xfs-5.14-fixes-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs fixes from Darrick Wong:
 "This contains a bunch of bug fixes in XFS.

  Dave and I have been busy the last couple of weeks to find and fix as
  many log recovery bugs as we can find; here are the results so far. Go
  fstests -g recoveryloop! ;)

   - Fix a number of coordination bugs relating to cache flushes for
     metadata writeback, cache flushes for multi-buffer log writes, and
     FUA writes for single-buffer log writes

   - Fix a bug with incorrect replay of attr3 blocks

   - Fix unnecessary stalls when flushing logs to disk

   - Fix spoofing problems when recovering realtime bitmap blocks"

* tag 'xfs-5.14-fixes-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
  xfs: prevent spoofing of rtbitmap blocks when recovering buffers
  xfs: limit iclog tail updates
  xfs: need to see iclog flags in tracing
  xfs: Enforce attr3 buffer recovery order
  xfs: logging the on disk inode LSN can make it go backwards
  xfs: avoid unnecessary waits in xfs_log_force_lsn()
  xfs: log forces imply data device cache flushes
  xfs: factor out forced iclog flushes
  xfs: fix ordering violation between cache flushes and tail updates
  xfs: fold __xlog_state_release_iclog into xlog_state_release_iclog
  xfs: external logs need to flush data device
  xfs: flush data dev on external log write
2021-08-01 12:07:23 -07:00
Dave Chinner
32baa63d82 xfs: logging the on disk inode LSN can make it go backwards
When we log an inode, we format the "log inode" core and set an LSN
in that inode core. We do that via xfs_inode_item_format_core(),
which calls:

	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);

to format the log inode. It writes the LSN from the inode item into
the log inode, and if recovery decides the inode item needs to be
replayed, it recovers the log inode LSN field and writes it into the
on disk inode LSN field.

Now this might seem like a reasonable thing to do, but it is wrong
on multiple levels. Firstly, if the item is not yet in the AIL,
item->li_lsn is zero. i.e. the first time the inode it is logged and
formatted, the LSN we write into the log inode will be zero. If we
only log it once, recovery will run and can write this zero LSN into
the inode.

This means that the next time the inode is logged and log recovery
runs, it will *always* replay changes to the inode regardless of
whether the inode is newer on disk than the version in the log and
that violates the entire purpose of recording the LSN in the inode
at writeback time (i.e. to stop it going backwards in time on disk
during recovery).

Secondly, if we commit the CIL to the journal so the inode item
moves to the AIL, and then relog the inode, the LSN that gets
stamped into the log inode will be the LSN of the inode's current
location in the AIL, not it's age on disk. And it's not the LSN that
will be associated with the current change. That means when log
recovery replays this inode item, the LSN that ends up on disk is
the LSN for the previous changes in the log, not the current
changes being replayed. IOWs, after recovery the LSN on disk is not
in sync with the LSN of the modifications that were replayed into
the inode. This, again, violates the recovery ordering semantics
that on-disk writeback LSNs provide.

Hence the inode LSN in the log dinode is -always- invalid.

Thirdly, recovery actually has the LSN of the log transaction it is
replaying right at hand - it uses it to determine if it should
replay the inode by comparing it to the on-disk inode's LSN. But it
doesn't use that LSN to stamp the LSN into the inode which will be
written back when the transaction is fully replayed. It uses the one
in the log dinode, which we know is always going to be incorrect.

Looking back at the change history, the inode logging was broken by
commit 93f958f9c4 ("xfs: cull unnecessary icdinode fields") way
back in 2016 by a stupid idiot who thought he knew how this code
worked. i.e. me. That commit replaced an in memory di_lsn field that
was updated only at inode writeback time from the inode item.li_lsn
value - and hence always contained the same LSN that appeared in the
on-disk inode - with a read of the inode item LSN at inode format
time. CLearly these are not the same thing.

Before 93f958f9c4, the log recovery behaviour was irrelevant,
because the LSN in the log inode always matched the on-disk LSN at
the time the inode was logged, hence recovery of the transaction
would never make the on-disk LSN in the inode go backwards or get
out of sync.

A symptom of the problem is this, caught from a failure of
generic/482. Before log recovery, the inode has been allocated but
never used:

xfs_db> inode 393388
xfs_db> p
core.magic = 0x494e
core.mode = 0
....
v3.crc = 0x99126961 (correct)
v3.change_count = 0
v3.lsn = 0
v3.flags2 = 0
v3.cowextsize = 0
v3.crtime.sec = Thu Jan  1 10:00:00 1970
v3.crtime.nsec = 0

After log recovery:

xfs_db> p
core.magic = 0x494e
core.mode = 020444
....
v3.crc = 0x23e68f23 (correct)
v3.change_count = 2
v3.lsn = 0
v3.flags2 = 0
v3.cowextsize = 0
v3.crtime.sec = Thu Jul 22 17:03:03 2021
v3.crtime.nsec = 751000000
...

You can see that the LSN of the on-disk inode is 0, even though it
clearly has been written to disk. I point out this inode, because
the generic/482 failure occurred because several adjacent inodes in
this specific inode cluster were not replayed correctly and still
appeared to be zero on disk when all the other metadata (inobt,
finobt, directories, etc) indicated they should be allocated and
written back.

The fix for this is two-fold. The first is that we need to either
revert the LSN changes in 93f958f9c4 or stop logging the inode LSN
altogether. If we do the former, log recovery does not need to
change but we add 8 bytes of memory per inode to store what is
largely a write-only inode field. If we do the latter, log recovery
needs to stamp the on-disk inode in the same manner that inode
writeback does.

I prefer the latter, because we shouldn't really be trying to log
and replay changes to the on disk LSN as the on-disk value is the
canonical source of the on-disk version of the inode. It also
matches the way we recover buffer items - we create a buf_log_item
that carries the current recovery transaction LSN that gets stamped
into the buffer by the write verifier when it gets written back
when the transaction is fully recovered.

However, this might break log recovery on older kernels even more,
so I'm going to simply ignore the logged value in recovery and stamp
the on-disk inode with the LSN of the transaction being recovered
that will trigger writeback on transaction recovery completion. This
will ensure that the on-disk inode LSN always reflects the LSN of
the last change that was written to disk, regardless of whether it
comes from log recovery or runtime writeback.

Fixes: 93f958f9c4 ("xfs: cull unnecessary icdinode fields")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-07-29 09:27:29 -07:00
Linus Torvalds
f0eb870a84 Fixes for 5.14-rc:
* Fix shrink eligibility checking when sparse inode clusters enabled.
  * Reset '..' directory entries when unlinking directories to prevent
    verifier errors if fs is shrinked later.
  * Don't report unusable extent size hints to FSGETXATTR.
  * Don't warn when extent size hints are unusable because the sysadmin
    configured them that way.
  * Fix insufficient parameter validation in GROWFSRT ioctl.
  * Fix integer overflow when adding rt volumes to filesystem.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmDwajMACgkQ+H93GTRK
 tOtPlw//TyFCUf8krAknSc5tF5yI77JPIj19a43frMN/L6G68aDu2eBhIHbpwzAL
 LuPGksSqMJyBylwhZXYt83jfar0sGTl48sPqxYBr6YOj+LAmiba2PdlXGQPdWcC3
 1DGqvaiFZ3ENRlk0GG0a4xPJK4nW18uujc6L8yxrzA+0VsFirorqvzay7COic0Js
 b5eytqqbTsqvUc7+WX+yfWyyH+zWs+VIxBJVT7kirLY8u9Da5L54JdSbTWiXq7K0
 8zu7d0oyiDpb0Yb5tylLh9eoG5TVHLNHN65Le7k1dCSw/zaJMFhpc0MsxJ9zVDI5
 9NjmyOXP/uFGG/dvyqZUxOKsj2W0DwGeDRF3hxkLTWeiPFGfBYRHiBDCOpOoNIIy
 i3hTUCAqlgt+Ehyau8HR68L06V6bD9j991HM3MK2phNRKgC+iCH1poXixjAcaddR
 pAG1dF8WkEUQiKn9/oikNRAA8z5+z6NHZIZiEH1DUIGAh39SBVTuD2qSVIqj0BiR
 pOy1gwVOFKpwdRps/JQVLPoGP7NHyOxJ2dLAYpWWYiPS2Ch6UvyXiL8aMTVF8DaV
 G5Rsu+e0BJV38ass3enOOh1Nok//dIyKNS0iUO9TLdw5dZ6i3+36YeKskf+KLtXQ
 m+i3hfAqM+EbyU/jUsykKWAeELV8FZTM2Ckc5utrkhOaZToktJ4=
 =dKfy
 -----END PGP SIGNATURE-----

Merge tag 'xfs-5.14-fixes-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs fixes from Darrick Wong:
 "A few fixes for issues in the new online shrink code, additional
  corrections for my recent bug-hunt w.r.t. extent size hints on
  realtime, and improved input checking of the GROWFSRT ioctl.

  IOW, the usual 'I somehow got bored during the merge window and
  resumed auditing the farther reaches of xfs':

   - Fix shrink eligibility checking when sparse inode clusters enabled

   - Reset '..' directory entries when unlinking directories to prevent
     verifier errors if fs is shrinked later

   - Don't report unusable extent size hints to FSGETXATTR

   - Don't warn when extent size hints are unusable because the sysadmin
     configured them that way

   - Fix insufficient parameter validation in GROWFSRT ioctl

   - Fix integer overflow when adding rt volumes to filesystem"

* tag 'xfs-5.14-fixes-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
  xfs: detect misaligned rtinherit directory extent size hints
  xfs: fix an integer overflow error in xfs_growfs_rt
  xfs: improve FSGROWFSRT precondition checking
  xfs: don't expose misaligned extszinherit hints to userspace
  xfs: correct the narrative around misaligned rtinherit/extszinherit dirs
  xfs: reset child dir '..' entry when unlinking child
  xfs: check for sparse inode clusters that cross new EOAG when shrinking
2021-07-18 11:27:25 -07:00
Darrick J. Wong
83193e5ebb xfs: correct the narrative around misaligned rtinherit/extszinherit dirs
While auditing the realtime growfs code, I realized that the GROWFSRT
ioctl (and by extension xfs_growfs) has always allowed sysadmins to
change the realtime extent size when adding a realtime section to the
filesystem.  Since we also have always allowed sysadmins to set
RTINHERIT and EXTSZINHERIT on directories even if there is no realtime
device, this invalidates the premise laid out in the comments added in
commit 603f000b15.

In other words, this is not a case of inadequate metadata validation.
This is a case of nearly forgotten (and apparently untested) but
supported functionality.  Update the comments to reflect what we've
learned, and remove the log message about correcting the misalignment.

Fixes: 603f000b15 ("xfs: validate extsz hints against rt extent size when rtinherit is set")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-07-15 09:58:42 -07:00
Darrick J. Wong
da062d16a8 xfs: check for sparse inode clusters that cross new EOAG when shrinking
While running xfs/168, I noticed occasional write verifier shutdowns
involving inodes at the very end of the filesystem.  Existing inode
btree validation code checks that all inode clusters are fully contained
within the filesystem.

However, due to inadequate checking in the fs shrink code, it's possible
that there could be a sparse inode cluster at the end of the filesystem
where the upper inodes of the cluster are marked as holes and the
corresponding blocks are free.  In this case, the last blocks in the AG
are listed in the bnobt.  This enables the shrink to proceed but results
in a filesystem that trips the inode verifiers.  Fix this by disallowing
the shrink.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gao Xiang <hsiangkao@linux.alibaba.com>
2021-07-15 09:58:41 -07:00
Gustavo A. R. Silva
5937e00017 xfs: Fix multiple fall-through warnings for Clang
In preparation to enable -Wimplicit-fallthrough for Clang, fix
the following warnings by replacing /* fallthrough */ comments,
and its variants, with the new pseudo-keyword macro fallthrough:

fs/xfs/libxfs/xfs_attr.c:487:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/libxfs/xfs_attr.c:500:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/libxfs/xfs_attr.c:532:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/libxfs/xfs_attr.c:594:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/libxfs/xfs_attr.c:607:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/libxfs/xfs_attr.c:1410:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/libxfs/xfs_attr.c:1445:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]
fs/xfs/libxfs/xfs_attr.c:1473:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough]

Notice that Clang doesn't recognize /* fallthrough */ comments as
implicit fall-through markings, so in order to globally enable
-Wimplicit-fallthrough for Clang, these comments need to be
replaced with fallthrough; in the whole codebase.

Link: https://github.com/KSPP/linux/issues/115
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
2021-07-12 00:25:09 -05:00
Linus Torvalds
9f7b640f00 New code for 5.14:
- Refactor the buffer cache to use bulk page allocation
 - Convert agnumber-based AG iteration to walk per-AG structures
 - Clean up some unit conversions and other code warts
 - Reduce spinlock contention in the directio fastpath
 - Collapse all the inode cache walks into a single function
 - Remove indirect function calls from the inode cache walk code
 - Dramatically reduce the number of cache flushes sent when writing log
   buffers
 - Preserve inode sickness reports for longer
 - Rename xfs_eofblocks since it controls inode cache walks
 - Refactor the extended attribute code to prepare it for the addition
   of log intent items to make xattrs fully transactional
 - A few fixes to earlier large patchsets
 - Log recovery fixes so that we don't accidentally mark the log clean
   when log intent recovery fails
 - Fix some latent SOB errors
 - Clean up shutdown messages that get logged to dmesg
 - Fix a regression in the online shrink code
 - Fix a UAF in the buffer logging code if the fs goes offline
 - Fix uninitialized error variables
 - Fix a UAF in the CIL when commited log item callbacks race with a
   shutdown
 - Fix a bug where the CIL could hang trying to push part of the log ring
   buffer that hasn't been filled yet
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmDXP38ACgkQ+H93GTRK
 tOsKzw//eHvEgeyBo7ek06GDsUph2kQVR9AJWE7MNMiBFxlmL8R9H225xJK7Qmcr
 YswcyEeDq8cNXbXDA249ueuMb+DxhZPY68hPK5BJ3KsbvL2RZV0lJCbk492l4cgb
 IvBJiG/MDo55km83tdr81AlmFYQM7rSQz5MbVogGxxsnp0ul3VpIrJZba8kPRDQ1
 mZzH2fdlnE9Ozw/CfvjSgT1pySyFpxNeTRucYXUQil1hL1AGTBw7rGGNnccS090y
 u/EawQ4WJ131m8O3+WomUmaGyZFlWvTpHzukKxvrEvZ6AG+HpIhMcbZ5J6nkRTY4
 xxhUBG2qNKIcgPmPwAGmx1cylcsOCNKQgp+fko9tAZjEkgT5cbCpqpjGgjNB0RCf
 pB0PY6idCFl9hmBpVgMWz2AZ9IsDmK54qufmLtzq/zN8cThzt6A95UUR0rGu5Kd8
 CUmmdQTYl0GqlTTszCO2rw1+zRtcasMpBVmeYHDxy00bd1dHLUJ6o8DuXRYTTQti
 J/6CZVVD56jieRb+uvrOq4mhiPR2kynciiu1dXdY5kx79kKom6HMBBvtTl8b9kmh
 smWihfip7BTpz5vFzcwFmMxFwzW3K4LnDZl7qEGqXDEIHOL+pRWazU2yN3JZRGyd
 z4SQMJuER0HTTA0yO09c3/CX9onorhjUIMgQ9U25l1hdyFna0+o=
 =08Q9
 -----END PGP SIGNATURE-----

Merge tag 'xfs-5.14-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs updates from Darrick Wong:
 "Most of the work this cycle has been on refactoring various parts of
  the codebase. The biggest non-cleanup changes are (1) reducing the
  number of cache flushes sent when writing the log; (2) a substantial
  number of log recovery fixes; and (3) I started accepting pull
  requests from contributors if the commits in their branches match
  what's been sent to the list.

  For a week or so I /had/ staged a major cleanup of the logging code
  from Dave Chinner, but it exposed so many lurking bugs in other parts
  of the logging and log recovery code that I decided to defer that
  patchset until we can address those latent bugs.

  Larger cleanups this time include walking the incore inode cache (me)
  and rework of the extended attribute code (Allison) to prepare it for
  adding logged xattr updates (and directory tree parent pointers) in
  future releases.

  Summary:

   - Refactor the buffer cache to use bulk page allocation

   - Convert agnumber-based AG iteration to walk per-AG structures

   - Clean up some unit conversions and other code warts

   - Reduce spinlock contention in the directio fastpath

   - Collapse all the inode cache walks into a single function

   - Remove indirect function calls from the inode cache walk code

   - Dramatically reduce the number of cache flushes sent when writing
     log buffers

   - Preserve inode sickness reports for longer

   - Rename xfs_eofblocks since it controls inode cache walks

   - Refactor the extended attribute code to prepare it for the addition
     of log intent items to make xattrs fully transactional

   - A few fixes to earlier large patchsets

   - Log recovery fixes so that we don't accidentally mark the log clean
     when log intent recovery fails

   - Fix some latent SOB errors

   - Clean up shutdown messages that get logged to dmesg

   - Fix a regression in the online shrink code

   - Fix a UAF in the buffer logging code if the fs goes offline

   - Fix uninitialized error variables

   - Fix a UAF in the CIL when commited log item callbacks race with a
     shutdown

   - Fix a bug where the CIL could hang trying to push part of the log
     ring buffer that hasn't been filled yet"

* tag 'xfs-5.14-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (102 commits)
  xfs: don't wait on future iclogs when pushing the CIL
  xfs: Fix a CIL UAF by getting get rid of the iclog callback lock
  xfs: remove callback dequeue loop from xlog_state_do_iclog_callbacks
  xfs: don't nest icloglock inside ic_callback_lock
  xfs: Initialize error in xfs_attr_remove_iter
  xfs: fix endianness issue in xfs_ag_shrink_space
  xfs: remove dead stale buf unpin handling code
  xfs: hold buffer across unpin and potential shutdown processing
  xfs: force the log offline when log intent item recovery fails
  xfs: fix log intent recovery ENOSPC shutdowns when inactivating inodes
  xfs: shorten the shutdown messages to a single line
  xfs: print name of function causing fs shutdown instead of hex pointer
  xfs: fix type mismatches in the inode reclaim functions
  xfs: separate primary inode selection criteria in xfs_iget_cache_hit
  xfs: refactor the inode recycling code
  xfs: add iclog state trace events
  xfs: xfs_log_force_lsn isn't passed a LSN
  xfs: Fix CIL throttle hang when CIL space used going backwards
  xfs: journal IO cache flush reductions
  xfs: remove need_start_rec parameter from xlog_write()
  ...
2021-07-02 14:30:27 -07:00
Linus Torvalds
8ec035ac4a fallthrough fixes for Clang for 5.14-rc1
Hi Linus,
 
 Please, pull the following patches that fix many fall-through warnings
 when building with Clang 12.0.0 and this[1] change reverted. Notice
 that in order to enable -Wimplicit-fallthrough for Clang, such change[1]
 is meant to be reverted at some point. So, these patches help to move
 in that direction.
 
 Thanks!
 
 [1] commit e2079e93f5 ("kbuild: Do not enable -Wimplicit-fallthrough for clang for now")
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEkmRahXBSurMIg1YvRwW0y0cG2zEFAmDaNe8ACgkQRwW0y0cG
 2zFfGA/9G1A/Hrf261/P9olyYe2TRBwLnO1tUDREm3qtJ2JdKpf+7EM3VDm+Ue/A
 qhNmwp5G7nmp7Nqq8MfbdFjeo/rPS67voXiOfO8b0pU+E4XlOc+B1BXL0BWtnP7b
 xvuauklQU6dmCp2u44vsxdBIO6ooR0uQh+7/+1la+mPyEk9mlooQ4lyFcpfA53yt
 zxEGrx0tZBrDXghEI1CkHxOaJaX3qhw4EUYvxe8n2L7Dgx+o2djL/G4/SRYH/xoq
 MZa8TLyCuR3J0Ph4TfDONhMmf8ZLn+j70xBhewcVfZ1JfvGSVw4DQNN44KZCDnrK
 tGsBo5VFksjbmX83LmT8UlqB1rTP4nVQtRmtOPvbQA9kd19yy+Y64Y58FcGU2FHl
 PWt3rQJ1JzBo3TtzQoz7HSJCt9QTil4U7hFbNtcp5BbWQfUPkRgpWcL3FOchZbZ6
 FnLMqHanw2lrKMzZEoyHvg6G7BT67k3rrFgtd/xGSn8ohtfKXaZBYa9PKrQ0LwuG
 o8tQtIX1owj4rbdI1t6Ob4X/tT6Y7DzH8nsF+TsJQ4XeSCD2rURUcYltBMIlEr16
 DFj7iWKIrrX80/JRsBXu7a9h8nn5YptxV12SGRq/Cu/2jfRwjDye4IzsCyqMf67n
 oEN6YC1XYaEUmKXTnI8Z0CxY0qwSTcNjeH5Ci9jWepinsqD3Jxw=
 =Kt2q
 -----END PGP SIGNATURE-----

Merge tag 'fallthrough-fixes-clang-5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux

Pull fallthrough fixes from Gustavo Silva:
 "Fix many fall-through warnings when building with Clang 12.0.0 and
  '-Wimplicit-fallthrough' so that we at some point will be able to
  enable that warning by default"

* tag 'fallthrough-fixes-clang-5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux: (26 commits)
  rxrpc: Fix fall-through warnings for Clang
  drm/nouveau/clk: Fix fall-through warnings for Clang
  drm/nouveau/therm: Fix fall-through warnings for Clang
  drm/nouveau: Fix fall-through warnings for Clang
  xfs: Fix fall-through warnings for Clang
  xfrm: Fix fall-through warnings for Clang
  tipc: Fix fall-through warnings for Clang
  sctp: Fix fall-through warnings for Clang
  rds: Fix fall-through warnings for Clang
  net/packet: Fix fall-through warnings for Clang
  net: netrom: Fix fall-through warnings for Clang
  ide: Fix fall-through warnings for Clang
  hwmon: (max6621) Fix fall-through warnings for Clang
  hwmon: (corsair-cpro) Fix fall-through warnings for Clang
  firewire: core: Fix fall-through warnings for Clang
  braille_console: Fix fall-through warnings for Clang
  ipv4: Fix fall-through warnings for Clang
  qlcnic: Fix fall-through warnings for Clang
  bnxt_en: Fix fall-through warnings for Clang
  netxen_nic: Fix fall-through warnings for Clang
  ...
2021-06-28 20:03:38 -07:00
Allison Henderson
d3a3340b6a xfs: Initialize error in xfs_attr_remove_iter
A recent bug report generated a warning that a code path in
xfs_attr_remove_iter could potentially return error uninitialized in the
case of XFS_DAS_RM_SHRINK state.  Fix this by initializing error.

Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Bill O'Donnell <bodonnel@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-25 11:19:58 -07:00
Darrick J. Wong
a8f3522c9a xfs: fix endianness issue in xfs_ag_shrink_space
The AGI buffer is in big-endian format, so we must convert the
endianness to CPU format to do any comparisons.

Fixes: 46141dc891 ("xfs: introduce xfs_ag_shrink_space()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Gao Xiang <hsiangkao@linux.alibaba.com>
2021-06-21 17:39:09 -07:00
Dave Chinner
5f9b4b0de8 xfs: xfs_log_force_lsn isn't passed a LSN
In doing an investigation into AIL push stalls, I was looking at the
log force code to see if an async CIL push could be done instead.
This lead me to xfs_log_force_lsn() and looking at how it works.

xfs_log_force_lsn() is only called from inode synchronisation
contexts such as fsync(), and it takes the ip->i_itemp->ili_last_lsn
value as the LSN to sync the log to. This gets passed to
xlog_cil_force_lsn() via xfs_log_force_lsn() to flush the CIL to the
journal, and then used by xfs_log_force_lsn() to flush the iclogs to
the journal.

The problem is that ip->i_itemp->ili_last_lsn does not store a
log sequence number. What it stores is passed to it from the
->iop_committing method, which is called by xfs_log_commit_cil().
The value this passes to the iop_committing method is the CIL
context sequence number that the item was committed to.

As it turns out, xlog_cil_force_lsn() converts the sequence to an
actual commit LSN for the related context and returns that to
xfs_log_force_lsn(). xfs_log_force_lsn() overwrites it's "lsn"
variable that contained a sequence with an actual LSN and then uses
that to sync the iclogs.

This caused me some confusion for a while, even though I originally
wrote all this code a decade ago. ->iop_committing is only used by
a couple of log item types, and only inode items use the sequence
number it is passed.

Let's clean up the API, CIL structures and inode log item to call it
a sequence number, and make it clear that the high level code is
using CIL sequence numbers and not on-disk LSNs for integrity
synchronisation purposes.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-21 10:12:33 -07:00
Dave Chinner
a6a65fef5e xfs: log stripe roundoff is a property of the log
We don't need to look at the xfs_mount and superblock every time we
need to do an iclog roundoff calculation. The property is fixed for
the life of the log, so store the roundoff in the log at mount time
and use that everywhere.

On a debug build:

$ size fs/xfs/xfs_log.o.*
   text	   data	    bss	    dec	    hex	filename
  27360	    560	      8	  27928	   6d18	fs/xfs/xfs_log.o.orig
  27219	    560	      8	  27787	   6c8b	fs/xfs/xfs_log.o.patched

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
2021-06-18 08:21:48 -07:00
Dave Chinner
90e2c1c20a xfs: perag may be null in xfs_imap()
Dan Carpenter's static checker reported:

The patch 7b13c51551: "xfs: use perag for ialloc btree cursors"
from Jun 2, 2021, leads to the following Smatch complaint:

    fs/xfs/libxfs/xfs_ialloc.c:2403 xfs_imap()
    error: we previously assumed 'pag' could be null (see line 2294)

And it's right. Fix it.

Fixes: 7b13c51551 ("xfs: use perag for ialloc btree cursors")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
2021-06-18 08:14:20 -07:00
Darrick J. Wong
d1015e2ebd Merge tag 'xfs-delay-ready-attrs-v20.1' of https://github.com/allisonhenderson/xfs_work into xfs-5.14-merge4
xfs: Delay Ready Attributes

Hi all,

This set is a subset of a larger series for Dealyed Attributes. Which is a
subset of a yet larger series for parent pointers. Delayed attributes allow
attribute operations (set and remove) to be logged and committed in the same
way that other delayed operations do. This allows more complex operations (like
parent pointers) to be broken up into multiple smaller transactions. To do
this, the existing attr operations must be modified to operate as a delayed
operation.  This means that they cannot roll, commit, or finish transactions.
Instead, they return -EAGAIN to allow the calling function to handle the
transaction.  In this series, we focus on only the delayed attribute portion.
We will introduce parent pointers in a later set.

The set as a whole is a bit much to digest at once, so I usually send out the
smaller sub series to reduce reviewer burn out.  But the entire extended series
is visible through the included github links.

Updates since v19: Added Darricks fix for the remote block accounting as well as
some minor nits about the default assert in xfs_attr_set_iter.  Spent quite
a bit of time testing this cycle to weed out any more unexpected bugs.  No new
test failures were observed with the addition of this set.

xfs: Fix default ASSERT in xfs_attr_set_iter
  Replaced the assert with ASSERT(0);

xfs: Add delay ready attr remove routines
  Added Darricks fix for remote block accounting

This series can be viewed on github here:
https://github.com/allisonhenderson/xfs_work/tree/delay_ready_attrs_v20

As well as the extended delayed attribute and parent pointer series:
https://github.com/allisonhenderson/xfs_work/tree/delay_ready_attrs_v20_extended

And the test cases:
https://github.com/allisonhenderson/xfs_work/tree/pptr_xfstestsv3
In order to run the test cases, you will need have the corresponding xfsprogs

changes as well.  Which can be found here:
https://github.com/allisonhenderson/xfs_work/tree/delay_ready_attrs_xfsprogs_v20
https://github.com/allisonhenderson/xfs_work/tree/delay_ready_attrs_xfsprogs_v20_extended

To run the xfs attributes tests run:
check -g attr

To run as delayed attributes run:
export MOUNT_OPTIONS="-o delattr"
check -g attr

To run parent pointer tests:
check -g parent

I've also made the corresponding updates to the user space side as well, and ported anything
they need to seat correctly.

Questions, comment and feedback appreciated!

Thanks all!
Allison

* tag 'xfs-delay-ready-attrs-v20.1' of https://github.com/allisonhenderson/xfs_work:
  xfs: Make attr name schemes consistent
  xfs: Fix default ASSERT in xfs_attr_set_iter
  xfs: Clean up xfs_attr_node_addname_clear_incomplete
  xfs: Remove xfs_attr_rmtval_set
  xfs: Add delay ready attr set routines
  xfs: Add delay ready attr remove routines
  xfs: Hoist node transaction handling
  xfs: Hoist xfs_attr_leaf_addname
  xfs: Hoist xfs_attr_node_addname
  xfs: Add helper xfs_attr_node_addname_find_attr
  xfs: Separate xfs_attr_node_addname and xfs_attr_node_addname_clear_incomplete
  xfs: Refactor xfs_attr_set_shortform
  xfs: Add xfs_attr_node_remove_name
  xfs: Reverse apply 72b97ea40d
2021-06-18 08:13:22 -07:00
Allison Henderson
816c8e39b7 xfs: Make attr name schemes consistent
This patch renames the following functions to make the nameing scheme more consistent:
xfs_attr_shortform_remove -> xfs_attr_sf_removename
xfs_attr_node_remove_name -> xfs_attr_node_removename
xfs_attr_set_fmt -> xfs_attr_sf_addname

Suggested-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-09 09:34:05 -07:00
Allison Henderson
4a4957c16d xfs: Fix default ASSERT in xfs_attr_set_iter
This ASSERT checks for the state value of RM_SHRINK in the set path
which should never happen.  Change to ASSERT(0);

Suggested-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-09 09:33:14 -07:00
Darrick J. Wong
ffc18582ed xfs: clean up incore inode walk functions
This ambitious series aims to cleans up redundant inode walk code in
 xfs_icache.c, hide implementation details of the quotaoff dquot release
 code, and eliminates indirect function calls from incore inode walks.
 
 The first thing it does is to move all the code that quotaoff calls to
 release dquots from all incore inodes into xfs_icache.c.  Next, it
 separates the goal of an inode walk from the actual radix tree tags that
 may or may not be involved and drops the kludgy XFS_ICI_NO_TAG thing.
 Finally, we split the speculative preallocation (blockgc) and quotaoff
 dquot release code paths into separate functions so that we can keep the
 implementations cohesive.
 
 Christoph suggested last cycle that we 'simply' change quotaoff not to
 allow deactivating quota entirely, but as these cleanups are to enable
 one major change in behavior (deferred inode inactivation) I do not want
 to add a second behavior change (quotaoff) as a dependency.
 
 To be blunt: Additional cleanups are not in scope for this series.
 
 Next, I made two observations about incore inode radix tree walks --
 since there's a 1:1 mapping between the walk goal and the per-inode
 processing function passed in, we can use the goal to make a direct call
 to the processing function.  Furthermore, the only caller to supply a
 nonzero iter_flags argument is quotaoff, and there's only one INEW flag.
 
 From that observation, I concluded that it's quite possible to remove
 two parameters from the xfs_inode_walk* function signatures -- the
 iter_flags, and the execute function pointer.  The middle of the series
 moves the INEW functionality into the one piece (quotaoff) that wants
 it, and removes the indirect calls.
 
 The final observation is that the inode reclaim walk loop is now almost
 the same as xfs_inode_walk, so it's silly to maintain two copies.  Merge
 the reclaim loop code into xfs_inode_walk.
 
 Lastly, refactor the per-ag radix tagging functions since there's
 duplicated code that can be consolidated.
 
 This series is a prerequisite for the next two patchsets, since deferred
 inode inactivation will add another inode radix tree tag and iterator
 function to xfs_inode_walk.
 
 v2: walk the vfs inode list when running quotaoff instead of the radix
     tree, then rework the (now completely internal) inode walk function
     to take the tag as the main parameter.
 v3: merge the reclaim loop into xfs_inode_walk, then consolidate the
     radix tree tagging functions
 v4: rebase to 5.13-rc4
 v5: combine with the quotaoff patchset, reorder functions to minimize
     forward declarations, split inode walk goals from radix tree tags
     to reduce conceptual confusion
 v6: start moving the inode cache code towards the xfs_icwalk prefix
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmC5Yv0ACgkQ+H93GTRK
 tOv7Fg//Z7cKph0zSg6qsukMEMZxscuNcEBydCW1bu9gSx1NpszDpiGqAiO5ZB3X
 wP2XkCqjuatbNGGvkNLHS/M4sbLX3ELogvYmMRvUhDoaSFxT/KKgxvsyNffiCSS7
 xRB/rvWRp9MGRpBWPF0ZUxFU6VBzhCrYdMsNhvW95AEup8S/j+NplwoIif0gzaZZ
 Q6Fl4Ca9VEBvJQPV+/zkLih19iFItmARJhPHUs4BO1nZv+CzZBFQHg7Ijw7nW92j
 eSY68W4LH/IQ5cqm+HrD/+Z6ns0P7J2viewzVymkNEGnuX4a0xrQrzQ8ydRsAxTi
 9EDrpIe3MbSI5YjJfmRe8G3LX5p7vBpqc8TeyZdRDMGWkFjT33HPlQNb6WxKLQbA
 mjKdfr8AYZR/UQKW/7oZFrJnOoMpYRAQ4Sn/9BAYZQYm7tiLzuZsrEZ7JBwiUA56
 XHmlsDDeLzJeKvjmUu8M3H4oh4Nwf5/I2vJwHjueTfhl83uJP04igIXC4rnq56bM
 AAAjH9uV11Fo3q0ywAnRtN2HYj8PEJlCMK5CNskILrGeMITsBPGht0SbaA6hDI2h
 GYmltKInHzuPhHC9NfyPVrVr3BrmPR5cBsVFESiz5A4E9rbuKmmna6Yk8MFlMyl8
 FRIA3zVatJ2qQXtsAcdI8AZzMd7ciYhkAgCqFKxv8qK/qxITHh4=
 =Rxdn
 -----END PGP SIGNATURE-----

Merge tag 'inode-walk-cleanups-5.14_2021-06-03' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into xfs-5.14-merge2

xfs: clean up incore inode walk functions

This ambitious series aims to cleans up redundant inode walk code in
xfs_icache.c, hide implementation details of the quotaoff dquot release
code, and eliminates indirect function calls from incore inode walks.

The first thing it does is to move all the code that quotaoff calls to
release dquots from all incore inodes into xfs_icache.c.  Next, it
separates the goal of an inode walk from the actual radix tree tags that
may or may not be involved and drops the kludgy XFS_ICI_NO_TAG thing.
Finally, we split the speculative preallocation (blockgc) and quotaoff
dquot release code paths into separate functions so that we can keep the
implementations cohesive.

Christoph suggested last cycle that we 'simply' change quotaoff not to
allow deactivating quota entirely, but as these cleanups are to enable
one major change in behavior (deferred inode inactivation) I do not want
to add a second behavior change (quotaoff) as a dependency.

To be blunt: Additional cleanups are not in scope for this series.

Next, I made two observations about incore inode radix tree walks --
since there's a 1:1 mapping between the walk goal and the per-inode
processing function passed in, we can use the goal to make a direct call
to the processing function.  Furthermore, the only caller to supply a
nonzero iter_flags argument is quotaoff, and there's only one INEW flag.

From that observation, I concluded that it's quite possible to remove
two parameters from the xfs_inode_walk* function signatures -- the
iter_flags, and the execute function pointer.  The middle of the series
moves the INEW functionality into the one piece (quotaoff) that wants
it, and removes the indirect calls.

The final observation is that the inode reclaim walk loop is now almost
the same as xfs_inode_walk, so it's silly to maintain two copies.  Merge
the reclaim loop code into xfs_inode_walk.

Lastly, refactor the per-ag radix tagging functions since there's
duplicated code that can be consolidated.

This series is a prerequisite for the next two patchsets, since deferred
inode inactivation will add another inode radix tree tag and iterator
function to xfs_inode_walk.

v2: walk the vfs inode list when running quotaoff instead of the radix
    tree, then rework the (now completely internal) inode walk function
    to take the tag as the main parameter.
v3: merge the reclaim loop into xfs_inode_walk, then consolidate the
    radix tree tagging functions
v4: rebase to 5.13-rc4
v5: combine with the quotaoff patchset, reorder functions to minimize
    forward declarations, split inode walk goals from radix tree tags
    to reduce conceptual confusion
v6: start moving the inode cache code towards the xfs_icwalk prefix

* tag 'inode-walk-cleanups-5.14_2021-06-03' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux:
  xfs: refactor per-AG inode tagging functions
  xfs: merge xfs_reclaim_inodes_ag into xfs_inode_walk_ag
  xfs: pass struct xfs_eofblocks to the inode scan callback
  xfs: fix radix tree tag signs
  xfs: make the icwalk processing functions clean up the grab state
  xfs: clean up inode state flag tests in xfs_blockgc_igrab
  xfs: remove indirect calls from xfs_inode_walk{,_ag}
  xfs: remove iter_flags parameter from xfs_inode_walk_*
  xfs: move xfs_inew_wait call into xfs_dqrele_inode
  xfs: separate the dqrele_all inode grab logic from xfs_inode_walk_ag_grab
  xfs: pass the goal of the incore inode walk to xfs_inode_walk()
  xfs: rename xfs_inode_walk functions to xfs_icwalk
  xfs: move the inode walk functions further down
  xfs: detach inode dquots at the end of inactivation
  xfs: move the quotaoff dqrele inode walk into xfs_icache.c

[djwong: added variable names to function declarations while fixing
merge conflicts]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-08 09:26:44 -07:00
Darrick J. Wong
8b943d21d4 xfs: assorted fixes for 5.14, part 1
This branch contains the first round of various small fixes for 5.14.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmC5YvwACgkQ+H93GTRK
 tOuDTxAAmW+Mc4oPx/Fsa2xqvkDYCGaM1QtkIY9McrGsMdzF0JbB7bR5rrUET2+N
 /FsFTIQ31vZfMEJ69HM6NjQ4xXIKhdEj+PlGsjvg62BqhpPBRuFH7dLBWChiRcf2
 M5SN1P9kcAjIoMR2tKzh8FMDmJTcJlJxxBi9kxb3YK1+UesUHsPS8/jSW3OuIov3
 AJzAZ08SrA8ful5uCMy9Mf5uBgfRuAUjDzA5CM5kA1xqlHREQi+oHl62E81N33mu
 RR8tdHQzvPO5rHyX84GzV5cu2CsmDuOPF2nA5SUxRhIZFfMo5mEezA/nxqqACYti
 rnRGxZVwIG9YYBESVxXFQXIjn5lHoQ2jomk/CraszeVEJCteNRnpbVGzd1xczM3u
 0iuDuHy+aVB/3QhfA6/0vjfttCzkMEld9U9c3WEjIaw5iUCxe531yfrvVEyF9blx
 NBjnQyHGbt+y26BzBjD33NJEdDoZqS3UIQ/rmb4f2mitGN5d9faAcJ754uRJt3o4
 K9HXGjuR+iOH/tCZKDL1hBc4M/pFgNdeBWyFYdQhh8eSj9HSCTCG58zAyQ2WPOSr
 6D/f4BMqivKzzz0HicZPJAoazrtcKGrWTHTxidHIkI4le367NOwv6YJquJ0pFMBs
 8L7OdRqYT3yw6+qErCjEn03WkP9O7V8lHf8hFxt7+dNxDukIj40=
 =6eZB
 -----END PGP SIGNATURE-----

Merge tag 'assorted-fixes-5.14-1_2021-06-03' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into xfs-5.14-merge2

xfs: assorted fixes for 5.14, part 1

This branch contains the first round of various small fixes for 5.14.

* tag 'assorted-fixes-5.14-1_2021-06-03' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux:
  xfs: don't take a spinlock unconditionally in the DIO fastpath
  xfs: mark xfs_bmap_set_attrforkoff static
  xfs: Remove redundant assignment to busy
  xfs: sort variable alphabetically to avoid repeated declaration
2021-06-08 09:22:34 -07:00
Darrick J. Wong
f52edf6c54 xfs: various unit conversions
Crafting the realtime file extent size hint fixes revealed various
 opportunities to clean up unit conversions, so now that gets its own
 series.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmC5YvYACgkQ+H93GTRK
 tOtRihAAh5wKVV9Fwafkk3l2zTCw+K/SfciWvZqF8BClAjqzWUDaw4DJ2HS0lSmj
 ezOG+/HhJzZB4udC9WDM4TSFA/elR1pJBu5lSBpAt/K78Mpw/i1aFs1SyAfw6Qsp
 1A8um80jaCyzvcSxU1Hx/35CN0MQwpjJ23LziEDUVBvj/qV7Qj8DmI61CfWWYzs9
 jEJFzIvbKoRqs8Wqws7n4a7fw3VOyqC2EQV290xzumkYKOSAmpWQGkbiU2/YtqKY
 7w/GvjS1zRE7o1cGeKBYRA/35zbw5mqoHD5vJmdlUIsWK22fnN8h5vqYo5dpFPiz
 nFyK+MHVrV6WxKBKECHtgm7Jya+jjH0TFu/9js4k31ehe4LJc/nhEqmSrFiH3eGS
 4AXrhhZqtDZ1skjcPym83dCayW1uE2cWbHqYJ+ztQW5PrLafoWQ9Ld/vtrbL+b/U
 VIgh3LQmF371jGcE0twERNQPIb5F96w9mS6F+vq0JuvrGftxoa4tKVjE8jrNWJjo
 750/KT0Nupti0AYKq9WMD47BiSf5BbdnhYTN15X0mc5TyHo/EyXIl/I/hFfEMFp9
 AH/qWaQlt3LjMXvr1xF6R4RNSI+xxai7PHfW69Zi7tBea+7k9wTZjubgc2FFaMOQ
 Jf8n5L07IXVYDy0mGUGaokenQb2KPvfXVK7yYtaMj1qDh7Sjqjw=
 =HGL1
 -----END PGP SIGNATURE-----

Merge tag 'unit-conversion-cleanups-5.14_2021-06-03' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into xfs-5.14-merge2

xfs: various unit conversions

Crafting the realtime file extent size hint fixes revealed various
opportunities to clean up unit conversions, so now that gets its own
series.

* tag 'unit-conversion-cleanups-5.14_2021-06-03' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux:
  xfs: remove unnecessary shifts
  xfs: clean up open-coded fs block unit conversions
2021-06-08 09:21:24 -07:00
Dave Chinner
9ba0889e22 xfs: drop the AGI being passed to xfs_check_agi_freecount
From: Dave Chinner <dchinner@redhat.com>

Stephen Rothwell reported this compiler warning from linux-next:

fs/xfs/libxfs/xfs_ialloc.c: In function 'xfs_difree_finobt':
fs/xfs/libxfs/xfs_ialloc.c:2032:20: warning: unused variable 'agi' [-Wunused-variable]
 2032 |  struct xfs_agi   *agi = agbp->b_addr;

Which is fallout from agno -> perag conversions that were done in
this function. xfs_check_agi_freecount() is the only user of "agi"
in xfs_difree_finobt() now, and it only uses the agi to get the
current free inode count. We hold that in the perag structure, so
there's not need to directly reference the raw AGI to get this
information.

The btree cursor being passed to xfs_check_agi_freecount() has a
reference to the perag being operated on, so use that directly in
xfs_check_agi_freecount() rather than passing an AGI.

Fixes: 7b13c51551 ("xfs: use perag for ialloc btree cursors")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-08 09:19:22 -07:00
Darrick J. Wong
c3eabd3650 xfs: initial agnumber -> perag conversions for shrink
If we want to use active references to the perag to be able to gate
 shrink removing AGs and hence perags safely, we've got a fair bit of
 work to do actually use perags in all the places we need to.
 
 There's a lot of code that iterates ag numbers and then
 looks up perags from that, often multiple times for the same perag
 in the one operation. If we want to use reference counted perags for
 access control, then we need to convert all these uses to perag
 iterators, not agno iterators.
 
 [Patches 1-4]
 
 The first step of this is consolidating all the perag management -
 init, free, get, put, etc into a common location. THis is spread all
 over the place right now, so move it all into libxfs/xfs_ag.[ch].
 This does expose kernel only bits of the perag to libxfs and hence
 userspace, so the structures and code is rearranged to minimise the
 number of ifdefs that need to be added to the userspace codebase.
 The perag iterator in xfs_icache.c is promoted to a first class API
 and expanded to the needs of the code as required.
 
 [Patches 5-10]
 
 These are the first basic perag iterator conversions and changes to
 pass the perag down the stack from those iterators where
 appropriate. A lot of this is obvious, simple changes, though in
 some places we stop passing the perag down the stack because the
 code enters into an as yet unconverted subsystem that still uses raw
 AGs.
 
 [Patches 11-16]
 
 These replace the agno passed in the btree cursor for per-ag btree
 operations with a perag that is passed to the cursor init function.
 The cursor takes it's own reference to the perag, and the reference
 is dropped when the cursor is deleted. Hence we get reference
 coverage for the entire time the cursor is active, even if the code
 that initialised the cursor drops it's reference before the cursor
 or any of it's children (duplicates) have been deleted.
 
 The first patch adds the perag infrastructure for the cursor, the
 next four patches convert a btree cursor at a time, and the last
 removes the agno from the cursor once it is unused.
 
 [Patches 17-21]
 
 These patches are a demonstration of the simplifications and
 cleanups that come from plumbing the perag through interfaces that
 select and then operate on a specific AG. In this case the inode
 allocation algorithm does up to three walks across all AGs before it
 either allocates an inode or fails. Two of these walks are purely
 just to select the AG, and even then it doesn't guarantee inode
 allocation success so there's a third walk if the selected AG
 allocation fails.
 
 These patches collapse the selection and allocation into a single
 loop, simplifies the error handling because xfs_dir_ialloc() always
 returns ENOSPC if no AG was selected for inode allocation or we fail
 to allocate an inode in any AG, gets rid of xfs_dir_ialloc()
 wrapper, converts inode allocation to run entirely from a single
 perag instance, and then factors xfs_dialloc() into a much, much
 simpler loop which is easy to understand.
 
 Hence we end up with the same inode allocation logic, but it only
 needs two complete iterations at worst, makes AG selection and
 allocation atomic w.r.t. shrink and chops out out over 100 lines of
 code from this hot code path.
 
 [Patch 22]
 
 Converts the unlink path to pass perags through it.
 
 There's more conversion work to be done, but this patchset gets
 through a large chunk of it in one hit. Most of the iterators are
 converted, so once this is solidified we can move on to converting
 these to active references for being able to free perags while the
 fs is still active.
 -----BEGIN PGP SIGNATURE-----
 
 iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmC3HUgUHGRhdmlkQGZy
 b21vcmJpdC5jb20ACgkQregpR/R1+h2yaw/+P0JzpI+6n06Ei00mjgE/Du/WhMLi
 0JQ93Grlj+miuGGT9DgGCiRpoZnefhEk+BH6JqoEw1DQ3T5ilmAzrHLUUHSQC3+S
 dv85sJduheQ6yHuoO+4MzkaSq6JWKe7E9gZwAsVyBul5aSjdmaJaQdPwYMTXSXo0
 5Uqq8ECFkMcaHVNjcBfasgR/fdyWy2Qe4PFTHTHdQpd+DNZ9UXgFKHW2og+1iry/
 zDIvdIppJULA09TvVcZuFjd/1NzHQ/fLj5PAzz8GwagB4nz2x3s78Zevmo5yW/jK
 3/+50vXa8ldhiHDYGTS3QXvS0xJRyqUyD47eyWOOiojZw735jEvAlCgjX6+0X1HC
 k3gCkQLv8l96fRkvUpgnLf/fjrUnlCuNBkm9d1Eq2Tied8dvLDtiEzoC6L05Nqob
 yd/nIUb1zwJFa9tsoheHhn0bblTGX1+zP0lbRJBje0LotpNO9DjGX5JoIK4GR7F8
 y1VojcdgRI14HlxUnbF3p8wmQByN+M2tnp6GSdv9BA65bjqi05Rj/steFdZHBV6x
 wiRs8Yh6BTvMwKgufHhRQHfRahjNHQ/T/vOE+zNbWqemS9wtEUDop+KvPhC36R/k
 o/cmr23cF8ESX2eChk7XM4On3VEYpcvp2zSFgrFqZYl6RWOwEis3Htvce3KuSTPp
 8Xq70te0gr2DVUU=
 =YNzW
 -----END PGP SIGNATURE-----

Merge tag 'xfs-perag-conv-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.14-merge2

xfs: initial agnumber -> perag conversions for shrink

If we want to use active references to the perag to be able to gate
shrink removing AGs and hence perags safely, we've got a fair bit of
work to do actually use perags in all the places we need to.

There's a lot of code that iterates ag numbers and then
looks up perags from that, often multiple times for the same perag
in the one operation. If we want to use reference counted perags for
access control, then we need to convert all these uses to perag
iterators, not agno iterators.

[Patches 1-4]

The first step of this is consolidating all the perag management -
init, free, get, put, etc into a common location. THis is spread all
over the place right now, so move it all into libxfs/xfs_ag.[ch].
This does expose kernel only bits of the perag to libxfs and hence
userspace, so the structures and code is rearranged to minimise the
number of ifdefs that need to be added to the userspace codebase.
The perag iterator in xfs_icache.c is promoted to a first class API
and expanded to the needs of the code as required.

[Patches 5-10]

These are the first basic perag iterator conversions and changes to
pass the perag down the stack from those iterators where
appropriate. A lot of this is obvious, simple changes, though in
some places we stop passing the perag down the stack because the
code enters into an as yet unconverted subsystem that still uses raw
AGs.

[Patches 11-16]

These replace the agno passed in the btree cursor for per-ag btree
operations with a perag that is passed to the cursor init function.
The cursor takes it's own reference to the perag, and the reference
is dropped when the cursor is deleted. Hence we get reference
coverage for the entire time the cursor is active, even if the code
that initialised the cursor drops it's reference before the cursor
or any of it's children (duplicates) have been deleted.

The first patch adds the perag infrastructure for the cursor, the
next four patches convert a btree cursor at a time, and the last
removes the agno from the cursor once it is unused.

[Patches 17-21]

These patches are a demonstration of the simplifications and
cleanups that come from plumbing the perag through interfaces that
select and then operate on a specific AG. In this case the inode
allocation algorithm does up to three walks across all AGs before it
either allocates an inode or fails. Two of these walks are purely
just to select the AG, and even then it doesn't guarantee inode
allocation success so there's a third walk if the selected AG
allocation fails.

These patches collapse the selection and allocation into a single
loop, simplifies the error handling because xfs_dir_ialloc() always
returns ENOSPC if no AG was selected for inode allocation or we fail
to allocate an inode in any AG, gets rid of xfs_dir_ialloc()
wrapper, converts inode allocation to run entirely from a single
perag instance, and then factors xfs_dialloc() into a much, much
simpler loop which is easy to understand.

Hence we end up with the same inode allocation logic, but it only
needs two complete iterations at worst, makes AG selection and
allocation atomic w.r.t. shrink and chops out out over 100 lines of
code from this hot code path.

[Patch 22]

Converts the unlink path to pass perags through it.

There's more conversion work to be done, but this patchset gets
through a large chunk of it in one hit. Most of the iterators are
converted, so once this is solidified we can move on to converting
these to active references for being able to free perags while the
fs is still active.

* tag 'xfs-perag-conv-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (23 commits)
  xfs: remove xfs_perag_t
  xfs: use perag through unlink processing
  xfs: clean up and simplify xfs_dialloc()
  xfs: inode allocation can use a single perag instance
  xfs: get rid of xfs_dir_ialloc()
  xfs: collapse AG selection for inode allocation
  xfs: simplify xfs_dialloc_select_ag() return values
  xfs: remove agno from btree cursor
  xfs: use perag for ialloc btree cursors
  xfs: convert allocbt cursors to use perags
  xfs: convert refcount btree cursor to use perags
  xfs: convert rmap btree cursor to using a perag
  xfs: add a perag to the btree cursor
  xfs: pass perags around in fsmap data dev functions
  xfs: push perags through the ag reservation callouts
  xfs: pass perags through to the busy extent code
  xfs: convert secondary superblock walk to use perags
  xfs: convert xfs_iwalk to use perag references
  xfs: convert raw ag walks to use for_each_perag
  xfs: make for_each_perag... a first class citizen
  ...
2021-06-08 09:13:13 -07:00
Darrick J. Wong
ebf2e33723 xfs: buffer cache bulk page allocation
This patchset makes use of the new bulk page allocation interface to
 reduce the overhead of allocating large numbers of pages in a
 loop.
 
 The first two patches are refactoring buffer memory allocation and
 converting the uncached buffer path to use the same page allocation
 path, followed by converting the page allocation path to use bulk
 allocation.
 
 The rest of the patches are then consolidation of the page
 allocation and freeing code to simplify the code and remove a chunk
 of unnecessary abstraction. This is largely based on a series of
 changes made by Christoph Hellwig.
 -----BEGIN PGP SIGNATURE-----
 
 iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmC+6OwUHGRhdmlkQGZy
 b21vcmJpdC5jb20ACgkQregpR/R1+h21QQ/8C0f7wq1OKwNI2oRubf6J8jtttiRS
 SD2TA03AP2OIOKx4y2G0h0dJeX9tgnbLerIlpfT80nHDoBgKHbZCYSEHQT0DscYo
 fuwQTVR8RCklKspjUlCGR+Gbm6vI8HakK1lAppw168e4c6t8wX1KiSibwaVTQdaZ
 NaXUqTUzGiNq+iiLS6fW3mJ3PKWFJYyrDOSR2jIPbUGIJdejRCGe0xVnu+hIsz+y
 c2gSGCB+j3cYaazhlJTDYPGja3Wq3eR+Ya9i1GcA1tJiJLsu0ZjaVQ69Bl4dud2F
 c3OyhFK0El1VMSEVb3hY8gTpAO02jNWSnB2Zlidt0h4ZJVAxKus0xe2w3eS4uST2
 hcMI3lwjdzRQuoBwOgXQ+CpYVv2wI8HPNLTSR+NYcC2IZaCNieFRWdTYwXrAJBB3
 H09m04GT/7TkkrYHFD1zRtIedP4DZ6MZn/33bufNxEt1NRCFw5AFAEUFfjDA317A
 4nByCmU6XjmmpI/XLixwu0BYCfKVB4UsrgOyzXBy7ZU0+pIser+ynP1V4d9Bb43Y
 xVQ8S0QirT7gqXjx75mD4B4qkXZ5nrz5Z7fSn6YU4TwqsYtZYlsBauLlWmmHp9MT
 CP4PA4j+CQORhfZzWXw2ViXYGoIssc1cw5i4JB6a4u/OaDi19dYkE6SO8P3b9GSm
 khHqWgcTC4VGpmc=
 =JsrV
 -----END PGP SIGNATURE-----

Merge tag 'xfs-buf-bulk-alloc-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.14-merge2

xfs: buffer cache bulk page allocation

This patchset makes use of the new bulk page allocation interface to
reduce the overhead of allocating large numbers of pages in a
loop.

The first two patches are refactoring buffer memory allocation and
converting the uncached buffer path to use the same page allocation
path, followed by converting the page allocation path to use bulk
allocation.

The rest of the patches are then consolidation of the page
allocation and freeing code to simplify the code and remove a chunk
of unnecessary abstraction. This is largely based on a series of
changes made by Christoph Hellwig.

* tag 'xfs-buf-bulk-alloc-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs:
  xfs: merge xfs_buf_allocate_memory
  xfs: cleanup error handling in xfs_buf_get_map
  xfs: get rid of xb_to_gfp()
  xfs: simplify the b_page_count calculation
  xfs: remove ->b_offset handling for page backed buffers
  xfs: move page freeing into _xfs_buf_free_pages()
  xfs: merge _xfs_buf_get_pages()
  xfs: use alloc_pages_bulk_array() for buffers
  xfs: use xfs_buf_alloc_pages for uncached buffers
  xfs: split up xfs_buf_allocate_memory
2021-06-08 09:10:01 -07:00
Darrick J. Wong
919a4ddb68 xfs: fix radix tree tag signs
Radix tree tags are supposed to be unsigned ints, so fix the callers.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-06-03 15:56:04 -07:00
Christoph Hellwig
5a981e4ea8 xfs: mark xfs_bmap_set_attrforkoff static
xfs_bmap_set_attrforkoff is only used inside of xfs_bmap.c, so mark it
static.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 14:58:59 -07:00
Jiapeng Chong
9673261c32 xfs: Remove redundant assignment to busy
Variable busy is set to false, but this value is never read as it is
overwritten or not used later on, hence it is a redundant assignment
and can be removed.

Clean up the following clang-analyzer warning:

fs/xfs/libxfs/xfs_alloc.c:1679:2: warning: Value stored to 'busy' is
never read [clang-analyzer-deadcode.DeadStores].

Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 14:56:29 -07:00
Shaokun Zhang
5f7fd75086 xfs: sort variable alphabetically to avoid repeated declaration
Variable 'xfs_agf_buf_ops', 'xfs_agi_buf_ops', 'xfs_dquot_buf_ops' and
'xfs_symlink_buf_ops' are declared twice, so sort these variables
alphabetically and remove the repeated declaration.

Cc: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 14:54:09 -07:00
Dave Chinner
509201163f xfs: remove xfs_perag_t
Almost unused, gets rid of another typedef.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:51 +10:00
Dave Chinner
f40aadb2bb xfs: use perag through unlink processing
Unlinked lists are held in the perag, and freeing of inodes needs to
be passed a perag, too, so look up the perag early in the unlink
processing and use it throughout.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
2021-06-02 10:48:51 +10:00
Dave Chinner
8237fbf53d xfs: clean up and simplify xfs_dialloc()
Because it's a mess.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
309161f660 xfs: inode allocation can use a single perag instance
Now that we've internalised the two-phase inode allocation, we can
now easily make the AG selection and allocation atomic from the
perspective of a single perag context. This will ensure AGs going
offline/away cannot occur between the selection and allocation
steps.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
b652afd937 xfs: get rid of xfs_dir_ialloc()
This is just a simple wrapper around the per-ag inode allocation
that doesn't need to exist. The internal mechanism to select and
allocate within an AG does not need to be exposed outside
xfs_ialloc.c, and it being exposed simply makes it harder to follow
the code and simplify it.

This is simplified by internalising xf_dialloc_select_ag() and
xfs_dialloc_ag() into a single xfs_dialloc() function and then
xfs_dir_ialloc() can go away.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
89b1f55a29 xfs: collapse AG selection for inode allocation
xfs_dialloc_select_ag() does a lot of repetitive work. It first
calls xfs_ialloc_ag_select() to select the AG to start allocation
attempts in, which can do up to two entire loops across the perags
that inodes can be allocated in. This is simply checking if there is
spce available to allocate inodes in an AG, and it returns when it
finds the first candidate AG.

xfs_dialloc_select_ag() then does it's own iterative walk across
all the perags locking the AGIs and trying to allocate inodes from
the locked AG. It also doesn't limit the search to mp->m_maxagi,
so it will walk all AGs whether they can allocate inodes or not.

Hence if we are really low on inodes, we could do almost 3 entire
walks across the whole perag range before we find an allocation
group we can allocate inodes in or report ENOSPC.

Because xfs_ialloc_ag_select() returns on the first candidate AG it
finds, we can simply do these checks directly in
xfs_dialloc_select_ag() before we lock and try to allocate inodes.
This reduces the inode allocation pass down to 2 perag sweeps at
most - one for aligned inode cluster allocation and if we can't
allocate full, aligned inode clusters anywhere we'll do another pass
trying to do sparse inode cluster allocation.

This also removes a big chunk of duplicate code.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
4268547305 xfs: simplify xfs_dialloc_select_ag() return values
The only caller of xfs_dialloc_select_ag() will always return
-ENOSPC to it's caller if the agbp returned from
xfs_dialloc_select_ag() is NULL. IOWs, failure to find a candidate
AGI we can allocate inodes from is always an ENOSPC condition, so
move this logic up into xfs_dialloc_select_ag() so we can simplify
the return logic in this function.

xfs_dialloc_select_ag() now only ever returns 0 with a locked
agbp, or an error with no agbp.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
50f02fe333 xfs: remove agno from btree cursor
Now that everything passes a perag, the agno is not needed anymore.
Convert all the users to use pag->pag_agno instead and remove the
agno from the cursor. This was largely done as an automated search
and replace.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
7b13c51551 xfs: use perag for ialloc btree cursors
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
289d38d22c xfs: convert allocbt cursors to use perags
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
a81a06211f xfs: convert refcount btree cursor to use perags
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
fa9c3c1973 xfs: convert rmap btree cursor to using a perag
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
be9fb17d88 xfs: add a perag to the btree cursor
Which will eventually completely replace the agno in it.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
2021-06-02 10:48:24 +10:00
Dave Chinner
58d43a7e32 xfs: pass perags around in fsmap data dev functions
Needs a [from, to] ranged AG walk, and the perag to be stuffed into
the info structure for callouts to use.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
30933120ad xfs: push perags through the ag reservation callouts
We currently pass an agno from the AG reservation functions to the
individual feature accounting functions, which in future may have to
do perag lookups to access per-AG state. Instead, pre-emptively
plumb the perag through from the highest AG reservation layer to the
feature callouts so they won't have to look it up again.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
2021-06-02 10:48:24 +10:00
Dave Chinner
45d0662117 xfs: pass perags through to the busy extent code
All of the callers of the busy extent API either have perag
references available to use so we can pass a perag to the busy
extent functions rather than having them have to do unnecessary
lookups.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
7f8d3b3ca6 xfs: convert secondary superblock walk to use perags
Clean up the last external manual AG walk.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
6f4118fc64 xfs: convert xfs_iwalk to use perag references
Rather than manually walking the ags and passing agnunbers around,
pass the perag for the AG we are currently working on around in the
iwalk structure.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
934933c3ee xfs: convert raw ag walks to use for_each_perag
Convert the raw walks to an iterator, pulling the current AG out of
pag->pag_agno instead of the loop iterator variable.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
f250eedcf7 xfs: make for_each_perag... a first class citizen
for_each_perag_tag() is defined in xfs_icache.c for local use.
Promote this to xfs_ag.h and define equivalent iteration functions
so that we can use them to iterate AGs instead to replace open coded
perag walks and perag lookups.

We also convert as many of the straight forward open coded AG walks
to use these iterators as possible. Anything that is not a direct
conversion to an iterator is ignored and will be updated in future
commits.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
07b6403a68 xfs: move perag structure and setup to libxfs/xfs_ag.[ch]
Move the xfs_perag infrastructure to the libxfs files that contain
all the per AG infrastructure. This helps set up for passing perags
around all the code instead of bare agnos with minimal extra
includes for existing files.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
9bbafc7191 xfs: move xfs_perag_get/put to xfs_ag.[ch]
They are AG functions, not superblock functions, so move them to the
appropriate location.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Darrick J. Wong
a7bcb147fe xfs: clean up open-coded fs block unit conversions
Replace some open-coded fs block unit conversions with the standard
conversion macro.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
2021-06-01 12:53:59 -07:00
Allison Henderson
4fd084dbbd xfs: Clean up xfs_attr_node_addname_clear_incomplete
We can use the helper function xfs_attr_node_remove_name to reduce
duplicate code in this function

Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-01 10:49:49 -07:00