mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
synced 2025-09-03 01:28:04 +00:00
loongarch-next
349 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
3ea87dfa31 |
x86/cpufeatures: Add a IBPB_NO_RET BUG flag
Set this flag if the CPU has an IBPB implementation that does not invalidate return target predictions. Zen generations < 4 do not flush the RSB when executing an IBPB and this bug flag denotes that. [ bp: Massage. ] Signed-off-by: Johannes Wikner <kwikner@ethz.ch> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Cc: <stable@kernel.org> |
||
![]() |
ff898623af |
x86/cpufeatures: Define X86_FEATURE_AMD_IBPB_RET
AMD's initial implementation of IBPB did not clear the return address predictor. Beginning with Zen4, AMD's IBPB *does* clear the return address predictor. This behavior is enumerated by CPUID.80000008H:EBX.IBPB_RET[30]. Define X86_FEATURE_AMD_IBPB_RET for use in KVM_GET_SUPPORTED_CPUID, when determining cross-vendor capabilities. Suggested-by: Venkatesh Srinivas <venkateshs@chromium.org> Signed-off-by: Jim Mattson <jmattson@google.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: <stable@kernel.org> |
||
![]() |
41906248d0 |
Power management updates for 6.11-rc1
- Add Loongson-3 CPUFreq driver support (Huacai Chen). - Add support for the Arrow Lake and Lunar Lake platforms and the out-of-band (OOB) mode on Emerald Rapids to the intel_pstate cpufreq driver, make it support the highest performance change interrupt and clean it up (Srinivas Pandruvada). - Switch cpufreq to new Intel CPU model defines (Tony Luck). - Simplify the cpufreq driver interface by switching the .exit() driver callback to the void return data type (Lizhe, Viresh Kumar). - Make cpufreq_boost_enabled() return bool (Dhruva Gole). - Add fast CPPC support to the amd-pstate cpufreq driver, address multiple assorted issues in it and clean it up (Perry Yuan, Mario Limonciello, Dhananjay Ugwekar, Meng Li, Xiaojian Du). - Add Allwinner H700 speed bin to the sun50i cpufreq driver (Ryan Walklin). - Fix memory leaks and of_node_put() usage in the sun50i and qcom-nvmem cpufreq drivers (Javier Carrasco). - Clean up the sti and dt-platdev cpufreq drivers (Jeff Johnson, Raphael Gallais-Pou). - Fix deferred probe handling in the TI cpufreq driver and wrong return values of ti_opp_supply_probe(), and add OPP tables for the AM62Ax and AM62Px SoCs to it (Bryan Brattlof, Primoz Fiser). - Avoid overflow of target_freq in .fast_switch() in the SCMI cpufreq driver (Jagadeesh Kona). - Use dev_err_probe() in every error path in probe in the Mediatek cpufreq driver (Nícolas Prado). - Fix kernel-doc param for longhaul_setstate in the longhaul cpufreq driver (Yang Li). - Fix system resume handling in the CPPC cpufreq driver (Riwen Lu). - Improve the teo cpuidle governor and clean up leftover comments from the menu cpuidle governor (Christian Loehle). - Clean up a comment typo in the teo cpuidle governor (Atul Kumar Pant). - Add missing MODULE_DESCRIPTION() macro to cpuidle haltpoll (Jeff Johnson). - Switch the intel_idle driver to new Intel CPU model defines (Tony Luck). - Switch the Intel RAPL driver new Intel CPU model defines (Tony Luck). - Simplify if condition in the idle_inject driver (Thorsten Blum). - Fix missing cleanup on error in _opp_attach_genpd() (Viresh Kumar). - Introduce an OF helper function to inform if required-opps is used and drop a redundant in-parameter to _set_opp_level() (Ulf Hansson). - Update pm-graph to v5.12 which includes fixes and major code revamp for python3.12 (Todd Brandt). - Address several assorted issues in the cpupower utility (Roman Storozhenko). -----BEGIN PGP SIGNATURE----- iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmaVb+8SHHJqd0Byand5 c29ja2kubmV0AAoJEILEb/54YlRxXIUQALFhNTO+wo8uPWUmsp0SV81Sbf17zM0f 9IDpzJTUZLK0stTdLtxY4khcClPE4MrwS/LjSJlvkEVZChHpUw6vFezHmx0O42Ti Tmv3ezABSAmx6QVRSpyVhE3Hb0BmXW9V+3dtoefofV0JWenN7mqk4Hbb2Jx1Cvbh zyerUeWWl97yqVMM2l5owKHSvk7SYO6cfML73XcdXQ6pBfQePfekG87i1+r40l+d qEzdyh6JjqGbdkvZKtI4zO1Hdai9FdlLWSqYmVZGS5XRN8RVvDaHDIDlSijNXAei DFPFoBVAvl8CymBXXnzDyJJhCCkEb2aX3xD6WzthoCygZt5W+tqfGxyZfViBfb55 kvpyiWZUVaDyX4Hfz1PLnJ7Xg9kPUKUcDDrsV5vKA7W0Sq2T0RbORsVkaP2nIhlY 4Xspp9nEv+78DG0UjT7jT0Py2Oq9I6BTG+pmMTxcgA7G/U5H2uAvvIM/kwQ+30vi yUxO3W5o9TQmvJF1klHgp3YsCNWZG3IYacHZzUIoPbPusEbevYrCuUNriT+zlANc Pv/FMfBfHDmU2lHWyLzuoKhlzQosNi9NajMANBJgd55zACWKzgNzFV4P5gIMd1KR moJYfosbT2RWetEH8Zrh7xA5dewUphe6tibshElbKJHilnP0iFjYhhdb6aQRcuPd q/RECFYT7z0r =imBx -----END PGP SIGNATURE----- Merge tag 'pm-6.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management updates from Rafael Wysocki: "These add a new cpufreq driver for Loongson-3, add support for new features in the intel_pstate (Lunar Lake and Arrow Lake platforms, OOB mode for Emerald Rapids, highest performance change interrupt), amd-pstate (fast CPPC) and sun50i (Allwinner H700 speed bin) cpufreq drivers, simplify the cpufreq driver interface, simplify the teo cpuidle governor, adjust the pm-graph utility for a new version of Python, address issues and clean up code. Specifics: - Add Loongson-3 CPUFreq driver support (Huacai Chen) - Add support for the Arrow Lake and Lunar Lake platforms and the out-of-band (OOB) mode on Emerald Rapids to the intel_pstate cpufreq driver, make it support the highest performance change interrupt and clean it up (Srinivas Pandruvada) - Switch cpufreq to new Intel CPU model defines (Tony Luck) - Simplify the cpufreq driver interface by switching the .exit() driver callback to the void return data type (Lizhe, Viresh Kumar) - Make cpufreq_boost_enabled() return bool (Dhruva Gole) - Add fast CPPC support to the amd-pstate cpufreq driver, address multiple assorted issues in it and clean it up (Perry Yuan, Mario Limonciello, Dhananjay Ugwekar, Meng Li, Xiaojian Du) - Add Allwinner H700 speed bin to the sun50i cpufreq driver (Ryan Walklin) - Fix memory leaks and of_node_put() usage in the sun50i and qcom-nvmem cpufreq drivers (Javier Carrasco) - Clean up the sti and dt-platdev cpufreq drivers (Jeff Johnson, Raphael Gallais-Pou) - Fix deferred probe handling in the TI cpufreq driver and wrong return values of ti_opp_supply_probe(), and add OPP tables for the AM62Ax and AM62Px SoCs to it (Bryan Brattlof, Primoz Fiser) - Avoid overflow of target_freq in .fast_switch() in the SCMI cpufreq driver (Jagadeesh Kona) - Use dev_err_probe() in every error path in probe in the Mediatek cpufreq driver (Nícolas Prado) - Fix kernel-doc param for longhaul_setstate in the longhaul cpufreq driver (Yang Li) - Fix system resume handling in the CPPC cpufreq driver (Riwen Lu) - Improve the teo cpuidle governor and clean up leftover comments from the menu cpuidle governor (Christian Loehle) - Clean up a comment typo in the teo cpuidle governor (Atul Kumar Pant) - Add missing MODULE_DESCRIPTION() macro to cpuidle haltpoll (Jeff Johnson) - Switch the intel_idle driver to new Intel CPU model defines (Tony Luck) - Switch the Intel RAPL driver new Intel CPU model defines (Tony Luck) - Simplify if condition in the idle_inject driver (Thorsten Blum) - Fix missing cleanup on error in _opp_attach_genpd() (Viresh Kumar) - Introduce an OF helper function to inform if required-opps is used and drop a redundant in-parameter to _set_opp_level() (Ulf Hansson) - Update pm-graph to v5.12 which includes fixes and major code revamp for python3.12 (Todd Brandt) - Address several assorted issues in the cpupower utility (Roman Storozhenko)" * tag 'pm-6.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (77 commits) cpufreq: sti: fix build warning cpufreq: mediatek: Use dev_err_probe in every error path in probe cpufreq: Add Loongson-3 CPUFreq driver support cpufreq: Make cpufreq_driver->exit() return void cpufreq/amd-pstate: Fix the scaling_max_freq setting on shared memory CPPC systems cpufreq/amd-pstate-ut: Convert nominal_freq to khz during comparisons cpufreq: pcc: Remove empty exit() callback cpufreq: loongson2: Remove empty exit() callback cpufreq: nforce2: Remove empty exit() callback cpupower: fix lib default installation path cpufreq: docs: Add missing scaling_available_frequencies description cpuidle: teo: Don't count non-existent intercepts cpupower: Disable direct build of the 'bench' subproject cpuidle: teo: Remove recent intercepts metric Revert: "cpuidle: teo: Introduce util-awareness" cpufreq: make cpufreq_boost_enabled() return bool cpufreq: intel_pstate: Support highest performance change interrupt x86/cpufeatures: Add HWP highest perf change feature flag Documentation: cpufreq: amd-pstate: update doc for Per CPU boost control method cpufreq: amd-pstate: Cap the CPPC.max_perf to nominal_perf if CPB is off ... |
||
![]() |
408323581b |
- Add support for running the kernel in a SEV-SNP guest, over a Secure
VM Service Module (SVSM). When running over a SVSM, different services can run at different protection levels, apart from the guest OS but still within the secure SNP environment. They can provide services to the guest, like a vTPM, for example. This series adds the required facilities to interface with such a SVSM module. - The usual fixlets, refactoring and cleanups -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmaWQuoACgkQEsHwGGHe VUrmEw/+KqM5DK5cfpue3gn0RfH6OYUoFxOdYhGkG53qUMc3c3ka5zPVqLoHPkzp WPXha0Z5pVdrcD9mKtVUW9RIuLjInCM/mnoNc3tIUL+09xxemAjyG1+O+4kodiU7 sZ5+HuKUM2ihoC4Rrm+ApRrZfH4+WcgQNvFky77iObWVBo4yIscS7Pet/MYFvuuz zNaGp2SGGExDeoX/pMQNI3S9FKYD26HR17AUI3DHpS0teUl2npVi4xDjFVYZh0dQ yAhTKbSX3Q6ekDDkvAQUbxvWTJw9qoIsvLO9dvZdx6SSWmzF9IbuECpQKGQwYcp+ pVtcHb+3MwfB+nh5/fHyssRTOZp1UuI5GcmLHIQhmhQwCqPgzDH6te4Ud1ovkxOu 3GoBre7KydnQIyv12I+56/ZxyPbjHWmn8Fg106nAwGTdGbBJhfcVYfPmPvwpI4ib nXpjypvM8FkLzLAzDK6GE9QiXqJJlxOn7t66JiH/FkXR4gnY3eI8JLMfnm5blAb+ 97LC7oyeqtstWth9/4tpCILgPR2tirrMQGjUXttgt+2VMzqnEamnFozsKvR95xok 4j6ulKglZjdpn0ixHb2vAzAcOJvD7NP147jtCmXH7M6/f9H1Lih3MKdxX98MVhWB wSp16udXHzu5lF45J0BJG8uejSgBI2y51jc92HLX7kRULOGyaEo= =u15r -----END PGP SIGNATURE----- Merge tag 'x86_sev_for_v6.11_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 SEV updates from Borislav Petkov: - Add support for running the kernel in a SEV-SNP guest, over a Secure VM Service Module (SVSM). When running over a SVSM, different services can run at different protection levels, apart from the guest OS but still within the secure SNP environment. They can provide services to the guest, like a vTPM, for example. This series adds the required facilities to interface with such a SVSM module. - The usual fixlets, refactoring and cleanups [ And as always: "SEV" is AMD's "Secure Encrypted Virtualization". I can't be the only one who gets all the newer x86 TLA's confused, can I? - Linus ] * tag 'x86_sev_for_v6.11_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: Documentation/ABI/configfs-tsm: Fix an unexpected indentation silly x86/sev: Do RMP memory coverage check after max_pfn has been set x86/sev: Move SEV compilation units virt: sev-guest: Mark driver struct with __refdata to prevent section mismatch x86/sev: Allow non-VMPL0 execution when an SVSM is present x86/sev: Extend the config-fs attestation support for an SVSM x86/sev: Take advantage of configfs visibility support in TSM fs/configfs: Add a callback to determine attribute visibility sev-guest: configfs-tsm: Allow the privlevel_floor attribute to be updated virt: sev-guest: Choose the VMPCK key based on executing VMPL x86/sev: Provide guest VMPL level to userspace x86/sev: Provide SVSM discovery support x86/sev: Use the SVSM to create a vCPU when not in VMPL0 x86/sev: Perform PVALIDATE using the SVSM when not at VMPL0 x86/sev: Use kernel provided SVSM Calling Areas x86/sev: Check for the presence of an SVSM in the SNP secrets page x86/irqflags: Provide native versions of the local_irq_save()/restore() |
||
![]() |
7ea81936b8 |
x86/cpufeatures: Add HWP highest perf change feature flag
When CPUID[6].EAX[15] is set to 1, this CPU supports notification for HWP (Hardware P-states) highest performance change. Add a feature flag to check if the CPU supports HWP highest performance change. Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Link: https://patch.msgid.link/20240624161109.1427640-2-srinivas.pandruvada@linux.intel.com Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> |
||
![]() |
78ce84b9e0 |
x86/cpufeatures: Flip the /proc/cpuinfo appearance logic
I'm getting tired of telling people to put a magic "" in the #define X86_FEATURE /* "" ... */ comment to hide the new feature flag from the user-visible /proc/cpuinfo. Flip the logic to make it explicit: an explicit "<name>" in the comment adds the flag to /proc/cpuinfo and otherwise not, by default. Add the "<name>" of all the existing flags to keep backwards compatibility with userspace. There should be no functional changes resulting from this. Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20240618113840.24163-1-bp@kernel.org |
||
![]() |
1beb348d5c |
x86/sev: Provide SVSM discovery support
The SVSM specification documents an alternative method of discovery for the SVSM using a reserved CPUID bit and a reserved MSR. This is intended for guest components that do not have access to the secrets page in order to be able to call the SVSM (e.g. UEFI runtime services). For the MSR support, a new reserved MSR 0xc001f000 has been defined. A #VC should be generated when accessing this MSR. The #VC handler is expected to ignore writes to this MSR and return the physical calling area address (CAA) on reads of this MSR. While the CPUID leaf is updated, allowing the creation of a CPU feature, the code will continue to use the VMPL level as an indication of the presence of an SVSM. This is because the SVSM can be called well before the CPU feature is in place and a non-zero VMPL requires that an SVSM be present. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/4f93f10a2ff3e9f368fd64a5920d51bf38d0c19e.1717600736.git.thomas.lendacky@amd.com |
||
![]() |
c7107750b2 |
x86/cpufeatures: Add AMD FAST CPPC feature flag
Some AMD Zen 4 processors support a new feature FAST CPPC which allows for a faster CPPC loop due to internal architectural enhancements. The goal of this faster loop is higher performance at the same power consumption. Reference: See the page 99 of PPR for AMD Family 19h Model 61h rev.B1, docID 56713 Signed-off-by: Perry Yuan <perry.yuan@amd.com> Signed-off-by: Xiaojian Du <Xiaojian.Du@amd.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> |
||
![]() |
95a6ccbdc7 |
x86/bhi: Mitigate KVM by default
BHI mitigation mode spectre_bhi=auto does not deploy the software mitigation by default. In a cloud environment, it is a likely scenario where userspace is trusted but the guests are not trusted. Deploying system wide mitigation in such cases is not desirable. Update the auto mode to unconditionally mitigate against malicious guests. Deploy the software sequence at VMexit in auto mode also, when hardware mitigation is not available. Unlike the force =on mode, software sequence is not deployed at syscalls in auto mode. Suggested-by: Alexandre Chartre <alexandre.chartre@oracle.com> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> |
||
![]() |
ec9404e40e |
x86/bhi: Add BHI mitigation knob
Branch history clearing software sequences and hardware control BHI_DIS_S were defined to mitigate Branch History Injection (BHI). Add cmdline spectre_bhi={on|off|auto} to control BHI mitigation: auto - Deploy the hardware mitigation BHI_DIS_S, if available. on - Deploy the hardware mitigation BHI_DIS_S, if available, otherwise deploy the software sequence at syscall entry and VMexit. off - Turn off BHI mitigation. The default is auto mode which does not deploy the software sequence mitigation. This is because of the hardening done in the syscall dispatch path, which is the likely target of BHI. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> |
||
![]() |
be482ff950 |
x86/bhi: Enumerate Branch History Injection (BHI) bug
Mitigation for BHI is selected based on the bug enumeration. Add bits needed to enumerate BHI bug. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> |
||
![]() |
0f4a837615 |
x86/bhi: Define SPEC_CTRL_BHI_DIS_S
Newer processors supports a hardware control BHI_DIS_S to mitigate Branch History Injection (BHI). Setting BHI_DIS_S protects the kernel from userspace BHI attacks without having to manually overwrite the branch history. Define MSR_SPEC_CTRL bit BHI_DIS_S and its enumeration CPUID.BHI_CTRL. Mitigation is enabled later. Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> |
||
![]() |
7390db8aea |
x86/bhi: Add support for clearing branch history at syscall entry
Branch History Injection (BHI) attacks may allow a malicious application to influence indirect branch prediction in kernel by poisoning the branch history. eIBRS isolates indirect branch targets in ring0. The BHB can still influence the choice of indirect branch predictor entry, and although branch predictor entries are isolated between modes when eIBRS is enabled, the BHB itself is not isolated between modes. Alder Lake and new processors supports a hardware control BHI_DIS_S to mitigate BHI. For older processors Intel has released a software sequence to clear the branch history on parts that don't support BHI_DIS_S. Add support to execute the software sequence at syscall entry and VMexit to overwrite the branch history. For now, branch history is not cleared at interrupt entry, as malicious applications are not believed to have sufficient control over the registers, since previous register state is cleared at interrupt entry. Researchers continue to poke at this area and it may become necessary to clear at interrupt entry as well in the future. This mitigation is only defined here. It is enabled later. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Co-developed-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> |
||
![]() |
598c2fafc0 |
perf/x86/amd/lbr: Use freeze based on availability
Currently, the LBR code assumes that LBR Freeze is supported on all processors
when X86_FEATURE_AMD_LBR_V2 is available i.e. CPUID leaf 0x80000022[EAX]
bit 1 is set. This is incorrect as the availability of the feature is
additionally dependent on CPUID leaf 0x80000022[EAX] bit 2 being set,
which may not be set for all Zen 4 processors.
Define a new feature bit for LBR and PMC freeze and set the freeze enable bit
(FLBRI) in DebugCtl (MSR 0x1d9) conditionally.
It should still be possible to use LBR without freeze for profile-guided
optimization of user programs by using an user-only branch filter during
profiling. When the user-only filter is enabled, branches are no longer
recorded after the transition to CPL 0 upon PMI arrival. When branch
entries are read in the PMI handler, the branch stack does not change.
E.g.
$ perf record -j any,u -e ex_ret_brn_tkn ./workload
Since the feature bit is visible under flags in /proc/cpuinfo, it can be
used to determine the feasibility of use-cases which require LBR Freeze
to be supported by the hardware such as profile-guided optimization of
kernels.
Fixes:
|
||
![]() |
7f274e609f |
x86/cpufeatures: Add new word for scattered features
Add a new word for scattered features because all free bits among the existing Linux-defined auxiliary flags have been exhausted. Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/8380d2a0da469a1f0ad75b8954a79fb689599ff6.1711091584.git.sandipan.das@amd.com |
||
![]() |
0e33cf955f |
* Mitigate RFDS vulnerability
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmXvZgoACgkQaDWVMHDJ krC2Eg//aZKBp97/DSzRqXKDwJzVUr0sGJ9cii0gVT1sI+1U6ZZCh/roVH4xOT5/ HqtOOnQ+X0mwUx2VG3Yv2VPI7VW68sJ3/y9D8R4tnMEsyQ4CmDw96Pre3NyKr/Av jmW7SK94fOkpNFJOMk3zpk7GtRUlCsVkS1P61dOmMYduguhel/V20rWlx83BgnAY Rf/c3rBjqe8Ri3rzBP5icY/d6OgwoafuhME31DD/j6oKOh+EoQBvA4urj46yMTMX /mrK7hCm/wqwuOOvgGbo7sfZNBLCYy3SZ3EyF4beDERhPF1DaSvCwOULpGVJroqu SelFsKXAtEbYrDgsan+MYlx3bQv43q7PbHska1gjkH91plO4nAsssPr5VsusUKmT sq8jyBaauZb40oLOSgooL4RqAHrfs8q5695Ouwh/DB/XovMezUI1N/BkpGFmqpJI o2xH9P5q520pkB8pFhN9TbRuFSGe/dbWC24QTq1DUajo3M3RwcwX6ua9hoAKLtDF pCV5DNcVcXHD3Cxp0M5dQ5JEAiCnW+ZpUWgxPQamGDNW5PEvjDmFwql2uWw/qOuW lkheOIffq8ejUBQFbN8VXfIzzeeKQNFiIcViaqGITjIwhqdHAzVi28OuIGwtdh3g ywLzSC8yvyzgKrNBgtFMr3ucKN0FoPxpBro253xt2H7w8srXW64= =5V9t -----END PGP SIGNATURE----- Merge tag 'rfds-for-linus-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 RFDS mitigation from Dave Hansen: "RFDS is a CPU vulnerability that may allow a malicious userspace to infer stale register values from kernel space. Kernel registers can have all kinds of secrets in them so the mitigation is basically to wait until the kernel is about to return to userspace and has user values in the registers. At that point there is little chance of kernel secrets ending up in the registers and the microarchitectural state can be cleared. This leverages some recent robustness fixes for the existing MDS vulnerability. Both MDS and RFDS use the VERW instruction for mitigation" * tag 'rfds-for-linus-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: KVM/x86: Export RFDS_NO and RFDS_CLEAR to guests x86/rfds: Mitigate Register File Data Sampling (RFDS) Documentation/hw-vuln: Add documentation for RFDS x86/mmio: Disable KVM mitigation when X86_FEATURE_CLEAR_CPU_BUF is set |
||
![]() |
38b334fc76 |
- Add the x86 part of the SEV-SNP host support. This will allow the
kernel to be used as a KVM hypervisor capable of running SNP (Secure Nested Paging) guests. Roughly speaking, SEV-SNP is the ultimate goal of the AMD confidential computing side, providing the most comprehensive confidential computing environment up to date. This is the x86 part and there is a KVM part which did not get ready in time for the merge window so latter will be forthcoming in the next cycle. - Rework the early code's position-dependent SEV variable references in order to allow building the kernel with clang and -fPIE/-fPIC and -mcmodel=kernel - The usual set of fixes, cleanups and improvements all over the place -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmXvH0wACgkQEsHwGGHe VUrzmA//VS/n6dhHRnm/nAGngr4PeegkgV1OhyKYFfiZ272rT6P9QvblQrgcY0dc Ij1DOhEKlke51pTHvMOQ33B3P4Fuc0mx3dpCLY0up5V26kzQiKCjRKEkC4U1bcw8 W4GqMejaR89bE14bYibmwpSib9T/uVsV65eM3xf1iF5UvsnoUaTziymDoy+nb43a B1pdd5vcl4mBNqXeEvt0qjg+xkMLpWUI9tJDB8mbMl/cnIFGgMZzBaY8oktHSROK QpuUnKegOgp1RXpfLbNjmZ2Q4Rkk4MNazzDzWq3EIxaRjXL3Qp507ePK7yeA2qa0 J3jCBQc9E2j7lfrIkUgNIzOWhMAXM2YH5bvH6UrIcMi1qsWJYDmkp2MF1nUedjdf Wj16/pJbeEw1aKKIywJGwsmViSQju158vY3SzXG83U/A/Iz7zZRHFmC/ALoxZptY Bi7VhfcOSpz98PE3axnG8CvvxRDWMfzBr2FY1VmQbg6VBNo1Xl1aP/IH1I8iQNKg /laBYl/qP+1286TygF1lthYROb1lfEIJprgi2xfO6jVYUqPb7/zq2sm78qZRfm7l 25PN/oHnuidfVfI/H3hzcGubjOG9Zwra8WWYBB2EEmelf21rT0OLqq+eS4T6pxFb GNVfc0AzG77UmqbrpkAMuPqL7LrGaSee4NdU3hkEdSphlx1/YTo= =c1ps -----END PGP SIGNATURE----- Merge tag 'x86_sev_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 SEV updates from Borislav Petkov: - Add the x86 part of the SEV-SNP host support. This will allow the kernel to be used as a KVM hypervisor capable of running SNP (Secure Nested Paging) guests. Roughly speaking, SEV-SNP is the ultimate goal of the AMD confidential computing side, providing the most comprehensive confidential computing environment up to date. This is the x86 part and there is a KVM part which did not get ready in time for the merge window so latter will be forthcoming in the next cycle. - Rework the early code's position-dependent SEV variable references in order to allow building the kernel with clang and -fPIE/-fPIC and -mcmodel=kernel - The usual set of fixes, cleanups and improvements all over the place * tag 'x86_sev_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits) x86/sev: Disable KMSAN for memory encryption TUs x86/sev: Dump SEV_STATUS crypto: ccp - Have it depend on AMD_IOMMU iommu/amd: Fix failure return from snp_lookup_rmpentry() x86/sev: Fix position dependent variable references in startup code crypto: ccp: Make snp_range_list static x86/Kconfig: Remove CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT Documentation: virt: Fix up pre-formatted text block for SEV ioctls crypto: ccp: Add the SNP_SET_CONFIG command crypto: ccp: Add the SNP_COMMIT command crypto: ccp: Add the SNP_PLATFORM_STATUS command x86/cpufeatures: Enable/unmask SEV-SNP CPU feature KVM: SEV: Make AVIC backing, VMSA and VMCB memory allocation SNP safe crypto: ccp: Add panic notifier for SEV/SNP firmware shutdown on kdump iommu/amd: Clean up RMP entries for IOMMU pages during SNP shutdown crypto: ccp: Handle legacy SEV commands when SNP is enabled crypto: ccp: Handle non-volatile INIT_EX data when SNP is enabled crypto: ccp: Handle the legacy TMR allocation when SNP is enabled x86/sev: Introduce an SNP leaked pages list crypto: ccp: Provide an API to issue SEV and SNP commands ... |
||
![]() |
720c857907 |
Support for x86 Fast Return and Event Delivery (FRED):
FRED is a replacement for IDT event delivery on x86 and addresses most of the technical nightmares which IDT exposes: 1) Exception cause registers like CR2 need to be manually preserved in nested exception scenarios. 2) Hardware interrupt stack switching is suboptimal for nested exceptions as the interrupt stack mechanism rewinds the stack on each entry which requires a massive effort in the low level entry of #NMI code to handle this. 3) No hardware distinction between entry from kernel or from user which makes establishing kernel context more complex than it needs to be especially for unconditionally nestable exceptions like NMI. 4) NMI nesting caused by IRET unconditionally reenabling NMIs, which is a problem when the perf NMI takes a fault when collecting a stack trace. 5) Partial restore of ESP when returning to a 16-bit segment 6) Limitation of the vector space which can cause vector exhaustion on large systems. 7) Inability to differentiate NMI sources FRED addresses these shortcomings by: 1) An extended exception stack frame which the CPU uses to save exception cause registers. This ensures that the meta information for each exception is preserved on stack and avoids the extra complexity of preserving it in software. 2) Hardware interrupt stack switching is non-rewinding if a nested exception uses the currently interrupt stack. 3) The entry points for kernel and user context are separate and GS BASE handling which is required to establish kernel context for per CPU variable access is done in hardware. 4) NMIs are now nesting protected. They are only reenabled on the return from NMI. 5) FRED guarantees full restore of ESP 6) FRED does not put a limitation on the vector space by design because it uses a central entry points for kernel and user space and the CPUstores the entry type (exception, trap, interrupt, syscall) on the entry stack along with the vector number. The entry code has to demultiplex this information, but this removes the vector space restriction. The first hardware implementations will still have the current restricted vector space because lifting this limitation requires further changes to the local APIC. 7) FRED stores the vector number and meta information on stack which allows having more than one NMI vector in future hardware when the required local APIC changes are in place. The series implements the initial FRED support by: - Reworking the existing entry and IDT handling infrastructure to accomodate for the alternative entry mechanism. - Expanding the stack frame to accomodate for the extra 16 bytes FRED requires to store context and meta information - Providing FRED specific C entry points for events which have information pushed to the extended stack frame, e.g. #PF and #DB. - Providing FRED specific C entry points for #NMI and #MCE - Implementing the FRED specific ASM entry points and the C code to demultiplex the events - Providing detection and initialization mechanisms and the necessary tweaks in context switching, GS BASE handling etc. The FRED integration aims for maximum code reuse vs. the existing IDT implementation to the extent possible and the deviation in hot paths like context switching are handled with alternatives to minimalize the impact. The low level entry and exit paths are seperate due to the extended stack frame and the hardware based GS BASE swichting and therefore have no impact on IDT based systems. It has been extensively tested on existing systems and on the FRED simulation and as of now there are know outstanding problems. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmXuKPgTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoWyUEACevJMHU+Ot9zqBPizSWxByM1uunHbp bjQXhaFeskd3mt7k7HU6GsPRSmC3q4lliP1Y9ypfbU0DvYSI2h/PhMWizjhmot2y nIvFpl51r/NsI+JHx1oXcFetz0eGHEqBui/4YQ/swgOCMymYgfqgHhazXTdldV3g KpH9/8W3AeGvw79uzXFH9tjBzTkbvywpam3v0LYNDJWTCuDkilyo8PjhsgRZD4x3 V9f1nLD7nSHZW8XLoktdJJ38bKwI2Lhao91NQ0ErwopekA4/9WphZEKsDpidUSXJ sn1O148oQ8X92IO2OaQje8XC5pLGr5GqQBGPWzRH56P/Vd3+WOwBxaFoU6Drxc5s tIe23ZjkVcpA8EEG7BQBZV1Un/NX7XaCCnMniOt0RauXw+1NaslX7t/tnUAh5F1V TWCH4D0I0oJ0qJ7kNliGn2BP3agYXOVg81xVEUjT6KfHcYU4ImUrwi+BkeNXuXtL Ch5ADnbYAcUjWLFnAmEmaRtfmfNGY5T7PeGFHW2RRkaOJ88v5g14Voo6gPJaDUPn wMQ0nLq1xN4xZWF6ZgfRqAhArvh20k38ZujRku5vXEqnhOugQ76TF2UYiFEwOXbQ 8jcM+yEBLGgBz7tGMwmIAml6kfxaFF1KPpdrtcPxNkGlbE6KTSuIolLx2YGUvlSU 6/O8nwZy49ckmQ== =Ib7w -----END PGP SIGNATURE----- Merge tag 'x86-fred-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 FRED support from Thomas Gleixner: "Support for x86 Fast Return and Event Delivery (FRED). FRED is a replacement for IDT event delivery on x86 and addresses most of the technical nightmares which IDT exposes: 1) Exception cause registers like CR2 need to be manually preserved in nested exception scenarios. 2) Hardware interrupt stack switching is suboptimal for nested exceptions as the interrupt stack mechanism rewinds the stack on each entry which requires a massive effort in the low level entry of #NMI code to handle this. 3) No hardware distinction between entry from kernel or from user which makes establishing kernel context more complex than it needs to be especially for unconditionally nestable exceptions like NMI. 4) NMI nesting caused by IRET unconditionally reenabling NMIs, which is a problem when the perf NMI takes a fault when collecting a stack trace. 5) Partial restore of ESP when returning to a 16-bit segment 6) Limitation of the vector space which can cause vector exhaustion on large systems. 7) Inability to differentiate NMI sources FRED addresses these shortcomings by: 1) An extended exception stack frame which the CPU uses to save exception cause registers. This ensures that the meta information for each exception is preserved on stack and avoids the extra complexity of preserving it in software. 2) Hardware interrupt stack switching is non-rewinding if a nested exception uses the currently interrupt stack. 3) The entry points for kernel and user context are separate and GS BASE handling which is required to establish kernel context for per CPU variable access is done in hardware. 4) NMIs are now nesting protected. They are only reenabled on the return from NMI. 5) FRED guarantees full restore of ESP 6) FRED does not put a limitation on the vector space by design because it uses a central entry points for kernel and user space and the CPUstores the entry type (exception, trap, interrupt, syscall) on the entry stack along with the vector number. The entry code has to demultiplex this information, but this removes the vector space restriction. The first hardware implementations will still have the current restricted vector space because lifting this limitation requires further changes to the local APIC. 7) FRED stores the vector number and meta information on stack which allows having more than one NMI vector in future hardware when the required local APIC changes are in place. The series implements the initial FRED support by: - Reworking the existing entry and IDT handling infrastructure to accomodate for the alternative entry mechanism. - Expanding the stack frame to accomodate for the extra 16 bytes FRED requires to store context and meta information - Providing FRED specific C entry points for events which have information pushed to the extended stack frame, e.g. #PF and #DB. - Providing FRED specific C entry points for #NMI and #MCE - Implementing the FRED specific ASM entry points and the C code to demultiplex the events - Providing detection and initialization mechanisms and the necessary tweaks in context switching, GS BASE handling etc. The FRED integration aims for maximum code reuse vs the existing IDT implementation to the extent possible and the deviation in hot paths like context switching are handled with alternatives to minimalize the impact. The low level entry and exit paths are seperate due to the extended stack frame and the hardware based GS BASE swichting and therefore have no impact on IDT based systems. It has been extensively tested on existing systems and on the FRED simulation and as of now there are no outstanding problems" * tag 'x86-fred-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits) x86/fred: Fix init_task thread stack pointer initialization MAINTAINERS: Add a maintainer entry for FRED x86/fred: Fix a build warning with allmodconfig due to 'inline' failing to inline properly x86/fred: Invoke FRED initialization code to enable FRED x86/fred: Add FRED initialization functions x86/syscall: Split IDT syscall setup code into idt_syscall_init() KVM: VMX: Call fred_entry_from_kvm() for IRQ/NMI handling x86/entry: Add fred_entry_from_kvm() for VMX to handle IRQ/NMI x86/entry/calling: Allow PUSH_AND_CLEAR_REGS being used beyond actual entry code x86/fred: Fixup fault on ERETU by jumping to fred_entrypoint_user x86/fred: Let ret_from_fork_asm() jmp to asm_fred_exit_user when FRED is enabled x86/traps: Add sysvec_install() to install a system interrupt handler x86/fred: FRED entry/exit and dispatch code x86/fred: Add a machine check entry stub for FRED x86/fred: Add a NMI entry stub for FRED x86/fred: Add a debug fault entry stub for FRED x86/idtentry: Incorporate definitions/declarations of the FRED entries x86/fred: Make exc_page_fault() work for FRED x86/fred: Allow single-step trap and NMI when starting a new task x86/fred: No ESPFIX needed when FRED is enabled ... |
||
![]() |
8076fcde01 |
x86/rfds: Mitigate Register File Data Sampling (RFDS)
RFDS is a CPU vulnerability that may allow userspace to infer kernel stale data previously used in floating point registers, vector registers and integer registers. RFDS only affects certain Intel Atom processors. Intel released a microcode update that uses VERW instruction to clear the affected CPU buffers. Unlike MDS, none of the affected cores support SMT. Add RFDS bug infrastructure and enable the VERW based mitigation by default, that clears the affected buffers just before exiting to userspace. Also add sysfs reporting and cmdline parameter "reg_file_data_sampling" to control the mitigation. For details see: Documentation/admin-guide/hw-vuln/reg-file-data-sampling.rst Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> |
||
![]() |
baf8361e54 |
x86/bugs: Add asm helpers for executing VERW
MDS mitigation requires clearing the CPU buffers before returning to user. This needs to be done late in the exit-to-user path. Current location of VERW leaves a possibility of kernel data ending up in CPU buffers for memory accesses done after VERW such as: 1. Kernel data accessed by an NMI between VERW and return-to-user can remain in CPU buffers since NMI returning to kernel does not execute VERW to clear CPU buffers. 2. Alyssa reported that after VERW is executed, CONFIG_GCC_PLUGIN_STACKLEAK=y scrubs the stack used by a system call. Memory accesses during stack scrubbing can move kernel stack contents into CPU buffers. 3. When caller saved registers are restored after a return from function executing VERW, the kernel stack accesses can remain in CPU buffers(since they occur after VERW). To fix this VERW needs to be moved very late in exit-to-user path. In preparation for moving VERW to entry/exit asm code, create macros that can be used in asm. Also make VERW patching depend on a new feature flag X86_FEATURE_CLEAR_CPU_BUF. Reported-by: Alyssa Milburn <alyssa.milburn@intel.com> Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com> Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20240213-delay-verw-v8-1-a6216d83edb7%40linux.intel.com |
||
![]() |
b6e0f6666f |
x86/cpufeatures: Add SEV-SNP CPU feature
Add CPU feature detection for Secure Encrypted Virtualization with Secure Nested Paging. This feature adds a strong memory integrity protection to help prevent malicious hypervisor-based attacks like data replay, memory re-mapping, and more. Since enabling the SNP CPU feature imposes a number of additional requirements on host initialization and handling legacy firmware APIs for SEV/SEV-ES guests, only introduce the CPU feature bit so that the relevant handling can be added, but leave it disabled via a disabled-features mask. Once all the necessary changes needed to maintain legacy SEV/SEV-ES support are introduced in subsequent patches, the SNP feature bit will be unmasked/enabled. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Jarkko Sakkinen <jarkko@profian.com> Signed-off-by: Ashish Kalra <Ashish.Kalra@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20240126041126.1927228-2-michael.roth@amd.com |
||
![]() |
51c158f7aa |
x86/cpufeatures: Add the CPU feature bit for FRED
Any FRED enabled CPU will always have the following features as its baseline: 1) LKGS, load attributes of the GS segment but the base address into the IA32_KERNEL_GS_BASE MSR instead of the GS segment’s descriptor cache. 2) WRMSRNS, non-serializing WRMSR for faster MSR writes. Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com> Signed-off-by: Xin Li <xin3.li@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Shan Kang <shan.kang@intel.com> Link: https://lore.kernel.org/r/20231205105030.8698-7-xin3.li@intel.com |
||
![]() |
a4cb5ece14 |
x86/cpufeatures,opcode,msr: Add the WRMSRNS instruction support
WRMSRNS is an instruction that behaves exactly like WRMSR, with the only difference being that it is not a serializing instruction by default. Under certain conditions, WRMSRNS may replace WRMSR to improve performance. Add its CPU feature bit, opcode to the x86 opcode map, and an always inline API __wrmsrns() to embed WRMSRNS into the code. Signed-off-by: Xin Li <xin3.li@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Shan Kang <shan.kang@intel.com> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231205105030.8698-2-xin3.li@intel.com |
||
![]() |
3e4147f33f |
x86/CPU/AMD: Add X86_FEATURE_ZEN5
Add a synthetic feature flag for Zen5. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20240104201138.5072-1-bp@alien8.de |
||
![]() |
b4442cadca |
- Add support managing TDX host hardware
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmWfCRQACgkQaDWVMHDJ krDUqQ//VCvkpf0mAbYDJa1oTXFW8O5cVTusBtPi8k7cFbtjQpjno/9AqKol+sK8 AKg+y5iHHl7QJmDmEcpS+O9OBbmFOpvDzm3QZhk8RkWS5pe0B108dnINYtS0eP9R MkzZwfrI2yC6NX4hvHGdD8WGHjrt+oxY0bojehX87JZsyRU+xqc/g1OO7a5bUPQe 3Ip0kKiCeqFv0y+Q1pFMEd9RdZ8XxqzUHCJT3hfgZ6FajJ2eVy6jNrPOm6LozycB eOtYYNapSgw3k/WhJCOYWHX7kePXibLxBRONLpi6P3U6pMVk4n8wrgl7qPtdW1Qx nR2UHX5P6eFkxNCuU1BzvmPBROe37C51MFVw29eRnigvuX3j/vfCH1+17xQOVKVv 5JyxYA0rJWqoOz6mX7YaNJHlmrxHzeKXudICyOFuu1j5c8CuGjh8NQsOSCq16XfZ hPzfYDUS8I7/kHYQPJlnB+kF9pmbyjTM70h74I8D6ZWvXESHJZt+TYPyWfkBXP/P L9Pwx1onAyoBApGxCWuvgGTLonzNredgYG4ABbqhUqxqncJS9M7Y/yJa+f+3SOkR T6LxoByuDVld5cIfbOzRwIaRezZDe/NL7rkHm/DWo98OaV3zILsr20Hx1lPZ1Vce ryZ9lCdZGGxm2jmpzr/VymPQz/E+ezahRHE1+F3su8jpCU41txg= =1EJI -----END PGP SIGNATURE----- Merge tag 'x86_tdx_for_6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 TDX updates from Dave Hansen: "This contains the initial support for host-side TDX support so that KVM can run TDX-protected guests. This does not include the actual KVM-side support which will come from the KVM folks. The TDX host interactions with kexec also needs to be ironed out before this is ready for prime time, so this code is currently Kconfig'd off when kexec is on. The majority of the code here is the kernel telling the TDX module which memory to protect and handing some additional memory over to it to use to store TDX module metadata. That sounds pretty simple, but the TDX architecture is rather flexible and it takes quite a bit of back-and-forth to say, "just protect all memory, please." There is also some code tacked on near the end of the series to handle a hardware erratum. The erratum can make software bugs such as a kernel write to TDX-protected memory cause a machine check and masquerade as a real hardware failure. The erratum handling watches out for these and tries to provide nicer user errors" * tag 'x86_tdx_for_6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits) x86/virt/tdx: Make TDX host depend on X86_MCE x86/virt/tdx: Disable TDX host support when kexec is enabled Documentation/x86: Add documentation for TDX host support x86/mce: Differentiate real hardware #MCs from TDX erratum ones x86/cpu: Detect TDX partial write machine check erratum x86/virt/tdx: Handle TDX interaction with sleep and hibernation x86/virt/tdx: Initialize all TDMRs x86/virt/tdx: Configure global KeyID on all packages x86/virt/tdx: Configure TDX module with the TDMRs and global KeyID x86/virt/tdx: Designate reserved areas for all TDMRs x86/virt/tdx: Allocate and set up PAMTs for TDMRs x86/virt/tdx: Fill out TDMRs to cover all TDX memory regions x86/virt/tdx: Add placeholder to construct TDMRs to cover all TDX memory regions x86/virt/tdx: Get module global metadata for module initialization x86/virt/tdx: Use all system memory when initializing TDX module as TDX memory x86/virt/tdx: Add skeleton to enable TDX on demand x86/virt/tdx: Add SEAMCALL error printing for module initialization x86/virt/tdx: Handle SEAMCALL no entropy error in common code x86/virt/tdx: Make INTEL_TDX_HOST depend on X86_X2APIC x86/virt/tdx: Define TDX supported page sizes as macros ... |
||
![]() |
1e536e1068 |
x86/cpu: Detect TDX partial write machine check erratum
TDX memory has integrity and confidentiality protections. Violations of this integrity protection are supposed to only affect TDX operations and are never supposed to affect the host kernel itself. In other words, the host kernel should never, itself, see machine checks induced by the TDX integrity hardware. Alas, the first few generations of TDX hardware have an erratum. A partial write to a TDX private memory cacheline will silently "poison" the line. Subsequent reads will consume the poison and generate a machine check. According to the TDX hardware spec, neither of these things should have happened. Virtually all kernel memory accesses operations happen in full cachelines. In practice, writing a "byte" of memory usually reads a 64 byte cacheline of memory, modifies it, then writes the whole line back. Those operations do not trigger this problem. This problem is triggered by "partial" writes where a write transaction of less than cacheline lands at the memory controller. The CPU does these via non-temporal write instructions (like MOVNTI), or through UC/WC memory mappings. The issue can also be triggered away from the CPU by devices doing partial writes via DMA. With this erratum, there are additional things need to be done. To prepare for those changes, add a CPU bug bit to indicate this erratum. Note this bug reflects the hardware thus it is detected regardless of whether the kernel is built with TDX support or not. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-17-dave.hansen%40intel.com |
||
![]() |
232afb5578 |
x86/CPU/AMD: Add X86_FEATURE_ZEN1
Add a synthetic feature flag specifically for first generation Zen
machines. There's need to have a generic flag for all Zen generations so
make X86_FEATURE_ZEN be that flag.
Fixes:
|
||
![]() |
765a0542fd |
x86/virt/tdx: Detect TDX during kernel boot
Intel Trust Domain Extensions (TDX) protects guest VMs from malicious host and certain physical attacks. A CPU-attested software module called 'the TDX module' runs inside a new isolated memory range as a trusted hypervisor to manage and run protected VMs. Pre-TDX Intel hardware has support for a memory encryption architecture called MKTME. The memory encryption hardware underpinning MKTME is also used for Intel TDX. TDX ends up "stealing" some of the physical address space from the MKTME architecture for crypto-protection to VMs. The BIOS is responsible for partitioning the "KeyID" space between legacy MKTME and TDX. The KeyIDs reserved for TDX are called 'TDX private KeyIDs' or 'TDX KeyIDs' for short. During machine boot, TDX microcode verifies that the BIOS programmed TDX private KeyIDs consistently and correctly programmed across all CPU packages. The MSRs are locked in this state after verification. This is why MSR_IA32_MKTME_KEYID_PARTITIONING gets used for TDX enumeration: it indicates not just that the hardware supports TDX, but that all the boot-time security checks passed. The TDX module is expected to be loaded by the BIOS when it enables TDX, but the kernel needs to properly initialize it before it can be used to create and run any TDX guests. The TDX module will be initialized by the KVM subsystem when KVM wants to use TDX. Detect platform TDX support by detecting TDX private KeyIDs. The TDX module itself requires one TDX KeyID as the 'TDX global KeyID' to protect its metadata. Each TDX guest also needs a TDX KeyID for its own protection. Just use the first TDX KeyID as the global KeyID and leave the rest for TDX guests. If no TDX KeyID is left for TDX guests, disable TDX as initializing the TDX module alone is useless. [ dhansen: add X86_FEATURE, replace helper function ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-1-dave.hansen%40intel.com |
||
![]() |
30fa92832f |
x86/CPU/AMD: Add ZenX generations flags
Add X86_FEATURE flags for each Zen generation. They should be used from now on instead of checking f/m/s. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Nikolay Borisov <nik.borisov@suse.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/r/20231120104152.13740-2-bp@alien8.de |
||
![]() |
04c3024560 |
x86/barrier: Do not serialize MSR accesses on AMD
AMD does not have the requirement for a synchronization barrier when acccessing a certain group of MSRs. Do not incur that unnecessary penalty there. There will be a CPUID bit which explicitly states that a MFENCE is not needed. Once that bit is added to the APM, this will be extended with it. While at it, move to processor.h to avoid include hell. Untangling that file properly is a matter for another day. Some notes on the performance aspect of why this is relevant, courtesy of Kishon VijayAbraham <Kishon.VijayAbraham@amd.com>: On a AMD Zen4 system with 96 cores, a modified ipi-bench[1] on a VM shows x2AVIC IPI rate is 3% to 4% lower than AVIC IPI rate. The ipi-bench is modified so that the IPIs are sent between two vCPUs in the same CCX. This also requires to pin the vCPU to a physical core to prevent any latencies. This simulates the use case of pinning vCPUs to the thread of a single CCX to avoid interrupt IPI latency. In order to avoid run-to-run variance (for both x2AVIC and AVIC), the below configurations are done: 1) Disable Power States in BIOS (to prevent the system from going to lower power state) 2) Run the system at fixed frequency 2500MHz (to prevent the system from increasing the frequency when the load is more) With the above configuration: *) Performance measured using ipi-bench for AVIC: Average Latency: 1124.98ns [Time to send IPI from one vCPU to another vCPU] Cumulative throughput: 42.6759M/s [Total number of IPIs sent in a second from 48 vCPUs simultaneously] *) Performance measured using ipi-bench for x2AVIC: Average Latency: 1172.42ns [Time to send IPI from one vCPU to another vCPU] Cumulative throughput: 40.9432M/s [Total number of IPIs sent in a second from 48 vCPUs simultaneously] From above, x2AVIC latency is ~4% more than AVIC. However, the expectation is x2AVIC performance to be better or equivalent to AVIC. Upon analyzing the perf captures, it is observed significant time is spent in weak_wrmsr_fence() invoked by x2apic_send_IPI(). With the fix to skip weak_wrmsr_fence() *) Performance measured using ipi-bench for x2AVIC: Average Latency: 1117.44ns [Time to send IPI from one vCPU to another vCPU] Cumulative throughput: 42.9608M/s [Total number of IPIs sent in a second from 48 vCPUs simultaneously] Comparing the performance of x2AVIC with and without the fix, it can be seen the performance improves by ~4%. Performance captured using an unmodified ipi-bench using the 'mesh-ipi' option with and without weak_wrmsr_fence() on a Zen4 system also showed significant performance improvement without weak_wrmsr_fence(). The 'mesh-ipi' option ignores CCX or CCD and just picks random vCPU. Average throughput (10 iterations) with weak_wrmsr_fence(), Cumulative throughput: 4933374 IPI/s Average throughput (10 iterations) without weak_wrmsr_fence(), Cumulative throughput: 6355156 IPI/s [1] https://github.com/bytedance/kvm-utils/tree/master/microbenchmark/ipi-bench Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230622095212.20940-1-bp@alien8.de |
||
![]() |
329369caec |
x86: KVM: Add feature flag for CPUID.80000021H:EAX[bit 1]
Define an X86_FEATURE_* flag for CPUID.80000021H:EAX.[bit 1], and advertise the feature to userspace via KVM_GET_SUPPORTED_CPUID. Per AMD's "Processor Programming Reference (PPR) for AMD Family 19h Model 61h, Revision B1 Processors (56713-B1-PUB)," this CPUID bit indicates that a WRMSR to MSR_FS_BASE, MSR_GS_BASE, or MSR_KERNEL_GS_BASE is non-serializing. This is a change in previously architected behavior. Effectively, this CPUID bit is a "defeature" bit, or a reverse polarity feature bit. When this CPUID bit is clear, the feature (serialization on WRMSR to any of these three MSRs) is available. When this CPUID bit is set, the feature is not available. KVM_GET_SUPPORTED_CPUID must pass this bit through from the underlying hardware, if it is set. Leaving the bit clear claims that WRMSR to these three MSRs will be serializing in a guest running under KVM. That isn't true. Though KVM could emulate the feature by intercepting writes to the specified MSRs, it does not do so today. The guest is allowed direct read/write access to these MSRs without interception, so the innate hardware behavior is preserved under KVM. Signed-off-by: Jim Mattson <jmattson@google.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231005031237.1652871-1-jmattson@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> |
||
![]() |
0c02183427 |
ARM:
* Clean up vCPU targets, always returning generic v8 as the preferred target * Trap forwarding infrastructure for nested virtualization (used for traps that are taken from an L2 guest and are needed by the L1 hypervisor) * FEAT_TLBIRANGE support to only invalidate specific ranges of addresses when collapsing a table PTE to a block PTE. This avoids that the guest refills the TLBs again for addresses that aren't covered by the table PTE. * Fix vPMU issues related to handling of PMUver. * Don't unnecessary align non-stack allocations in the EL2 VA space * Drop HCR_VIRT_EXCP_MASK, which was never used... * Don't use smp_processor_id() in kvm_arch_vcpu_load(), but the cpu parameter instead * Drop redundant call to kvm_set_pfn_accessed() in user_mem_abort() * Remove prototypes without implementations RISC-V: * Zba, Zbs, Zicntr, Zicsr, Zifencei, and Zihpm support for guest * Added ONE_REG interface for SATP mode * Added ONE_REG interface to enable/disable multiple ISA extensions * Improved error codes returned by ONE_REG interfaces * Added KVM_GET_REG_LIST ioctl() implementation for KVM RISC-V * Added get-reg-list selftest for KVM RISC-V s390: * PV crypto passthrough enablement (Tony, Steffen, Viktor, Janosch) Allows a PV guest to use crypto cards. Card access is governed by the firmware and once a crypto queue is "bound" to a PV VM every other entity (PV or not) looses access until it is not bound anymore. Enablement is done via flags when creating the PV VM. * Guest debug fixes (Ilya) x86: * Clean up KVM's handling of Intel architectural events * Intel bugfixes * Add support for SEV-ES DebugSwap, allowing SEV-ES guests to use debug registers and generate/handle #DBs * Clean up LBR virtualization code * Fix a bug where KVM fails to set the target pCPU during an IRTE update * Fix fatal bugs in SEV-ES intrahost migration * Fix a bug where the recent (architecturally correct) change to reinject #BP and skip INT3 broke SEV guests (can't decode INT3 to skip it) * Retry APIC map recalculation if a vCPU is added/enabled * Overhaul emergency reboot code to bring SVM up to par with VMX, tie the "emergency disabling" behavior to KVM actually being loaded, and move all of the logic within KVM * Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC ratio MSR cannot diverge from the default when TSC scaling is disabled up related code * Add a framework to allow "caching" feature flags so that KVM can check if the guest can use a feature without needing to search guest CPUID * Rip out the ancient MMU_DEBUG crud and replace the useful bits with CONFIG_KVM_PROVE_MMU * Fix KVM's handling of !visible guest roots to avoid premature triple fault injection * Overhaul KVM's page-track APIs, and KVMGT's usage, to reduce the API surface that is needed by external users (currently only KVMGT), and fix a variety of issues in the process This last item had a silly one-character bug in the topic branch that was sent to me. Because it caused pretty bad selftest failures in some configurations, I decided to squash in the fix. So, while the exact commit ids haven't been in linux-next, the code has (from the kvm-x86 tree). Generic: * Wrap kvm_{gfn,hva}_range.pte in a union to allow mmu_notifier events to pass action specific data without needing to constantly update the main handlers. * Drop unused function declarations Selftests: * Add testcases to x86's sync_regs_test for detecting KVM TOCTOU bugs * Add support for printf() in guest code and covert all guest asserts to use printf-based reporting * Clean up the PMU event filter test and add new testcases * Include x86 selftests in the KVM x86 MAINTAINERS entry -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmT1m0kUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroMNgggAiN7nz6UC423FznuI+yO3TLm8tkx1 CpKh5onqQogVtchH+vrngi97cfOzZb1/AtifY90OWQi31KEWhehkeofcx7G6ERhj 5a9NFADY1xGBsX4exca/VHDxhnzsbDWaWYPXw5vWFWI6erft9Mvy3tp1LwTvOzqM v8X4aWz+g5bmo/DWJf4Wu32tEU6mnxzkrjKU14JmyqQTBawVmJ3RYvHVJ/Agpw+n hRtPAy7FU6XTdkmq/uCT+KUHuJEIK0E/l1js47HFAqSzwdW70UDg14GGo1o4ETxu RjZQmVNvL57yVgi6QU38/A0FWIsWQm5IlaX1Ug6x8pjZPnUKNbo9BY4T1g== =W+4p -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "ARM: - Clean up vCPU targets, always returning generic v8 as the preferred target - Trap forwarding infrastructure for nested virtualization (used for traps that are taken from an L2 guest and are needed by the L1 hypervisor) - FEAT_TLBIRANGE support to only invalidate specific ranges of addresses when collapsing a table PTE to a block PTE. This avoids that the guest refills the TLBs again for addresses that aren't covered by the table PTE. - Fix vPMU issues related to handling of PMUver. - Don't unnecessary align non-stack allocations in the EL2 VA space - Drop HCR_VIRT_EXCP_MASK, which was never used... - Don't use smp_processor_id() in kvm_arch_vcpu_load(), but the cpu parameter instead - Drop redundant call to kvm_set_pfn_accessed() in user_mem_abort() - Remove prototypes without implementations RISC-V: - Zba, Zbs, Zicntr, Zicsr, Zifencei, and Zihpm support for guest - Added ONE_REG interface for SATP mode - Added ONE_REG interface to enable/disable multiple ISA extensions - Improved error codes returned by ONE_REG interfaces - Added KVM_GET_REG_LIST ioctl() implementation for KVM RISC-V - Added get-reg-list selftest for KVM RISC-V s390: - PV crypto passthrough enablement (Tony, Steffen, Viktor, Janosch) Allows a PV guest to use crypto cards. Card access is governed by the firmware and once a crypto queue is "bound" to a PV VM every other entity (PV or not) looses access until it is not bound anymore. Enablement is done via flags when creating the PV VM. - Guest debug fixes (Ilya) x86: - Clean up KVM's handling of Intel architectural events - Intel bugfixes - Add support for SEV-ES DebugSwap, allowing SEV-ES guests to use debug registers and generate/handle #DBs - Clean up LBR virtualization code - Fix a bug where KVM fails to set the target pCPU during an IRTE update - Fix fatal bugs in SEV-ES intrahost migration - Fix a bug where the recent (architecturally correct) change to reinject #BP and skip INT3 broke SEV guests (can't decode INT3 to skip it) - Retry APIC map recalculation if a vCPU is added/enabled - Overhaul emergency reboot code to bring SVM up to par with VMX, tie the "emergency disabling" behavior to KVM actually being loaded, and move all of the logic within KVM - Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC ratio MSR cannot diverge from the default when TSC scaling is disabled up related code - Add a framework to allow "caching" feature flags so that KVM can check if the guest can use a feature without needing to search guest CPUID - Rip out the ancient MMU_DEBUG crud and replace the useful bits with CONFIG_KVM_PROVE_MMU - Fix KVM's handling of !visible guest roots to avoid premature triple fault injection - Overhaul KVM's page-track APIs, and KVMGT's usage, to reduce the API surface that is needed by external users (currently only KVMGT), and fix a variety of issues in the process Generic: - Wrap kvm_{gfn,hva}_range.pte in a union to allow mmu_notifier events to pass action specific data without needing to constantly update the main handlers. - Drop unused function declarations Selftests: - Add testcases to x86's sync_regs_test for detecting KVM TOCTOU bugs - Add support for printf() in guest code and covert all guest asserts to use printf-based reporting - Clean up the PMU event filter test and add new testcases - Include x86 selftests in the KVM x86 MAINTAINERS entry" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (279 commits) KVM: x86/mmu: Include mmu.h in spte.h KVM: x86/mmu: Use dummy root, backed by zero page, for !visible guest roots KVM: x86/mmu: Disallow guest from using !visible slots for page tables KVM: x86/mmu: Harden TDP MMU iteration against root w/o shadow page KVM: x86/mmu: Harden new PGD against roots without shadow pages KVM: x86/mmu: Add helper to convert root hpa to shadow page drm/i915/gvt: Drop final dependencies on KVM internal details KVM: x86/mmu: Handle KVM bookkeeping in page-track APIs, not callers KVM: x86/mmu: Drop @slot param from exported/external page-track APIs KVM: x86/mmu: Bug the VM if write-tracking is used but not enabled KVM: x86/mmu: Assert that correct locks are held for page write-tracking KVM: x86/mmu: Rename page-track APIs to reflect the new reality KVM: x86/mmu: Drop infrastructure for multiple page-track modes KVM: x86/mmu: Use page-track notifiers iff there are external users KVM: x86/mmu: Move KVM-only page-track declarations to internal header KVM: x86: Remove the unused page-track hook track_flush_slot() drm/i915/gvt: switch from ->track_flush_slot() to ->track_remove_region() KVM: x86: Add a new page-track hook to handle memslot deletion drm/i915/gvt: Don't bother removing write-protection on to-be-deleted slot KVM: x86: Reject memslot MOVE operations if KVMGT is attached ... |
||
![]() |
df57721f9a |
Add x86 shadow stack support
Convert IBT selftest to asm to fix objtool warning -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmTv1QQACgkQaDWVMHDJ krAUwhAAn6TOwHJK8BSkHeiQhON1nrlP3c5cv0AyZ2NP8RYDrZrSZvhpYBJ6wgKC Cx5CGq5nn9twYsYS3KsktLKDfR3lRdsQ7K9qtyFtYiaeaVKo+7gEKl/K+klwai8/ gninQWHk0zmSCja8Vi77q52WOMkQKapT8+vaON9EVDO8dVEi+CvhAIfPwMafuiwO Rk4X86SzoZu9FP79LcCg9XyGC/XbM2OG9eNUTSCKT40qTTKm5y4gix687NvAlaHR ko5MTsdl0Wfp6Qk0ohT74LnoA2c1g/FluvZIM33ci/2rFpkf9Hw7ip3lUXqn6CPx rKiZ+pVRc0xikVWkraMfIGMJfUd2rhelp8OyoozD7DB7UZw40Q4RW4N5tgq9Fhe9 MQs3p1v9N8xHdRKl365UcOczUxNAmv4u0nV5gY/4FMC6VjldCl2V9fmqYXyzFS4/ Ogg4FSd7c2JyGFKPs+5uXyi+RY2qOX4+nzHOoKD7SY616IYqtgKoz5usxETLwZ6s VtJOmJL0h//z0A7tBliB0zd+SQ5UQQBDC2XouQH2fNX2isJMn0UDmWJGjaHgK6Hh 8jVp6LNqf+CEQS387UxckOyj7fu438hDky1Ggaw4YqowEOhQeqLVO4++x+HITrbp AupXfbJw9h9cMN63Yc0gVxXQ9IMZ+M7UxLtZ3Cd8/PVztNy/clA= =3UUm -----END PGP SIGNATURE----- Merge tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 shadow stack support from Dave Hansen: "This is the long awaited x86 shadow stack support, part of Intel's Control-flow Enforcement Technology (CET). CET consists of two related security features: shadow stacks and indirect branch tracking. This series implements just the shadow stack part of this feature, and just for userspace. The main use case for shadow stack is providing protection against return oriented programming attacks. It works by maintaining a secondary (shadow) stack using a special memory type that has protections against modification. When executing a CALL instruction, the processor pushes the return address to both the normal stack and to the special permission shadow stack. Upon RET, the processor pops the shadow stack copy and compares it to the normal stack copy. For more information, refer to the links below for the earlier versions of this patch set" Link: https://lore.kernel.org/lkml/20220130211838.8382-1-rick.p.edgecombe@intel.com/ Link: https://lore.kernel.org/lkml/20230613001108.3040476-1-rick.p.edgecombe@intel.com/ * tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (47 commits) x86/shstk: Change order of __user in type x86/ibt: Convert IBT selftest to asm x86/shstk: Don't retry vm_munmap() on -EINTR x86/kbuild: Fix Documentation/ reference x86/shstk: Move arch detail comment out of core mm x86/shstk: Add ARCH_SHSTK_STATUS x86/shstk: Add ARCH_SHSTK_UNLOCK x86: Add PTRACE interface for shadow stack selftests/x86: Add shadow stack test x86/cpufeatures: Enable CET CR4 bit for shadow stack x86/shstk: Wire in shadow stack interface x86: Expose thread features in /proc/$PID/status x86/shstk: Support WRSS for userspace x86/shstk: Introduce map_shadow_stack syscall x86/shstk: Check that signal frame is shadow stack mem x86/shstk: Check that SSP is aligned on sigreturn x86/shstk: Handle signals for shadow stack x86/shstk: Introduce routines modifying shstk x86/shstk: Handle thread shadow stack x86/shstk: Add user-mode shadow stack support ... |
||
![]() |
bd7fe98b35 |
KVM: x86: SVM changes for 6.6:
- Add support for SEV-ES DebugSwap, i.e. allow SEV-ES guests to use debug registers and generate/handle #DBs - Clean up LBR virtualization code - Fix a bug where KVM fails to set the target pCPU during an IRTE update - Fix fatal bugs in SEV-ES intrahost migration - Fix a bug where the recent (architecturally correct) change to reinject #BP and skip INT3 broke SEV guests (can't decode INT3 to skip it) -----BEGIN PGP SIGNATURE----- iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmTue8YSHHNlYW5qY0Bn b29nbGUuY29tAAoJEGCRIgFNDBL5aqUP/jF7DyMXyQGYMKoQhFxWyGRhfqV8Ov8i 7sUpEKSx5WTxOsFHBgdGeNU+m9eBJHWVmrJM9imI4OCUvJmxasRRsnyhvEUvBIUE amQT45aVm2xqjRNRUkOCUUHiDKtUdwpSRlOSyhnDTKmlMbNoH+fO3SLJ1oB/fsae wnmyiF98j2vT/5mD6F/F87hlNMq4CqG/OZWJ9Kk8GfvfJpUcC8r/H0NsMgSMF2/L Q+Hn+r/XDfMSrBiyEzevWyPbJi7nL+WF9EQDJASf+aAkmFMHK6AU4XNITwVw3XcZ FGtSP/NzvnePhd5gqtbiW9hRQkWcKjqnydtyI3ZDVVBpEbJ6OJn3+UFoLZ8NoSE+ D3EDs1PA7Qjty6kYx9/NZpXz5BAMd9mikkTL7PTrlrAZAEimToqoHx7mBjmLp4E+ diKrpG2w1OTtO/Pafi0z0zZN6Yc9MJOyZVK78DpIiLey3rNip9SawWGh+wV14WNC nbn7Wpf8EGE1E8n00mwrGMRCuRm7LQhLbcVXITiGKrbpxUzam6sqDIgt73Q7xma2 NWcPizeFNy47uurNOA2V9xHkbEAYjWaM12uyzmGzILvvmvNnpU0NuZ78cgV5ZWMk 4US53CAQbG4+qUCJWhIDoriluaLXjL9tLiZgJW0T6cus3nL5NWYqvlq6TWYyK00J zjiK7vky77Pq =WC5V -----END PGP SIGNATURE----- Merge tag 'kvm-x86-svm-6.6' of https://github.com/kvm-x86/linux into HEAD KVM: x86: SVM changes for 6.6: - Add support for SEV-ES DebugSwap, i.e. allow SEV-ES guests to use debug registers and generate/handle #DBs - Clean up LBR virtualization code - Fix a bug where KVM fails to set the target pCPU during an IRTE update - Fix fatal bugs in SEV-ES intrahost migration - Fix a bug where the recent (architecturally correct) change to reinject #BP and skip INT3 broke SEV guests (can't decode INT3 to skip it) |
||
![]() |
9855922705 |
- Remove unnecessary "INVPCID single" feature tracking
- Include PAT in page protection modify mask -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmTuUrwACgkQaDWVMHDJ krD7jRAAt37pNfAJLd+pJtBAtsZYlmPq1aYHSuLPQFaFebYgN8j4ekMwRNRBbgQF 6dWQXYSRMFnmJzbxBcHTkzYzR1Noh1o8U0SKUp3CNFfA3gGAq1mpoOKc7l1KjVGN x6x0+5aroT0DCtxqid0iBY38IJb/qmJ63NLGT0oJm8NZ9CTwd1UaN6KXWz1mawgk BvIY1zgMLibB2aYi2Eib2JlhQ6DWHSJMAZpMMEdPay/lr6ONlQZ3Sckjvz5huskQ ikGIvzF3L6BFDsxIYjE4uoFoImDcs4Q3gIGoqsn/Ig79mCnttgoRQ7HVFmUrVKq1 nxa+o+uqWNJjRSwbHUKX1ReyiFF5Re+7csODEnIzHr761YXWTcm94sR8jb4bCMqV QiWkzt5wcdzpAZC72gcRLqL2K3uMwm2rpxhw7az/LgDzNcdkWqFbFurGGN/3Ro6e RM9FvTIi+a40cSjc+zCNDSSwb90Oe8ZINFb9g0ta++5mFQXG7bsydwnWVq5pRY0V 5qNtWNvusW01c5GmOf0iJY7M84jegf4dzPNZcQd6XblWf5XyR+YnjCLU8g1Y3s8y H3BC8xHvgIb2Ln/XX4V6er7Ey+SS3XGumeqRn6gi3foa4DNODzbsVuIVpZAZoqyn hY4eGmwVS+OS7B+wOE44Z3hqMq4K0eXo+PsXCov4HFAbuMCtsrA= =TKMq -----END PGP SIGNATURE----- Merge tag 'x86_mm_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 mm updates from Dave Hansen: "A pair of small x86/mm updates. The INVPCID one is purely a cleanup. The PAT one fixes a real issue, albeit a relatively obscure one (graphics device passthrough under Xen). The fix also makes the code much more readable. Summary: - Remove unnecessary "INVPCID single" feature tracking - Include PAT in page protection modify mask" * tag 'x86_mm_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mm: Remove "INVPCID single" feature tracking x86/mm: Fix PAT bit missing from page protection modify mask |
||
![]() |
77245f1c3c |
x86/CPU/AMD: Do not leak quotient data after a division by 0
Under certain circumstances, an integer division by 0 which faults, can leave stale quotient data from a previous division operation on Zen1 microarchitectures. Do a dummy division 0/1 before returning from the #DE exception handler in order to avoid any leaks of potentially sensitive data. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Cc: <stable@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
![]() |
64094e7e31 |
Mitigate Gather Data Sampling issue
* Add Base GDS mitigation * Support GDS_NO under KVM * Fix a documentation typo -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmTJh5YACgkQaDWVMHDJ krAzAw/8DzjhAYEa7a1AodCBMNg8uNOPnLNoRPPNhaN5Iw6W3zXYDBDKT9PyjAIx RoIM0aHx/oY9nCpK441o25oCWAAyzk6E5/+q9hMa7B4aHUGKqiDUC6L9dC8UiiSN yvoBv4g7F81QnmyazwYI64S6vnbr4Cqe7K/mvVqQ/vbJiugD25zY8mflRV9YAuMk Oe7Ff/mCA+I/kqyKhJE3cf3qNhZ61FsFI886fOSvIE7g4THKqo5eGPpIQxR4mXiU Ri2JWffTaeHr2m0sAfFeLH4VTZxfAgBkNQUEWeG6f2kDGTEKibXFRsU4+zxjn3gl xug+9jfnKN1ceKyNlVeJJZKAfr2TiyUtrlSE5d+subIRKKBaAGgnCQDasaFAluzd aZkOYz30PCebhN+KTrR84FySHCaxnev04jqdtVGAQEDbTvyNagFUdZFGhWijJShV l2l4A0gFSYJmPfPVuuAwOJnnZtA1sRH9oz/Sny3+z9BKloZh+Nc/+Cu9zC8SLjaU BF3Qv2gU9HKTJ+MSy2JrGS52cONfpO5ngFHoOMilZ1KBHrfSb1eiy32PDT+vK60Y PFEmI8SWl7bmrO1snVUCfGaHBsHJSu5KMqwBGmM4xSRzJpyvRe493xC7+nFvqNLY vFOFc4jGeusOXgiLPpfGduppkTGcM7sy75UMLwTSLcQbDK99mus= =ZAPY -----END PGP SIGNATURE----- Merge tag 'gds-for-linus-2023-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86/gds fixes from Dave Hansen: "Mitigate Gather Data Sampling issue: - Add Base GDS mitigation - Support GDS_NO under KVM - Fix a documentation typo" * tag 'gds-for-linus-2023-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: Documentation/x86: Fix backwards on/off logic about YMM support KVM: Add GDS_NO support to KVM x86/speculation: Add Kconfig option for GDS x86/speculation: Add force option to GDS mitigation x86/speculation: Add Gather Data Sampling mitigation |
||
![]() |
54e3d9434e |
x86/mm: Remove "INVPCID single" feature tracking
From: Dave Hansen <dave.hansen@linux.intel.com> tl;dr: Replace a synthetic X86_FEATURE with a hardware X86_FEATURE and check of existing per-cpu state. == Background == There are three features in play here: 1. Good old Page Table Isolation (PTI) 2. Process Context IDentifiers (PCIDs) which allow entries from multiple address spaces to be in the TLB at once. 3. Support for the "Invalidate PCID" (INVPCID) instruction, specifically the "individual address" mode (aka. mode 0). When all *three* of these are in place, INVPCID can and should be used to flush out individual addresses in the PTI user address space. But there's a wrinkle or two: First, this INVPCID mode is dependent on CR4.PCIDE. Even if X86_FEATURE_INVPCID==1, the instruction may #GP without setting up CR4. Second, TLB flushing is done very early, even before CR4 is fully set up. That means even if PTI, PCID and INVPCID are supported, there is *still* a window where INVPCID can #GP. == Problem == The current code seems to work, but mostly by chance and there are a bunch of ways it can go wrong. It's also somewhat hard to follow since X86_FEATURE_INVPCID_SINGLE is set far away from its lone user. == Solution == Make "INVPCID single" more robust and easier to follow by placing all the logic in one place. Remove X86_FEATURE_INVPCID_SINGLE. Make two explicit checks before using INVPCID: 1. Check that the system supports INVPCID itself (boot_cpu_has()) 2. Then check the CR4.PCIDE shadow to ensures that the CPU can safely use INVPCID for individual address invalidation. The CR4 check *always* works and is not affected by any X86_FEATURE_* twiddling or inconsistencies between the boot and secondary CPUs. This has been tested on non-Meltdown hardware by using pti=on and then flipping PCID and INVPCID support with qemu. == Aside == How does this code even work today? By chance, I think. First, PTI is initialized around the same time that the boot CPU sets CR4.PCIDE=1. There are currently no TLB invalidations when PTI=1 but CR4.PCIDE=0. That means that the X86_FEATURE_INVPCID_SINGLE check is never even reached. this_cpu_has() is also very nasty to use in this context because the boot CPU reaches here before cpu_data(0) has been initialized. It happens to work for X86_FEATURE_INVPCID_SINGLE since it's a software-defined feature but it would fall over for a hardware- derived X86_FEATURE. Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20230718170630.7922E235%40davehans-spike.ostc.intel.com |
||
![]() |
d1f85fbe83 |
KVM: SEV: Enable data breakpoints in SEV-ES
Add support for "DebugSwap for SEV-ES guests", which provides support for swapping DR[0-3] and DR[0-3]_ADDR_MASK on VMRUN and VMEXIT, i.e. allows KVM to expose debug capabilities to SEV-ES guests. Without DebugSwap support, the CPU doesn't save/load most _guest_ debug registers (except DR6/7), and KVM cannot manually context switch guest DRs due the VMSA being encrypted. Enable DebugSwap if and only if the CPU also supports NoNestedDataBp, which causes the CPU to ignore nested #DBs, i.e. #DBs that occur when vectoring a #DB. Without NoNestedDataBp, a malicious guest can DoS the host by putting the CPU into an infinite loop of vectoring #DBs (see https://bugzilla.redhat.com/show_bug.cgi?id=1278496) Set the features bit in sev_es_sync_vmsa() which is the last point when VMSA is not encrypted yet as sev_(es_)init_vmcb() (where the most init happens) is called not only when VCPU is initialised but also on intrahost migration when VMSA is encrypted. Eliminate DR7 intercepts as KVM can't modify guest DR7, and intercepting DR7 would completely defeat the purpose of enabling DebugSwap. Make X86_FEATURE_DEBUG_SWAP appear in /proc/cpuinfo (by not adding "") to let the operator know if the VM can debug. Signed-off-by: Alexey Kardashevskiy <aik@amd.com> Link: https://lore.kernel.org/r/20230615063757.3039121-7-aik@amd.com Signed-off-by: Sean Christopherson <seanjc@google.com> |
||
![]() |
d893832d0e |
x86/srso: Add IBPB on VMEXIT
Add the option to flush IBPB only on VMEXIT in order to protect from malicious guests but one otherwise trusts the software that runs on the hypervisor. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> |
||
![]() |
1b5277c0ea |
x86/srso: Add SRSO_NO support
Add support for the CPUID flag which denotes that the CPU is not affected by SRSO. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> |
||
![]() |
79113e4060 |
x86/srso: Add IBPB_BRTYPE support
Add support for the synthetic CPUID flag which "if this bit is 1, it indicates that MSR 49h (PRED_CMD) bit 0 (IBPB) flushes all branch type predictions from the CPU branch predictor." This flag is there so that this capability in guests can be detected easily (otherwise one would have to track microcode revisions which is impossible for guests). It is also needed only for Zen3 and -4. The other two (Zen1 and -2) always flush branch type predictions by default. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> |
||
![]() |
fb3bd914b3 |
x86/srso: Add a Speculative RAS Overflow mitigation
Add a mitigation for the speculative return address stack overflow vulnerability found on AMD processors. The mitigation works by ensuring all RET instructions speculate to a controlled location, similar to how speculation is controlled in the retpoline sequence. To accomplish this, the __x86_return_thunk forces the CPU to mispredict every function return using a 'safe return' sequence. To ensure the safety of this mitigation, the kernel must ensure that the safe return sequence is itself free from attacker interference. In Zen3 and Zen4, this is accomplished by creating a BTB alias between the untraining function srso_untrain_ret_alias() and the safe return function srso_safe_ret_alias() which results in evicting a potentially poisoned BTB entry and using that safe one for all function returns. In older Zen1 and Zen2, this is accomplished using a reinterpretation technique similar to Retbleed one: srso_untrain_ret() and srso_safe_ret(). Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> |
||
![]() |
8974eb5882 |
x86/speculation: Add Gather Data Sampling mitigation
Gather Data Sampling (GDS) is a hardware vulnerability which allows unprivileged speculative access to data which was previously stored in vector registers. Intel processors that support AVX2 and AVX512 have gather instructions that fetch non-contiguous data elements from memory. On vulnerable hardware, when a gather instruction is transiently executed and encounters a fault, stale data from architectural or internal vector registers may get transiently stored to the destination vector register allowing an attacker to infer the stale data using typical side channel techniques like cache timing attacks. This mitigation is different from many earlier ones for two reasons. First, it is enabled by default and a bit must be set to *DISABLE* it. This is the opposite of normal mitigation polarity. This means GDS can be mitigated simply by updating microcode and leaving the new control bit alone. Second, GDS has a "lock" bit. This lock bit is there because the mitigation affects the hardware security features KeyLocker and SGX. It needs to be enabled and *STAY* enabled for these features to be mitigated against GDS. The mitigation is enabled in the microcode by default. Disable it by setting gather_data_sampling=off or by disabling all mitigations with mitigations=off. The mitigation status can be checked by reading: /sys/devices/system/cpu/vulnerabilities/gather_data_sampling Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> |
||
![]() |
0e52740ffd |
x86/bugs: Increase the x86 bugs vector size to two u32s
There was never a doubt in my mind that they would not fit into a single u32 eventually. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> |
||
![]() |
701fb66d57 |
x86/cpufeatures: Add CPU feature flags for shadow stacks
The Control-Flow Enforcement Technology contains two related features, one of which is Shadow Stacks. Future patches will utilize this feature for shadow stack support in KVM, so add a CPU feature flags for Shadow Stacks (CPUID.(EAX=7,ECX=0):ECX[bit 7]). To protect shadow stack state from malicious modification, the registers are only accessible in supervisor mode. This implementation context-switches the registers with XSAVES. Make X86_FEATURE_SHSTK depend on XSAVES. The shadow stack feature, enumerated by the CPUID bit described above, encompasses both supervisor and userspace support for shadow stack. In near future patches, only userspace shadow stack will be enabled. In expectation of future supervisor shadow stack support, create a software CPU capability to enumerate kernel utilization of userspace shadow stack support. This user shadow stack bit should depend on the HW "shstk" capability and that logic will be implemented in future patches. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-9-rick.p.edgecombe%40intel.com |
||
![]() |
c8c655c34e |
s390:
* More phys_to_virt conversions * Improvement of AP management for VSIE (nested virtualization) ARM64: * Numerous fixes for the pathological lock inversion issue that plagued KVM/arm64 since... forever. * New framework allowing SMCCC-compliant hypercalls to be forwarded to userspace, hopefully paving the way for some more features being moved to VMMs rather than be implemented in the kernel. * Large rework of the timer code to allow a VM-wide offset to be applied to both virtual and physical counters as well as a per-timer, per-vcpu offset that complements the global one. This last part allows the NV timer code to be implemented on top. * A small set of fixes to make sure that we don't change anything affecting the EL1&0 translation regime just after having having taken an exception to EL2 until we have executed a DSB. This ensures that speculative walks started in EL1&0 have completed. * The usual selftest fixes and improvements. KVM x86 changes for 6.4: * Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled, and by giving the guest control of CR0.WP when EPT is enabled on VMX (VMX-only because SVM doesn't support per-bit controls) * Add CR0/CR4 helpers to query single bits, and clean up related code where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return as a bool * Move AMD_PSFD to cpufeatures.h and purge KVM's definition * Avoid unnecessary writes+flushes when the guest is only adding new PTEs * Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s optimizations when emulating invalidations * Clean up the range-based flushing APIs * Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle changed SPTE" overhead associated with writing the entire entry * Track the number of "tail" entries in a pte_list_desc to avoid having to walk (potentially) all descriptors during insertion and deletion, which gets quite expensive if the guest is spamming fork() * Disallow virtualizing legacy LBRs if architectural LBRs are available, the two are mutually exclusive in hardware * Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES) after KVM_RUN, similar to CPUID features * Overhaul the vmx_pmu_caps selftest to better validate PERF_CAPABILITIES * Apply PMU filters to emulated events and add test coverage to the pmu_event_filter selftest x86 AMD: * Add support for virtual NMIs * Fixes for edge cases related to virtual interrupts x86 Intel: * Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is not being reported due to userspace not opting in via prctl() * Fix a bug in emulation of ENCLS in compatibility mode * Allow emulation of NOP and PAUSE for L2 * AMX selftests improvements * Misc cleanups MIPS: * Constify MIPS's internal callbacks (a leftover from the hardware enabling rework that landed in 6.3) Generic: * Drop unnecessary casts from "void *" throughout kvm_main.c * Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the struct size by 8 bytes on 64-bit kernels by utilizing a padding hole Documentation: * Fix goof introduced by the conversion to rST -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmRNExkUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroNyjwf+MkzDael9y9AsOZoqhEZ5OsfQYJ32 Im5ZVYsPRU2K5TuoWql6meIihgclCj1iIU32qYHa2F1WYt2rZ72rJp+HoY8b+TaI WvF0pvNtqQyg3iEKUBKPA4xQ6mj7RpQBw86qqiCHmlfNt0zxluEGEPxH8xrWcfhC huDQ+NUOdU7fmJ3rqGitCvkUbCuZNkw3aNPR8dhU8RAWrwRzP2hBOmdxIeo81WWY XMEpJSijbGpXL9CvM0Jz9nOuMJwZwCCBGxg1vSQq0xTfLySNMxzvWZC2GFaBjucb j0UOQ7yE0drIZDVhd3sdNslubXXU6FcSEzacGQb9aigMUon3Tem9SHi7Kw== =S2Hq -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "s390: - More phys_to_virt conversions - Improvement of AP management for VSIE (nested virtualization) ARM64: - Numerous fixes for the pathological lock inversion issue that plagued KVM/arm64 since... forever. - New framework allowing SMCCC-compliant hypercalls to be forwarded to userspace, hopefully paving the way for some more features being moved to VMMs rather than be implemented in the kernel. - Large rework of the timer code to allow a VM-wide offset to be applied to both virtual and physical counters as well as a per-timer, per-vcpu offset that complements the global one. This last part allows the NV timer code to be implemented on top. - A small set of fixes to make sure that we don't change anything affecting the EL1&0 translation regime just after having having taken an exception to EL2 until we have executed a DSB. This ensures that speculative walks started in EL1&0 have completed. - The usual selftest fixes and improvements. x86: - Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled, and by giving the guest control of CR0.WP when EPT is enabled on VMX (VMX-only because SVM doesn't support per-bit controls) - Add CR0/CR4 helpers to query single bits, and clean up related code where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return as a bool - Move AMD_PSFD to cpufeatures.h and purge KVM's definition - Avoid unnecessary writes+flushes when the guest is only adding new PTEs - Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s optimizations when emulating invalidations - Clean up the range-based flushing APIs - Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle changed SPTE" overhead associated with writing the entire entry - Track the number of "tail" entries in a pte_list_desc to avoid having to walk (potentially) all descriptors during insertion and deletion, which gets quite expensive if the guest is spamming fork() - Disallow virtualizing legacy LBRs if architectural LBRs are available, the two are mutually exclusive in hardware - Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES) after KVM_RUN, similar to CPUID features - Overhaul the vmx_pmu_caps selftest to better validate PERF_CAPABILITIES - Apply PMU filters to emulated events and add test coverage to the pmu_event_filter selftest - AMD SVM: - Add support for virtual NMIs - Fixes for edge cases related to virtual interrupts - Intel AMX: - Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is not being reported due to userspace not opting in via prctl() - Fix a bug in emulation of ENCLS in compatibility mode - Allow emulation of NOP and PAUSE for L2 - AMX selftests improvements - Misc cleanups MIPS: - Constify MIPS's internal callbacks (a leftover from the hardware enabling rework that landed in 6.3) Generic: - Drop unnecessary casts from "void *" throughout kvm_main.c - Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the struct size by 8 bytes on 64-bit kernels by utilizing a padding hole Documentation: - Fix goof introduced by the conversion to rST" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (211 commits) KVM: s390: pci: fix virtual-physical confusion on module unload/load KVM: s390: vsie: clarifications on setting the APCB KVM: s390: interrupt: fix virtual-physical confusion for next alert GISA KVM: arm64: Have kvm_psci_vcpu_on() use WRITE_ONCE() to update mp_state KVM: arm64: Acquire mp_state_lock in kvm_arch_vcpu_ioctl_vcpu_init() KVM: selftests: Test the PMU event "Instructions retired" KVM: selftests: Copy full counter values from guest in PMU event filter test KVM: selftests: Use error codes to signal errors in PMU event filter test KVM: selftests: Print detailed info in PMU event filter asserts KVM: selftests: Add helpers for PMC asserts in PMU event filter test KVM: selftests: Add a common helper for the PMU event filter guest code KVM: selftests: Fix spelling mistake "perrmited" -> "permitted" KVM: arm64: vhe: Drop extra isb() on guest exit KVM: arm64: vhe: Synchronise with page table walker on MMU update KVM: arm64: pkvm: Document the side effects of kvm_flush_dcache_to_poc() KVM: arm64: nvhe: Synchronise with page table walker on TLBI KVM: arm64: Handle 32bit CNTPCTSS traps KVM: arm64: nvhe: Synchronise with page table walker on vcpu run KVM: arm64: vgic: Don't acquire its_lock before config_lock KVM: selftests: Add test to verify KVM's supported XCR0 ... |
||
![]() |
4a5fd41995 |
KVM SVM changes for 6.4:
- Add support for virtual NMIs - Fixes for edge cases related to virtual interrupts -----BEGIN PGP SIGNATURE----- iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGuLISHHNlYW5qY0Bn b29nbGUuY29tAAoJEGCRIgFNDBL5NOMQAKy1Od54yzQsIKyAZZJVfOEm7N5VLQgz +jLilXgHd8dm/g0g/KVCDPFoZ/ut2Tf5Dn4WwyoPWOpgGsOyTwdDIJabf9rustkA goZFcfUXz+P1nangTidrj6CFYgGmVS13Uu//H19X4bSzT+YifVevJ4QkRVElj9Mh VBUeXppC/gMGBZ9tKEzl+AU3FwJ58cB88q4boovBFYiDdciv/fF86t02Lc+dCIX1 6hTcOAnjAcp3eJY0wPQJUAEScufDKcMf6tSrsB/yWXv9KB9ANXFNXry8/+lW/Ux/ oOUmUVdRXrrsRUqtYk9+KuMoIN7CL1SBV0RCm5ApqwqwnTVdHS+odHU3c2s7E/uU QXIW4vwSne3W9Y4YApDgFjwDwmzY85dvblWlWBnR2LW2I3Or48xK+S8LpWG+lj6l EDf7RzeqAipJ1qUq6qDYJlyg/YsyYlcoErtra423skg38HBWxQXdqkVIz3SYdKjA 0OcBQIRI28KzJDn1gU6P3Q0Wr/cKsx9EGy6+jWBhf4Yf3eHP7+3WUTrg/Up0q8ny 0j/+cbe5kBb6k2T9y2X6jm6TVbPV5FyMBOF/UxmqEbRLmxXjBe8tMnFwV+qN871I gk5HTSIkX39GU9kNA3h5HoWjdNeRfhazKR9ZVrELVc1zjHnGLthXBPZbIAUsPPMx vgM6jf8NwLXZ =9xNX -----END PGP SIGNATURE----- Merge tag 'kvm-x86-svm-6.4' of https://github.com/kvm-x86/linux into HEAD KVM SVM changes for 6.4: - Add support for virtual NMIs - Fixes for edge cases related to virtual interrupts |
||
![]() |
3d8f61bf8b |
x86: KVM: Add common feature flag for AMD's PSFD
Use a common X86_FEATURE_* flag for AMD's PSFD, and suppress it from /proc/cpuinfo via the standard method of an empty string instead of hacking in a one-off "private" #define in KVM. The request that led to KVM defining its own flag was really just that the feature not show up in /proc/cpuinfo, and additional patches+discussions in the interim have clarified that defining flags in cpufeatures.h purely so that KVM can advertise features to userspace is ok so long as the kernel already uses a word to track the associated CPUID leaf. No functional change intended. Link: https://lore.kernel.org/all/d1b1e0da-29f0-c443-6c86-9549bbe1c79d@redhat.como Link: https://lore.kernel.org/all/YxGZH7aOXQF7Pu5q@nazgul.tnic Link: https://lore.kernel.org/all/Y3O7UYWfOLfJkwM%2F@zn.tnic Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Link: https://lore.kernel.org/r/20230124194519.2893234-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> |
||
![]() |
3763bf5802 |
x86/cpufeatures: Redefine synthetic virtual NMI bit as AMD's "real" vNMI
The existing X86_FEATURE_VNMI is a synthetic feature flag that exists purely to maintain /proc/cpuinfo's ABI, the "real" Intel vNMI feature flag is tracked as VMX_FEATURE_VIRTUAL_NMIS, as the feature is enumerated through VMX MSRs, not CPUID. AMD is also gaining virtual NMI support, but in true VMX vs. SVM form, enumerates support through CPUID, i.e. wants to add real feature flag for vNMI. Redefine the syntheic X86_FEATURE_VNMI to AMD's real CPUID bit to avoid having both X86_FEATURE_VNMI and e.g. X86_FEATURE_AMD_VNMI. Signed-off-by: Sean Christopherson <seanjc@google.com> |
||
![]() |
6449dcb0ca |
x86: CPUID and CR3/CR4 flags for Linear Address Masking
Enumerate Linear Address Masking and provide defines for CR3 and CR4 flags. The new CONFIG_ADDRESS_MASKING option enables the feature support in kernel. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Alexander Potapenko <glider@google.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Alexander Potapenko <glider@google.com> Link: https://lore.kernel.org/all/20230312112612.31869-4-kirill.shutemov%40linux.intel.com |
||
![]() |
49d5759268 |
ARM:
- Provide a virtual cache topology to the guest to avoid inconsistencies with migration on heterogenous systems. Non secure software has no practical need to traverse the caches by set/way in the first place. - Add support for taking stage-2 access faults in parallel. This was an accidental omission in the original parallel faults implementation, but should provide a marginal improvement to machines w/o FEAT_HAFDBS (such as hardware from the fruit company). - A preamble to adding support for nested virtualization to KVM, including vEL2 register state, rudimentary nested exception handling and masking unsupported features for nested guests. - Fixes to the PSCI relay that avoid an unexpected host SVE trap when resuming a CPU when running pKVM. - VGIC maintenance interrupt support for the AIC - Improvements to the arch timer emulation, primarily aimed at reducing the trap overhead of running nested. - Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the interest of CI systems. - Avoid VM-wide stop-the-world operations when a vCPU accesses its own redistributor. - Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions in the host. - Aesthetic and comment/kerneldoc fixes - Drop the vestiges of the old Columbia mailing list and add [Oliver] as co-maintainer This also drags in arm64's 'for-next/sme2' branch, because both it and the PSCI relay changes touch the EL2 initialization code. RISC-V: - Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE - Correctly place the guest in S-mode after redirecting a trap to the guest - Redirect illegal instruction traps to guest - SBI PMU support for guest s390: - Two patches sorting out confusion between virtual and physical addresses, which currently are the same on s390. - A new ioctl that performs cmpxchg on guest memory - A few fixes x86: - Change tdp_mmu to a read-only parameter - Separate TDP and shadow MMU page fault paths - Enable Hyper-V invariant TSC control - Fix a variety of APICv and AVIC bugs, some of them real-world, some of them affecting architecurally legal but unlikely to happen in practice - Mark APIC timer as expired if its in one-shot mode and the count underflows while the vCPU task was being migrated - Advertise support for Intel's new fast REP string features - Fix a double-shootdown issue in the emergency reboot code - Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give SVM similar treatment to VMX - Update Xen's TSC info CPUID sub-leaves as appropriate - Add support for Hyper-V's extended hypercalls, where "support" at this point is just forwarding the hypercalls to userspace - Clean up the kvm->lock vs. kvm->srcu sequences when updating the PMU and MSR filters - One-off fixes and cleanups - Fix and cleanup the range-based TLB flushing code, used when KVM is running on Hyper-V - Add support for filtering PMU events using a mask. If userspace wants to restrict heavily what events the guest can use, it can now do so without needing an absurd number of filter entries - Clean up KVM's handling of "PMU MSRs to save", especially when vPMU support is disabled - Add PEBS support for Intel Sapphire Rapids - Fix a mostly benign overflow bug in SEV's send|receive_update_data() - Move several SVM-specific flags into vcpu_svm x86 Intel: - Handle NMI VM-Exits before leaving the noinstr region - A few trivial cleanups in the VM-Enter flows - Stop enabling VMFUNC for L1 purely to document that KVM doesn't support EPTP switching (or any other VM function) for L1 - Fix a crash when using eVMCS's enlighted MSR bitmaps Generic: - Clean up the hardware enable and initialization flow, which was scattered around multiple arch-specific hooks. Instead, just let the arch code call into generic code. Both x86 and ARM should benefit from not having to fight common KVM code's notion of how to do initialization. - Account allocations in generic kvm_arch_alloc_vm() - Fix a memory leak if coalesced MMIO unregistration fails selftests: - On x86, cache the CPU vendor (AMD vs. Intel) and use the info to emit the correct hypercall instruction instead of relying on KVM to patch in VMMCALL - Use TAP interface for kvm_binary_stats_test and tsc_msrs_test -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmP2YA0UHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroPg/Qf+J6nT+TkIa+8Ei+fN1oMTDp4YuIOx mXvJ9mRK9sQ+tAUVwvDz3qN/fK5mjsYbRHIDlVc5p2Q3bCrVGDDqXPFfCcLx1u+O 9U9xjkO4JxD2LS9pc70FYOyzVNeJ8VMGOBbC2b0lkdYZ4KnUc6e/WWFKJs96bK+H duo+RIVyaMthnvbTwSv1K3qQb61n6lSJXplywS8KWFK6NZAmBiEFDAWGRYQE9lLs VcVcG0iDJNL/BQJ5InKCcvXVGskcCm9erDszPo7w4Bypa4S9AMS42DHUaRZrBJwV /WqdH7ckIz7+OSV0W1j+bKTHAFVTCjXYOM7wQykgjawjICzMSnnG9Gpskw== =goe1 -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "ARM: - Provide a virtual cache topology to the guest to avoid inconsistencies with migration on heterogenous systems. Non secure software has no practical need to traverse the caches by set/way in the first place - Add support for taking stage-2 access faults in parallel. This was an accidental omission in the original parallel faults implementation, but should provide a marginal improvement to machines w/o FEAT_HAFDBS (such as hardware from the fruit company) - A preamble to adding support for nested virtualization to KVM, including vEL2 register state, rudimentary nested exception handling and masking unsupported features for nested guests - Fixes to the PSCI relay that avoid an unexpected host SVE trap when resuming a CPU when running pKVM - VGIC maintenance interrupt support for the AIC - Improvements to the arch timer emulation, primarily aimed at reducing the trap overhead of running nested - Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the interest of CI systems - Avoid VM-wide stop-the-world operations when a vCPU accesses its own redistributor - Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions in the host - Aesthetic and comment/kerneldoc fixes - Drop the vestiges of the old Columbia mailing list and add [Oliver] as co-maintainer RISC-V: - Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE - Correctly place the guest in S-mode after redirecting a trap to the guest - Redirect illegal instruction traps to guest - SBI PMU support for guest s390: - Sort out confusion between virtual and physical addresses, which currently are the same on s390 - A new ioctl that performs cmpxchg on guest memory - A few fixes x86: - Change tdp_mmu to a read-only parameter - Separate TDP and shadow MMU page fault paths - Enable Hyper-V invariant TSC control - Fix a variety of APICv and AVIC bugs, some of them real-world, some of them affecting architecurally legal but unlikely to happen in practice - Mark APIC timer as expired if its in one-shot mode and the count underflows while the vCPU task was being migrated - Advertise support for Intel's new fast REP string features - Fix a double-shootdown issue in the emergency reboot code - Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give SVM similar treatment to VMX - Update Xen's TSC info CPUID sub-leaves as appropriate - Add support for Hyper-V's extended hypercalls, where "support" at this point is just forwarding the hypercalls to userspace - Clean up the kvm->lock vs. kvm->srcu sequences when updating the PMU and MSR filters - One-off fixes and cleanups - Fix and cleanup the range-based TLB flushing code, used when KVM is running on Hyper-V - Add support for filtering PMU events using a mask. If userspace wants to restrict heavily what events the guest can use, it can now do so without needing an absurd number of filter entries - Clean up KVM's handling of "PMU MSRs to save", especially when vPMU support is disabled - Add PEBS support for Intel Sapphire Rapids - Fix a mostly benign overflow bug in SEV's send|receive_update_data() - Move several SVM-specific flags into vcpu_svm x86 Intel: - Handle NMI VM-Exits before leaving the noinstr region - A few trivial cleanups in the VM-Enter flows - Stop enabling VMFUNC for L1 purely to document that KVM doesn't support EPTP switching (or any other VM function) for L1 - Fix a crash when using eVMCS's enlighted MSR bitmaps Generic: - Clean up the hardware enable and initialization flow, which was scattered around multiple arch-specific hooks. Instead, just let the arch code call into generic code. Both x86 and ARM should benefit from not having to fight common KVM code's notion of how to do initialization - Account allocations in generic kvm_arch_alloc_vm() - Fix a memory leak if coalesced MMIO unregistration fails selftests: - On x86, cache the CPU vendor (AMD vs. Intel) and use the info to emit the correct hypercall instruction instead of relying on KVM to patch in VMMCALL - Use TAP interface for kvm_binary_stats_test and tsc_msrs_test" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (325 commits) KVM: SVM: hyper-v: placate modpost section mismatch error KVM: x86/mmu: Make tdp_mmu_allowed static KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes KVM: arm64: nv: Filter out unsupported features from ID regs KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2 KVM: arm64: nv: Allow a sysreg to be hidden from userspace only KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2 KVM: arm64: nv: Handle SMCs taken from virtual EL2 KVM: arm64: nv: Handle trapped ERET from virtual EL2 KVM: arm64: nv: Inject HVC exceptions to the virtual EL2 KVM: arm64: nv: Support virtual EL2 exceptions KVM: arm64: nv: Handle HCR_EL2.NV system register traps KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state KVM: arm64: nv: Add EL2 system registers to vcpu context KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set KVM: arm64: nv: Introduce nested virtualization VCPU feature KVM: arm64: Use the S2 MMU context to iterate over S2 table ... |
||
![]() |
877934769e |
- Cache the AMD debug registers in per-CPU variables to avoid MSR writes
where possible, when supporting a debug registers swap feature for SEV-ES guests - Add support for AMD's version of eIBRS called Automatic IBRS which is a set-and-forget control of indirect branch restriction speculation resources on privilege change - Add support for a new x86 instruction - LKGS - Load kernel GS which is part of the FRED infrastructure - Reset SPEC_CTRL upon init to accomodate use cases like kexec which rediscover - Other smaller fixes and cleanups -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmP1RDIACgkQEsHwGGHe VUohBw//ZB9ZRqsrKdm6D9YaP2x4Zb+kqKqo6rjYeWaYqyPyCwDujPwh+pb3Oq1t aj62muDv1t/wEJc8mKNkfXkjEEtBVAOcpb5YIpKreoEvNKyevol83Ih0u5iJcTRE E5qf8HDS8b/JZrcazJJLl6WQmQNH5RiKSu5bbCpRhoeOcyo5pRYR5MztK9vNmAQk GMdwHsUSU+jN8uiE4HnpaOb/luhgFindRwZVTpdjJegQWLABS8cl3CKeTv4+PW45 isvv37XnQP248wsptIEVRHeG6g3g/HtvwRx7DikUw06QwUyUK7H9hJssOoSP8TL9 u4psRwfWnJ1OxU6klL+s0Ii+pjQ97wXmK/oqK7QkdUwhWqR/mQAW2e9kWHAngyDn A6mKbzSM6HFAeSXQpB9cMb6uvYRD44SngDFe3WXtEK8jiiQ70ikUm4E28I5KJOPg s+RyioHk0NFRHYSOOBqNG1NKz6ED7L3GbgbbzxkgMh21AAyI3X351t+PtGoLV5ew eqOsM7lbg9Scg1LvPk1JcoALS8USWqgar397rz9qGUs+OkPWBtEBCmTdMz/Eb+2t g/WHdLS5/ajSs5gNhT99W3DeqZMPDEkgBRSeyBBmY3CUD3gBL2wXEktRXv504zBR RC4oyUPX3c9E2ib6GATLE3kBLbcz9hTWbMxF+X3lLJvTVd/Qc2o= =v/ZC -----END PGP SIGNATURE----- Merge tag 'x86_cpu_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 cpuid updates from Borislav Petkov: - Cache the AMD debug registers in per-CPU variables to avoid MSR writes where possible, when supporting a debug registers swap feature for SEV-ES guests - Add support for AMD's version of eIBRS called Automatic IBRS which is a set-and-forget control of indirect branch restriction speculation resources on privilege change - Add support for a new x86 instruction - LKGS - Load kernel GS which is part of the FRED infrastructure - Reset SPEC_CTRL upon init to accomodate use cases like kexec which rediscover - Other smaller fixes and cleanups * tag 'x86_cpu_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/amd: Cache debug register values in percpu variables KVM: x86: Propagate the AMD Automatic IBRS feature to the guest x86/cpu: Support AMD Automatic IBRS x86/cpu, kvm: Add the SMM_CTL MSR not present feature x86/cpu, kvm: Add the Null Selector Clears Base feature x86/cpu, kvm: Move X86_FEATURE_LFENCE_RDTSC to its native leaf x86/cpu, kvm: Add the NO_NESTED_DATA_BP feature KVM: x86: Move open-coded CPUID leaf 0x80000021 EAX bit propagation code x86/cpu, kvm: Add support for CPUID_80000021_EAX x86/gsseg: Add the new <asm/gsseg.h> header to <asm/asm-prototypes.h> x86/gsseg: Use the LKGS instruction if available for load_gs_index() x86/gsseg: Move load_gs_index() to its own new header file x86/gsseg: Make asm_load_gs_index() take an u16 x86/opcode: Add the LKGS instruction to x86-opcode-map x86/cpufeature: Add the CPU feature bit for LKGS x86/bugs: Reset speculation control settings on init x86/cpu: Remove redundant extern x86_read_arch_cap_msr() |
||
![]() |
aa8c3db40a |
- Add support for a new AMD feature called slow memory bandwidth
allocation. Its goal is to control resource allocation in external slow memory which is connected to the machine like for example through CXL devices, accelerators etc -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmPzmf4ACgkQEsHwGGHe VUppKg//Tq+lHaMYO8aTvk4jgqbR9RVXJwPbtEOp2C0kSLs5QxBms/o21IXnxJ07 tdbIGOrfJGlbzSWP8ywysRRQwpKlwltWUVAjMOFqEfzEURLL042qtHZ8nxGKSGrc IZFJLNTMyx1Zyjc7e9A/hANCOoQFoPHT8zHf1CNNo1LtzgHzNZG6kggLHh5tRKSz Xi7wFbYBtmttsyIA/iAQjYAU0O9MnmdnktUb7XdPSFtTIZ3Nyw90We4gwYueEPzD S/rQHKr8V7ROZMHXQ/BWpVWdcxGoHD8acUSVq8j20KW3W9/H8KL9TRVakvnf0aRW g0efxKXdTjTRO49GgD7FUL8x1JdAOXeZwQYDzKPqW/GRESRdpOvsaMwcLDCEpIXK PmEOVReklokJF0btFqaVYkY6wGE2KLKmp97g/RffuHdIeIomwI9lTpy9kyQsKakc yJ+VsE85BlBEVkHNt49qFClO1L98G3IgZTTt6//EGv0EJl8pELfsddsbjG5uXun+ xFhr2i7gllQcV4B4HSFFdYRBLvZYnTfKlNR7Hs9pRJT7V28Jv2GURiCHBm4sRv9O k3FX7sxytH2syBBwU1NNrMRMo+KgjVZurJwiHpTRbb39K6uCgLk/wbXfWh2SovW1 BRItz2T6LFu4bo6WIhakx31pNmH94P8vC0acO8LHECVji7qvXFM= =8hmj -----END PGP SIGNATURE----- Merge tag 'x86_cache_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 resource control updates from Borislav Petkov: - Add support for a new AMD feature called slow memory bandwidth allocation. Its goal is to control resource allocation in external slow memory which is connected to the machine like for example through CXL devices, accelerators etc * tag 'x86_cache_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/resctrl: Fix a silly -Wunused-but-set-variable warning Documentation/x86: Update resctrl.rst for new features x86/resctrl: Add interface to write mbm_local_bytes_config x86/resctrl: Add interface to write mbm_total_bytes_config x86/resctrl: Add interface to read mbm_local_bytes_config x86/resctrl: Add interface to read mbm_total_bytes_config x86/resctrl: Support monitor configuration x86/resctrl: Add __init attribute to rdt_get_mon_l3_config() x86/resctrl: Detect and configure Slow Memory Bandwidth Allocation x86/resctrl: Include new features in command line options x86/cpufeatures: Add Bandwidth Monitoring Event Configuration feature flag x86/resctrl: Add a new resource type RDT_RESOURCE_SMBA x86/cpufeatures: Add Slow Memory Bandwidth Allocation feature flag x86/resctrl: Replace smp_call_function_many() with on_each_cpu_mask() |
||
![]() |
a2f0e7eee1 |
The latest perf updates in this cycle are:
- Optimize perf_sample_data layout - Prepare sample data handling for BPF integration - Update the x86 PMU driver for Intel Meteor Lake - Restructure the x86 uncore code to fix a SPR (Sapphire Rapids) discovery breakage - Fix the x86 Zhaoxin PMU driver - Cleanups Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmPzaHgRHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1jYQg/+KRfobCevMQlZVnz09T3SsJ4ahJ587BL6 g2C6kobyUNfeChpFVroBkTR+yCb6Mq4xGr2nda9+2E978BYu9eanpx/u/bXNQ6NU 6YhLwgRrlFXonYn07kFfUJeELZ0W+zpPvymEN1KhTQWcrgXDfXRt2VfMwNsVxGRF ZRyCWK+UOzSMU22FtW3I/xVLBB0vio9Y6wRC5QOpDVW5YtGwQGust7GJ53JPK43J m2soJvWORauT+v0aqc7ggOtKd6pahVoXrDrbktxtq9N0ZGI+PubVCGevex++cXm/ B3QSf6VcMMuU6pfzxiEwRa8Whrc3XFeSDEfvMjC5v3becGNkdNBnGOJzYprwgRZJ irb6/dSrv5P2lj6WphsO1Wzcm7EoWh8M7DVOMh/13Y/oODRdOrv48112Don9UURC EPyvzAzizqdwdDopUmfiqUwuAXqb8uPZqCgmlz/NJkVz1/ijlfrmLgeDuf0vI7Aq HznzzRwjFHzyCH7D+rtonFh3JDaqgaouY76tpC5yTtzKbZPlFT8kzeCvqkTMnGgH czZnSNc/kBup0HDkNSlthK+TyrMXWKeVa8KQSY1E0NJHO4IBBCMzZywSoAaeofQK hqfQyofX9XHmuHhCA4yIfv1XkZGlBTxpPAyDdHjgs9iJTsodSYMs8ESY08eW8DXn Ld/35O6SylM= =ztUT -----END PGP SIGNATURE----- Merge tag 'perf-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf updates from Ingo Molnar: - Optimize perf_sample_data layout - Prepare sample data handling for BPF integration - Update the x86 PMU driver for Intel Meteor Lake - Restructure the x86 uncore code to fix a SPR (Sapphire Rapids) discovery breakage - Fix the x86 Zhaoxin PMU driver - Cleanups * tag 'perf-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits) perf/x86/intel/uncore: Add Meteor Lake support x86/perf/zhaoxin: Add stepping check for ZXC perf/x86/intel/ds: Fix the conversion from TSC to perf time perf/x86/uncore: Don't WARN_ON_ONCE() for a broken discovery table perf/x86/uncore: Add a quirk for UPI on SPR perf/x86/uncore: Ignore broken units in discovery table perf/x86/uncore: Fix potential NULL pointer in uncore_get_alias_name perf/x86/uncore: Factor out uncore_device_to_die() perf/core: Call perf_prepare_sample() before running BPF perf/core: Introduce perf_prepare_header() perf/core: Do not pass header for sample ID init perf/core: Set data->sample_flags in perf_prepare_sample() perf/core: Add perf_sample_save_brstack() helper perf/core: Add perf_sample_save_raw_data() helper perf/core: Add perf_sample_save_callchain() helper perf/core: Save the dynamic parts of sample data size x86/kprobes: Use switch-case for 0xFF opcodes in prepare_emulation perf/core: Change the layout of perf_sample_data perf/x86/msr: Add Meteor Lake support perf/x86/cstate: Add Meteor Lake support ... |
||
![]() |
be8de49bea |
x86/speculation: Identify processors vulnerable to SMT RSB predictions
Certain AMD processors are vulnerable to a cross-thread return address predictions bug. When running in SMT mode and one of the sibling threads transitions out of C0 state, the other sibling thread could use return target predictions from the sibling thread that transitioned out of C0. The Spectre v2 mitigations cover the Linux kernel, as it fills the RSB when context switching to the idle thread. However, KVM allows a VMM to prevent exiting guest mode when transitioning out of C0. A guest could act maliciously in this situation, so create a new x86 BUG that can be used to detect if the processor is vulnerable. Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <91cec885656ca1fcd4f0185ce403a53dd9edecb7.1675956146.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
||
![]() |
e7862eda30 |
x86/cpu: Support AMD Automatic IBRS
The AMD Zen4 core supports a new feature called Automatic IBRS. It is a "set-and-forget" feature that means that, like Intel's Enhanced IBRS, h/w manages its IBRS mitigation resources automatically across CPL transitions. The feature is advertised by CPUID_Fn80000021_EAX bit 8 and is enabled by setting MSR C000_0080 (EFER) bit 21. Enable Automatic IBRS by default if the CPU feature is present. It typically provides greater performance over the incumbent generic retpolines mitigation. Reuse the SPECTRE_V2_EIBRS spectre_v2_mitigation enum. AMD Automatic IBRS and Intel Enhanced IBRS have similar enablement. Add NO_EIBRS_PBRSB to cpu_vuln_whitelist, since AMD Automatic IBRS isn't affected by PBRSB-eIBRS. The kernel command line option spectre_v2=eibrs is used to select AMD Automatic IBRS, if available. Signed-off-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Sean Christopherson <seanjc@google.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/r/20230124163319.2277355-8-kim.phillips@amd.com |
||
![]() |
faabfcb194 |
x86/cpu, kvm: Add the SMM_CTL MSR not present feature
The SMM_CTL MSR not present feature was being open-coded for KVM. Add it to its newly added CPUID leaf 0x80000021 EAX proper. Also drop the bit description comments now the code is more self-describing. Signed-off-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20230124163319.2277355-7-kim.phillips@amd.com |
||
![]() |
5b909d4ae5 |
x86/cpu, kvm: Add the Null Selector Clears Base feature
The Null Selector Clears Base feature was being open-coded for KVM. Add it to its newly added native CPUID leaf 0x80000021 EAX proper. Also drop the bit description comments now it's more self-describing. [ bp: Convert test in check_null_seg_clears_base() too. ] Signed-off-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20230124163319.2277355-6-kim.phillips@amd.com |
||
![]() |
84168ae786 |
x86/cpu, kvm: Move X86_FEATURE_LFENCE_RDTSC to its native leaf
The LFENCE always serializing feature bit was defined as scattered LFENCE_RDTSC and its native leaf bit position open-coded for KVM. Add it to its newly added CPUID leaf 0x80000021 EAX proper. With LFENCE_RDTSC in its proper place, the kernel's set_cpu_cap() will effectively synthesize the feature for KVM going forward. Also, DE_CFG[1] doesn't need to be set on such CPUs anymore. [ bp: Massage and merge diff from Sean. ] Signed-off-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20230124163319.2277355-5-kim.phillips@amd.com |
||
![]() |
a9dc9ec5a1 |
x86/cpu, kvm: Add the NO_NESTED_DATA_BP feature
The "Processor ignores nested data breakpoints" feature was being open-coded for KVM. Add the feature to its newly introduced CPUID leaf 0x80000021 EAX proper. Signed-off-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20230124163319.2277355-4-kim.phillips@amd.com |
||
![]() |
8415a74852 |
x86/cpu, kvm: Add support for CPUID_80000021_EAX
Add support for CPUID leaf 80000021, EAX. The majority of the features will be used in the kernel and thus a separate leaf is appropriate. Include KVM's reverse_cpuid entry because features are used by VM guests, too. [ bp: Massage commit message. ] Signed-off-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20230124163319.2277355-2-kim.phillips@amd.com |
||
![]() |
f8df91e73a |
x86/cpufeatures: Add macros for Intel's new fast rep string features
KVM_GET_SUPPORTED_CPUID should reflect these host CPUID bits. The bits are already cached in word 12. Give the bits X86_FEATURE names, so that they can be easily referenced. Hide these bits from /proc/cpuinfo, since the host kernel makes no use of them at present. Signed-off-by: Jim Mattson <jmattson@google.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20220901211811.2883855-1-jmattson@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> |
||
![]() |
78335aac61 |
x86/cpufeatures: Add Bandwidth Monitoring Event Configuration feature flag
Newer AMD processors support the new feature Bandwidth Monitoring Event Configuration (BMEC). The feature support is identified via CPUID Fn8000_0020_EBX_x0[3]: EVT_CFG - Bandwidth Monitoring Event Configuration (BMEC) The bandwidth monitoring events mbm_total_bytes and mbm_local_bytes are set to count all the total and local reads/writes, respectively. With the introduction of slow memory, the two counters are not enough to count all the different types of memory events. Therefore, BMEC provides the option to configure mbm_total_bytes and mbm_local_bytes to count the specific type of events. Each BMEC event has a configuration MSR which contains one field for each bandwidth type that can be used to configure the bandwidth event to track any combination of supported bandwidth types. The event will count requests from every bandwidth type bit that is set in the corresponding configuration register. Following are the types of events supported: ==== ======================================================== Bits Description ==== ======================================================== 6 Dirty Victims from the QOS domain to all types of memory 5 Reads to slow memory in the non-local NUMA domain 4 Reads to slow memory in the local NUMA domain 3 Non-temporal writes to non-local NUMA domain 2 Non-temporal writes to local NUMA domain 1 Reads to memory in the non-local NUMA domain 0 Reads to memory in the local NUMA domain ==== ======================================================== By default, the mbm_total_bytes configuration is set to 0x7F to count all the event types and the mbm_local_bytes configuration is set to 0x15 to count all the local memory events. Feature description is available in the specification, "AMD64 Technology Platform Quality of Service Extensions, Revision: 1.03 Publication" at https://bugzilla.kernel.org/attachment.cgi?id=301365 Signed-off-by: Babu Moger <babu.moger@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Reinette Chatre <reinette.chatre@intel.com> Link: https://lore.kernel.org/r/20230113152039.770054-5-babu.moger@amd.com |
||
![]() |
f334f723a6 |
x86/cpufeatures: Add Slow Memory Bandwidth Allocation feature flag
Add the new AMD feature X86_FEATURE_SMBA. With it, the QOS enforcement policies can be applied to external slow memory connected to the host. QOS enforcement is accomplished by assigning a Class Of Service (COS) to a processor and specifying allocations or limits for that COS for each resource to be allocated. This feature is identified by the CPUID function 0x8000_0020_EBX_x0[2]: L3SBE - L3 external slow memory bandwidth enforcement. CXL.memory is the only supported "slow" memory device. With SMBA, the hardware enables bandwidth allocation on the slow memory devices. If there are multiple slow memory devices in the system, then the throttling logic groups all the slow sources together and applies the limit on them as a whole. The presence of the SMBA feature (with CXL.memory) is independent of whether slow memory device is actually present in the system. If there is no slow memory in the system, then setting a SMBA limit will have no impact on the performance of the system. Presence of CXL memory can be identified by the numactl command: $numactl -H available: 2 nodes (0-1) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 node 0 size: 63678 MB node 0 free: 59542 MB node 1 cpus: node 1 size: 16122 MB node 1 free: 15627 MB node distances: node 0 1 0: 10 50 1: 50 10 CPU list for CXL memory will be empty. The cpu-cxl node distance is greater than cpu-to-cpu distances. Node 1 has the CXL memory in this case. CXL memory can also be identified using ACPI SRAT table and memory maps. Feature description is available in the specification, "AMD64 Technology Platform Quality of Service Extensions, Revision: 1.03 Publication # 56375 Revision: 1.03 Issue Date: February 2022" at https://bugzilla.kernel.org/attachment.cgi?id=301365 See also https://www.amd.com/en/support/tech-docs/amd64-technology-platform-quality-service-extensions Signed-off-by: Babu Moger <babu.moger@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Reinette Chatre <reinette.chatre@intel.com> Link: https://lore.kernel.org/r/20230113152039.770054-3-babu.moger@amd.com |
||
![]() |
660569472d |
x86/cpufeature: Add the CPU feature bit for LKGS
Add the CPU feature bit for LKGS (Load "Kernel" GS). LKGS instruction is introduced with Intel FRED (flexible return and event delivery) specification. Search for the latest FRED spec in most search engines with this search pattern: site:intel.com FRED (flexible return and event delivery) specification LKGS behaves like the MOV to GS instruction except that it loads the base address into the IA32_KERNEL_GS_BASE MSR instead of the GS segment’s descriptor cache, which is exactly what Linux kernel does to load a user level GS base. Thus, with LKGS, there is no need to SWAPGS away from the kernel GS base. [ mingo: Minor tweaks to the description. ] Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com> Signed-off-by: Xin Li <xin3.li@intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230112072032.35626-2-xin3.li@intel.com |
||
![]() |
a018d2e3d4 |
x86/cpufeatures: Add Architectural PerfMon Extension bit
CPUID.(EAX=07H, ECX=1):EAX[8] indicates whether the Architectural PerfMon Extension leaf (CPUID leaf 23) is supported. The "X86_FEATURE_..., word 12" is already mirrored from CPUID "0x00000007:1 (EAX)". Add X86_FEATURE_ARCH_PERFMON_EXT under the "word 12" section. The new Architectural PerfMon Extension leaf (CPUID leaf 23) will be supported in the perf_events subsystem later. The feature will not appear in /proc/cpuinfo. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20230104201349.1451191-4-kan.liang@linux.intel.com |
||
![]() |
8fa590bf34 |
ARM64:
* Enable the per-vcpu dirty-ring tracking mechanism, together with an option to keep the good old dirty log around for pages that are dirtied by something other than a vcpu. * Switch to the relaxed parallel fault handling, using RCU to delay page table reclaim and giving better performance under load. * Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping option, which multi-process VMMs such as crosvm rely on (see merge commit |
||
![]() |
94a855111e |
- Add the call depth tracking mitigation for Retbleed which has
been long in the making. It is a lighterweight software-only fix for Skylake-based cores where enabling IBRS is a big hammer and causes a significant performance impact. What it basically does is, it aligns all kernel functions to 16 bytes boundary and adds a 16-byte padding before the function, objtool collects all functions' locations and when the mitigation gets applied, it patches a call accounting thunk which is used to track the call depth of the stack at any time. When that call depth reaches a magical, microarchitecture-specific value for the Return Stack Buffer, the code stuffs that RSB and avoids its underflow which could otherwise lead to the Intel variant of Retbleed. This software-only solution brings a lot of the lost performance back, as benchmarks suggest: https://lore.kernel.org/all/20220915111039.092790446@infradead.org/ That page above also contains a lot more detailed explanation of the whole mechanism - Implement a new control flow integrity scheme called FineIBT which is based on the software kCFI implementation and uses hardware IBT support where present to annotate and track indirect branches using a hash to validate them - Other misc fixes and cleanups -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmOZp5EACgkQEsHwGGHe VUrZFxAAvi/+8L0IYSK4mKJvixGbTFjxN/Swo2JVOfs34LqGUT6JaBc+VUMwZxdb VMTFIZ3ttkKEodjhxGI7oGev6V8UfhI37SmO2lYKXpQVjXXnMlv/M+Vw3teE38CN gopi+xtGnT1IeWQ3tc/Tv18pleJ0mh5HKWiW+9KoqgXj0wgF9x4eRYDz1TDCDA/A iaBzs56j8m/FSykZHnrWZ/MvjKNPdGlfJASUCPeTM2dcrXQGJ93+X2hJctzDte0y Nuiw6Y0htfFBE7xoJn+sqm5Okr+McoUM18/CCprbgSKYk18iMYm3ZtAi6FUQZS1A ua4wQCf49loGp15PO61AS5d3OBf5D3q/WihQRbCaJvTVgPp9sWYnWwtcVUuhMllh ZQtBU9REcVJ/22bH09Q9CjBW0VpKpXHveqQdqRDViLJ6v/iI6EFGmD24SW/VxyRd 73k9MBGrL/dOf1SbEzdsnvcSB3LGzp0Om8o/KzJWOomrVKjBCJy16bwTEsCZEJmP i406m92GPXeaN1GhTko7vmF0GnkEdJs1GVCZPluCAxxbhHukyxHnrjlQjI4vC80n Ylc0B3Kvitw7LGJsPqu+/jfNHADC/zhx1qz/30wb5cFmFbN1aRdp3pm8JYUkn+l/ zri2Y6+O89gvE/9/xUhMohzHsWUO7xITiBavewKeTP9GSWybWUs= =cRy1 -----END PGP SIGNATURE----- Merge tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 core updates from Borislav Petkov: - Add the call depth tracking mitigation for Retbleed which has been long in the making. It is a lighterweight software-only fix for Skylake-based cores where enabling IBRS is a big hammer and causes a significant performance impact. What it basically does is, it aligns all kernel functions to 16 bytes boundary and adds a 16-byte padding before the function, objtool collects all functions' locations and when the mitigation gets applied, it patches a call accounting thunk which is used to track the call depth of the stack at any time. When that call depth reaches a magical, microarchitecture-specific value for the Return Stack Buffer, the code stuffs that RSB and avoids its underflow which could otherwise lead to the Intel variant of Retbleed. This software-only solution brings a lot of the lost performance back, as benchmarks suggest: https://lore.kernel.org/all/20220915111039.092790446@infradead.org/ That page above also contains a lot more detailed explanation of the whole mechanism - Implement a new control flow integrity scheme called FineIBT which is based on the software kCFI implementation and uses hardware IBT support where present to annotate and track indirect branches using a hash to validate them - Other misc fixes and cleanups * tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits) x86/paravirt: Use common macro for creating simple asm paravirt functions x86/paravirt: Remove clobber bitmask from .parainstructions x86/debug: Include percpu.h in debugreg.h to get DECLARE_PER_CPU() et al x86/cpufeatures: Move X86_FEATURE_CALL_DEPTH from bit 18 to bit 19 of word 11, to leave space for WIP X86_FEATURE_SGX_EDECCSSA bit x86/Kconfig: Enable kernel IBT by default x86,pm: Force out-of-line memcpy() objtool: Fix weak hole vs prefix symbol objtool: Optimize elf_dirty_reloc_sym() x86/cfi: Add boot time hash randomization x86/cfi: Boot time selection of CFI scheme x86/ibt: Implement FineIBT objtool: Add --cfi to generate the .cfi_sites section x86: Add prefix symbols for function padding objtool: Add option to generate prefix symbols objtool: Avoid O(bloody terrible) behaviour -- an ode to libelf objtool: Slice up elf_create_section_symbol() kallsyms: Revert "Take callthunks into account" x86: Unconfuse CONFIG_ and X86_FEATURE_ namespaces x86/retpoline: Fix crash printing warning x86/paravirt: Fix a !PARAVIRT build warning ... |
||
![]() |
2da68a77b9 |
* Introduce a new SGX feature (Asynchrounous Exit Notification)
for bare-metal enclaves and KVM guests to mitigate single-step attacks * Increase batching to speed up enclave release * Replace kmap/kunmap_atomic() calls -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmOXYkEACgkQaDWVMHDJ krB5Og//Vn0oy0pGhda+LtHJgpa9/qPlzvoZCBxi/6SfLneadE5/g/q2KHbiCgVf sQ6SEZ0MiVc2SrQcA6CntMO+stJIHG4LqYutygfKDoxXHGzxotzvzTmRV7Qxfhj5 LrPfl4cLWVO/jGDs0XQpOVFykKgdMcg1OjlnQYfriFiIiBkcClC7F0zYrOWAQWW0 z+4h3mlWzyAcBdxrZ9qPVqBMbM3qVKQWeE4D9K2Edfgx1lhQBmvtRdYXTplk08tV DrfEkG5L189lrwlmbkKT5+pXSTmJqJzBoYyAGOH8n4Wb9aKLdagJErVg0ocXx8uV ngPFU5vmaZza7EZcQheu8iRfM+zQCrcVjBImrRLyQPgCeMBX7o75axYvu4/bvPkP 3+1/JUL6/m738Fqom4wUKdeoJFw/HLGRyQ36yhZAEzH7wPv7/9Q1zpdxcypE6a+Q B7UGQNVXV9g5Ivhe44gZIKx/3VL7AthtyCQvhwGQzzm4jX2SwnQKNXy0iKlJr2iI LyREdYlJsRR1/wMdjnj2QqtnWPRZ5/rzl7bvWqiXa4xyvcgArrBowjMdZBttaItJ cVK5Aj2bvR3Yc/e9GtPoLvwU5IwtoXgUe1B4DsJtoFoUq7gUGZZcEd5uAYRAk7PX lyP2LQNxX5i150cxjlSYLLLTNmwvZQ+5PFq+V5+McKbAge8OD8g= =bIXL -----END PGP SIGNATURE----- Merge tag 'x86_sgx_for_6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 sgx updates from Dave Hansen: "The biggest deal in this series is support for a new hardware feature that allows enclaves to detect and mitigate single-stepping attacks. There's also a minor performance tweak and a little piece of the kmap_atomic() -> kmap_local() transition. Summary: - Introduce a new SGX feature (Asynchrounous Exit Notification) for bare-metal enclaves and KVM guests to mitigate single-step attacks - Increase batching to speed up enclave release - Replace kmap/kunmap_atomic() calls" * tag 'x86_sgx_for_6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/sgx: Replace kmap/kunmap_atomic() calls KVM/VMX: Allow exposing EDECCSSA user leaf function to KVM guest x86/sgx: Allow enclaves to use Asynchrounous Exit Notification x86/sgx: Reduce delay and interference of enclave release |
||
![]() |
5e85c4ebf2 |
x86: KVM: Advertise AVX-IFMA CPUID to user space
AVX-IFMA is a new instruction in the latest Intel platform Sierra Forest. This instruction packed multiplies unsigned 52-bit integers and adds the low/high 52-bit products to Qword Accumulators. The bit definition: CPUID.(EAX=7,ECX=1):EAX[bit 23] AVX-IFMA is on an expected-dense CPUID leaf and some other bits on this leaf have kernel usages. Given that, define this feature bit like X86_FEATURE_<name> in kernel. Considering AVX-IFMA itself has no truly kernel usages and /proc/cpuinfo has too much unreadable flags, hide this one in /proc/cpuinfo. Advertise AVX-IFMA to KVM userspace. This is safe because there are no new VMX controls or additional host enabling required for guests to use this feature. Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com> Acked-by: Borislav Petkov <bp@suse.de> Message-Id: <20221125125845.1182922-6-jiaxi.chen@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
||
![]() |
af2872f622 |
x86: KVM: Advertise AMX-FP16 CPUID to user space
Latest Intel platform Granite Rapids has introduced a new instruction - AMX-FP16, which performs dot-products of two FP16 tiles and accumulates the results into a packed single precision tile. AMX-FP16 adds FP16 capability and also allows a FP16 GPU trained model to run faster without loss of accuracy or added SW overhead. The bit definition: CPUID.(EAX=7,ECX=1):EAX[bit 21] AMX-FP16 is on an expected-dense CPUID leaf and some other bits on this leaf have kernel usages. Given that, define this feature bit like X86_FEATURE_<name> in kernel. Considering AMX-FP16 itself has no truly kernel usages and /proc/cpuinfo has too much unreadable flags, hide this one in /proc/cpuinfo. Advertise AMX-FP16 to KVM userspace. This is safe because there are no new VMX controls or additional host enabling required for guests to use this feature. Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com> Acked-by: Borislav Petkov <bp@suse.de> Message-Id: <20221125125845.1182922-5-jiaxi.chen@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
||
![]() |
6a19d7aa58 |
x86: KVM: Advertise CMPccXADD CPUID to user space
CMPccXADD is a new set of instructions in the latest Intel platform Sierra Forest. This new instruction set includes a semaphore operation that can compare and add the operands if condition is met, which can improve database performance. The bit definition: CPUID.(EAX=7,ECX=1):EAX[bit 7] CMPccXADD is on an expected-dense CPUID leaf and some other bits on this leaf have kernel usages. Given that, define this feature bit like X86_FEATURE_<name> in kernel. Considering CMPccXADD itself has no truly kernel usages and /proc/cpuinfo has too much unreadable flags, hide this one in /proc/cpuinfo. Advertise CMPCCXADD to KVM userspace. This is safe because there are no new VMX controls or additional host enabling required for guests to use this feature. Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com> Acked-by: Borislav Petkov <bp@suse.de> Message-Id: <20221125125845.1182922-4-jiaxi.chen@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
||
![]() |
aaa65d17ee |
x86/tsx: Add a feature bit for TSX control MSR support
Support for the TSX control MSR is enumerated in MSR_IA32_ARCH_CAPABILITIES. This is different from how other CPU features are enumerated i.e. via CPUID. Currently, a call to tsx_ctrl_is_supported() is required for enumerating the feature. In the absence of a feature bit for TSX control, any code that relies on checking feature bits directly will not work. In preparation for adding a feature bit check in MSR save/restore during suspend/resume, set a new feature bit X86_FEATURE_TSX_CTRL when MSR_IA32_TSX_CTRL is present. Also make tsx_ctrl_is_supported() use the new feature bit to avoid any overhead of reading the MSR. [ bp: Remove tsx_ctrl_is_supported(), add room for two more feature bits in word 11 which are coming up in the next merge window. ] Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: <stable@kernel.org> Link: https://lore.kernel.org/r/de619764e1d98afbb7a5fa58424f1278ede37b45.1668539735.git.pawan.kumar.gupta@linux.intel.com |
||
![]() |
b1599915f0 |
x86/cpufeatures: Move X86_FEATURE_CALL_DEPTH from bit 18 to bit 19 of word 11, to leave space for WIP X86_FEATURE_SGX_EDECCSSA bit
Reallocate a soft-cpufeatures bit allocated for call-depth tracking code, which clashes with this recent KVM/SGX patch being worked on: KVM/VMX: Allow exposing EDECCSSA user leaf function to KVM guest Instead of reallocating cpufeatures bits in evil merges, make the allocation explicit. Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: x86@kernel.org Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
![]() |
16a7fe3728 |
KVM/VMX: Allow exposing EDECCSSA user leaf function to KVM guest
The new Asynchronous Exit (AEX) notification mechanism (AEX-notify) allows one enclave to receive a notification in the ERESUME after the enclave exit due to an AEX. EDECCSSA is a new SGX user leaf function (ENCLU[EDECCSSA]) to facilitate the AEX notification handling. The new EDECCSSA is enumerated via CPUID(EAX=0x12,ECX=0x0):EAX[11]. Besides Allowing reporting the new AEX-notify attribute to KVM guests, also allow reporting the new EDECCSSA user leaf function to KVM guests so the guest can fully utilize the AEX-notify mechanism. Similar to existing X86_FEATURE_SGX1 and X86_FEATURE_SGX2, introduce a new scattered X86_FEATURE_SGX_EDECCSSA bit for the new EDECCSSA, and report it in KVM's supported CPUIDs. Note, no additional KVM enabling is required to allow the guest to use EDECCSSA. It's impossible to trap ENCLU (without completely preventing the guest from using SGX). Advertise EDECCSSA as supported purely so that userspace doesn't need to special case EDECCSSA, i.e. doesn't need to manually check host CPUID. The inability to trap ENCLU also means that KVM can't prevent the guest from using EDECCSSA, but that virtualization hole is benign as far as KVM is concerned. EDECCSSA is simply a fancy way to modify internal enclave state. More background about how do AEX-notify and EDECCSSA work: SGX maintains a Current State Save Area Frame (CSSA) for each enclave thread. When AEX happens, the enclave thread context is saved to the CSSA and the CSSA is increased by 1. For a normal ERESUME which doesn't deliver AEX notification, it restores the saved thread context from the previously saved SSA and decreases the CSSA. If AEX-notify is enabled for one enclave, the ERESUME acts differently. Instead of restoring the saved thread context and decreasing the CSSA, it acts like EENTER which doesn't decrease the CSSA but establishes a clean slate thread context using the CSSA for the enclave to handle the notification. After some handling, the enclave must discard the "new-established" SSA and switch back to the previously saved SSA (upon AEX). Otherwise, the enclave will run out of SSA space upon further AEXs and eventually fail to run. To solve this problem, the new EDECCSSA essentially decreases the CSSA. It can be used by the enclave notification handler to switch back to the previous saved SSA when needed, i.e. after it handles the notification. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Sean Christopherson <seanjc@google.com> Acked-by: Jarkko Sakkinen <jarkko@kernel.org> Link: https://lore.kernel.org/all/20221101022422.858944-1-kai.huang%40intel.com |
||
![]() |
80e4c1cd42 |
x86/retbleed: Add X86_FEATURE_CALL_DEPTH
Intel SKL CPUs fall back to other predictors when the RSB underflows. The only microcode mitigation is IBRS which is insanely expensive. It comes with performance drops of up to 30% depending on the workload. A way less expensive, but nevertheless horrible mitigation is to track the call depth in software and overeagerly fill the RSB when returns underflow the software counter. Provide a configuration symbol and a CPU misfeature bit. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220915111147.056176424@infradead.org |
||
![]() |
a1ebcd5943 |
Linux 6.0-rc7
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmMwwY4eHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGdlwH/0ESzdb6F9zYWwHR E08har56/IfwjOsn1y+JuHibpwUjzskLzdwIfI5zshSZAQTj5/UyC0P7G/wcYh/Z INh1uHGazmDUkx4O3lwuWLR+mmeUxZRWdq4NTwYDRNPMSiPInVxz+cZJ7y0aPr2e wii7kMFRHgXmX5DMDEwuHzehsJF7vZrp8zBu2DqzVUGnbwD50nPbyMM3H4g9mute fAEpDG0X3+smqMaKL+2rK0W/Av/87r3U8ZAztBem3nsCJ9jT7hqMO1ICcKmFMviA DTERRMwWjPq+mBPE2CiuhdaXvNZBW85Ds81mSddS6MsO6+Tvuzfzik/zSLQJxlBi vIqYphY= =NqG+ -----END PGP SIGNATURE----- Merge branch 'v6.0-rc7' Merge upstream to get RAPTORLAKE_S Signed-off-by: Peter Zijlstra <peterz@infradead.org> |
||
![]() |
257449c6a5 |
x86/cpufeatures: Add LbrExtV2 feature bit
CPUID leaf 0x80000022 i.e. ExtPerfMonAndDbg advertises some new performance monitoring features for AMD processors. Bit 1 of EAX indicates support for Last Branch Record Extension Version 2 (LbrExtV2) features. If found to be set during PMU initialization, the EBX bits of the same leaf can be used to determine the number of available LBR entries. For better utilization of feature words, LbrExtV2 is added as a scattered feature bit. [peterz: Rename to AMD_LBR_V2] Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/172d2b0df39306ed77221c45ee1aa62e8ae0548d.1660211399.git.sandipan.das@amd.com |
||
![]() |
7df548840c |
x86/bugs: Add "unknown" reporting for MMIO Stale Data
Older Intel CPUs that are not in the affected processor list for MMIO
Stale Data vulnerabilities currently report "Not affected" in sysfs,
which may not be correct. Vulnerability status for these older CPUs is
unknown.
Add known-not-affected CPUs to the whitelist. Report "unknown"
mitigation status for CPUs that are not in blacklist, whitelist and also
don't enumerate MSR ARCH_CAPABILITIES bits that reflect hardware
immunity to MMIO Stale Data vulnerabilities.
Mitigation is not deployed when the status is unknown.
[ bp: Massage, fixup. ]
Fixes:
|
||
![]() |
5318b987fe |
More from the CPU vulnerability nightmares front:
Intel eIBRS machines do not sufficiently mitigate against RET mispredictions when doing a VM Exit therefore an additional RSB, one-entry stuffing is needed. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLqsGsACgkQEsHwGGHe VUpXGg//ZEkxhf3Ri7X9PknAWNG6eIEqigKqWcdnOw+Oq/GMVb6q7JQsqowK7KBZ AKcY5c/KkljTJNohditnfSOePyCG5nDTPgfkjzIawnaVdyJWMRCz/L4X2cv6ykDl 2l2EvQm4Ro8XAogYhE7GzDg/osaVfx93OkLCQj278VrEMWgM/dN2RZLpn+qiIkNt DyFlQ7cr5UASh/svtKLko268oT4JwhQSbDHVFLMJ52VaLXX36yx4rValZHUKFdox ZDyj+kiszFHYGsI94KAD0dYx76p6mHnwRc4y/HkVcO8vTacQ2b9yFYBGTiQatITf 0Nk1RIm9m3rzoJ82r/U0xSIDwbIhZlOVNm2QtCPkXqJZZFhopYsZUnq2TXhSWk4x GQg/2dDY6gb/5MSdyLJmvrTUtzResVyb/hYL6SevOsIRnkwe35P6vDDyp15F3TYK YvidZSfEyjtdLISBknqYRQD964dgNZu9ewrj+WuJNJr+A2fUvBzUebXjxHREsugN jWp5GyuagEKTtneVCvjwnii+ptCm6yfzgZYLbHmmV+zhinyE9H1xiwVDvo5T7DDS ZJCBgoioqMhp5qR59pkWz/S5SNGui2rzEHbAh4grANy8R/X5ASRv7UHT9uAo6ve1 xpw6qnE37CLzuLhj8IOdrnzWwLiq7qZ/lYN7m+mCMVlwRWobbOo= =a8em -----END PGP SIGNATURE----- Merge tag 'x86_bugs_pbrsb' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 eIBRS fixes from Borislav Petkov: "More from the CPU vulnerability nightmares front: Intel eIBRS machines do not sufficiently mitigate against RET mispredictions when doing a VM Exit therefore an additional RSB, one-entry stuffing is needed" * tag 'x86_bugs_pbrsb' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/speculation: Add LFENCE to RSB fill sequence x86/speculation: Add RSB VM Exit protections |
||
![]() |
7c5c3a6177 |
ARM:
* Unwinder implementations for both nVHE modes (classic and protected), complete with an overflow stack * Rework of the sysreg access from userspace, with a complete rewrite of the vgic-v3 view to allign with the rest of the infrastructure * Disagregation of the vcpu flags in separate sets to better track their use model. * A fix for the GICv2-on-v3 selftest * A small set of cosmetic fixes RISC-V: * Track ISA extensions used by Guest using bitmap * Added system instruction emulation framework * Added CSR emulation framework * Added gfp_custom flag in struct kvm_mmu_memory_cache * Added G-stage ioremap() and iounmap() functions * Added support for Svpbmt inside Guest s390: * add an interface to provide a hypervisor dump for secure guests * improve selftests to use TAP interface * enable interpretive execution of zPCI instructions (for PCI passthrough) * First part of deferred teardown * CPU Topology * PV attestation * Minor fixes x86: * Permit guests to ignore single-bit ECC errors * Intel IPI virtualization * Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS * PEBS virtualization * Simplify PMU emulation by just using PERF_TYPE_RAW events * More accurate event reinjection on SVM (avoid retrying instructions) * Allow getting/setting the state of the speaker port data bit * Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent * "Notify" VM exit (detect microarchitectural hangs) for Intel * Use try_cmpxchg64 instead of cmpxchg64 * Ignore benign host accesses to PMU MSRs when PMU is disabled * Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior * Allow NX huge page mitigation to be disabled on a per-vm basis * Port eager page splitting to shadow MMU as well * Enable CMCI capability by default and handle injected UCNA errors * Expose pid of vcpu threads in debugfs * x2AVIC support for AMD * cleanup PIO emulation * Fixes for LLDT/LTR emulation * Don't require refcounted "struct page" to create huge SPTEs * Miscellaneous cleanups: ** MCE MSR emulation ** Use separate namespaces for guest PTEs and shadow PTEs bitmasks ** PIO emulation ** Reorganize rmap API, mostly around rmap destruction ** Do not workaround very old KVM bugs for L0 that runs with nesting enabled ** new selftests API for CPUID Generic: * Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache * new selftests API using struct kvm_vcpu instead of a (vm, id) tuple -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmLnyo4UHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroMtQQf/XjVWiRcWLPR9dqzRM/vvRXpiG+UL jU93R7m6ma99aqTtrxV/AE+kHgamBlma3Cwo+AcWk9uCVNbIhFjv2YKg6HptKU0e oJT3zRYp+XIjEo7Kfw+TwroZbTlG6gN83l1oBLFMqiFmHsMLnXSI2mm8MXyi3dNB vR2uIcTAl58KIprqNNsYJ2dNn74ogOMiXYx9XzoA9/5Xb6c0h4rreHJa5t+0s9RO Gz7Io3PxumgsbJngjyL1Ve5oxhlIAcZA8DU0PQmjxo3eS+k6BcmavGFd45gNL5zg iLpCh4k86spmzh8CWkAAwWPQE4dZknK6jTctJc0OFVad3Z7+X7n0E8TFrA== =PM8o -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "Quite a large pull request due to a selftest API overhaul and some patches that had come in too late for 5.19. ARM: - Unwinder implementations for both nVHE modes (classic and protected), complete with an overflow stack - Rework of the sysreg access from userspace, with a complete rewrite of the vgic-v3 view to allign with the rest of the infrastructure - Disagregation of the vcpu flags in separate sets to better track their use model. - A fix for the GICv2-on-v3 selftest - A small set of cosmetic fixes RISC-V: - Track ISA extensions used by Guest using bitmap - Added system instruction emulation framework - Added CSR emulation framework - Added gfp_custom flag in struct kvm_mmu_memory_cache - Added G-stage ioremap() and iounmap() functions - Added support for Svpbmt inside Guest s390: - add an interface to provide a hypervisor dump for secure guests - improve selftests to use TAP interface - enable interpretive execution of zPCI instructions (for PCI passthrough) - First part of deferred teardown - CPU Topology - PV attestation - Minor fixes x86: - Permit guests to ignore single-bit ECC errors - Intel IPI virtualization - Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS - PEBS virtualization - Simplify PMU emulation by just using PERF_TYPE_RAW events - More accurate event reinjection on SVM (avoid retrying instructions) - Allow getting/setting the state of the speaker port data bit - Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent - "Notify" VM exit (detect microarchitectural hangs) for Intel - Use try_cmpxchg64 instead of cmpxchg64 - Ignore benign host accesses to PMU MSRs when PMU is disabled - Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior - Allow NX huge page mitigation to be disabled on a per-vm basis - Port eager page splitting to shadow MMU as well - Enable CMCI capability by default and handle injected UCNA errors - Expose pid of vcpu threads in debugfs - x2AVIC support for AMD - cleanup PIO emulation - Fixes for LLDT/LTR emulation - Don't require refcounted "struct page" to create huge SPTEs - Miscellaneous cleanups: - MCE MSR emulation - Use separate namespaces for guest PTEs and shadow PTEs bitmasks - PIO emulation - Reorganize rmap API, mostly around rmap destruction - Do not workaround very old KVM bugs for L0 that runs with nesting enabled - new selftests API for CPUID Generic: - Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache - new selftests API using struct kvm_vcpu instead of a (vm, id) tuple" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (606 commits) selftests: kvm: set rax before vmcall selftests: KVM: Add exponent check for boolean stats selftests: KVM: Provide descriptive assertions in kvm_binary_stats_test selftests: KVM: Check stat name before other fields KVM: x86/mmu: remove unused variable RISC-V: KVM: Add support for Svpbmt inside Guest/VM RISC-V: KVM: Use PAGE_KERNEL_IO in kvm_riscv_gstage_ioremap() RISC-V: KVM: Add G-stage ioremap() and iounmap() functions KVM: Add gfp_custom flag in struct kvm_mmu_memory_cache RISC-V: KVM: Add extensible CSR emulation framework RISC-V: KVM: Add extensible system instruction emulation framework RISC-V: KVM: Factor-out instruction emulation into separate sources RISC-V: KVM: move preempt_disable() call in kvm_arch_vcpu_ioctl_run RISC-V: KVM: Make kvm_riscv_guest_timer_init a void function RISC-V: KVM: Fix variable spelling mistake RISC-V: KVM: Improve ISA extension by using a bitmap KVM, x86/mmu: Fix the comment around kvm_tdp_mmu_zap_leafs() KVM: SVM: Dump Virtual Machine Save Area (VMSA) to klog KVM: x86/mmu: Treat NX as a valid SPTE bit for NPT KVM: x86: Do not block APIC write for non ICR registers ... |
||
![]() |
2b12993220 |
x86/speculation: Add RSB VM Exit protections
tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as documented for RET instructions after VM exits. Mitigate it with a new one-entry RSB stuffing mechanism and a new LFENCE. == Background == Indirect Branch Restricted Speculation (IBRS) was designed to help mitigate Branch Target Injection and Speculative Store Bypass, i.e. Spectre, attacks. IBRS prevents software run in less privileged modes from affecting branch prediction in more privileged modes. IBRS requires the MSR to be written on every privilege level change. To overcome some of the performance issues of IBRS, Enhanced IBRS was introduced. eIBRS is an "always on" IBRS, in other words, just turn it on once instead of writing the MSR on every privilege level change. When eIBRS is enabled, more privileged modes should be protected from less privileged modes, including protecting VMMs from guests. == Problem == Here's a simplification of how guests are run on Linux' KVM: void run_kvm_guest(void) { // Prepare to run guest VMRESUME(); // Clean up after guest runs } The execution flow for that would look something like this to the processor: 1. Host-side: call run_kvm_guest() 2. Host-side: VMRESUME 3. Guest runs, does "CALL guest_function" 4. VM exit, host runs again 5. Host might make some "cleanup" function calls 6. Host-side: RET from run_kvm_guest() Now, when back on the host, there are a couple of possible scenarios of post-guest activity the host needs to do before executing host code: * on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not touched and Linux has to do a 32-entry stuffing. * on eIBRS hardware, VM exit with IBRS enabled, or restoring the host IBRS=1 shortly after VM exit, has a documented side effect of flushing the RSB except in this PBRSB situation where the software needs to stuff the last RSB entry "by hand". IOW, with eIBRS supported, host RET instructions should no longer be influenced by guest behavior after the host retires a single CALL instruction. However, if the RET instructions are "unbalanced" with CALLs after a VM exit as is the RET in #6, it might speculatively use the address for the instruction after the CALL in #3 as an RSB prediction. This is a problem since the (untrusted) guest controls this address. Balanced CALL/RET instruction pairs such as in step #5 are not affected. == Solution == The PBRSB issue affects a wide variety of Intel processors which support eIBRS. But not all of them need mitigation. Today, X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e., eIBRS systems which enable legacy IBRS explicitly. However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT and most of them need a new mitigation. Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT. The lighter-weight mitigation performs a CALL instruction which is immediately followed by a speculative execution barrier (INT3). This steers speculative execution to the barrier -- just like a retpoline -- which ensures that speculation can never reach an unbalanced RET. Then, ensure this CALL is retired before continuing execution with an LFENCE. In other words, the window of exposure is opened at VM exit where RET behavior is troublesome. While the window is open, force RSB predictions sampling for RET targets to a dead end at the INT3. Close the window with the LFENCE. There is a subset of eIBRS systems which are not vulnerable to PBRSB. Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB. Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO. [ bp: Massage, incorporate review comments from Andy Cooper. ] Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> |
||
![]() |
42efa5e3a8 |
- Remove the vendor check when selecting MWAIT as the default idle state
- Respect idle=nomwait when supplied on the kernel cmdline - Two small cleanups -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLntx0ACgkQEsHwGGHe VUqlRxAAkULobsk6Dx3wrQcYlpA8Mt/ctttTQXWiIQwhK1j7uP0zlGWBqImr5Wsk T04g1s29azulnPs3PydCF2QlLqSyF4v2PyyUwnpKfTP6CPM+MLtz98Gm6Xcbkt+s f28ISYgNP+15tskWdNqB5XIVGkuyBdNne9TiFwtnVrJYF47FSwqEWRyqMH+bIOGT wSZUCfjcw7PtKwfIAmYq4beS2+wbY9bsfVyIz+H0ks2EVFQdjYWb/kH9PgUYEQFe VEOBsPvTHDOJt0QXEXSJjmoSRUS77Wduw56Y3L2T4jWdXXQFWJ79rqNYDBvXGAdh Y8BKM5IYFZpzrmfw2RB6jbDY/JWO5PPFvHTXogQf9+wttSerZEffVQdOeTwjT8VD wc9/ZnNkT7915033VI90V+hdFkwarq8FXuFH8TkzcxP9DQNYG8CRTZBceq0UWBl0 5RpIDwNX9JxGrR+frJi0D24qxz//wLe56UqW9hLp73NP8QtEYEW1nb1q30Q2eM3N iQblgmh63qQ/dy6JV1GFb3aePiWMUNQwcTrj1pd8YDfNlp4IsFsSswnsdAZWtr1A l9qewHkBZbbzyTQkBjExUsaIdiaMywFwnUmcQNL+fHqznZIvMhJC/oCJeS0Pe/RH alTUrYsk6Y87HFpxoXpd85a9+20m8yrA64uY8cSQguGZ9i5Lm8g= =jkpj -----END PGP SIGNATURE----- Merge tag 'x86_cpu_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 cpu updates from Borislav Petkov: - Remove the vendor check when selecting MWAIT as the default idle state - Respect idle=nomwait when supplied on the kernel cmdline - Two small cleanups * tag 'x86_cpu_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/cpu: Use MSR_IA32_MISC_ENABLE constants x86: Fix comment for X86_FEATURE_ZEN x86: Remove vendor checks from prefer_mwait_c1_over_halt x86: Handle idle=nomwait cmdline properly for x86_idle |
||
![]() |
63f4b21041 |
Merge remote-tracking branch 'kvm/next' into kvm-next-5.20
KVM/s390, KVM/x86 and common infrastructure changes for 5.20 x86: * Permit guests to ignore single-bit ECC errors * Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache * Intel IPI virtualization * Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS * PEBS virtualization * Simplify PMU emulation by just using PERF_TYPE_RAW events * More accurate event reinjection on SVM (avoid retrying instructions) * Allow getting/setting the state of the speaker port data bit * Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent * "Notify" VM exit (detect microarchitectural hangs) for Intel * Cleanups for MCE MSR emulation s390: * add an interface to provide a hypervisor dump for secure guests * improve selftests to use TAP interface * enable interpretive execution of zPCI instructions (for PCI passthrough) * First part of deferred teardown * CPU Topology * PV attestation * Minor fixes Generic: * new selftests API using struct kvm_vcpu instead of a (vm, id) tuple x86: * Use try_cmpxchg64 instead of cmpxchg64 * Bugfixes * Ignore benign host accesses to PMU MSRs when PMU is disabled * Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior * x86/MMU: Allow NX huge pages to be disabled on a per-vm basis * Port eager page splitting to shadow MMU as well * Enable CMCI capability by default and handle injected UCNA errors * Expose pid of vcpu threads in debugfs * x2AVIC support for AMD * cleanup PIO emulation * Fixes for LLDT/LTR emulation * Don't require refcounted "struct page" to create huge SPTEs x86 cleanups: * Use separate namespaces for guest PTEs and shadow PTEs bitmasks * PIO emulation * Reorganize rmap API, mostly around rmap destruction * Do not workaround very old KVM bugs for L0 that runs with nesting enabled * new selftests API for CPUID |
||
![]() |
28a99e95f5 |
x86/amd: Use IBPB for firmware calls
On AMD IBRS does not prevent Retbleed; as such use IBPB before a firmware call to flush the branch history state. And because in order to do an EFI call, the kernel maps a whole lot of the kernel page table into the EFI page table, do an IBPB just in case in order to prevent the scenario of poisoning the BTB and causing an EFI call using the unprotected RET there. [ bp: Massage. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20220715194550.793957-1-cascardo@canonical.com |
||
![]() |
4ad3278df6 |
x86/speculation: Disable RRSBA behavior
Some Intel processors may use alternate predictors for RETs on RSB-underflow. This condition may be vulnerable to Branch History Injection (BHI) and intramode-BTI. Kernel earlier added spectre_v2 mitigation modes (eIBRS+Retpolines, eIBRS+LFENCE, Retpolines) which protect indirect CALLs and JMPs against such attacks. However, on RSB-underflow, RET target prediction may fallback to alternate predictors. As a result, RET's predicted target may get influenced by branch history. A new MSR_IA32_SPEC_CTRL bit (RRSBA_DIS_S) controls this fallback behavior when in kernel mode. When set, RETs will not take predictions from alternate predictors, hence mitigating RETs as well. Support for this is enumerated by CPUID.7.2.EDX[RRSBA_CTRL] (bit2). For spectre v2 mitigation, when a user selects a mitigation that protects indirect CALLs and JMPs against BHI and intramode-BTI, set RRSBA_DIS_S also to protect RETs for RSB-underflow case. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> |
||
![]() |
26aae8ccbc |
x86/cpu/amd: Enumerate BTC_NO
BTC_NO indicates that hardware is not susceptible to Branch Type Confusion. Zen3 CPUs don't suffer BTC. Hypervisors are expected to synthesise BTC_NO when it is appropriate given the migration pool, to prevent kernels using heuristics. [ bp: Massage. ] Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com> Signed-off-by: Borislav Petkov <bp@suse.de> |
||
![]() |
9756bba284 |
x86/speculation: Fill RSB on vmexit for IBRS
Prevent RSB underflow/poisoning attacks with RSB. While at it, add a bunch of comments to attempt to document the current state of tribal knowledge about RSB attacks and what exactly is being mitigated. Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> |
||
![]() |
3ebc170068 |
x86/bugs: Add retbleed=ibpb
jmp2ret mitigates the easy-to-attack case at relatively low overhead. It mitigates the long speculation windows after a mispredicted RET, but it does not mitigate the short speculation window from arbitrary instruction boundaries. On Zen2, there is a chicken bit which needs setting, which mitigates "arbitrary instruction boundaries" down to just "basic block boundaries". But there is no fix for the short speculation window on basic block boundaries, other than to flush the entire BTB to evict all attacker predictions. On the spectrum of "fast & blurry" -> "safe", there is (on top of STIBP or no-SMT): 1) Nothing System wide open 2) jmp2ret May stop a script kiddy 3) jmp2ret+chickenbit Raises the bar rather further 4) IBPB Only thing which can count as "safe". Tentative numbers put IBPB-on-entry at a 2.5x hit on Zen2, and a 10x hit on Zen1 according to lmbench. [ bp: Fixup feature bit comments, document option, 32-bit build fix. ] Suggested-by: Andrew Cooper <Andrew.Cooper3@citrix.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> |
||
![]() |
2dbb887e87 |
x86/entry: Add kernel IBRS implementation
Implement Kernel IBRS - currently the only known option to mitigate RSB underflow speculation issues on Skylake hardware. Note: since IBRS_ENTER requires fuller context established than UNTRAIN_RET, it must be placed after it. However, since UNTRAIN_RET itself implies a RET, it must come after IBRS_ENTER. This means IBRS_ENTER needs to also move UNTRAIN_RET. Note 2: KERNEL_IBRS is sub-optimal for XenPV. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> |
||
![]() |
6b80b59b35 |
x86/bugs: Report AMD retbleed vulnerability
Report that AMD x86 CPUs are vulnerable to the RETBleed (Arbitrary Speculative Code Execution with Return Instructions) attack. [peterz: add hygon] [kim: invert parity; fam15h] Co-developed-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Alexandre Chartre <alexandre.chartre@oracle.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> |
||
![]() |
a149180fbc |
x86: Add magic AMD return-thunk
Note: needs to be in a section distinct from Retpolines such that the Retpoline RET substitution cannot possibly use immediate jumps. ORC unwinding for zen_untrain_ret() and __x86_return_thunk() is a little tricky but works due to the fact that zen_untrain_ret() doesn't have any stack ops and as such will emit a single ORC entry at the start (+0x3f). Meanwhile, unwinding an IP, including the __x86_return_thunk() one (+0x40) will search for the largest ORC entry smaller or equal to the IP, these will find the one ORC entry (+0x3f) and all works. [ Alexandre: SVM part. ] [ bp: Build fix, massages. ] Suggested-by: Andrew Cooper <Andrew.Cooper3@citrix.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> |
||
![]() |
15e67227c4 |
x86: Undo return-thunk damage
Introduce X86_FEATURE_RETHUNK for those afflicted with needing this. [ bp: Do only INT3 padding - simpler. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> |
||
![]() |
a883d624ae |
x86/cpufeatures: Move RETPOLINE flags to word 11
In order to extend the RETPOLINE features to 4, move them to word 11 where there is still room. This mostly keeps DISABLE_RETPOLINE simple. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> |
||
![]() |
aae99a7c9a |
x86/cpufeatures: Introduce x2AVIC CPUID bit
Introduce a new feature bit for virtualized x2APIC (x2AVIC) in CPUID_Fn8000000A_EDX [SVM Revision and Feature Identification]. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20220519102709.24125-2-suravee.suthikulpanit@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
||
![]() |
8e8afafb0b |
Yet another hw vulnerability with a software mitigation: Processor MMIO
Stale Data. They are a class of MMIO-related weaknesses which can expose stale data by propagating it into core fill buffers. Data which can then be leaked using the usual speculative execution methods. Mitigations include this set along with microcode updates and are similar to MDS and TAA vulnerabilities: VERW now clears those buffers too. -----BEGIN PGP SIGNATURE----- iQJGBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKXMkMTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoWGPD/idalLIhhV5F2+hZIKm0WSnsBxAOh9K 7y8xBxpQQ5FUfW3vm7Pg3ro6VJp7w2CzKoD4lGXzGHriusn3qst3vkza9Ay8xu8g RDwKe6hI+p+Il9BV9op3f8FiRLP9bcPMMReW/mRyYsOnJe59hVNwRAL8OG40PY4k hZgg4Psfvfx8bwiye5efjMSe4fXV7BUCkr601+8kVJoiaoszkux9mqP+cnnB5P3H zW1d1jx7d6eV1Y063h7WgiNqQRYv0bROZP5BJkufIoOHUXDpd65IRF3bDnCIvSEz KkMYJNXb3qh7EQeHS53NL+gz2EBQt+Tq1VH256qn6i3mcHs85HvC68gVrAkfVHJE QLJE3MoXWOqw+mhwzCRrEXN9O1lT/PqDWw8I4M/5KtGG/KnJs+bygmfKBbKjIVg4 2yQWfMmOgQsw3GWCRjgEli7aYbDJQjany0K/qZTq54I41gu+TV8YMccaWcXgDKrm cXFGUfOg4gBm4IRjJ/RJn+mUv6u+/3sLVqsaFTs9aiib1dpBSSUuMGBh548Ft7g2 5VbFVSDaLjB2BdlcG7enlsmtzw0ltNssmqg7jTK/L7XNVnvxwUoXw+zP7RmCLEYt UV4FHXraMKNt2ZketlomC8ui2hg73ylUp4pPdMXCp7PIXp9sVamRTbpz12h689VJ /s55bWxHkR6S =LBxT -----END PGP SIGNATURE----- Merge tag 'x86-bugs-2022-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 MMIO stale data fixes from Thomas Gleixner: "Yet another hw vulnerability with a software mitigation: Processor MMIO Stale Data. They are a class of MMIO-related weaknesses which can expose stale data by propagating it into core fill buffers. Data which can then be leaked using the usual speculative execution methods. Mitigations include this set along with microcode updates and are similar to MDS and TAA vulnerabilities: VERW now clears those buffers too" * tag 'x86-bugs-2022-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/speculation/mmio: Print SMT warning KVM: x86/speculation: Disable Fill buffer clear within guests x86/speculation/mmio: Reuse SRBDS mitigation for SBDS x86/speculation/srbds: Update SRBDS mitigation selection x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data x86/speculation/mmio: Enable CPU Fill buffer clearing on idle x86/bugs: Group MDS, TAA & Processor MMIO Stale Data mitigations x86/speculation/mmio: Add mitigation for Processor MMIO Stale Data x86/speculation: Add a common function for MD_CLEAR mitigation update x86/speculation/mmio: Enumerate Processor MMIO Stale Data bug Documentation: Add documentation for Processor MMIO Stale Data |
||
![]() |
6f33a9daff |
x86: Fix comment for X86_FEATURE_ZEN
The feature X86_FEATURE_ZEN implies that the CPU based on Zen microarchitecture. Call this out explicitly in the comment. Signed-off-by: Wyes Karny <wyes.karny@amd.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Tested-by: Zhang Rui <rui.zhang@intel.com> Link: https://lkml.kernel.org/r/9931b01a85120a0d1faf0f244e8de3f2190e774c.1654538381.git-series.wyes.karny@amd.com |
||
![]() |
bf9095424d |
S390:
* ultravisor communication device driver * fix TEID on terminating storage key ops RISC-V: * Added Sv57x4 support for G-stage page table * Added range based local HFENCE functions * Added remote HFENCE functions based on VCPU requests * Added ISA extension registers in ONE_REG interface * Updated KVM RISC-V maintainers entry to cover selftests support ARM: * Add support for the ARMv8.6 WFxT extension * Guard pages for the EL2 stacks * Trap and emulate AArch32 ID registers to hide unsupported features * Ability to select and save/restore the set of hypercalls exposed to the guest * Support for PSCI-initiated suspend in collaboration with userspace * GICv3 register-based LPI invalidation support * Move host PMU event merging into the vcpu data structure * GICv3 ITS save/restore fixes * The usual set of small-scale cleanups and fixes x86: * New ioctls to get/set TSC frequency for a whole VM * Allow userspace to opt out of hypercall patching * Only do MSR filtering for MSRs accessed by rdmsr/wrmsr AMD SEV improvements: * Add KVM_EXIT_SHUTDOWN metadata for SEV-ES * V_TSC_AUX support Nested virtualization improvements for AMD: * Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE, nested vGIF) * Allow AVIC to co-exist with a nested guest running * Fixes for LBR virtualizations when a nested guest is running, and nested LBR virtualization support * PAUSE filtering for nested hypervisors Guest support: * Decoupling of vcpu_is_preempted from PV spinlocks -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmKN9M4UHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroNLeAf+KizAlQwxEehHHeNyTkZuKyMawrD6 zsqAENR6i1TxiXe7fDfPFbO2NR0ZulQopHbD9mwnHJ+nNw0J4UT7g3ii1IAVcXPu rQNRGMVWiu54jt+lep8/gDg0JvPGKVVKLhxUaU1kdWT9PhIOC6lwpP3vmeWkUfRi PFL/TMT0M8Nfryi0zHB0tXeqg41BiXfqO8wMySfBAHUbpv8D53D2eXQL6YlMM0pL 2quB1HxHnpueE5vj3WEPQ3PCdy1M2MTfCDBJAbZGG78Ljx45FxSGoQcmiBpPnhJr C6UGP4ZDWpml5YULUoA70k5ylCbP+vI61U4vUtzEiOjHugpPV5wFKtx5nw== =ozWx -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "S390: - ultravisor communication device driver - fix TEID on terminating storage key ops RISC-V: - Added Sv57x4 support for G-stage page table - Added range based local HFENCE functions - Added remote HFENCE functions based on VCPU requests - Added ISA extension registers in ONE_REG interface - Updated KVM RISC-V maintainers entry to cover selftests support ARM: - Add support for the ARMv8.6 WFxT extension - Guard pages for the EL2 stacks - Trap and emulate AArch32 ID registers to hide unsupported features - Ability to select and save/restore the set of hypercalls exposed to the guest - Support for PSCI-initiated suspend in collaboration with userspace - GICv3 register-based LPI invalidation support - Move host PMU event merging into the vcpu data structure - GICv3 ITS save/restore fixes - The usual set of small-scale cleanups and fixes x86: - New ioctls to get/set TSC frequency for a whole VM - Allow userspace to opt out of hypercall patching - Only do MSR filtering for MSRs accessed by rdmsr/wrmsr AMD SEV improvements: - Add KVM_EXIT_SHUTDOWN metadata for SEV-ES - V_TSC_AUX support Nested virtualization improvements for AMD: - Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE, nested vGIF) - Allow AVIC to co-exist with a nested guest running - Fixes for LBR virtualizations when a nested guest is running, and nested LBR virtualization support - PAUSE filtering for nested hypervisors Guest support: - Decoupling of vcpu_is_preempted from PV spinlocks" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (199 commits) KVM: x86: Fix the intel_pt PMI handling wrongly considered from guest KVM: selftests: x86: Sync the new name of the test case to .gitignore Documentation: kvm: reorder ARM-specific section about KVM_SYSTEM_EVENT_SUSPEND x86, kvm: use correct GFP flags for preemption disabled KVM: LAPIC: Drop pending LAPIC timer injection when canceling the timer x86/kvm: Alloc dummy async #PF token outside of raw spinlock KVM: x86: avoid calling x86 emulator without a decoded instruction KVM: SVM: Use kzalloc for sev ioctl interfaces to prevent kernel data leak x86/fpu: KVM: Set the base guest FPU uABI size to sizeof(struct kvm_xsave) s390/uv_uapi: depend on CONFIG_S390 KVM: selftests: x86: Fix test failure on arch lbr capable platforms KVM: LAPIC: Trace LAPIC timer expiration on every vmentry KVM: s390: selftest: Test suppression indication on key prot exception KVM: s390: Don't indicate suppression on dirtying, failing memop selftests: drivers/s390x: Add uvdevice tests drivers/s390/char: Add Ultravisor io device MAINTAINERS: Update KVM RISC-V entry to cover selftests support RISC-V: KVM: Introduce ISA extension register RISC-V: KVM: Cleanup stale TLB entries when host CPU changes RISC-V: KVM: Add remote HFENCE functions based on VCPU requests ... |
||
![]() |
cfeb2522c3 |
Perf events changes for this cycle were:
Platform PMU changes: ===================== - x86/intel: - Add new Intel Alder Lake and Raptor Lake support - x86/amd: - AMD Zen4 IBS extensions support - Add AMD PerfMonV2 support - Add AMD Fam19h Branch Sampling support Generic changes: ================ - signal: Deliver SIGTRAP on perf event asynchronously if blocked Perf instrumentation can be driven via SIGTRAP, but this causes a problem when SIGTRAP is blocked by a task & terminate the task. Allow user-space to request these signals asynchronously (after they get unblocked) & also give the information to the signal handler when this happens: " To give user space the ability to clearly distinguish synchronous from asynchronous signals, introduce siginfo_t::si_perf_flags and TRAP_PERF_FLAG_ASYNC (opted for flags in case more binary information is required in future). The resolution to the problem is then to (a) no longer force the signal (avoiding the terminations), but (b) tell user space via si_perf_flags if the signal was synchronous or not, so that such signals can be handled differently (e.g. let user space decide to ignore or consider the data imprecise). " - Unify/standardize the /sys/devices/cpu/events/* output format. - Misc fixes & cleanups. Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmKLuiURHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1ioSRAAgM3PneFHn5MFiuV/8ZfP3xMHNUOYOCgN JhALRcUhDdL4N9pS0DSImfXvAlYPJ/TZK8qBRNDsRgygp5vjrbr9zH2HdZBW1gyV qi3bpuNS+METnfNyumAoBeOYbMIvpm3NDUX+w68Xvkd1g8ykyno8Zc2H2hj3IDsW cK3ErP0CZLsnBZsymy29/bxCYhfxsED6J06hOa8R3Tvl4XYg/27Z+tEuZ4GYeFS8 VikulYB9RhRWUbhkzwjyRSbTWyvsuXP+xD28ymUIxXaNCDOwxK8uYtVepUFIBO8X cZgtwT2faV3y5ZAnz02M+/JZl+Jz5EPm037vNQp9aJsTuAbAGnxh/hL0cBVuDqhv Nh9wkqS8FqwAbtpvg/IeamzqN5z/Yn2Q/Jyk/4oWipmeddXWUL7sYVoSduTGJJkz cZz2ciNQbnOCzv0ZSjihrGMqPaT+/wI/iLW3ouLoZXpfTtVVRiiLuI1DDAZ1rd2r D6djV8JjHIs71V/6E9ahVATxq8yMdikd7u734rA5K3XSxIBTYrdshbOhddzgeE7d chQ7XvpQXDoFrZtxkHXP5iIeNF7fU9MWNWaEcsrZaWEB/8UpD6eL2if1Kl8mog+h J4+zR1LWRHh8TNRfos3yCP2PSbbS6LPVsYLJzP+bb+pxgqdJ+urxfmxoCtY5trNI zHT52xfdxSo= =UqYA -----END PGP SIGNATURE----- Merge tag 'perf-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf events updates from Ingo Molnar: "Platform PMU changes: - x86/intel: - Add new Intel Alder Lake and Raptor Lake support - x86/amd: - AMD Zen4 IBS extensions support - Add AMD PerfMonV2 support - Add AMD Fam19h Branch Sampling support Generic changes: - signal: Deliver SIGTRAP on perf event asynchronously if blocked Perf instrumentation can be driven via SIGTRAP, but this causes a problem when SIGTRAP is blocked by a task & terminate the task. Allow user-space to request these signals asynchronously (after they get unblocked) & also give the information to the signal handler when this happens: "To give user space the ability to clearly distinguish synchronous from asynchronous signals, introduce siginfo_t::si_perf_flags and TRAP_PERF_FLAG_ASYNC (opted for flags in case more binary information is required in future). The resolution to the problem is then to (a) no longer force the signal (avoiding the terminations), but (b) tell user space via si_perf_flags if the signal was synchronous or not, so that such signals can be handled differently (e.g. let user space decide to ignore or consider the data imprecise). " - Unify/standardize the /sys/devices/cpu/events/* output format. - Misc fixes & cleanups" * tag 'perf-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits) perf/x86/amd/core: Fix reloading events for SVM perf/x86/amd: Run AMD BRS code only on supported hw perf/x86/amd: Fix AMD BRS period adjustment perf/x86/amd: Remove unused variable 'hwc' perf/ibs: Fix comment perf/amd/ibs: Advertise zen4_ibs_extensions as pmu capability attribute perf/amd/ibs: Add support for L3 miss filtering perf/amd/ibs: Use ->is_visible callback for dynamic attributes perf/amd/ibs: Cascade pmu init functions' return value perf/x86/uncore: Add new Alder Lake and Raptor Lake support perf/x86/uncore: Clean up uncore_pci_ids[] perf/x86/cstate: Add new Alder Lake and Raptor Lake support perf/x86/msr: Add new Alder Lake and Raptor Lake support perf/x86: Add new Alder Lake and Raptor Lake support perf/amd/ibs: Use interrupt regs ip for stack unwinding perf/x86/amd/core: Add PerfMonV2 overflow handling perf/x86/amd/core: Add PerfMonV2 counter control perf/x86/amd/core: Detect available counters perf/x86/amd/core: Detect PerfMonV2 support x86/msr: Add PerfCntrGlobal* registers ... |