Add a cpufeature for GCS, allowing other code to conditionally support it
at runtime.
Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-12-222b78d87eee@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* for-next/poe: (31 commits)
arm64: pkeys: remove redundant WARN
kselftest/arm64: Add test case for POR_EL0 signal frame records
kselftest/arm64: parse POE_MAGIC in a signal frame
kselftest/arm64: add HWCAP test for FEAT_S1POE
selftests: mm: make protection_keys test work on arm64
selftests: mm: move fpregs printing
kselftest/arm64: move get_header()
arm64: add Permission Overlay Extension Kconfig
arm64: enable PKEY support for CPUs with S1POE
arm64: enable POE and PIE to coexist
arm64/ptrace: add support for FEAT_POE
arm64: add POE signal support
arm64: implement PKEYS support
arm64: add pte_access_permitted_no_overlay()
arm64: handle PKEY/POE faults
arm64: mask out POIndex when modifying a PTE
arm64: convert protection key into vm_flags and pgprot values
arm64: add POIndex defines
arm64: re-order MTE VM_ flags
arm64: enable the Permission Overlay Extension for EL0
...
This indicates if the system supports POE. This is a CPUCAP_BOOT_CPU_FEATURE
as the boot CPU will enable POE if it has it, so secondary CPUs must also
have this feature.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20240822151113.1479789-6-joey.gouly@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Armv9.4/8.9 PMU adds optional support for a fixed instruction counter
similar to the fixed cycle counter. Support for the feature is indicated
in the ID_AA64DFR1_EL1 register PMICNTR field. The counter is not
accessible in AArch32.
Existing userspace using direct counter access won't know how to handle
the fixed instruction counter, so we have to avoid using the counter
when user access is requested.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Rob Herring (Arm) <robh@kernel.org>
Tested-by: James Clark <james.clark@linaro.org>
Link: https://lore.kernel.org/r/20240731-arm-pmu-3-9-icntr-v3-7-280a8d7ff465@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
ARMV8_PMU_COUNTER_MASK is really a mask for the PMSELR_EL0.SEL register
field. Make that clear by adding a standard sysreg definition for the
register, and using it instead.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Rob Herring (Arm) <robh@kernel.org>
Tested-by: James Clark <james.clark@linaro.org>
Link: https://lore.kernel.org/r/20240731-arm-pmu-3-9-icntr-v3-4-280a8d7ff465@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
- Remove some redundant Kconfig conditionals
- Fix string output in ptrace selftest
- Fix fast GUP crashes in some page-table configurations
- Remove obsolete linker option when building the vDSO
- Fix some sysreg field definitions for the GIC
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmaiSAMQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNJ8PB/9lyDbJ+qTNwECGKtz+vOAbronZncJy4yzd
ElPRNeQ+B7QqrrYZM2TCrz6/ppeKXp0OurwNk9vKBqzrCfy/D6kKXWfcOYqeWlyI
C2NImLHZgC6pIRwF3GlJ/E0VDtf/wQsJoWk7ikVssPtyIWOufafaB53FRacc1vnf
bmEpcdXox+FsTG4q8YhBE6DZnqqQTnm7MvAt4wgskk6tTyKj/FuQmSk50ZW22oXb
G2UOZxhYZV7IIXlRaClsY/iv62pTfMYlqDAvZeH81aiol/vfYXVFSeca5Mca67Ji
P1o8HPd++hTw9WVyCrrbSGcZ/XNs96yTmahJWM+eneiV7OzKxj4v
=Mr4K
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
"The usual summary below, but the main fix is for the fast GUP lockless
page-table walk when we have a combination of compile-time and
run-time folding of the p4d and the pud respectively.
- Remove some redundant Kconfig conditionals
- Fix string output in ptrace selftest
- Fix fast GUP crashes in some page-table configurations
- Remove obsolete linker option when building the vDSO
- Fix some sysreg field definitions for the GIC"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: mm: Fix lockless walks with static and dynamic page-table folding
arm64/sysreg: Correct the values for GICv4.1
arm64/vdso: Remove --hash-style=sysv
kselftest: missing arg in ptrace.c
arm64/Kconfig: Remove redundant 'if HAVE_FUNCTION_GRAPH_TRACER'
arm64: remove redundant 'if HAVE_ARCH_KASAN' in Kconfig
Currently, sysreg has value as 0b0010 for the presence of GICv4.1 in
ID_PFR1_EL1 and ID_AA64PFR0_EL1, instead of 0b0011 as per ARM ARM.
Hence, correct them to reflect ARM ARM.
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20240718215532.616447-1-rananta@google.com
Signed-off-by: Will Deacon <will@kernel.org>
Change the asm/unistd.h header for arm64 to no longer include
asm-generic/unistd.h itself, but instead generate both the asm/unistd.h
contents and the list of entry points using the syscall.tbl scripts that
we use on most other architectures.
Once his is done for the remaining architectures, the generic unistd.h
header can be removed and the generated tbl file put in its place.
The Makefile changes are more complex than they should be, I need
a little help to improve those. Ideally this should be done in an
architecture-independent way as well.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
This is a straight conversion from the old asm/unistd32.h into the
format used by 32-bit arm and most other architectures, calling scripts
to generate the asm/unistd32.h header and a new asm/syscalls32.h headers.
I used a semi-automated text replacement method to do the conversion,
and then used 'vimdiff' to synchronize the whitespace and the (unused)
names of the non-compat syscalls with the arm version.
There are two differences between the generated syscalls names and the
old version:
- the old asm/unistd32.h contained only a __NR_sync_file_range2
entry, while the arm32 version also defines
__NR_arm_sync_file_range with the same number. I added this
duplicate back in asm/unistd32.h.
- __NR__sysctl was removed from the arm64 file a while ago, but
all the tables still contain it. This should probably get removed
everywhere but I added it here for consistency.
On top of that, the arm64 version does not contain any references to
the 32-bit OABI syscalls that are not supported by arm64. If we ever
want to share the file between arm32 and arm64, it would not be
hard to add support for both in one file.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cortex-X4 and Neoverse-V3 suffer from errata whereby an MSR to the SSBS
special-purpose register does not affect subsequent speculative
instructions, permitting speculative store bypassing for a window of
time. This is described in their Software Developer Errata Notice (SDEN)
documents:
* Cortex-X4 SDEN v8.0, erratum 3194386:
https://developer.arm.com/documentation/SDEN-2432808/0800/
* Neoverse-V3 SDEN v6.0, erratum 3312417:
https://developer.arm.com/documentation/SDEN-2891958/0600/
To workaround these errata, it is necessary to place a speculation
barrier (SB) after MSR to the SSBS special-purpose register. This patch
adds the requisite SB after writes to SSBS within the kernel, and hides
the presence of SSBS from EL0 such that userspace software which cares
about SSBS will manipulate this via prctl(PR_GET_SPECULATION_CTRL, ...).
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20240508081400.235362-5-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
* Changes to FPU handling came in via the main s390 pull request
* Only deliver to the guest the SCLP events that userspace has
requested.
* More virtual vs physical address fixes (only a cleanup since
virtual and physical address spaces are currently the same).
* Fix selftests undefined behavior.
x86:
* Fix a restriction that the guest can't program a PMU event whose
encoding matches an architectural event that isn't included in the
guest CPUID. The enumeration of an architectural event only says
that if a CPU supports an architectural event, then the event can be
programmed *using the architectural encoding*. The enumeration does
NOT say anything about the encoding when the CPU doesn't report support
the event *in general*. It might support it, and it might support it
using the same encoding that made it into the architectural PMU spec.
* Fix a variety of bugs in KVM's emulation of RDPMC (more details on
individual commits) and add a selftest to verify KVM correctly emulates
RDMPC, counter availability, and a variety of other PMC-related
behaviors that depend on guest CPUID and therefore are easier to
validate with selftests than with custom guests (aka kvm-unit-tests).
* Zero out PMU state on AMD if the virtual PMU is disabled, it does not
cause any bug but it wastes time in various cases where KVM would check
if a PMC event needs to be synthesized.
* Optimize triggering of emulated events, with a nice ~10% performance
improvement in VM-Exit microbenchmarks when a vPMU is exposed to the
guest.
* Tighten the check for "PMI in guest" to reduce false positives if an NMI
arrives in the host while KVM is handling an IRQ VM-Exit.
* Fix a bug where KVM would report stale/bogus exit qualification information
when exiting to userspace with an internal error exit code.
* Add a VMX flag in /proc/cpuinfo to report 5-level EPT support.
* Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for
read, e.g. to avoid serializing vCPUs when userspace deletes a memslot.
* Tear down TDP MMU page tables at 4KiB granularity (used to be 1GiB). KVM
doesn't support yielding in the middle of processing a zap, and 1GiB
granularity resulted in multi-millisecond lags that are quite impolite
for CONFIG_PREEMPT kernels.
* Allocate write-tracking metadata on-demand to avoid the memory overhead when
a kernel is built with i915 virtualization support but the workloads use
neither shadow paging nor i915 virtualization.
* Explicitly initialize a variety of on-stack variables in the emulator that
triggered KMSAN false positives.
* Fix the debugregs ABI for 32-bit KVM.
* Rework the "force immediate exit" code so that vendor code ultimately decides
how and when to force the exit, which allowed some optimization for both
Intel and AMD.
* Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if
vCPU creation ultimately failed, causing extra unnecessary work.
* Cleanup the logic for checking if the currently loaded vCPU is in-kernel.
* Harden against underflowing the active mmu_notifier invalidation
count, so that "bad" invalidations (usually due to bugs elsehwere in the
kernel) are detected earlier and are less likely to hang the kernel.
x86 Xen emulation:
* Overlay pages can now be cached based on host virtual address,
instead of guest physical addresses. This removes the need to
reconfigure and invalidate the cache if the guest changes the
gpa but the underlying host virtual address remains the same.
* When possible, use a single host TSC value when computing the deadline for
Xen timers in order to improve the accuracy of the timer emulation.
* Inject pending upcall events when the vCPU software-enables its APIC to fix
a bug where an upcall can be lost (and to follow Xen's behavior).
* Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen
events fails, e.g. if the guest has aliased xAPIC IDs.
RISC-V:
* Support exception and interrupt handling in selftests
* New self test for RISC-V architectural timer (Sstc extension)
* New extension support (Ztso, Zacas)
* Support userspace emulation of random number seed CSRs.
ARM:
* Infrastructure for building KVM's trap configuration based on the
architectural features (or lack thereof) advertised in the VM's ID
registers
* Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
x86's WC) at stage-2, improving the performance of interacting with
assigned devices that can tolerate it
* Conversion of KVM's representation of LPIs to an xarray, utilized to
address serialization some of the serialization on the LPI injection
path
* Support for _architectural_ VHE-only systems, advertised through the
absence of FEAT_E2H0 in the CPU's ID register
* Miscellaneous cleanups, fixes, and spelling corrections to KVM and
selftests
LoongArch:
* Set reserved bits as zero in CPUCFG.
* Start SW timer only when vcpu is blocking.
* Do not restart SW timer when it is expired.
* Remove unnecessary CSR register saving during enter guest.
* Misc cleanups and fixes as usual.
Generic:
* cleanup Kconfig by removing CONFIG_HAVE_KVM, which was basically always
true on all architectures except MIPS (where Kconfig determines the
available depending on CPU capabilities). It is replaced either by
an architecture-dependent symbol for MIPS, and IS_ENABLED(CONFIG_KVM)
everywhere else.
* Factor common "select" statements in common code instead of requiring
each architecture to specify it
* Remove thoroughly obsolete APIs from the uapi headers.
* Move architecture-dependent stuff to uapi/asm/kvm.h
* Always flush the async page fault workqueue when a work item is being
removed, especially during vCPU destruction, to ensure that there are no
workers running in KVM code when all references to KVM-the-module are gone,
i.e. to prevent a very unlikely use-after-free if kvm.ko is unloaded.
* Grab a reference to the VM's mm_struct in the async #PF worker itself instead
of gifting the worker a reference, so that there's no need to remember
to *conditionally* clean up after the worker.
Selftests:
* Reduce boilerplate especially when utilize selftest TAP infrastructure.
* Add basic smoke tests for SEV and SEV-ES, along with a pile of library
support for handling private/encrypted/protected memory.
* Fix benign bugs where tests neglect to close() guest_memfd files.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmX0iP8UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroND7wf+JZoNvwZ+bmwWe/4jn/YwNoYi/C5z
eypn8M1gsWEccpCpqPBwznVm9T29rF4uOlcMvqLEkHfTpaL1EKUUjP1lXPz/ileP
6a2RdOGxAhyTiFC9fjy+wkkjtLbn1kZf6YsS0hjphP9+w0chNbdn0w81dFVnXryd
j7XYI8R/bFAthNsJOuZXSEjCfIHxvTTG74OrTf1B1FEBB+arPmrgUeJftMVhffQK
Sowgg8L/Ii/x6fgV5NZQVSIyVf1rp8z7c6UaHT4Fwb0+RAMW8p9pYv9Qp1YkKp8y
5j0V9UzOHP7FRaYimZ5BtwQoqiZXYylQ+VuU/Y2f4X85cvlLzSqxaEMAPA==
=mqOV
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"S390:
- Changes to FPU handling came in via the main s390 pull request
- Only deliver to the guest the SCLP events that userspace has
requested
- More virtual vs physical address fixes (only a cleanup since
virtual and physical address spaces are currently the same)
- Fix selftests undefined behavior
x86:
- Fix a restriction that the guest can't program a PMU event whose
encoding matches an architectural event that isn't included in the
guest CPUID. The enumeration of an architectural event only says
that if a CPU supports an architectural event, then the event can
be programmed *using the architectural encoding*. The enumeration
does NOT say anything about the encoding when the CPU doesn't
report support the event *in general*. It might support it, and it
might support it using the same encoding that made it into the
architectural PMU spec
- Fix a variety of bugs in KVM's emulation of RDPMC (more details on
individual commits) and add a selftest to verify KVM correctly
emulates RDMPC, counter availability, and a variety of other
PMC-related behaviors that depend on guest CPUID and therefore are
easier to validate with selftests than with custom guests (aka
kvm-unit-tests)
- Zero out PMU state on AMD if the virtual PMU is disabled, it does
not cause any bug but it wastes time in various cases where KVM
would check if a PMC event needs to be synthesized
- Optimize triggering of emulated events, with a nice ~10%
performance improvement in VM-Exit microbenchmarks when a vPMU is
exposed to the guest
- Tighten the check for "PMI in guest" to reduce false positives if
an NMI arrives in the host while KVM is handling an IRQ VM-Exit
- Fix a bug where KVM would report stale/bogus exit qualification
information when exiting to userspace with an internal error exit
code
- Add a VMX flag in /proc/cpuinfo to report 5-level EPT support
- Rework TDP MMU root unload, free, and alloc to run with mmu_lock
held for read, e.g. to avoid serializing vCPUs when userspace
deletes a memslot
- Tear down TDP MMU page tables at 4KiB granularity (used to be
1GiB). KVM doesn't support yielding in the middle of processing a
zap, and 1GiB granularity resulted in multi-millisecond lags that
are quite impolite for CONFIG_PREEMPT kernels
- Allocate write-tracking metadata on-demand to avoid the memory
overhead when a kernel is built with i915 virtualization support
but the workloads use neither shadow paging nor i915 virtualization
- Explicitly initialize a variety of on-stack variables in the
emulator that triggered KMSAN false positives
- Fix the debugregs ABI for 32-bit KVM
- Rework the "force immediate exit" code so that vendor code
ultimately decides how and when to force the exit, which allowed
some optimization for both Intel and AMD
- Fix a long-standing bug where kvm_has_noapic_vcpu could be left
elevated if vCPU creation ultimately failed, causing extra
unnecessary work
- Cleanup the logic for checking if the currently loaded vCPU is
in-kernel
- Harden against underflowing the active mmu_notifier invalidation
count, so that "bad" invalidations (usually due to bugs elsehwere
in the kernel) are detected earlier and are less likely to hang the
kernel
x86 Xen emulation:
- Overlay pages can now be cached based on host virtual address,
instead of guest physical addresses. This removes the need to
reconfigure and invalidate the cache if the guest changes the gpa
but the underlying host virtual address remains the same
- When possible, use a single host TSC value when computing the
deadline for Xen timers in order to improve the accuracy of the
timer emulation
- Inject pending upcall events when the vCPU software-enables its
APIC to fix a bug where an upcall can be lost (and to follow Xen's
behavior)
- Fall back to the slow path instead of warning if "fast" IRQ
delivery of Xen events fails, e.g. if the guest has aliased xAPIC
IDs
RISC-V:
- Support exception and interrupt handling in selftests
- New self test for RISC-V architectural timer (Sstc extension)
- New extension support (Ztso, Zacas)
- Support userspace emulation of random number seed CSRs
ARM:
- Infrastructure for building KVM's trap configuration based on the
architectural features (or lack thereof) advertised in the VM's ID
registers
- Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
x86's WC) at stage-2, improving the performance of interacting with
assigned devices that can tolerate it
- Conversion of KVM's representation of LPIs to an xarray, utilized
to address serialization some of the serialization on the LPI
injection path
- Support for _architectural_ VHE-only systems, advertised through
the absence of FEAT_E2H0 in the CPU's ID register
- Miscellaneous cleanups, fixes, and spelling corrections to KVM and
selftests
LoongArch:
- Set reserved bits as zero in CPUCFG
- Start SW timer only when vcpu is blocking
- Do not restart SW timer when it is expired
- Remove unnecessary CSR register saving during enter guest
- Misc cleanups and fixes as usual
Generic:
- Clean up Kconfig by removing CONFIG_HAVE_KVM, which was basically
always true on all architectures except MIPS (where Kconfig
determines the available depending on CPU capabilities). It is
replaced either by an architecture-dependent symbol for MIPS, and
IS_ENABLED(CONFIG_KVM) everywhere else
- Factor common "select" statements in common code instead of
requiring each architecture to specify it
- Remove thoroughly obsolete APIs from the uapi headers
- Move architecture-dependent stuff to uapi/asm/kvm.h
- Always flush the async page fault workqueue when a work item is
being removed, especially during vCPU destruction, to ensure that
there are no workers running in KVM code when all references to
KVM-the-module are gone, i.e. to prevent a very unlikely
use-after-free if kvm.ko is unloaded
- Grab a reference to the VM's mm_struct in the async #PF worker
itself instead of gifting the worker a reference, so that there's
no need to remember to *conditionally* clean up after the worker
Selftests:
- Reduce boilerplate especially when utilize selftest TAP
infrastructure
- Add basic smoke tests for SEV and SEV-ES, along with a pile of
library support for handling private/encrypted/protected memory
- Fix benign bugs where tests neglect to close() guest_memfd files"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
selftests: kvm: remove meaningless assignments in Makefiles
KVM: riscv: selftests: Add Zacas extension to get-reg-list test
RISC-V: KVM: Allow Zacas extension for Guest/VM
KVM: riscv: selftests: Add Ztso extension to get-reg-list test
RISC-V: KVM: Allow Ztso extension for Guest/VM
RISC-V: KVM: Forward SEED CSR access to user space
KVM: riscv: selftests: Add sstc timer test
KVM: riscv: selftests: Change vcpu_has_ext to a common function
KVM: riscv: selftests: Add guest helper to get vcpu id
KVM: riscv: selftests: Add exception handling support
LoongArch: KVM: Remove unnecessary CSR register saving during enter guest
LoongArch: KVM: Do not restart SW timer when it is expired
LoongArch: KVM: Start SW timer only when vcpu is blocking
LoongArch: KVM: Set reserved bits as zero in CPUCFG
KVM: selftests: Explicitly close guest_memfd files in some gmem tests
KVM: x86/xen: fix recursive deadlock in timer injection
KVM: pfncache: simplify locking and make more self-contained
KVM: x86/xen: remove WARN_ON_ONCE() with false positives in evtchn delivery
KVM: x86/xen: inject vCPU upcall vector when local APIC is enabled
KVM: x86/xen: improve accuracy of Xen timers
...
* for-next/stage1-lpa2: (48 commits)
: Add support for LPA2 and WXN and stage 1
arm64/mm: Avoid ID mapping of kpti flag if it is no longer needed
arm64/mm: Use generic __pud_free() helper in pud_free() implementation
arm64: gitignore: ignore relacheck
arm64: Use Signed/Unsigned enums for TGRAN{4,16,64} and VARange
arm64: mm: Make PUD folding check in set_pud() a runtime check
arm64: mm: add support for WXN memory translation attribute
mm: add arch hook to validate mmap() prot flags
arm64: defconfig: Enable LPA2 support
arm64: Enable 52-bit virtual addressing for 4k and 16k granule configs
arm64: kvm: avoid CONFIG_PGTABLE_LEVELS for runtime levels
arm64: ptdump: Deal with translation levels folded at runtime
arm64: ptdump: Disregard unaddressable VA space
arm64: mm: Add support for folding PUDs at runtime
arm64: kasan: Reduce minimum shadow alignment and enable 5 level paging
arm64: mm: Add 5 level paging support to fixmap and swapper handling
arm64: Enable LPA2 at boot if supported by the system
arm64: mm: add LPA2 and 5 level paging support to G-to-nG conversion
arm64: mm: Add definitions to support 5 levels of paging
arm64: mm: Add LPA2 support to phys<->pte conversion routines
arm64: mm: Wire up TCR.DS bit to PTE shareability fields
...
* arm64/for-next/perf: (39 commits)
docs: perf: Fix build warning of hisi-pcie-pmu.rst
perf: starfive: Only allow COMPILE_TEST for 64-bit architectures
MAINTAINERS: Add entry for StarFive StarLink PMU
docs: perf: Add description for StarFive's StarLink PMU
dt-bindings: perf: starfive: Add JH8100 StarLink PMU
perf: starfive: Add StarLink PMU support
docs: perf: Update usage for target filter of hisi-pcie-pmu
drivers/perf: hisi_pcie: Merge find_related_event() and get_event_idx()
drivers/perf: hisi_pcie: Relax the check on related events
drivers/perf: hisi_pcie: Check the target filter properly
drivers/perf: hisi_pcie: Add more events for counting TLP bandwidth
drivers/perf: hisi_pcie: Fix incorrect counting under metric mode
drivers/perf: hisi_pcie: Introduce hisi_pcie_pmu_get_event_ctrl_val()
drivers/perf: hisi_pcie: Rename hisi_pcie_pmu_{config,clear}_filter()
drivers/perf: hisi: Enable HiSilicon Erratum 162700402 quirk for HIP09
perf/arm_cspmu: Add devicetree support
dt-bindings/perf: Add Arm CoreSight PMU
perf/arm_cspmu: Simplify counter reset
perf/arm_cspmu: Simplify attribute groups
perf/arm_cspmu: Simplify initialisation
...
* for-next/reorg-va-space:
: Reorganise the arm64 kernel VA space in preparation for LPA2 support
: (52-bit VA/PA).
arm64: kaslr: Adjust randomization range dynamically
arm64: mm: Reclaim unused vmemmap region for vmalloc use
arm64: vmemmap: Avoid base2 order of struct page size to dimension region
arm64: ptdump: Discover start of vmemmap region at runtime
arm64: ptdump: Allow all region boundaries to be defined at boot time
arm64: mm: Move fixmap region above vmemmap region
arm64: mm: Move PCI I/O emulation region above the vmemmap region
* for-next/rust-for-arm64:
: Enable Rust support for arm64
arm64: rust: Enable Rust support for AArch64
rust: Refactor the build target to allow the use of builtin targets
* for-next/misc:
: Miscellaneous arm64 patches
ARM64: Dynamically allocate cpumasks and increase supported CPUs to 512
arm64: Remove enable_daif macro
arm64/hw_breakpoint: Directly use ESR_ELx_WNR for an watchpoint exception
arm64: cpufeatures: Clean up temporary variable to simplify code
arm64: Update setup_arch() comment on interrupt masking
arm64: remove unnecessary ifdefs around is_compat_task()
arm64: ftrace: Don't forbid CALL_OPS+CC_OPTIMIZE_FOR_SIZE with Clang
arm64/sme: Ensure that all fields in SMCR_EL1 are set to known values
arm64/sve: Ensure that all fields in ZCR_EL1 are set to known values
arm64/sve: Document that __SVE_VQ_MAX is much larger than needed
arm64: make member of struct pt_regs and it's offset macro in the same order
arm64: remove unneeded BUILD_BUG_ON assertion
arm64: kretprobes: acquire the regs via a BRK exception
arm64: io: permit offset addressing
arm64: errata: Don't enable workarounds for "rare" errata by default
* for-next/daif-cleanup:
: Clean up DAIF handling for EL0 returns
arm64: Unmask Debug + SError in do_notify_resume()
arm64: Move do_notify_resume() to entry-common.c
arm64: Simplify do_notify_resume() DAIF masking
* for-next/kselftest:
: Miscellaneous arm64 kselftest patches
kselftest/arm64: Test that ptrace takes effect in the target process
* for-next/documentation:
: arm64 documentation patches
arm64/sme: Remove spurious 'is' in SME documentation
arm64/fp: Clarify effect of setting an unsupported system VL
arm64/sme: Fix cut'n'paste in ABI document
arm64/sve: Remove bitrotted comment about syscall behaviour
* for-next/sysreg:
: sysreg updates
arm64/sysreg: Update ID_AA64DFR0_EL1 register
arm64/sysreg: Update ID_DFR0_EL1 register fields
arm64/sysreg: Add register fields for ID_AA64DFR1_EL1
* for-next/dpisa:
: Support for 2023 dpISA extensions
kselftest/arm64: Add 2023 DPISA hwcap test coverage
kselftest/arm64: Add basic FPMR test
kselftest/arm64: Handle FPMR context in generic signal frame parser
arm64/hwcap: Define hwcaps for 2023 DPISA features
arm64/ptrace: Expose FPMR via ptrace
arm64/signal: Add FPMR signal handling
arm64/fpsimd: Support FEAT_FPMR
arm64/fpsimd: Enable host kernel access to FPMR
arm64/cpufeature: Hook new identification registers up to cpufeature
FEAT_FPMR defines a new EL0 accessible register FPMR use to configure the
FP8 related features added to the architecture at the same time. Detect
support for this register and context switch it for EL0 when present.
Due to the sharing of responsibility for saving floating point state
between the host kernel and KVM FP8 support is not yet implemented in KVM
and a stub similar to that used for SVCR is provided for FPMR in order to
avoid bisection issues. To make it easier to share host state with the
hypervisor we store FPMR as a hardened usercopy field in uw (along with
some padding).
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20240306-arm64-2023-dpisa-v5-3-c568edc8ed7f@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Despite having the control bits for FEAT_SPECRES and FEAT_PACM,
the ID registers fields are either incomplete or missing.
Fix it.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20240214131827.2856277-2-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Open-coding the feature matching parameters for LVA/LVA2 leads to
issues with upcoming changes to the cpufeature code.
By making TGRAN{4,16,64} and VARange signed/unsigned as per the
architecture, we can use the existing macros, making the feature
match robust against those changes.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently, we detect CPU support for 52-bit virtual addressing (LVA)
extremely early, before creating the kernel page tables or enabling the
MMU. We cannot override the feature this early, and so large virtual
addressing is always enabled on CPUs that implement support for it if
the software support for it was enabled at build time. It also means we
rely on non-trivial code in asm to deal with this feature.
Given that both the ID map and the TTBR1 mapping of the kernel image are
guaranteed to be 48-bit addressable, it is not actually necessary to
enable support this early, and instead, we can model it as a CPU
feature. That way, we can rely on code patching to get the correct
TCR.T1SZ values programmed on secondary boot and resume from suspend.
On the primary boot path, we simply enable the MMU with 48-bit virtual
addressing initially, and update TCR.T1SZ if LVA is supported from C
code, right before creating the kernel mapping. Given that TTBR1 still
points to reserved_pg_dir at this point, updating TCR.T1SZ should be
safe without the need for explicit TLB maintenance.
Since this gets rid of all accesses to the vabits_actual variable from
asm code that occurred before TCR.T1SZ had been programmed, we no longer
have a need for this variable, and we can replace it with a C expression
that produces the correct value directly, based on the value of TCR.T1SZ.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-70-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
A variant of FEAT_E2H0 not being implemented exists in the form of
HCR_EL2.E2H being RES1 *and* HCR_EL2.NV1 being RES0 (indicating that
only VHE is supported on the host and nested guests).
Add the necessary infrastructure for this new CPU capability.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20240122181344.258974-7-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
ARMv9.5 has infroduced ID_AA64MMFR4_EL1 with a bunch of new features.
Add the corresponding layout.
This is extracted from the public ARM SysReg_xml_A_profile-2023-09
delivery, timestamped d55f5af8e09052abe92a02adf820deea2eaed717.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Miguel Luis <miguel.luis@oracle.com>
Link: https://lore.kernel.org/r/20240122181344.258974-5-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* for-next/sysregs:
arm64/sysreg: Add missing system instruction definitions for FGT
arm64/sysreg: Add missing system register definitions for FGT
arm64/sysreg: Add missing ExtTrcBuff field definition to ID_AA64DFR0_EL1
arm64/sysreg: Add missing Pauth_LR field definitions to ID_AA64ISAR1_EL1
arm64/sysreg: Add new system registers for GCS
arm64/sysreg: Add definition for FPMR
arm64/sysreg: Update HCRX_EL2 definition for DDI0601 2023-09
arm64/sysreg: Update SCTLR_EL1 for DDI0601 2023-09
arm64/sysreg: Update ID_AA64SMFR0_EL1 definition for DDI0601 2023-09
arm64/sysreg: Add definition for ID_AA64FPFR0_EL1
arm64/sysreg: Add definition for ID_AA64ISAR3_EL1
arm64/sysreg: Update ID_AA64ISAR2_EL1 defintion for DDI0601 2023-09
arm64/sysreg: Add definition for ID_AA64PFR2_EL1
arm64/sysreg: update CPACR_EL1 register
arm64/sysreg: add system register POR_EL{0,1}
arm64/sysreg: Add definition for HAFGRTR_EL2
arm64/sysreg: Update HFGITR_EL2 definiton to DDI0601 2023-09
* for-next/lpa2-prep:
arm64: mm: get rid of kimage_vaddr global variable
arm64: mm: Take potential load offset into account when KASLR is off
arm64: kernel: Disable latent_entropy GCC plugin in early C runtime
arm64: Add ARM64_HAS_LPA2 CPU capability
arm64/mm: Add FEAT_LPA2 specific ID_AA64MMFR0.TGRAN[2]
arm64/mm: Update tlb invalidation routines for FEAT_LPA2
arm64/mm: Add lpa2_is_enabled() kvm_lpa2_is_enabled() stubs
arm64/mm: Modify range-based tlbi to decrement scale
Add the definitions of missing system registers that are
trappable by fine grain traps. The definitions are based on
DDI0601 2023-09.
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20231214100158.2305400-4-tabba@google.com
Signed-off-by: Will Deacon <will@kernel.org>
Add the ExtTrcBuff field definitions to ID_AA64DFR0_EL1 from
DDI0601 2023-09.
This field isn't used yet. Adding it for completeness and because
it will be used in future patches.
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20231214100158.2305400-3-tabba@google.com
Signed-off-by: Will Deacon <will@kernel.org>
Add the Pauth_LR field definitions to ID_AA64ISAR1_EL1, based on
DDI0601 2023-09.
These fields aren't used yet. Adding them for completeness and
consistency (definition already exists for ID_AA64ISAR2_EL1).
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20231214100158.2305400-2-tabba@google.com
Signed-off-by: Will Deacon <will@kernel.org>
DDI0601 2023-09 defines a new sysrem register FPMR (Floating Point Mode
Register) which configures the new FP8 features. Add a definition of this
register.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-12-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
DDI0601 2023-09 defines new fields in HCRX_EL2 controlling access to new
system registers, update our definition of HCRX_EL2 to reflect this.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-11-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
DDI0601 2023-09 defines some new fields in SCTLR_EL1 controlling new MTE
and floating point features. Update our sysreg definition to reflect these.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-10-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
DDI0601 2023-09 defines a new feature register ID_AA64FPFR0_EL1 which
enumerates a number of FP8 related features. Add a definition for it.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-8-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
DDI0601 2023-09 adds a new system register ID_AA64ISAR3_EL1 enumerating
new floating point and TLB invalidation features. Add a defintion for it.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-7-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
DDI0601 2023-09 defines some new fields in previously RES0 space in
ID_AA64ISAR2_EL1, together with one new enum value. Update the system
register definition to reflect this.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-6-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
DDI0601 2023-09 defines a new system register ID_AA64PFR2_EL1 which
enumerates FPMR and some new MTE features. Add a definition of this
register.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-5-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Add E0POE bit that traps accesses to POR_EL0 from EL0.
Updated according to DDI0601 2023-03.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-4-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Add POR_EL{0,1} according to DDI0601 2023-03.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-3-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
The 2023-09 release of the architecture XML (DDI0601) adds a new field
ATS1E1A to HFGITR_EL2, update our definition of the register to match.
This was extracted from Faud Tabba's patch "KVM: arm64: Add latest
HFGITR_EL2 FGT entries to nested virt"
[Extracted the sysreg definition from Faud's original patch and reword
subject to match -- broonie]
Signed-off-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231206100503.564090-4-tabba@google.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-1-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Back in 2016, it was argued that implementations lacking a HW
prefetcher could be helped by sprinkling a number of PRFM
instructions in strategic locations.
In 2023, the one platform that presumably needed this hack is no
longer in active use (let alone maintained), and an quick
experiment shows dropping this hack only leads to a 0.4% drop
on a full kernel compilation (tested on a MT30-GS0 48 CPU system).
Given that this is pretty much in the noise department and that
it may give odd ideas to other implementers, drop the hack for
good.
Suggested-by: Will Deacon <will@kernel.org>
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20231122133754.1240687-1-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
We now have *two* values for CTR_EL0.L1Ip that are reserved.
Which makes things a bit awkward. In order to lift the ambiguity,
rename RESERVED (0b01) to RESERVED_AIVIVT, and VPIPT (0b00) to
RESERVED_VPIPT.
This makes it clear which of these meant what, and I'm sure
archeologists will find it useful...
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20231204143606.1806432-4-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Expose FEAT_LPA2 as a capability so that we can take advantage of
alternatives patching in the hypervisor.
Although FEAT_LPA2 presence is advertised separately for stage1 and
stage2, the expectation is that in practice both stages will either
support or not support it. Therefore, we combine both into a single
capability, allowing us to simplify the implementation. KVM requires
support in both stages in order to use LPA2 since the same library is
used for hyp stage 1 and guest stage 2 pgtables.
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231127111737.1897081-6-ryan.roberts@arm.com
* Major refactoring of the CPU capability detection logic resulting in
the removal of the cpus_have_const_cap() function and migrating the
code to "alternative" branches where possible
* Backtrace/kgdb: use IPIs and pseudo-NMI
* Perf and PMU:
- Add support for Ampere SoC PMUs
- Multi-DTC improvements for larger CMN configurations with multiple
Debug & Trace Controllers
- Rework the Arm CoreSight PMU driver to allow separate registration of
vendor backend modules
- Fixes: add missing MODULE_DEVICE_TABLE to the amlogic perf
driver; use device_get_match_data() in the xgene driver; fix NULL
pointer dereference in the hisi driver caused by calling
cpuhp_state_remove_instance(); use-after-free in the hisi driver
* HWCAP updates:
- FEAT_SVE_B16B16 (BFloat16)
- FEAT_LRCPC3 (release consistency model)
- FEAT_LSE128 (128-bit atomic instructions)
* SVE: remove a couple of pseudo registers from the cpufeature code.
There is logic in place already to detect mismatched SVE features
* Miscellaneous:
- Reduce the default swiotlb size (currently 64MB) if no ZONE_DMA
bouncing is needed. The buffer is still required for small kmalloc()
buffers
- Fix module PLT counting with !RANDOMIZE_BASE
- Restrict CPU_BIG_ENDIAN to LLVM IAS 15.x or newer move
synchronisation code out of the set_ptes() loop
- More compact cpufeature displaying enabled cores
- Kselftest updates for the new CPU features
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmU7/QUACgkQa9axLQDI
XvEx3xAAjICmHm+ryKJxS1IGXLYu2DXMcHUjeW6w1SxkK/vKhTMlHRx/CIWDze2l
eENu7TcDLtTw+Gv9kqg30TSwzLfJhP9oFpX2T5TKkh5qlJlbz8fBtm+as14DTLCZ
p2sra3J0w4B5JwTVqnj2RHOlEftMKvbyLGRkz3ve6wIUbsp5pXMkxAd/k3wOf0lC
m6d9w1OMA2sOsw9YCgjcCNQGEzFMJk+13w7K+4w6A8Djn/Jxkt4fAFVn2ZlCiZzD
NA2lTDWJqGmeGHo3iFdCTensWXmWTqjzxsNEf7PyBk5mBOdzDVxlTfEL7vnJg7gf
BlTQ/nhIpra7rHQ9q2rwqEzbF+4Tn3uWlQfdDb7+/4goPjDh7tlBhEOYyOwTCEIT
0t9cCSvBmSCKeXC3lKWWtJ+QJKhZHSmXN84EotTs65KyyfIsi4RuSezvV/+aIL86
06sHYlYxETuujZP1cgOjf69Wsdsgizx0mqXJXf/xOjp22HFDcL4Bki6Rgi6t5OZj
GEHG15kSE+eJ+RIpxpuAN8fdrlxYubsVLIksCqK7cZf9zXbQGIlifKAIrYiEx6kz
FD+o+j/5niRWR6yJZCtCcGxqpSlwnYWPqc1Ds0GES8A/BphWMPozXUAZ0ll4Fnp1
yyR2/Due/eBsCNESn579kP8989rashubB8vxvdx2fcWVtLC7VgE=
=QaEo
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"No major architecture features this time around, just some new HWCAP
definitions, support for the Ampere SoC PMUs and a few fixes/cleanups.
The bulk of the changes is reworking of the CPU capability checking
code (cpus_have_cap() etc).
- Major refactoring of the CPU capability detection logic resulting
in the removal of the cpus_have_const_cap() function and migrating
the code to "alternative" branches where possible
- Backtrace/kgdb: use IPIs and pseudo-NMI
- Perf and PMU:
- Add support for Ampere SoC PMUs
- Multi-DTC improvements for larger CMN configurations with
multiple Debug & Trace Controllers
- Rework the Arm CoreSight PMU driver to allow separate
registration of vendor backend modules
- Fixes: add missing MODULE_DEVICE_TABLE to the amlogic perf
driver; use device_get_match_data() in the xgene driver; fix
NULL pointer dereference in the hisi driver caused by calling
cpuhp_state_remove_instance(); use-after-free in the hisi driver
- HWCAP updates:
- FEAT_SVE_B16B16 (BFloat16)
- FEAT_LRCPC3 (release consistency model)
- FEAT_LSE128 (128-bit atomic instructions)
- SVE: remove a couple of pseudo registers from the cpufeature code.
There is logic in place already to detect mismatched SVE features
- Miscellaneous:
- Reduce the default swiotlb size (currently 64MB) if no ZONE_DMA
bouncing is needed. The buffer is still required for small
kmalloc() buffers
- Fix module PLT counting with !RANDOMIZE_BASE
- Restrict CPU_BIG_ENDIAN to LLVM IAS 15.x or newer move
synchronisation code out of the set_ptes() loop
- More compact cpufeature displaying enabled cores
- Kselftest updates for the new CPU features"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (83 commits)
arm64: Restrict CPU_BIG_ENDIAN to GNU as or LLVM IAS 15.x or newer
arm64: module: Fix PLT counting when CONFIG_RANDOMIZE_BASE=n
arm64, irqchip/gic-v3, ACPI: Move MADT GICC enabled check into a helper
perf: hisi: Fix use-after-free when register pmu fails
drivers/perf: hisi_pcie: Initialize event->cpu only on success
drivers/perf: hisi_pcie: Check the type first in pmu::event_init()
arm64: cpufeature: Change DBM to display enabled cores
arm64: cpufeature: Display the set of cores with a feature
perf/arm-cmn: Enable per-DTC counter allocation
perf/arm-cmn: Rework DTC counters (again)
perf/arm-cmn: Fix DTC domain detection
drivers: perf: arm_pmuv3: Drop some unused arguments from armv8_pmu_init()
drivers: perf: arm_pmuv3: Read PMMIR_EL1 unconditionally
drivers/perf: hisi: use cpuhp_state_remove_instance_nocalls() for hisi_hns3_pmu uninit process
clocksource/drivers/arm_arch_timer: limit XGene-1 workaround
arm64: Remove system_uses_lse_atomics()
arm64: Mark the 'addr' argument to set_ptes() and __set_pte_at() as unused
drivers/perf: xgene: Use device_get_match_data()
perf/amlogic: add missing MODULE_DEVICE_TABLE
arm64/mm: Hoist synchronization out of set_ptes() loop
...
Currently we have a negative cpucap which describes the *absence* of
FP/SIMD rather than *presence* of FP/SIMD. This largely works, but is
somewhat awkward relative to other cpucaps that describe the presence of
a feature, and it would be nicer to have a cpucap which describes the
presence of FP/SIMD:
* This will allow the cpucap to be treated as a standard
ARM64_CPUCAP_SYSTEM_FEATURE, which can be detected with the standard
has_cpuid_feature() function and ARM64_CPUID_FIELDS() description.
* This ensures that the cpucap will only transition from not-present to
present, reducing the risk of unintentional and/or unsafe usage of
FP/SIMD before cpucaps are finalized.
* This will allow using arm64_cpu_capabilities::cpu_enable() to enable
the use of FP/SIMD later, with FP/SIMD being disabled at boot time
otherwise. This will ensure that any unintentional and/or unsafe usage
of FP/SIMD prior to this is trapped, and will ensure that FP/SIMD is
never unintentionally enabled for userspace in mismatched big.LITTLE
systems.
This patch replaces the negative ARM64_HAS_NO_FPSIMD cpucap with a
positive ARM64_HAS_FPSIMD cpucap, making changes as described above.
Note that as FP/SIMD will now be trapped when not supported system-wide,
do_fpsimd_acc() must handle these traps in the same way as for SVE and
SME. The commentary in fpsimd_restore_current_state() is updated to
describe the new scheme.
No users of system_supports_fpsimd() need to know that FP/SIMD is
available prior to alternatives being patched, so this is updated to
use alternative_has_cap_likely() to check for the ARM64_HAS_FPSIMD
cpucap, without generating code to test the system_cpucaps bitmap.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For clarity it would be nice to factor cpucap manipulation out of
<asm/cpufeature.h>, and the obvious place would be <asm/cpucap.h>, but
this will clash somewhat with <generated/asm/cpucaps.h>.
Rename <generated/asm/cpucaps.h> to <generated/asm/cpucap-defs.h>,
matching what we do for <generated/asm/sysreg-defs.h>, and introduce a
new <asm/cpucaps.h> which includes the generated header.
Subsequent patches will fill out <asm/cpucaps.h>.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
FEAT_LRCPC3 adds more instructions to support the Release Consistency model.
Add a HWCAP so that userspace can make decisions about instructions it can use.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230919162757.2707023-2-joey.gouly@arm.com
[catalin.marinas@arm.com: change the HWCAP number]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Implement the workaround for ARM Cortex-A520 erratum 2966298. On an
affected Cortex-A520 core, a speculatively executed unprivileged load
might leak data from a privileged load via a cache side channel. The
issue only exists for loads within a translation regime with the same
translation (e.g. same ASID and VMID). Therefore, the issue only affects
the return to EL0.
The workaround is to execute a TLBI before returning to EL0 after all
loads of privileged data. A non-shareable TLBI to any address is
sufficient.
The workaround isn't necessary if page table isolation (KPTI) is
enabled, but for simplicity it will be. Page table isolation should
normally be disabled for Cortex-A520 as it supports the CSV3 feature
and the E0PD feature (used when KASLR is enabled).
Cc: stable@vger.kernel.org
Signed-off-by: Rob Herring <robh@kernel.org>
Link: https://lore.kernel.org/r/20230921194156.1050055-2-robh@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
SVE 2.1 introduced a new feature FEAT_SVE_B16B16 which adds instructions
supporting the BFloat16 floating point format. Report this to userspace
through the ID registers and hwcap.
Reported-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230915-arm64-zfr-b16b16-el0-v1-1-f9aba807bdb5@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ClearBHB support is indicated by the CLRBHB field in ID_AA64ISAR2_EL1.
Following some refactoring the kernel incorrectly checks the BC field
instead. Fix the detection to use the right field.
(Note: The original ClearBHB support had it as FTR_HIGHER_SAFE, but this
patch uses FTR_LOWER_SAFE, which seems more correct.)
Also fix the detection of BC (hinted conditional branches) to use
FTR_LOWER_SAFE, so that it is not reported on mismatched systems.
Fixes: 356137e68a ("arm64/sysreg: Make BHB clear feature defines match the architecture")
Fixes: 8fcc8285c0 ("arm64/sysreg: Convert ID_AA64ISAR2_EL1 to automatic generation")
Cc: stable@vger.kernel.org
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230912133429.2606875-1-kristina.martsenko@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
In order to allow us to have shared code for managing fine grained traps
for KVM guests add it as a detected feature rather than relying on it
being a dependency of other features.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
[maz: converted to ARM64_CPUID_FIELDS()]
Link: https://lore.kernel.org/r/20230301-kvm-arm64-fgt-v4-1-1bf8d235ac1f@kernel.org
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Reviewed-by: Miguel Luis <miguel.luis@oracle.com>
Reviewed-by: Jing Zhang <jingzhangos@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230815183903.2735724-10-maz@kernel.org
As we're about to implement full support for FEAT_FGT, add the
full HDFGRTR_EL2 and HDFGWTR_EL2 layouts.
Reviewed-by: Mark Brown <broonie@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Miguel Luis <miguel.luis@oracle.com>
Reviewed-by: Jing Zhang <jingzhangos@google.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230815183903.2735724-9-maz@kernel.org
The HFGxTR_EL2 fields do not always follow the naming described
in the spec, nor do they match the name of the register they trap
in the rest of the kernel.
It is a bit sad that they were written by hand despite the availability
of a machine readable version...
Fixes: cc077e7fac ("arm64/sysreg: Convert HFG[RW]TR_EL2 to automatic generation")
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230703130416.1495307-1-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
* Eager page splitting optimization for dirty logging, optionally
allowing for a VM to avoid the cost of hugepage splitting in the stage-2
fault path.
* Arm FF-A proxy for pKVM, allowing a pKVM host to safely interact with
services that live in the Secure world. pKVM intervenes on FF-A calls
to guarantee the host doesn't misuse memory donated to the hyp or a
pKVM guest.
* Support for running the split hypervisor with VHE enabled, known as
'hVHE' mode. This is extremely useful for testing the split
hypervisor on VHE-only systems, and paves the way for new use cases
that depend on having two TTBRs available at EL2.
* Generalized framework for configurable ID registers from userspace.
KVM/arm64 currently prevents arbitrary CPU feature set configuration
from userspace, but the intent is to relax this limitation and allow
userspace to select a feature set consistent with the CPU.
* Enable the use of Branch Target Identification (FEAT_BTI) in the
hypervisor.
* Use a separate set of pointer authentication keys for the hypervisor
when running in protected mode, as the host is untrusted at runtime.
* Ensure timer IRQs are consistently released in the init failure
paths.
* Avoid trapping CTR_EL0 on systems with Enhanced Virtualization Traps
(FEAT_EVT), as it is a register commonly read from userspace.
* Erratum workaround for the upcoming AmpereOne part, which has broken
hardware A/D state management.
RISC-V:
* Redirect AMO load/store misaligned traps to KVM guest
* Trap-n-emulate AIA in-kernel irqchip for KVM guest
* Svnapot support for KVM Guest
s390:
* New uvdevice secret API
* CMM selftest and fixes
* fix racy access to target CPU for diag 9c
x86:
* Fix missing/incorrect #GP checks on ENCLS
* Use standard mmu_notifier hooks for handling APIC access page
* Drop now unnecessary TR/TSS load after VM-Exit on AMD
* Print more descriptive information about the status of SEV and SEV-ES during
module load
* Add a test for splitting and reconstituting hugepages during and after
dirty logging
* Add support for CPU pinning in demand paging test
* Add support for AMD PerfMonV2, with a variety of cleanups and minor fixes
included along the way
* Add a "nx_huge_pages=never" option to effectively avoid creating NX hugepage
recovery threads (because nx_huge_pages=off can be toggled at runtime)
* Move handling of PAT out of MTRR code and dedup SVM+VMX code
* Fix output of PIC poll command emulation when there's an interrupt
* Add a maintainer's handbook to document KVM x86 processes, preferred coding
style, testing expectations, etc.
* Misc cleanups, fixes and comments
Generic:
* Miscellaneous bugfixes and cleanups
Selftests:
* Generate dependency files so that partial rebuilds work as expected
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmSgHrIUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroORcAf+KkBlXwQMf+Q0Hy6Mfe0OtkKmh0Ae
6HJ6dsuMfOHhWv5kgukh+qvuGUGzHq+gpVKmZg2yP3h3cLHOLUAYMCDm+rjXyjsk
F4DbnJLfxq43Pe9PHRKFxxSecRcRYCNox0GD5UYL4PLKcH0FyfQrV+HVBK+GI8L3
FDzUcyJkR12Lcj1qf++7fsbzfOshL0AJPmidQCoc6wkLJpUEr/nYUqlI1Kx3YNuQ
LKmxFHS4l4/O/px3GKNDrLWDbrVlwciGIa3GZLS52PZdW3mAqT+cqcPcYK6SW71P
m1vE80VbNELX5q3YSRoOXtedoZ3Pk97LEmz/xQAsJ/jri0Z5Syk0Ok0m/Q==
=AMXp
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM64:
- Eager page splitting optimization for dirty logging, optionally
allowing for a VM to avoid the cost of hugepage splitting in the
stage-2 fault path.
- Arm FF-A proxy for pKVM, allowing a pKVM host to safely interact
with services that live in the Secure world. pKVM intervenes on
FF-A calls to guarantee the host doesn't misuse memory donated to
the hyp or a pKVM guest.
- Support for running the split hypervisor with VHE enabled, known as
'hVHE' mode. This is extremely useful for testing the split
hypervisor on VHE-only systems, and paves the way for new use cases
that depend on having two TTBRs available at EL2.
- Generalized framework for configurable ID registers from userspace.
KVM/arm64 currently prevents arbitrary CPU feature set
configuration from userspace, but the intent is to relax this
limitation and allow userspace to select a feature set consistent
with the CPU.
- Enable the use of Branch Target Identification (FEAT_BTI) in the
hypervisor.
- Use a separate set of pointer authentication keys for the
hypervisor when running in protected mode, as the host is untrusted
at runtime.
- Ensure timer IRQs are consistently released in the init failure
paths.
- Avoid trapping CTR_EL0 on systems with Enhanced Virtualization
Traps (FEAT_EVT), as it is a register commonly read from userspace.
- Erratum workaround for the upcoming AmpereOne part, which has
broken hardware A/D state management.
RISC-V:
- Redirect AMO load/store misaligned traps to KVM guest
- Trap-n-emulate AIA in-kernel irqchip for KVM guest
- Svnapot support for KVM Guest
s390:
- New uvdevice secret API
- CMM selftest and fixes
- fix racy access to target CPU for diag 9c
x86:
- Fix missing/incorrect #GP checks on ENCLS
- Use standard mmu_notifier hooks for handling APIC access page
- Drop now unnecessary TR/TSS load after VM-Exit on AMD
- Print more descriptive information about the status of SEV and
SEV-ES during module load
- Add a test for splitting and reconstituting hugepages during and
after dirty logging
- Add support for CPU pinning in demand paging test
- Add support for AMD PerfMonV2, with a variety of cleanups and minor
fixes included along the way
- Add a "nx_huge_pages=never" option to effectively avoid creating NX
hugepage recovery threads (because nx_huge_pages=off can be toggled
at runtime)
- Move handling of PAT out of MTRR code and dedup SVM+VMX code
- Fix output of PIC poll command emulation when there's an interrupt
- Add a maintainer's handbook to document KVM x86 processes,
preferred coding style, testing expectations, etc.
- Misc cleanups, fixes and comments
Generic:
- Miscellaneous bugfixes and cleanups
Selftests:
- Generate dependency files so that partial rebuilds work as
expected"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (153 commits)
Documentation/process: Add a maintainer handbook for KVM x86
Documentation/process: Add a label for the tip tree handbook's coding style
KVM: arm64: Fix misuse of KVM_ARM_VCPU_POWER_OFF bit index
RISC-V: KVM: Remove unneeded semicolon
RISC-V: KVM: Allow Svnapot extension for Guest/VM
riscv: kvm: define vcpu_sbi_ext_pmu in header
RISC-V: KVM: Expose IMSIC registers as attributes of AIA irqchip
RISC-V: KVM: Add in-kernel virtualization of AIA IMSIC
RISC-V: KVM: Expose APLIC registers as attributes of AIA irqchip
RISC-V: KVM: Add in-kernel emulation of AIA APLIC
RISC-V: KVM: Implement device interface for AIA irqchip
RISC-V: KVM: Skeletal in-kernel AIA irqchip support
RISC-V: KVM: Set kvm_riscv_aia_nr_hgei to zero
RISC-V: KVM: Add APLIC related defines
RISC-V: KVM: Add IMSIC related defines
RISC-V: KVM: Implement guest external interrupt line management
KVM: x86: Remove PRIx* definitions as they are solely for user space
s390/uv: Update query for secret-UVCs
s390/uv: replace scnprintf with sysfs_emit
s390/uvdevice: Add 'Lock Secret Store' UVC
...
* arm64/for-next/perf:
docs: perf: Fix warning from 'make htmldocs' in hisi-pmu.rst
docs: perf: Add new description for HiSilicon UC PMU
drivers/perf: hisi: Add support for HiSilicon UC PMU driver
drivers/perf: hisi: Add support for HiSilicon H60PA and PAv3 PMU driver
perf: arm_cspmu: Add missing MODULE_DEVICE_TABLE
perf/arm-cmn: Add sysfs identifier
perf/arm-cmn: Revamp model detection
perf/arm_dmc620: Add cpumask
dt-bindings: perf: fsl-imx-ddr: Add i.MX93 compatible
drivers/perf: imx_ddr: Add support for NXP i.MX9 SoC DDRC PMU driver
perf/arm_cspmu: Decouple APMT dependency
perf/arm_cspmu: Clean up ACPI dependency
ACPI/APMT: Don't register invalid resource
perf/arm_cspmu: Fix event attribute type
perf: arm_cspmu: Set irq affinitiy only if overflow interrupt is used
drivers/perf: hisi: Don't migrate perf to the CPU going to teardown
drivers/perf: apple_m1: Force 63bit counters for M2 CPUs
perf/arm-cmn: Fix DTC reset
perf: qcom_l2_pmu: Make l2_cache_pmu_probe_cluster() more robust
perf/arm-cci: Slightly optimize cci_pmu_sync_counters()
* for-next/kpti:
: Simplify KPTI trampoline exit code
arm64: entry: Simplify tramp_alias macro and tramp_exit routine
arm64: entry: Preserve/restore X29 even for compat tasks
* for-next/missing-proto-warn:
: Address -Wmissing-prototype warnings
arm64: add alt_cb_patch_nops prototype
arm64: move early_brk64 prototype to header
arm64: signal: include asm/exception.h
arm64: kaslr: add kaslr_early_init() declaration
arm64: flush: include linux/libnvdimm.h
arm64: module-plts: inline linux/moduleloader.h
arm64: hide unused is_valid_bugaddr()
arm64: efi: add efi_handle_corrupted_x18 prototype
arm64: cpuidle: fix #ifdef for acpi functions
arm64: kvm: add prototypes for functions called in asm
arm64: spectre: provide prototypes for internal functions
arm64: move cpu_suspend_set_dbg_restorer() prototype to header
arm64: avoid prototype warnings for syscalls
arm64: add scs_patch_vmlinux prototype
arm64: xor-neon: mark xor_arm64_neon_*() static
* for-next/iss2-decode:
: Add decode of ISS2 to data abort reports
arm64/esr: Add decode of ISS2 to data abort reporting
arm64/esr: Use GENMASK() for the ISS mask
* for-next/kselftest:
: Various arm64 kselftest improvements
kselftest/arm64: Log signal code and address for unexpected signals
kselftest/arm64: Add a smoke test for ptracing hardware break/watch points
* for-next/misc:
: Miscellaneous patches
arm64: alternatives: make clean_dcache_range_nopatch() noinstr-safe
arm64: hibernate: remove WARN_ON in save_processor_state
arm64/fpsimd: Exit streaming mode when flushing tasks
arm64: mm: fix VA-range sanity check
arm64/mm: remove now-superfluous ISBs from TTBR writes
arm64: consolidate rox page protection logic
arm64: set __exception_irq_entry with __irq_entry as a default
arm64: syscall: unmask DAIF for tracing status
arm64: lockdep: enable checks for held locks when returning to userspace
arm64/cpucaps: increase string width to properly format cpucaps.h
arm64/cpufeature: Use helper for ECV CNTPOFF cpufeature
* for-next/feat_mops:
: Support for ARMv8.8 memcpy instructions in userspace
kselftest/arm64: add MOPS to hwcap test
arm64: mops: allow disabling MOPS from the kernel command line
arm64: mops: detect and enable FEAT_MOPS
arm64: mops: handle single stepping after MOPS exception
arm64: mops: handle MOPS exceptions
KVM: arm64: hide MOPS from guests
arm64: mops: don't disable host MOPS instructions from EL2
arm64: mops: document boot requirements for MOPS
KVM: arm64: switch HCRX_EL2 between host and guest
arm64: cpufeature: detect FEAT_HCX
KVM: arm64: initialize HCRX_EL2
* for-next/module-alloc:
: Make the arm64 module allocation code more robust (clean-up, VA range expansion)
arm64: module: rework module VA range selection
arm64: module: mandate MODULE_PLTS
arm64: module: move module randomization to module.c
arm64: kaslr: split kaslr/module initialization
arm64: kasan: remove !KASAN_VMALLOC remnants
arm64: module: remove old !KASAN_VMALLOC logic
* for-next/sysreg: (21 commits)
: More sysreg conversions to automatic generation
arm64/sysreg: Convert TRBIDR_EL1 register to automatic generation
arm64/sysreg: Convert TRBTRG_EL1 register to automatic generation
arm64/sysreg: Convert TRBMAR_EL1 register to automatic generation
arm64/sysreg: Convert TRBSR_EL1 register to automatic generation
arm64/sysreg: Convert TRBBASER_EL1 register to automatic generation
arm64/sysreg: Convert TRBPTR_EL1 register to automatic generation
arm64/sysreg: Convert TRBLIMITR_EL1 register to automatic generation
arm64/sysreg: Rename TRBIDR_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBTRG_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBMAR_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBSR_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBBASER_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBPTR_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBLIMITR_EL1 fields per auto-gen tools format
arm64/sysreg: Convert OSECCR_EL1 to automatic generation
arm64/sysreg: Convert OSDTRTX_EL1 to automatic generation
arm64/sysreg: Convert OSDTRRX_EL1 to automatic generation
arm64/sysreg: Convert OSLAR_EL1 to automatic generation
arm64/sysreg: Standardise naming of bitfield constants in OSL[AS]R_EL1
arm64/sysreg: Convert MDSCR_EL1 to automatic register generation
...
* for-next/cpucap:
: arm64 cpucap clean-up
arm64: cpufeature: fold cpus_set_cap() into update_cpu_capabilities()
arm64: cpufeature: use cpucap naming
arm64: alternatives: use cpucap naming
arm64: standardise cpucap bitmap names
* for-next/acpi:
: Various arm64-related ACPI patches
ACPI: bus: Consolidate all arm specific initialisation into acpi_arm_init()
* for-next/kdump:
: Simplify the crashkernel reservation behaviour of crashkernel=X,high on arm64
arm64: add kdump.rst into index.rst
Documentation: add kdump.rst to present crashkernel reservation on arm64
arm64: kdump: simplify the reservation behaviour of crashkernel=,high
* for-next/acpi-doc:
: Update ACPI documentation for Arm systems
Documentation/arm64: Update ACPI tables from BBR
Documentation/arm64: Update references in arm-acpi
Documentation/arm64: Update ARM and arch reference
* for-next/doc:
: arm64 documentation updates
Documentation/arm64: Add ptdump documentation
* for-next/tpidr2-fix:
: Fix the TPIDR2_EL0 register restoring on sigreturn
kselftest/arm64: Add a test case for TPIDR2 restore
arm64/signal: Restore TPIDR2 register rather than memory state
* kvm-arm64/ampere1-hafdbs-mitigation:
: AmpereOne erratum AC03_CPU_38 mitigation
:
: AmpereOne does not advertise support for FEAT_HAFDBS due to an
: underlying erratum in the feature. The associated control bits do not
: have RES0 behavior as required by the architecture.
:
: Introduce mitigations to prevent KVM from enabling the feature at
: stage-2 as well as preventing KVM guests from enabling HAFDBS at
: stage-1.
KVM: arm64: Prevent guests from enabling HA/HD on Ampere1
KVM: arm64: Refactor HFGxTR configuration into separate helpers
arm64: errata: Mitigate Ampere1 erratum AC03_CPU_38 at stage-2
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
AmpereOne has an erratum in its implementation of FEAT_HAFDBS that
required disabling the feature on the design. This was done by reporting
the feature as not implemented in the ID register, although the
corresponding control bits were not actually RES0. This does not align
well with the requirements of the architecture, which mandates these
bits be RES0 if HAFDBS isn't implemented.
The kernel's use of stage-1 is unaffected, as the HA and HD bits are
only set if HAFDBS is detected in the ID register. KVM, on the other
hand, relies on the RES0 behavior at stage-2 to use the same value for
VTCR_EL2 on any cpu in the system. Mitigate the non-RES0 behavior by
leaving VTCR_EL2.HA clear on affected systems.
Cc: stable@vger.kernel.org
Cc: D Scott Phillips <scott@os.amperecomputing.com>
Cc: Darren Hart <darren@os.amperecomputing.com>
Acked-by: D Scott Phillips <scott@os.amperecomputing.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20230609220104.1836988-2-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/misc:
: Miscellaneous updates
:
: - Avoid trapping CTR_EL0 on systems with FEAT_EVT, as the register is
: commonly read by userspace
:
: - Make use of FEAT_BTI at hyp stage-1, setting the Guard Page bit to 1
: for executable mappings
:
: - Use a separate set of pointer authentication keys for the hypervisor
: when running in protected mode (i.e. pKVM)
:
: - Plug a few holes in timer initialization where KVM fails to free the
: timer IRQ(s)
KVM: arm64: Use different pointer authentication keys for pKVM
KVM: arm64: timers: Fix resource leaks in kvm_timer_hyp_init()
KVM: arm64: Use BTI for nvhe
KVM: arm64: Relax trapping of CTR_EL0 when FEAT_EVT is available
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
This converts TRBIDR_EL1 register to automatic generation without
causing any functional change.
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20230614065949.146187-15-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This converts TRBTRG_EL1 register to automatic generation without
causing any functional change.
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20230614065949.146187-14-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This converts TRBMAR_EL1 register to automatic generation without
causing any functional change.
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20230614065949.146187-13-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This converts TRBSR_EL1 register to automatic generation without
causing any functional change.
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20230614065949.146187-12-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This converts TRBBASER_EL1 register to automatic generation without
causing any functional change.
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20230614065949.146187-11-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This converts TRBPTR_EL1 register to automatic generation without
causing any functional change.
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20230614065949.146187-10-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This converts TRBLIMITR_EL1 register to automatic generation without
causing any functional change.
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20230614065949.146187-9-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Expose a capability keying the hVHE feature as well as a new
predicate testing it. Nothing is so far using it, and nothing
is enabling it yet.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20230609162200.2024064-5-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Convert OSECCR_EL1 to automatic generation as per DDI0601 2023-03, no
functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20230419-arm64-syreg-gen-v2-7-4c6add1f6257@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Convert OSDTRTX_EL1 to automatic generation as per DDI0601 2023-03. No
functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20230419-arm64-syreg-gen-v2-6-4c6add1f6257@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Convert OSDTRRX_EL1 to automatic generation as per DDI0601 2023-03, no
functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20230419-arm64-syreg-gen-v2-5-4c6add1f6257@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Convert OSLAR_EL1 to automatic generation as per DDI0601 2023-03. No
functional change.
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20230419-arm64-syreg-gen-v2-4-4c6add1f6257@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Convert MDSCR_EL1 to automatic register generation as per DDI0616 2023-03.
No functional change.
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20230419-arm64-syreg-gen-v2-2-4c6add1f6257@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Convert MDCCINT_EL1 to automatic register generation as per DDI0616
2023-03. No functional change.
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20230419-arm64-syreg-gen-v2-1-4c6add1f6257@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The lengthiest capability is `WORKAROUND_TRBE_OVERWRITE_FILL_MODE` and
its length is 35 characters so increase the width of left justified
strings to 40 and adjust the tab space for `ARM64_NCAPS` accordingly.
Now the generated cpucaps.h is properly formatted.
Signed-off-by: Prathu Baronia <quic_pbaronia@quicinc.com>
Link: https://lore.kernel.org/r/20230527123900.680520-1-quic_pbaronia@quicinc.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This indicates if the system supports PIE. This is a CPUCAP_BOOT_CPU_FEATURE
as the boot CPU will enable PIE if it has it, so secondary CPUs must also
have this feature.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230606145859.697944-8-joey.gouly@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This capability indicates if the system supports the TCR2_ELx system register.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230606145859.697944-7-joey.gouly@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Update the HCRX_EL2 register with new bit definitions.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20230606145859.697944-4-joey.gouly@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add definitions of TCR2_EL1, TCR2_EL12 and TCR_EL2 registers.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20230606145859.697944-3-joey.gouly@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add the new ID register ID_AA64MMFR3, according to DDI0601 2023-03.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20230606145859.697944-2-joey.gouly@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The Arm v8.8/9.3 FEAT_MOPS feature provides new instructions that
perform a memory copy or set. Wire up the cpufeature code to detect the
presence of FEAT_MOPS and enable it.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20230509142235.3284028-10-kristina.martsenko@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Detect if the system has the new HCRX_EL2 register added in ARMv8.7/9.2,
so that subsequent patches can check for its presence.
KVM currently relies on the register being present on all CPUs (or
none), so the kernel will panic if that is not the case. Fortunately no
such systems currently exist, but this can be revisited if they appear.
Note that the kernel will not panic if CONFIG_KVM is disabled.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20230509142235.3284028-3-kristina.martsenko@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
CTR_EL0 can often be used in userspace, and it would be nice if
KVM didn't have to emulate it unnecessarily.
While it isn't possible to trap the cache configuration registers
independently from CTR_EL0 in the base ARMv8.0 architecture, FEAT_EVT
allows these cache configuration registers (CCSIDR_EL1, CCSIDR2_EL1,
CLIDR_EL1 and CSSELR_EL1) to be trapped independently by setting
HCR_EL2.TID4.
Switch to using TID4 instead of TID2 in the cases where FEAT_EVT
is available *and* that KVM doesn't need to sanitise CTR_EL0 to
paper over mismatched cache configurations.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230515170016.965378-1-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* More phys_to_virt conversions
* Improvement of AP management for VSIE (nested virtualization)
ARM64:
* Numerous fixes for the pathological lock inversion issue that
plagued KVM/arm64 since... forever.
* New framework allowing SMCCC-compliant hypercalls to be forwarded
to userspace, hopefully paving the way for some more features
being moved to VMMs rather than be implemented in the kernel.
* Large rework of the timer code to allow a VM-wide offset to be
applied to both virtual and physical counters as well as a
per-timer, per-vcpu offset that complements the global one.
This last part allows the NV timer code to be implemented on
top.
* A small set of fixes to make sure that we don't change anything
affecting the EL1&0 translation regime just after having having
taken an exception to EL2 until we have executed a DSB. This
ensures that speculative walks started in EL1&0 have completed.
* The usual selftest fixes and improvements.
KVM x86 changes for 6.4:
* Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled,
and by giving the guest control of CR0.WP when EPT is enabled on VMX
(VMX-only because SVM doesn't support per-bit controls)
* Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return
as a bool
* Move AMD_PSFD to cpufeatures.h and purge KVM's definition
* Avoid unnecessary writes+flushes when the guest is only adding new PTEs
* Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s optimizations
when emulating invalidations
* Clean up the range-based flushing APIs
* Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single
A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle
changed SPTE" overhead associated with writing the entire entry
* Track the number of "tail" entries in a pte_list_desc to avoid having
to walk (potentially) all descriptors during insertion and deletion,
which gets quite expensive if the guest is spamming fork()
* Disallow virtualizing legacy LBRs if architectural LBRs are available,
the two are mutually exclusive in hardware
* Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
after KVM_RUN, similar to CPUID features
* Overhaul the vmx_pmu_caps selftest to better validate PERF_CAPABILITIES
* Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
x86 AMD:
* Add support for virtual NMIs
* Fixes for edge cases related to virtual interrupts
x86 Intel:
* Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is
not being reported due to userspace not opting in via prctl()
* Fix a bug in emulation of ENCLS in compatibility mode
* Allow emulation of NOP and PAUSE for L2
* AMX selftests improvements
* Misc cleanups
MIPS:
* Constify MIPS's internal callbacks (a leftover from the hardware enabling
rework that landed in 6.3)
Generic:
* Drop unnecessary casts from "void *" throughout kvm_main.c
* Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the struct
size by 8 bytes on 64-bit kernels by utilizing a padding hole
Documentation:
* Fix goof introduced by the conversion to rST
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmRNExkUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNyjwf+MkzDael9y9AsOZoqhEZ5OsfQYJ32
Im5ZVYsPRU2K5TuoWql6meIihgclCj1iIU32qYHa2F1WYt2rZ72rJp+HoY8b+TaI
WvF0pvNtqQyg3iEKUBKPA4xQ6mj7RpQBw86qqiCHmlfNt0zxluEGEPxH8xrWcfhC
huDQ+NUOdU7fmJ3rqGitCvkUbCuZNkw3aNPR8dhU8RAWrwRzP2hBOmdxIeo81WWY
XMEpJSijbGpXL9CvM0Jz9nOuMJwZwCCBGxg1vSQq0xTfLySNMxzvWZC2GFaBjucb
j0UOQ7yE0drIZDVhd3sdNslubXXU6FcSEzacGQb9aigMUon3Tem9SHi7Kw==
=S2Hq
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"s390:
- More phys_to_virt conversions
- Improvement of AP management for VSIE (nested virtualization)
ARM64:
- Numerous fixes for the pathological lock inversion issue that
plagued KVM/arm64 since... forever.
- New framework allowing SMCCC-compliant hypercalls to be forwarded
to userspace, hopefully paving the way for some more features being
moved to VMMs rather than be implemented in the kernel.
- Large rework of the timer code to allow a VM-wide offset to be
applied to both virtual and physical counters as well as a
per-timer, per-vcpu offset that complements the global one. This
last part allows the NV timer code to be implemented on top.
- A small set of fixes to make sure that we don't change anything
affecting the EL1&0 translation regime just after having having
taken an exception to EL2 until we have executed a DSB. This
ensures that speculative walks started in EL1&0 have completed.
- The usual selftest fixes and improvements.
x86:
- Optimize CR0.WP toggling by avoiding an MMU reload when TDP is
enabled, and by giving the guest control of CR0.WP when EPT is
enabled on VMX (VMX-only because SVM doesn't support per-bit
controls)
- Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long"
return as a bool
- Move AMD_PSFD to cpufeatures.h and purge KVM's definition
- Avoid unnecessary writes+flushes when the guest is only adding new
PTEs
- Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s
optimizations when emulating invalidations
- Clean up the range-based flushing APIs
- Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a
single A/D bit using a LOCK AND instead of XCHG, and skip all of
the "handle changed SPTE" overhead associated with writing the
entire entry
- Track the number of "tail" entries in a pte_list_desc to avoid
having to walk (potentially) all descriptors during insertion and
deletion, which gets quite expensive if the guest is spamming
fork()
- Disallow virtualizing legacy LBRs if architectural LBRs are
available, the two are mutually exclusive in hardware
- Disallow writes to immutable feature MSRs (notably
PERF_CAPABILITIES) after KVM_RUN, similar to CPUID features
- Overhaul the vmx_pmu_caps selftest to better validate
PERF_CAPABILITIES
- Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
- AMD SVM:
- Add support for virtual NMIs
- Fixes for edge cases related to virtual interrupts
- Intel AMX:
- Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if
XTILE_DATA is not being reported due to userspace not opting in
via prctl()
- Fix a bug in emulation of ENCLS in compatibility mode
- Allow emulation of NOP and PAUSE for L2
- AMX selftests improvements
- Misc cleanups
MIPS:
- Constify MIPS's internal callbacks (a leftover from the hardware
enabling rework that landed in 6.3)
Generic:
- Drop unnecessary casts from "void *" throughout kvm_main.c
- Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the
struct size by 8 bytes on 64-bit kernels by utilizing a padding
hole
Documentation:
- Fix goof introduced by the conversion to rST"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (211 commits)
KVM: s390: pci: fix virtual-physical confusion on module unload/load
KVM: s390: vsie: clarifications on setting the APCB
KVM: s390: interrupt: fix virtual-physical confusion for next alert GISA
KVM: arm64: Have kvm_psci_vcpu_on() use WRITE_ONCE() to update mp_state
KVM: arm64: Acquire mp_state_lock in kvm_arch_vcpu_ioctl_vcpu_init()
KVM: selftests: Test the PMU event "Instructions retired"
KVM: selftests: Copy full counter values from guest in PMU event filter test
KVM: selftests: Use error codes to signal errors in PMU event filter test
KVM: selftests: Print detailed info in PMU event filter asserts
KVM: selftests: Add helpers for PMC asserts in PMU event filter test
KVM: selftests: Add a common helper for the PMU event filter guest code
KVM: selftests: Fix spelling mistake "perrmited" -> "permitted"
KVM: arm64: vhe: Drop extra isb() on guest exit
KVM: arm64: vhe: Synchronise with page table walker on MMU update
KVM: arm64: pkvm: Document the side effects of kvm_flush_dcache_to_poc()
KVM: arm64: nvhe: Synchronise with page table walker on TLBI
KVM: arm64: Handle 32bit CNTPCTSS traps
KVM: arm64: nvhe: Synchronise with page table walker on vcpu run
KVM: arm64: vgic: Don't acquire its_lock before config_lock
KVM: selftests: Add test to verify KVM's supported XCR0
...
Automatically generate the Hypervisor Fine-Grained Instruction Trap
Register as per DDI0601 2023-03, currently we only have a definition for
the register name not any of the contents. No functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230306-arm64-fgt-reg-gen-v5-1-516a89cb50f6@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Version 2022-12 of DDI0601 has defined a number of new fields in
previously RES0 space in ID_AA64PFR1_EL1, update our definition to
include them.
No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230308-arm64-aa64pfr1-2022-12-v1-1-f03c1ea39611@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Convert the fine grained traps read and write control registers to
automatic generation as per DDI0601 2022-12. No functional changes.
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230306-arm64-fgt-reg-gen-v3-1-decba93cbaab@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
We'd like to support Enum/SignedEnum/UnsignedEnum blocks within
SysregFields blocks, so that we can define enumerations for sets of
registers. This isn't currently supported by gen-sysreg.awk due to the
way we track the active block, which can't handle more than a single
layer of nesting, which imposes an awkward requirement that when ending
a block we know what the parent block is when calling change_block()
Make this nicer by using a stack of active blocks, with block_push() to
start a block, and block_pop() to end a block. Doing so means that we
only need to check the active block at the start of parsing a line: for
the start of a block we can check the parent is valid, and for the end
of a block we check that the active block is valid.
This structure makes the block parsing simpler and makes it easy to
permit a block to live under several potential parents (e.g. by
permitting Enum to start when the active block is Sysreg or
SysregFields). It also permits further nesting, if we need that in
future.
To aid debugging, the stack of active blocks is reported for fatal
errors, and an error is raised if the file is terminated without ending
the active block. For clarity I've renamed the top-level element from
"None" to "Root".
The Fields element it intended only for use within Sysreg blocks, and
does not make sense within SysregFields blocks, and so remains forbidden
within a SysregFields block.
I've verified using sha1sum that this patch does not change the
current generated contents of <asm/sysreg-defs.h>.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230306114836.2575432-1-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Add the probing code for the FEAT_ECV variant that implements CNTPOFF_EL2.
Why it is optional is a mystery, but let's try and detect it.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Reviewed-by: Colton Lewis <coltonlewis@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230330174800.2677007-4-maz@kernel.org
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place.
- Add support for taking stage-2 access faults in parallel. This was an
accidental omission in the original parallel faults implementation,
but should provide a marginal improvement to machines w/o FEAT_HAFDBS
(such as hardware from the fruit company).
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception handling
and masking unsupported features for nested guests.
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM.
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at reducing
the trap overhead of running nested.
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems.
- Avoid VM-wide stop-the-world operations when a vCPU accesses its own
redistributor.
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions
in the host.
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
This also drags in arm64's 'for-next/sme2' branch, because both it and
the PSCI relay changes touch the EL2 initialization code.
RISC-V:
- Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
- Correctly place the guest in S-mode after redirecting a trap to the guest
- Redirect illegal instruction traps to guest
- SBI PMU support for guest
s390:
- Two patches sorting out confusion between virtual and physical
addresses, which currently are the same on s390.
- A new ioctl that performs cmpxchg on guest memory
- A few fixes
x86:
- Change tdp_mmu to a read-only parameter
- Separate TDP and shadow MMU page fault paths
- Enable Hyper-V invariant TSC control
- Fix a variety of APICv and AVIC bugs, some of them real-world,
some of them affecting architecurally legal but unlikely to
happen in practice
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Advertise support for Intel's new fast REP string features
- Fix a double-shootdown issue in the emergency reboot code
- Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give SVM
similar treatment to VMX
- Update Xen's TSC info CPUID sub-leaves as appropriate
- Add support for Hyper-V's extended hypercalls, where "support" at this
point is just forwarding the hypercalls to userspace
- Clean up the kvm->lock vs. kvm->srcu sequences when updating the PMU and
MSR filters
- One-off fixes and cleanups
- Fix and cleanup the range-based TLB flushing code, used when KVM is
running on Hyper-V
- Add support for filtering PMU events using a mask. If userspace
wants to restrict heavily what events the guest can use, it can now
do so without needing an absurd number of filter entries
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel Sapphire Rapids
- Fix a mostly benign overflow bug in SEV's send|receive_update_data()
- Move several SVM-specific flags into vcpu_svm
x86 Intel:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't support
EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
Generic:
- Clean up the hardware enable and initialization flow, which was
scattered around multiple arch-specific hooks. Instead, just
let the arch code call into generic code. Both x86 and ARM should
benefit from not having to fight common KVM code's notion of how
to do initialization.
- Account allocations in generic kvm_arch_alloc_vm()
- Fix a memory leak if coalesced MMIO unregistration fails
selftests:
- On x86, cache the CPU vendor (AMD vs. Intel) and use the info to emit
the correct hypercall instruction instead of relying on KVM to patch
in VMMCALL
- Use TAP interface for kvm_binary_stats_test and tsc_msrs_test
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmP2YA0UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPg/Qf+J6nT+TkIa+8Ei+fN1oMTDp4YuIOx
mXvJ9mRK9sQ+tAUVwvDz3qN/fK5mjsYbRHIDlVc5p2Q3bCrVGDDqXPFfCcLx1u+O
9U9xjkO4JxD2LS9pc70FYOyzVNeJ8VMGOBbC2b0lkdYZ4KnUc6e/WWFKJs96bK+H
duo+RIVyaMthnvbTwSv1K3qQb61n6lSJXplywS8KWFK6NZAmBiEFDAWGRYQE9lLs
VcVcG0iDJNL/BQJ5InKCcvXVGskcCm9erDszPo7w4Bypa4S9AMS42DHUaRZrBJwV
/WqdH7ckIz7+OSV0W1j+bKTHAFVTCjXYOM7wQykgjawjICzMSnnG9Gpskw==
=goe1
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place
- Add support for taking stage-2 access faults in parallel. This was
an accidental omission in the original parallel faults
implementation, but should provide a marginal improvement to
machines w/o FEAT_HAFDBS (such as hardware from the fruit company)
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception
handling and masking unsupported features for nested guests
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at
reducing the trap overhead of running nested
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems
- Avoid VM-wide stop-the-world operations when a vCPU accesses its
own redistributor
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected
exceptions in the host
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
RISC-V:
- Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
- Correctly place the guest in S-mode after redirecting a trap to the
guest
- Redirect illegal instruction traps to guest
- SBI PMU support for guest
s390:
- Sort out confusion between virtual and physical addresses, which
currently are the same on s390
- A new ioctl that performs cmpxchg on guest memory
- A few fixes
x86:
- Change tdp_mmu to a read-only parameter
- Separate TDP and shadow MMU page fault paths
- Enable Hyper-V invariant TSC control
- Fix a variety of APICv and AVIC bugs, some of them real-world, some
of them affecting architecurally legal but unlikely to happen in
practice
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Advertise support for Intel's new fast REP string features
- Fix a double-shootdown issue in the emergency reboot code
- Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give
SVM similar treatment to VMX
- Update Xen's TSC info CPUID sub-leaves as appropriate
- Add support for Hyper-V's extended hypercalls, where "support" at
this point is just forwarding the hypercalls to userspace
- Clean up the kvm->lock vs. kvm->srcu sequences when updating the
PMU and MSR filters
- One-off fixes and cleanups
- Fix and cleanup the range-based TLB flushing code, used when KVM is
running on Hyper-V
- Add support for filtering PMU events using a mask. If userspace
wants to restrict heavily what events the guest can use, it can now
do so without needing an absurd number of filter entries
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel Sapphire Rapids
- Fix a mostly benign overflow bug in SEV's
send|receive_update_data()
- Move several SVM-specific flags into vcpu_svm
x86 Intel:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't
support EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
Generic:
- Clean up the hardware enable and initialization flow, which was
scattered around multiple arch-specific hooks. Instead, just let
the arch code call into generic code. Both x86 and ARM should
benefit from not having to fight common KVM code's notion of how to
do initialization
- Account allocations in generic kvm_arch_alloc_vm()
- Fix a memory leak if coalesced MMIO unregistration fails
selftests:
- On x86, cache the CPU vendor (AMD vs. Intel) and use the info to
emit the correct hypercall instruction instead of relying on KVM to
patch in VMMCALL
- Use TAP interface for kvm_binary_stats_test and tsc_msrs_test"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (325 commits)
KVM: SVM: hyper-v: placate modpost section mismatch error
KVM: x86/mmu: Make tdp_mmu_allowed static
KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
KVM: arm64: nv: Filter out unsupported features from ID regs
KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
KVM: arm64: nv: Handle SMCs taken from virtual EL2
KVM: arm64: nv: Handle trapped ERET from virtual EL2
KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
KVM: arm64: nv: Support virtual EL2 exceptions
KVM: arm64: nv: Handle HCR_EL2.NV system register traps
KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
KVM: arm64: nv: Add EL2 system registers to vcpu context
KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
KVM: arm64: nv: Introduce nested virtualization VCPU feature
KVM: arm64: Use the S2 MMU context to iterate over S2 table
...
- Support for arm64 SME 2 and 2.1. SME2 introduces a new 512-bit
architectural register (ZT0, for the look-up table feature) that Linux
needs to save/restore.
- Include TPIDR2 in the signal context and add the corresponding
kselftests.
- Perf updates: Arm SPEv1.2 support, HiSilicon uncore PMU updates, ACPI
support to the Marvell DDR and TAD PMU drivers, reset DTM_PMU_CONFIG
(ARM CMN) at probe time.
- Support for DYNAMIC_FTRACE_WITH_CALL_OPS on arm64.
- Permit EFI boot with MMU and caches on. Instead of cleaning the entire
loaded kernel image to the PoC and disabling the MMU and caches before
branching to the kernel bare metal entry point, leave the MMU and
caches enabled and rely on EFI's cacheable 1:1 mapping of all of
system RAM to populate the initial page tables.
- Expose the AArch32 (compat) ELF_HWCAP features to user in an arm64
kernel (the arm32 kernel only defines the values).
- Harden the arm64 shadow call stack pointer handling: stash the shadow
stack pointer in the task struct on interrupt, load it directly from
this structure.
- Signal handling cleanups to remove redundant validation of size
information and avoid reading the same data from userspace twice.
- Refactor the hwcap macros to make use of the automatically generated
ID registers. It should make new hwcaps writing less error prone.
- Further arm64 sysreg conversion and some fixes.
- arm64 kselftest fixes and improvements.
- Pointer authentication cleanups: don't sign leaf functions, unify
asm-arch manipulation.
- Pseudo-NMI code generation optimisations.
- Minor fixes for SME and TPIDR2 handling.
- Miscellaneous updates: ARCH_FORCE_MAX_ORDER is now selectable, replace
strtobool() to kstrtobool() in the cpufeature.c code, apply dynamic
shadow call stack in two passes, intercept pfn changes in set_pte_at()
without the required break-before-make sequence, attempt to dump all
instructions on unhandled kernel faults.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmP0/QsACgkQa9axLQDI
XvG+gA/+JDVEH9wRzAIZvbp9hSuohPc48xgAmIMP1eiVB0/5qeRjYAJwS33H0rXS
BPC2kj9IBy/eQeM9ICg0nFd0zYznSVacITqe6NrqeJ1F+ftS4rrHdfxd+J7kIoCs
V2L8e+BJvmHdhmNV2qMAgJdGlfxfQBA7fv2cy52HKYcouoOh1AUVR/x+yXVXAsCd
qJP3+dlUKccgm/oc5unEC1eZ49u8O+EoasqOyfG6K5udMgzhEX3K6imT9J3hw0WT
UjstYkx5uGS/prUrRCQAX96VCHoZmzEDKtQuHkHvQXEYXsYPF3ldbR2CziNJnHe7
QfSkjJlt8HAtExA+BkwEe9i0MQO/2VF5qsa2e4fA6l7uqGu3LOtS/jJd23C9n9fR
Id8aBMeN6S8+MjqRA9L2uf4t6e4ISEHoG9ZRdc4WOwloxEEiJoIeun+7bHdOSZLj
AFdHFCz4NXiiwC0UP0xPDI2YeCLqt5np7HmnrUqwzRpVO8UUagiJD8TIpcBSjBN9
J68eidenHUW7/SlIeaMKE2lmo8AUEAJs9AorDSugF19/ThJcQdx7vT2UAZjeVB3j
1dbbwajnlDOk/w8PQC4thFp5/MDlfst0htS3WRwa+vgkweE2EAdTU4hUZ8qEP7FQ
smhYtlT1xUSTYDTqoaG/U2OWR6/UU79wP0jgcOsHXTuyYrtPI/Q=
=VmXL
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- Support for arm64 SME 2 and 2.1. SME2 introduces a new 512-bit
architectural register (ZT0, for the look-up table feature) that
Linux needs to save/restore
- Include TPIDR2 in the signal context and add the corresponding
kselftests
- Perf updates: Arm SPEv1.2 support, HiSilicon uncore PMU updates, ACPI
support to the Marvell DDR and TAD PMU drivers, reset DTM_PMU_CONFIG
(ARM CMN) at probe time
- Support for DYNAMIC_FTRACE_WITH_CALL_OPS on arm64
- Permit EFI boot with MMU and caches on. Instead of cleaning the
entire loaded kernel image to the PoC and disabling the MMU and
caches before branching to the kernel bare metal entry point, leave
the MMU and caches enabled and rely on EFI's cacheable 1:1 mapping of
all of system RAM to populate the initial page tables
- Expose the AArch32 (compat) ELF_HWCAP features to user in an arm64
kernel (the arm32 kernel only defines the values)
- Harden the arm64 shadow call stack pointer handling: stash the shadow
stack pointer in the task struct on interrupt, load it directly from
this structure
- Signal handling cleanups to remove redundant validation of size
information and avoid reading the same data from userspace twice
- Refactor the hwcap macros to make use of the automatically generated
ID registers. It should make new hwcaps writing less error prone
- Further arm64 sysreg conversion and some fixes
- arm64 kselftest fixes and improvements
- Pointer authentication cleanups: don't sign leaf functions, unify
asm-arch manipulation
- Pseudo-NMI code generation optimisations
- Minor fixes for SME and TPIDR2 handling
- Miscellaneous updates: ARCH_FORCE_MAX_ORDER is now selectable,
replace strtobool() to kstrtobool() in the cpufeature.c code, apply
dynamic shadow call stack in two passes, intercept pfn changes in
set_pte_at() without the required break-before-make sequence, attempt
to dump all instructions on unhandled kernel faults
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (130 commits)
arm64: fix .idmap.text assertion for large kernels
kselftest/arm64: Don't require FA64 for streaming SVE+ZA tests
kselftest/arm64: Copy whole EXTRA context
arm64: kprobes: Drop ID map text from kprobes blacklist
perf: arm_spe: Print the version of SPE detected
perf: arm_spe: Add support for SPEv1.2 inverted event filtering
perf: Add perf_event_attr::config3
arm64/sme: Fix __finalise_el2 SMEver check
drivers/perf: fsl_imx8_ddr_perf: Remove set-but-not-used variable
arm64/signal: Only read new data when parsing the ZT context
arm64/signal: Only read new data when parsing the ZA context
arm64/signal: Only read new data when parsing the SVE context
arm64/signal: Avoid rereading context frame sizes
arm64/signal: Make interface for restore_fpsimd_context() consistent
arm64/signal: Remove redundant size validation from parse_user_sigframe()
arm64/signal: Don't redundantly verify FPSIMD magic
arm64/cpufeature: Use helper macros to specify hwcaps
arm64/cpufeature: Always use symbolic name for feature value in hwcaps
arm64/sysreg: Initial unsigned annotations for ID registers
arm64/sysreg: Initial annotation of signed ID registers
...
* kvm-arm64/nv-prefix:
: Preamble to NV support, courtesy of Marc Zyngier.
:
: This brings in a set of prerequisite patches for supporting nested
: virtualization in KVM/arm64. Of course, there is a long way to go until
: NV is actually enabled in KVM.
:
: - Introduce cpucap / vCPU feature flag to pivot the NV code on
:
: - Add support for EL2 vCPU register state
:
: - Basic nested exception handling
:
: - Hide unsupported features from the ID registers for NV-capable VMs
KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
KVM: arm64: nv: Filter out unsupported features from ID regs
KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
KVM: arm64: nv: Handle SMCs taken from virtual EL2
KVM: arm64: nv: Handle trapped ERET from virtual EL2
KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
KVM: arm64: nv: Support virtual EL2 exceptions
KVM: arm64: nv: Handle HCR_EL2.NV system register traps
KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
KVM: arm64: nv: Add EL2 system registers to vcpu context
KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
KVM: arm64: nv: Introduce nested virtualization VCPU feature
KVM: arm64: Use the S2 MMU context to iterate over S2 table
arm64: Add ARM64_HAS_NESTED_VIRT cpufeature
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/virtual-cache-geometry:
: Virtualized cache geometry for KVM guests, courtesy of Akihiko Odaki.
:
: KVM/arm64 has always exposed the host cache geometry directly to the
: guest, even though non-secure software should never perform CMOs by
: Set/Way. This was slightly wrong, as the cache geometry was derived from
: the PE on which the vCPU thread was running and not a sanitized value.
:
: All together this leads to issues migrating VMs on heterogeneous
: systems, as the cache geometry saved/restored could be inconsistent.
:
: KVM/arm64 now presents 1 level of cache with 1 set and 1 way. The cache
: geometry is entirely controlled by userspace, such that migrations from
: older kernels continue to work.
KVM: arm64: Mark some VM-scoped allocations as __GFP_ACCOUNT
KVM: arm64: Normalize cache configuration
KVM: arm64: Mask FEAT_CCIDX
KVM: arm64: Always set HCR_TID2
arm64/cache: Move CLIDR macro definitions
arm64/sysreg: Add CCSIDR2_EL1
arm64/sysreg: Convert CCSIDR_EL1 to automatic generation
arm64: Allow the definition of UNKNOWN system register fields
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Add a new ARM64_HAS_NESTED_VIRT feature to indicate that the
CPU has the ARMv8.3 nested virtualization capability, together
with the 'kvm-arm.mode=nested' command line option.
This will be used to support nested virtualization in KVM.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Jintack Lim <jintack.lim@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
[maz: moved the command-line option to kvm-arm.mode]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-2-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* for-next/sysreg-hwcaps:
: Make use of sysreg helpers for hwcaps
arm64/cpufeature: Use helper macros to specify hwcaps
arm64/cpufeature: Always use symbolic name for feature value in hwcaps
arm64/sysreg: Initial unsigned annotations for ID registers
arm64/sysreg: Initial annotation of signed ID registers
arm64/sysreg: Allow enumerations to be declared as signed or unsigned
* arm64/for-next/perf:
perf: arm_spe: Print the version of SPE detected
perf: arm_spe: Add support for SPEv1.2 inverted event filtering
perf: Add perf_event_attr::config3
drivers/perf: fsl_imx8_ddr_perf: Remove set-but-not-used variable
perf: arm_spe: Support new SPEv1.2/v8.7 'not taken' event
perf: arm_spe: Use new PMSIDR_EL1 register enums
perf: arm_spe: Drop BIT() and use FIELD_GET/PREP accessors
arm64/sysreg: Convert SPE registers to automatic generation
arm64: Drop SYS_ from SPE register defines
perf: arm_spe: Use feature numbering for PMSEVFR_EL1 defines
perf/marvell: Add ACPI support to TAD uncore driver
perf/marvell: Add ACPI support to DDR uncore driver
perf/arm-cmn: Reset DTM_PMU_CONFIG at probe
drivers/perf: hisi: Extract initialization of "cpa_pmu->pmu"
drivers/perf: hisi: Simplify the parameters of hisi_pmu_init()
drivers/perf: hisi: Advertise the PERF_PMU_CAP_NO_EXCLUDE capability
* for-next/sysreg:
: arm64 sysreg and cpufeature fixes/updates
KVM: arm64: Use symbolic definition for ISR_EL1.A
arm64/sysreg: Add definition of ISR_EL1
arm64/sysreg: Add definition for ICC_NMIAR1_EL1
arm64/cpufeature: Remove 4 bit assumption in ARM64_FEATURE_MASK()
arm64/sysreg: Fix errors in 32 bit enumeration values
arm64/cpufeature: Fix field sign for DIT hwcap detection
* for-next/sme:
: SME-related updates
arm64/sme: Optimise SME exit on syscall entry
arm64/sme: Don't use streaming mode to probe the maximum SME VL
arm64/ptrace: Use system_supports_tpidr2() to check for TPIDR2 support
* for-next/kselftest: (23 commits)
: arm64 kselftest fixes and improvements
kselftest/arm64: Don't require FA64 for streaming SVE+ZA tests
kselftest/arm64: Copy whole EXTRA context
kselftest/arm64: Fix enumeration of systems without 128 bit SME for SSVE+ZA
kselftest/arm64: Fix enumeration of systems without 128 bit SME
kselftest/arm64: Don't require FA64 for streaming SVE tests
kselftest/arm64: Limit the maximum VL we try to set via ptrace
kselftest/arm64: Correct buffer size for SME ZA storage
kselftest/arm64: Remove the local NUM_VL definition
kselftest/arm64: Verify simultaneous SSVE and ZA context generation
kselftest/arm64: Verify that SSVE signal context has SVE_SIG_FLAG_SM set
kselftest/arm64: Remove spurious comment from MTE test Makefile
kselftest/arm64: Support build of MTE tests with clang
kselftest/arm64: Initialise current at build time in signal tests
kselftest/arm64: Don't pass headers to the compiler as source
kselftest/arm64: Remove redundant _start labels from FP tests
kselftest/arm64: Fix .pushsection for strings in FP tests
kselftest/arm64: Run BTI selftests on systems without BTI
kselftest/arm64: Fix test numbering when skipping tests
kselftest/arm64: Skip non-power of 2 SVE vector lengths in fp-stress
kselftest/arm64: Only enumerate power of two VLs in syscall-abi
...
* for-next/misc:
: Miscellaneous arm64 updates
arm64/mm: Intercept pfn changes in set_pte_at()
Documentation: arm64: correct spelling
arm64: traps: attempt to dump all instructions
arm64: Apply dynamic shadow call stack patching in two passes
arm64: el2_setup.h: fix spelling typo in comments
arm64: Kconfig: fix spelling
arm64: cpufeature: Use kstrtobool() instead of strtobool()
arm64: Avoid repeated AA64MMFR1_EL1 register read on pagefault path
arm64: make ARCH_FORCE_MAX_ORDER selectable
* for-next/sme2: (23 commits)
: Support for arm64 SME 2 and 2.1
arm64/sme: Fix __finalise_el2 SMEver check
kselftest/arm64: Remove redundant _start labels from zt-test
kselftest/arm64: Add coverage of SME 2 and 2.1 hwcaps
kselftest/arm64: Add coverage of the ZT ptrace regset
kselftest/arm64: Add SME2 coverage to syscall-abi
kselftest/arm64: Add test coverage for ZT register signal frames
kselftest/arm64: Teach the generic signal context validation about ZT
kselftest/arm64: Enumerate SME2 in the signal test utility code
kselftest/arm64: Cover ZT in the FP stress test
kselftest/arm64: Add a stress test program for ZT0
arm64/sme: Add hwcaps for SME 2 and 2.1 features
arm64/sme: Implement ZT0 ptrace support
arm64/sme: Implement signal handling for ZT
arm64/sme: Implement context switching for ZT0
arm64/sme: Provide storage for ZT0
arm64/sme: Add basic enumeration for SME2
arm64/sme: Enable host kernel to access ZT0
arm64/sme: Manually encode ZT0 load and store instructions
arm64/esr: Document ISS for ZT0 being disabled
arm64/sme: Document SME 2 and SME 2.1 ABI
...
* for-next/tpidr2:
: Include TPIDR2 in the signal context
kselftest/arm64: Add test case for TPIDR2 signal frame records
kselftest/arm64: Add TPIDR2 to the set of known signal context records
arm64/signal: Include TPIDR2 in the signal context
arm64/sme: Document ABI for TPIDR2 signal information
* for-next/scs:
: arm64: harden shadow call stack pointer handling
arm64: Stash shadow stack pointer in the task struct on interrupt
arm64: Always load shadow stack pointer directly from the task struct
* for-next/compat-hwcap:
: arm64: Expose compat ARMv8 AArch32 features (HWCAPs)
arm64: Add compat hwcap SSBS
arm64: Add compat hwcap SB
arm64: Add compat hwcap I8MM
arm64: Add compat hwcap ASIMDBF16
arm64: Add compat hwcap ASIMDFHM
arm64: Add compat hwcap ASIMDDP
arm64: Add compat hwcap FPHP and ASIMDHP
* for-next/ftrace:
: Add arm64 support for DYNAMICE_FTRACE_WITH_CALL_OPS
arm64: avoid executing padding bytes during kexec / hibernation
arm64: Implement HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS
arm64: ftrace: Update stale comment
arm64: patching: Add aarch64_insn_write_literal_u64()
arm64: insn: Add helpers for BTI
arm64: Extend support for CONFIG_FUNCTION_ALIGNMENT
ACPI: Don't build ACPICA with '-Os'
Compiler attributes: GCC cold function alignment workarounds
ftrace: Add DYNAMIC_FTRACE_WITH_CALL_OPS
* for-next/efi-boot-mmu-on:
: Permit arm64 EFI boot with MMU and caches on
arm64: kprobes: Drop ID map text from kprobes blacklist
arm64: head: Switch endianness before populating the ID map
efi: arm64: enter with MMU and caches enabled
arm64: head: Clean the ID map and the HYP text to the PoC if needed
arm64: head: avoid cache invalidation when entering with the MMU on
arm64: head: record the MMU state at primary entry
arm64: kernel: move identity map out of .text mapping
arm64: head: Move all finalise_el2 calls to after __enable_mmu
* for-next/ptrauth:
: arm64 pointer authentication cleanup
arm64: pauth: don't sign leaf functions
arm64: unify asm-arch manipulation
* for-next/pseudo-nmi:
: Pseudo-NMI code generation optimisations
arm64: irqflags: use alternative branches for pseudo-NMI logic
arm64: add ARM64_HAS_GIC_PRIO_RELAXED_SYNC cpucap
arm64: make ARM64_HAS_GIC_PRIO_MASKING depend on ARM64_HAS_GIC_CPUIF_SYSREGS
arm64: rename ARM64_HAS_IRQ_PRIO_MASKING to ARM64_HAS_GIC_PRIO_MASKING
arm64: rename ARM64_HAS_SYSREG_GIC_CPUIF to ARM64_HAS_GIC_CPUIF_SYSREGS
In order to allow the simplification of way we declare hwcaps annotate
most of the unsigned fields in the identification registers as such. This
is not a complete annotation, it does cover all the cases where we already
annotate signedness of the field in the hwcaps and some others which I
happened to look at and seemed clear but there will be more and nothing
outside the identification registers was even looked at.
Other fields can be annotated as incrementally as people have the time and
need to do so.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20221207-arm64-sysreg-helpers-v4-3-25b6b3fb9d18@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We currently annotate a few bitfields as signed in hwcaps, update all of
these to be SignedEnum in the sysreg generation. Further signed bitfields
can be done incrementally, this is the minimum required for the conversion
of the hwcaps to use token pasting to simplify their declaration.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20221207-arm64-sysreg-helpers-v4-2-25b6b3fb9d18@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Many of our enumerations follow a standard scheme where the values can be
treated as signed however there are some where the value must be treated
as signed and others that are simple enumerations where there is no clear
ordering to the values. Provide new field types SignedEnum and
UnsignedEnum which allows the signedness to be specified in the sysreg
definition and emit a REG_FIELD_SIGNED define for these which is a
boolean corresponding to our current FTR_UNSIGNED and FTR_SIGNED macros.
Existing Enums will need to be converted, since these do not have a
define generated anyone wishing to use the sign of one of these will
need to explicitly annotate that field so nothing should start going
wrong by default.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20221207-arm64-sysreg-helpers-v4-1-25b6b3fb9d18@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When Priority Mask Hint Enable (PMHE) == 0b1, the GIC may use the PMR
value to determine whether to signal an IRQ to a PE, and consequently
after a change to the PMR value, a DSB SY may be required to ensure that
interrupts are signalled to a CPU in finite time. When PMHE == 0b0,
interrupts are always signalled to the relevant PE, and all masking
occurs locally, without requiring a DSB SY.
Since commit:
f226650494 ("arm64: Relax ICC_PMR_EL1 accesses when ICC_CTLR_EL1.PMHE is clear")
... we handle this dynamically: in most cases a static key is used to
determine whether to issue a DSB SY, but the entry code must read from
ICC_CTLR_EL1 as static keys aren't accessible from plain assembly.
It would be much nicer to use an alternative instruction sequence for
the DSB, as this would avoid the need to read from ICC_CTLR_EL1 in the
entry code, and for most other code this will result in simpler code
generation with fewer instructions and fewer branches.
This patch adds a new ARM64_HAS_GIC_PRIO_RELAXED_SYNC cpucap which is
only set when ICC_CTLR_EL1.PMHE == 0b0 (and GIC priority masking is in
use). This allows us to replace the existing users of the
`gic_pmr_sync` static key with alternative sequences which default to a
DSB SY and are relaxed to a NOP when PMHE is not in use.
The entry assembly management of the PMR is slightly restructured to use
a branch (rather than multiple NOPs) when priority masking is not in
use. This is more in keeping with other alternatives in the entry
assembly, and permits the use of a separate alternatives for the
PMHE-dependent DSB SY (and removal of the conditional branch this
currently requires). For consistency I've adjusted both the save and
restore paths.
According to bloat-o-meter, when building defconfig +
CONFIG_ARM64_PSEUDO_NMI=y this shrinks the kernel text by ~4KiB:
| add/remove: 4/2 grow/shrink: 42/310 up/down: 332/-5032 (-4700)
The resulting vmlinux is ~66KiB smaller, though the resulting Image size
is unchanged due to padding and alignment:
| [mark@lakrids:~/src/linux]% ls -al vmlinux-*
| -rwxr-xr-x 1 mark mark 137508344 Jan 17 14:11 vmlinux-after
| -rwxr-xr-x 1 mark mark 137575440 Jan 17 13:49 vmlinux-before
| [mark@lakrids:~/src/linux]% ls -al Image-*
| -rw-r--r-- 1 mark mark 38777344 Jan 17 14:11 Image-after
| -rw-r--r-- 1 mark mark 38777344 Jan 17 13:49 Image-before
Prior to this patch we did not verify the state of ICC_CTLR_EL1.PMHE on
secondary CPUs. As of this patch this is verified by the cpufeature code
when using GIC priority masking (i.e. when using pseudo-NMIs).
Note that since commit:
7e3a57fa6c ("arm64: Document ICC_CTLR_EL3.PMHE setting requirements")
... Documentation/arm64/booting.rst specifies:
| - ICC_CTLR_EL3.PMHE (bit 6) must be set to the same value across
| all CPUs the kernel is executing on, and must stay constant
| for the lifetime of the kernel.
... so that should not adversely affect any compliant systems, and as
we'll only check for the absense of PMHE when using pseudo-NMIs, this
will only fire when such mismatch will adversely affect the system.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230130145429.903791-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Subsequent patches will add more GIC-related cpucaps. When we do so, it
would be nice to give them a consistent HAS_GIC_* prefix.
In preparation for doing so, this patch renames the existing
ARM64_HAS_IRQ_PRIO_MASKING cap to ARM64_HAS_GIC_PRIO_MASKING.
The cpucaps file was hand-modified; all other changes were scripted
with:
find . -type f -name '*.[chS]' -print0 | \
xargs -0 sed -i 's/ARM64_HAS_IRQ_PRIO_MASKING/ARM64_HAS_GIC_PRIO_MASKING/'
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230130145429.903791-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Subsequent patches will add more GIC-related cpucaps. When we do so, it
would be nice to give them a consistent HAS_GIC_* prefix.
In preparation for doing so, this patch renames the existing
ARM64_HAS_SYSREG_GIC_CPUIF cap to ARM64_HAS_GIC_CPUIF_SYSREGS.
The 'CPUIF_SYSREGS' suffix is chosen so that this will be ordered ahead
of other ARM64_HAS_GIC_* definitions in subsequent patches.
The cpucaps file was hand-modified; all other changes were scripted
with:
find . -type f -name '*.[chS]' -print0 | \
xargs -0 sed -i
's/ARM64_HAS_SYSREG_GIC_CPUIF/ARM64_HAS_GIC_CPUIF_SYSREGS/'
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230130145429.903791-2-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
FEAT_SME2 and FEAT_SME2P1 introduce several new SME features which can
be enumerated via ID_AA64SMFR0_EL1 and a new register ZT0 access to
which is controlled via SMCR_ELn, add the relevant register description.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20221208-arm64-sme2-v4-3-f2fa0aef982f@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Convert all the SPE register defines to automatic generation. No
functional changes.
New registers and fields for SPEv1.2 are added with the conversion.
Some of the PMBSR MSS field defines are kept as the automatic generation
has no way to create multiple names for the same register bits. The
meaning of the MSS field depends on other bits.
Tested-by: James Clark <james.clark@arm.com>
Signed-off-by: Rob Herring <robh@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20220825-arm-spe-v8-7-v4-3-327f860daf28@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
CCSIDR2_EL1 is available if FEAT_CCIDX is implemented as per
DDI0487I.a.
Signed-off-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230112023852.42012-4-akihiko.odaki@daynix.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Convert CCSIDR_EL1 to automatic generation as per DDI0487I.a.
Signed-off-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230112023852.42012-3-akihiko.odaki@daynix.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
The CCSIDR_EL1 register contains an UNKNOWN field (which replaces
fields that were actually defined in previous revisions of the
architecture).
Define an 'Unkn' field type modeled after the Res0/Res1 types
to allow such description. This allows the generation of
#define CCSIDR_EL1_UNKN (UL(0) | GENMASK_ULL(31, 28))
which may have its use one day. Hopefully the architecture doesn't
add too many of those in the future.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Akihiko Odaki <akihiko.odaki@gmail.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230112023852.42012-2-akihiko.odaki@daynix.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Add a definition of ISR_EL1 as per DDI0487I.a. This register was not
previously defined in sysreg.h, no functional changes.
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20221208-arm64-isr-el1-v2-2-89f7073a1ca9@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
FEAT_NMI adds a new interrupt status register for NMIs, ICC_NMIAR1_EL1.
Add the definition for this register as per IHI0069H.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20221208-arm64-isr-el1-v2-1-89f7073a1ca9@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The recently converted 32 bit ID registers have errors in MVFR0_EL1.FPSP,
MVFR0_EL1.SIMDReg and MVFR1_EL1.SIMDHP where enumeration values which
should be 0b0010 are specified as 0b0001. Correct these.
Fixes: e79c94a2a4 ("arm64/sysreg: Convert MVFR0_EL1 to automatic generation")
Fixes: c9b718eda7 ("arm64/sysreg: Convert MVFR1_EL1 to automatic generation")
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20221207-arm64-sysreg-helpers-v3-2-0d71a7b174a8@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If a Cortex-A715 cpu sees a page mapping permissions change from executable
to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers, on the
next instruction abort caused by permission fault.
Only user-space does executable to non-executable permission transition via
mprotect() system call which calls ptep_modify_prot_start() and ptep_modify
_prot_commit() helpers, while changing the page mapping. The platform code
can override these helpers via __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION.
Work around the problem via doing a break-before-make TLB invalidation, for
all executable user space mappings, that go through mprotect() system call.
This overrides ptep_modify_prot_start() and ptep_modify_prot_commit(), via
defining HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION on the platform thus giving
an opportunity to intercept user space exec mappings, and do the necessary
TLB invalidation. Similar interceptions are also implemented for HugeTLB.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20230102061651.34745-1-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
This reverts commit 44ecda71fd.
All versions of this patch on the mailing list, including the version
that ended up getting merged, have portions of code guarded by the
non-existent CONFIG_ARM64_WORKAROUND_2645198 option. Although Anshuman
says he tested the code with some additional debug changes [1], I'm
hesitant to fix the CONFIG option and light up a bunch of code right
before I (and others) disappear for the end of year holidays, during
which time we won't be around to deal with any fallout.
So revert the change for now. We can bring back a fixed, tested version
for a later -rc when folks are thinking about things other than trees
and turkeys.
[1] https://lore.kernel.org/r/b6f61241-e436-5db1-1053-3b441080b8d6@arm.com
Reported-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Link: https://lore.kernel.org/r/20221215094811.23188-1-lukas.bulwahn@gmail.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert ID_DFR1_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-39-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert ID_DFR0_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20221130171637.718182-38-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert ID_AFR0_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-37-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert ID_MMFR5_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-36-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert MVFR2_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-35-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert MVFR1_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-34-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert MVFR0_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-33-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert ID_PFR2_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-32-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert ID_PFR1_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-31-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert ID_PFR0_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20221130171637.718182-30-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert ID_ISAR6_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-29-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert ID_ISAR5_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-28-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert ID_ISAR4_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-27-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert ID_ISAR3_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-26-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert ID_ISAR2_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-25-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert ID_ISAR1_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-24-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert ID_ISAR0_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-23-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert ID_MMFR4_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-22-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert ID_MMFR3_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-21-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert ID_MMFR2_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-20-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert ID_MMFR1_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-19-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Convert ID_MMFR0_EL1 to be automatically generated as per DDI0487I.a,
no functional changes.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-18-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
32bit has multiple values for its id registers, as extra properties
were added to the CPUs. Some of these end up having long names, which
exceed the fixed 48 character column that the sysreg awk script generates.
For example, the ID_MMFR1_EL1.L1Hvd field has an encoding whose natural
name would be 'invalidate Iside only'. Using this causes compile errors
as the script generates the following:
#define ID_MMFR1_EL1_L1Hvd_INVALIDATE_ISIDE_ONLYUL(0b0001)
Add a few extra characters.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20221130171637.718182-17-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
If a Cortex-A715 cpu sees a page mapping permissions change from executable
to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers, on the
next instruction abort caused by permission fault.
Only user-space does executable to non-executable permission transition via
mprotect() system call which calls ptep_modify_prot_start() and ptep_modify
_prot_commit() helpers, while changing the page mapping. The platform code
can override these helpers via __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION.
Work around the problem via doing a break-before-make TLB invalidation, for
all executable user space mappings, that go through mprotect() system call.
This overrides ptep_modify_prot_start() and ptep_modify_prot_commit(), via
defining HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION on the platform thus giving
an opportunity to intercept user space exec mappings, and do the necessary
TLB invalidation. Similar interceptions are also implemented for HugeTLB.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20221116140915.356601-3-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
FEAT_SVE2p1 introduces a number of new SVE instructions. Since there is no
new architectural state added kernel support is simply a new hwcap which
lets userspace know that the feature is supported.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20221017152520.1039165-6-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
FEAT_RPRFM adds a new range prefetch hint within the existing PRFM space
for range prefetch hinting. Add a new hwcap to allow userspace to discover
support for the new instruction.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20221017152520.1039165-4-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
FEAT_CSSC adds a number of new instructions usable to optimise common short
sequences of instructions, add a hwcap indicating that the feature is
available and can be used by userspace.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20221017152520.1039165-2-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
The ARM architecture revision v8.4 introduces a data independent timing
control (DIT) which can be set at any exception level, and instructs the
CPU to avoid optimizations that may result in a correlation between the
execution time of certain instructions and the value of the data they
operate on.
The DIT bit is part of PSTATE, and is therefore context switched as
usual, given that it becomes part of the saved program state (SPSR) when
taking an exception. We have also defined a hwcap for DIT, and so user
space can discover already whether or nor DIT is available. This means
that, as far as user space is concerned, DIT is wired up and fully
functional.
In the kernel, however, we never bothered with DIT: we disable at it
boot (i.e., INIT_PSTATE_EL1 has DIT cleared) and ignore the fact that we
might run with DIT enabled if user space happened to set it.
Currently, we have no idea whether or not running privileged code with
DIT disabled on a CPU that implements support for it may result in a
side channel that exposes privileged data to unprivileged user space
processes, so let's be cautious and just enable DIT while running in the
kernel if supported by all CPUs.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Adam Langley <agl@google.com>
Link: https://lore.kernel.org/all/YwgCrqutxmX0W72r@gmail.com/
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20221107172400.1851434-1-ardb@kernel.org
[will: Removed cpu_has_dit() as per Mark's suggestion on the list]
Signed-off-by: Will Deacon <will@kernel.org>