* kvm-arm64/pmuv3-asahi:
: Support PMUv3 for KVM guests on Apple silicon
:
: Take advantage of some IMPLEMENTATION DEFINED traps available on Apple
: parts to trap-and-emulate the PMUv3 registers on behalf of a KVM guest.
: Constrain the vPMU to a cycle counter and single event counter, as the
: Apple PMU has events that cannot be counted on every counter.
:
: There is a small new interface between the ARM PMU driver and KVM, where
: the PMU driver owns the PMUv3 -> hardware event mappings.
arm64: Enable IMP DEF PMUv3 traps on Apple M*
KVM: arm64: Provide 1 event counter on IMPDEF hardware
drivers/perf: apple_m1: Provide helper for mapping PMUv3 events
KVM: arm64: Remap PMUv3 events onto hardware
KVM: arm64: Advertise PMUv3 if IMPDEF traps are present
KVM: arm64: Compute synthetic sysreg ESR for Apple PMUv3 traps
KVM: arm64: Move PMUVer filtering into KVM code
KVM: arm64: Use guard() to cleanup usage of arm_pmus_lock
KVM: arm64: Drop kvm_arm_pmu_available static key
KVM: arm64: Use a cpucap to determine if system supports FEAT_PMUv3
KVM: arm64: Always support SW_INCR PMU event
KVM: arm64: Compute PMCEID from arm_pmu's event bitmaps
drivers/perf: apple_m1: Support host/guest event filtering
drivers/perf: apple_m1: Refactor event select/filter configuration
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Opening and closing tokens can also match on words with common prefixes
like "Endsysreg" vs "EndsysregFields". This could potentially make the
script go wrong in weird ways so make it fall through to the fatal
unhandled statement catcher if it doesn't fully match the current
block.
Closing ones also get expect_fields(1) to ensure nothing other than
whitespace follows.
Signed-off-by: James Clark <james.clark@linaro.org>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20250115162600.2153226-3-james.clark@linaro.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This is a sysreg block so close it with one. This doesn't make a
difference to the output because the script only matches on the
beginning of the word to close blocks which is correct by coincidence
here.
Signed-off-by: James Clark <james.clark@linaro.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20250115162600.2153226-2-james.clark@linaro.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Apple M* CPUs provide an IMPDEF trap for PMUv3 sysregs, where ESR_EL2.EC
is a reserved value (0x3F) and a sysreg-like ISS is reported in
AFSR1_EL2.
Compute a synthetic ESR for these PMUv3 traps, giving the illusion of
something architectural to the rest of KVM.
Tested-by: Janne Grunau <j@jannau.net>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250305202641.428114-10-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
KVM is about to learn some new tricks to virtualize PMUv3 on IMPDEF
hardware. As part of that, we now need to differentiate host support
from guest support for PMUv3.
Add a cpucap to determine if an architectural PMUv3 is present to guard
host usage of PMUv3 controls.
Tested-by: Janne Grunau <j@jannau.net>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250305202641.428114-6-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
The ICH_MISR_EL2-related macros are missing a number of status
bits that we are about to handle. Take this opportunity to fully
describe the layout of that register as part of the automatic
generation infrastructure.
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250225172930.1850838-4-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
The ICH_VTR_EL2-related macros are missing a number of config
bits that we are about to handle. Take this opportunity to fully
describe the layout of that register as part of the automatic
generation infrastructure.
This results in a bit of churn to repaint constants that are now
generated with a different format.
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250225172930.1850838-3-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
The ICH_HCR_EL2-related macros are missing a number of control
bits that we are about to handle. Take this opportunity to fully
describe the layout of that register as part of the automatic
generation infrastructure.
This results in a bit of churn, unfortunately.
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250225172930.1850838-2-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Add open_tree_attr() which allow to atomically create a detached mount
tree and set mount options on it. If OPEN_TREE_CLONE is used this will
allow the creation of a detached mount with a new set of mount options
without it ever being exposed to userspace without that set of mount
options applied.
Link: https://lore.kernel.org/r/20250128-work-mnt_idmap-update-v2-v1-3-c25feb0d2eb3@kernel.org
Reviewed-by: "Seth Forshee (DigitalOcean)" <sforshee@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
* New features:
- Support for non-protected guest in protected mode, achieving near
feature parity with the non-protected mode
- Support for the EL2 timers as part of the ongoing NV support
- Allow control of hardware tracing for nVHE/hVHE
* Improvements, fixes and cleanups:
- Massive cleanup of the debug infrastructure, making it a bit less
awkward and definitely easier to maintain. This should pave the
way for further optimisations
- Complete rewrite of pKVM's fixed-feature infrastructure, aligning
it with the rest of KVM and making the code easier to follow
- Large simplification of pKVM's memory protection infrastructure
- Better handling of RES0/RES1 fields for memory-backed system
registers
- Add a workaround for Qualcomm's Snapdragon X CPUs, which suffer
from a pretty nasty timer bug
- Small collection of cleanups and low-impact fixes
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmeYqJcQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNLUhCACxUTMVQXhfW3qbh0UQxPd7XXvjI+Hm7SPS
wDuVTle4jrFVGHxuZqtgWLmx8hD7bqO965qmFgbevKlwsRY33onH2nbH4i4AcwbA
jcdM4yMHZI4+Qmnb4G5ZJ89IwjAhHPZTBOV5KRhyHQ/qtRciHHtOgJde7II9fd68
uIESg4SSSyUzI47YSEHmGVmiBIhdQhq2qust0m6NPFalEGYstPbpluPQ6R1CsDqK
v14TIAW7t0vSPucBeODxhA5gEa2JsvNi+sqA+DF/ELH2ZqpkuR7rofgMGblaXCSD
JXa5xamRB9dI5zi8vatwfOzYlog+/gzmPqMh/9JXpiDGHxJe0vlz
=tQ8F
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull KVM/arm64 updates from Will Deacon:
"New features:
- Support for non-protected guest in protected mode, achieving near
feature parity with the non-protected mode
- Support for the EL2 timers as part of the ongoing NV support
- Allow control of hardware tracing for nVHE/hVHE
Improvements, fixes and cleanups:
- Massive cleanup of the debug infrastructure, making it a bit less
awkward and definitely easier to maintain. This should pave the way
for further optimisations
- Complete rewrite of pKVM's fixed-feature infrastructure, aligning
it with the rest of KVM and making the code easier to follow
- Large simplification of pKVM's memory protection infrastructure
- Better handling of RES0/RES1 fields for memory-backed system
registers
- Add a workaround for Qualcomm's Snapdragon X CPUs, which suffer
from a pretty nasty timer bug
- Small collection of cleanups and low-impact fixes"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (87 commits)
arm64/sysreg: Get rid of TRFCR_ELx SysregFields
KVM: arm64: nv: Fix doc header layout for timers
KVM: arm64: nv: Apply RESx settings to sysreg reset values
KVM: arm64: nv: Always evaluate HCR_EL2 using sanitising accessors
KVM: arm64: Fix selftests after sysreg field name update
coresight: Pass guest TRFCR value to KVM
KVM: arm64: Support trace filtering for guests
KVM: arm64: coresight: Give TRBE enabled state to KVM
coresight: trbe: Remove redundant disable call
arm64/sysreg/tools: Move TRFCR definitions to sysreg
tools: arm64: Update sysreg.h header files
KVM: arm64: Drop pkvm_mem_transition for host/hyp donations
KVM: arm64: Drop pkvm_mem_transition for host/hyp sharing
KVM: arm64: Drop pkvm_mem_transition for FF-A
KVM: arm64: Explicitly handle BRBE traps as UNDEFINED
KVM: arm64: vgic: Use str_enabled_disabled() in vgic_v3_probe()
arm64: kvm: Introduce nvhe stack size constants
KVM: arm64: Fix nVHE stacktrace VA bits mask
KVM: arm64: Fix FEAT_MTE in pKVM
Documentation: Update the behaviour of "kvm-arm.mode"
...
There is no such thing as TRFCR_ELx in the architecture.
What we have is TRFCR_EL1, for which TRFCR_EL12 is an accessor.
Rename TRFCR_ELx_* to TRFCR_EL1_*, and fix the bit of code using
these names.
Similarly, TRFCR_EL12 is redefined as a mapping to TRFCR_EL1.
Reviewed-by: James Clark <james.clark@linaro.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/87cygsqgkh.wl-maz@kernel.org
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
* kvm-arm64/coresight-6.14:
: .
: Trace filtering update from James Clark. From the cover letter:
:
: "The guest filtering rules from the Perf session are now honored for both
: nVHE and VHE modes. This is done by either writing to TRFCR_EL12 at the
: start of the Perf session and doing nothing else further, or caching the
: guest value and writing it at guest switch for nVHE. In pKVM, trace is
: now be disabled for both protected and unprotected guests."
: .
KVM: arm64: Fix selftests after sysreg field name update
coresight: Pass guest TRFCR value to KVM
KVM: arm64: Support trace filtering for guests
KVM: arm64: coresight: Give TRBE enabled state to KVM
coresight: trbe: Remove redundant disable call
arm64/sysreg/tools: Move TRFCR definitions to sysreg
tools: arm64: Update sysreg.h header files
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/nv-timers:
: .
: Nested Virt support for the EL2 timers. From the initial cover letter:
:
: "Here's another batch of NV-related patches, this time bringing in most
: of the timer support for EL2 as well as nested guests.
:
: The code is pretty convoluted for a bunch of reasons:
:
: - FEAT_NV2 breaks the timer semantics by redirecting HW controls to
: memory, meaning that a guest could setup a timer and never see it
: firing until the next exit
:
: - We go try hard to reflect the timer state in memory, but that's not
: great.
:
: - With FEAT_ECV, we can finally correctly emulate the virtual timer,
: but this emulation is pretty costly
:
: - As a way to make things suck less, we handle timer reads as early as
: possible, and only defer writes to the normal trap handling
:
: - Finally, some implementations are badly broken, and require some
: hand-holding, irrespective of NV support. So we try and reuse the NV
: infrastructure to make them usable. This could be further optimised,
: but I'm running out of patience for this sort of HW.
:
: [...]"
: .
KVM: arm64: nv: Fix doc header layout for timers
KVM: arm64: nv: Document EL2 timer API
KVM: arm64: Work around x1e's CNTVOFF_EL2 bogosity
KVM: arm64: nv: Sanitise CNTHCTL_EL2
KVM: arm64: nv: Propagate CNTHCTL_EL2.EL1NV{P,V}CT bits
KVM: arm64: nv: Add trap routing for CNTHCTL_EL2.EL1{NVPCT,NVVCT,TVT,TVCT}
KVM: arm64: Handle counter access early in non-HYP context
KVM: arm64: nv: Accelerate EL0 counter accesses from hypervisor context
KVM: arm64: nv: Accelerate EL0 timer read accesses when FEAT_ECV in use
KVM: arm64: nv: Use FEAT_ECV to trap access to EL0 timers
KVM: arm64: nv: Publish emulated timer interrupt state in the in-memory state
KVM: arm64: nv: Sync nested timer state with FEAT_NV2
KVM: arm64: nv: Add handling of EL2-specific timer registers
Signed-off-by: Marc Zyngier <maz@kernel.org>
Convert TRFCR to automatic generation. Add separate definitions for ELx
and EL2 as TRFCR_EL1 doesn't have CX. This also mirrors the previous
definition so no code change is required.
Also add TRFCR_EL12 which will start to be used in a later commit.
Unfortunately, to avoid breaking the Perf build with duplicate
definition errors, the tools copy of the sysreg.h header needs to be
updated at the same time rather than the usual second commit. This is
because the generated version of sysreg
(arch/arm64/include/generated/asm/sysreg-defs.h), is currently shared
and tools/ does not have its own copy.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Clark <james.clark@arm.com>
Signed-off-by: James Clark <james.clark@linaro.org>
Link: https://lore.kernel.org/r/20250106142446.628923-4-james.clark@linaro.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
DDI0601 2024-12 introduces SME 2.2 as well as a few new optional features,
update sysreg to reflect the changes in ID_AA64SMFR0_EL1 enumerating them.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20250107-arm64-2024-dpisa-v5-2-7578da51fc3d@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
DDI0601 2024-09 introduces SVE 2.2 as well as a few new optional features,
update sysreg to reflect the changes in ID_AA64ZFR0_EL1 enumerating them.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241211-arm64-2024-dpisa-v4-4-0fd403876df2@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
DDI0601 2024-09 defines a new feature flags in ID_AA64PFR2_EL1
describing support for injecting UNDEF exceptions, update sysreg to
include this.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241211-arm64-2024-dpisa-v4-1-0fd403876df2@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
It appears that on Qualcomm's x1e CPU, CNTVOFF_EL2 doesn't really
work, specially with HCR_EL2.E2H=1.
A non-zero offset results in a screaming virtual timer interrupt,
to the tune of a few 100k interrupts per second on a 4 vcpu VM.
This is also evidenced by this CPU's inability to correctly run
any of the timer selftests.
The only case this doesn't break is when this register is set to 0,
which breaks VM migration.
When HCR_EL2.E2H=0, the timer seems to behave normally, and does
not result in an interrupt storm.
As a workaround, use the fact that this CPU implements FEAT_ECV,
and trap all accesses to the virtual timer and counter, keeping
CNTVOFF_EL2 set to zero, and emulate accesses to CVAL/TVAL/CTL
and the counter itself, fixing up the timer to account for the
missing offset.
And if you think this is disgusting, you'd probably be right.
Acked-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20241217142321.763801-12-maz@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
There is no such thing as CPACR_ELx in the architecture.
What we have is CPACR_EL1, for which CPTR_EL12 is an accessor.
Rename CPACR_ELx_* to CPACR_EL1_*, and fix the bit of code using
these names.
Reviewed-by: Mark Brown <broonie@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20241219173351.1123087-5-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Perform a bulk convert of the remaining EL12 accessors to use the
Mapping qualifier, which makes things a bit clearer.
Reviewed-by: Mark Brown <broonie@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20241219173351.1123087-4-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
TCR2_EL1x is a pretty bizarre construct, as it is shared between
TCR2_EL1 and TCR2_EL12. But the latter is obviously only an
accessor to the former.
In order to make things more consistent, upgrade TCR2_EL1x to
a full-blown sysreg definition for TCR2_EL1, and describe TCR2_EL12
as a mapping to TCR2_EL1.
This results in a couple of minor changes to the actual code.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20241219173351.1123087-3-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
*EL02 and *_EL12 system registers are actually only accessors for
EL0 and EL1 registers accessed from EL2 when HCR_EL2.E2H==1. They
do not have fields of their own.
To that effect, introduce a 'Mapping' entry, describing which
system register an _EL12 register maps to.
Implementation wise, this is handled the same was as Fields,
which ls only a comment.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20241219173351.1123087-2-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
essentially guessing which pfns are refcounted pages. The reason to
do so was that KVM needs to map both non-refcounted pages (for example
BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP VMAs that contain
refcounted pages. However, the result was security issues in the past,
and more recently the inability to map VM_IO and VM_PFNMAP memory
that _is_ backed by struct page but is not refcounted. In particular
this broke virtio-gpu blob resources (which directly map host graphics
buffers into the guest as "vram" for the virtio-gpu device) with the
amdgpu driver, because amdgpu allocates non-compound higher order pages
and the tail pages could not be mapped into KVM.
This requires adjusting all uses of struct page in the per-architecture
code, to always work on the pfn whenever possible. The large series that
did this, from David Stevens and Sean Christopherson, also cleaned up
substantially the set of functions that provided arch code with the
pfn for a host virtual addresses. The previous maze of twisty little
passages, all different, is replaced by five functions (__gfn_to_page,
__kvm_faultin_pfn, the non-__ versions of these two, and kvm_prefetch_pages)
saving almost 200 lines of code.
ARM:
* Support for stage-1 permission indirection (FEAT_S1PIE) and
permission overlays (FEAT_S1POE), including nested virt + the
emulated page table walker
* Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This call
was introduced in PSCIv1.3 as a mechanism to request hibernation,
similar to the S4 state in ACPI
* Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As
part of it, introduce trivial initialization of the host's MPAM
context so KVM can use the corresponding traps
* PMU support under nested virtualization, honoring the guest
hypervisor's trap configuration and event filtering when running a
nested guest
* Fixes to vgic ITS serialization where stale device/interrupt table
entries are not zeroed when the mapping is invalidated by the VM
* Avoid emulated MMIO completion if userspace has requested synchronous
external abort injection
* Various fixes and cleanups affecting pKVM, vCPU initialization, and
selftests
LoongArch:
* Add iocsr and mmio bus simulation in kernel.
* Add in-kernel interrupt controller emulation.
* Add support for virtualization extensions to the eiointc irqchip.
PPC:
* Drop lingering and utterly obsolete references to PPC970 KVM, which was
removed 10 years ago.
* Fix incorrect documentation references to non-existing ioctls
RISC-V:
* Accelerate KVM RISC-V when running as a guest
* Perf support to collect KVM guest statistics from host side
s390:
* New selftests: more ucontrol selftests and CPU model sanity checks
* Support for the gen17 CPU model
* List registers supported by KVM_GET/SET_ONE_REG in the documentation
x86:
* Cleanup KVM's handling of Accessed and Dirty bits to dedup code, improve
documentation, harden against unexpected changes. Even if the hardware
A/D tracking is disabled, it is possible to use the hardware-defined A/D
bits to track if a PFN is Accessed and/or Dirty, and that removes a lot
of special cases.
* Elide TLB flushes when aging secondary PTEs, as has been done in x86's
primary MMU for over 10 years.
* Recover huge pages in-place in the TDP MMU when dirty page logging is
toggled off, instead of zapping them and waiting until the page is
re-accessed to create a huge mapping. This reduces vCPU jitter.
* Batch TLB flushes when dirty page logging is toggled off. This reduces
the time it takes to disable dirty logging by ~3x.
* Remove the shrinker that was (poorly) attempting to reclaim shadow page
tables in low-memory situations.
* Clean up and optimize KVM's handling of writes to MSR_IA32_APICBASE.
* Advertise CPUIDs for new instructions in Clearwater Forest
* Quirk KVM's misguided behavior of initialized certain feature MSRs to
their maximum supported feature set, which can result in KVM creating
invalid vCPU state. E.g. initializing PERF_CAPABILITIES to a non-zero
value results in the vCPU having invalid state if userspace hides PDCM
from the guest, which in turn can lead to save/restore failures.
* Fix KVM's handling of non-canonical checks for vCPUs that support LA57
to better follow the "architecture", in quotes because the actual
behavior is poorly documented. E.g. most MSR writes and descriptor
table loads ignore CR4.LA57 and operate purely on whether the CPU
supports LA57.
* Bypass the register cache when querying CPL from kvm_sched_out(), as
filling the cache from IRQ context is generally unsafe; harden the
cache accessors to try to prevent similar issues from occuring in the
future. The issue that triggered this change was already fixed in 6.12,
but was still kinda latent.
* Advertise AMD_IBPB_RET to userspace, and fix a related bug where KVM
over-advertises SPEC_CTRL when trying to support cross-vendor VMs.
* Minor cleanups
* Switch hugepage recovery thread to use vhost_task. These kthreads can
consume significant amounts of CPU time on behalf of a VM or in response
to how the VM behaves (for example how it accesses its memory); therefore
KVM tried to place the thread in the VM's cgroups and charge the CPU
time consumed by that work to the VM's container. However the kthreads
did not process SIGSTOP/SIGCONT, and therefore cgroups which had KVM
instances inside could not complete freezing. Fix this by replacing the
kthread with a PF_USER_WORKER thread, via the vhost_task abstraction.
Another 100+ lines removed, with generally better behavior too like
having these threads properly parented in the process tree.
* Revert a workaround for an old CPU erratum (Nehalem/Westmere) that didn't
really work; there was really nothing to work around anyway: the broken
patch was meant to fix nested virtualization, but the PERF_GLOBAL_CTRL
MSR is virtualized and therefore unaffected by the erratum.
* Fix 6.12 regression where CONFIG_KVM will be built as a module even
if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is 'y'.
x86 selftests:
* x86 selftests can now use AVX.
Documentation:
* Use rST internal links
* Reorganize the introduction to the API document
Generic:
* Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock instead
of RCU, so that running a vCPU on a different task doesn't encounter long
due to having to wait for all CPUs become quiescent. In general both reads
and writes are rare, but userspace that supports confidential computing is
introducing the use of "helper" vCPUs that may jump from one host processor
to another. Those will be very happy to trigger a synchronize_rcu(), and
the effect on performance is quite the disaster.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmc9MRYUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroP00QgArxqxBIGLCW5t7bw7vtNq63QYRyh4
dTiDguLiYQJ+AXmnRu11R6aPC7HgMAvlFCCmH+GEce4WEgt26hxCmncJr/aJOSwS
letCS7TrME16PeZvh25A1nhPBUw6mTF1qqzgcdHMrqXG8LuHoGcKYGSRVbkf3kfI
1ZoMq1r8ChXbVVmCx9DQ3gw1TVr5Dpjs2voLh8rDSE9Xpw0tVVabHu3/NhQEz/F+
t8/nRaqH777icCHIf9PCk5HnarHxLAOvhM2M0Yj09PuBcE5fFQxpxltw/qiKQqqW
ep4oquojGl87kZnhlDaac2UNtK90Ws+WxxvCwUmbvGN0ZJVaQwf4FvTwig==
=lWpE
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"The biggest change here is eliminating the awful idea that KVM had of
essentially guessing which pfns are refcounted pages.
The reason to do so was that KVM needs to map both non-refcounted
pages (for example BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP
VMAs that contain refcounted pages.
However, the result was security issues in the past, and more recently
the inability to map VM_IO and VM_PFNMAP memory that _is_ backed by
struct page but is not refcounted. In particular this broke virtio-gpu
blob resources (which directly map host graphics buffers into the
guest as "vram" for the virtio-gpu device) with the amdgpu driver,
because amdgpu allocates non-compound higher order pages and the tail
pages could not be mapped into KVM.
This requires adjusting all uses of struct page in the
per-architecture code, to always work on the pfn whenever possible.
The large series that did this, from David Stevens and Sean
Christopherson, also cleaned up substantially the set of functions
that provided arch code with the pfn for a host virtual addresses.
The previous maze of twisty little passages, all different, is
replaced by five functions (__gfn_to_page, __kvm_faultin_pfn, the
non-__ versions of these two, and kvm_prefetch_pages) saving almost
200 lines of code.
ARM:
- Support for stage-1 permission indirection (FEAT_S1PIE) and
permission overlays (FEAT_S1POE), including nested virt + the
emulated page table walker
- Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This
call was introduced in PSCIv1.3 as a mechanism to request
hibernation, similar to the S4 state in ACPI
- Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As
part of it, introduce trivial initialization of the host's MPAM
context so KVM can use the corresponding traps
- PMU support under nested virtualization, honoring the guest
hypervisor's trap configuration and event filtering when running a
nested guest
- Fixes to vgic ITS serialization where stale device/interrupt table
entries are not zeroed when the mapping is invalidated by the VM
- Avoid emulated MMIO completion if userspace has requested
synchronous external abort injection
- Various fixes and cleanups affecting pKVM, vCPU initialization, and
selftests
LoongArch:
- Add iocsr and mmio bus simulation in kernel.
- Add in-kernel interrupt controller emulation.
- Add support for virtualization extensions to the eiointc irqchip.
PPC:
- Drop lingering and utterly obsolete references to PPC970 KVM, which
was removed 10 years ago.
- Fix incorrect documentation references to non-existing ioctls
RISC-V:
- Accelerate KVM RISC-V when running as a guest
- Perf support to collect KVM guest statistics from host side
s390:
- New selftests: more ucontrol selftests and CPU model sanity checks
- Support for the gen17 CPU model
- List registers supported by KVM_GET/SET_ONE_REG in the
documentation
x86:
- Cleanup KVM's handling of Accessed and Dirty bits to dedup code,
improve documentation, harden against unexpected changes.
Even if the hardware A/D tracking is disabled, it is possible to
use the hardware-defined A/D bits to track if a PFN is Accessed
and/or Dirty, and that removes a lot of special cases.
- Elide TLB flushes when aging secondary PTEs, as has been done in
x86's primary MMU for over 10 years.
- Recover huge pages in-place in the TDP MMU when dirty page logging
is toggled off, instead of zapping them and waiting until the page
is re-accessed to create a huge mapping. This reduces vCPU jitter.
- Batch TLB flushes when dirty page logging is toggled off. This
reduces the time it takes to disable dirty logging by ~3x.
- Remove the shrinker that was (poorly) attempting to reclaim shadow
page tables in low-memory situations.
- Clean up and optimize KVM's handling of writes to
MSR_IA32_APICBASE.
- Advertise CPUIDs for new instructions in Clearwater Forest
- Quirk KVM's misguided behavior of initialized certain feature MSRs
to their maximum supported feature set, which can result in KVM
creating invalid vCPU state. E.g. initializing PERF_CAPABILITIES to
a non-zero value results in the vCPU having invalid state if
userspace hides PDCM from the guest, which in turn can lead to
save/restore failures.
- Fix KVM's handling of non-canonical checks for vCPUs that support
LA57 to better follow the "architecture", in quotes because the
actual behavior is poorly documented. E.g. most MSR writes and
descriptor table loads ignore CR4.LA57 and operate purely on
whether the CPU supports LA57.
- Bypass the register cache when querying CPL from kvm_sched_out(),
as filling the cache from IRQ context is generally unsafe; harden
the cache accessors to try to prevent similar issues from occuring
in the future. The issue that triggered this change was already
fixed in 6.12, but was still kinda latent.
- Advertise AMD_IBPB_RET to userspace, and fix a related bug where
KVM over-advertises SPEC_CTRL when trying to support cross-vendor
VMs.
- Minor cleanups
- Switch hugepage recovery thread to use vhost_task.
These kthreads can consume significant amounts of CPU time on
behalf of a VM or in response to how the VM behaves (for example
how it accesses its memory); therefore KVM tried to place the
thread in the VM's cgroups and charge the CPU time consumed by that
work to the VM's container.
However the kthreads did not process SIGSTOP/SIGCONT, and therefore
cgroups which had KVM instances inside could not complete freezing.
Fix this by replacing the kthread with a PF_USER_WORKER thread, via
the vhost_task abstraction. Another 100+ lines removed, with
generally better behavior too like having these threads properly
parented in the process tree.
- Revert a workaround for an old CPU erratum (Nehalem/Westmere) that
didn't really work; there was really nothing to work around anyway:
the broken patch was meant to fix nested virtualization, but the
PERF_GLOBAL_CTRL MSR is virtualized and therefore unaffected by the
erratum.
- Fix 6.12 regression where CONFIG_KVM will be built as a module even
if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is
'y'.
x86 selftests:
- x86 selftests can now use AVX.
Documentation:
- Use rST internal links
- Reorganize the introduction to the API document
Generic:
- Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock
instead of RCU, so that running a vCPU on a different task doesn't
encounter long due to having to wait for all CPUs become quiescent.
In general both reads and writes are rare, but userspace that
supports confidential computing is introducing the use of "helper"
vCPUs that may jump from one host processor to another. Those will
be very happy to trigger a synchronize_rcu(), and the effect on
performance is quite the disaster"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (298 commits)
KVM: x86: Break CONFIG_KVM_X86's direct dependency on KVM_INTEL || KVM_AMD
KVM: x86: add back X86_LOCAL_APIC dependency
Revert "KVM: VMX: Move LOAD_IA32_PERF_GLOBAL_CTRL errata handling out of setup_vmcs_config()"
KVM: x86: switch hugepage recovery thread to vhost_task
KVM: x86: expose MSR_PLATFORM_INFO as a feature MSR
x86: KVM: Advertise CPUIDs for new instructions in Clearwater Forest
Documentation: KVM: fix malformed table
irqchip/loongson-eiointc: Add virt extension support
LoongArch: KVM: Add irqfd support
LoongArch: KVM: Add PCHPIC user mode read and write functions
LoongArch: KVM: Add PCHPIC read and write functions
LoongArch: KVM: Add PCHPIC device support
LoongArch: KVM: Add EIOINTC user mode read and write functions
LoongArch: KVM: Add EIOINTC read and write functions
LoongArch: KVM: Add EIOINTC device support
LoongArch: KVM: Add IPI user mode read and write function
LoongArch: KVM: Add IPI read and write function
LoongArch: KVM: Add IPI device support
LoongArch: KVM: Add iocsr and mmio bus simulation in kernel
KVM: arm64: Pass on SVE mapping failures
...
* Support for running Linux in a protected VM under the Arm Confidential
Compute Architecture (CCA)
* Guarded Control Stack user-space support. Current patches follow the
x86 ABI of implicitly creating a shadow stack on clone(). Subsequent
patches (already on the list) will add support for clone3() allowing
finer-grained control of the shadow stack size and placement from libc
* AT_HWCAP3 support (not running out of HWCAP2 bits yet but we are
getting close with the upcoming dpISA support)
* Other arch features:
- In-kernel use of the memcpy instructions, FEAT_MOPS (previously only
exposed to user; uaccess support not merged yet)
- MTE: hugetlbfs support and the corresponding kselftests
- Optimise CRC32 using the PMULL instructions
- Support for FEAT_HAFT enabling ARCH_HAS_NONLEAF_PMD_YOUNG
- Optimise the kernel TLB flushing to use the range operations
- POE/pkey (permission overlays): further cleanups after bringing the
signal handler in line with the x86 behaviour for 6.12
* arm64 perf updates:
- Support for the NXP i.MX91 PMU in the existing IMX driver
- Support for Ampere SoCs in the Designware PCIe PMU driver
- Support for Marvell's 'PEM' PCIe PMU present in the 'Odyssey' SoC
- Support for Samsung's 'Mongoose' CPU PMU
- Support for PMUv3.9 finer-grained userspace counter access control
- Switch back to platform_driver::remove() now that it returns 'void'
- Add some missing events for the CXL PMU driver
* Miscellaneous arm64 fixes/cleanups:
- Page table accessors cleanup: type updates, drop unused macros,
reorganise arch_make_huge_pte() and clean up pte_mkcont(), sanity
check addresses before runtime P4D/PUD folding
- Command line override for ID_AA64MMFR0_EL1.ECV (advertising the
FEAT_ECV for the generic timers) allowing Linux to boot with
firmware deployments that don't set SCTLR_EL3.ECVEn
- ACPI/arm64: tighten the check for the array of platform timer
structures and adjust the error handling procedure in
gtdt_parse_timer_block()
- Optimise the cache flush for the uprobes xol slot (skip if no
change) and other uprobes/kprobes cleanups
- Fix the context switching of tpidrro_el0 when kpti is enabled
- Dynamic shadow call stack fixes
- Sysreg updates
- Various arm64 kselftest improvements
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmc5POIACgkQa9axLQDI
XvEDYA//a3eeNkgMuGdnSCVcLz+zy+oNwAwboG/4X1DqL8jiCbI4npwugPx95RIA
YZOUvo9T2aL3OyefpUHll4gFHqx9OwoZIig2F70TEUmlPsGUbh0KBkdfQF3xZPdl
EwV0kHSGEqMWMBwsGJGwgCYrUaf1MUQzh1GBl7VJ2ts5XsJBaBeOyKkysij26wtZ
V+aHq2IUx7qQS7+HC/4P6IoHxKziFcsCMovaKaynP4cw9xXBQbDMcNlHEwndOMyk
pu2zrv7GG0j3KQuVP/2Alf5FKhmI0GVGP/6Nc/zsOmw96w8Kf7HfzEtkHawr2aRq
rqg/c9ivzDn1p+fUBo4ZYtrRk4IAY+yKu6hdzdLTP5+bQrBTWTO9rjQVBm9FAGYT
sCdEj1NqzvExvNHD7X6ut/GJ05lmce3K+qeSXSEysN9gqiT3eomYWMXrD2V2lxzb
rIDDcb/icfaqjt14Mksh19r/rzNeq7noj9CGSmcqw0BHZfHzl38Lai6pdfYzCNyn
vCM/c4c1D/WWX8/lifO1JZVbhDk1jy82Iphg2KEhL8iKPxDsKBBZLmYuU1oa7tMo
WryGAz9+GQwd+W9chFuaOEtMnzvW2scEJ5Eb2fEf0Qj0aEurkL+C9dZR6o1GN77V
DBUxtU628Ef4PJJGfbNCwZzdd8UPYG3a/mKfQQ3dz0oz2LySlW4=
=wDot
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- Support for running Linux in a protected VM under the Arm
Confidential Compute Architecture (CCA)
- Guarded Control Stack user-space support. Current patches follow the
x86 ABI of implicitly creating a shadow stack on clone(). Subsequent
patches (already on the list) will add support for clone3() allowing
finer-grained control of the shadow stack size and placement from
libc
- AT_HWCAP3 support (not running out of HWCAP2 bits yet but we are
getting close with the upcoming dpISA support)
- Other arch features:
- In-kernel use of the memcpy instructions, FEAT_MOPS (previously
only exposed to user; uaccess support not merged yet)
- MTE: hugetlbfs support and the corresponding kselftests
- Optimise CRC32 using the PMULL instructions
- Support for FEAT_HAFT enabling ARCH_HAS_NONLEAF_PMD_YOUNG
- Optimise the kernel TLB flushing to use the range operations
- POE/pkey (permission overlays): further cleanups after bringing
the signal handler in line with the x86 behaviour for 6.12
- arm64 perf updates:
- Support for the NXP i.MX91 PMU in the existing IMX driver
- Support for Ampere SoCs in the Designware PCIe PMU driver
- Support for Marvell's 'PEM' PCIe PMU present in the 'Odyssey' SoC
- Support for Samsung's 'Mongoose' CPU PMU
- Support for PMUv3.9 finer-grained userspace counter access
control
- Switch back to platform_driver::remove() now that it returns
'void'
- Add some missing events for the CXL PMU driver
- Miscellaneous arm64 fixes/cleanups:
- Page table accessors cleanup: type updates, drop unused macros,
reorganise arch_make_huge_pte() and clean up pte_mkcont(), sanity
check addresses before runtime P4D/PUD folding
- Command line override for ID_AA64MMFR0_EL1.ECV (advertising the
FEAT_ECV for the generic timers) allowing Linux to boot with
firmware deployments that don't set SCTLR_EL3.ECVEn
- ACPI/arm64: tighten the check for the array of platform timer
structures and adjust the error handling procedure in
gtdt_parse_timer_block()
- Optimise the cache flush for the uprobes xol slot (skip if no
change) and other uprobes/kprobes cleanups
- Fix the context switching of tpidrro_el0 when kpti is enabled
- Dynamic shadow call stack fixes
- Sysreg updates
- Various arm64 kselftest improvements
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (168 commits)
arm64: tls: Fix context-switching of tpidrro_el0 when kpti is enabled
kselftest/arm64: Try harder to generate different keys during PAC tests
kselftest/arm64: Don't leak pipe fds in pac.exec_sign_all()
arm64/ptrace: Clarify documentation of VL configuration via ptrace
kselftest/arm64: Corrupt P0 in the irritator when testing SSVE
acpi/arm64: remove unnecessary cast
arm64/mm: Change protval as 'pteval_t' in map_range()
kselftest/arm64: Fix missing printf() argument in gcs/gcs-stress.c
kselftest/arm64: Add FPMR coverage to fp-ptrace
kselftest/arm64: Expand the set of ZA writes fp-ptrace does
kselftets/arm64: Use flag bits for features in fp-ptrace assembler code
kselftest/arm64: Enable build of PAC tests with LLVM=1
kselftest/arm64: Check that SVCR is 0 in signal handlers
selftests/mm: Fix unused function warning for aarch64_write_signal_pkey()
kselftest/arm64: Fix printf() compiler warnings in the arm64 syscall-abi.c tests
kselftest/arm64: Fix printf() warning in the arm64 MTE prctl() test
kselftest/arm64: Fix printf() compiler warnings in the arm64 fp tests
kselftest/arm64: Fix build with stricter assemblers
arm64/scs: Drop unused prototype __pi_scs_patch_vmlinux()
arm64/scs: Deal with 64-bit relative offsets in FDE frames
...
* arm64/for-next/perf:
perf: Switch back to struct platform_driver::remove()
perf: arm_pmuv3: Add support for Samsung Mongoose PMU
dt-bindings: arm: pmu: Add Samsung Mongoose core compatible
perf/dwc_pcie: Fix typos in event names
perf/dwc_pcie: Add support for Ampere SoCs
ARM: pmuv3: Add missing write_pmuacr()
perf/marvell: Marvell PEM performance monitor support
perf/arm_pmuv3: Add PMUv3.9 per counter EL0 access control
perf/dwc_pcie: Convert the events with mixed case to lowercase
perf/cxlpmu: Support missing events in 3.1 spec
perf: imx_perf: add support for i.MX91 platform
dt-bindings: perf: fsl-imx-ddr: Add i.MX91 compatible
drivers perf: remove unused field pmu_node
* for-next/gcs: (42 commits)
: arm64 Guarded Control Stack user-space support
kselftest/arm64: Fix missing printf() argument in gcs/gcs-stress.c
arm64/gcs: Fix outdated ptrace documentation
kselftest/arm64: Ensure stable names for GCS stress test results
kselftest/arm64: Validate that GCS push and write permissions work
kselftest/arm64: Enable GCS for the FP stress tests
kselftest/arm64: Add a GCS stress test
kselftest/arm64: Add GCS signal tests
kselftest/arm64: Add test coverage for GCS mode locking
kselftest/arm64: Add a GCS test program built with the system libc
kselftest/arm64: Add very basic GCS test program
kselftest/arm64: Always run signals tests with GCS enabled
kselftest/arm64: Allow signals tests to specify an expected si_code
kselftest/arm64: Add framework support for GCS to signal handling tests
kselftest/arm64: Add GCS as a detected feature in the signal tests
kselftest/arm64: Verify the GCS hwcap
arm64: Add Kconfig for Guarded Control Stack (GCS)
arm64/ptrace: Expose GCS via ptrace and core files
arm64/signal: Expose GCS state in signal frames
arm64/signal: Set up and restore the GCS context for signal handlers
arm64/mm: Implement map_shadow_stack()
...
* for-next/probes:
: Various arm64 uprobes/kprobes cleanups
arm64: insn: Simulate nop instruction for better uprobe performance
arm64: probes: Remove probe_opcode_t
arm64: probes: Cleanup kprobes endianness conversions
arm64: probes: Move kprobes-specific fields
arm64: probes: Fix uprobes for big-endian kernels
arm64: probes: Fix simulate_ldr*_literal()
arm64: probes: Remove broken LDR (literal) uprobe support
* for-next/asm-offsets:
: arm64 asm-offsets.c cleanup (remove unused offsets)
arm64: asm-offsets: remove PREEMPT_DISABLE_OFFSET
arm64: asm-offsets: remove DMA_{TO,FROM}_DEVICE
arm64: asm-offsets: remove VM_EXEC and PAGE_SZ
arm64: asm-offsets: remove MM_CONTEXT_ID
arm64: asm-offsets: remove COMPAT_{RT_,SIGFRAME_REGS_OFFSET
arm64: asm-offsets: remove VMA_VM_*
arm64: asm-offsets: remove TSK_ACTIVE_MM
* for-next/tlb:
: TLB flushing optimisations
arm64: optimize flush tlb kernel range
arm64: tlbflush: add __flush_tlb_range_limit_excess()
* for-next/misc:
: Miscellaneous patches
arm64: tls: Fix context-switching of tpidrro_el0 when kpti is enabled
arm64/ptrace: Clarify documentation of VL configuration via ptrace
acpi/arm64: remove unnecessary cast
arm64/mm: Change protval as 'pteval_t' in map_range()
arm64: uprobes: Optimize cache flushes for xol slot
acpi/arm64: Adjust error handling procedure in gtdt_parse_timer_block()
arm64: fix .data.rel.ro size assertion when CONFIG_LTO_CLANG
arm64/ptdump: Test both PTE_TABLE_BIT and PTE_VALID for block mappings
arm64/mm: Sanity check PTE address before runtime P4D/PUD folding
arm64/mm: Drop setting PTE_TYPE_PAGE in pte_mkcont()
ACPI: GTDT: Tighten the check for the array of platform timer structures
arm64/fpsimd: Fix a typo
arm64: Expose ID_AA64ISAR1_EL1.XS to sanitised feature consumers
arm64: Return early when break handler is found on linked-list
arm64/mm: Re-organize arch_make_huge_pte()
arm64/mm: Drop _PROT_SECT_DEFAULT
arm64: Add command-line override for ID_AA64MMFR0_EL1.ECV
arm64: head: Drop SWAPPER_TABLE_SHIFT
arm64: cpufeature: add POE to cpucap_is_possible()
arm64/mm: Change pgattr_change_is_safe() arguments as pteval_t
* for-next/mte:
: Various MTE improvements
selftests: arm64: add hugetlb mte tests
hugetlb: arm64: add mte support
* for-next/sysreg:
: arm64 sysreg updates
arm64/sysreg: Update ID_AA64MMFR1_EL1 to DDI0601 2024-09
* for-next/stacktrace:
: arm64 stacktrace improvements
arm64: preserve pt_regs::stackframe during exec*()
arm64: stacktrace: unwind exception boundaries
arm64: stacktrace: split unwind_consume_stack()
arm64: stacktrace: report recovered PCs
arm64: stacktrace: report source of unwind data
arm64: stacktrace: move dump_backtrace() to kunwind_stack_walk()
arm64: use a common struct frame_record
arm64: pt_regs: swap 'unused' and 'pmr' fields
arm64: pt_regs: rename "pmr_save" -> "pmr"
arm64: pt_regs: remove stale big-endian layout
arm64: pt_regs: assert pt_regs is a multiple of 16 bytes
* for-next/hwcap3:
: Add AT_HWCAP3 support for arm64 (also wire up AT_HWCAP4)
arm64: Support AT_HWCAP3
binfmt_elf: Wire up AT_HWCAP3 at AT_HWCAP4
* for-next/kselftest: (30 commits)
: arm64 kselftest fixes/cleanups
kselftest/arm64: Try harder to generate different keys during PAC tests
kselftest/arm64: Don't leak pipe fds in pac.exec_sign_all()
kselftest/arm64: Corrupt P0 in the irritator when testing SSVE
kselftest/arm64: Add FPMR coverage to fp-ptrace
kselftest/arm64: Expand the set of ZA writes fp-ptrace does
kselftets/arm64: Use flag bits for features in fp-ptrace assembler code
kselftest/arm64: Enable build of PAC tests with LLVM=1
kselftest/arm64: Check that SVCR is 0 in signal handlers
kselftest/arm64: Fix printf() compiler warnings in the arm64 syscall-abi.c tests
kselftest/arm64: Fix printf() warning in the arm64 MTE prctl() test
kselftest/arm64: Fix printf() compiler warnings in the arm64 fp tests
kselftest/arm64: Fix build with stricter assemblers
kselftest/arm64: Test signal handler state modification in fp-stress
kselftest/arm64: Provide a SIGUSR1 handler in the kernel mode FP stress test
kselftest/arm64: Implement irritators for ZA and ZT
kselftest/arm64: Remove unused ADRs from irritator handlers
kselftest/arm64: Correct misleading comments on fp-stress irritators
kselftest/arm64: Poll less often while waiting for fp-stress children
kselftest/arm64: Increase frequency of signal delivery in fp-stress
kselftest/arm64: Fix encoding for SVE B16B16 test
...
* for-next/crc32:
: Optimise CRC32 using PMULL instructions
arm64/crc32: Implement 4-way interleave using PMULL
arm64/crc32: Reorganize bit/byte ordering macros
arm64/lib: Handle CRC-32 alternative in C code
* for-next/guest-cca:
: Support for running Linux as a guest in Arm CCA
arm64: Document Arm Confidential Compute
virt: arm-cca-guest: TSM_REPORT support for realms
arm64: Enable memory encrypt for Realms
arm64: mm: Avoid TLBI when marking pages as valid
arm64: Enforce bounce buffers for realm DMA
efi: arm64: Map Device with Prot Shared
arm64: rsi: Map unprotected MMIO as decrypted
arm64: rsi: Add support for checking whether an MMIO is protected
arm64: realm: Query IPA size from the RMM
arm64: Detect if in a realm and set RIPAS RAM
arm64: rsi: Add RSI definitions
* for-next/haft:
: Support for arm64 FEAT_HAFT
arm64: pgtable: Warn unexpected pmdp_test_and_clear_young()
arm64: Enable ARCH_HAS_NONLEAF_PMD_YOUNG
arm64: Add support for FEAT_HAFT
arm64: setup: name 'tcr2' register
arm64/sysreg: Update ID_AA64MMFR1_EL1 register
* for-next/scs:
: Dynamic shadow call stack fixes
arm64/scs: Drop unused prototype __pi_scs_patch_vmlinux()
arm64/scs: Deal with 64-bit relative offsets in FDE frames
arm64/scs: Fix handling of DWARF augmentation data in CIE/FDE frames
* kvm-arm64/nv-pmu:
: Support for vEL2 PMU controls
:
: Align the vEL2 PMU support with the current state of non-nested KVM,
: including:
:
: - Trap routing, with the annoying complication of EL2 traps that apply
: in Host EL0
:
: - PMU emulation, using the correct configuration bits depending on
: whether a counter falls in the hypervisor or guest range of PMCs
:
: - Perf event swizzling across nested boundaries, as the event filtering
: needs to be remapped to cope with vEL2
KVM: arm64: nv: Reprogram PMU events affected by nested transition
KVM: arm64: nv: Apply EL2 event filtering when in hyp context
KVM: arm64: nv: Honor MDCR_EL2.HLP
KVM: arm64: nv: Honor MDCR_EL2.HPME
KVM: arm64: Add helpers to determine if PMC counts at a given EL
KVM: arm64: nv: Adjust range of accessible PMCs according to HPMN
KVM: arm64: Rename kvm_pmu_valid_counter_mask()
KVM: arm64: nv: Advertise support for FEAT_HPMN0
KVM: arm64: nv: Describe trap behaviour of MDCR_EL2.HPMN
KVM: arm64: nv: Honor MDCR_EL2.{TPM, TPMCR} in Host EL0
KVM: arm64: nv: Reinject traps that take effect in Host EL0
KVM: arm64: nv: Rename BEHAVE_FORWARD_ANY
KVM: arm64: nv: Allow coarse-grained trap combos to use complex traps
KVM: arm64: Describe RES0/RES1 bits of MDCR_EL2
arm64: sysreg: Add new definitions for ID_AA64DFR0_EL1
arm64: sysreg: Migrate MDCR_EL2 definition to table
arm64: sysreg: Describe ID_AA64DFR2_EL1 fields
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/mpam-ni:
: Hiding FEAT_MPAM from KVM guests, courtesy of James Morse + Joey Gouly
:
: Fix a longstanding bug where FEAT_MPAM was accidentally exposed to KVM
: guests + the EL2 trap configuration was not explicitly configured. As
: part of this, bring in skeletal support for initialising the MPAM CPU
: context so KVM can actually set traps for its guests.
:
: Be warned -- if this series leads to boot failures on your system,
: you're running on turd firmware.
:
: As an added bonus (that builds upon the infrastructure added by the MPAM
: series), allow userspace to configure CTR_EL0.L1Ip, courtesy of Shameer
: Kolothum.
KVM: arm64: Make L1Ip feature in CTR_EL0 writable from userspace
KVM: arm64: selftests: Test ID_AA64PFR0.MPAM isn't completely ignored
KVM: arm64: Disable MPAM visibility by default and ignore VMM writes
KVM: arm64: Add a macro for creating filtered sys_reg_descs entries
KVM: arm64: Fix missing traps of guest accesses to the MPAM registers
arm64: cpufeature: discover CPU support for MPAM
arm64: head.S: Initialise MPAM EL2 registers and disable traps
arm64/sysreg: Convert existing MPAM sysregs and add the remaining entries
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Armv8.9/v9.4 introduces the feature Hardware managed Access Flag
for Table descriptors (FEAT_HAFT). The feature is indicated by
ID_AA64MMFR1_EL1.HAFDBS == 0b0011 and can be enabled by
TCR2_EL1.HAFT so it has a dependency on FEAT_TCR2.
Adds the Kconfig for FEAT_HAFT and support detecting and enabling
the feature. The feature is enabled in __cpu_setup() before MMU on
just like HA. A CPU capability is added to notify the user of the
feature.
Add definition of P{G,4,U,M}D_TABLE_AF bit and set the AF bit
when creating the page table, which will save the hardware
from having to update them at runtime. This will be ignored if
FEAT_HAFT is not enabled.
The AF bit of table descriptors cannot be managed by the software
per spec, unlike the HA. So this should be used only if it's supported
system wide by system_supports_haft().
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Link: https://lore.kernel.org/r/20241102104235.62560-4-yangyicong@huawei.com
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
[catalin.marinas@arm.com: added the ID check back to __cpu_setup in case of future CPU errata]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Update ID_AA64MMFR1_EL1 register fields definition per DDI0601 (ID092424)
2024-09. ID_AA64MMFR1_EL1.ETS adds definition for FEAT_ETS2 and
FEAT_ETS3. ID_AA64MMFR1_EL1.HAFDBS adds definition for FEAT_HAFT and
FEAT_HDBSS.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Link: https://lore.kernel.org/r/20241102104235.62560-2-yangyicong@huawei.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARMv8.4 adds support for 'Memory Partitioning And Monitoring' (MPAM)
which describes an interface to cache and bandwidth controls wherever
they appear in the system.
Add support to detect MPAM. Like SVE, MPAM has an extra id register that
describes some more properties, including the virtualisation support,
which is optional. Detect this separately so we can detect
mismatched/insane systems, but still use MPAM on the host even if the
virtualisation support is missing.
MPAM needs enabling at the highest implemented exception level, otherwise
the register accesses trap. The 'enabled' flag is accessible to lower
exception levels, but its in a register that traps when MPAM isn't enabled.
The cpufeature 'matches' hook is extended to test this on one of the
CPUs, so that firmware can emulate MPAM as disabled if it is reserved
for use by secure world.
Secondary CPUs that appear late could trip cpufeature's 'lower safe'
behaviour after the MPAM properties have been advertised to user-space.
Add a verify call to ensure late secondaries match the existing CPUs.
(If you have a boot failure that bisects here its likely your CPUs
advertise MPAM in the id registers, but firmware failed to either enable
or MPAM, or emulate the trap as if it were disabled)
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20241030160317.2528209-4-joey.gouly@arm.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Move the existing MPAM system register defines from sysreg.h to
tools/sysreg and add the remaining system registers.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20241030160317.2528209-2-joey.gouly@arm.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
POR_EL2 is the equivalent of POR_EL1 for the EL2&0 translation
regime, and it is sorely missing from the sysreg file.
Add the sucker.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241023145345.1613824-28-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
PIRE0_EL2 is the equivalent of PIRE0_EL1 for the EL2&0 translation
regime, and it is sorely missing from the sysreg file.
Add the sucker.
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241023145345.1613824-4-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Despite what the documentation says, TCR2_EL2.{SKL0,SKL1} do not exist,
and the corresponding information is in the respective TTBRx_EL2. This
is a leftover from a development version of the architecture.
This change makes TCR2_EL2 similar to TCR2_EL1 in that respect.
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20241023145345.1613824-2-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Armv8.9/9.4 PMUv3.9 adds per counter EL0 access controls. Per counter
access is enabled with the UEN bit in PMUSERENR_EL1 register. Individual
counters are enabled/disabled in the PMUACR_EL1 register. When UEN is
set, the CR/ER bits control EL0 write access and must be set to disable
write access.
With the access controls, the clearing of unused counters can be
skipped.
KVM also configures PMUSERENR_EL1 in order to trap to EL2. UEN does not
need to be set for it since only PMUv3.5 is exposed to guests.
Signed-off-by: Rob Herring (Arm) <robh@kernel.org>
Link: https://lore.kernel.org/r/20241002184326.1105499-1-robh@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
ID_AA64MMFR1_EL1 has been updated by the architecture to enumerate several
new architectural features since the last time sysreg was updated, sync
with the definnition in DD0601 2024-09 to include two new versions of each
of ETS and HAFDBS.
Reported-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241011-arm64-aa64mmfr1-2024-09-v1-1-61935a085010@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add a cpufeature for GCS, allowing other code to conditionally support it
at runtime.
Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-12-222b78d87eee@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* for-next/poe: (31 commits)
arm64: pkeys: remove redundant WARN
kselftest/arm64: Add test case for POR_EL0 signal frame records
kselftest/arm64: parse POE_MAGIC in a signal frame
kselftest/arm64: add HWCAP test for FEAT_S1POE
selftests: mm: make protection_keys test work on arm64
selftests: mm: move fpregs printing
kselftest/arm64: move get_header()
arm64: add Permission Overlay Extension Kconfig
arm64: enable PKEY support for CPUs with S1POE
arm64: enable POE and PIE to coexist
arm64/ptrace: add support for FEAT_POE
arm64: add POE signal support
arm64: implement PKEYS support
arm64: add pte_access_permitted_no_overlay()
arm64: handle PKEY/POE faults
arm64: mask out POIndex when modifying a PTE
arm64: convert protection key into vm_flags and pgprot values
arm64: add POIndex defines
arm64: re-order MTE VM_ flags
arm64: enable the Permission Overlay Extension for EL0
...
This indicates if the system supports POE. This is a CPUCAP_BOOT_CPU_FEATURE
as the boot CPU will enable POE if it has it, so secondary CPUs must also
have this feature.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20240822151113.1479789-6-joey.gouly@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Armv9.4/8.9 PMU adds optional support for a fixed instruction counter
similar to the fixed cycle counter. Support for the feature is indicated
in the ID_AA64DFR1_EL1 register PMICNTR field. The counter is not
accessible in AArch32.
Existing userspace using direct counter access won't know how to handle
the fixed instruction counter, so we have to avoid using the counter
when user access is requested.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Rob Herring (Arm) <robh@kernel.org>
Tested-by: James Clark <james.clark@linaro.org>
Link: https://lore.kernel.org/r/20240731-arm-pmu-3-9-icntr-v3-7-280a8d7ff465@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
ARMV8_PMU_COUNTER_MASK is really a mask for the PMSELR_EL0.SEL register
field. Make that clear by adding a standard sysreg definition for the
register, and using it instead.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Rob Herring (Arm) <robh@kernel.org>
Tested-by: James Clark <james.clark@linaro.org>
Link: https://lore.kernel.org/r/20240731-arm-pmu-3-9-icntr-v3-4-280a8d7ff465@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
- Remove some redundant Kconfig conditionals
- Fix string output in ptrace selftest
- Fix fast GUP crashes in some page-table configurations
- Remove obsolete linker option when building the vDSO
- Fix some sysreg field definitions for the GIC
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmaiSAMQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNJ8PB/9lyDbJ+qTNwECGKtz+vOAbronZncJy4yzd
ElPRNeQ+B7QqrrYZM2TCrz6/ppeKXp0OurwNk9vKBqzrCfy/D6kKXWfcOYqeWlyI
C2NImLHZgC6pIRwF3GlJ/E0VDtf/wQsJoWk7ikVssPtyIWOufafaB53FRacc1vnf
bmEpcdXox+FsTG4q8YhBE6DZnqqQTnm7MvAt4wgskk6tTyKj/FuQmSk50ZW22oXb
G2UOZxhYZV7IIXlRaClsY/iv62pTfMYlqDAvZeH81aiol/vfYXVFSeca5Mca67Ji
P1o8HPd++hTw9WVyCrrbSGcZ/XNs96yTmahJWM+eneiV7OzKxj4v
=Mr4K
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
"The usual summary below, but the main fix is for the fast GUP lockless
page-table walk when we have a combination of compile-time and
run-time folding of the p4d and the pud respectively.
- Remove some redundant Kconfig conditionals
- Fix string output in ptrace selftest
- Fix fast GUP crashes in some page-table configurations
- Remove obsolete linker option when building the vDSO
- Fix some sysreg field definitions for the GIC"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: mm: Fix lockless walks with static and dynamic page-table folding
arm64/sysreg: Correct the values for GICv4.1
arm64/vdso: Remove --hash-style=sysv
kselftest: missing arg in ptrace.c
arm64/Kconfig: Remove redundant 'if HAVE_FUNCTION_GRAPH_TRACER'
arm64: remove redundant 'if HAVE_ARCH_KASAN' in Kconfig
Currently, sysreg has value as 0b0010 for the presence of GICv4.1 in
ID_PFR1_EL1 and ID_AA64PFR0_EL1, instead of 0b0011 as per ARM ARM.
Hence, correct them to reflect ARM ARM.
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20240718215532.616447-1-rananta@google.com
Signed-off-by: Will Deacon <will@kernel.org>
Change the asm/unistd.h header for arm64 to no longer include
asm-generic/unistd.h itself, but instead generate both the asm/unistd.h
contents and the list of entry points using the syscall.tbl scripts that
we use on most other architectures.
Once his is done for the remaining architectures, the generic unistd.h
header can be removed and the generated tbl file put in its place.
The Makefile changes are more complex than they should be, I need
a little help to improve those. Ideally this should be done in an
architecture-independent way as well.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
This is a straight conversion from the old asm/unistd32.h into the
format used by 32-bit arm and most other architectures, calling scripts
to generate the asm/unistd32.h header and a new asm/syscalls32.h headers.
I used a semi-automated text replacement method to do the conversion,
and then used 'vimdiff' to synchronize the whitespace and the (unused)
names of the non-compat syscalls with the arm version.
There are two differences between the generated syscalls names and the
old version:
- the old asm/unistd32.h contained only a __NR_sync_file_range2
entry, while the arm32 version also defines
__NR_arm_sync_file_range with the same number. I added this
duplicate back in asm/unistd32.h.
- __NR__sysctl was removed from the arm64 file a while ago, but
all the tables still contain it. This should probably get removed
everywhere but I added it here for consistency.
On top of that, the arm64 version does not contain any references to
the 32-bit OABI syscalls that are not supported by arm64. If we ever
want to share the file between arm32 and arm64, it would not be
hard to add support for both in one file.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cortex-X4 and Neoverse-V3 suffer from errata whereby an MSR to the SSBS
special-purpose register does not affect subsequent speculative
instructions, permitting speculative store bypassing for a window of
time. This is described in their Software Developer Errata Notice (SDEN)
documents:
* Cortex-X4 SDEN v8.0, erratum 3194386:
https://developer.arm.com/documentation/SDEN-2432808/0800/
* Neoverse-V3 SDEN v6.0, erratum 3312417:
https://developer.arm.com/documentation/SDEN-2891958/0600/
To workaround these errata, it is necessary to place a speculation
barrier (SB) after MSR to the SSBS special-purpose register. This patch
adds the requisite SB after writes to SSBS within the kernel, and hides
the presence of SSBS from EL0 such that userspace software which cares
about SSBS will manipulate this via prctl(PR_GET_SPECULATION_CTRL, ...).
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20240508081400.235362-5-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
* Changes to FPU handling came in via the main s390 pull request
* Only deliver to the guest the SCLP events that userspace has
requested.
* More virtual vs physical address fixes (only a cleanup since
virtual and physical address spaces are currently the same).
* Fix selftests undefined behavior.
x86:
* Fix a restriction that the guest can't program a PMU event whose
encoding matches an architectural event that isn't included in the
guest CPUID. The enumeration of an architectural event only says
that if a CPU supports an architectural event, then the event can be
programmed *using the architectural encoding*. The enumeration does
NOT say anything about the encoding when the CPU doesn't report support
the event *in general*. It might support it, and it might support it
using the same encoding that made it into the architectural PMU spec.
* Fix a variety of bugs in KVM's emulation of RDPMC (more details on
individual commits) and add a selftest to verify KVM correctly emulates
RDMPC, counter availability, and a variety of other PMC-related
behaviors that depend on guest CPUID and therefore are easier to
validate with selftests than with custom guests (aka kvm-unit-tests).
* Zero out PMU state on AMD if the virtual PMU is disabled, it does not
cause any bug but it wastes time in various cases where KVM would check
if a PMC event needs to be synthesized.
* Optimize triggering of emulated events, with a nice ~10% performance
improvement in VM-Exit microbenchmarks when a vPMU is exposed to the
guest.
* Tighten the check for "PMI in guest" to reduce false positives if an NMI
arrives in the host while KVM is handling an IRQ VM-Exit.
* Fix a bug where KVM would report stale/bogus exit qualification information
when exiting to userspace with an internal error exit code.
* Add a VMX flag in /proc/cpuinfo to report 5-level EPT support.
* Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for
read, e.g. to avoid serializing vCPUs when userspace deletes a memslot.
* Tear down TDP MMU page tables at 4KiB granularity (used to be 1GiB). KVM
doesn't support yielding in the middle of processing a zap, and 1GiB
granularity resulted in multi-millisecond lags that are quite impolite
for CONFIG_PREEMPT kernels.
* Allocate write-tracking metadata on-demand to avoid the memory overhead when
a kernel is built with i915 virtualization support but the workloads use
neither shadow paging nor i915 virtualization.
* Explicitly initialize a variety of on-stack variables in the emulator that
triggered KMSAN false positives.
* Fix the debugregs ABI for 32-bit KVM.
* Rework the "force immediate exit" code so that vendor code ultimately decides
how and when to force the exit, which allowed some optimization for both
Intel and AMD.
* Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if
vCPU creation ultimately failed, causing extra unnecessary work.
* Cleanup the logic for checking if the currently loaded vCPU is in-kernel.
* Harden against underflowing the active mmu_notifier invalidation
count, so that "bad" invalidations (usually due to bugs elsehwere in the
kernel) are detected earlier and are less likely to hang the kernel.
x86 Xen emulation:
* Overlay pages can now be cached based on host virtual address,
instead of guest physical addresses. This removes the need to
reconfigure and invalidate the cache if the guest changes the
gpa but the underlying host virtual address remains the same.
* When possible, use a single host TSC value when computing the deadline for
Xen timers in order to improve the accuracy of the timer emulation.
* Inject pending upcall events when the vCPU software-enables its APIC to fix
a bug where an upcall can be lost (and to follow Xen's behavior).
* Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen
events fails, e.g. if the guest has aliased xAPIC IDs.
RISC-V:
* Support exception and interrupt handling in selftests
* New self test for RISC-V architectural timer (Sstc extension)
* New extension support (Ztso, Zacas)
* Support userspace emulation of random number seed CSRs.
ARM:
* Infrastructure for building KVM's trap configuration based on the
architectural features (or lack thereof) advertised in the VM's ID
registers
* Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
x86's WC) at stage-2, improving the performance of interacting with
assigned devices that can tolerate it
* Conversion of KVM's representation of LPIs to an xarray, utilized to
address serialization some of the serialization on the LPI injection
path
* Support for _architectural_ VHE-only systems, advertised through the
absence of FEAT_E2H0 in the CPU's ID register
* Miscellaneous cleanups, fixes, and spelling corrections to KVM and
selftests
LoongArch:
* Set reserved bits as zero in CPUCFG.
* Start SW timer only when vcpu is blocking.
* Do not restart SW timer when it is expired.
* Remove unnecessary CSR register saving during enter guest.
* Misc cleanups and fixes as usual.
Generic:
* cleanup Kconfig by removing CONFIG_HAVE_KVM, which was basically always
true on all architectures except MIPS (where Kconfig determines the
available depending on CPU capabilities). It is replaced either by
an architecture-dependent symbol for MIPS, and IS_ENABLED(CONFIG_KVM)
everywhere else.
* Factor common "select" statements in common code instead of requiring
each architecture to specify it
* Remove thoroughly obsolete APIs from the uapi headers.
* Move architecture-dependent stuff to uapi/asm/kvm.h
* Always flush the async page fault workqueue when a work item is being
removed, especially during vCPU destruction, to ensure that there are no
workers running in KVM code when all references to KVM-the-module are gone,
i.e. to prevent a very unlikely use-after-free if kvm.ko is unloaded.
* Grab a reference to the VM's mm_struct in the async #PF worker itself instead
of gifting the worker a reference, so that there's no need to remember
to *conditionally* clean up after the worker.
Selftests:
* Reduce boilerplate especially when utilize selftest TAP infrastructure.
* Add basic smoke tests for SEV and SEV-ES, along with a pile of library
support for handling private/encrypted/protected memory.
* Fix benign bugs where tests neglect to close() guest_memfd files.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmX0iP8UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroND7wf+JZoNvwZ+bmwWe/4jn/YwNoYi/C5z
eypn8M1gsWEccpCpqPBwznVm9T29rF4uOlcMvqLEkHfTpaL1EKUUjP1lXPz/ileP
6a2RdOGxAhyTiFC9fjy+wkkjtLbn1kZf6YsS0hjphP9+w0chNbdn0w81dFVnXryd
j7XYI8R/bFAthNsJOuZXSEjCfIHxvTTG74OrTf1B1FEBB+arPmrgUeJftMVhffQK
Sowgg8L/Ii/x6fgV5NZQVSIyVf1rp8z7c6UaHT4Fwb0+RAMW8p9pYv9Qp1YkKp8y
5j0V9UzOHP7FRaYimZ5BtwQoqiZXYylQ+VuU/Y2f4X85cvlLzSqxaEMAPA==
=mqOV
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"S390:
- Changes to FPU handling came in via the main s390 pull request
- Only deliver to the guest the SCLP events that userspace has
requested
- More virtual vs physical address fixes (only a cleanup since
virtual and physical address spaces are currently the same)
- Fix selftests undefined behavior
x86:
- Fix a restriction that the guest can't program a PMU event whose
encoding matches an architectural event that isn't included in the
guest CPUID. The enumeration of an architectural event only says
that if a CPU supports an architectural event, then the event can
be programmed *using the architectural encoding*. The enumeration
does NOT say anything about the encoding when the CPU doesn't
report support the event *in general*. It might support it, and it
might support it using the same encoding that made it into the
architectural PMU spec
- Fix a variety of bugs in KVM's emulation of RDPMC (more details on
individual commits) and add a selftest to verify KVM correctly
emulates RDMPC, counter availability, and a variety of other
PMC-related behaviors that depend on guest CPUID and therefore are
easier to validate with selftests than with custom guests (aka
kvm-unit-tests)
- Zero out PMU state on AMD if the virtual PMU is disabled, it does
not cause any bug but it wastes time in various cases where KVM
would check if a PMC event needs to be synthesized
- Optimize triggering of emulated events, with a nice ~10%
performance improvement in VM-Exit microbenchmarks when a vPMU is
exposed to the guest
- Tighten the check for "PMI in guest" to reduce false positives if
an NMI arrives in the host while KVM is handling an IRQ VM-Exit
- Fix a bug where KVM would report stale/bogus exit qualification
information when exiting to userspace with an internal error exit
code
- Add a VMX flag in /proc/cpuinfo to report 5-level EPT support
- Rework TDP MMU root unload, free, and alloc to run with mmu_lock
held for read, e.g. to avoid serializing vCPUs when userspace
deletes a memslot
- Tear down TDP MMU page tables at 4KiB granularity (used to be
1GiB). KVM doesn't support yielding in the middle of processing a
zap, and 1GiB granularity resulted in multi-millisecond lags that
are quite impolite for CONFIG_PREEMPT kernels
- Allocate write-tracking metadata on-demand to avoid the memory
overhead when a kernel is built with i915 virtualization support
but the workloads use neither shadow paging nor i915 virtualization
- Explicitly initialize a variety of on-stack variables in the
emulator that triggered KMSAN false positives
- Fix the debugregs ABI for 32-bit KVM
- Rework the "force immediate exit" code so that vendor code
ultimately decides how and when to force the exit, which allowed
some optimization for both Intel and AMD
- Fix a long-standing bug where kvm_has_noapic_vcpu could be left
elevated if vCPU creation ultimately failed, causing extra
unnecessary work
- Cleanup the logic for checking if the currently loaded vCPU is
in-kernel
- Harden against underflowing the active mmu_notifier invalidation
count, so that "bad" invalidations (usually due to bugs elsehwere
in the kernel) are detected earlier and are less likely to hang the
kernel
x86 Xen emulation:
- Overlay pages can now be cached based on host virtual address,
instead of guest physical addresses. This removes the need to
reconfigure and invalidate the cache if the guest changes the gpa
but the underlying host virtual address remains the same
- When possible, use a single host TSC value when computing the
deadline for Xen timers in order to improve the accuracy of the
timer emulation
- Inject pending upcall events when the vCPU software-enables its
APIC to fix a bug where an upcall can be lost (and to follow Xen's
behavior)
- Fall back to the slow path instead of warning if "fast" IRQ
delivery of Xen events fails, e.g. if the guest has aliased xAPIC
IDs
RISC-V:
- Support exception and interrupt handling in selftests
- New self test for RISC-V architectural timer (Sstc extension)
- New extension support (Ztso, Zacas)
- Support userspace emulation of random number seed CSRs
ARM:
- Infrastructure for building KVM's trap configuration based on the
architectural features (or lack thereof) advertised in the VM's ID
registers
- Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
x86's WC) at stage-2, improving the performance of interacting with
assigned devices that can tolerate it
- Conversion of KVM's representation of LPIs to an xarray, utilized
to address serialization some of the serialization on the LPI
injection path
- Support for _architectural_ VHE-only systems, advertised through
the absence of FEAT_E2H0 in the CPU's ID register
- Miscellaneous cleanups, fixes, and spelling corrections to KVM and
selftests
LoongArch:
- Set reserved bits as zero in CPUCFG
- Start SW timer only when vcpu is blocking
- Do not restart SW timer when it is expired
- Remove unnecessary CSR register saving during enter guest
- Misc cleanups and fixes as usual
Generic:
- Clean up Kconfig by removing CONFIG_HAVE_KVM, which was basically
always true on all architectures except MIPS (where Kconfig
determines the available depending on CPU capabilities). It is
replaced either by an architecture-dependent symbol for MIPS, and
IS_ENABLED(CONFIG_KVM) everywhere else
- Factor common "select" statements in common code instead of
requiring each architecture to specify it
- Remove thoroughly obsolete APIs from the uapi headers
- Move architecture-dependent stuff to uapi/asm/kvm.h
- Always flush the async page fault workqueue when a work item is
being removed, especially during vCPU destruction, to ensure that
there are no workers running in KVM code when all references to
KVM-the-module are gone, i.e. to prevent a very unlikely
use-after-free if kvm.ko is unloaded
- Grab a reference to the VM's mm_struct in the async #PF worker
itself instead of gifting the worker a reference, so that there's
no need to remember to *conditionally* clean up after the worker
Selftests:
- Reduce boilerplate especially when utilize selftest TAP
infrastructure
- Add basic smoke tests for SEV and SEV-ES, along with a pile of
library support for handling private/encrypted/protected memory
- Fix benign bugs where tests neglect to close() guest_memfd files"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
selftests: kvm: remove meaningless assignments in Makefiles
KVM: riscv: selftests: Add Zacas extension to get-reg-list test
RISC-V: KVM: Allow Zacas extension for Guest/VM
KVM: riscv: selftests: Add Ztso extension to get-reg-list test
RISC-V: KVM: Allow Ztso extension for Guest/VM
RISC-V: KVM: Forward SEED CSR access to user space
KVM: riscv: selftests: Add sstc timer test
KVM: riscv: selftests: Change vcpu_has_ext to a common function
KVM: riscv: selftests: Add guest helper to get vcpu id
KVM: riscv: selftests: Add exception handling support
LoongArch: KVM: Remove unnecessary CSR register saving during enter guest
LoongArch: KVM: Do not restart SW timer when it is expired
LoongArch: KVM: Start SW timer only when vcpu is blocking
LoongArch: KVM: Set reserved bits as zero in CPUCFG
KVM: selftests: Explicitly close guest_memfd files in some gmem tests
KVM: x86/xen: fix recursive deadlock in timer injection
KVM: pfncache: simplify locking and make more self-contained
KVM: x86/xen: remove WARN_ON_ONCE() with false positives in evtchn delivery
KVM: x86/xen: inject vCPU upcall vector when local APIC is enabled
KVM: x86/xen: improve accuracy of Xen timers
...
* for-next/stage1-lpa2: (48 commits)
: Add support for LPA2 and WXN and stage 1
arm64/mm: Avoid ID mapping of kpti flag if it is no longer needed
arm64/mm: Use generic __pud_free() helper in pud_free() implementation
arm64: gitignore: ignore relacheck
arm64: Use Signed/Unsigned enums for TGRAN{4,16,64} and VARange
arm64: mm: Make PUD folding check in set_pud() a runtime check
arm64: mm: add support for WXN memory translation attribute
mm: add arch hook to validate mmap() prot flags
arm64: defconfig: Enable LPA2 support
arm64: Enable 52-bit virtual addressing for 4k and 16k granule configs
arm64: kvm: avoid CONFIG_PGTABLE_LEVELS for runtime levels
arm64: ptdump: Deal with translation levels folded at runtime
arm64: ptdump: Disregard unaddressable VA space
arm64: mm: Add support for folding PUDs at runtime
arm64: kasan: Reduce minimum shadow alignment and enable 5 level paging
arm64: mm: Add 5 level paging support to fixmap and swapper handling
arm64: Enable LPA2 at boot if supported by the system
arm64: mm: add LPA2 and 5 level paging support to G-to-nG conversion
arm64: mm: Add definitions to support 5 levels of paging
arm64: mm: Add LPA2 support to phys<->pte conversion routines
arm64: mm: Wire up TCR.DS bit to PTE shareability fields
...
* arm64/for-next/perf: (39 commits)
docs: perf: Fix build warning of hisi-pcie-pmu.rst
perf: starfive: Only allow COMPILE_TEST for 64-bit architectures
MAINTAINERS: Add entry for StarFive StarLink PMU
docs: perf: Add description for StarFive's StarLink PMU
dt-bindings: perf: starfive: Add JH8100 StarLink PMU
perf: starfive: Add StarLink PMU support
docs: perf: Update usage for target filter of hisi-pcie-pmu
drivers/perf: hisi_pcie: Merge find_related_event() and get_event_idx()
drivers/perf: hisi_pcie: Relax the check on related events
drivers/perf: hisi_pcie: Check the target filter properly
drivers/perf: hisi_pcie: Add more events for counting TLP bandwidth
drivers/perf: hisi_pcie: Fix incorrect counting under metric mode
drivers/perf: hisi_pcie: Introduce hisi_pcie_pmu_get_event_ctrl_val()
drivers/perf: hisi_pcie: Rename hisi_pcie_pmu_{config,clear}_filter()
drivers/perf: hisi: Enable HiSilicon Erratum 162700402 quirk for HIP09
perf/arm_cspmu: Add devicetree support
dt-bindings/perf: Add Arm CoreSight PMU
perf/arm_cspmu: Simplify counter reset
perf/arm_cspmu: Simplify attribute groups
perf/arm_cspmu: Simplify initialisation
...
* for-next/reorg-va-space:
: Reorganise the arm64 kernel VA space in preparation for LPA2 support
: (52-bit VA/PA).
arm64: kaslr: Adjust randomization range dynamically
arm64: mm: Reclaim unused vmemmap region for vmalloc use
arm64: vmemmap: Avoid base2 order of struct page size to dimension region
arm64: ptdump: Discover start of vmemmap region at runtime
arm64: ptdump: Allow all region boundaries to be defined at boot time
arm64: mm: Move fixmap region above vmemmap region
arm64: mm: Move PCI I/O emulation region above the vmemmap region
* for-next/rust-for-arm64:
: Enable Rust support for arm64
arm64: rust: Enable Rust support for AArch64
rust: Refactor the build target to allow the use of builtin targets
* for-next/misc:
: Miscellaneous arm64 patches
ARM64: Dynamically allocate cpumasks and increase supported CPUs to 512
arm64: Remove enable_daif macro
arm64/hw_breakpoint: Directly use ESR_ELx_WNR for an watchpoint exception
arm64: cpufeatures: Clean up temporary variable to simplify code
arm64: Update setup_arch() comment on interrupt masking
arm64: remove unnecessary ifdefs around is_compat_task()
arm64: ftrace: Don't forbid CALL_OPS+CC_OPTIMIZE_FOR_SIZE with Clang
arm64/sme: Ensure that all fields in SMCR_EL1 are set to known values
arm64/sve: Ensure that all fields in ZCR_EL1 are set to known values
arm64/sve: Document that __SVE_VQ_MAX is much larger than needed
arm64: make member of struct pt_regs and it's offset macro in the same order
arm64: remove unneeded BUILD_BUG_ON assertion
arm64: kretprobes: acquire the regs via a BRK exception
arm64: io: permit offset addressing
arm64: errata: Don't enable workarounds for "rare" errata by default
* for-next/daif-cleanup:
: Clean up DAIF handling for EL0 returns
arm64: Unmask Debug + SError in do_notify_resume()
arm64: Move do_notify_resume() to entry-common.c
arm64: Simplify do_notify_resume() DAIF masking
* for-next/kselftest:
: Miscellaneous arm64 kselftest patches
kselftest/arm64: Test that ptrace takes effect in the target process
* for-next/documentation:
: arm64 documentation patches
arm64/sme: Remove spurious 'is' in SME documentation
arm64/fp: Clarify effect of setting an unsupported system VL
arm64/sme: Fix cut'n'paste in ABI document
arm64/sve: Remove bitrotted comment about syscall behaviour
* for-next/sysreg:
: sysreg updates
arm64/sysreg: Update ID_AA64DFR0_EL1 register
arm64/sysreg: Update ID_DFR0_EL1 register fields
arm64/sysreg: Add register fields for ID_AA64DFR1_EL1
* for-next/dpisa:
: Support for 2023 dpISA extensions
kselftest/arm64: Add 2023 DPISA hwcap test coverage
kselftest/arm64: Add basic FPMR test
kselftest/arm64: Handle FPMR context in generic signal frame parser
arm64/hwcap: Define hwcaps for 2023 DPISA features
arm64/ptrace: Expose FPMR via ptrace
arm64/signal: Add FPMR signal handling
arm64/fpsimd: Support FEAT_FPMR
arm64/fpsimd: Enable host kernel access to FPMR
arm64/cpufeature: Hook new identification registers up to cpufeature
FEAT_FPMR defines a new EL0 accessible register FPMR use to configure the
FP8 related features added to the architecture at the same time. Detect
support for this register and context switch it for EL0 when present.
Due to the sharing of responsibility for saving floating point state
between the host kernel and KVM FP8 support is not yet implemented in KVM
and a stub similar to that used for SVCR is provided for FPMR in order to
avoid bisection issues. To make it easier to share host state with the
hypervisor we store FPMR as a hardened usercopy field in uw (along with
some padding).
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20240306-arm64-2023-dpisa-v5-3-c568edc8ed7f@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Despite having the control bits for FEAT_SPECRES and FEAT_PACM,
the ID registers fields are either incomplete or missing.
Fix it.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20240214131827.2856277-2-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Open-coding the feature matching parameters for LVA/LVA2 leads to
issues with upcoming changes to the cpufeature code.
By making TGRAN{4,16,64} and VARange signed/unsigned as per the
architecture, we can use the existing macros, making the feature
match robust against those changes.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently, we detect CPU support for 52-bit virtual addressing (LVA)
extremely early, before creating the kernel page tables or enabling the
MMU. We cannot override the feature this early, and so large virtual
addressing is always enabled on CPUs that implement support for it if
the software support for it was enabled at build time. It also means we
rely on non-trivial code in asm to deal with this feature.
Given that both the ID map and the TTBR1 mapping of the kernel image are
guaranteed to be 48-bit addressable, it is not actually necessary to
enable support this early, and instead, we can model it as a CPU
feature. That way, we can rely on code patching to get the correct
TCR.T1SZ values programmed on secondary boot and resume from suspend.
On the primary boot path, we simply enable the MMU with 48-bit virtual
addressing initially, and update TCR.T1SZ if LVA is supported from C
code, right before creating the kernel mapping. Given that TTBR1 still
points to reserved_pg_dir at this point, updating TCR.T1SZ should be
safe without the need for explicit TLB maintenance.
Since this gets rid of all accesses to the vabits_actual variable from
asm code that occurred before TCR.T1SZ had been programmed, we no longer
have a need for this variable, and we can replace it with a C expression
that produces the correct value directly, based on the value of TCR.T1SZ.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-70-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
A variant of FEAT_E2H0 not being implemented exists in the form of
HCR_EL2.E2H being RES1 *and* HCR_EL2.NV1 being RES0 (indicating that
only VHE is supported on the host and nested guests).
Add the necessary infrastructure for this new CPU capability.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20240122181344.258974-7-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
ARMv9.5 has infroduced ID_AA64MMFR4_EL1 with a bunch of new features.
Add the corresponding layout.
This is extracted from the public ARM SysReg_xml_A_profile-2023-09
delivery, timestamped d55f5af8e09052abe92a02adf820deea2eaed717.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Miguel Luis <miguel.luis@oracle.com>
Link: https://lore.kernel.org/r/20240122181344.258974-5-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* for-next/sysregs:
arm64/sysreg: Add missing system instruction definitions for FGT
arm64/sysreg: Add missing system register definitions for FGT
arm64/sysreg: Add missing ExtTrcBuff field definition to ID_AA64DFR0_EL1
arm64/sysreg: Add missing Pauth_LR field definitions to ID_AA64ISAR1_EL1
arm64/sysreg: Add new system registers for GCS
arm64/sysreg: Add definition for FPMR
arm64/sysreg: Update HCRX_EL2 definition for DDI0601 2023-09
arm64/sysreg: Update SCTLR_EL1 for DDI0601 2023-09
arm64/sysreg: Update ID_AA64SMFR0_EL1 definition for DDI0601 2023-09
arm64/sysreg: Add definition for ID_AA64FPFR0_EL1
arm64/sysreg: Add definition for ID_AA64ISAR3_EL1
arm64/sysreg: Update ID_AA64ISAR2_EL1 defintion for DDI0601 2023-09
arm64/sysreg: Add definition for ID_AA64PFR2_EL1
arm64/sysreg: update CPACR_EL1 register
arm64/sysreg: add system register POR_EL{0,1}
arm64/sysreg: Add definition for HAFGRTR_EL2
arm64/sysreg: Update HFGITR_EL2 definiton to DDI0601 2023-09
* for-next/lpa2-prep:
arm64: mm: get rid of kimage_vaddr global variable
arm64: mm: Take potential load offset into account when KASLR is off
arm64: kernel: Disable latent_entropy GCC plugin in early C runtime
arm64: Add ARM64_HAS_LPA2 CPU capability
arm64/mm: Add FEAT_LPA2 specific ID_AA64MMFR0.TGRAN[2]
arm64/mm: Update tlb invalidation routines for FEAT_LPA2
arm64/mm: Add lpa2_is_enabled() kvm_lpa2_is_enabled() stubs
arm64/mm: Modify range-based tlbi to decrement scale
Add the definitions of missing system registers that are
trappable by fine grain traps. The definitions are based on
DDI0601 2023-09.
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20231214100158.2305400-4-tabba@google.com
Signed-off-by: Will Deacon <will@kernel.org>
Add the ExtTrcBuff field definitions to ID_AA64DFR0_EL1 from
DDI0601 2023-09.
This field isn't used yet. Adding it for completeness and because
it will be used in future patches.
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20231214100158.2305400-3-tabba@google.com
Signed-off-by: Will Deacon <will@kernel.org>
Add the Pauth_LR field definitions to ID_AA64ISAR1_EL1, based on
DDI0601 2023-09.
These fields aren't used yet. Adding them for completeness and
consistency (definition already exists for ID_AA64ISAR2_EL1).
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20231214100158.2305400-2-tabba@google.com
Signed-off-by: Will Deacon <will@kernel.org>
DDI0601 2023-09 defines a new sysrem register FPMR (Floating Point Mode
Register) which configures the new FP8 features. Add a definition of this
register.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-12-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
DDI0601 2023-09 defines new fields in HCRX_EL2 controlling access to new
system registers, update our definition of HCRX_EL2 to reflect this.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-11-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
DDI0601 2023-09 defines some new fields in SCTLR_EL1 controlling new MTE
and floating point features. Update our sysreg definition to reflect these.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-10-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
DDI0601 2023-09 defines a new feature register ID_AA64FPFR0_EL1 which
enumerates a number of FP8 related features. Add a definition for it.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-8-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
DDI0601 2023-09 adds a new system register ID_AA64ISAR3_EL1 enumerating
new floating point and TLB invalidation features. Add a defintion for it.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-7-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
DDI0601 2023-09 defines some new fields in previously RES0 space in
ID_AA64ISAR2_EL1, together with one new enum value. Update the system
register definition to reflect this.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-6-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
DDI0601 2023-09 defines a new system register ID_AA64PFR2_EL1 which
enumerates FPMR and some new MTE features. Add a definition of this
register.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-5-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Add E0POE bit that traps accesses to POR_EL0 from EL0.
Updated according to DDI0601 2023-03.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-4-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Add POR_EL{0,1} according to DDI0601 2023-03.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-3-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
The 2023-09 release of the architecture XML (DDI0601) adds a new field
ATS1E1A to HFGITR_EL2, update our definition of the register to match.
This was extracted from Faud Tabba's patch "KVM: arm64: Add latest
HFGITR_EL2 FGT entries to nested virt"
[Extracted the sysreg definition from Faud's original patch and reword
subject to match -- broonie]
Signed-off-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231206100503.564090-4-tabba@google.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20231209-b4-arm64-sysreg-additions-v1-1-45284e538474@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Back in 2016, it was argued that implementations lacking a HW
prefetcher could be helped by sprinkling a number of PRFM
instructions in strategic locations.
In 2023, the one platform that presumably needed this hack is no
longer in active use (let alone maintained), and an quick
experiment shows dropping this hack only leads to a 0.4% drop
on a full kernel compilation (tested on a MT30-GS0 48 CPU system).
Given that this is pretty much in the noise department and that
it may give odd ideas to other implementers, drop the hack for
good.
Suggested-by: Will Deacon <will@kernel.org>
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20231122133754.1240687-1-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
We now have *two* values for CTR_EL0.L1Ip that are reserved.
Which makes things a bit awkward. In order to lift the ambiguity,
rename RESERVED (0b01) to RESERVED_AIVIVT, and VPIPT (0b00) to
RESERVED_VPIPT.
This makes it clear which of these meant what, and I'm sure
archeologists will find it useful...
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20231204143606.1806432-4-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Expose FEAT_LPA2 as a capability so that we can take advantage of
alternatives patching in the hypervisor.
Although FEAT_LPA2 presence is advertised separately for stage1 and
stage2, the expectation is that in practice both stages will either
support or not support it. Therefore, we combine both into a single
capability, allowing us to simplify the implementation. KVM requires
support in both stages in order to use LPA2 since the same library is
used for hyp stage 1 and guest stage 2 pgtables.
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231127111737.1897081-6-ryan.roberts@arm.com
* Major refactoring of the CPU capability detection logic resulting in
the removal of the cpus_have_const_cap() function and migrating the
code to "alternative" branches where possible
* Backtrace/kgdb: use IPIs and pseudo-NMI
* Perf and PMU:
- Add support for Ampere SoC PMUs
- Multi-DTC improvements for larger CMN configurations with multiple
Debug & Trace Controllers
- Rework the Arm CoreSight PMU driver to allow separate registration of
vendor backend modules
- Fixes: add missing MODULE_DEVICE_TABLE to the amlogic perf
driver; use device_get_match_data() in the xgene driver; fix NULL
pointer dereference in the hisi driver caused by calling
cpuhp_state_remove_instance(); use-after-free in the hisi driver
* HWCAP updates:
- FEAT_SVE_B16B16 (BFloat16)
- FEAT_LRCPC3 (release consistency model)
- FEAT_LSE128 (128-bit atomic instructions)
* SVE: remove a couple of pseudo registers from the cpufeature code.
There is logic in place already to detect mismatched SVE features
* Miscellaneous:
- Reduce the default swiotlb size (currently 64MB) if no ZONE_DMA
bouncing is needed. The buffer is still required for small kmalloc()
buffers
- Fix module PLT counting with !RANDOMIZE_BASE
- Restrict CPU_BIG_ENDIAN to LLVM IAS 15.x or newer move
synchronisation code out of the set_ptes() loop
- More compact cpufeature displaying enabled cores
- Kselftest updates for the new CPU features
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmU7/QUACgkQa9axLQDI
XvEx3xAAjICmHm+ryKJxS1IGXLYu2DXMcHUjeW6w1SxkK/vKhTMlHRx/CIWDze2l
eENu7TcDLtTw+Gv9kqg30TSwzLfJhP9oFpX2T5TKkh5qlJlbz8fBtm+as14DTLCZ
p2sra3J0w4B5JwTVqnj2RHOlEftMKvbyLGRkz3ve6wIUbsp5pXMkxAd/k3wOf0lC
m6d9w1OMA2sOsw9YCgjcCNQGEzFMJk+13w7K+4w6A8Djn/Jxkt4fAFVn2ZlCiZzD
NA2lTDWJqGmeGHo3iFdCTensWXmWTqjzxsNEf7PyBk5mBOdzDVxlTfEL7vnJg7gf
BlTQ/nhIpra7rHQ9q2rwqEzbF+4Tn3uWlQfdDb7+/4goPjDh7tlBhEOYyOwTCEIT
0t9cCSvBmSCKeXC3lKWWtJ+QJKhZHSmXN84EotTs65KyyfIsi4RuSezvV/+aIL86
06sHYlYxETuujZP1cgOjf69Wsdsgizx0mqXJXf/xOjp22HFDcL4Bki6Rgi6t5OZj
GEHG15kSE+eJ+RIpxpuAN8fdrlxYubsVLIksCqK7cZf9zXbQGIlifKAIrYiEx6kz
FD+o+j/5niRWR6yJZCtCcGxqpSlwnYWPqc1Ds0GES8A/BphWMPozXUAZ0ll4Fnp1
yyR2/Due/eBsCNESn579kP8989rashubB8vxvdx2fcWVtLC7VgE=
=QaEo
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"No major architecture features this time around, just some new HWCAP
definitions, support for the Ampere SoC PMUs and a few fixes/cleanups.
The bulk of the changes is reworking of the CPU capability checking
code (cpus_have_cap() etc).
- Major refactoring of the CPU capability detection logic resulting
in the removal of the cpus_have_const_cap() function and migrating
the code to "alternative" branches where possible
- Backtrace/kgdb: use IPIs and pseudo-NMI
- Perf and PMU:
- Add support for Ampere SoC PMUs
- Multi-DTC improvements for larger CMN configurations with
multiple Debug & Trace Controllers
- Rework the Arm CoreSight PMU driver to allow separate
registration of vendor backend modules
- Fixes: add missing MODULE_DEVICE_TABLE to the amlogic perf
driver; use device_get_match_data() in the xgene driver; fix
NULL pointer dereference in the hisi driver caused by calling
cpuhp_state_remove_instance(); use-after-free in the hisi driver
- HWCAP updates:
- FEAT_SVE_B16B16 (BFloat16)
- FEAT_LRCPC3 (release consistency model)
- FEAT_LSE128 (128-bit atomic instructions)
- SVE: remove a couple of pseudo registers from the cpufeature code.
There is logic in place already to detect mismatched SVE features
- Miscellaneous:
- Reduce the default swiotlb size (currently 64MB) if no ZONE_DMA
bouncing is needed. The buffer is still required for small
kmalloc() buffers
- Fix module PLT counting with !RANDOMIZE_BASE
- Restrict CPU_BIG_ENDIAN to LLVM IAS 15.x or newer move
synchronisation code out of the set_ptes() loop
- More compact cpufeature displaying enabled cores
- Kselftest updates for the new CPU features"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (83 commits)
arm64: Restrict CPU_BIG_ENDIAN to GNU as or LLVM IAS 15.x or newer
arm64: module: Fix PLT counting when CONFIG_RANDOMIZE_BASE=n
arm64, irqchip/gic-v3, ACPI: Move MADT GICC enabled check into a helper
perf: hisi: Fix use-after-free when register pmu fails
drivers/perf: hisi_pcie: Initialize event->cpu only on success
drivers/perf: hisi_pcie: Check the type first in pmu::event_init()
arm64: cpufeature: Change DBM to display enabled cores
arm64: cpufeature: Display the set of cores with a feature
perf/arm-cmn: Enable per-DTC counter allocation
perf/arm-cmn: Rework DTC counters (again)
perf/arm-cmn: Fix DTC domain detection
drivers: perf: arm_pmuv3: Drop some unused arguments from armv8_pmu_init()
drivers: perf: arm_pmuv3: Read PMMIR_EL1 unconditionally
drivers/perf: hisi: use cpuhp_state_remove_instance_nocalls() for hisi_hns3_pmu uninit process
clocksource/drivers/arm_arch_timer: limit XGene-1 workaround
arm64: Remove system_uses_lse_atomics()
arm64: Mark the 'addr' argument to set_ptes() and __set_pte_at() as unused
drivers/perf: xgene: Use device_get_match_data()
perf/amlogic: add missing MODULE_DEVICE_TABLE
arm64/mm: Hoist synchronization out of set_ptes() loop
...
Currently we have a negative cpucap which describes the *absence* of
FP/SIMD rather than *presence* of FP/SIMD. This largely works, but is
somewhat awkward relative to other cpucaps that describe the presence of
a feature, and it would be nicer to have a cpucap which describes the
presence of FP/SIMD:
* This will allow the cpucap to be treated as a standard
ARM64_CPUCAP_SYSTEM_FEATURE, which can be detected with the standard
has_cpuid_feature() function and ARM64_CPUID_FIELDS() description.
* This ensures that the cpucap will only transition from not-present to
present, reducing the risk of unintentional and/or unsafe usage of
FP/SIMD before cpucaps are finalized.
* This will allow using arm64_cpu_capabilities::cpu_enable() to enable
the use of FP/SIMD later, with FP/SIMD being disabled at boot time
otherwise. This will ensure that any unintentional and/or unsafe usage
of FP/SIMD prior to this is trapped, and will ensure that FP/SIMD is
never unintentionally enabled for userspace in mismatched big.LITTLE
systems.
This patch replaces the negative ARM64_HAS_NO_FPSIMD cpucap with a
positive ARM64_HAS_FPSIMD cpucap, making changes as described above.
Note that as FP/SIMD will now be trapped when not supported system-wide,
do_fpsimd_acc() must handle these traps in the same way as for SVE and
SME. The commentary in fpsimd_restore_current_state() is updated to
describe the new scheme.
No users of system_supports_fpsimd() need to know that FP/SIMD is
available prior to alternatives being patched, so this is updated to
use alternative_has_cap_likely() to check for the ARM64_HAS_FPSIMD
cpucap, without generating code to test the system_cpucaps bitmap.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For clarity it would be nice to factor cpucap manipulation out of
<asm/cpufeature.h>, and the obvious place would be <asm/cpucap.h>, but
this will clash somewhat with <generated/asm/cpucaps.h>.
Rename <generated/asm/cpucaps.h> to <generated/asm/cpucap-defs.h>,
matching what we do for <generated/asm/sysreg-defs.h>, and introduce a
new <asm/cpucaps.h> which includes the generated header.
Subsequent patches will fill out <asm/cpucaps.h>.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>