As part of the ongoing effort to honor the guest configuration,
add the necessary checks to make PIR_EL1 and co UNDEF if not
advertised to the guest, and avoid context switching them.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Link: https://lore.kernel.org/r/20240214131827.2856277-23-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
The way we save/restore HFG[RW]TR_EL2 can now be simplified, and
the Ampere erratum hack is the only thing that still stands out.
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20240214131827.2856277-21-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
We already trap a bunch of existing features for the purpose of
disabling them (MAIR2, POR, ACCDATA, SME...).
Let's move them over to our brand new FGU infrastructure.
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20240214131827.2856277-20-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
In order to correctly honor our FGU bits, they must be converted
into a set of FGT bits. They get merged as part of the existing
FGT setting.
Similarly, the UNDEF injection phase takes place when handling
the trap.
This results in a bit of rework in the FGT macros in order to
help with the code generation, as burying per-CPU accesses in
macros results in a lot of expansion, not to mention the vcpu->kvm
access on nvhe (kern_hyp_va() is not optimisation-friendly).
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20240214131827.2856277-19-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
kvm_pgtable_stage2_free_unlinked() does the final put_page() on the
root page of the sub-tree before returning, so remove the additional
put_page() invocations in the callers.
Cc: Ricardo Koller <ricarkol@google.com>
Fixes: f6a27d6dc5 ("KVM: arm64: Drop last page ref in kvm_pgtable_stage2_free_removed()")
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20240212193052.27765-1-will@kernel.org
Use the correct function name in the kernel-doc comment to prevent
a warning:
arch/arm64/kvm/hyp/vhe/sysreg-sr.c:109: warning: expecting prototype for __vcpu_put_switch_syregs(). Prototype was for __vcpu_put_switch_sysregs() instead
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Zenghui Yu <yuzenghui@huawei.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: kvmarm@lists.linux.dev
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20240117230714.31025-5-rdunlap@infradead.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Use the correct function name in the kernel-doc comments to prevent
kernel-doc warnings:
arch/arm64/kvm/hyp/vhe/../aarch32.c:97: warning: expecting prototype for adjust_itstate(). Prototype was for kvm_adjust_itstate() instead
arch/arm64/kvm/hyp/vhe/../aarch32.c:127: warning: expecting prototype for kvm_skip_instr(). Prototype was for kvm_skip_instr32() instead
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Zenghui Yu <yuzenghui@huawei.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: kvmarm@lists.linux.dev
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20240117230714.31025-4-rdunlap@infradead.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
- Use memdup_array_user() to harden against overflow.
- Unconditionally advertise KVM_CAP_DEVICE_CTRL for all architectures.
- Clean up Kconfigs that all KVM architectures were selecting
- New functionality around "guest_memfd", a new userspace API that
creates an anonymous file and returns a file descriptor that refers
to it. guest_memfd files are bound to their owning virtual machine,
cannot be mapped, read, or written by userspace, and cannot be resized.
guest_memfd files do however support PUNCH_HOLE, which can be used to
switch a memory area between guest_memfd and regular anonymous memory.
- New ioctl KVM_SET_MEMORY_ATTRIBUTES allowing userspace to specify
per-page attributes for a given page of guest memory; right now the
only attribute is whether the guest expects to access memory via
guest_memfd or not, which in Confidential SVMs backed by SEV-SNP,
TDX or ARM64 pKVM is checked by firmware or hypervisor that guarantees
confidentiality (AMD PSP, Intel TDX module, or EL2 in the case of pKVM).
x86:
- Support for "software-protected VMs" that can use the new guest_memfd
and page attributes infrastructure. This is mostly useful for testing,
since there is no pKVM-like infrastructure to provide a meaningfully
reduced TCB.
- Fix a relatively benign off-by-one error when splitting huge pages during
CLEAR_DIRTY_LOG.
- Fix a bug where KVM could incorrectly test-and-clear dirty bits in non-leaf
TDP MMU SPTEs if a racing thread replaces a huge SPTE with a non-huge SPTE.
- Use more generic lockdep assertions in paths that don't actually care
about whether the caller is a reader or a writer.
- let Xen guests opt out of having PV clock reported as "based on a stable TSC",
because some of them don't expect the "TSC stable" bit (added to the pvclock
ABI by KVM, but never set by Xen) to be set.
- Revert a bogus, made-up nested SVM consistency check for TLB_CONTROL.
- Advertise flush-by-ASID support for nSVM unconditionally, as KVM always
flushes on nested transitions, i.e. always satisfies flush requests. This
allows running bleeding edge versions of VMware Workstation on top of KVM.
- Sanity check that the CPU supports flush-by-ASID when enabling SEV support.
- On AMD machines with vNMI, always rely on hardware instead of intercepting
IRET in some cases to detect unmasking of NMIs
- Support for virtualizing Linear Address Masking (LAM)
- Fix a variety of vPMU bugs where KVM fail to stop/reset counters and other state
prior to refreshing the vPMU model.
- Fix a double-overflow PMU bug by tracking emulated counter events using a
dedicated field instead of snapshotting the "previous" counter. If the
hardware PMC count triggers overflow that is recognized in the same VM-Exit
that KVM manually bumps an event count, KVM would pend PMIs for both the
hardware-triggered overflow and for KVM-triggered overflow.
- Turn off KVM_WERROR by default for all configs so that it's not
inadvertantly enabled by non-KVM developers, which can be problematic for
subsystems that require no regressions for W=1 builds.
- Advertise all of the host-supported CPUID bits that enumerate IA32_SPEC_CTRL
"features".
- Don't force a masterclock update when a vCPU synchronizes to the current TSC
generation, as updating the masterclock can cause kvmclock's time to "jump"
unexpectedly, e.g. when userspace hotplugs a pre-created vCPU.
- Use RIP-relative address to read kvm_rebooting in the VM-Enter fault paths,
partly as a super minor optimization, but mostly to make KVM play nice with
position independent executable builds.
- Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on
CONFIG_HYPERV as a minor optimization, and to self-document the code.
- Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV "emulation"
at build time.
ARM64:
- LPA2 support, adding 52bit IPA/PA capability for 4kB and 16kB
base granule sizes. Branch shared with the arm64 tree.
- Large Fine-Grained Trap rework, bringing some sanity to the
feature, although there is more to come. This comes with
a prefix branch shared with the arm64 tree.
- Some additional Nested Virtualization groundwork, mostly
introducing the NV2 VNCR support and retargetting the NV
support to that version of the architecture.
- A small set of vgic fixes and associated cleanups.
Loongarch:
- Optimization for memslot hugepage checking
- Cleanup and fix some HW/SW timer issues
- Add LSX/LASX (128bit/256bit SIMD) support
RISC-V:
- KVM_GET_REG_LIST improvement for vector registers
- Generate ISA extension reg_list using macros in get-reg-list selftest
- Support for reporting steal time along with selftest
s390:
- Bugfixes
Selftests:
- Fix an annoying goof where the NX hugepage test prints out garbage
instead of the magic token needed to run the test.
- Fix build errors when a header is delete/moved due to a missing flag
in the Makefile.
- Detect if KVM bugged/killed a selftest's VM and print out a helpful
message instead of complaining that a random ioctl() failed.
- Annotate the guest printf/assert helpers with __printf(), and fix the
various bugs that were lurking due to lack of said annotation.
There are two non-KVM patches buried in the middle of guest_memfd support:
fs: Rename anon_inode_getfile_secure() and anon_inode_getfd_secure()
mm: Add AS_UNMOVABLE to mark mapping as completely unmovable
The first is small and mostly suggested-by Christian Brauner; the second
a bit less so but it was written by an mm person (Vlastimil Babka).
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmWcMWkUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroO15gf/WLmmg3SET6Uzw9iEq2xo28831ZA+
6kpILfIDGKozV5safDmMvcInlc/PTnqOFrsKyyN4kDZ+rIJiafJdg/loE0kPXBML
wdR+2ix5kYI1FucCDaGTahskBDz8Lb/xTpwGg9BFLYFNmuUeHc74o6GoNvr1uliE
4kLZL2K6w0cSMPybUD+HqGaET80ZqPwecv+s1JL+Ia0kYZJONJifoHnvOUJ7DpEi
rgudVdgzt3EPjG0y1z6MjvDBXTCOLDjXajErlYuZD3Ej8N8s59Dh2TxOiDNTLdP4
a4zjRvDmgyr6H6sz+upvwc7f4M4p+DBvf+TkWF54mbeObHUYliStqURIoA==
=66Ws
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"Generic:
- Use memdup_array_user() to harden against overflow.
- Unconditionally advertise KVM_CAP_DEVICE_CTRL for all
architectures.
- Clean up Kconfigs that all KVM architectures were selecting
- New functionality around "guest_memfd", a new userspace API that
creates an anonymous file and returns a file descriptor that refers
to it. guest_memfd files are bound to their owning virtual machine,
cannot be mapped, read, or written by userspace, and cannot be
resized. guest_memfd files do however support PUNCH_HOLE, which can
be used to switch a memory area between guest_memfd and regular
anonymous memory.
- New ioctl KVM_SET_MEMORY_ATTRIBUTES allowing userspace to specify
per-page attributes for a given page of guest memory; right now the
only attribute is whether the guest expects to access memory via
guest_memfd or not, which in Confidential SVMs backed by SEV-SNP,
TDX or ARM64 pKVM is checked by firmware or hypervisor that
guarantees confidentiality (AMD PSP, Intel TDX module, or EL2 in
the case of pKVM).
x86:
- Support for "software-protected VMs" that can use the new
guest_memfd and page attributes infrastructure. This is mostly
useful for testing, since there is no pKVM-like infrastructure to
provide a meaningfully reduced TCB.
- Fix a relatively benign off-by-one error when splitting huge pages
during CLEAR_DIRTY_LOG.
- Fix a bug where KVM could incorrectly test-and-clear dirty bits in
non-leaf TDP MMU SPTEs if a racing thread replaces a huge SPTE with
a non-huge SPTE.
- Use more generic lockdep assertions in paths that don't actually
care about whether the caller is a reader or a writer.
- let Xen guests opt out of having PV clock reported as "based on a
stable TSC", because some of them don't expect the "TSC stable" bit
(added to the pvclock ABI by KVM, but never set by Xen) to be set.
- Revert a bogus, made-up nested SVM consistency check for
TLB_CONTROL.
- Advertise flush-by-ASID support for nSVM unconditionally, as KVM
always flushes on nested transitions, i.e. always satisfies flush
requests. This allows running bleeding edge versions of VMware
Workstation on top of KVM.
- Sanity check that the CPU supports flush-by-ASID when enabling SEV
support.
- On AMD machines with vNMI, always rely on hardware instead of
intercepting IRET in some cases to detect unmasking of NMIs
- Support for virtualizing Linear Address Masking (LAM)
- Fix a variety of vPMU bugs where KVM fail to stop/reset counters
and other state prior to refreshing the vPMU model.
- Fix a double-overflow PMU bug by tracking emulated counter events
using a dedicated field instead of snapshotting the "previous"
counter. If the hardware PMC count triggers overflow that is
recognized in the same VM-Exit that KVM manually bumps an event
count, KVM would pend PMIs for both the hardware-triggered overflow
and for KVM-triggered overflow.
- Turn off KVM_WERROR by default for all configs so that it's not
inadvertantly enabled by non-KVM developers, which can be
problematic for subsystems that require no regressions for W=1
builds.
- Advertise all of the host-supported CPUID bits that enumerate
IA32_SPEC_CTRL "features".
- Don't force a masterclock update when a vCPU synchronizes to the
current TSC generation, as updating the masterclock can cause
kvmclock's time to "jump" unexpectedly, e.g. when userspace
hotplugs a pre-created vCPU.
- Use RIP-relative address to read kvm_rebooting in the VM-Enter
fault paths, partly as a super minor optimization, but mostly to
make KVM play nice with position independent executable builds.
- Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on
CONFIG_HYPERV as a minor optimization, and to self-document the
code.
- Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV
"emulation" at build time.
ARM64:
- LPA2 support, adding 52bit IPA/PA capability for 4kB and 16kB base
granule sizes. Branch shared with the arm64 tree.
- Large Fine-Grained Trap rework, bringing some sanity to the
feature, although there is more to come. This comes with a prefix
branch shared with the arm64 tree.
- Some additional Nested Virtualization groundwork, mostly
introducing the NV2 VNCR support and retargetting the NV support to
that version of the architecture.
- A small set of vgic fixes and associated cleanups.
Loongarch:
- Optimization for memslot hugepage checking
- Cleanup and fix some HW/SW timer issues
- Add LSX/LASX (128bit/256bit SIMD) support
RISC-V:
- KVM_GET_REG_LIST improvement for vector registers
- Generate ISA extension reg_list using macros in get-reg-list
selftest
- Support for reporting steal time along with selftest
s390:
- Bugfixes
Selftests:
- Fix an annoying goof where the NX hugepage test prints out garbage
instead of the magic token needed to run the test.
- Fix build errors when a header is delete/moved due to a missing
flag in the Makefile.
- Detect if KVM bugged/killed a selftest's VM and print out a helpful
message instead of complaining that a random ioctl() failed.
- Annotate the guest printf/assert helpers with __printf(), and fix
the various bugs that were lurking due to lack of said annotation"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (185 commits)
x86/kvm: Do not try to disable kvmclock if it was not enabled
KVM: x86: add missing "depends on KVM"
KVM: fix direction of dependency on MMU notifiers
KVM: introduce CONFIG_KVM_COMMON
KVM: arm64: Add missing memory barriers when switching to pKVM's hyp pgd
KVM: arm64: vgic-its: Avoid potential UAF in LPI translation cache
RISC-V: KVM: selftests: Add get-reg-list test for STA registers
RISC-V: KVM: selftests: Add steal_time test support
RISC-V: KVM: selftests: Add guest_sbi_probe_extension
RISC-V: KVM: selftests: Move sbi_ecall to processor.c
RISC-V: KVM: Implement SBI STA extension
RISC-V: KVM: Add support for SBI STA registers
RISC-V: KVM: Add support for SBI extension registers
RISC-V: KVM: Add SBI STA info to vcpu_arch
RISC-V: KVM: Add steal-update vcpu request
RISC-V: KVM: Add SBI STA extension skeleton
RISC-V: paravirt: Implement steal-time support
RISC-V: Add SBI STA extension definitions
RISC-V: paravirt: Add skeleton for pv-time support
RISC-V: KVM: Fix indentation in kvm_riscv_vcpu_set_reg_csr()
...
are included in this merge do the following:
- Peng Zhang has done some mapletree maintainance work in the
series
"maple_tree: add mt_free_one() and mt_attr() helpers"
"Some cleanups of maple tree"
- In the series "mm: use memmap_on_memory semantics for dax/kmem"
Vishal Verma has altered the interworking between memory-hotplug
and dax/kmem so that newly added 'device memory' can more easily
have its memmap placed within that newly added memory.
- Matthew Wilcox continues folio-related work (including a few
fixes) in the patch series
"Add folio_zero_tail() and folio_fill_tail()"
"Make folio_start_writeback return void"
"Fix fault handler's handling of poisoned tail pages"
"Convert aops->error_remove_page to ->error_remove_folio"
"Finish two folio conversions"
"More swap folio conversions"
- Kefeng Wang has also contributed folio-related work in the series
"mm: cleanup and use more folio in page fault"
- Jim Cromie has improved the kmemleak reporting output in the
series "tweak kmemleak report format".
- In the series "stackdepot: allow evicting stack traces" Andrey
Konovalov to permits clients (in this case KASAN) to cause
eviction of no longer needed stack traces.
- Charan Teja Kalla has fixed some accounting issues in the page
allocator's atomic reserve calculations in the series "mm:
page_alloc: fixes for high atomic reserve caluculations".
- Dmitry Rokosov has added to the samples/ dorectory some sample
code for a userspace memcg event listener application. See the
series "samples: introduce cgroup events listeners".
- Some mapletree maintanance work from Liam Howlett in the series
"maple_tree: iterator state changes".
- Nhat Pham has improved zswap's approach to writeback in the
series "workload-specific and memory pressure-driven zswap
writeback".
- DAMON/DAMOS feature and maintenance work from SeongJae Park in
the series
"mm/damon: let users feed and tame/auto-tune DAMOS"
"selftests/damon: add Python-written DAMON functionality tests"
"mm/damon: misc updates for 6.8"
- Yosry Ahmed has improved memcg's stats flushing in the series
"mm: memcg: subtree stats flushing and thresholds".
- In the series "Multi-size THP for anonymous memory" Ryan Roberts
has added a runtime opt-in feature to transparent hugepages which
improves performance by allocating larger chunks of memory during
anonymous page faults.
- Matthew Wilcox has also contributed some cleanup and maintenance
work against eh buffer_head code int he series "More buffer_head
cleanups".
- Suren Baghdasaryan has done work on Andrea Arcangeli's series
"userfaultfd move option". UFFDIO_MOVE permits userspace heap
compaction algorithms to move userspace's pages around rather than
UFFDIO_COPY'a alloc/copy/free.
- Stefan Roesch has developed a "KSM Advisor", in the series
"mm/ksm: Add ksm advisor". This is a governor which tunes KSM's
scanning aggressiveness in response to userspace's current needs.
- Chengming Zhou has optimized zswap's temporary working memory
use in the series "mm/zswap: dstmem reuse optimizations and
cleanups".
- Matthew Wilcox has performed some maintenance work on the
writeback code, both code and within filesystems. The series is
"Clean up the writeback paths".
- Andrey Konovalov has optimized KASAN's handling of alloc and
free stack traces for secondary-level allocators, in the series
"kasan: save mempool stack traces".
- Andrey also performed some KASAN maintenance work in the series
"kasan: assorted clean-ups".
- David Hildenbrand has gone to town on the rmap code. Cleanups,
more pte batching, folio conversions and more. See the series
"mm/rmap: interface overhaul".
- Kinsey Ho has contributed some maintenance work on the MGLRU
code in the series "mm/mglru: Kconfig cleanup".
- Matthew Wilcox has contributed lruvec page accounting code
cleanups in the series "Remove some lruvec page accounting
functions".
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZZyF2wAKCRDdBJ7gKXxA
jjWjAP42LHvGSjp5M+Rs2rKFL0daBQsrlvy6/jCHUequSdWjSgEAmOx7bc5fbF27
Oa8+DxGM9C+fwqZ/7YxU2w/WuUmLPgU=
=0NHs
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
- Peng Zhang has done some mapletree maintainance work in the series
'maple_tree: add mt_free_one() and mt_attr() helpers'
'Some cleanups of maple tree'
- In the series 'mm: use memmap_on_memory semantics for dax/kmem'
Vishal Verma has altered the interworking between memory-hotplug
and dax/kmem so that newly added 'device memory' can more easily
have its memmap placed within that newly added memory.
- Matthew Wilcox continues folio-related work (including a few fixes)
in the patch series
'Add folio_zero_tail() and folio_fill_tail()'
'Make folio_start_writeback return void'
'Fix fault handler's handling of poisoned tail pages'
'Convert aops->error_remove_page to ->error_remove_folio'
'Finish two folio conversions'
'More swap folio conversions'
- Kefeng Wang has also contributed folio-related work in the series
'mm: cleanup and use more folio in page fault'
- Jim Cromie has improved the kmemleak reporting output in the series
'tweak kmemleak report format'.
- In the series 'stackdepot: allow evicting stack traces' Andrey
Konovalov to permits clients (in this case KASAN) to cause eviction
of no longer needed stack traces.
- Charan Teja Kalla has fixed some accounting issues in the page
allocator's atomic reserve calculations in the series 'mm:
page_alloc: fixes for high atomic reserve caluculations'.
- Dmitry Rokosov has added to the samples/ dorectory some sample code
for a userspace memcg event listener application. See the series
'samples: introduce cgroup events listeners'.
- Some mapletree maintanance work from Liam Howlett in the series
'maple_tree: iterator state changes'.
- Nhat Pham has improved zswap's approach to writeback in the series
'workload-specific and memory pressure-driven zswap writeback'.
- DAMON/DAMOS feature and maintenance work from SeongJae Park in the
series
'mm/damon: let users feed and tame/auto-tune DAMOS'
'selftests/damon: add Python-written DAMON functionality tests'
'mm/damon: misc updates for 6.8'
- Yosry Ahmed has improved memcg's stats flushing in the series 'mm:
memcg: subtree stats flushing and thresholds'.
- In the series 'Multi-size THP for anonymous memory' Ryan Roberts
has added a runtime opt-in feature to transparent hugepages which
improves performance by allocating larger chunks of memory during
anonymous page faults.
- Matthew Wilcox has also contributed some cleanup and maintenance
work against eh buffer_head code int he series 'More buffer_head
cleanups'.
- Suren Baghdasaryan has done work on Andrea Arcangeli's series
'userfaultfd move option'. UFFDIO_MOVE permits userspace heap
compaction algorithms to move userspace's pages around rather than
UFFDIO_COPY'a alloc/copy/free.
- Stefan Roesch has developed a 'KSM Advisor', in the series 'mm/ksm:
Add ksm advisor'. This is a governor which tunes KSM's scanning
aggressiveness in response to userspace's current needs.
- Chengming Zhou has optimized zswap's temporary working memory use
in the series 'mm/zswap: dstmem reuse optimizations and cleanups'.
- Matthew Wilcox has performed some maintenance work on the writeback
code, both code and within filesystems. The series is 'Clean up the
writeback paths'.
- Andrey Konovalov has optimized KASAN's handling of alloc and free
stack traces for secondary-level allocators, in the series 'kasan:
save mempool stack traces'.
- Andrey also performed some KASAN maintenance work in the series
'kasan: assorted clean-ups'.
- David Hildenbrand has gone to town on the rmap code. Cleanups, more
pte batching, folio conversions and more. See the series 'mm/rmap:
interface overhaul'.
- Kinsey Ho has contributed some maintenance work on the MGLRU code
in the series 'mm/mglru: Kconfig cleanup'.
- Matthew Wilcox has contributed lruvec page accounting code cleanups
in the series 'Remove some lruvec page accounting functions'"
* tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (361 commits)
mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER
mm, treewide: introduce NR_PAGE_ORDERS
selftests/mm: add separate UFFDIO_MOVE test for PMD splitting
selftests/mm: skip test if application doesn't has root privileges
selftests/mm: conform test to TAP format output
selftests: mm: hugepage-mmap: conform to TAP format output
selftests/mm: gup_test: conform test to TAP format output
mm/selftests: hugepage-mremap: conform test to TAP format output
mm/vmstat: move pgdemote_* out of CONFIG_NUMA_BALANCING
mm: zsmalloc: return -ENOSPC rather than -EINVAL in zs_malloc while size is too large
mm/memcontrol: remove __mod_lruvec_page_state()
mm/khugepaged: use a folio more in collapse_file()
slub: use a folio in __kmalloc_large_node
slub: use folio APIs in free_large_kmalloc()
slub: use alloc_pages_node() in alloc_slab_page()
mm: remove inc/dec lruvec page state functions
mm: ratelimit stat flush from workingset shrinker
kasan: stop leaking stack trace handles
mm/mglru: remove CONFIG_TRANSPARENT_HUGEPAGE
mm/mglru: add dummy pmd_dirty()
...
commit 23baf831a3 ("mm, treewide: redefine MAX_ORDER sanely") has
changed the definition of MAX_ORDER to be inclusive. This has caused
issues with code that was not yet upstream and depended on the previous
definition.
To draw attention to the altered meaning of the define, rename MAX_ORDER
to MAX_PAGE_ORDER.
Link: https://lkml.kernel.org/r/20231228144704.14033-2-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
NR_PAGE_ORDERS defines the number of page orders supported by the page
allocator, ranging from 0 to MAX_ORDER, MAX_ORDER + 1 in total.
NR_PAGE_ORDERS assists in defining arrays of page orders and allows for
more natural iteration over them.
[kirill.shutemov@linux.intel.com: fixup for kerneldoc warning]
Link: https://lkml.kernel.org/r/20240101111512.7empzyifq7kxtzk3@box
Link: https://lkml.kernel.org/r/20231228144704.14033-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In commit f320bc742b ("KVM: arm64: Prepare the creation of s1
mappings at EL2"), pKVM switches from a temporary host-provided
page-table to its own page-table at EL2. Since there is only a single
TTBR for the nVHE hypervisor, this involves disabling and re-enabling
the MMU in __pkvm_init_switch_pgd().
Unfortunately, the memory barriers here are not quite correct.
Specifically:
- A DSB is required to complete the TLB invalidation executed while
the MMU is disabled.
- An ISB is required to make the new TTBR value visible to the
page-table walker before the MMU is enabled in the SCTLR.
An earlier version of the patch actually got this correct:
https://lore.kernel.org/lkml/20210304184717.GB21795@willie-the-truck/
but thanks to some badly worded review comments from yours truly, these
were dropped for the version that was eventually merged.
Bring back the barriers and fix the potential issue (but note that this
was found by code inspection).
Cc: Quentin Perret <qperret@google.com>
Fixes: f320bc742b ("KVM: arm64: Prepare the creation of s1 mappings at EL2")
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20240104164220.7968-1-will@kernel.org
* kvm-arm64/fgt-rework: (30 commits)
: .
: Fine Grain Trapping update, courtesy of Fuad Tabba.
:
: From the cover letter:
:
: "This patch series has fixes, updates, and code for validating
: fine grain trap register masks, as well as some fixes to feature
: trapping in pKVM.
:
: New fine grain trap (FGT) bits have been defined in the latest
: Arm Architecture System Registers xml specification (DDI0601 and
: DDI0602 2023-09) [1], so the code is updated to reflect them.
: Moreover, some of the already-defined masks overlap with RES0,
: which this series fixes.
:
: It also adds FGT register masks that weren't defined earlier,
: handling of HAFGRTR_EL2 in nested virt, as well as build time
: validation that the bits of the various masks are all accounted
: for and without overlap."
:
: This branch also drags the arm64/for-next/sysregs branch,
: which is a dependency on this work.
: .
KVM: arm64: Trap external trace for protected VMs
KVM: arm64: Mark PAuth as a restricted feature for protected VMs
KVM: arm64: Fix which features are marked as allowed for protected VMs
KVM: arm64: Macros for setting/clearing FGT bits
KVM: arm64: Define FGT nMASK bits relative to other fields
KVM: arm64: Use generated FGT RES0 bits instead of specifying them
KVM: arm64: Add build validation for FGT trap mask values
KVM: arm64: Update and fix FGT register masks
KVM: arm64: Handle HAFGRTR_EL2 trapping in nested virt
KVM: arm64: Add bit masks for HAFGRTR_EL2
KVM: arm64: Add missing HFGITR_EL2 FGT entries to nested virt
KVM: arm64: Add missing HFGxTR_EL2 FGT entries to nested virt
KVM: arm64: Explicitly trap unsupported HFGxTR_EL2 features
arm64/sysreg: Add missing system instruction definitions for FGT
arm64/sysreg: Add missing system register definitions for FGT
arm64/sysreg: Add missing ExtTrcBuff field definition to ID_AA64DFR0_EL1
arm64/sysreg: Add missing Pauth_LR field definitions to ID_AA64ISAR1_EL1
arm64/sysreg: Add new system registers for GCS
arm64/sysreg: Add definition for FPMR
arm64/sysreg: Update HCRX_EL2 definition for DDI0601 2023-09
...
Signed-off-by: Marc Zyngier <maz@kernel.org>
pKVM does not support external trace for protected VMs. Trap
external trace, and add the ExtTrcBuff to make it possible to
check for the feature.
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231214100158.2305400-18-tabba@google.com
Protected VMs will only support basic PAuth (FEAT_PAuth). Mark it
as restricted to ensure that later versions aren't supported for
protected guests.
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231214100158.2305400-17-tabba@google.com
Cache maintenance operations are not trapped for protected VMs,
and shouldn't be. Mark them as allowed.
Moreover, features advertised by ID_AA64PFR2 and ID_AA64MMFR3 are
(already) not allowed, mark them as such.
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231214100158.2305400-16-tabba@google.com
There's a lot of boilerplate code for setting and clearing FGT
bits when activating guest traps. Refactor it into macros. These
macros will also be used in future patch series.
No functional change intended.
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231214100158.2305400-15-tabba@google.com
These checks help ensure that all the bits are accounted for,
that there hasn't been a transcribing error from the spec nor
from the generated mask values, which will be used in subsequent
patches.
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231214100158.2305400-12-tabba@google.com
Add the encodings to fine grain trapping fields for HAFGRTR_EL2
and add the associated handling code in nested virt. Based on
DDI0601 2023-09. Add the missing field definitions as well,
both to generate the correct RES0 mask and to be able to toggle
their FGT bits.
Also add the code for handling FGT trapping, reading of the
register, to nested virt.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231214100158.2305400-10-tabba@google.com
Do not rely on the value of __HFGRTR_EL2_nMASK to trap
unsupported features, since the nMASK can (and will) change as
new traps are added and as its value is updated. Instead,
explicitly specify the trap bits.
Suggested-by: Joey Gouly <joey.gouly@arm.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231214100158.2305400-6-tabba@google.com
We have some special handling for VPIPT I-cache in critical parts
of the cache and TLB maintenance. Remove it.
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20231204143606.1806432-2-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Currently, we rely on the fact that exceptions can be trivially
classified by applying a mask/value pair to the syndrome value reported
via the ESR register, but this will no longer be true once we enable
support for 5 level paging.
So introduce a couple of helpers that encapsulate this mask/value pair
matching, and wire them up in the code. No functional change intended,
the actual handling of translation level -1 will be added in a
subsequent patch.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
[maz: folded in changes suggested by Mark]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231128140400.3132145-2-ardb@google.com
FEAT_LPA2 increases the maximum levels of translation from 4 to 5 for
the 4KB page case, when IA is >48 bits. While we can still use 4 levels
for stage2 translation in this case (due to stage2 allowing concatenated
page tables for first level lookup), the same kvm_pgtable library is
used for the hyp stage1 page tables and stage1 does not support
concatenation.
Therefore, modify the library to support up to 5 levels. Previous
patches already laid the groundwork for this by refactoring code to work
in terms of KVM_PGTABLE_FIRST_LEVEL and KVM_PGTABLE_LAST_LEVEL. So we
just need to change these macros.
The hardware sometimes encodes the new level differently from the
others: One such place is when reading the level from the FSC field in
the ESR_EL2 register. We never expect to see the lowest level (-1) here
since the stage 2 page tables always use concatenated tables for first
level lookup and therefore only use 4 levels of lookup. So we get away
with just adding a comment to explain why we are not being careful about
decoding level -1.
For stage2 VTCR_EL2.SL2 is introduced to encode the new start level.
However, since we always use concatenated page tables for first level
look up at stage2 (and therefore we will never need the new extra level)
we never touch this new field.
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231127111737.1897081-10-ryan.roberts@arm.com
With the introduction of FEAT_LPA2, the Arm ARM adds a new level of
translation, level -1, so levels can now be in the range [-1;3]. 3 is
always the last level and the first level is determined based on the
number of VA bits in use.
Convert level variables to use a signed type in preparation for
supporting this new level -1.
Since the last level is always anchored at 3, and the first level varies
to suit the number of VA/IPA bits, take the opportunity to replace
KVM_PGTABLE_MAX_LEVELS with the 2 macros KVM_PGTABLE_FIRST_LEVEL and
KVM_PGTABLE_LAST_LEVEL. This removes the assumption from the code that
levels run from 0 to KVM_PGTABLE_MAX_LEVELS - 1, which will soon no
longer be true.
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231127111737.1897081-9-ryan.roberts@arm.com
Implement a simple policy whereby if the HW supports FEAT_LPA2 for the
page size we are using, always use LPA2-style page-tables for stage 2
and hyp stage 1 (assuming an nvhe hyp), regardless of the VMM-requested
IPA size or HW-implemented PA size. When in use we can now support up to
52-bit IPA and PA sizes.
We use the previously created cpu feature to track whether LPA2 is
supported for deciding whether to use the LPA2 or classic pte format.
Note that FEAT_LPA2 brings support for bigger block mappings (512GB with
4KB, 64GB with 16KB). We explicitly don't enable these in the library
because stage2_apply_range() works on batch sizes of the largest used
block mapping, and increasing the size of the batch would lead to soft
lockups. See commit 5994bc9e05 ("KVM: arm64: Limit
stage2_apply_range() batch size to largest block").
With the addition of LPA2 support in the hypervisor, the PA size
supported by the HW must be capped with a runtime decision, rather than
simply using a compile-time decision based on PA_BITS. For example, on a
system that advertises 52 bit PA but does not support FEAT_LPA2, A 4KB
or 16KB kernel compiled with LPA2 support must still limit the PA size
to 48 bits.
Therefore, move the insertion of the PS field into TCR_EL2 out of
__kvm_hyp_init assembly code and instead do it in cpu_prepare_hyp_mode()
where the rest of TCR_EL2 is prepared. This allows us to figure out PS
with kvm_get_parange(), which has the appropriate logic to ensure the
above requirement. (and the PS field of VTCR_EL2 is already populated
this way).
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231127111737.1897081-8-ryan.roberts@arm.com
* Generalized infrastructure for 'writable' ID registers, effectively
allowing userspace to opt-out of certain vCPU features for its guest
* Optimization for vSGI injection, opportunistically compressing MPIDR
to vCPU mapping into a table
* Improvements to KVM's PMU emulation, allowing userspace to select
the number of PMCs available to a VM
* Guest support for memory operation instructions (FEAT_MOPS)
* Cleanups to handling feature flags in KVM_ARM_VCPU_INIT, squashing
bugs and getting rid of useless code
* Changes to the way the SMCCC filter is constructed, avoiding wasted
memory allocations when not in use
* Load the stage-2 MMU context at vcpu_load() for VHE systems, reducing
the overhead of errata mitigations
* Miscellaneous kernel and selftest fixes
LoongArch:
* New architecture. The hardware uses the same model as x86, s390
and RISC-V, where guest/host mode is orthogonal to supervisor/user
mode. The virtualization extensions are very similar to MIPS,
therefore the code also has some similarities but it's been cleaned
up to avoid some of the historical bogosities that are found in
arch/mips. The kernel emulates MMU, timer and CSR accesses, while
interrupt controllers are only emulated in userspace, at least for
now.
RISC-V:
* Support for the Smstateen and Zicond extensions
* Support for virtualizing senvcfg
* Support for virtualized SBI debug console (DBCN)
S390:
* Nested page table management can be monitored through tracepoints
and statistics
x86:
* Fix incorrect handling of VMX posted interrupt descriptor in KVM_SET_LAPIC,
which could result in a dropped timer IRQ
* Avoid WARN on systems with Intel IPI virtualization
* Add CONFIG_KVM_MAX_NR_VCPUS, to allow supporting up to 4096 vCPUs without
forcing more common use cases to eat the extra memory overhead.
* Add virtualization support for AMD SRSO mitigation (IBPB_BRTYPE and
SBPB, aka Selective Branch Predictor Barrier).
* Fix a bug where restoring a vCPU snapshot that was taken within 1 second of
creating the original vCPU would cause KVM to try to synchronize the vCPU's
TSC and thus clobber the correct TSC being set by userspace.
* Compute guest wall clock using a single TSC read to avoid generating an
inaccurate time, e.g. if the vCPU is preempted between multiple TSC reads.
* "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which complain
about a "Firmware Bug" if the bit isn't set for select F/M/S combos.
Likewise "virtualize" (ignore) MSR_AMD64_TW_CFG to appease Windows Server
2022.
* Don't apply side effects to Hyper-V's synthetic timer on writes from
userspace to fix an issue where the auto-enable behavior can trigger
spurious interrupts, i.e. do auto-enabling only for guest writes.
* Remove an unnecessary kick of all vCPUs when synchronizing the dirty log
without PML enabled.
* Advertise "support" for non-serializing FS/GS base MSR writes as appropriate.
* Harden the fast page fault path to guard against encountering an invalid
root when walking SPTEs.
* Omit "struct kvm_vcpu_xen" entirely when CONFIG_KVM_XEN=n.
* Use the fast path directly from the timer callback when delivering Xen
timer events, instead of waiting for the next iteration of the run loop.
This was not done so far because previously proposed code had races,
but now care is taken to stop the hrtimer at critical points such as
restarting the timer or saving the timer information for userspace.
* Follow the lead of upstream Xen and ignore the VCPU_SSHOTTMR_future flag.
* Optimize injection of PMU interrupts that are simultaneous with NMIs.
* Usual handful of fixes for typos and other warts.
x86 - MTRR/PAT fixes and optimizations:
* Clean up code that deals with honoring guest MTRRs when the VM has
non-coherent DMA and host MTRRs are ignored, i.e. EPT is enabled.
* Zap EPT entries when non-coherent DMA assignment stops/start to prevent
using stale entries with the wrong memtype.
* Don't ignore guest PAT for CR0.CD=1 && KVM_X86_QUIRK_CD_NW_CLEARED=y.
This was done as a workaround for virtual machine BIOSes that did not
bother to clear CR0.CD (because ancient KVM/QEMU did not bother to
set it, in turn), and there's zero reason to extend the quirk to
also ignore guest PAT.
x86 - SEV fixes:
* Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts SHUTDOWN while
running an SEV-ES guest.
* Clean up the recognition of emulation failures on SEV guests, when KVM would
like to "skip" the instruction but it had already been partially emulated.
This makes it possible to drop a hack that second guessed the (insufficient)
information provided by the emulator, and just do the right thing.
Documentation:
* Various updates and fixes, mostly for x86
* MTRR and PAT fixes and optimizations:
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmVBZc0UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroP1LQf+NgsmZ1lkGQlKdSdijoQ856w+k0or
l2SV1wUwiEdFPSGK+RTUlHV5Y1ni1dn/CqCVIJZKEI3ZtZ1m9/4HKIRXvbMwFHIH
hx+E4Lnf8YUjsGjKTLd531UKcpphztZavQ6pXLEwazkSkDEra+JIKtooI8uU+9/p
bd/eF1V+13a8CHQf1iNztFJVxqBJbVlnPx4cZDRQQvewskIDGnVDtwbrwCUKGtzD
eNSzhY7si6O2kdQNkuA8xPhg29dYX9XLaCK2K1l8xOUm8WipLdtF86GAKJ5BVuOL
6ek/2QCYjZ7a+coAZNfgSEUi8JmFHEqCo7cnKmWzPJp+2zyXsdudqAhT1g==
=UIxm
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Generalized infrastructure for 'writable' ID registers, effectively
allowing userspace to opt-out of certain vCPU features for its
guest
- Optimization for vSGI injection, opportunistically compressing
MPIDR to vCPU mapping into a table
- Improvements to KVM's PMU emulation, allowing userspace to select
the number of PMCs available to a VM
- Guest support for memory operation instructions (FEAT_MOPS)
- Cleanups to handling feature flags in KVM_ARM_VCPU_INIT, squashing
bugs and getting rid of useless code
- Changes to the way the SMCCC filter is constructed, avoiding wasted
memory allocations when not in use
- Load the stage-2 MMU context at vcpu_load() for VHE systems,
reducing the overhead of errata mitigations
- Miscellaneous kernel and selftest fixes
LoongArch:
- New architecture for kvm.
The hardware uses the same model as x86, s390 and RISC-V, where
guest/host mode is orthogonal to supervisor/user mode. The
virtualization extensions are very similar to MIPS, therefore the
code also has some similarities but it's been cleaned up to avoid
some of the historical bogosities that are found in arch/mips. The
kernel emulates MMU, timer and CSR accesses, while interrupt
controllers are only emulated in userspace, at least for now.
RISC-V:
- Support for the Smstateen and Zicond extensions
- Support for virtualizing senvcfg
- Support for virtualized SBI debug console (DBCN)
S390:
- Nested page table management can be monitored through tracepoints
and statistics
x86:
- Fix incorrect handling of VMX posted interrupt descriptor in
KVM_SET_LAPIC, which could result in a dropped timer IRQ
- Avoid WARN on systems with Intel IPI virtualization
- Add CONFIG_KVM_MAX_NR_VCPUS, to allow supporting up to 4096 vCPUs
without forcing more common use cases to eat the extra memory
overhead.
- Add virtualization support for AMD SRSO mitigation (IBPB_BRTYPE and
SBPB, aka Selective Branch Predictor Barrier).
- Fix a bug where restoring a vCPU snapshot that was taken within 1
second of creating the original vCPU would cause KVM to try to
synchronize the vCPU's TSC and thus clobber the correct TSC being
set by userspace.
- Compute guest wall clock using a single TSC read to avoid
generating an inaccurate time, e.g. if the vCPU is preempted
between multiple TSC reads.
- "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which
complain about a "Firmware Bug" if the bit isn't set for select
F/M/S combos. Likewise "virtualize" (ignore) MSR_AMD64_TW_CFG to
appease Windows Server 2022.
- Don't apply side effects to Hyper-V's synthetic timer on writes
from userspace to fix an issue where the auto-enable behavior can
trigger spurious interrupts, i.e. do auto-enabling only for guest
writes.
- Remove an unnecessary kick of all vCPUs when synchronizing the
dirty log without PML enabled.
- Advertise "support" for non-serializing FS/GS base MSR writes as
appropriate.
- Harden the fast page fault path to guard against encountering an
invalid root when walking SPTEs.
- Omit "struct kvm_vcpu_xen" entirely when CONFIG_KVM_XEN=n.
- Use the fast path directly from the timer callback when delivering
Xen timer events, instead of waiting for the next iteration of the
run loop. This was not done so far because previously proposed code
had races, but now care is taken to stop the hrtimer at critical
points such as restarting the timer or saving the timer information
for userspace.
- Follow the lead of upstream Xen and ignore the VCPU_SSHOTTMR_future
flag.
- Optimize injection of PMU interrupts that are simultaneous with
NMIs.
- Usual handful of fixes for typos and other warts.
x86 - MTRR/PAT fixes and optimizations:
- Clean up code that deals with honoring guest MTRRs when the VM has
non-coherent DMA and host MTRRs are ignored, i.e. EPT is enabled.
- Zap EPT entries when non-coherent DMA assignment stops/start to
prevent using stale entries with the wrong memtype.
- Don't ignore guest PAT for CR0.CD=1 && KVM_X86_QUIRK_CD_NW_CLEARED=y
This was done as a workaround for virtual machine BIOSes that did
not bother to clear CR0.CD (because ancient KVM/QEMU did not bother
to set it, in turn), and there's zero reason to extend the quirk to
also ignore guest PAT.
x86 - SEV fixes:
- Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts
SHUTDOWN while running an SEV-ES guest.
- Clean up the recognition of emulation failures on SEV guests, when
KVM would like to "skip" the instruction but it had already been
partially emulated. This makes it possible to drop a hack that
second guessed the (insufficient) information provided by the
emulator, and just do the right thing.
Documentation:
- Various updates and fixes, mostly for x86
- MTRR and PAT fixes and optimizations"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (164 commits)
KVM: selftests: Avoid using forced target for generating arm64 headers
tools headers arm64: Fix references to top srcdir in Makefile
KVM: arm64: Add tracepoint for MMIO accesses where ISV==0
KVM: arm64: selftest: Perform ISB before reading PAR_EL1
KVM: arm64: selftest: Add the missing .guest_prepare()
KVM: arm64: Always invalidate TLB for stage-2 permission faults
KVM: x86: Service NMI requests after PMI requests in VM-Enter path
KVM: arm64: Handle AArch32 SPSR_{irq,abt,und,fiq} as RAZ/WI
KVM: arm64: Do not let a L1 hypervisor access the *32_EL2 sysregs
KVM: arm64: Refine _EL2 system register list that require trap reinjection
arm64: Add missing _EL2 encodings
arm64: Add missing _EL12 encodings
KVM: selftests: aarch64: vPMU test for validating user accesses
KVM: selftests: aarch64: vPMU register test for unimplemented counters
KVM: selftests: aarch64: vPMU register test for implemented counters
KVM: selftests: aarch64: Introduce vpmu_counter_access test
tools: Import arm_pmuv3.h
KVM: arm64: PMU: Allow userspace to limit PMCR_EL0.N for the guest
KVM: arm64: Sanitize PM{C,I}NTEN{SET,CLR}, PMOVS{SET,CLR} before first run
KVM: arm64: Add {get,set}_user for PM{C,I}NTEN{SET,CLR}, PMOVS{SET,CLR}
...
The highlights for the driver support this time are
- Qualcomm platforms gain support for the Qualcomm Secure Execution
Environment firmware interface to access EFI variables on certain
devices, and new features for multiple platform and firmware drivers.
- Arm FF-A firmware support gains support for v1.1 specification features,
in particular notification and memory transaction descriptor changes.
- SCMI firmware support now support v3.2 features for clock and DVFS
configuration and a new transport for Qualcomm platforms.
- Minor cleanups and bugfixes are added to pretty much all the active
platforms: qualcomm, broadcom, dove, ti-k3, rockchip, sifive, amlogic,
atmel, tegra, aspeed, vexpress, mediatek, samsung and more.
In particular, this contains portions of the treewide conversion to
use __counted_by annotations and the device_get_match_data helper.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEiK/NIGsWEZVxh/FrYKtH/8kJUicFAmVC10IACgkQYKtH/8kJ
UifFoQ//Tw7aux88EA2UkyL2Wulv80NwRQn3tQlxI/6ltjBX64yeQ6Y8OzmYdSYK
20NEpbU7VWOFftN+D6Jp1HLrvfi0OV9uJn3WiTX3ChgDXixpOXo4TYgNNTlb9uZ4
MrSTG3NkS27m/oTaCmYprOObgSNLq1FRCGIP7w4U9gyMk9N9FSKMpSJjlH06qPz6
WBLTaIwPgBsyrLfCdxfA1y7AFCAHVxQJO4bp0VWSIalTrneGTeQrd2FgYMUesQ2e
fIUNCaU4mpmj8XnQ/W19Wsek8FRB+fOh0hn/Gl+iHYibpxusIsn7bkdZ5BOJn2J0
OY3C1biopaaxXcZ+wmnX9X0ieZ3TDsHzYOEf0zmNGzMZaZkV8kQt4/Ykv77xz6Gc
4Bl6JI5QZ4rTZvlHYGMYxhy3hKuB31mO2rHbei7eR7J7UmjzWcl5P6HYfCgj7wzH
crIWj1IR1Nx6Dt/wXf3HlRcEiAEJ2D0M3KIFjAVT239TsxacBfDrRk+YedF2bKbn
WMYfVM6jJnPOykGg/gMRlttS/o/7TqHBl3y/900Idiijcm3cRPbQ+uKfkpHXftN/
2vOtsw7pzEg7QQI9GVrb4drTrLvYJ7GQOi4o0twXTCshlXUk2V684jvHt0emFkdX
ew9Zft4YLAYSmuJ3XqGhhMP63FsHKMlB1aSTKKPeswdIJmrdO80=
=QIut
-----END PGP SIGNATURE-----
Merge tag 'soc-drivers-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
Pull SoC driver updates from Arnd Bergmann:
"The highlights for the driver support this time are
- Qualcomm platforms gain support for the Qualcomm Secure Execution
Environment firmware interface to access EFI variables on certain
devices, and new features for multiple platform and firmware
drivers.
- Arm FF-A firmware support gains support for v1.1 specification
features, in particular notification and memory transaction
descriptor changes.
- SCMI firmware support now support v3.2 features for clock and DVFS
configuration and a new transport for Qualcomm platforms.
- Minor cleanups and bugfixes are added to pretty much all the active
platforms: qualcomm, broadcom, dove, ti-k3, rockchip, sifive,
amlogic, atmel, tegra, aspeed, vexpress, mediatek, samsung and
more.
In particular, this contains portions of the treewide conversion to
use __counted_by annotations and the device_get_match_data helper"
* tag 'soc-drivers-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc: (156 commits)
soc: qcom: pmic_glink_altmode: Print return value on error
firmware: qcom: scm: remove unneeded 'extern' specifiers
firmware: qcom: scm: add a missing forward declaration for struct device
firmware: qcom: move Qualcomm code into its own directory
soc: samsung: exynos-chipid: Convert to platform remove callback returning void
soc: qcom: apr: Add __counted_by for struct apr_rx_buf and use struct_size()
soc: qcom: pmic_glink: fix connector type to be DisplayPort
soc: ti: k3-socinfo: Avoid overriding return value
soc: ti: k3-socinfo: Fix typo in bitfield documentation
soc: ti: knav_qmss_queue: Use device_get_match_data()
firmware: ti_sci: Use device_get_match_data()
firmware: qcom: qseecom: add missing include guards
soc/pxa: ssp: Convert to platform remove callback returning void
soc/mediatek: mtk-mmsys: Convert to platform remove callback returning void
soc/mediatek: mtk-devapc: Convert to platform remove callback returning void
soc/loongson: loongson2_guts: Convert to platform remove callback returning void
soc/litex: litex_soc_ctrl: Convert to platform remove callback returning void
soc/ixp4xx: ixp4xx-qmgr: Convert to platform remove callback returning void
soc/ixp4xx: ixp4xx-npe: Convert to platform remove callback returning void
soc/hisilicon: kunpeng_hccs: Convert to platform remove callback returning void
...
* Major refactoring of the CPU capability detection logic resulting in
the removal of the cpus_have_const_cap() function and migrating the
code to "alternative" branches where possible
* Backtrace/kgdb: use IPIs and pseudo-NMI
* Perf and PMU:
- Add support for Ampere SoC PMUs
- Multi-DTC improvements for larger CMN configurations with multiple
Debug & Trace Controllers
- Rework the Arm CoreSight PMU driver to allow separate registration of
vendor backend modules
- Fixes: add missing MODULE_DEVICE_TABLE to the amlogic perf
driver; use device_get_match_data() in the xgene driver; fix NULL
pointer dereference in the hisi driver caused by calling
cpuhp_state_remove_instance(); use-after-free in the hisi driver
* HWCAP updates:
- FEAT_SVE_B16B16 (BFloat16)
- FEAT_LRCPC3 (release consistency model)
- FEAT_LSE128 (128-bit atomic instructions)
* SVE: remove a couple of pseudo registers from the cpufeature code.
There is logic in place already to detect mismatched SVE features
* Miscellaneous:
- Reduce the default swiotlb size (currently 64MB) if no ZONE_DMA
bouncing is needed. The buffer is still required for small kmalloc()
buffers
- Fix module PLT counting with !RANDOMIZE_BASE
- Restrict CPU_BIG_ENDIAN to LLVM IAS 15.x or newer move
synchronisation code out of the set_ptes() loop
- More compact cpufeature displaying enabled cores
- Kselftest updates for the new CPU features
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmU7/QUACgkQa9axLQDI
XvEx3xAAjICmHm+ryKJxS1IGXLYu2DXMcHUjeW6w1SxkK/vKhTMlHRx/CIWDze2l
eENu7TcDLtTw+Gv9kqg30TSwzLfJhP9oFpX2T5TKkh5qlJlbz8fBtm+as14DTLCZ
p2sra3J0w4B5JwTVqnj2RHOlEftMKvbyLGRkz3ve6wIUbsp5pXMkxAd/k3wOf0lC
m6d9w1OMA2sOsw9YCgjcCNQGEzFMJk+13w7K+4w6A8Djn/Jxkt4fAFVn2ZlCiZzD
NA2lTDWJqGmeGHo3iFdCTensWXmWTqjzxsNEf7PyBk5mBOdzDVxlTfEL7vnJg7gf
BlTQ/nhIpra7rHQ9q2rwqEzbF+4Tn3uWlQfdDb7+/4goPjDh7tlBhEOYyOwTCEIT
0t9cCSvBmSCKeXC3lKWWtJ+QJKhZHSmXN84EotTs65KyyfIsi4RuSezvV/+aIL86
06sHYlYxETuujZP1cgOjf69Wsdsgizx0mqXJXf/xOjp22HFDcL4Bki6Rgi6t5OZj
GEHG15kSE+eJ+RIpxpuAN8fdrlxYubsVLIksCqK7cZf9zXbQGIlifKAIrYiEx6kz
FD+o+j/5niRWR6yJZCtCcGxqpSlwnYWPqc1Ds0GES8A/BphWMPozXUAZ0ll4Fnp1
yyR2/Due/eBsCNESn579kP8989rashubB8vxvdx2fcWVtLC7VgE=
=QaEo
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"No major architecture features this time around, just some new HWCAP
definitions, support for the Ampere SoC PMUs and a few fixes/cleanups.
The bulk of the changes is reworking of the CPU capability checking
code (cpus_have_cap() etc).
- Major refactoring of the CPU capability detection logic resulting
in the removal of the cpus_have_const_cap() function and migrating
the code to "alternative" branches where possible
- Backtrace/kgdb: use IPIs and pseudo-NMI
- Perf and PMU:
- Add support for Ampere SoC PMUs
- Multi-DTC improvements for larger CMN configurations with
multiple Debug & Trace Controllers
- Rework the Arm CoreSight PMU driver to allow separate
registration of vendor backend modules
- Fixes: add missing MODULE_DEVICE_TABLE to the amlogic perf
driver; use device_get_match_data() in the xgene driver; fix
NULL pointer dereference in the hisi driver caused by calling
cpuhp_state_remove_instance(); use-after-free in the hisi driver
- HWCAP updates:
- FEAT_SVE_B16B16 (BFloat16)
- FEAT_LRCPC3 (release consistency model)
- FEAT_LSE128 (128-bit atomic instructions)
- SVE: remove a couple of pseudo registers from the cpufeature code.
There is logic in place already to detect mismatched SVE features
- Miscellaneous:
- Reduce the default swiotlb size (currently 64MB) if no ZONE_DMA
bouncing is needed. The buffer is still required for small
kmalloc() buffers
- Fix module PLT counting with !RANDOMIZE_BASE
- Restrict CPU_BIG_ENDIAN to LLVM IAS 15.x or newer move
synchronisation code out of the set_ptes() loop
- More compact cpufeature displaying enabled cores
- Kselftest updates for the new CPU features"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (83 commits)
arm64: Restrict CPU_BIG_ENDIAN to GNU as or LLVM IAS 15.x or newer
arm64: module: Fix PLT counting when CONFIG_RANDOMIZE_BASE=n
arm64, irqchip/gic-v3, ACPI: Move MADT GICC enabled check into a helper
perf: hisi: Fix use-after-free when register pmu fails
drivers/perf: hisi_pcie: Initialize event->cpu only on success
drivers/perf: hisi_pcie: Check the type first in pmu::event_init()
arm64: cpufeature: Change DBM to display enabled cores
arm64: cpufeature: Display the set of cores with a feature
perf/arm-cmn: Enable per-DTC counter allocation
perf/arm-cmn: Rework DTC counters (again)
perf/arm-cmn: Fix DTC domain detection
drivers: perf: arm_pmuv3: Drop some unused arguments from armv8_pmu_init()
drivers: perf: arm_pmuv3: Read PMMIR_EL1 unconditionally
drivers/perf: hisi: use cpuhp_state_remove_instance_nocalls() for hisi_hns3_pmu uninit process
clocksource/drivers/arm_arch_timer: limit XGene-1 workaround
arm64: Remove system_uses_lse_atomics()
arm64: Mark the 'addr' argument to set_ptes() and __set_pte_at() as unused
drivers/perf: xgene: Use device_get_match_data()
perf/amlogic: add missing MODULE_DEVICE_TABLE
arm64/mm: Hoist synchronization out of set_ptes() loop
...
- Generalized infrastructure for 'writable' ID registers, effectively
allowing userspace to opt-out of certain vCPU features for its guest
- Optimization for vSGI injection, opportunistically compressing MPIDR
to vCPU mapping into a table
- Improvements to KVM's PMU emulation, allowing userspace to select
the number of PMCs available to a VM
- Guest support for memory operation instructions (FEAT_MOPS)
- Cleanups to handling feature flags in KVM_ARM_VCPU_INIT, squashing
bugs and getting rid of useless code
- Changes to the way the SMCCC filter is constructed, avoiding wasted
memory allocations when not in use
- Load the stage-2 MMU context at vcpu_load() for VHE systems, reducing
the overhead of errata mitigations
- Miscellaneous kernel and selftest fixes
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQSNXHjWXuzMZutrKNKivnWIJHzdFgUCZUFJRgAKCRCivnWIJHzd
FtgYAP9cMsc1Mhlw3jNQnTc6q0cbTulD/SoEDPUat1dXMqjs+gEAnskwQTrTX834
fgGQeCAyp7Gmar+KeP64H0xm8kPSpAw=
=R4M7
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 6.7
- Generalized infrastructure for 'writable' ID registers, effectively
allowing userspace to opt-out of certain vCPU features for its guest
- Optimization for vSGI injection, opportunistically compressing MPIDR
to vCPU mapping into a table
- Improvements to KVM's PMU emulation, allowing userspace to select
the number of PMCs available to a VM
- Guest support for memory operation instructions (FEAT_MOPS)
- Cleanups to handling feature flags in KVM_ARM_VCPU_INIT, squashing
bugs and getting rid of useless code
- Changes to the way the SMCCC filter is constructed, avoiding wasted
memory allocations when not in use
- Load the stage-2 MMU context at vcpu_load() for VHE systems, reducing
the overhead of errata mitigations
- Miscellaneous kernel and selftest fixes
* kvm-arm64/mops:
: KVM support for MOPS, courtesy of Kristina Martsenko
:
: MOPS adds new instructions for accelerating memcpy(), memset(), and
: memmove() operations in hardware. This series brings virtualization
: support for KVM guests, and allows VMs to run on asymmetrict systems
: that may have different MOPS implementations.
KVM: arm64: Expose MOPS instructions to guests
KVM: arm64: Add handler for MOPS exceptions
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/stage2-vhe-load:
: Setup stage-2 MMU from vcpu_load() for VHE
:
: Unlike nVHE, there is no need to switch the stage-2 MMU around on guest
: entry/exit in VHE mode as the host is running at EL2. Despite this KVM
: reloads the stage-2 on every guest entry, which is needless.
:
: This series moves the setup of the stage-2 MMU context to vcpu_load()
: when running in VHE mode. This is likely to be a win across the board,
: but also allows us to remove an ISB on the guest entry path for systems
: with one of the speculative AT errata.
KVM: arm64: Move VTCR_EL2 into struct s2_mmu
KVM: arm64: Load the stage-2 MMU context in kvm_vcpu_load_vhe()
KVM: arm64: Rename helpers for VHE vCPU load/put
KVM: arm64: Reload stage-2 for VMID change on VHE
KVM: arm64: Restore the stage-2 context in VHE's __tlb_switch_to_host()
KVM: arm64: Don't zero VTTBR in __tlb_switch_to_host()
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/misc:
: Miscellaneous updates
:
: - Put an upper bound on the number of I-cache invalidations by
: cacheline to avoid soft lockups
:
: - Get rid of bogus refererence count transfer for THP mappings
:
: - Do a local TLB invalidation on permission fault race
:
: - Fixes for page_fault_test KVM selftest
:
: - Add a tracepoint for detecting MMIO instructions unsupported by KVM
KVM: arm64: Add tracepoint for MMIO accesses where ISV==0
KVM: arm64: selftest: Perform ISB before reading PAR_EL1
KVM: arm64: selftest: Add the missing .guest_prepare()
KVM: arm64: Always invalidate TLB for stage-2 permission faults
KVM: arm64: Do not transfer page refcount for THP adjustment
KVM: arm64: Avoid soft lockups due to I-cache maintenance
arm64: tlbflush: Rename MAX_TLBI_OPS
KVM: arm64: Don't use kerneldoc comment for arm64_check_features()
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
It is possible for multiple vCPUs to fault on the same IPA and attempt
to resolve the fault. One of the page table walks will actually update
the PTE and the rest will return -EAGAIN per our race detection scheme.
KVM elides the TLB invalidation on the racing threads as the return
value is nonzero.
Before commit a12ab1378a ("KVM: arm64: Use local TLBI on permission
relaxation") KVM always used broadcast TLB invalidations when handling
permission faults, which had the convenient property of making the
stage-2 updates visible to all CPUs in the system. However now we do a
local invalidation, and TLBI elision leads to the vCPU thread faulting
again on the stale entry. Remember that the architecture permits the TLB
to cache translations that precipitate a permission fault.
Invalidate the TLB entry responsible for the permission fault if the
stage-2 descriptor has been relaxed, regardless of which thread actually
did the job.
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230922223229.1608155-1-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
We currently have a global VTCR_EL2 value for each guest, even
if the guest uses NV. This implies that the guest's own S2 must
fit in the host's. This is odd, for multiple reasons:
- the PARange values and the number of IPA bits don't necessarily
match: you can have 33 bits of IPA space, and yet you can only
describe 32 or 36 bits of PARange
- When userspace set the IPA space, it creates a contract with the
kernel saying "this is the IPA space I'm prepared to handle".
At no point does it constraint the guest's own IPA space as
long as the guest doesn't try to use a [I]PA outside of the
IPA space set by userspace
- We don't even try to hide the value of ID_AA64MMFR0_EL1.PARange.
And then there is the consequence of the above: if a guest tries
to create a S2 that has for input address something that is larger
than the IPA space defined by the host, we inject a fatal exception.
This is no good. For all intent and purposes, a guest should be
able to have the S2 it really wants, as long as the *output* address
of that S2 isn't outside of the IPA space.
For that, we need to have a per-s2_mmu VTCR_EL2 setting, which
allows us to represent the full PARange. Move the vctr field into
the s2_mmu structure, which has no impact whatsoever, except for NV.
Note that once we are able to override ID_AA64MMFR0_EL1.PARange
from userspace, we'll also be able to restrict the size of the
shadow S2 that NV uses.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231012205108.3937270-1-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
To date the VHE code has aggressively reloaded the stage-2 MMU context
on every guest entry, despite the fact that this isn't necessary. This
was probably done for consistency with the nVHE code, which needs to
switch in/out the stage-2 MMU context as both the host and guest run at
EL1.
Hoist __load_stage2() into kvm_vcpu_load_vhe(), thus avoiding a reload
on every guest entry/exit. This is likely to be beneficial to systems
with one of the speculative AT errata, as there is now one fewer context
synchronization event on the guest entry path. Additionally, it is
possible that implementations have hitched correctness mitigations on
writes to VTTBR_EL2, which are now elided on guest re-entry.
Note that __tlb_switch_to_guest() is deliberately left untouched as it
can be called outside the context of a running vCPU.
Link: https://lore.kernel.org/r/20231018233212.2888027-6-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
The names for the helpers we expose to the 'generic' KVM code are a bit
imprecise; we switch the EL0 + EL1 sysreg context and setup trap
controls that do not need to change for every guest entry/exit. Rename +
shuffle things around a bit in preparation for loading the stage-2 MMU
context on vcpu_load().
Link: https://lore.kernel.org/r/20231018233212.2888027-5-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
An MMU notifier could cause us to clobber the stage-2 context loaded on
a CPU when we switch to another VM's context to invalidate. This isn't
an issue right now as the stage-2 context gets reloaded on every guest
entry, but is disastrous when moving __load_stage2() into the
vcpu_load() path.
Restore the previous stage-2 context on the way out of a TLB
invalidation if we installed something else. Deliberately do this after
TGE=1 is synchronized to keep things safe in light of the speculative AT
errata.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231018233212.2888027-3-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
The main addition is the initial support for the notifications and
memory transaction descriptor changes added in FF-A v1.1 specification.
The notification mechanism enables a requester/sender endpoint to notify
a service provider/receiver endpoint about an event with non-blocking
semantics. A notification is akin to the doorbell between two endpoints
in a communication protocol that is based upon the doorbell/mailbox
mechanism.
The framework is responsible for the delivery of the notification from
the ender to the receiver without blocking the sender. The receiver
endpoint relies on the OS scheduler for allocation of CPU cycles to
handle a notification.
OS is referred as the receiver’s scheduler in the context of notifications.
The framework is responsible for informing the receiver’s scheduler that
the receiver must be run since it has a pending notification.
The series also includes support for the new format of memory transaction
descriptors introduced in v1.1 specification.
Apart from the main additions, it includes minor fixes to re-enable FF-A
drivers usage of 32bit mode of messaging and kernel warning due to the
missing assignment of IDR allocation ID to the FFA device. It also adds
emitting 'modalias' to the base attribute of FF-A devices.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEunHlEgbzHrJD3ZPhAEG6vDF+4pgFAmUlJuUACgkQAEG6vDF+
4pinPRAAzLFtehLNhpC2BsEbvdJo/bSeGl1OAricml3gyU45W7AamAPuplA9E871
GxXMYbH5+mnqz5cHaYBb8KGm5dRENrtKgrwMITg3jOlqdz9HWy2MLgbSmvqbXNsU
5O8iZDvFOTCMLSEI6gWnaiKRpAzDSFu0/FH86xv+9+pbjmjL3iDjFlbxbGLFYk+L
gqHLdx4iW6aD6geC2n8oDO6UWCNLaHpXaJSAE6pfh/7pkuKMWYjVwivKxrMA9Saw
WjoyBdjUgir9w6qJauR94MGMnbPTd378MzBrEWMo04I2ubLCVwiPVDEEu7jZGrBV
2n5DD8/0fSak9KEEozRKnj9umhmvHN9Of72qBLNZ0K4zmq8Fs00woXIlnUNH0dcZ
qZN/ZEDXpD51OsgMH+ojojaqFEcFynEQIQjibiv1Ju16F+1PIABCyODgb58fIa71
WvRUXVttkml6boY7KqGIDRiSRfEIZfoWqKucFpEbRwCXLLqc2VJ4UYUiYB1B3fD1
g3ZuQXhurwfLG7SwrKK4KWFLHTSNj4IuixeqsAM+PYyTE5iquP3xpqYgbb99n9VT
SWCyQdw0e+DyAhzmx0ZZZtCO2f54JQY852jHSkQFQsRNcK+h2exYxjIE7NfgfIGG
H1NvJjumunOZEOZr+Wwz74wDJDMoLvMJTGr4ovIkNn/xb+4lcHU=
=bHXY
-----END PGP SIGNATURE-----
gpgsig -----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEiK/NIGsWEZVxh/FrYKtH/8kJUicFAmUto10ACgkQYKtH/8kJ
UidIlw//e0ZkLIffq0d9svTie4NHxxb8AEu8sqnxr1HcinpCfa2Cwi6utt+y5XXc
Ti7T7Jj/BKnwTfNXw6REvKplBhMGMQFkKcrX7lSnDpPhzCj8Ls0j78ac52KfmVpi
HmzRchsdKtKBYKZOBA+gnBABu38O9QvuteDKJXx8vzowztYJpHc/UmE5qYHwVWDT
kKqNzFo34zvLS/ephZZFV113ji3foQiOFCWtx408nfcUvW/g8H3xRp6njPlmP0Ue
PhFbR3qsEV/nLTafypACsxSappuHngtInXZA2cpA6LKc0oS426rTvY6i167amOq4
ktcqmVdD6mbNEApTsB5O32TK+AI2rPvCh6OCS0x0M6+yWhZVGjZXZgzr1Ma3uphz
dD3HcXYEaMHJQVAu8npVo5x3UEApOts+SX7QY4IlekzCzr1guhnWKnmxTS8jYx2Z
HzwJatmvb+ENzbZHX2R1Y53keue/oq0AkYva0gNVK6F7ELjowDmV0l02qm5G0aBC
3Pa1KEYpb34qagwknzFjGubBrJcPX/sdzt1KWUoCLDbveb+HCaPKlGipOs3PjMLy
s/IeGH7LED3XbfxDpsRuzkwgtKzuvmdaWfgccx56rPjMlh763fvS16DB2PUiJ4FP
qv7fu98hvVG2Z2eFVHib3FT6isw4NVmsXRzc6uW54nVKj2pQmRY=
=QaJo
-----END PGP SIGNATURE-----
Merge tag 'ffa-updates-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/sudeep.holla/linux into soc/drivers
Arm FF-A updates for v6.7
The main addition is the initial support for the notifications and
memory transaction descriptor changes added in FF-A v1.1 specification.
The notification mechanism enables a requester/sender endpoint to notify
a service provider/receiver endpoint about an event with non-blocking
semantics. A notification is akin to the doorbell between two endpoints
in a communication protocol that is based upon the doorbell/mailbox
mechanism.
The framework is responsible for the delivery of the notification from
the ender to the receiver without blocking the sender. The receiver
endpoint relies on the OS scheduler for allocation of CPU cycles to
handle a notification.
OS is referred as the receiver’s scheduler in the context of notifications.
The framework is responsible for informing the receiver’s scheduler that
the receiver must be run since it has a pending notification.
The series also includes support for the new format of memory transaction
descriptors introduced in v1.1 specification.
Apart from the main additions, it includes minor fixes to re-enable FF-A
drivers usage of 32bit mode of messaging and kernel warning due to the
missing assignment of IDR allocation ID to the FFA device. It also adds
emitting 'modalias' to the base attribute of FF-A devices.
* tag 'ffa-updates-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/sudeep.holla/linux:
firmware: arm_ffa: Upgrade the driver version to v1.1
firmware: arm_ffa: Update memory descriptor to support v1.1 format
firmware: arm_ffa: Switch to using ffa_mem_desc_offset() accessor
KVM: arm64: FFA: Remove access of endpoint memory access descriptor array
firmware: arm_ffa: Simplify the computation of transmit and fragment length
firmware: arm_ffa: Add notification handling mechanism
firmware: arm_ffa: Add interface to send a notification to a given partition
firmware: arm_ffa: Add interfaces to request notification callbacks
firmware: arm_ffa: Add schedule receiver callback mechanism
firmware: arm_ffa: Initial support for scheduler receiver interrupt
firmware: arm_ffa: Implement the NOTIFICATION_INFO_GET interface
firmware: arm_ffa: Implement the FFA_NOTIFICATION_GET interface
firmware: arm_ffa: Implement the FFA_NOTIFICATION_SET interface
firmware: arm_ffa: Implement the FFA_RUN interface
firmware: arm_ffa: Implement the notification bind and unbind interface
firmware: arm_ffa: Implement notification bitmap create and destroy interfaces
firmware: arm_ffa: Update the FF-A command list with v1.1 additions
firmware: arm_ffa: Emit modalias for FF-A devices
firmware: arm_ffa: Allow the FF-A drivers to use 32bit mode of messaging
firmware: arm_ffa: Assign the missing IDR allocation ID to the FFA device
Link: https://lore.kernel.org/r/20231010124354.1620064-1-sudeep.holla@arm.com
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
In system_supports_bti() we use cpus_have_const_cap() to check for
ARM64_HAS_BTI, but this is not necessary and alternative_has_cap_*() or
cpus_have_final_*cap() would be preferable.
For historical reasons, cpus_have_const_cap() is more complicated than
it needs to be. Before cpucaps are finalized, it will perform a bitmap
test of the system_cpucaps bitmap, and once cpucaps are finalized it
will use an alternative branch. This used to be necessary to handle some
race conditions in the window between cpucap detection and the
subsequent patching of alternatives and static branches, where different
branches could be out-of-sync with one another (or w.r.t. alternative
sequences). Now that we use alternative branches instead of static
branches, these are all patched atomically w.r.t. one another, and there
are only a handful of cases that need special care in the window between
cpucap detection and alternative patching.
Due to the above, it would be nice to remove cpus_have_const_cap(), and
migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(),
or cpus_have_cap() depending on when their requirements. This will
remove redundant instructions and improve code generation, and will make
it easier to determine how each callsite will behave before, during, and
after alternative patching.
When CONFIG_ARM64_BTI_KERNEL=y, the ARM64_HAS_BTI cpucap is a strict
boot cpu feature which is detected and patched early on the boot cpu.
All uses guarded by CONFIG_ARM64_BTI_KERNEL happen after the boot CPU
has detected ARM64_HAS_BTI and patched boot alternatives, and hence can
safely use alternative_has_cap_*() or cpus_have_final_boot_cap().
Regardless of CONFIG_ARM64_BTI_KERNEL, all other uses of ARM64_HAS_BTI
happen after system capabilities have been finalized and alternatives
have been patched. Hence these can safely use alternative_has_cap_*) or
cpus_have_final_cap().
This patch splits system_supports_bti() into system_supports_bti() and
system_supports_bti_kernel(), with the former handling where the cpucap
affects userspace functionality, and ther latter handling where the
cpucap affects kernel functionality. The use of cpus_have_const_cap() is
replaced by cpus_have_final_cap() in cpus_have_const_cap, and
cpus_have_final_boot_cap() in system_supports_bti_kernel(). This will
avoid generating code to test the system_cpucaps bitmap and should be
better for all subsequent calls at runtime. The use of
cpus_have_final_cap() and cpus_have_final_boot_cap() will make it easier
to spot if code is chaanged such that these run before the ARM64_HAS_BTI
cpucap is guaranteed to have been finalized.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Much of the arm64 KVM code uses cpus_have_const_cap() to check for
cpucaps, but this is unnecessary and it would be preferable to use
cpus_have_final_cap().
For historical reasons, cpus_have_const_cap() is more complicated than
it needs to be. Before cpucaps are finalized, it will perform a bitmap
test of the system_cpucaps bitmap, and once cpucaps are finalized it
will use an alternative branch. This used to be necessary to handle some
race conditions in the window between cpucap detection and the
subsequent patching of alternatives and static branches, where different
branches could be out-of-sync with one another (or w.r.t. alternative
sequences). Now that we use alternative branches instead of static
branches, these are all patched atomically w.r.t. one another, and there
are only a handful of cases that need special care in the window between
cpucap detection and alternative patching.
Due to the above, it would be nice to remove cpus_have_const_cap(), and
migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(),
or cpus_have_cap() depending on when their requirements. This will
remove redundant instructions and improve code generation, and will make
it easier to determine how each callsite will behave before, during, and
after alternative patching.
KVM is initialized after cpucaps have been finalized and alternatives
have been patched. Since commit:
d86de40dec ("arm64: cpufeature: upgrade hyp caps to final")
... use of cpus_have_const_cap() in hyp code is automatically converted
to use cpus_have_final_cap():
| static __always_inline bool cpus_have_const_cap(int num)
| {
| if (is_hyp_code())
| return cpus_have_final_cap(num);
| else if (system_capabilities_finalized())
| return __cpus_have_const_cap(num);
| else
| return cpus_have_cap(num);
| }
Thus, converting hyp code to use cpus_have_final_cap() directly will not
result in any functional change.
Non-hyp KVM code is also not executed until cpucaps have been finalized,
and it would be preferable to extent the same treatment to this code and
use cpus_have_final_cap() directly.
This patch converts instances of cpus_have_const_cap() in KVM-only code
over to cpus_have_final_cap(). As all of this code runs after cpucaps
have been finalized, there should be no functional change as a result of
this patch, but the redundant instructions generated by
cpus_have_const_cap() will be removed from the non-hyp KVM code.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Contrary to common belief, HCR_EL2.TGE has a direct and immediate
effect on the way the EL0 physical counter is offset. Flipping
TGE from 1 to 0 while at EL2 immediately changes the way the counter
compared to the CVAL limit.
This means that we cannot directly save/restore the guest's view of
CVAL, but that we instead must treat it as if CNTPOFF didn't exist.
Only in the world switch, once we figure out that we do have CNTPOFF,
can we must the offset back and forth depending on the polarity of
TGE.
Fixes: 2b4825a869 ("KVM: arm64: timers: Use CNTPOFF_EL2 to offset the physical timer")
Reported-by: Ganapatrao Kulkarni <gankulkarni@os.amperecomputing.com>
Tested-by: Ganapatrao Kulkarni <gankulkarni@os.amperecomputing.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Expose the Armv8.8 FEAT_MOPS feature to guests in the ID register and
allow the MOPS instructions to be run in a guest. Only expose MOPS if
the whole system supports it.
Note, it is expected that guests do not use these instructions on MMIO,
similarly to other instructions where ESR_EL2.ISV==0 such as LDP/STP.
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230922112508.1774352-3-kristina.martsenko@arm.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
An Armv8.8 FEAT_MOPS main or epilogue instruction will take an exception
if executed on a CPU with a different MOPS implementation option (A or
B) than the CPU where the preceding prologue instruction ran. In this
case the OS exception handler is expected to reset the registers and
restart execution from the prologue instruction.
A KVM guest may use the instructions at EL1 at times when the guest is
not able to handle the exception, expecting that the instructions will
only run on one CPU (e.g. when running UEFI boot services in the guest).
As KVM may reschedule the guest between different types of CPUs at any
time (on an asymmetric system), it needs to also handle the resulting
exception itself in case the guest is not able to. A similar situation
will also occur in the future when live migrating a guest from one type
of CPU to another.
Add handling for the MOPS exception to KVM. The handling can be shared
with the EL0 exception handler, as the logic and register layouts are
the same. The exception can be handled right after exiting a guest,
which avoids the cost of returning to the host exit handler.
Similarly to the EL0 exception handler, in case the main or epilogue
instruction is being single stepped, it makes sense to finish the step
before executing the prologue instruction, so advance the single step
state machine.
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230922112508.1774352-2-kristina.martsenko@arm.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
FF-A v1.1 removes the fixed location of endpoint memory access descriptor
array within the memory transaction descriptor structure. In preparation
to remove the ep_mem_access member from the ffa_mem_region structure,
provide the accessor to fetch the offset and use the same in FF-A proxy
implementation.
The accessor take the FF-A version as the argument from which the memory
access descriptor format can be determined. v1.0 uses the old format while
v1.1 onwards use the new format specified in the v1.1 specification.
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: Will Deacon <will@kernel.org>
Cc: Quentin Perret <qperret@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231005-ffa_v1-1_notif-v4-14-cddd3237809c@arm.com
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
When SVE is enabled, the host may set bit 16 in SMCCC function IDs, a
hint that indicates an unused SVE state. At the moment NVHE doesn't
account for this bit when inspecting the function ID, and rejects most
calls. Clear the hint bit before comparing function IDs.
About version compatibility: the host's PSCI driver initially probes the
firmware for a SMCCC version number. If the firmware implements a
protocol recent enough (1.3), subsequent SMCCC calls have the hint bit
set. Since the hint bit was reserved in earlier versions of the
protocol, clearing it is fine regardless of the version in use.
When a new hint is added to the protocol in the future, it will be added
to ARM_SMCCC_CALL_HINTS and NVHE will handle it straight away. This
patch only clears known hints and leaves reserved bits as is, because
future SMCCC versions could use reserved bits as modifiers for the
function ID, rather than hints.
Fixes: cfa7ff959a ("arm64: smccc: Support SMCCC v1.3 SVE register saving hint")
Reported-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230911145254.934414-4-jean-philippe@linaro.org
* Clean up vCPU targets, always returning generic v8 as the preferred target
* Trap forwarding infrastructure for nested virtualization (used for traps
that are taken from an L2 guest and are needed by the L1 hypervisor)
* FEAT_TLBIRANGE support to only invalidate specific ranges of addresses
when collapsing a table PTE to a block PTE. This avoids that the guest
refills the TLBs again for addresses that aren't covered by the table PTE.
* Fix vPMU issues related to handling of PMUver.
* Don't unnecessary align non-stack allocations in the EL2 VA space
* Drop HCR_VIRT_EXCP_MASK, which was never used...
* Don't use smp_processor_id() in kvm_arch_vcpu_load(),
but the cpu parameter instead
* Drop redundant call to kvm_set_pfn_accessed() in user_mem_abort()
* Remove prototypes without implementations
RISC-V:
* Zba, Zbs, Zicntr, Zicsr, Zifencei, and Zihpm support for guest
* Added ONE_REG interface for SATP mode
* Added ONE_REG interface to enable/disable multiple ISA extensions
* Improved error codes returned by ONE_REG interfaces
* Added KVM_GET_REG_LIST ioctl() implementation for KVM RISC-V
* Added get-reg-list selftest for KVM RISC-V
s390:
* PV crypto passthrough enablement (Tony, Steffen, Viktor, Janosch)
Allows a PV guest to use crypto cards. Card access is governed by
the firmware and once a crypto queue is "bound" to a PV VM every
other entity (PV or not) looses access until it is not bound
anymore. Enablement is done via flags when creating the PV VM.
* Guest debug fixes (Ilya)
x86:
* Clean up KVM's handling of Intel architectural events
* Intel bugfixes
* Add support for SEV-ES DebugSwap, allowing SEV-ES guests to use debug
registers and generate/handle #DBs
* Clean up LBR virtualization code
* Fix a bug where KVM fails to set the target pCPU during an IRTE update
* Fix fatal bugs in SEV-ES intrahost migration
* Fix a bug where the recent (architecturally correct) change to reinject
#BP and skip INT3 broke SEV guests (can't decode INT3 to skip it)
* Retry APIC map recalculation if a vCPU is added/enabled
* Overhaul emergency reboot code to bring SVM up to par with VMX, tie the
"emergency disabling" behavior to KVM actually being loaded, and move all of
the logic within KVM
* Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC
ratio MSR cannot diverge from the default when TSC scaling is disabled
up related code
* Add a framework to allow "caching" feature flags so that KVM can check if
the guest can use a feature without needing to search guest CPUID
* Rip out the ancient MMU_DEBUG crud and replace the useful bits with
CONFIG_KVM_PROVE_MMU
* Fix KVM's handling of !visible guest roots to avoid premature triple fault
injection
* Overhaul KVM's page-track APIs, and KVMGT's usage, to reduce the API surface
that is needed by external users (currently only KVMGT), and fix a variety
of issues in the process
This last item had a silly one-character bug in the topic branch that
was sent to me. Because it caused pretty bad selftest failures in
some configurations, I decided to squash in the fix. So, while the
exact commit ids haven't been in linux-next, the code has (from the
kvm-x86 tree).
Generic:
* Wrap kvm_{gfn,hva}_range.pte in a union to allow mmu_notifier events to pass
action specific data without needing to constantly update the main handlers.
* Drop unused function declarations
Selftests:
* Add testcases to x86's sync_regs_test for detecting KVM TOCTOU bugs
* Add support for printf() in guest code and covert all guest asserts to use
printf-based reporting
* Clean up the PMU event filter test and add new testcases
* Include x86 selftests in the KVM x86 MAINTAINERS entry
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmT1m0kUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMNgggAiN7nz6UC423FznuI+yO3TLm8tkx1
CpKh5onqQogVtchH+vrngi97cfOzZb1/AtifY90OWQi31KEWhehkeofcx7G6ERhj
5a9NFADY1xGBsX4exca/VHDxhnzsbDWaWYPXw5vWFWI6erft9Mvy3tp1LwTvOzqM
v8X4aWz+g5bmo/DWJf4Wu32tEU6mnxzkrjKU14JmyqQTBawVmJ3RYvHVJ/Agpw+n
hRtPAy7FU6XTdkmq/uCT+KUHuJEIK0E/l1js47HFAqSzwdW70UDg14GGo1o4ETxu
RjZQmVNvL57yVgi6QU38/A0FWIsWQm5IlaX1Ug6x8pjZPnUKNbo9BY4T1g==
=W+4p
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Clean up vCPU targets, always returning generic v8 as the preferred
target
- Trap forwarding infrastructure for nested virtualization (used for
traps that are taken from an L2 guest and are needed by the L1
hypervisor)
- FEAT_TLBIRANGE support to only invalidate specific ranges of
addresses when collapsing a table PTE to a block PTE. This avoids
that the guest refills the TLBs again for addresses that aren't
covered by the table PTE.
- Fix vPMU issues related to handling of PMUver.
- Don't unnecessary align non-stack allocations in the EL2 VA space
- Drop HCR_VIRT_EXCP_MASK, which was never used...
- Don't use smp_processor_id() in kvm_arch_vcpu_load(), but the cpu
parameter instead
- Drop redundant call to kvm_set_pfn_accessed() in user_mem_abort()
- Remove prototypes without implementations
RISC-V:
- Zba, Zbs, Zicntr, Zicsr, Zifencei, and Zihpm support for guest
- Added ONE_REG interface for SATP mode
- Added ONE_REG interface to enable/disable multiple ISA extensions
- Improved error codes returned by ONE_REG interfaces
- Added KVM_GET_REG_LIST ioctl() implementation for KVM RISC-V
- Added get-reg-list selftest for KVM RISC-V
s390:
- PV crypto passthrough enablement (Tony, Steffen, Viktor, Janosch)
Allows a PV guest to use crypto cards. Card access is governed by
the firmware and once a crypto queue is "bound" to a PV VM every
other entity (PV or not) looses access until it is not bound
anymore. Enablement is done via flags when creating the PV VM.
- Guest debug fixes (Ilya)
x86:
- Clean up KVM's handling of Intel architectural events
- Intel bugfixes
- Add support for SEV-ES DebugSwap, allowing SEV-ES guests to use
debug registers and generate/handle #DBs
- Clean up LBR virtualization code
- Fix a bug where KVM fails to set the target pCPU during an IRTE
update
- Fix fatal bugs in SEV-ES intrahost migration
- Fix a bug where the recent (architecturally correct) change to
reinject #BP and skip INT3 broke SEV guests (can't decode INT3 to
skip it)
- Retry APIC map recalculation if a vCPU is added/enabled
- Overhaul emergency reboot code to bring SVM up to par with VMX, tie
the "emergency disabling" behavior to KVM actually being loaded,
and move all of the logic within KVM
- Fix user triggerable WARNs in SVM where KVM incorrectly assumes the
TSC ratio MSR cannot diverge from the default when TSC scaling is
disabled up related code
- Add a framework to allow "caching" feature flags so that KVM can
check if the guest can use a feature without needing to search
guest CPUID
- Rip out the ancient MMU_DEBUG crud and replace the useful bits with
CONFIG_KVM_PROVE_MMU
- Fix KVM's handling of !visible guest roots to avoid premature
triple fault injection
- Overhaul KVM's page-track APIs, and KVMGT's usage, to reduce the
API surface that is needed by external users (currently only
KVMGT), and fix a variety of issues in the process
Generic:
- Wrap kvm_{gfn,hva}_range.pte in a union to allow mmu_notifier
events to pass action specific data without needing to constantly
update the main handlers.
- Drop unused function declarations
Selftests:
- Add testcases to x86's sync_regs_test for detecting KVM TOCTOU bugs
- Add support for printf() in guest code and covert all guest asserts
to use printf-based reporting
- Clean up the PMU event filter test and add new testcases
- Include x86 selftests in the KVM x86 MAINTAINERS entry"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (279 commits)
KVM: x86/mmu: Include mmu.h in spte.h
KVM: x86/mmu: Use dummy root, backed by zero page, for !visible guest roots
KVM: x86/mmu: Disallow guest from using !visible slots for page tables
KVM: x86/mmu: Harden TDP MMU iteration against root w/o shadow page
KVM: x86/mmu: Harden new PGD against roots without shadow pages
KVM: x86/mmu: Add helper to convert root hpa to shadow page
drm/i915/gvt: Drop final dependencies on KVM internal details
KVM: x86/mmu: Handle KVM bookkeeping in page-track APIs, not callers
KVM: x86/mmu: Drop @slot param from exported/external page-track APIs
KVM: x86/mmu: Bug the VM if write-tracking is used but not enabled
KVM: x86/mmu: Assert that correct locks are held for page write-tracking
KVM: x86/mmu: Rename page-track APIs to reflect the new reality
KVM: x86/mmu: Drop infrastructure for multiple page-track modes
KVM: x86/mmu: Use page-track notifiers iff there are external users
KVM: x86/mmu: Move KVM-only page-track declarations to internal header
KVM: x86: Remove the unused page-track hook track_flush_slot()
drm/i915/gvt: switch from ->track_flush_slot() to ->track_remove_region()
KVM: x86: Add a new page-track hook to handle memslot deletion
drm/i915/gvt: Don't bother removing write-protection on to-be-deleted slot
KVM: x86: Reject memslot MOVE operations if KVMGT is attached
...
- Add support for TLB range invalidation of Stage-2 page tables,
avoiding unnecessary invalidations. Systems that do not implement
range invalidation still rely on a full invalidation when dealing
with large ranges.
- Add infrastructure for forwarding traps taken from a L2 guest to
the L1 guest, with L0 acting as the dispatcher, another baby step
towards the full nested support.
- Simplify the way we deal with the (long deprecated) 'CPU target',
resulting in a much needed cleanup.
- Fix another set of PMU bugs, both on the guest and host sides,
as we seem to never have any shortage of those...
- Relax the alignment requirements of EL2 VA allocations for
non-stack allocations, as we were otherwise wasting a lot of that
precious VA space.
- The usual set of non-functional cleanups, although I note the lack
of spelling fixes...
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmTsXrUPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDZpIQAJUM1rNEOJ8ExYRfoG1LaTfcOm5TD6D1IWlO
uCUx4xLMBudw/55HusmUSdiomQ3Xg5UdRaU7vX5OYwPbdoWebjEUfgdP3jCA/TiW
mZTMv3x9hOvp+EOS/UnS469cERvg1/KfwcdOQsWL0HsCFZnu2XmQHWPD++vovLNp
F1892ij875mC6C6mOR60H2nyjIiCuqWh/8eKBkp65CARCbFDYxWhqBnmcmTvoquh
E87pQDPdtgXc0KlOWCABh5bYOu1WGVEXE5f3ixtdY9cQakkSI3NkFKw27/mIWS4q
TCsagByNnPFDXTglb1dJopNdluLMFi1iXhRJX78R/PYaHxf4uFafWcQk1U7eDdLg
1kPANggwYe4KNAQZUvRhH7lIPWHCH0r4c1qHV+FsiOZVoDOSKHo4RW1ZFtirJSNW
LNJMdk+8xyae0S7z164EpZB/tpFttX4gl3YvUT/T+4gH8+CRFAaoAlK39CoGDPpk
f+P2GE1Z5YupF16YjpZtBnan55KkU1b6eORl5zpnAtoaz5WGXqj1t4qo0Q6e9WB9
X4rdDVhH7vRUmhjmSP6PuEygb84hnITLdGpkH2BmWj/4uYuCN+p+U2B2o/QdMJoo
cPxdflLOU/+1gfAFYPtHVjVKCqzhwbw3iLXQpO12gzRYqE13rUnAr7RuGDf5fBVC
LW7Pv81o
=DKhx
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for Linux 6.6
- Add support for TLB range invalidation of Stage-2 page tables,
avoiding unnecessary invalidations. Systems that do not implement
range invalidation still rely on a full invalidation when dealing
with large ranges.
- Add infrastructure for forwarding traps taken from a L2 guest to
the L1 guest, with L0 acting as the dispatcher, another baby step
towards the full nested support.
- Simplify the way we deal with the (long deprecated) 'CPU target',
resulting in a much needed cleanup.
- Fix another set of PMU bugs, both on the guest and host sides,
as we seem to never have any shortage of those...
- Relax the alignment requirements of EL2 VA allocations for
non-stack allocations, as we were otherwise wasting a lot of that
precious VA space.
- The usual set of non-functional cleanups, although I note the lack
of spelling fixes...
- Carve out the new CONFIG_LIST_HARDENED as a more focused subset of
CONFIG_DEBUG_LIST (Marco Elver).
- Fix kallsyms lookup failure under Clang LTO (Yonghong Song).
- Clarify documentation for CONFIG_UBSAN_TRAP (Jann Horn).
- Flexible array member conversion not carried in other tree (Gustavo
A. R. Silva).
- Various strlcpy() and strncpy() removals not carried in other trees
(Azeem Shaikh, Justin Stitt).
- Convert nsproxy.count to refcount_t (Elena Reshetova).
- Add handful of __counted_by annotations not carried in other trees,
as well as an LKDTM test.
- Fix build failure with gcc-plugins on GCC 14+.
- Fix selftests to respect SKIP for signal-delivery tests.
- Fix CFI warning for paravirt callback prototype.
- Clarify documentation for seq_show_option_n() usage.
-----BEGIN PGP SIGNATURE-----
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmTs6ZAWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJkpjD/9AeST5Imc2t0t71Qd+wPxW3jT3
kDZPlHH8wHmuxSpRscX82m21SozvEMvybo6Cp7FSH4qr863FnBWMlo8acr7rKxUf
0f7Y9qgY/hKADiVx5p0pbnCgcy+l4pwsxIqVCGuhjvNCbWHrdGqLM4UjIfaVz5Ws
+55a/C3S1KVwB1s1+6to43jtKqQAx6yrqYWOaT3wEfCzHC87f9PUHhIGnFQVwPGP
WpjQI/BQKpH7+MDCoJOPrZqXaE/4lWALxR6+5BBheGbvLoWifpJEYHX6bDUzkgBz
liQDkgr4eAw5EXSOS7mX3EApfeMKakznJt9Mcmn0h3pPRlM3ZSVD64Xrou2Brpje
exS2JRuh6HwIiXY9nTHc6YMGcAWG1syAR/hM2fQdujM0CWtBUk9+kkuYWsqF6nIK
3tOxYLB/Ph4p+tShd+v5R3mEmp/6snYRKJoUk+9Fk67i54NnK4huyxaCO4zui+ML
3vHuGp8KgFHUjJaYmYXHs3TRZnKSFUkPGc4MbpiGtmJ9zhfSwlhhF+yfBJCsvmTf
ZajA+sPupT4OjLxU6vUD/ZNkXAEjWzktyX2v9YBA7FHh7SqPtX9ARRIxh417AjEJ
tBPHhW/iRw9ftBIAKDmI7gPLynngd/zvjhvk6O5egHYjjgRM1/WAJZ4V26XR6+hf
TWfQb7VRzdZIqwOEUA==
=9ZWP
-----END PGP SIGNATURE-----
Merge tag 'hardening-v6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull hardening updates from Kees Cook:
"As has become normal, changes are scattered around the tree (either
explicitly maintainer Acked or for trivial stuff that went ignored):
- Carve out the new CONFIG_LIST_HARDENED as a more focused subset of
CONFIG_DEBUG_LIST (Marco Elver)
- Fix kallsyms lookup failure under Clang LTO (Yonghong Song)
- Clarify documentation for CONFIG_UBSAN_TRAP (Jann Horn)
- Flexible array member conversion not carried in other tree (Gustavo
A. R. Silva)
- Various strlcpy() and strncpy() removals not carried in other trees
(Azeem Shaikh, Justin Stitt)
- Convert nsproxy.count to refcount_t (Elena Reshetova)
- Add handful of __counted_by annotations not carried in other trees,
as well as an LKDTM test
- Fix build failure with gcc-plugins on GCC 14+
- Fix selftests to respect SKIP for signal-delivery tests
- Fix CFI warning for paravirt callback prototype
- Clarify documentation for seq_show_option_n() usage"
* tag 'hardening-v6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (23 commits)
LoadPin: Annotate struct dm_verity_loadpin_trusted_root_digest with __counted_by
kallsyms: Change func signature for cleanup_symbol_name()
kallsyms: Fix kallsyms_selftest failure
nsproxy: Convert nsproxy.count to refcount_t
integrity: Annotate struct ima_rule_opt_list with __counted_by
lkdtm: Add FAM_BOUNDS test for __counted_by
Compiler Attributes: counted_by: Adjust name and identifier expansion
um: refactor deprecated strncpy to memcpy
um: vector: refactor deprecated strncpy
alpha: Replace one-element array with flexible-array member
hardening: Move BUG_ON_DATA_CORRUPTION to hardening options
list: Introduce CONFIG_LIST_HARDENED
list_debug: Introduce inline wrappers for debug checks
compiler_types: Introduce the Clang __preserve_most function attribute
gcc-plugins: Rename last_stmt() for GCC 14+
selftests/harness: Actually report SKIP for signal tests
x86/paravirt: Fix tlb_remove_table function callback prototype warning
EISA: Replace all non-returning strlcpy with strscpy
perf: Replace strlcpy with strscpy
um: Remove strlcpy declaration
...
* kvm-arm64/6.6/misc:
: .
: Misc KVM/arm64 updates for 6.6:
:
: - Don't unnecessary align non-stack allocations in the EL2 VA space
:
: - Drop HCR_VIRT_EXCP_MASK, which was never used...
:
: - Don't use smp_processor_id() in kvm_arch_vcpu_load(),
: but the cpu parameter instead
:
: - Drop redundant call to kvm_set_pfn_accessed() in user_mem_abort()
:
: - Remove prototypes without implementations
: .
KVM: arm64: Remove size-order align in the nVHE hyp private VA range
KVM: arm64: Remove unused declarations
KVM: arm64: Remove redundant kvm_set_pfn_accessed() from user_mem_abort()
KVM: arm64: Drop HCR_VIRT_EXCP_MASK
KVM: arm64: Use the known cpu id instead of smp_processor_id()
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/tlbi-range:
: .
: FEAT_TLBIRANGE support, courtesy of Raghavendra Rao Ananta.
: From the cover letter:
:
: "In certain code paths, KVM/ARM currently invalidates the entire VM's
: page-tables instead of just invalidating a necessary range. For example,
: when collapsing a table PTE to a block PTE, instead of iterating over
: each PTE and flushing them, KVM uses 'vmalls12e1is' TLBI operation to
: flush all the entries. This is inefficient since the guest would have
: to refill the TLBs again, even for the addresses that aren't covered
: by the table entry. The performance impact would scale poorly if many
: addresses in the VM is going through this remapping.
:
: For architectures that implement FEAT_TLBIRANGE, KVM can replace such
: inefficient paths by performing the invalidations only on the range of
: addresses that are in scope. This series tries to achieve the same in
: the areas of stage-2 map, unmap and write-protecting the pages."
: .
KVM: arm64: Use TLBI range-based instructions for unmap
KVM: arm64: Invalidate the table entries upon a range
KVM: arm64: Flush only the memslot after write-protect
KVM: arm64: Implement kvm_arch_flush_remote_tlbs_range()
KVM: arm64: Define kvm_tlb_flush_vmid_range()
KVM: arm64: Implement __kvm_tlb_flush_vmid_range()
arm64: tlb: Implement __flush_s2_tlb_range_op()
arm64: tlb: Refactor the core flush algorithm of __flush_tlb_range
KVM: Move kvm_arch_flush_remote_tlbs_memslot() to common code
KVM: Allow range-based TLB invalidation from common code
KVM: Remove CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
KVM: arm64: Use kvm_arch_flush_remote_tlbs()
KVM: Declare kvm_arch_flush_remote_tlbs() globally
KVM: Rename kvm_arch_flush_remote_tlb() to kvm_arch_flush_remote_tlbs()
Signed-off-by: Marc Zyngier <maz@kernel.org>
commit f922c13e77 ("KVM: arm64: Introduce
pkvm_alloc_private_va_range()") and commit 92abe0f81e ("KVM: arm64:
Introduce hyp_alloc_private_va_range()") added an alignment for the
start address of any allocation into the nVHE hypervisor private VA
range.
This alignment (order of the size of the allocation) intends to enable
efficient stack verification (if the PAGE_SHIFT bit is zero, the stack
pointer is on the guard page and a stack overflow occurred).
But this is only necessary for stack allocation and can waste a lot of
VA space. So instead make stack-specific functions, handling the guard
page requirements, while other users (e.g. fixmap) will only get page
alignment.
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230811112037.1147863-1-vdonnefort@google.com
HCRX_EL2 has an interesting effect on HFGITR_EL2, as it conditions
the traps of TLBI*nXS.
Expand the FGT support to add a new Fine Grained Filter that will
get checked when the instruction gets trapped, allowing the shadow
register to override the trap as needed.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Jing Zhang <jingzhangos@google.com>
Link: https://lore.kernel.org/r/20230815183903.2735724-29-maz@kernel.org
Although the nVHE behaviour requires HCRX_EL2 to be switched
on each switch between host and guest, there is nothing in
this register that would affect a VHE host.
It is thus possible to save/restore this register on load/put
on VHE systems, avoiding unnecessary sysreg access on the hot
path. Additionally, it avoids unnecessary traps when running
with NV.
To achieve this, simply move the read/writes to the *_common()
helpers, which are called on load/put on VHE, and more eagerly
on nVHE.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Jing Zhang <jingzhangos@google.com>
Link: https://lore.kernel.org/r/20230815183903.2735724-28-maz@kernel.org
Now that we can evaluate the FGT registers, allow them to be merged
with the hypervisor's own configuration (in the case of HFG{RW}TR_EL2)
or simply set for HFGITR_EL2, HDGFRTR_EL2 and HDFGWTR_EL2.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Jing Zhang <jingzhangos@google.com>
Link: https://lore.kernel.org/r/20230815183903.2735724-26-maz@kernel.org
As we're about to majorly extend the handling of FGT registers,
restructure the code to actually save/restore the registers
as required. This is made easy thanks to the previous addition
of the EL2 registers, allowing us to use the host context for
this purpose.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Miguel Luis <miguel.luis@oracle.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230815183903.2735724-14-maz@kernel.org
The current implementation of the stage-2 unmap walker traverses
the given range and, as a part of break-before-make, performs
TLB invalidations with a DSB for every PTE. A multitude of this
combination could cause a performance bottleneck on some systems.
Hence, if the system supports FEAT_TLBIRANGE, defer the TLB
invalidations until the entire walk is finished, and then
use range-based instructions to invalidate the TLBs in one go.
Condition deferred TLB invalidation on the system supporting FWB,
as the optimization is entirely pointless when the unmap walker
needs to perform CMOs.
Rename stage2_put_pte() to stage2_unmap_put_pte() as the function
now serves the stage-2 unmap walker specifically, rather than
acting generic.
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230811045127.3308641-15-rananta@google.com
Currently, during the operations such as a hugepage collapse,
KVM would flush the entire VM's context using 'vmalls12e1is'
TLBI operation. Specifically, if the VM is faulting on many
hugepages (say after dirty-logging), it creates a performance
penalty for the guest whose pages have already been faulted
earlier as they would have to refill their TLBs again.
Instead, leverage kvm_tlb_flush_vmid_range() for table entries.
If the system supports it, only the required range will be
flushed. Else, it'll fallback to the previous mechanism.
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230811045127.3308641-14-rananta@google.com
Implement the helper kvm_tlb_flush_vmid_range() that acts
as a wrapper for range-based TLB invalidations. For the
given VMID, use the range-based TLBI instructions to do
the job or fallback to invalidating all the TLB entries.
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230811045127.3308641-11-rananta@google.com
Define __kvm_tlb_flush_vmid_range() (for VHE and nVHE)
to flush a range of stage-2 page-tables using IPA in one go.
If the system supports FEAT_TLBIRANGE, the following patches
would conveniently replace global TLBI such as vmalls12e1is
in the map, unmap, and dirty-logging paths with ripas2e1is
instead.
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230811045127.3308641-10-rananta@google.com
Numerous production kernel configs (see [1, 2]) are choosing to enable
CONFIG_DEBUG_LIST, which is also being recommended by KSPP for hardened
configs [3]. The motivation behind this is that the option can be used
as a security hardening feature (e.g. CVE-2019-2215 and CVE-2019-2025
are mitigated by the option [4]).
The feature has never been designed with performance in mind, yet common
list manipulation is happening across hot paths all over the kernel.
Introduce CONFIG_LIST_HARDENED, which performs list pointer checking
inline, and only upon list corruption calls the reporting slow path.
To generate optimal machine code with CONFIG_LIST_HARDENED:
1. Elide checking for pointer values which upon dereference would
result in an immediate access fault (i.e. minimal hardening
checks). The trade-off is lower-quality error reports.
2. Use the __preserve_most function attribute (available with Clang,
but not yet with GCC) to minimize the code footprint for calling
the reporting slow path. As a result, function size of callers is
reduced by avoiding saving registers before calling the rarely
called reporting slow path.
Note that all TUs in lib/Makefile already disable function tracing,
including list_debug.c, and __preserve_most's implied notrace has
no effect in this case.
3. Because the inline checks are a subset of the full set of checks in
__list_*_valid_or_report(), always return false if the inline
checks failed. This avoids redundant compare and conditional
branch right after return from the slow path.
As a side-effect of the checks being inline, if the compiler can prove
some condition to always be true, it can completely elide some checks.
Since DEBUG_LIST is functionally a superset of LIST_HARDENED, the
Kconfig variables are changed to reflect that: DEBUG_LIST selects
LIST_HARDENED, whereas LIST_HARDENED itself has no dependency on
DEBUG_LIST.
Running netperf with CONFIG_LIST_HARDENED (using a Clang compiler with
"preserve_most") shows throughput improvements, in my case of ~7% on
average (up to 20-30% on some test cases).
Link: https://r.android.com/1266735 [1]
Link: https://gitlab.archlinux.org/archlinux/packaging/packages/linux/-/blob/main/config [2]
Link: https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project/Recommended_Settings [3]
Link: https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html [4]
Signed-off-by: Marco Elver <elver@google.com>
Link: https://lore.kernel.org/r/20230811151847.1594958-3-elver@google.com
Signed-off-by: Kees Cook <keescook@chromium.org>
Turn the list debug checking functions __list_*_valid() into inline
functions that wrap the out-of-line functions. Care is taken to ensure
the inline wrappers are always inlined, so that additional compiler
instrumentation (such as sanitizers) does not result in redundant
outlining.
This change is preparation for performing checks in the inline wrappers.
No functional change intended.
Signed-off-by: Marco Elver <elver@google.com>
Link: https://lore.kernel.org/r/20230811151847.1594958-2-elver@google.com
Signed-off-by: Kees Cook <keescook@chromium.org>
Whelp, this is embarrassing. Since commit 082fdfd138 ("KVM: arm64:
Prevent guests from enabling HA/HD on Ampere1") KVM traps writes to
TCR_EL1 on AmpereOne to work around an erratum in the unadvertised
HAFDBS implementation, preventing the guest from enabling the feature.
Unfortunately, I failed virtualization 101 when working on that change,
and forgot to advance PC after instruction emulation.
Do the right thing and skip the MSR instruction after emulating the
write.
Fixes: 082fdfd138 ("KVM: arm64: Prevent guests from enabling HA/HD on Ampere1")
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230728000824.3848025-1-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/6.6/generic-vcpu:
: .
: Cleanup the obsolete vcpu target abstraction, courtesy of Oliver.
: From the cover letter:
:
: "kvm_vcpu_init::target is quite useless at this point. We don't do any
: uarch-specific emulation in the first place, and require userspace
: select the 'generic' vCPU target on all but a few implementations.
:
: Small series to (1) clean up usage of the target value in the kernel and
: (2) switch to the 'generic' target on implementations that previously
: had their own target values. The implementation-specific values are
: still tolerated, though, to avoid UAPI breakage."
: .
KVM: arm64: Always return generic v8 as the preferred target
KVM: arm64: Replace vCPU target with a configuration flag
KVM: arm64: Remove pointless check for changed init target
KVM: arm64: Delete pointless switch statement in kvm_reset_vcpu()
Signed-off-by: Marc Zyngier <maz@kernel.org>
Instead of writing directly to cptr_el2, use the helper that
selects which feature trap register to write to based on the KVM
mode.
Fixes: 75c76ab5a6 ("KVM: arm64: Rework CPTR_EL2 programming for HVHE configuration")
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230724123829.2929609-7-tabba@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
pKVM initialization fails on systems with v1.1+ FF-A implementations, as
the hyp does a strict match on the returned version from FFA_VERSION.
This is a stronger assertion than required by the specification, which
requires minor revisions be backwards compatible with earlier revisions
of the same major version.
Relax the check in hyp_ffa_init() to only test the returned major
version. Even though v1.1 broke ABI, the expectation is that firmware
incapable of using the v1.0 ABI return NOT_SUPPORTED instead of a valid
version.
Acked-by: Marc Zyngier <maz@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230718184537.3220867-1-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Some bti instructions were missing from
commit b53d4a2723 ("KVM: arm64: Use BTI for nvhe")
1) kvm_host_psci_cpu_entry
kvm_host_psci_cpu_entry is called from __kvm_hyp_init_cpu through "br"
instruction as __kvm_hyp_init_cpu resides in idmap section while
kvm_host_psci_cpu_entry is in hyp .text so the offset is larger than
128MB range covered by "b".
Which means that this function should start with "bti j" instruction.
LLVM which is the only compiler supporting BTI for Linux, adds "bti j"
for jump tables or by when taking the address of the block [1].
Same behaviour is observed with GCC.
As kvm_host_psci_cpu_entry is a C function, this must be done in
assembly.
Another solution is to use X16/X17 with "br", as according to ARM
ARM DDI0487I.a RLJHCL/IGMGRS, PACIASP has an implicit branch
target identification instruction that is compatible with
PSTATE.BTYPE 0b01 which includes "br X16/X17"
And the kvm_host_psci_cpu_entry has PACIASP as it is an external
function.
Although, using explicit "bti" makes it more clear than relying on
which register is used.
A third solution is to clear SCTLR_EL2.BT, which would make PACIASP
compatible PSTATE.BTYPE 0b11 ("br" to other registers).
However this deviates from the kernel behaviour (in bti_enable()).
2) Spectre vector table
"br" instructions are generated at runtime for the vector table
(__bp_harden_hyp_vecs).
These branches would land on vectors in __kvm_hyp_vector at offset 8.
As all the macros are defined with valid_vect/invalid_vect, it is
sufficient to add "bti j" at the correct offset.
[1] https://reviews.llvm.org/D52867
Fixes: b53d4a2723 ("KVM: arm64: Use BTI for nvhe")
Signed-off-by: Mostafa Saleh <smostafa@google.com>
Reported-by: Sudeep Holla <sudeep.holla@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
Link: https://lore.kernel.org/r/20230706152240.685684-1-smostafa@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Userspace is allowed to select any PAGE_SIZE aligned hva to back guest
memory. This is even the case with hugepages, although it is a rather
suboptimal configuration as PTE level mappings are used at stage-2.
The arm64 page aging handlers have an assumption that the specified
range is exactly one page/block of memory, which in the aforementioned
case is not necessarily true. All together this leads to the WARN() in
kvm_age_gfn() firing.
However, the WARN is only part of the issue as the table walkers visit
at most a single leaf PTE. For hugepage-backed memory in a memslot that
isn't hugepage-aligned, page aging entirely misses accesses to the
hugepage beyond the first page in the memslot.
Add a new walker dedicated to handling page aging MMU notifiers capable
of walking a range of PTEs. Convert kvm(_test)_age_gfn() over to the new
walker and drop the WARN that caught the issue in the first place. The
implementation of this walker was inspired by the test_clear_young()
implementation by Yu Zhao [*], but repurposed to address a bug in the
existing aging implementation.
Cc: stable@vger.kernel.org # v5.15
Fixes: 056aad67f8 ("kvm: arm/arm64: Rework gpa callback handlers")
Link: https://lore.kernel.org/kvmarm/20230526234435.662652-6-yuzhao@google.com/
Co-developed-by: Yu Zhao <yuzhao@google.com>
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reported-by: Reiji Watanabe <reijiw@google.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Link: https://lore.kernel.org/r/20230627235405.4069823-1-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
The value of kvm_vcpu_arch::target has been used to determine if a vCPU
has actually been initialized. Storing this as an integer is needless at
this point, as KVM doesn't do any microarch-specific emulation in the
first place. Instead, all we care about is whether or not the vCPU has
been initialized.
Delete the field in favor of a vCPU configuration flag indicating if
KVM_ARM_VCPU_INIT has completed for the vCPU.
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230710193140.1706399-4-oliver.upton@linux.dev
* Eager page splitting optimization for dirty logging, optionally
allowing for a VM to avoid the cost of hugepage splitting in the stage-2
fault path.
* Arm FF-A proxy for pKVM, allowing a pKVM host to safely interact with
services that live in the Secure world. pKVM intervenes on FF-A calls
to guarantee the host doesn't misuse memory donated to the hyp or a
pKVM guest.
* Support for running the split hypervisor with VHE enabled, known as
'hVHE' mode. This is extremely useful for testing the split
hypervisor on VHE-only systems, and paves the way for new use cases
that depend on having two TTBRs available at EL2.
* Generalized framework for configurable ID registers from userspace.
KVM/arm64 currently prevents arbitrary CPU feature set configuration
from userspace, but the intent is to relax this limitation and allow
userspace to select a feature set consistent with the CPU.
* Enable the use of Branch Target Identification (FEAT_BTI) in the
hypervisor.
* Use a separate set of pointer authentication keys for the hypervisor
when running in protected mode, as the host is untrusted at runtime.
* Ensure timer IRQs are consistently released in the init failure
paths.
* Avoid trapping CTR_EL0 on systems with Enhanced Virtualization Traps
(FEAT_EVT), as it is a register commonly read from userspace.
* Erratum workaround for the upcoming AmpereOne part, which has broken
hardware A/D state management.
RISC-V:
* Redirect AMO load/store misaligned traps to KVM guest
* Trap-n-emulate AIA in-kernel irqchip for KVM guest
* Svnapot support for KVM Guest
s390:
* New uvdevice secret API
* CMM selftest and fixes
* fix racy access to target CPU for diag 9c
x86:
* Fix missing/incorrect #GP checks on ENCLS
* Use standard mmu_notifier hooks for handling APIC access page
* Drop now unnecessary TR/TSS load after VM-Exit on AMD
* Print more descriptive information about the status of SEV and SEV-ES during
module load
* Add a test for splitting and reconstituting hugepages during and after
dirty logging
* Add support for CPU pinning in demand paging test
* Add support for AMD PerfMonV2, with a variety of cleanups and minor fixes
included along the way
* Add a "nx_huge_pages=never" option to effectively avoid creating NX hugepage
recovery threads (because nx_huge_pages=off can be toggled at runtime)
* Move handling of PAT out of MTRR code and dedup SVM+VMX code
* Fix output of PIC poll command emulation when there's an interrupt
* Add a maintainer's handbook to document KVM x86 processes, preferred coding
style, testing expectations, etc.
* Misc cleanups, fixes and comments
Generic:
* Miscellaneous bugfixes and cleanups
Selftests:
* Generate dependency files so that partial rebuilds work as expected
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmSgHrIUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroORcAf+KkBlXwQMf+Q0Hy6Mfe0OtkKmh0Ae
6HJ6dsuMfOHhWv5kgukh+qvuGUGzHq+gpVKmZg2yP3h3cLHOLUAYMCDm+rjXyjsk
F4DbnJLfxq43Pe9PHRKFxxSecRcRYCNox0GD5UYL4PLKcH0FyfQrV+HVBK+GI8L3
FDzUcyJkR12Lcj1qf++7fsbzfOshL0AJPmidQCoc6wkLJpUEr/nYUqlI1Kx3YNuQ
LKmxFHS4l4/O/px3GKNDrLWDbrVlwciGIa3GZLS52PZdW3mAqT+cqcPcYK6SW71P
m1vE80VbNELX5q3YSRoOXtedoZ3Pk97LEmz/xQAsJ/jri0Z5Syk0Ok0m/Q==
=AMXp
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM64:
- Eager page splitting optimization for dirty logging, optionally
allowing for a VM to avoid the cost of hugepage splitting in the
stage-2 fault path.
- Arm FF-A proxy for pKVM, allowing a pKVM host to safely interact
with services that live in the Secure world. pKVM intervenes on
FF-A calls to guarantee the host doesn't misuse memory donated to
the hyp or a pKVM guest.
- Support for running the split hypervisor with VHE enabled, known as
'hVHE' mode. This is extremely useful for testing the split
hypervisor on VHE-only systems, and paves the way for new use cases
that depend on having two TTBRs available at EL2.
- Generalized framework for configurable ID registers from userspace.
KVM/arm64 currently prevents arbitrary CPU feature set
configuration from userspace, but the intent is to relax this
limitation and allow userspace to select a feature set consistent
with the CPU.
- Enable the use of Branch Target Identification (FEAT_BTI) in the
hypervisor.
- Use a separate set of pointer authentication keys for the
hypervisor when running in protected mode, as the host is untrusted
at runtime.
- Ensure timer IRQs are consistently released in the init failure
paths.
- Avoid trapping CTR_EL0 on systems with Enhanced Virtualization
Traps (FEAT_EVT), as it is a register commonly read from userspace.
- Erratum workaround for the upcoming AmpereOne part, which has
broken hardware A/D state management.
RISC-V:
- Redirect AMO load/store misaligned traps to KVM guest
- Trap-n-emulate AIA in-kernel irqchip for KVM guest
- Svnapot support for KVM Guest
s390:
- New uvdevice secret API
- CMM selftest and fixes
- fix racy access to target CPU for diag 9c
x86:
- Fix missing/incorrect #GP checks on ENCLS
- Use standard mmu_notifier hooks for handling APIC access page
- Drop now unnecessary TR/TSS load after VM-Exit on AMD
- Print more descriptive information about the status of SEV and
SEV-ES during module load
- Add a test for splitting and reconstituting hugepages during and
after dirty logging
- Add support for CPU pinning in demand paging test
- Add support for AMD PerfMonV2, with a variety of cleanups and minor
fixes included along the way
- Add a "nx_huge_pages=never" option to effectively avoid creating NX
hugepage recovery threads (because nx_huge_pages=off can be toggled
at runtime)
- Move handling of PAT out of MTRR code and dedup SVM+VMX code
- Fix output of PIC poll command emulation when there's an interrupt
- Add a maintainer's handbook to document KVM x86 processes,
preferred coding style, testing expectations, etc.
- Misc cleanups, fixes and comments
Generic:
- Miscellaneous bugfixes and cleanups
Selftests:
- Generate dependency files so that partial rebuilds work as
expected"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (153 commits)
Documentation/process: Add a maintainer handbook for KVM x86
Documentation/process: Add a label for the tip tree handbook's coding style
KVM: arm64: Fix misuse of KVM_ARM_VCPU_POWER_OFF bit index
RISC-V: KVM: Remove unneeded semicolon
RISC-V: KVM: Allow Svnapot extension for Guest/VM
riscv: kvm: define vcpu_sbi_ext_pmu in header
RISC-V: KVM: Expose IMSIC registers as attributes of AIA irqchip
RISC-V: KVM: Add in-kernel virtualization of AIA IMSIC
RISC-V: KVM: Expose APLIC registers as attributes of AIA irqchip
RISC-V: KVM: Add in-kernel emulation of AIA APLIC
RISC-V: KVM: Implement device interface for AIA irqchip
RISC-V: KVM: Skeletal in-kernel AIA irqchip support
RISC-V: KVM: Set kvm_riscv_aia_nr_hgei to zero
RISC-V: KVM: Add APLIC related defines
RISC-V: KVM: Add IMSIC related defines
RISC-V: KVM: Implement guest external interrupt line management
KVM: x86: Remove PRIx* definitions as they are solely for user space
s390/uv: Update query for secret-UVCs
s390/uv: replace scnprintf with sysfs_emit
s390/uvdevice: Add 'Lock Secret Store' UVC
...
- Eager page splitting optimization for dirty logging, optionally
allowing for a VM to avoid the cost of block splitting in the stage-2
fault path.
- Arm FF-A proxy for pKVM, allowing a pKVM host to safely interact with
services that live in the Secure world. pKVM intervenes on FF-A calls
to guarantee the host doesn't misuse memory donated to the hyp or a
pKVM guest.
- Support for running the split hypervisor with VHE enabled, known as
'hVHE' mode. This is extremely useful for testing the split
hypervisor on VHE-only systems, and paves the way for new use cases
that depend on having two TTBRs available at EL2.
- Generalized framework for configurable ID registers from userspace.
KVM/arm64 currently prevents arbitrary CPU feature set configuration
from userspace, but the intent is to relax this limitation and allow
userspace to select a feature set consistent with the CPU.
- Enable the use of Branch Target Identification (FEAT_BTI) in the
hypervisor.
- Use a separate set of pointer authentication keys for the hypervisor
when running in protected mode, as the host is untrusted at runtime.
- Ensure timer IRQs are consistently released in the init failure
paths.
- Avoid trapping CTR_EL0 on systems with Enhanced Virtualization Traps
(FEAT_EVT), as it is a register commonly read from userspace.
- Erratum workaround for the upcoming AmpereOne part, which has broken
hardware A/D state management.
As a consequence of the hVHE series reworking the arm64 software
features framework, the for-next/module-alloc branch from the arm64 tree
comes along for the ride.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQSNXHjWXuzMZutrKNKivnWIJHzdFgUCZJWrhwAKCRCivnWIJHzd
Fs07AP9xliv5yIoQtRgPZXc0QDPyUm7zg8f5KDgqCVJtyHXcvAEAmmerBr39nbPc
XoMXALKx6NGt836P0C+bhvRcHdFPGwE=
=c/Xh
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 6.5
- Eager page splitting optimization for dirty logging, optionally
allowing for a VM to avoid the cost of block splitting in the stage-2
fault path.
- Arm FF-A proxy for pKVM, allowing a pKVM host to safely interact with
services that live in the Secure world. pKVM intervenes on FF-A calls
to guarantee the host doesn't misuse memory donated to the hyp or a
pKVM guest.
- Support for running the split hypervisor with VHE enabled, known as
'hVHE' mode. This is extremely useful for testing the split
hypervisor on VHE-only systems, and paves the way for new use cases
that depend on having two TTBRs available at EL2.
- Generalized framework for configurable ID registers from userspace.
KVM/arm64 currently prevents arbitrary CPU feature set configuration
from userspace, but the intent is to relax this limitation and allow
userspace to select a feature set consistent with the CPU.
- Enable the use of Branch Target Identification (FEAT_BTI) in the
hypervisor.
- Use a separate set of pointer authentication keys for the hypervisor
when running in protected mode, as the host is untrusted at runtime.
- Ensure timer IRQs are consistently released in the init failure
paths.
- Avoid trapping CTR_EL0 on systems with Enhanced Virtualization Traps
(FEAT_EVT), as it is a register commonly read from userspace.
- Erratum workaround for the upcoming AmpereOne part, which has broken
hardware A/D state management.
As a consequence of the hVHE series reworking the arm64 software
features framework, the for-next/module-alloc branch from the arm64 tree
comes along for the ride.
- Support for the Armv8.9 Permission Indirection Extensions. While this
feature doesn't add new functionality, it enables future support for
Guarded Control Stacks (GCS) and Permission Overlays.
- User-space support for the Armv8.8 memcpy/memset instructions.
- arm64 perf: support the HiSilicon SoC uncore PMU, Arm CMN sysfs
identifier, support for the NXP i.MX9 SoC DDRC PMU, fixes and
cleanups.
- Removal of superfluous ISBs on context switch (following retrospective
architecture tightening).
- Decode the ISS2 register during faults for additional information to
help with debugging.
- KPTI clean-up/simplification of the trampoline exit code.
- Addressing several -Wmissing-prototype warnings.
- Kselftest improvements for signal handling and ptrace.
- Fix TPIDR2_EL0 restoring on sigreturn
- Clean-up, robustness improvements of the module allocation code.
- More sysreg conversions to the automatic register/bitfields
generation.
- CPU capabilities handling cleanup.
- Arm documentation updates: ACPI, ptdump.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmSZyXwACgkQa9axLQDI
XvEM3BAAkMzHGTDhNVNGLSO07PVmdzTiuoNFlfX7bktdIb+El76VhGXhHeEywTje
wAq9JIYBf/Src2HbgZLwuly8Fn2vCrhyp++bRJW82o9SiBnx91+0mH7zLf+XHiQ4
FHKZxvaE6PaDc9o8WXr+IeucPRb5W2HgH37mktxh7ShMLsxorwS94V1oL29A2mV9
t4XQY7/tdmrDKMKMuQnIr1DurNXBhJ1OKvDnSN/Zzm96JOU/QQ32N2wEE7Y0aHOh
bBzClksx2mguQqV515mySGFe5yy9NqaAfx2hTAciq+1rwbiCSjqQQmEswoUH8WLX
JNLylxADWT2qXThFe8W6uyFzEshSAoI1yKxlCGuOsQpu4sFJtR8oh8dDj5669g4Y
j0jR87r9rWm0iyYI5I+XDMxFVyuh2eFInvjtynRbj+mtS3f/SkO8fXG6Uya+I76C
UGLlBUKnLr/zHuIGN0LE/V4dYTqsi9EtHoc2Am2xCZsS9jqkxKJG8C93Zsm4GlJC
OcUtBSjW0rYJq+tLk0yhR6hbh59QbiRh05KnZsPpOKi8purlKSL9ZNPRi7TndLdm
HjHUY+vQwNIpPIb6pyK4aYZuTdGEQIsQykQ8CULiIGlHi7kc4g9029ouLc5bBAeU
mU8D62I2ztzPoYljYWNtO7K6g/Dq8c4lpsaMAJ+1Wp2iq2xBJjo=
=rNBK
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Notable features are user-space support for the memcpy/memset
instructions and the permission indirection extension.
- Support for the Armv8.9 Permission Indirection Extensions. While
this feature doesn't add new functionality, it enables future
support for Guarded Control Stacks (GCS) and Permission Overlays
- User-space support for the Armv8.8 memcpy/memset instructions
- arm64 perf: support the HiSilicon SoC uncore PMU, Arm CMN sysfs
identifier, support for the NXP i.MX9 SoC DDRC PMU, fixes and
cleanups
- Removal of superfluous ISBs on context switch (following
retrospective architecture tightening)
- Decode the ISS2 register during faults for additional information
to help with debugging
- KPTI clean-up/simplification of the trampoline exit code
- Addressing several -Wmissing-prototype warnings
- Kselftest improvements for signal handling and ptrace
- Fix TPIDR2_EL0 restoring on sigreturn
- Clean-up, robustness improvements of the module allocation code
- More sysreg conversions to the automatic register/bitfields
generation
- CPU capabilities handling cleanup
- Arm documentation updates: ACPI, ptdump"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (124 commits)
kselftest/arm64: Add a test case for TPIDR2 restore
arm64/signal: Restore TPIDR2 register rather than memory state
arm64: alternatives: make clean_dcache_range_nopatch() noinstr-safe
Documentation/arm64: Add ptdump documentation
arm64: hibernate: remove WARN_ON in save_processor_state
kselftest/arm64: Log signal code and address for unexpected signals
docs: perf: Fix warning from 'make htmldocs' in hisi-pmu.rst
arm64/fpsimd: Exit streaming mode when flushing tasks
docs: perf: Add new description for HiSilicon UC PMU
drivers/perf: hisi: Add support for HiSilicon UC PMU driver
drivers/perf: hisi: Add support for HiSilicon H60PA and PAv3 PMU driver
perf: arm_cspmu: Add missing MODULE_DEVICE_TABLE
perf/arm-cmn: Add sysfs identifier
perf/arm-cmn: Revamp model detection
perf/arm_dmc620: Add cpumask
arm64: mm: fix VA-range sanity check
arm64/mm: remove now-superfluous ISBs from TTBR writes
Documentation/arm64: Update ACPI tables from BBR
Documentation/arm64: Update references in arm-acpi
Documentation/arm64: Update ARM and arch reference
...
* arm64/for-next/perf:
docs: perf: Fix warning from 'make htmldocs' in hisi-pmu.rst
docs: perf: Add new description for HiSilicon UC PMU
drivers/perf: hisi: Add support for HiSilicon UC PMU driver
drivers/perf: hisi: Add support for HiSilicon H60PA and PAv3 PMU driver
perf: arm_cspmu: Add missing MODULE_DEVICE_TABLE
perf/arm-cmn: Add sysfs identifier
perf/arm-cmn: Revamp model detection
perf/arm_dmc620: Add cpumask
dt-bindings: perf: fsl-imx-ddr: Add i.MX93 compatible
drivers/perf: imx_ddr: Add support for NXP i.MX9 SoC DDRC PMU driver
perf/arm_cspmu: Decouple APMT dependency
perf/arm_cspmu: Clean up ACPI dependency
ACPI/APMT: Don't register invalid resource
perf/arm_cspmu: Fix event attribute type
perf: arm_cspmu: Set irq affinitiy only if overflow interrupt is used
drivers/perf: hisi: Don't migrate perf to the CPU going to teardown
drivers/perf: apple_m1: Force 63bit counters for M2 CPUs
perf/arm-cmn: Fix DTC reset
perf: qcom_l2_pmu: Make l2_cache_pmu_probe_cluster() more robust
perf/arm-cci: Slightly optimize cci_pmu_sync_counters()
* for-next/kpti:
: Simplify KPTI trampoline exit code
arm64: entry: Simplify tramp_alias macro and tramp_exit routine
arm64: entry: Preserve/restore X29 even for compat tasks
* for-next/missing-proto-warn:
: Address -Wmissing-prototype warnings
arm64: add alt_cb_patch_nops prototype
arm64: move early_brk64 prototype to header
arm64: signal: include asm/exception.h
arm64: kaslr: add kaslr_early_init() declaration
arm64: flush: include linux/libnvdimm.h
arm64: module-plts: inline linux/moduleloader.h
arm64: hide unused is_valid_bugaddr()
arm64: efi: add efi_handle_corrupted_x18 prototype
arm64: cpuidle: fix #ifdef for acpi functions
arm64: kvm: add prototypes for functions called in asm
arm64: spectre: provide prototypes for internal functions
arm64: move cpu_suspend_set_dbg_restorer() prototype to header
arm64: avoid prototype warnings for syscalls
arm64: add scs_patch_vmlinux prototype
arm64: xor-neon: mark xor_arm64_neon_*() static
* for-next/iss2-decode:
: Add decode of ISS2 to data abort reports
arm64/esr: Add decode of ISS2 to data abort reporting
arm64/esr: Use GENMASK() for the ISS mask
* for-next/kselftest:
: Various arm64 kselftest improvements
kselftest/arm64: Log signal code and address for unexpected signals
kselftest/arm64: Add a smoke test for ptracing hardware break/watch points
* for-next/misc:
: Miscellaneous patches
arm64: alternatives: make clean_dcache_range_nopatch() noinstr-safe
arm64: hibernate: remove WARN_ON in save_processor_state
arm64/fpsimd: Exit streaming mode when flushing tasks
arm64: mm: fix VA-range sanity check
arm64/mm: remove now-superfluous ISBs from TTBR writes
arm64: consolidate rox page protection logic
arm64: set __exception_irq_entry with __irq_entry as a default
arm64: syscall: unmask DAIF for tracing status
arm64: lockdep: enable checks for held locks when returning to userspace
arm64/cpucaps: increase string width to properly format cpucaps.h
arm64/cpufeature: Use helper for ECV CNTPOFF cpufeature
* for-next/feat_mops:
: Support for ARMv8.8 memcpy instructions in userspace
kselftest/arm64: add MOPS to hwcap test
arm64: mops: allow disabling MOPS from the kernel command line
arm64: mops: detect and enable FEAT_MOPS
arm64: mops: handle single stepping after MOPS exception
arm64: mops: handle MOPS exceptions
KVM: arm64: hide MOPS from guests
arm64: mops: don't disable host MOPS instructions from EL2
arm64: mops: document boot requirements for MOPS
KVM: arm64: switch HCRX_EL2 between host and guest
arm64: cpufeature: detect FEAT_HCX
KVM: arm64: initialize HCRX_EL2
* for-next/module-alloc:
: Make the arm64 module allocation code more robust (clean-up, VA range expansion)
arm64: module: rework module VA range selection
arm64: module: mandate MODULE_PLTS
arm64: module: move module randomization to module.c
arm64: kaslr: split kaslr/module initialization
arm64: kasan: remove !KASAN_VMALLOC remnants
arm64: module: remove old !KASAN_VMALLOC logic
* for-next/sysreg: (21 commits)
: More sysreg conversions to automatic generation
arm64/sysreg: Convert TRBIDR_EL1 register to automatic generation
arm64/sysreg: Convert TRBTRG_EL1 register to automatic generation
arm64/sysreg: Convert TRBMAR_EL1 register to automatic generation
arm64/sysreg: Convert TRBSR_EL1 register to automatic generation
arm64/sysreg: Convert TRBBASER_EL1 register to automatic generation
arm64/sysreg: Convert TRBPTR_EL1 register to automatic generation
arm64/sysreg: Convert TRBLIMITR_EL1 register to automatic generation
arm64/sysreg: Rename TRBIDR_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBTRG_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBMAR_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBSR_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBBASER_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBPTR_EL1 fields per auto-gen tools format
arm64/sysreg: Rename TRBLIMITR_EL1 fields per auto-gen tools format
arm64/sysreg: Convert OSECCR_EL1 to automatic generation
arm64/sysreg: Convert OSDTRTX_EL1 to automatic generation
arm64/sysreg: Convert OSDTRRX_EL1 to automatic generation
arm64/sysreg: Convert OSLAR_EL1 to automatic generation
arm64/sysreg: Standardise naming of bitfield constants in OSL[AS]R_EL1
arm64/sysreg: Convert MDSCR_EL1 to automatic register generation
...
* for-next/cpucap:
: arm64 cpucap clean-up
arm64: cpufeature: fold cpus_set_cap() into update_cpu_capabilities()
arm64: cpufeature: use cpucap naming
arm64: alternatives: use cpucap naming
arm64: standardise cpucap bitmap names
* for-next/acpi:
: Various arm64-related ACPI patches
ACPI: bus: Consolidate all arm specific initialisation into acpi_arm_init()
* for-next/kdump:
: Simplify the crashkernel reservation behaviour of crashkernel=X,high on arm64
arm64: add kdump.rst into index.rst
Documentation: add kdump.rst to present crashkernel reservation on arm64
arm64: kdump: simplify the reservation behaviour of crashkernel=,high
* for-next/acpi-doc:
: Update ACPI documentation for Arm systems
Documentation/arm64: Update ACPI tables from BBR
Documentation/arm64: Update references in arm-acpi
Documentation/arm64: Update ARM and arch reference
* for-next/doc:
: arm64 documentation updates
Documentation/arm64: Add ptdump documentation
* for-next/tpidr2-fix:
: Fix the TPIDR2_EL0 register restoring on sigreturn
kselftest/arm64: Add a test case for TPIDR2 restore
arm64/signal: Restore TPIDR2 register rather than memory state
* kvm-arm64/ampere1-hafdbs-mitigation:
: AmpereOne erratum AC03_CPU_38 mitigation
:
: AmpereOne does not advertise support for FEAT_HAFDBS due to an
: underlying erratum in the feature. The associated control bits do not
: have RES0 behavior as required by the architecture.
:
: Introduce mitigations to prevent KVM from enabling the feature at
: stage-2 as well as preventing KVM guests from enabling HAFDBS at
: stage-1.
KVM: arm64: Prevent guests from enabling HA/HD on Ampere1
KVM: arm64: Refactor HFGxTR configuration into separate helpers
arm64: errata: Mitigate Ampere1 erratum AC03_CPU_38 at stage-2
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
An erratum in the HAFDBS implementation in AmpereOne was addressed by
clearing the feature in the ID register, with the expectation that
software would not attempt to use the corresponding controls in TCR_EL1.
The architecture, on the other hand, takes a much more pedantic stance
on the subject, requiring the TCR bits behave as RES0.
Take an extremely conservative stance on the issue and leverage the
precise write trap afforded by FGT. Handle guest writes by clearing HA
and HD before writing the intended value to the EL1 register alias.
Link: https://lore.kernel.org/r/20230609220104.1836988-4-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
A subsequent change will need to flip more trap bits in HFGWTR_EL2. Make
room for this by factoring out the programming of the HFGxTR registers
into helpers and using locals to build the set/clear masks.
Link: https://lore.kernel.org/r/20230609220104.1836988-3-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
AmpereOne has an erratum in its implementation of FEAT_HAFDBS that
required disabling the feature on the design. This was done by reporting
the feature as not implemented in the ID register, although the
corresponding control bits were not actually RES0. This does not align
well with the requirements of the architecture, which mandates these
bits be RES0 if HAFDBS isn't implemented.
The kernel's use of stage-1 is unaffected, as the HA and HD bits are
only set if HAFDBS is detected in the ID register. KVM, on the other
hand, relies on the RES0 behavior at stage-2 to use the same value for
VTCR_EL2 on any cpu in the system. Mitigate the non-RES0 behavior by
leaving VTCR_EL2.HA clear on affected systems.
Cc: stable@vger.kernel.org
Cc: D Scott Phillips <scott@os.amperecomputing.com>
Cc: Darren Hart <darren@os.amperecomputing.com>
Acked-by: D Scott Phillips <scott@os.amperecomputing.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20230609220104.1836988-2-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/misc:
: Miscellaneous updates
:
: - Avoid trapping CTR_EL0 on systems with FEAT_EVT, as the register is
: commonly read by userspace
:
: - Make use of FEAT_BTI at hyp stage-1, setting the Guard Page bit to 1
: for executable mappings
:
: - Use a separate set of pointer authentication keys for the hypervisor
: when running in protected mode (i.e. pKVM)
:
: - Plug a few holes in timer initialization where KVM fails to free the
: timer IRQ(s)
KVM: arm64: Use different pointer authentication keys for pKVM
KVM: arm64: timers: Fix resource leaks in kvm_timer_hyp_init()
KVM: arm64: Use BTI for nvhe
KVM: arm64: Relax trapping of CTR_EL0 when FEAT_EVT is available
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/hvhe:
: Support for running split-hypervisor w/VHE, courtesy of Marc Zyngier
:
: From the cover letter:
:
: KVM (on ARMv8.0) and pKVM (on all revisions of the architecture) use
: the split hypervisor model that makes the EL2 code more or less
: standalone. In the later case, we totally ignore the VHE mode and
: stick with the good old v8.0 EL2 setup.
:
: We introduce a new "mode" for KVM called hVHE, in reference to the
: nVHE mode, and indicating that only the hypervisor is using VHE.
KVM: arm64: Fix hVHE init on CPUs where HCR_EL2.E2H is not RES1
arm64: Allow arm64_sw.hvhe on command line
KVM: arm64: Force HCR_E2H in guest context when ARM64_KVM_HVHE is set
KVM: arm64: Program the timer traps with VHE layout in hVHE mode
KVM: arm64: Rework CPTR_EL2 programming for HVHE configuration
KVM: arm64: Adjust EL2 stage-1 leaf AP bits when ARM64_KVM_HVHE is set
KVM: arm64: Disable TTBR1_EL2 when using ARM64_KVM_HVHE
KVM: arm64: Force HCR_EL2.E2H when ARM64_KVM_HVHE is set
KVM: arm64: Key use of VHE instructions in nVHE code off ARM64_KVM_HVHE
KVM: arm64: Remove alternatives from sysreg accessors in VHE hypervisor context
arm64: Use CPACR_EL1 format to set CPTR_EL2 when E2H is set
arm64: Allow EL1 physical timer access when running VHE
arm64: Don't enable VHE for the kernel if OVERRIDE_HVHE is set
arm64: Add KVM_HVHE capability and has_hvhe() predicate
arm64: Turn kaslr_feature_override into a generic SW feature override
arm64: Prevent the use of is_kernel_in_hyp_mode() in hypervisor code
KVM: arm64: Drop is_kernel_in_hyp_mode() from __invalidate_icache_guest_page()
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/ffa-proxy:
: pKVM FF-A Proxy, courtesy Will Deacon and Andrew Walbran
:
: From the cover letter:
:
: pKVM's primary goal is to protect guest pages from a compromised host by
: enforcing access control restrictions using stage-2 page-tables. Sadly,
: this cannot prevent TrustZone from accessing non-secure memory, and a
: compromised host could, for example, perform a 'confused deputy' attack
: by asking TrustZone to use pages that have been donated to protected
: guests. This would effectively allow the host to have TrustZone
: exfiltrate guest secrets on its behalf, hence breaking the isolation
: that pKVM intends to provide.
:
: This series addresses this problem by providing pKVM with the ability to
: monitor SMCs following the Arm FF-A protocol. FF-A provides (among other
: things) a set of memory management APIs allowing the Normal World to
: share, donate or lend pages with Secure. By monitoring these SMCs, pKVM
: can ensure that the pages that are shared, lent or donated to Secure by
: the host kernel are only pages that it owns.
KVM: arm64: pkvm: Add support for fragmented FF-A descriptors
KVM: arm64: Handle FFA_FEATURES call from the host
KVM: arm64: Handle FFA_MEM_LEND calls from the host
KVM: arm64: Handle FFA_MEM_RECLAIM calls from the host
KVM: arm64: Handle FFA_MEM_SHARE calls from the host
KVM: arm64: Add FF-A helpers to share/unshare memory with secure world
KVM: arm64: Handle FFA_RXTX_MAP and FFA_RXTX_UNMAP calls from the host
KVM: arm64: Allocate pages for hypervisor FF-A mailboxes
KVM: arm64: Probe FF-A version and host/hyp partition ID during init
KVM: arm64: Block unsafe FF-A calls from the host
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/eager-page-splitting:
: Eager Page Splitting, courtesy of Ricardo Koller.
:
: Dirty logging performance is dominated by the cost of splitting
: hugepages to PTE granularity. On systems that mere mortals can get their
: hands on, each fault incurs the cost of a full break-before-make
: pattern, wherein the broadcast invalidation and ensuing serialization
: significantly increases fault latency.
:
: The goal of eager page splitting is to move the cost of hugepage
: splitting out of the stage-2 fault path and instead into the ioctls
: responsible for managing the dirty log:
:
: - If manual protection is enabled for the VM, hugepage splitting
: happens in the KVM_CLEAR_DIRTY_LOG ioctl. This is desirable as it
: provides userspace granular control over hugepage splitting.
:
: - Otherwise, if userspace relies on the legacy dirty log behavior
: (clear on collection), hugepage splitting is done at the moment dirty
: logging is enabled for a particular memslot.
:
: Support for eager page splitting requires explicit opt-in from
: userspace, which is realized through the
: KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE capability.
arm64: kvm: avoid overflow in integer division
KVM: arm64: Use local TLBI on permission relaxation
KVM: arm64: Split huge pages during KVM_CLEAR_DIRTY_LOG
KVM: arm64: Open-code kvm_mmu_write_protect_pt_masked()
KVM: arm64: Split huge pages when dirty logging is enabled
KVM: arm64: Add kvm_uninit_stage2_mmu()
KVM: arm64: Refactor kvm_arch_commit_memory_region()
KVM: arm64: Add kvm_pgtable_stage2_split()
KVM: arm64: Add KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
KVM: arm64: Export kvm_are_all_memslots_empty()
KVM: arm64: Add helper for creating unlinked stage2 subtrees
KVM: arm64: Add KVM_PGTABLE_WALK flags for skipping CMOs and BBM TLBIs
KVM: arm64: Rename free_removed to free_unlinked
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
On CPUs where E2H is RES1, we very quickly set the scene for
running EL2 with a VHE configuration, as we do not have any other
choice.
However, CPUs that conform to the current writing of the architecture
start with E2H=0, and only later upgrade with E2H=1. This is all
good, but nothing there is actually reconfiguring EL2 to be able
to correctly run the kernel at EL1. Huhuh...
The "obvious" solution is not to just reinitialise the timer
controls like we do, but to really intitialise *everything*
unconditionally.
This requires a bit of surgery, and is a good opportunity to
remove the macro that messes with SPSR_EL2 in init_el2_state.
With that, hVHE now works correctly on my trusted A55 machine!
Reported-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230614155129.2697388-1-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
When the use of pointer authentication is enabled in the kernel it
applies to both the kernel itself as well as KVM's nVHE hypervisor. The
same keys are used for both the kernel and the nVHE hypervisor, which is
less than desirable for pKVM as the host is not trusted at runtime.
Naturally, the fix is to use a different set of keys for the hypervisor
when running in protected mode. Have the host generate a new set of keys
for the hypervisor before deprivileging the kernel. While there might be
other sources of random directly available at EL2, this keeps the
implementation simple, and the host is trusted anyways until it is
deprivileged.
Since the host and hypervisor no longer share a set of pointer
authentication keys, start context switching them on the host entry/exit
path exactly as we do for guest entry/exit. There is no need to handle
CPU migration as the nVHE code is not migratable in the first place.
Signed-off-by: Mostafa Saleh <smostafa@google.com>
Link: https://lore.kernel.org/r/20230614122600.2098901-1-smostafa@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Just like the rest of the timer code, we need to shift the enable
bits around when HCR_EL2.E2H is set, which is the case in hVHE mode.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230609162200.2024064-15-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Just like we repainted the early arm64 code, we need to update
the CPTR_EL2 accesses that are taking place in the nVHE code
when hVHE is used, making them look as if they were CPACR_EL1
accesses. Just like the VHE code.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230609162200.2024064-14-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
El2 stage-1 page-table format is subtly (and annoyingly) different
when HCR_EL2.E2H is set.
Take the ARM64_KVM_HVHE configuration into account when setting
the AP bits.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230609162200.2024064-13-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
To initialise the timer access from EL2 when HCR_EL2.E2H is set,
we must make use the CNTHCTL_EL2 formap used is appropriate.
This amounts to shifting the timer/counter enable bits by 10
to the left.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20230609162200.2024064-7-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Define the new system registers that PIE introduces and context switch them.
The PIE feature is still hidden from the ID register, and not exposed to a VM.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Zenghui Yu <yuzenghui@huawei.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230606145859.697944-10-joey.gouly@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Define the new system register TCR2_EL1 and context switch it.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Zenghui Yu <yuzenghui@huawei.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230606145859.697944-9-joey.gouly@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Switch the HCRX_EL2 register between host and guest configurations, in
order to enable different features in the host and guest.
Now that there are separate guest flags, we can also remove SMPME from
the host flags, as SMPME is used for virtualizing SME priorities and has
no use in the host.
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Acked-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20230509142235.3284028-4-kristina.martsenko@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently, with VHE, KVM sets ER, CR, SW and EN bits of
PMUSERENR_EL0 to 1 on vcpu_load(), and saves and restores
the register value for the host on vcpu_load() and vcpu_put().
If the value of those bits are cleared on a pCPU with a vCPU
loaded (armv8pmu_start() would do that when PMU counters are
programmed for the guest), PMU access from the guest EL0 might
be trapped to the guest EL1 directly regardless of the current
PMUSERENR_EL0 value of the vCPU.
Fix this by not letting armv8pmu_start() overwrite PMUSERENR_EL0
on the pCPU where PMUSERENR_EL0 for the guest is loaded, and
instead updating the saved shadow register value for the host
so that the value can be restored on vcpu_put() later.
While vcpu_{put,load}() are manipulating PMUSERENR_EL0, disable
IRQs to prevent a race condition between these processes and IPIs
that attempt to update PMUSERENR_EL0 for the host EL0.
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Suggested-by: Marc Zyngier <maz@kernel.org>
Fixes: 83a7a4d643 ("arm64: perf: Enable PMU counter userspace access for perf event")
Signed-off-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230603025035.3781797-3-reijiw@google.com
Restore the host's PMUSERENR_EL0 value instead of clearing it,
before returning back to userspace, as the host's EL0 might have
a direct access to PMU registers (some bits of PMUSERENR_EL0 for
might not be zero for the host EL0).
Fixes: 83a7a4d643 ("arm64: perf: Enable PMU counter userspace access for perf event")
Signed-off-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230603025035.3781797-2-reijiw@google.com
FF-A memory descriptors may need to be sent in fragments when they don't
fit in the mailboxes. Doing so involves using the FRAG_TX and FRAG_RX
primitives defined in the FF-A protocol.
Add support in the pKVM FF-A relayer for fragmented descriptors by
monitoring outgoing FRAG_TX transactions and by buffering large
descriptors on the reclaim path.
Co-developed-by: Andrew Walbran <qwandor@google.com>
Signed-off-by: Andrew Walbran <qwandor@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230523101828.7328-11-will@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Filter out advertising unsupported features, and only advertise
features and properties that are supported by the hypervisor proxy.
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230523101828.7328-10-will@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Handle FFA_MEM_LEND calls from the host by treating them identically to
FFA_MEM_SHARE calls for the purposes of the host stage-2 page-table, but
forwarding on the original request to EL3.
Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230523101828.7328-9-will@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Intecept FFA_MEM_RECLAIM calls from the host and transition the host
stage-2 page-table entries from the SHARED_OWNED state back to the OWNED
state once EL3 has confirmed that the secure mapping has been reclaimed.
Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230523101828.7328-8-will@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Intercept FFA_MEM_SHARE/FFA_FN64_MEM_SHARE calls from the host and
transition the host stage-2 page-table entries from the OWNED state to
the SHARED_OWNED state prior to forwarding the call onto EL3.
Co-developed-by: Andrew Walbran <qwandor@google.com>
Signed-off-by: Andrew Walbran <qwandor@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230523101828.7328-7-will@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Extend pKVM's memory protection code so that we can update the host's
stage-2 page-table to track pages shared with secure world by the host
using FF-A and prevent those pages from being mapped into a guest.
Co-developed-by: Andrew Walbran <qwandor@google.com>
Signed-off-by: Andrew Walbran <qwandor@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230523101828.7328-6-will@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Handle FFA_RXTX_MAP and FFA_RXTX_UNMAP calls from the host by sharing
the host's mailbox memory with the hypervisor and establishing a
separate pair of mailboxes between the hypervisor and the SPMD at EL3.
Co-developed-by: Andrew Walbran <qwandor@google.com>
Signed-off-by: Andrew Walbran <qwandor@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230523101828.7328-5-will@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
The FF-A proxy code needs to allocate its own buffer pair for
communication with EL3 and for forwarding calls from the host at EL1.
Reserve a couple of pages for this purpose and use them to initialise
the hypervisor's FF-A buffer structure.
Co-developed-by: Andrew Walbran <qwandor@google.com>
Signed-off-by: Andrew Walbran <qwandor@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230523101828.7328-4-will@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Probe FF-A during pKVM initialisation so that we can detect any
inconsistencies in the version or partition ID early on.
Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230523101828.7328-3-will@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
When KVM is initialised in protected mode, we must take care to filter
certain FFA calls from the host kernel so that the integrity of guest
and hypervisor memory is maintained and is not made available to the
secure world.
As a first step, intercept and block all memory-related FF-A SMC calls
from the host to EL3 and don't advertise any FF-A features. This puts
the framework in place for handling them properly.
Co-developed-by: Andrew Walbran <qwandor@google.com>
Signed-off-by: Andrew Walbran <qwandor@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230523101828.7328-2-will@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
The reference count on page table allocations is increased for every
'counted' PTE (valid or donated) in the table in addition to the initial
reference from ->zalloc_page(). kvm_pgtable_stage2_free_removed() fails
to drop the last reference on the root of the table walk, meaning we
leak memory.
Fix it by dropping the last reference after the free walker returns,
at which point all references for 'counted' PTEs have been released.
Cc: stable@vger.kernel.org
Fixes: 5c359cca1f ("KVM: arm64: Tear down unlinked stage-2 subtree after break-before-make")
Reported-by: Yu Zhao <yuzhao@google.com>
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Tested-by: Yu Zhao <yuzhao@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230530193213.1663411-1-oliver.upton@linux.dev
CONFIG_ARM64_BTI_KERNEL compiles the kernel to support ARMv8.5-BTI.
However, the nvhe code doesn't make use of it as it doesn't map any
pages with Guarded Page(GP) bit.
kvm pgtable code is modified to map executable pages with GP bit
if BTI is enabled for the kernel.
At hyp init, SCTLR_EL2.BT is set to 1 to match EL1 configuration
(SCTLR_EL1.BT1) set in bti_enable().
One difference between kernel and nvhe code, is that the kernel maps
.text with GP while nvhe maps all the executable pages, this makes
nvhe code need to deal with special initialization code coming from
other executable sections (.idmap.text).
For this we need to add bti instruction at the beginning of
__kvm_handle_stub_hvc as it can be called by __host_hvc through
branch instruction(br) and unlike SYM_FUNC_START, SYM_CODE_START
doesn’t add bti instruction at the beginning, and it can’t be modified
to add it as it is used with vector tables.
Another solution which is more intrusive is to convert
__kvm_handle_stub_hvc to a function and inject “bti jc” instead of
“bti c” in SYM_FUNC_START
Signed-off-by: Mostafa Saleh <smostafa@google.com>
Link: https://lore.kernel.org/r/20230530150845.2856828-1-smostafa@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
When handling ESR_ELx_EC_WATCHPT_LOW, far_el2 member of struct
kvm_vcpu_fault_info will be copied to far member of struct
kvm_debug_exit_arch and exposed to the userspace. The userspace will
see stale values from older faults if the fault info does not get
populated.
Fixes: 8fb2046180 ("KVM: arm64: Move early handlers to per-EC handlers")
Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230530024651.10014-1-akihiko.odaki@daynix.com
Cc: stable@vger.kernel.org
The preorder callback on the kvm_pgtable_stage2_map() path can replace
a table with a block, then recursively free the detached table. The
higher-level walking logic stashes the old page table entry and
then walks the freed table, invoking the leaf callback and
potentially freeing pgtable pages prematurely.
In normal operation, the call to tear down the detached stage-2
is indirected and uses an RCU callback to trigger the freeing.
RCU is not available to pKVM, which is where this bug is
triggered.
Change the behavior of the walker to reload the page table entry
after invoking the walker callback on preorder traversal, as it
does for leaf entries.
Tested on Pixel 6.
Fixes: 5c359cca1f ("KVM: arm64: Tear down unlinked stage-2 subtree after break-before-make")
Suggested-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230522103258.402272-1-tabba@google.com
Since host stage-2 mappings are created lazily, we cannot rely solely on
the pte in order to recover the target physical address when checking a
host-initiated memory transition as this permits donation of unmapped
regions corresponding to MMIO or "no-map" memory.
Instead of inspecting the pte, move the addr_is_allowed_memory() check
into the host callback function where it is passed the physical address
directly from the walker.
Cc: Quentin Perret <qperret@google.com>
Fixes: e82edcc75c ("KVM: arm64: Implement do_share() helper for sharing memory")
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230518095844.1178-1-will@kernel.org
Broadcast TLB invalidations (TLBIs) targeting the Inner Shareable
Domain are usually less performant than their non-shareable variant.
In particular, we observed some implementations that take
millliseconds to complete parallel broadcasted TLBIs.
It's safe to use non-shareable TLBIs when relaxing permissions on a
PTE in the KVM case. According to the ARM ARM (0487I.a) section
D8.13.1 "Using break-before-make when updating translation table
entries", permission relaxation does not need break-before-make.
Specifically, R_WHZWS states that these are the only changes that
require a break-before-make sequence: changes of memory type
(Shareability or Cacheability), address changes, or changing the block
size.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Link: https://lore.kernel.org/r/20230426172330.1439644-13-ricarkol@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Add a new stage2 function, kvm_pgtable_stage2_split(), for splitting a
range of huge pages. This will be used for eager-splitting huge pages
into PAGE_SIZE pages. The goal is to avoid having to split huge pages
on write-protection faults, and instead use this function to do it
ahead of time for large ranges (e.g., all guest memory in 1G chunks at
a time).
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Link: https://lore.kernel.org/r/20230426172330.1439644-7-ricarkol@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Add a stage2 helper, kvm_pgtable_stage2_create_unlinked(), for
creating unlinked tables (which is the opposite of
kvm_pgtable_stage2_free_unlinked()). Creating an unlinked table is
useful for splitting level 1 and 2 entries into subtrees of PAGE_SIZE
PTEs. For example, a level 1 entry can be split into PAGE_SIZE PTEs
by first creating a fully populated tree, and then use it to replace
the level 1 entry in a single step. This will be used in a subsequent
commit for eager huge-page splitting (a dirty-logging optimization).
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Link: https://lore.kernel.org/r/20230426172330.1439644-4-ricarkol@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Add two flags to kvm_pgtable_visit_ctx, KVM_PGTABLE_WALK_SKIP_BBM_TLBI
and KVM_PGTABLE_WALK_SKIP_CMO, to indicate that the walk should not
perform TLB invalidations (TLBIs) in break-before-make (BBM) nor cache
maintenance operations (CMO). This will be used by a future commit to
create unlinked tables not accessible to the HW page-table walker.
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Link: https://lore.kernel.org/r/20230426172330.1439644-3-ricarkol@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Normalize on referring to tables outside of an active paging structure
as 'unlinked'.
A subsequent change to KVM will add support for building page tables
that are not part of an active paging structure. The existing
'removed_table' terminology is quite clunky when applied in this
context.
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Link: https://lore.kernel.org/r/20230426172330.1439644-2-ricarkol@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/pgtable-fixes-6.4:
: .
: Fixes for concurrent S2 mapping race from Oliver:
:
: "So it appears that there is a race between two parallel stage-2 map
: walkers that could lead to mapping the incorrect PA for a given IPA, as
: the IPA -> PA relationship picks up an unintended offset. This series
: eliminates the problem by using the current IPA of the walk as the
: source-of-truth regarding where we are in a map operation."
: .
KVM: arm64: Constify start/end/phys fields of the pgtable walker data
KVM: arm64: Infer PA offset from VA in hyp map walker
KVM: arm64: Infer the PA offset from IPA in stage-2 map walker
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/misc-6.4:
: .
: Minor changes for 6.4:
:
: - Make better use of the bitmap API (bitmap_zero, bitmap_zalloc...)
:
: - FP/SVE/SME documentation update, in the hope that this field
: becomes clearer...
:
: - Add workaround for the usual Apple SEIS brokenness
:
: - Random comment fixes
: .
KVM: arm64: vgic: Add Apple M2 PRO/MAX cpus to the list of broken SEIS implementations
KVM: arm64: Clarify host SME state management
KVM: arm64: Restructure check for SVE support in FP trap handler
KVM: arm64: Document check for TIF_FOREIGN_FPSTATE
KVM: arm64: Fix repeated words in comments
KVM: arm64: Use the bitmap API to allocate bitmaps
KVM: arm64: Slightly optimize flush_context()
Signed-off-by: Marc Zyngier <maz@kernel.org>
* More phys_to_virt conversions
* Improvement of AP management for VSIE (nested virtualization)
ARM64:
* Numerous fixes for the pathological lock inversion issue that
plagued KVM/arm64 since... forever.
* New framework allowing SMCCC-compliant hypercalls to be forwarded
to userspace, hopefully paving the way for some more features
being moved to VMMs rather than be implemented in the kernel.
* Large rework of the timer code to allow a VM-wide offset to be
applied to both virtual and physical counters as well as a
per-timer, per-vcpu offset that complements the global one.
This last part allows the NV timer code to be implemented on
top.
* A small set of fixes to make sure that we don't change anything
affecting the EL1&0 translation regime just after having having
taken an exception to EL2 until we have executed a DSB. This
ensures that speculative walks started in EL1&0 have completed.
* The usual selftest fixes and improvements.
KVM x86 changes for 6.4:
* Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled,
and by giving the guest control of CR0.WP when EPT is enabled on VMX
(VMX-only because SVM doesn't support per-bit controls)
* Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return
as a bool
* Move AMD_PSFD to cpufeatures.h and purge KVM's definition
* Avoid unnecessary writes+flushes when the guest is only adding new PTEs
* Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s optimizations
when emulating invalidations
* Clean up the range-based flushing APIs
* Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single
A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle
changed SPTE" overhead associated with writing the entire entry
* Track the number of "tail" entries in a pte_list_desc to avoid having
to walk (potentially) all descriptors during insertion and deletion,
which gets quite expensive if the guest is spamming fork()
* Disallow virtualizing legacy LBRs if architectural LBRs are available,
the two are mutually exclusive in hardware
* Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
after KVM_RUN, similar to CPUID features
* Overhaul the vmx_pmu_caps selftest to better validate PERF_CAPABILITIES
* Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
x86 AMD:
* Add support for virtual NMIs
* Fixes for edge cases related to virtual interrupts
x86 Intel:
* Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is
not being reported due to userspace not opting in via prctl()
* Fix a bug in emulation of ENCLS in compatibility mode
* Allow emulation of NOP and PAUSE for L2
* AMX selftests improvements
* Misc cleanups
MIPS:
* Constify MIPS's internal callbacks (a leftover from the hardware enabling
rework that landed in 6.3)
Generic:
* Drop unnecessary casts from "void *" throughout kvm_main.c
* Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the struct
size by 8 bytes on 64-bit kernels by utilizing a padding hole
Documentation:
* Fix goof introduced by the conversion to rST
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmRNExkUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNyjwf+MkzDael9y9AsOZoqhEZ5OsfQYJ32
Im5ZVYsPRU2K5TuoWql6meIihgclCj1iIU32qYHa2F1WYt2rZ72rJp+HoY8b+TaI
WvF0pvNtqQyg3iEKUBKPA4xQ6mj7RpQBw86qqiCHmlfNt0zxluEGEPxH8xrWcfhC
huDQ+NUOdU7fmJ3rqGitCvkUbCuZNkw3aNPR8dhU8RAWrwRzP2hBOmdxIeo81WWY
XMEpJSijbGpXL9CvM0Jz9nOuMJwZwCCBGxg1vSQq0xTfLySNMxzvWZC2GFaBjucb
j0UOQ7yE0drIZDVhd3sdNslubXXU6FcSEzacGQb9aigMUon3Tem9SHi7Kw==
=S2Hq
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"s390:
- More phys_to_virt conversions
- Improvement of AP management for VSIE (nested virtualization)
ARM64:
- Numerous fixes for the pathological lock inversion issue that
plagued KVM/arm64 since... forever.
- New framework allowing SMCCC-compliant hypercalls to be forwarded
to userspace, hopefully paving the way for some more features being
moved to VMMs rather than be implemented in the kernel.
- Large rework of the timer code to allow a VM-wide offset to be
applied to both virtual and physical counters as well as a
per-timer, per-vcpu offset that complements the global one. This
last part allows the NV timer code to be implemented on top.
- A small set of fixes to make sure that we don't change anything
affecting the EL1&0 translation regime just after having having
taken an exception to EL2 until we have executed a DSB. This
ensures that speculative walks started in EL1&0 have completed.
- The usual selftest fixes and improvements.
x86:
- Optimize CR0.WP toggling by avoiding an MMU reload when TDP is
enabled, and by giving the guest control of CR0.WP when EPT is
enabled on VMX (VMX-only because SVM doesn't support per-bit
controls)
- Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long"
return as a bool
- Move AMD_PSFD to cpufeatures.h and purge KVM's definition
- Avoid unnecessary writes+flushes when the guest is only adding new
PTEs
- Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s
optimizations when emulating invalidations
- Clean up the range-based flushing APIs
- Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a
single A/D bit using a LOCK AND instead of XCHG, and skip all of
the "handle changed SPTE" overhead associated with writing the
entire entry
- Track the number of "tail" entries in a pte_list_desc to avoid
having to walk (potentially) all descriptors during insertion and
deletion, which gets quite expensive if the guest is spamming
fork()
- Disallow virtualizing legacy LBRs if architectural LBRs are
available, the two are mutually exclusive in hardware
- Disallow writes to immutable feature MSRs (notably
PERF_CAPABILITIES) after KVM_RUN, similar to CPUID features
- Overhaul the vmx_pmu_caps selftest to better validate
PERF_CAPABILITIES
- Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
- AMD SVM:
- Add support for virtual NMIs
- Fixes for edge cases related to virtual interrupts
- Intel AMX:
- Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if
XTILE_DATA is not being reported due to userspace not opting in
via prctl()
- Fix a bug in emulation of ENCLS in compatibility mode
- Allow emulation of NOP and PAUSE for L2
- AMX selftests improvements
- Misc cleanups
MIPS:
- Constify MIPS's internal callbacks (a leftover from the hardware
enabling rework that landed in 6.3)
Generic:
- Drop unnecessary casts from "void *" throughout kvm_main.c
- Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the
struct size by 8 bytes on 64-bit kernels by utilizing a padding
hole
Documentation:
- Fix goof introduced by the conversion to rST"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (211 commits)
KVM: s390: pci: fix virtual-physical confusion on module unload/load
KVM: s390: vsie: clarifications on setting the APCB
KVM: s390: interrupt: fix virtual-physical confusion for next alert GISA
KVM: arm64: Have kvm_psci_vcpu_on() use WRITE_ONCE() to update mp_state
KVM: arm64: Acquire mp_state_lock in kvm_arch_vcpu_ioctl_vcpu_init()
KVM: selftests: Test the PMU event "Instructions retired"
KVM: selftests: Copy full counter values from guest in PMU event filter test
KVM: selftests: Use error codes to signal errors in PMU event filter test
KVM: selftests: Print detailed info in PMU event filter asserts
KVM: selftests: Add helpers for PMC asserts in PMU event filter test
KVM: selftests: Add a common helper for the PMU event filter guest code
KVM: selftests: Fix spelling mistake "perrmited" -> "permitted"
KVM: arm64: vhe: Drop extra isb() on guest exit
KVM: arm64: vhe: Synchronise with page table walker on MMU update
KVM: arm64: pkvm: Document the side effects of kvm_flush_dcache_to_poc()
KVM: arm64: nvhe: Synchronise with page table walker on TLBI
KVM: arm64: Handle 32bit CNTPCTSS traps
KVM: arm64: nvhe: Synchronise with page table walker on vcpu run
KVM: arm64: vgic: Don't acquire its_lock before config_lock
KVM: selftests: Add test to verify KVM's supported XCR0
...
switching from a user process to a kernel thread.
- More folio conversions from Kefeng Wang, Zhang Peng and Pankaj Raghav.
- zsmalloc performance improvements from Sergey Senozhatsky.
- Yue Zhao has found and fixed some data race issues around the
alteration of memcg userspace tunables.
- VFS rationalizations from Christoph Hellwig:
- removal of most of the callers of write_one_page().
- make __filemap_get_folio()'s return value more useful
- Luis Chamberlain has changed tmpfs so it no longer requires swap
backing. Use `mount -o noswap'.
- Qi Zheng has made the slab shrinkers operate locklessly, providing
some scalability benefits.
- Keith Busch has improved dmapool's performance, making part of its
operations O(1) rather than O(n).
- Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
permitting userspace to wr-protect anon memory unpopulated ptes.
- Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive rather
than exclusive, and has fixed a bunch of errors which were caused by its
unintuitive meaning.
- Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
which causes minor faults to install a write-protected pte.
- Vlastimil Babka has done some maintenance work on vma_merge():
cleanups to the kernel code and improvements to our userspace test
harness.
- Cleanups to do_fault_around() by Lorenzo Stoakes.
- Mike Rapoport has moved a lot of initialization code out of various
mm/ files and into mm/mm_init.c.
- Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
DRM, but DRM doesn't use it any more.
- Lorenzo has also coverted read_kcore() and vread() to use iterators
and has thereby removed the use of bounce buffers in some cases.
- Lorenzo has also contributed further cleanups of vma_merge().
- Chaitanya Prakash provides some fixes to the mmap selftesting code.
- Matthew Wilcox changes xfs and afs so they no longer take sleeping
locks in ->map_page(), a step towards RCUification of pagefaults.
- Suren Baghdasaryan has improved mmap_lock scalability by switching to
per-VMA locking.
- Frederic Weisbecker has reworked the percpu cache draining so that it
no longer causes latency glitches on cpu isolated workloads.
- Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
logic.
- Liu Shixin has changed zswap's initialization so we no longer waste a
chunk of memory if zswap is not being used.
- Yosry Ahmed has improved the performance of memcg statistics flushing.
- David Stevens has fixed several issues involving khugepaged,
userfaultfd and shmem.
- Christoph Hellwig has provided some cleanup work to zram's IO-related
code paths.
- David Hildenbrand has fixed up some issues in the selftest code's
testing of our pte state changing.
- Pankaj Raghav has made page_endio() unneeded and has removed it.
- Peter Xu contributed some rationalizations of the userfaultfd
selftests.
- Yosry Ahmed has fixed an issue around memcg's page recalim accounting.
- Chaitanya Prakash has fixed some arm-related issues in the
selftests/mm code.
- Longlong Xia has improved the way in which KSM handles hwpoisoned
pages.
- Peter Xu fixes a few issues with uffd-wp at fork() time.
- Stefan Roesch has changed KSM so that it may now be used on a
per-process and per-cgroup basis.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZEr3zQAKCRDdBJ7gKXxA
jlLoAP0fpQBipwFxED0Us4SKQfupV6z4caXNJGPeay7Aj11/kQD/aMRC2uPfgr96
eMG3kwn2pqkB9ST2QpkaRbxA//eMbQY=
=J+Dj
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Nick Piggin's "shoot lazy tlbs" series, to improve the peformance of
switching from a user process to a kernel thread.
- More folio conversions from Kefeng Wang, Zhang Peng and Pankaj
Raghav.
- zsmalloc performance improvements from Sergey Senozhatsky.
- Yue Zhao has found and fixed some data race issues around the
alteration of memcg userspace tunables.
- VFS rationalizations from Christoph Hellwig:
- removal of most of the callers of write_one_page()
- make __filemap_get_folio()'s return value more useful
- Luis Chamberlain has changed tmpfs so it no longer requires swap
backing. Use `mount -o noswap'.
- Qi Zheng has made the slab shrinkers operate locklessly, providing
some scalability benefits.
- Keith Busch has improved dmapool's performance, making part of its
operations O(1) rather than O(n).
- Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
permitting userspace to wr-protect anon memory unpopulated ptes.
- Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive
rather than exclusive, and has fixed a bunch of errors which were
caused by its unintuitive meaning.
- Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
which causes minor faults to install a write-protected pte.
- Vlastimil Babka has done some maintenance work on vma_merge():
cleanups to the kernel code and improvements to our userspace test
harness.
- Cleanups to do_fault_around() by Lorenzo Stoakes.
- Mike Rapoport has moved a lot of initialization code out of various
mm/ files and into mm/mm_init.c.
- Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
DRM, but DRM doesn't use it any more.
- Lorenzo has also coverted read_kcore() and vread() to use iterators
and has thereby removed the use of bounce buffers in some cases.
- Lorenzo has also contributed further cleanups of vma_merge().
- Chaitanya Prakash provides some fixes to the mmap selftesting code.
- Matthew Wilcox changes xfs and afs so they no longer take sleeping
locks in ->map_page(), a step towards RCUification of pagefaults.
- Suren Baghdasaryan has improved mmap_lock scalability by switching to
per-VMA locking.
- Frederic Weisbecker has reworked the percpu cache draining so that it
no longer causes latency glitches on cpu isolated workloads.
- Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
logic.
- Liu Shixin has changed zswap's initialization so we no longer waste a
chunk of memory if zswap is not being used.
- Yosry Ahmed has improved the performance of memcg statistics
flushing.
- David Stevens has fixed several issues involving khugepaged,
userfaultfd and shmem.
- Christoph Hellwig has provided some cleanup work to zram's IO-related
code paths.
- David Hildenbrand has fixed up some issues in the selftest code's
testing of our pte state changing.
- Pankaj Raghav has made page_endio() unneeded and has removed it.
- Peter Xu contributed some rationalizations of the userfaultfd
selftests.
- Yosry Ahmed has fixed an issue around memcg's page recalim
accounting.
- Chaitanya Prakash has fixed some arm-related issues in the
selftests/mm code.
- Longlong Xia has improved the way in which KSM handles hwpoisoned
pages.
- Peter Xu fixes a few issues with uffd-wp at fork() time.
- Stefan Roesch has changed KSM so that it may now be used on a
per-process and per-cgroup basis.
* tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (369 commits)
mm,unmap: avoid flushing TLB in batch if PTE is inaccessible
shmem: restrict noswap option to initial user namespace
mm/khugepaged: fix conflicting mods to collapse_file()
sparse: remove unnecessary 0 values from rc
mm: move 'mmap_min_addr' logic from callers into vm_unmapped_area()
hugetlb: pte_alloc_huge() to replace huge pte_alloc_map()
maple_tree: fix allocation in mas_sparse_area()
mm: do not increment pgfault stats when page fault handler retries
zsmalloc: allow only one active pool compaction context
selftests/mm: add new selftests for KSM
mm: add new KSM process and sysfs knobs
mm: add new api to enable ksm per process
mm: shrinkers: fix debugfs file permissions
mm: don't check VMA write permissions if the PTE/PMD indicates write permissions
migrate_pages_batch: fix statistics for longterm pin retry
userfaultfd: use helper function range_in_vma()
lib/show_mem.c: use for_each_populated_zone() simplify code
mm: correct arg in reclaim_pages()/reclaim_clean_pages_from_list()
fs/buffer: convert create_page_buffers to folio_create_buffers
fs/buffer: add folio_create_empty_buffers helper
...
We share the same handler for general floating point and SVE traps with a
check to make sure we don't handle any SVE traps if the system doesn't
have SVE support. Since we will be adding SME support and wishing to handle
that along with other FP related traps rewrite the check to be more scalable
and a bit clearer too, ensuring we don't misidentify SME traps as SVE ones.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221214-kvm-arm64-sme-context-switch-v2-2-57ba0082e9ff@kernel.org
As we are revamping the way the pgtable walker evaluates some of the
data, make it clear that we rely on somew of the fields to be constant
across the lifetime of a walk.
For this, flag the start, end and phys fields of the walk data as
'const', which will generate an error if we were to accidentally
update these fields again.
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Similar to the recently fixed stage-2 walker, the hyp map walker
increments the PA and VA of a walk separately. Unlike stage-2, there is
no bug here as the map walker has exclusive access to the stage-1 page
tables.
Nonetheless, in the interest of continuity throughout the page table
code, tweak the hyp map walker to avoid incrementing the PA and instead
use the VA as the authoritative source of how far along a table walk has
gotten. Calculate the PA to use for a leaf PTE by adding the offset of
the VA from the start of the walk to the starting PA.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230421071606.1603916-3-oliver.upton@linux.dev
Until now, the page table walker counted increments to the PA and IPA
of a walk in two separate places. While the PA is incremented as soon as
a leaf PTE is installed in stage2_map_walker_try_leaf(), the IPA is
actually bumped in the generic table walker context. Critically,
__kvm_pgtable_visit() rereads the PTE after the LEAF callback returns
to work out if a table or leaf was installed, and only bumps the IPA for
a leaf PTE.
This arrangement worked fine when we handled faults behind the write lock,
as the walker had exclusive access to the stage-2 page tables. However,
commit 1577cb5823 ("KVM: arm64: Handle stage-2 faults in parallel")
started handling all stage-2 faults behind the read lock, opening up a
race where a walker could increment the PA but not the IPA of a walk.
Nothing good ensues, as the walker starts mapping with the incorrect
IPA -> PA relationship.
For example, assume that two vCPUs took a data abort on the same IPA.
One observes that dirty logging is disabled, and the other observed that
it is enabled:
vCPU attempting PMD mapping vCPU attempting PTE mapping
====================================== =====================================
/* install PMD */
stage2_make_pte(ctx, leaf);
data->phys += granule;
/* replace PMD with a table */
stage2_try_break_pte(ctx, data->mmu);
stage2_make_pte(ctx, table);
/* table is observed */
ctx.old = READ_ONCE(*ptep);
table = kvm_pte_table(ctx.old, level);
/*
* map walk continues w/o incrementing
* IPA.
*/
__kvm_pgtable_walk(..., level + 1);
Bring an end to the whole mess by using the IPA as the single source of
truth for how far along a walk has gotten. Work out the correct PA to
map by calculating the IPA offset from the beginning of the walk and add
that to the starting physical address.
Cc: stable@vger.kernel.org
Fixes: 1577cb5823 ("KVM: arm64: Handle stage-2 faults in parallel")
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230421071606.1603916-2-oliver.upton@linux.dev
* kvm-arm64/spec-ptw:
: .
: On taking an exception from EL1&0 to EL2(&0), the page table walker is
: allowed to carry on with speculative walks started from EL1&0 while
: running at EL2 (see R_LFHQG). Given that the PTW may be actively using
: the EL1&0 system registers, the only safe way to deal with it is to
: issue a DSB before changing any of it.
:
: We already did the right thing for SPE and TRBE, but ignored the PTW
: for unknown reasons (probably because the architecture wasn't crystal
: clear at the time).
:
: This requires a bit of surgery in the nvhe code, though most of these
: patches are comments so that my future self can understand the purpose
: of these barriers. The VHE code is largely unaffected, thanks to the
: DSB in the context switch.
: .
KVM: arm64: vhe: Drop extra isb() on guest exit
KVM: arm64: vhe: Synchronise with page table walker on MMU update
KVM: arm64: pkvm: Document the side effects of kvm_flush_dcache_to_poc()
KVM: arm64: nvhe: Synchronise with page table walker on TLBI
KVM: arm64: nvhe: Synchronise with page table walker on vcpu run
Signed-off-by: Marc Zyngier <maz@kernel.org>
__kvm_vcpu_run_vhe() end on VHE with an isb(). However, this
function is only reachable via kvm_call_hyp_ret(), which already
contains an isb() in order to mimick the behaviour of nVHE and
provide a context synchronisation event.
We thus have two isb()s back to back, which is one too many.
Drop the first one and solely rely on the one in the helper.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Contrary to nVHE, VHE is a lot easier when it comes to dealing
with speculative page table walks started at EL1. As we only change
EL1&0 translation regime when context-switching, we already benefit
from the effect of the DSB that sits in the context switch code.
We only need to take care of it in the NV case, where we can
flip between between two EL1 contexts (one of them being the virtual
EL2) without a context switch.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
We rely on the presence of a DSB at the end of kvm_flush_dcache_to_poc()
that, on top of ensuring completion of the cache clean, also covers
the speculative page table walk started from EL1.
Document this dependency.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
A TLBI from EL2 impacting EL1 involves messing with the EL1&0
translation regime, and the page table walker may still be
performing speculative walks.
Piggyback on the existing DSBs to always have a DSB ISH that
will synchronise all load/store operations that the PTW may
still have.
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
When taking an exception between the EL1&0 translation regime and
the EL2 translation regime, the page table walker is allowed to
complete the walks started from EL0 or EL1 while running at EL2.
It means that altering the system registers that define the EL1&0
translation regime is fraught with danger *unless* we wait for
the completion of such walk with a DSB (R_LFHQG and subsequent
statements in the ARM ARM). We already did the right thing for
other external agents (SPE, TRBE), but not the PTW.
Rework the existing SPE/TRBE synchronisation to include the PTW,
and add the missing DSB on guest exit.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
The existing pKVM code attempts to advertise CSV2/3 using values
initialized to 0, but never set. To advertise CSV2/3 to protected
guests, pass the CSV2/3 values to hyp when initializing hyp's
view of guests' ID_AA64PFR0_EL1.
Similar to non-protected KVM, these are system-wide, rather than
per cpu, for simplicity.
Fixes: 6c30bfb18d ("KVM: arm64: Add handlers for protected VM System Registers")
Signed-off-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20230404152321.413064-1-tabba@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Emulating EL2 also means emulating the EL2 timers. To do so, we expand
our timer framework to deal with at most 4 timers. At any given time,
two timers are using the HW timers, and the two others are purely
emulated.
The role of deciding which is which at any given time is left to a
mapping function which is called every time we need to make such a
decision.
Reviewed-by: Colton Lewis <coltonlewis@google.com>
Co-developed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230330174800.2677007-18-maz@kernel.org
Being able to set a global offset isn't enough.
With NV, we also need to a per-vcpu, per-timer offset (for example,
CNTVCT_EL0 being offset by CNTVOFF_EL2).
Use a similar method as the VM-wide offset to have a timer point
to the shadow register that contains the offset value.
Reviewed-by: Colton Lewis <coltonlewis@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230330174800.2677007-17-maz@kernel.org
Now that it is likely that CNTPCT_EL0 accesses will trap,
fast-track the emulation of the counter read which doesn't
need more that a simple offsetting.
One day, we'll have CNTPOFF everywhere. One day.
Suggested-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230330174800.2677007-14-maz@kernel.org
CNTPOFF_EL2 is awesome, but it is mostly vapourware, and no publicly
available implementation has it. So for the common mortals, let's
implement the emulated version of this thing.
It means trapping accesses to the physical counter and timer, and
emulate some of it as necessary.
As for CNTPOFF_EL2, nobody sets the offset yet.
Reviewed-by: Colton Lewis <coltonlewis@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230330174800.2677007-6-maz@kernel.org
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place.
- Add support for taking stage-2 access faults in parallel. This was an
accidental omission in the original parallel faults implementation,
but should provide a marginal improvement to machines w/o FEAT_HAFDBS
(such as hardware from the fruit company).
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception handling
and masking unsupported features for nested guests.
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM.
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at reducing
the trap overhead of running nested.
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems.
- Avoid VM-wide stop-the-world operations when a vCPU accesses its own
redistributor.
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions
in the host.
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
This also drags in arm64's 'for-next/sme2' branch, because both it and
the PSCI relay changes touch the EL2 initialization code.
RISC-V:
- Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
- Correctly place the guest in S-mode after redirecting a trap to the guest
- Redirect illegal instruction traps to guest
- SBI PMU support for guest
s390:
- Two patches sorting out confusion between virtual and physical
addresses, which currently are the same on s390.
- A new ioctl that performs cmpxchg on guest memory
- A few fixes
x86:
- Change tdp_mmu to a read-only parameter
- Separate TDP and shadow MMU page fault paths
- Enable Hyper-V invariant TSC control
- Fix a variety of APICv and AVIC bugs, some of them real-world,
some of them affecting architecurally legal but unlikely to
happen in practice
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Advertise support for Intel's new fast REP string features
- Fix a double-shootdown issue in the emergency reboot code
- Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give SVM
similar treatment to VMX
- Update Xen's TSC info CPUID sub-leaves as appropriate
- Add support for Hyper-V's extended hypercalls, where "support" at this
point is just forwarding the hypercalls to userspace
- Clean up the kvm->lock vs. kvm->srcu sequences when updating the PMU and
MSR filters
- One-off fixes and cleanups
- Fix and cleanup the range-based TLB flushing code, used when KVM is
running on Hyper-V
- Add support for filtering PMU events using a mask. If userspace
wants to restrict heavily what events the guest can use, it can now
do so without needing an absurd number of filter entries
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel Sapphire Rapids
- Fix a mostly benign overflow bug in SEV's send|receive_update_data()
- Move several SVM-specific flags into vcpu_svm
x86 Intel:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't support
EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
Generic:
- Clean up the hardware enable and initialization flow, which was
scattered around multiple arch-specific hooks. Instead, just
let the arch code call into generic code. Both x86 and ARM should
benefit from not having to fight common KVM code's notion of how
to do initialization.
- Account allocations in generic kvm_arch_alloc_vm()
- Fix a memory leak if coalesced MMIO unregistration fails
selftests:
- On x86, cache the CPU vendor (AMD vs. Intel) and use the info to emit
the correct hypercall instruction instead of relying on KVM to patch
in VMMCALL
- Use TAP interface for kvm_binary_stats_test and tsc_msrs_test
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmP2YA0UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPg/Qf+J6nT+TkIa+8Ei+fN1oMTDp4YuIOx
mXvJ9mRK9sQ+tAUVwvDz3qN/fK5mjsYbRHIDlVc5p2Q3bCrVGDDqXPFfCcLx1u+O
9U9xjkO4JxD2LS9pc70FYOyzVNeJ8VMGOBbC2b0lkdYZ4KnUc6e/WWFKJs96bK+H
duo+RIVyaMthnvbTwSv1K3qQb61n6lSJXplywS8KWFK6NZAmBiEFDAWGRYQE9lLs
VcVcG0iDJNL/BQJ5InKCcvXVGskcCm9erDszPo7w4Bypa4S9AMS42DHUaRZrBJwV
/WqdH7ckIz7+OSV0W1j+bKTHAFVTCjXYOM7wQykgjawjICzMSnnG9Gpskw==
=goe1
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place
- Add support for taking stage-2 access faults in parallel. This was
an accidental omission in the original parallel faults
implementation, but should provide a marginal improvement to
machines w/o FEAT_HAFDBS (such as hardware from the fruit company)
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception
handling and masking unsupported features for nested guests
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at
reducing the trap overhead of running nested
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems
- Avoid VM-wide stop-the-world operations when a vCPU accesses its
own redistributor
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected
exceptions in the host
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
RISC-V:
- Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
- Correctly place the guest in S-mode after redirecting a trap to the
guest
- Redirect illegal instruction traps to guest
- SBI PMU support for guest
s390:
- Sort out confusion between virtual and physical addresses, which
currently are the same on s390
- A new ioctl that performs cmpxchg on guest memory
- A few fixes
x86:
- Change tdp_mmu to a read-only parameter
- Separate TDP and shadow MMU page fault paths
- Enable Hyper-V invariant TSC control
- Fix a variety of APICv and AVIC bugs, some of them real-world, some
of them affecting architecurally legal but unlikely to happen in
practice
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Advertise support for Intel's new fast REP string features
- Fix a double-shootdown issue in the emergency reboot code
- Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give
SVM similar treatment to VMX
- Update Xen's TSC info CPUID sub-leaves as appropriate
- Add support for Hyper-V's extended hypercalls, where "support" at
this point is just forwarding the hypercalls to userspace
- Clean up the kvm->lock vs. kvm->srcu sequences when updating the
PMU and MSR filters
- One-off fixes and cleanups
- Fix and cleanup the range-based TLB flushing code, used when KVM is
running on Hyper-V
- Add support for filtering PMU events using a mask. If userspace
wants to restrict heavily what events the guest can use, it can now
do so without needing an absurd number of filter entries
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel Sapphire Rapids
- Fix a mostly benign overflow bug in SEV's
send|receive_update_data()
- Move several SVM-specific flags into vcpu_svm
x86 Intel:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't
support EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
Generic:
- Clean up the hardware enable and initialization flow, which was
scattered around multiple arch-specific hooks. Instead, just let
the arch code call into generic code. Both x86 and ARM should
benefit from not having to fight common KVM code's notion of how to
do initialization
- Account allocations in generic kvm_arch_alloc_vm()
- Fix a memory leak if coalesced MMIO unregistration fails
selftests:
- On x86, cache the CPU vendor (AMD vs. Intel) and use the info to
emit the correct hypercall instruction instead of relying on KVM to
patch in VMMCALL
- Use TAP interface for kvm_binary_stats_test and tsc_msrs_test"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (325 commits)
KVM: SVM: hyper-v: placate modpost section mismatch error
KVM: x86/mmu: Make tdp_mmu_allowed static
KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
KVM: arm64: nv: Filter out unsupported features from ID regs
KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
KVM: arm64: nv: Handle SMCs taken from virtual EL2
KVM: arm64: nv: Handle trapped ERET from virtual EL2
KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
KVM: arm64: nv: Support virtual EL2 exceptions
KVM: arm64: nv: Handle HCR_EL2.NV system register traps
KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
KVM: arm64: nv: Add EL2 system registers to vcpu context
KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
KVM: arm64: nv: Introduce nested virtualization VCPU feature
KVM: arm64: Use the S2 MMU context to iterate over S2 table
...
- Support for arm64 SME 2 and 2.1. SME2 introduces a new 512-bit
architectural register (ZT0, for the look-up table feature) that Linux
needs to save/restore.
- Include TPIDR2 in the signal context and add the corresponding
kselftests.
- Perf updates: Arm SPEv1.2 support, HiSilicon uncore PMU updates, ACPI
support to the Marvell DDR and TAD PMU drivers, reset DTM_PMU_CONFIG
(ARM CMN) at probe time.
- Support for DYNAMIC_FTRACE_WITH_CALL_OPS on arm64.
- Permit EFI boot with MMU and caches on. Instead of cleaning the entire
loaded kernel image to the PoC and disabling the MMU and caches before
branching to the kernel bare metal entry point, leave the MMU and
caches enabled and rely on EFI's cacheable 1:1 mapping of all of
system RAM to populate the initial page tables.
- Expose the AArch32 (compat) ELF_HWCAP features to user in an arm64
kernel (the arm32 kernel only defines the values).
- Harden the arm64 shadow call stack pointer handling: stash the shadow
stack pointer in the task struct on interrupt, load it directly from
this structure.
- Signal handling cleanups to remove redundant validation of size
information and avoid reading the same data from userspace twice.
- Refactor the hwcap macros to make use of the automatically generated
ID registers. It should make new hwcaps writing less error prone.
- Further arm64 sysreg conversion and some fixes.
- arm64 kselftest fixes and improvements.
- Pointer authentication cleanups: don't sign leaf functions, unify
asm-arch manipulation.
- Pseudo-NMI code generation optimisations.
- Minor fixes for SME and TPIDR2 handling.
- Miscellaneous updates: ARCH_FORCE_MAX_ORDER is now selectable, replace
strtobool() to kstrtobool() in the cpufeature.c code, apply dynamic
shadow call stack in two passes, intercept pfn changes in set_pte_at()
without the required break-before-make sequence, attempt to dump all
instructions on unhandled kernel faults.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmP0/QsACgkQa9axLQDI
XvG+gA/+JDVEH9wRzAIZvbp9hSuohPc48xgAmIMP1eiVB0/5qeRjYAJwS33H0rXS
BPC2kj9IBy/eQeM9ICg0nFd0zYznSVacITqe6NrqeJ1F+ftS4rrHdfxd+J7kIoCs
V2L8e+BJvmHdhmNV2qMAgJdGlfxfQBA7fv2cy52HKYcouoOh1AUVR/x+yXVXAsCd
qJP3+dlUKccgm/oc5unEC1eZ49u8O+EoasqOyfG6K5udMgzhEX3K6imT9J3hw0WT
UjstYkx5uGS/prUrRCQAX96VCHoZmzEDKtQuHkHvQXEYXsYPF3ldbR2CziNJnHe7
QfSkjJlt8HAtExA+BkwEe9i0MQO/2VF5qsa2e4fA6l7uqGu3LOtS/jJd23C9n9fR
Id8aBMeN6S8+MjqRA9L2uf4t6e4ISEHoG9ZRdc4WOwloxEEiJoIeun+7bHdOSZLj
AFdHFCz4NXiiwC0UP0xPDI2YeCLqt5np7HmnrUqwzRpVO8UUagiJD8TIpcBSjBN9
J68eidenHUW7/SlIeaMKE2lmo8AUEAJs9AorDSugF19/ThJcQdx7vT2UAZjeVB3j
1dbbwajnlDOk/w8PQC4thFp5/MDlfst0htS3WRwa+vgkweE2EAdTU4hUZ8qEP7FQ
smhYtlT1xUSTYDTqoaG/U2OWR6/UU79wP0jgcOsHXTuyYrtPI/Q=
=VmXL
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- Support for arm64 SME 2 and 2.1. SME2 introduces a new 512-bit
architectural register (ZT0, for the look-up table feature) that
Linux needs to save/restore
- Include TPIDR2 in the signal context and add the corresponding
kselftests
- Perf updates: Arm SPEv1.2 support, HiSilicon uncore PMU updates, ACPI
support to the Marvell DDR and TAD PMU drivers, reset DTM_PMU_CONFIG
(ARM CMN) at probe time
- Support for DYNAMIC_FTRACE_WITH_CALL_OPS on arm64
- Permit EFI boot with MMU and caches on. Instead of cleaning the
entire loaded kernel image to the PoC and disabling the MMU and
caches before branching to the kernel bare metal entry point, leave
the MMU and caches enabled and rely on EFI's cacheable 1:1 mapping of
all of system RAM to populate the initial page tables
- Expose the AArch32 (compat) ELF_HWCAP features to user in an arm64
kernel (the arm32 kernel only defines the values)
- Harden the arm64 shadow call stack pointer handling: stash the shadow
stack pointer in the task struct on interrupt, load it directly from
this structure
- Signal handling cleanups to remove redundant validation of size
information and avoid reading the same data from userspace twice
- Refactor the hwcap macros to make use of the automatically generated
ID registers. It should make new hwcaps writing less error prone
- Further arm64 sysreg conversion and some fixes
- arm64 kselftest fixes and improvements
- Pointer authentication cleanups: don't sign leaf functions, unify
asm-arch manipulation
- Pseudo-NMI code generation optimisations
- Minor fixes for SME and TPIDR2 handling
- Miscellaneous updates: ARCH_FORCE_MAX_ORDER is now selectable,
replace strtobool() to kstrtobool() in the cpufeature.c code, apply
dynamic shadow call stack in two passes, intercept pfn changes in
set_pte_at() without the required break-before-make sequence, attempt
to dump all instructions on unhandled kernel faults
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (130 commits)
arm64: fix .idmap.text assertion for large kernels
kselftest/arm64: Don't require FA64 for streaming SVE+ZA tests
kselftest/arm64: Copy whole EXTRA context
arm64: kprobes: Drop ID map text from kprobes blacklist
perf: arm_spe: Print the version of SPE detected
perf: arm_spe: Add support for SPEv1.2 inverted event filtering
perf: Add perf_event_attr::config3
arm64/sme: Fix __finalise_el2 SMEver check
drivers/perf: fsl_imx8_ddr_perf: Remove set-but-not-used variable
arm64/signal: Only read new data when parsing the ZT context
arm64/signal: Only read new data when parsing the ZA context
arm64/signal: Only read new data when parsing the SVE context
arm64/signal: Avoid rereading context frame sizes
arm64/signal: Make interface for restore_fpsimd_context() consistent
arm64/signal: Remove redundant size validation from parse_user_sigframe()
arm64/signal: Don't redundantly verify FPSIMD magic
arm64/cpufeature: Use helper macros to specify hwcaps
arm64/cpufeature: Always use symbolic name for feature value in hwcaps
arm64/sysreg: Initial unsigned annotations for ID registers
arm64/sysreg: Initial annotation of signed ID registers
...
* kvm-arm64/nv-prefix:
: Preamble to NV support, courtesy of Marc Zyngier.
:
: This brings in a set of prerequisite patches for supporting nested
: virtualization in KVM/arm64. Of course, there is a long way to go until
: NV is actually enabled in KVM.
:
: - Introduce cpucap / vCPU feature flag to pivot the NV code on
:
: - Add support for EL2 vCPU register state
:
: - Basic nested exception handling
:
: - Hide unsupported features from the ID registers for NV-capable VMs
KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
KVM: arm64: nv: Filter out unsupported features from ID regs
KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
KVM: arm64: nv: Handle SMCs taken from virtual EL2
KVM: arm64: nv: Handle trapped ERET from virtual EL2
KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
KVM: arm64: nv: Support virtual EL2 exceptions
KVM: arm64: nv: Handle HCR_EL2.NV system register traps
KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
KVM: arm64: nv: Add EL2 system registers to vcpu context
KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
KVM: arm64: nv: Introduce nested virtualization VCPU feature
KVM: arm64: Use the S2 MMU context to iterate over S2 table
arm64: Add ARM64_HAS_NESTED_VIRT cpufeature
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/misc:
: Miscellaneous updates
:
: - Convert CPACR_EL1_TTA to the new, generated system register
: definitions.
:
: - Serialize toggling CPACR_EL1.SMEN to avoid unexpected exceptions when
: accessing SVCR in the host.
:
: - Avoid quiescing the guest if a vCPU accesses its own redistributor's
: SGIs/PPIs, eliminating the need to IPI. Largely an optimization for
: nested virtualization, as the L1 accesses the affected registers
: rather often.
:
: - Conversion to kstrtobool()
:
: - Common definition of INVALID_GPA across architectures
:
: - Enable CONFIG_USERFAULTFD for CI runs of KVM selftests
KVM: arm64: Fix non-kerneldoc comments
KVM: selftests: Enable USERFAULTFD
KVM: selftests: Remove redundant setbuf()
arm64/sysreg: clean up some inconsistent indenting
KVM: MMU: Make the definition of 'INVALID_GPA' common
KVM: arm64: vgic-v3: Use kstrtobool() instead of strtobool()
KVM: arm64: vgic-v3: Limit IPI-ing when accessing GICR_{C,S}ACTIVER0
KVM: arm64: Synchronize SMEN on vcpu schedule out
KVM: arm64: Kill CPACR_EL1_TTA definition
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/psci-relay-fixes:
: Fixes for CPU on/resume with pKVM, courtesy Quentin Perret.
:
: A consequence of deprivileging the host is that pKVM relays PSCI calls
: on behalf of the host. pKVM's CPU initialization failed to fully
: initialize the CPU's EL2 state, which notably led to unexpected SVE
: traps resulting in a hyp panic.
:
: The issue is addressed by reusing parts of __finalise_el2 to restore CPU
: state in the PSCI relay.
KVM: arm64: Finalise EL2 state from pKVM PSCI relay
KVM: arm64: Use sanitized values in __check_override in nVHE
KVM: arm64: Introduce finalise_el2_state macro
KVM: arm64: Provide sanitized SYS_ID_AA64SMFR0_EL1 to nVHE
* kvm-arm64/parallel-access-faults:
: Parallel stage-2 access fault handling
:
: The parallel faults changes that went in to 6.2 covered most stage-2
: aborts, with the exception of stage-2 access faults. Building on top of
: the new infrastructure, this series adds support for handling access
: faults (i.e. updating the access flag) in parallel.
:
: This is expected to provide a performance uplift for cores that do not
: implement FEAT_HAFDBS, such as those from the fruit company.
KVM: arm64: Condition HW AF updates on config option
KVM: arm64: Handle access faults behind the read lock
KVM: arm64: Don't serialize if the access flag isn't set
KVM: arm64: Return EAGAIN for invalid PTE in attr walker
KVM: arm64: Ignore EAGAIN for walks outside of a fault
KVM: arm64: Use KVM's pte type/helpers in handle_access_fault()
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/virtual-cache-geometry:
: Virtualized cache geometry for KVM guests, courtesy of Akihiko Odaki.
:
: KVM/arm64 has always exposed the host cache geometry directly to the
: guest, even though non-secure software should never perform CMOs by
: Set/Way. This was slightly wrong, as the cache geometry was derived from
: the PE on which the vCPU thread was running and not a sanitized value.
:
: All together this leads to issues migrating VMs on heterogeneous
: systems, as the cache geometry saved/restored could be inconsistent.
:
: KVM/arm64 now presents 1 level of cache with 1 set and 1 way. The cache
: geometry is entirely controlled by userspace, such that migrations from
: older kernels continue to work.
KVM: arm64: Mark some VM-scoped allocations as __GFP_ACCOUNT
KVM: arm64: Normalize cache configuration
KVM: arm64: Mask FEAT_CCIDX
KVM: arm64: Always set HCR_TID2
arm64/cache: Move CLIDR macro definitions
arm64/sysreg: Add CCSIDR2_EL1
arm64/sysreg: Convert CCSIDR_EL1 to automatic generation
arm64: Allow the definition of UNKNOWN system register fields
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
We can no longer blindly copy the VCPU's PSTATE into SPSR_EL2 and return
to the guest and vice versa when taking an exception to the hypervisor,
because we emulate virtual EL2 in EL1 and therefore have to translate
the mode field from EL2 to EL1 and vice versa.
This requires keeping track of the state we enter the guest, for which
we transiently use a dedicated flag.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-15-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Support injecting exceptions and performing exception returns to and
from virtual EL2. This must be done entirely in software except when
taking an exception from vEL0 to vEL2 when the virtual HCR_EL2.{E2H,TGE}
== {1,1} (a VHE guest hypervisor).
[maz: switch to common exception injection framework, illegal exeption
return handling]
Reviewed-by: Ganapatrao Kulkarni <gankulkarni@os.amperecomputing.com>
Signed-off-by: Jintack Lim <jintack.lim@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-10-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* arm64/for-next/perf:
perf: arm_spe: Print the version of SPE detected
perf: arm_spe: Add support for SPEv1.2 inverted event filtering
perf: Add perf_event_attr::config3
drivers/perf: fsl_imx8_ddr_perf: Remove set-but-not-used variable
perf: arm_spe: Support new SPEv1.2/v8.7 'not taken' event
perf: arm_spe: Use new PMSIDR_EL1 register enums
perf: arm_spe: Drop BIT() and use FIELD_GET/PREP accessors
arm64/sysreg: Convert SPE registers to automatic generation
arm64: Drop SYS_ from SPE register defines
perf: arm_spe: Use feature numbering for PMSEVFR_EL1 defines
perf/marvell: Add ACPI support to TAD uncore driver
perf/marvell: Add ACPI support to DDR uncore driver
perf/arm-cmn: Reset DTM_PMU_CONFIG at probe
drivers/perf: hisi: Extract initialization of "cpa_pmu->pmu"
drivers/perf: hisi: Simplify the parameters of hisi_pmu_init()
drivers/perf: hisi: Advertise the PERF_PMU_CAP_NO_EXCLUDE capability
* for-next/sysreg:
: arm64 sysreg and cpufeature fixes/updates
KVM: arm64: Use symbolic definition for ISR_EL1.A
arm64/sysreg: Add definition of ISR_EL1
arm64/sysreg: Add definition for ICC_NMIAR1_EL1
arm64/cpufeature: Remove 4 bit assumption in ARM64_FEATURE_MASK()
arm64/sysreg: Fix errors in 32 bit enumeration values
arm64/cpufeature: Fix field sign for DIT hwcap detection
* for-next/sme:
: SME-related updates
arm64/sme: Optimise SME exit on syscall entry
arm64/sme: Don't use streaming mode to probe the maximum SME VL
arm64/ptrace: Use system_supports_tpidr2() to check for TPIDR2 support
* for-next/kselftest: (23 commits)
: arm64 kselftest fixes and improvements
kselftest/arm64: Don't require FA64 for streaming SVE+ZA tests
kselftest/arm64: Copy whole EXTRA context
kselftest/arm64: Fix enumeration of systems without 128 bit SME for SSVE+ZA
kselftest/arm64: Fix enumeration of systems without 128 bit SME
kselftest/arm64: Don't require FA64 for streaming SVE tests
kselftest/arm64: Limit the maximum VL we try to set via ptrace
kselftest/arm64: Correct buffer size for SME ZA storage
kselftest/arm64: Remove the local NUM_VL definition
kselftest/arm64: Verify simultaneous SSVE and ZA context generation
kselftest/arm64: Verify that SSVE signal context has SVE_SIG_FLAG_SM set
kselftest/arm64: Remove spurious comment from MTE test Makefile
kselftest/arm64: Support build of MTE tests with clang
kselftest/arm64: Initialise current at build time in signal tests
kselftest/arm64: Don't pass headers to the compiler as source
kselftest/arm64: Remove redundant _start labels from FP tests
kselftest/arm64: Fix .pushsection for strings in FP tests
kselftest/arm64: Run BTI selftests on systems without BTI
kselftest/arm64: Fix test numbering when skipping tests
kselftest/arm64: Skip non-power of 2 SVE vector lengths in fp-stress
kselftest/arm64: Only enumerate power of two VLs in syscall-abi
...
* for-next/misc:
: Miscellaneous arm64 updates
arm64/mm: Intercept pfn changes in set_pte_at()
Documentation: arm64: correct spelling
arm64: traps: attempt to dump all instructions
arm64: Apply dynamic shadow call stack patching in two passes
arm64: el2_setup.h: fix spelling typo in comments
arm64: Kconfig: fix spelling
arm64: cpufeature: Use kstrtobool() instead of strtobool()
arm64: Avoid repeated AA64MMFR1_EL1 register read on pagefault path
arm64: make ARCH_FORCE_MAX_ORDER selectable
* for-next/sme2: (23 commits)
: Support for arm64 SME 2 and 2.1
arm64/sme: Fix __finalise_el2 SMEver check
kselftest/arm64: Remove redundant _start labels from zt-test
kselftest/arm64: Add coverage of SME 2 and 2.1 hwcaps
kselftest/arm64: Add coverage of the ZT ptrace regset
kselftest/arm64: Add SME2 coverage to syscall-abi
kselftest/arm64: Add test coverage for ZT register signal frames
kselftest/arm64: Teach the generic signal context validation about ZT
kselftest/arm64: Enumerate SME2 in the signal test utility code
kselftest/arm64: Cover ZT in the FP stress test
kselftest/arm64: Add a stress test program for ZT0
arm64/sme: Add hwcaps for SME 2 and 2.1 features
arm64/sme: Implement ZT0 ptrace support
arm64/sme: Implement signal handling for ZT
arm64/sme: Implement context switching for ZT0
arm64/sme: Provide storage for ZT0
arm64/sme: Add basic enumeration for SME2
arm64/sme: Enable host kernel to access ZT0
arm64/sme: Manually encode ZT0 load and store instructions
arm64/esr: Document ISS for ZT0 being disabled
arm64/sme: Document SME 2 and SME 2.1 ABI
...
* for-next/tpidr2:
: Include TPIDR2 in the signal context
kselftest/arm64: Add test case for TPIDR2 signal frame records
kselftest/arm64: Add TPIDR2 to the set of known signal context records
arm64/signal: Include TPIDR2 in the signal context
arm64/sme: Document ABI for TPIDR2 signal information
* for-next/scs:
: arm64: harden shadow call stack pointer handling
arm64: Stash shadow stack pointer in the task struct on interrupt
arm64: Always load shadow stack pointer directly from the task struct
* for-next/compat-hwcap:
: arm64: Expose compat ARMv8 AArch32 features (HWCAPs)
arm64: Add compat hwcap SSBS
arm64: Add compat hwcap SB
arm64: Add compat hwcap I8MM
arm64: Add compat hwcap ASIMDBF16
arm64: Add compat hwcap ASIMDFHM
arm64: Add compat hwcap ASIMDDP
arm64: Add compat hwcap FPHP and ASIMDHP
* for-next/ftrace:
: Add arm64 support for DYNAMICE_FTRACE_WITH_CALL_OPS
arm64: avoid executing padding bytes during kexec / hibernation
arm64: Implement HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS
arm64: ftrace: Update stale comment
arm64: patching: Add aarch64_insn_write_literal_u64()
arm64: insn: Add helpers for BTI
arm64: Extend support for CONFIG_FUNCTION_ALIGNMENT
ACPI: Don't build ACPICA with '-Os'
Compiler attributes: GCC cold function alignment workarounds
ftrace: Add DYNAMIC_FTRACE_WITH_CALL_OPS
* for-next/efi-boot-mmu-on:
: Permit arm64 EFI boot with MMU and caches on
arm64: kprobes: Drop ID map text from kprobes blacklist
arm64: head: Switch endianness before populating the ID map
efi: arm64: enter with MMU and caches enabled
arm64: head: Clean the ID map and the HYP text to the PoC if needed
arm64: head: avoid cache invalidation when entering with the MMU on
arm64: head: record the MMU state at primary entry
arm64: kernel: move identity map out of .text mapping
arm64: head: Move all finalise_el2 calls to after __enable_mmu
* for-next/ptrauth:
: arm64 pointer authentication cleanup
arm64: pauth: don't sign leaf functions
arm64: unify asm-arch manipulation
* for-next/pseudo-nmi:
: Pseudo-NMI code generation optimisations
arm64: irqflags: use alternative branches for pseudo-NMI logic
arm64: add ARM64_HAS_GIC_PRIO_RELAXED_SYNC cpucap
arm64: make ARM64_HAS_GIC_PRIO_MASKING depend on ARM64_HAS_GIC_CPUIF_SYSREGS
arm64: rename ARM64_HAS_IRQ_PRIO_MASKING to ARM64_HAS_GIC_PRIO_MASKING
arm64: rename ARM64_HAS_SYSREG_GIC_CPUIF to ARM64_HAS_GIC_CPUIF_SYSREGS
The EL2 state is not initialised correctly when a CPU comes out of
CPU_{SUSPEND,OFF} as the finalise_el2 function is not being called.
Let's directly call finalise_el2_state from this path to solve the
issue.
Fixes: 504ee23611 ("arm64: Add the arm64.nosve command line option")
Signed-off-by: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20230201103755.1398086-5-qperret@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
We will need a sanitized copy of SYS_ID_AA64SMFR0_EL1 from the nVHE EL2
code shortly, so make sure to provide it with a copy.
Signed-off-by: Quentin Perret <qperret@google.com>
Acked-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230201103755.1398086-2-qperret@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
We currently have a non-standard SYS_ prefix in the constants generated
for the SPE register bitfields. Drop this in preparation for automatic
register definition generation.
The SPE mask defines were unshifted, and the SPE register field
enumerations were shifted. The autogenerated defines are the opposite,
so make the necessary adjustments.
No functional changes.
Tested-by: James Clark <james.clark@arm.com>
Signed-off-by: Rob Herring <robh@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20220825-arm-spe-v8-7-v4-2-327f860daf28@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Since the One True Way is to use the new generated definition,
kill the KVM-specific definition of CPACR_EL1_TTA, and move
over to CPACR_ELx_TTA, hopefully for the same result.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230112154803.1808559-1-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
As it currently stands, KVM makes use of FEAT_HAFDBS unconditionally.
Use of the feature in the rest of the kernel is guarded by an associated
Kconfig option.
Align KVM with the rest of the kernel and only enable VTCR_HA when
ARM64_HW_AFDBM is enabled. This can be helpful for testing changes to
the stage-2 access fault path on Armv8.1+ implementations.
Link: https://lore.kernel.org/r/20221202185156.696189-7-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
As the underlying software walkers are able to traverse and update
stage-2 in parallel there is no need to serialize access faults.
Only take the read lock when handling an access fault.
Link: https://lore.kernel.org/r/20221202185156.696189-6-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
The page table walkers are invoked outside fault handling paths, such as
write protecting a range of memory. EAGAIN is generally used by the
walkers to retry execution due to races on a particular PTE, like taking
an access fault on a PTE being invalidated from another thread.
This early return behavior is undesirable for walkers that operate
outside a fault handler. Suppress EAGAIN and continue the walk if
operating outside a fault handler.
Link: https://lore.kernel.org/r/20221202185156.696189-3-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Always set HCR_TID2 to trap CTR_EL0, CCSIDR2_EL1, CLIDR_EL1, and
CSSELR_EL1. This saves a few lines of code and allows to employ their
access trap handlers for more purposes anticipated by the old
condition for setting HCR_TID2.
Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Link: https://lore.kernel.org/r/20230112023852.42012-6-akihiko.odaki@daynix.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Now that we are generating ISR_EL1 we have acquired a constant for
ISR_EL1.A, use it rather than the magic number we had been using in the KVM
entry code.
Suggested-by: Marc Zyngier <maz@kernel.org>
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20221208-arm64-isr-el1-v2-3-89f7073a1ca9@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The former is an AArch32 legacy, so let's move over to the
verbose (and strictly identical) version.
This involves moving some of the #defines that were private
to KVM into the more generic esr.h.
Signed-off-by: Marc Zyngier <maz@kernel.org>
* Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
* Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
* Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping option,
which multi-process VMMs such as crosvm rely on (see merge commit 382b5b87a9:
"Fix a number of issues with MTE, such as races on the tags being
initialised vs the PG_mte_tagged flag as well as the lack of support
for VM_SHARED when KVM is involved. Patches from Catalin Marinas and
Peter Collingbourne").
* Merge the pKVM shadow vcpu state tracking that allows the hypervisor
to have its own view of a vcpu, keeping that state private.
* Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
* Fix a handful of minor issues around 52bit VA/PA support (64kB pages
only) as a prefix of the oncoming support for 4kB and 16kB pages.
* Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
s390:
* Second batch of the lazy destroy patches
* First batch of KVM changes for kernel virtual != physical address support
* Removal of a unused function
x86:
* Allow compiling out SMM support
* Cleanup and documentation of SMM state save area format
* Preserve interrupt shadow in SMM state save area
* Respond to generic signals during slow page faults
* Fixes and optimizations for the non-executable huge page errata fix.
* Reprogram all performance counters on PMU filter change
* Cleanups to Hyper-V emulation and tests
* Process Hyper-V TLB flushes from a nested guest (i.e. from a L2 guest
running on top of a L1 Hyper-V hypervisor)
* Advertise several new Intel features
* x86 Xen-for-KVM:
** Allow the Xen runstate information to cross a page boundary
** Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
** Add support for 32-bit guests in SCHEDOP_poll
* Notable x86 fixes and cleanups:
** One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
** Reinstate IBPB on emulated VM-Exit that was incorrectly dropped a few
years back when eliminating unnecessary barriers when switching between
vmcs01 and vmcs02.
** Clean up vmread_error_trampoline() to make it more obvious that params
must be passed on the stack, even for x86-64.
** Let userspace set all supported bits in MSR_IA32_FEAT_CTL irrespective
of the current guest CPUID.
** Fudge around a race with TSC refinement that results in KVM incorrectly
thinking a guest needs TSC scaling when running on a CPU with a
constant TSC, but no hardware-enumerated TSC frequency.
** Advertise (on AMD) that the SMM_CTL MSR is not supported
** Remove unnecessary exports
Generic:
* Support for responding to signals during page faults; introduces
new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks
Selftests:
* Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
* Fix build errors that occur in certain setups (unsure exactly what is
unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
* Introduce actual atomics for clear/set_bit() in selftests
* Add support for pinning vCPUs in dirty_log_perf_test.
* Rename the so called "perf_util" framework to "memstress".
* Add a lightweight psuedo RNG for guest use, and use it to randomize
the access pattern and write vs. read percentage in the memstress tests.
* Add a common ucall implementation; code dedup and pre-work for running
SEV (and beyond) guests in selftests.
* Provide a common constructor and arch hook, which will eventually be
used by x86 to automatically select the right hypercall (AMD vs. Intel).
* A bunch of added/enabled/fixed selftests for ARM64, covering memslots,
breakpoints, stage-2 faults and access tracking.
* x86-specific selftest changes:
** Clean up x86's page table management.
** Clean up and enhance the "smaller maxphyaddr" test, and add a related
test to cover generic emulation failure.
** Clean up the nEPT support checks.
** Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.
** Fix an ordering issue in the AMX test introduced by recent conversions
to use kvm_cpu_has(), and harden the code to guard against similar bugs
in the future. Anything that tiggers caching of KVM's supported CPUID,
kvm_cpu_has() in this case, effectively hides opt-in XSAVE features if
the caching occurs before the test opts in via prctl().
Documentation:
* Remove deleted ioctls from documentation
* Clean up the docs for the x86 MSR filter.
* Various fixes
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmOaFrcUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPemQgAq49excg2Cc+EsHnZw3vu/QWdA0Rt
KhL3OgKxuHNjCbD2O9n2t5di7eJOTQ7F7T0eDm3xPTr4FS8LQ2327/mQePU/H2CF
mWOpq9RBWLzFsSTeVA2Mz9TUTkYSnDHYuRsBvHyw/n9cL76BWVzjImldFtjYjjex
yAwl8c5itKH6bc7KO+5ydswbvBzODkeYKUSBNdbn6m0JGQST7XppNwIAJvpiHsii
Qgpk0e4Xx9q4PXG/r5DedI6BlufBsLhv0aE9SHPzyKH3JbbUFhJYI8ZD5OhBQuYW
MwxK2KlM5Jm5ud2NZDDlsMmmvd1lnYCFDyqNozaKEWC1Y5rq1AbMa51fXA==
=QAYX
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM64:
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on (see merge
commit 382b5b87a9: "Fix a number of issues with MTE, such as
races on the tags being initialised vs the PG_mte_tagged flag as
well as the lack of support for VM_SHARED when KVM is involved.
Patches from Catalin Marinas and Peter Collingbourne").
- Merge the pKVM shadow vcpu state tracking that allows the
hypervisor to have its own view of a vcpu, keeping that state
private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB
pages only) as a prefix of the oncoming support for 4kB and 16kB
pages.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
s390:
- Second batch of the lazy destroy patches
- First batch of KVM changes for kernel virtual != physical address
support
- Removal of a unused function
x86:
- Allow compiling out SMM support
- Cleanup and documentation of SMM state save area format
- Preserve interrupt shadow in SMM state save area
- Respond to generic signals during slow page faults
- Fixes and optimizations for the non-executable huge page errata
fix.
- Reprogram all performance counters on PMU filter change
- Cleanups to Hyper-V emulation and tests
- Process Hyper-V TLB flushes from a nested guest (i.e. from a L2
guest running on top of a L1 Hyper-V hypervisor)
- Advertise several new Intel features
- x86 Xen-for-KVM:
- Allow the Xen runstate information to cross a page boundary
- Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
- Add support for 32-bit guests in SCHEDOP_poll
- Notable x86 fixes and cleanups:
- One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
- Reinstate IBPB on emulated VM-Exit that was incorrectly dropped
a few years back when eliminating unnecessary barriers when
switching between vmcs01 and vmcs02.
- Clean up vmread_error_trampoline() to make it more obvious that
params must be passed on the stack, even for x86-64.
- Let userspace set all supported bits in MSR_IA32_FEAT_CTL
irrespective of the current guest CPUID.
- Fudge around a race with TSC refinement that results in KVM
incorrectly thinking a guest needs TSC scaling when running on a
CPU with a constant TSC, but no hardware-enumerated TSC
frequency.
- Advertise (on AMD) that the SMM_CTL MSR is not supported
- Remove unnecessary exports
Generic:
- Support for responding to signals during page faults; introduces
new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks
Selftests:
- Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
- Fix build errors that occur in certain setups (unsure exactly what
is unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
- Introduce actual atomics for clear/set_bit() in selftests
- Add support for pinning vCPUs in dirty_log_perf_test.
- Rename the so called "perf_util" framework to "memstress".
- Add a lightweight psuedo RNG for guest use, and use it to randomize
the access pattern and write vs. read percentage in the memstress
tests.
- Add a common ucall implementation; code dedup and pre-work for
running SEV (and beyond) guests in selftests.
- Provide a common constructor and arch hook, which will eventually
be used by x86 to automatically select the right hypercall (AMD vs.
Intel).
- A bunch of added/enabled/fixed selftests for ARM64, covering
memslots, breakpoints, stage-2 faults and access tracking.
- x86-specific selftest changes:
- Clean up x86's page table management.
- Clean up and enhance the "smaller maxphyaddr" test, and add a
related test to cover generic emulation failure.
- Clean up the nEPT support checks.
- Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.
- Fix an ordering issue in the AMX test introduced by recent
conversions to use kvm_cpu_has(), and harden the code to guard
against similar bugs in the future. Anything that tiggers
caching of KVM's supported CPUID, kvm_cpu_has() in this case,
effectively hides opt-in XSAVE features if the caching occurs
before the test opts in via prctl().
Documentation:
- Remove deleted ioctls from documentation
- Clean up the docs for the x86 MSR filter.
- Various fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (361 commits)
KVM: x86: Add proper ReST tables for userspace MSR exits/flags
KVM: selftests: Allocate ucall pool from MEM_REGION_DATA
KVM: arm64: selftests: Align VA space allocator with TTBR0
KVM: arm64: Fix benign bug with incorrect use of VA_BITS
KVM: arm64: PMU: Fix period computation for 64bit counters with 32bit overflow
KVM: x86: Advertise that the SMM_CTL MSR is not supported
KVM: x86: remove unnecessary exports
KVM: selftests: Fix spelling mistake "probabalistic" -> "probabilistic"
tools: KVM: selftests: Convert clear/set_bit() to actual atomics
tools: Drop "atomic_" prefix from atomic test_and_set_bit()
tools: Drop conflicting non-atomic test_and_{clear,set}_bit() helpers
KVM: selftests: Use non-atomic clear/set bit helpers in KVM tests
perf tools: Use dedicated non-atomic clear/set bit helpers
tools: Take @bit as an "unsigned long" in {clear,set}_bit() helpers
KVM: arm64: selftests: Enable single-step without a "full" ucall()
KVM: x86: fix APICv/x2AVIC disabled when vm reboot by itself
KVM: Remove stale comment about KVM_REQ_UNHALT
KVM: Add missing arch for KVM_CREATE_DEVICE and KVM_{SET,GET}_DEVICE_ATTR
KVM: Reference to kvm_userspace_memory_region in doc and comments
KVM: Delete all references to removed KVM_SET_MEMORY_ALIAS ioctl
...
* kvm-arm64/pkvm-vcpu-state: (25 commits)
: .
: Large drop of pKVM patches from Will Deacon and co, adding
: a private vm/vcpu state at EL2, managed independently from
: the EL1 state. From the cover letter:
:
: "This is version six of the pKVM EL2 state series, extending the pKVM
: hypervisor code so that it can dynamically instantiate and manage VM
: data structures without the host being able to access them directly.
: These structures consist of a hyp VM, a set of hyp vCPUs and the stage-2
: page-table for the MMU. The pages used to hold the hypervisor structures
: are returned to the host when the VM is destroyed."
: .
KVM: arm64: Use the pKVM hyp vCPU structure in handle___kvm_vcpu_run()
KVM: arm64: Don't unnecessarily map host kernel sections at EL2
KVM: arm64: Explicitly map 'kvm_vgic_global_state' at EL2
KVM: arm64: Maintain a copy of 'kvm_arm_vmid_bits' at EL2
KVM: arm64: Unmap 'kvm_arm_hyp_percpu_base' from the host
KVM: arm64: Return guest memory from EL2 via dedicated teardown memcache
KVM: arm64: Instantiate guest stage-2 page-tables at EL2
KVM: arm64: Consolidate stage-2 initialisation into a single function
KVM: arm64: Add generic hyp_memcache helpers
KVM: arm64: Provide I-cache invalidation by virtual address at EL2
KVM: arm64: Initialise hypervisor copies of host symbols unconditionally
KVM: arm64: Add per-cpu fixmap infrastructure at EL2
KVM: arm64: Instantiate pKVM hypervisor VM and vCPU structures from EL1
KVM: arm64: Add infrastructure to create and track pKVM instances at EL2
KVM: arm64: Rename 'host_kvm' to 'host_mmu'
KVM: arm64: Add hyp_spinlock_t static initializer
KVM: arm64: Include asm/kvm_mmu.h in nvhe/mem_protect.h
KVM: arm64: Add helpers to pin memory shared with the hypervisor at EL2
KVM: arm64: Prevent the donation of no-map pages
KVM: arm64: Implement do_donate() helper for donating memory
...
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/parallel-faults:
: .
: Parallel stage-2 fault handling, courtesy of Oliver Upton.
: From the cover letter:
:
: "Presently KVM only takes a read lock for stage 2 faults if it believes
: the fault can be fixed by relaxing permissions on a PTE (write unprotect
: for dirty logging). Otherwise, stage 2 faults grab the write lock, which
: predictably can pile up all the vCPUs in a sufficiently large VM.
:
: Like the TDP MMU for x86, this series loosens the locking around
: manipulations of the stage 2 page tables to allow parallel faults. RCU
: and atomics are exploited to safely build/destroy the stage 2 page
: tables in light of multiple software observers."
: .
KVM: arm64: Reject shared table walks in the hyp code
KVM: arm64: Don't acquire RCU read lock for exclusive table walks
KVM: arm64: Take a pointer to walker data in kvm_dereference_pteref()
KVM: arm64: Handle stage-2 faults in parallel
KVM: arm64: Make table->block changes parallel-aware
KVM: arm64: Make leaf->leaf PTE changes parallel-aware
KVM: arm64: Make block->table PTE changes parallel-aware
KVM: arm64: Split init and set for table PTE
KVM: arm64: Atomically update stage 2 leaf attributes in parallel walks
KVM: arm64: Protect stage-2 traversal with RCU
KVM: arm64: Tear down unlinked stage-2 subtree after break-before-make
KVM: arm64: Use an opaque type for pteps
KVM: arm64: Add a helper to tear down unlinked stage-2 subtrees
KVM: arm64: Don't pass kvm_pgtable through kvm_pgtable_walk_data
KVM: arm64: Pass mm_ops through the visitor context
KVM: arm64: Stash observed pte value in visitor context
KVM: arm64: Combine visitor arguments into a context structure
Signed-off-by: Marc Zyngier <maz@kernel.org>
Exclusive table walks are the only supported table walk in the hyp, as
there is no construct like RCU available in the hypervisor code. Reject
any attempt to do a shared table walk by returning an error and allowing
the caller to clean up the mess.
Suggested-by: Will Deacon <will@kernel.org>
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221118182222.3932898-4-oliver.upton@linux.dev
Rather than passing through the state of the KVM_PGTABLE_WALK_SHARED
flag, just take a pointer to the whole walker structure instead. Move
around struct kvm_pgtable and the RCU indirection such that the
associated ifdeffery remains in one place while ensuring the walker +
flags definitions precede their use.
No functional change intended.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221118182222.3932898-2-oliver.upton@linux.dev
As a stepping stone towards deprivileging the host's access to the
guest's vCPU structures, introduce some naive flush/sync routines to
copy most of the host vCPU into the hyp vCPU on vCPU run and back
again on return to EL1.
This allows us to run using the pKVM hyp structures when KVM is
initialised in protected mode.
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Co-developed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-27-will@kernel.org
We no longer need to map the host's '.rodata' and '.bss' sections in the
stage-1 page-table of the pKVM hypervisor at EL2, so remove those
mappings and avoid creating any future dependencies at EL2 on
host-controlled data structures.
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-25-will@kernel.org
The pkvm hypervisor at EL2 may need to read the 'kvm_vgic_global_state'
variable from the host, for example when saving and restoring the state
of the virtual GIC.
Explicitly map 'kvm_vgic_global_state' in the stage-1 page-table of the
pKVM hypervisor rather than relying on mapping all of the host '.rodata'
section.
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-24-will@kernel.org
Sharing 'kvm_arm_vmid_bits' between EL1 and EL2 allows the host to
modify the variable arbitrarily, potentially leading to all sorts of
shenanians as this is used to configure the VTTBR register for the
guest stage-2.
In preparation for unmapping host sections entirely from EL2, maintain
a copy of 'kvm_arm_vmid_bits' in the pKVM hypervisor and initialise it
from the host value while it is still trusted.
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-23-will@kernel.org
When pKVM is enabled, the hypervisor at EL2 does not trust the host at
EL1 and must therefore prevent it from having unrestricted access to
internal hypervisor state.
The 'kvm_arm_hyp_percpu_base' array holds the offsets for hypervisor
per-cpu allocations, so move this this into the nVHE code where it
cannot be modified by the untrusted host at EL1.
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-22-will@kernel.org
Rather than relying on the host to free the previously-donated pKVM
hypervisor VM pages explicitly on teardown, introduce a dedicated
teardown memcache which allows the host to reclaim guest memory
resources without having to keep track of all of the allocations made by
the pKVM hypervisor at EL2.
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Co-developed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
[maz: dropped __maybe_unused from unmap_donated_memory_noclear()]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-21-will@kernel.org
Extend the initialisation of guest data structures within the pKVM
hypervisor at EL2 so that we instantiate a memory pool and a full
'struct kvm_s2_mmu' structure for each VM, with a stage-2 page-table
entirely independent from the one managed by the host at EL1.
The 'struct kvm_pgtable_mm_ops' used by the page-table code is populated
with a set of callbacks that can manage guest pages in the hypervisor
without any direct intervention from the host, allocating page-table
pages from the provided pool and returning these to the host on VM
teardown. To keep things simple, the stage-2 MMU for the guest is
configured identically to the host stage-2 in the VTCR register and so
the IPA size of the guest must match the PA size of the host.
For now, the new page-table is unused as there is no way for the host
to map anything into it. Yet.
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-20-will@kernel.org
The host at EL1 and the pKVM hypervisor at EL2 will soon need to
exchange memory pages dynamically for creating and destroying VM state.
Indeed, the hypervisor will rely on the host to donate memory pages it
can use to create guest stage-2 page-tables and to store VM and vCPU
metadata. In order to ease this process, introduce a
'struct hyp_memcache' which is essentially a linked list of available
pages, indexed by physical addresses so that it can be passed
meaningfully between the different virtual address spaces configured at
EL1 and EL2.
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-18-will@kernel.org
In preparation for handling cache maintenance of guest pages from within
the pKVM hypervisor at EL2, introduce an EL2 copy of icache_inval_pou()
which will later be plumbed into the stage-2 page-table cache
maintenance callbacks, ensuring that the initial contents of pages
mapped as executable into the guest stage-2 page-table is visible to the
instruction fetcher.
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-17-will@kernel.org
Mapping pages in a guest page-table from within the pKVM hypervisor at
EL2 may require cache maintenance to ensure that the initialised page
contents is visible even to non-cacheable (e.g. MMU-off) accesses from
the guest.
In preparation for performing this maintenance at EL2, introduce a
per-vCPU fixmap which allows the pKVM hypervisor to map guest pages
temporarily into its stage-1 page-table for the purposes of cache
maintenance and, in future, poisoning on the reclaim path. The use of a
fixmap avoids the need for memory allocation or locking on the map()
path.
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Co-developed-by: Will Deacon <will@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-15-will@kernel.org
With the pKVM hypervisor at EL2 now offering hypercalls to the host for
creating and destroying VM and vCPU structures, plumb these in to the
existing arm64 KVM backend to ensure that the hypervisor data structures
are allocated and initialised on first vCPU run for a pKVM guest.
In the host, 'struct kvm_protected_vm' is introduced to hold the handle
of the pKVM VM instance as well as to track references to the memory
donated to the hypervisor so that it can be freed back to the host
allocator following VM teardown. The stage-2 page-table, hypervisor VM
and vCPU structures are allocated separately so as to avoid the need for
a large physically-contiguous allocation in the host at run-time.
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-14-will@kernel.org
Introduce a global table (and lock) to track pKVM instances at EL2, and
provide hypercalls that can be used by the untrusted host to create and
destroy pKVM VMs and their vCPUs. pKVM VM/vCPU state is directly
accessible only by the trusted hypervisor (EL2).
Each pKVM VM is directly associated with an untrusted host KVM instance,
and is referenced by the host using an opaque handle. Future patches
will provide hypercalls to allow the host to initialize/set/get pKVM
VM/vCPU state using the opaque handle.
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Co-developed-by: Will Deacon <will@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
[maz: silence warning on unmap_donated_memory_noclear()]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-13-will@kernel.org
In preparation for introducing VM and vCPU state at EL2, rename the
existing 'struct host_kvm' and its singleton 'host_kvm' instance to
'host_mmu' so as to avoid confusion between the structure tracking the
host stage-2 MMU state and the host instance of a 'struct kvm' for a
protected guest.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-12-will@kernel.org
Introduce a static initializer macro for 'hyp_spinlock_t' so that it is
straightforward to instantiate global locks at EL2. This will be later
utilised for locking the VM table in the hypervisor.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-11-will@kernel.org
nvhe/mem_protect.h refers to __load_stage2() in the definition of
__load_host_stage2() but doesn't include the relevant header.
Include asm/kvm_mmu.h in nvhe/mem_protect.h so that users of the latter
don't have to do this themselves.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-10-will@kernel.org
Add helpers allowing the hypervisor to check whether a range of pages
are currently shared by the host, and 'pin' them if so by blocking host
unshare operations until the memory has been unpinned.
This will allow the hypervisor to take references on host-provided
data-structures (e.g. 'struct kvm') with the guarantee that these pages
will remain in a stable state until the hypervisor decides to release
them, for example during guest teardown.
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-9-will@kernel.org
Memory regions marked as "no-map" in the host device-tree routinely
include TrustZone carev-outs and DMA pools. Although donating such pages
to the hypervisor may not breach confidentiality, it could be used to
corrupt its state in uncontrollable ways. To prevent this, let's block
host-initiated memory transitions targeting "no-map" pages altogether in
nVHE protected mode as there should be no valid reason to do this in
current operation.
Thankfully, the pKVM EL2 hypervisor has a full copy of the host's list
of memblock regions, so we can easily check for the presence of the
MEMBLOCK_NOMAP flag on a region containing pages being donated from the
host.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-8-will@kernel.org
Transferring ownership information of a memory region from one component
to another can be achieved using a "donate" operation, which results
in the previous owner losing access to the underlying pages entirely
and the new owner having exclusive access to the page.
Implement a do_donate() helper, along the same lines as do_{un,}share,
and provide this functionality for the host-{to,from}-hyp cases as this
will later be used to donate/reclaim memory pages to store VM metadata
at EL2.
In a similar manner to the sharing transitions, permission checks are
performed by the hypervisor to ensure that the component initiating the
transition really is the owner of the page and also that the completer
does not currently have a page mapped at the target address.
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Co-developed-by: Quentin Perret <qperret@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-7-will@kernel.org
The 'pkvm_component_id' enum type provides constants to refer to the
host and the hypervisor, yet this information is duplicated by the
'pkvm_hyp_id' constant.
Remove the definition of 'pkvm_hyp_id' and move the 'pkvm_component_id'
type definition to 'mem_protect.h' so that it can be used outside of
the memory protection code, for example when initialising the owner for
hypervisor-owned pages.
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-6-will@kernel.org
In order to allow unmapping arbitrary memory pages from the hypervisor
stage-1 page-table, fix-up the initial refcount for pages that have been
mapped before the 'vmemmap' array was up and running so that it
accurately accounts for all existing hypervisor mappings.
This is achieved by traversing the entire hypervisor stage-1 page-table
during initialisation of EL2 and updating the corresponding
'struct hyp_page' for each valid mapping.
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-5-will@kernel.org
The EL2 'vmemmap' array in nVHE Protected mode is currently very sparse:
only memory pages owned by the hypervisor itself have a matching 'struct
hyp_page'. However, as the size of this struct has been reduced
significantly since its introduction, it appears that we can now afford
to back the vmemmap for all of memory.
Having an easily accessible 'struct hyp_page' for every physical page in
memory provides the hypervisor with a simple mechanism to store metadata
(e.g. a refcount) that wouldn't otherwise fit in the very limited number
of software bits available in the host stage-2 page-table entries. This
will be used in subsequent patches when pinning host memory pages for
use by the hypervisor at EL2.
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-4-will@kernel.org
All the contiguous pages used to initialize a 'struct hyp_pool' are
considered coalescable, which means that the hyp page allocator will
actively try to merge them with their buddies on the hyp_put_page() path.
However, using hyp_put_page() on a page that is not part of the inital
memory range given to a hyp_pool() is currently unsupported.
In order to allow dynamically extending hyp pools at run-time, add a
check to __hyp_attach_page() to allow inserting 'external' pages into
the free-list of order 0. This will be necessary to allow lazy donation
of pages from the host to the hypervisor when allocating guest stage-2
page-table pages at EL2.
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-3-will@kernel.org
We will soon need to manipulate 'struct hyp_page' refcounts from outside
page_alloc.c, so move the helpers to a common header file to allow them
to be reused easily.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-2-will@kernel.org
The stage-2 map walker has been made parallel-aware, and as such can be
called while only holding the read side of the MMU lock. Rip out the
conditional locking in user_mem_abort() and instead grab the read lock.
Continue to take the write lock from other callsites to
kvm_pgtable_stage2_map().
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107220033.1895655-1-oliver.upton@linux.dev
stage2_map_walker_try_leaf() and friends now handle stage-2 PTEs
generically, and perform the correct flush when a table PTE is removed.
Additionally, they've been made parallel-aware, using an atomic break
to take ownership of the PTE.
Stop clearing the PTE in the pre-order callback and instead let
stage2_map_walker_try_leaf() deal with it.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107220006.1895572-1-oliver.upton@linux.dev
Convert stage2_map_walker_try_leaf() to use the new break-before-make
helpers, thereby making the handler parallel-aware. As before, avoid the
break-before-make if recreating the existing mapping. Additionally,
retry execution if another vCPU thread is modifying the same PTE.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215934.1895478-1-oliver.upton@linux.dev
In order to service stage-2 faults in parallel, stage-2 table walkers
must take exclusive ownership of the PTE being worked on. An additional
requirement of the architecture is that software must perform a
'break-before-make' operation when changing the block size used for
mapping memory.
Roll these two concepts together into helpers for performing a
'break-before-make' sequence. Use a special PTE value to indicate a PTE
has been locked by a software walker. Additionally, use an atomic
compare-exchange to 'break' the PTE when the stage-2 page tables are
possibly shared with another software walker. Elide the DSB + TLBI if
the evicted PTE was invalid (and thus not subject to break-before-make).
All of the atomics do nothing for now, as the stage-2 walker isn't fully
ready to perform parallel walks.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215855.1895367-1-oliver.upton@linux.dev
Create a helper to initialize a table and directly call
smp_store_release() to install it (for now). Prepare for a subsequent
change that generalizes PTE writes with a helper.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-11-oliver.upton@linux.dev
The stage2 attr walker is already used for parallel walks. Since commit
f783ef1c0e ("KVM: arm64: Add fast path to handle permission relaxation
during dirty logging"), KVM acquires the read lock when
write-unprotecting a PTE. However, the walker only uses a simple store
to update the PTE. This is safe as the only possible race is with
hardware updates to the access flag, which is benign.
However, a subsequent change to KVM will allow more changes to the stage
2 page tables to be done in parallel. Prepare the stage 2 attribute
walker by performing atomic updates to the PTE when walking in parallel.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-10-oliver.upton@linux.dev
Use RCU to safely walk the stage-2 page tables in parallel. Acquire and
release the RCU read lock when traversing the page tables. Defer the
freeing of table memory to an RCU callback. Indirect the calls into RCU
and provide stubs for hypervisor code, as RCU is not available in such a
context.
The RCU protection doesn't amount to much at the moment, as readers are
already protected by the read-write lock (all walkers that free table
memory take the write lock). Nonetheless, a subsequent change will
futher relax the locking requirements around the stage-2 MMU, thereby
depending on RCU.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-9-oliver.upton@linux.dev
The break-before-make sequence is a bit annoying as it opens a window
wherein memory is unmapped from the guest. KVM should replace the PTE
as quickly as possible and avoid unnecessary work in between.
Presently, the stage-2 map walker tears down a removed table before
installing a block mapping when coalescing a table into a block. As the
removed table is no longer visible to hardware walkers after the
DSB+TLBI, it is possible to move the remaining cleanup to happen after
installing the new PTE.
Reshuffle the stage-2 map walker to install the new block entry in
the pre-order callback. Unwire all of the teardown logic and replace
it with a call to kvm_pgtable_stage2_free_removed() after fixing
the PTE. The post-order visitor is now completely unnecessary, so drop
it. Finally, touch up the comments to better represent the now
simplified map walker.
Note that the call to tear down the unlinked stage-2 is indirected
as a subsequent change will use an RCU callback to trigger tear down.
RCU is not available to pKVM, so there is a need to use different
implementations on pKVM and non-pKVM VMs.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-8-oliver.upton@linux.dev
Use an opaque type for pteps and require visitors explicitly dereference
the pointer before using. Protecting page table memory with RCU requires
that KVM dereferences RCU-annotated pointers before using. However, RCU
is not available for use in the nVHE hypervisor and the opaque type can
be conditionally annotated with RCU for the stage-2 MMU.
Call the type a 'pteref' to avoid a naming collision with raw pteps. No
functional change intended.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-7-oliver.upton@linux.dev
A subsequent change to KVM will move the tear down of an unlinked
stage-2 subtree out of the critical path of the break-before-make
sequence.
Introduce a new helper for tearing down unlinked stage-2 subtrees.
Leverage the existing stage-2 free walkers to do so, with a deep call
into __kvm_pgtable_walk() as the subtree is no longer reachable from the
root.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-6-oliver.upton@linux.dev
In order to tear down page tables from outside the context of
kvm_pgtable (such as an RCU callback), stop passing a pointer through
kvm_pgtable_walk_data.
No functional change intended.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-5-oliver.upton@linux.dev
As a prerequisite for getting visitors off of struct kvm_pgtable, pass
mm_ops through the visitor context.
No functional change intended.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-4-oliver.upton@linux.dev
Rather than reading the ptep all over the shop, read the ptep once from
__kvm_pgtable_visit() and stick it in the visitor context. Reread the
ptep after visiting a leaf in case the callback installed a new table
underneath.
No functional change intended.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-3-oliver.upton@linux.dev
Passing new arguments by value to the visitor callbacks is extremely
inflexible for stuffing new parameters used by only some of the
visitors. Use a context structure instead and pass the pointer through
to the visitor callback.
While at it, redefine the 'flags' parameter to the visitor to contain
the bit indicating the phase of the walk. Pass the entire set of flags
through the context structure such that the walker can communicate
additional state to the visitor callback.
No functional change intended.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-2-oliver.upton@linux.dev
Enable asynchronous unwind table generation for both the core kernel as
well as modules, and emit the resulting .eh_frame sections as init code
so we can use the unwind directives for code patching at boot or module
load time.
This will be used by dynamic shadow call stack support, which will rely
on code patching rather than compiler codegen to emit the shadow call
stack push and pop instructions.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lore.kernel.org/r/20221027155908.1940624-2-ardb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
The trapping of SMPRI_EL1 and TPIDR2_EL0 currently only really
work on nVHE, as only this mode uses the fine-grained trapping
that controls these two registers.
Move the trapping enable/disable code into
__{de,}activate_traps_common(), allowing it to be called when it
actually matters on VHE, and remove the flipping of EL2 control
for TPIDR2_EL0, which only affects the host access of this
register.
Fixes: 861262ab86 ("KVM: arm64: Handle SME host state when running guests")
Reported-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/86bkpqer4z.wl-maz@kernel.org
enter_exception64() performs an MTE check, which involves dereferencing
vcpu->kvm. While vcpu has already been fixed up to be a HYP VA pointer,
kvm is still a pointer in the kernel VA space.
This only affects nVHE configurations with MTE enabled, as in other
cases, the pointer is either valid (VHE) or not dereferenced (!MTE).
Fix this by first converting kvm to a HYP VA pointer.
Fixes: ea7fc1bb1c ("KVM: arm64: Introduce MTE VM feature")
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Steven Price <steven.price@arm.com>
[maz: commit message tidy-up]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20221027120945.29679-1-ryan.roberts@arm.com
hyp_get_page_state() is used with pKVM to retrieve metadata about a page
by parsing a hypervisor stage-1 PTE. However, it incorrectly uses a
helper which parses *stage-2* mappings. Ouch.
Luckily, pkvm_getstate() only looks at the software bits, which happen
to be in the same place for stage-1 and stage-2 PTEs, and this all ends
up working correctly by accident. But clearly, we should do better.
Fix hyp_get_page_state() to use the correct helper.
Fixes: e82edcc75c ("KVM: arm64: Implement do_share() helper for sharing memory")
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221025145156.855308-1-qperret@google.com
- Fix a bug preventing restoring an ITS containing mappings
for very large and very sparse device topology
- Work around a relocation handling error when compiling
the nVHE object with profile optimisation
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmNRGjoPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDVcEP/2zn+J/pAv1FoNKxSiSk/H2hx5PH685mqEwv
I7YPYPOuGJDv/uJFXzMMDpjjs8RHG9yWwPwtFZYGKqtmlkXgM3a0jk5jtsgfSVcp
vsvqgR0kL67x5D/Mc+I/bkVMNEecrucvkewf0Sp7W2gdXnC+rm1EFN5McK5U60tW
+s6fKVkIB0/fxNJCXPdETGiNpoYGEBeVVzoTrXGFm9QBcSDKvqdaPF8koZzOecpS
3UcVYKBaxNf1zowAseNYiS4kndwKuopaYsk4BY/KDgTbPyoFQBwMZYm6DAkb9ugW
sFK6g8FmOJJ5meLWIg4vTdruILL+YP6gbJ0HrzFoxJJEdd2iRzEUgQlBp7G+STSY
npXmeTJh5DJelm1Qd4OdiSBlqwYTIxKEyaV34/xeFh9P3w/LbN9uSiZAybbTw92h
sE1kQpT//s8lTXOnn23YHycZ1Dsy0JSExoJutCt6E5YnTb0wtPQ6ZLoWmyWMnTL/
6Gyj7LTy+trv4l0N2ND+LF7BfN6Cb4eSXMfLLhwo2qfQI2kD/gBrbrTYYdyiVvHD
YnZftvVViOcQVaocXP1SeQ5/yhdj6ASrCiFWie7nJW9Z3IJ9BJuXCxk3gSW5yCde
Rw37+FpVSciyhpEK9f4aVGfAGA8ifO1Gi5yp70ioF8Y3i1CvS238g0knx6v6p8Vm
dAi3i1ga
=C0jb
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-6.1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 6.1, take #2
- Fix a bug preventing restoring an ITS containing mappings
for very large and very sparse device topology
- Work around a relocation handling error when compiling
the nVHE object with profile optimisation
- Fix for stage-2 invalidation holding the VM MMU lock
for too long by limiting the walk to the largest
block mapping size
- Enable stack protection and branch profiling for VHE
- Two selftest fixes
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmNIEAUPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDIXcP/AyWlCEJlmc1Jcd9rlaW1Wenr82U+StLVeMy
qP5P02gMWdbGExWIWEi4zkt+pAm7K2WRgXid9z5Vjw7kZY/+WwswTzKHWcQhVuZv
cBHfeOqgtoHVGR8NcwX6xcp406y3WRqYIsyAmbc5qmo75L8Ew1o3m+3eDfFtAq7l
3XuTCv+lQGNSGMhXHN2SVewZ+pCAo3XJmuHfCBXTqRjwqH4Tzh+54IKzo+9mqBWW
7yeIm5qcbIKGuXLuLL7XCf99gWy/3kQ0xQ1yJeXLAyiHswHqEISZXGHnKeATvD+6
RdbmQ9oRmIYfZfoDKZRUJg8TyTvW1rIKokFbe0q2iyuDnI5D/fAJ48epZaLw+kEf
PUzdB3UgPk19SLwgZKQddqY4wOD420ZD5x1TUFUQuLL7sjVv1vUILDvuCLWpq7F7
GyfSB+LEMgexHGsZ1wjslN/ivTbG+dQgaSS9mlV8/WDOLPtD2uOf65vYR3P28hAX
zOHrwm3e2+UV83BsEFEY2FQiiIBD24JmSecMbmAIHY09MCSZ+vJ/WbF4J1PcPP8C
3vjueIYTcjhzLtQrfIkGZcS7+wC9ji/RRmpJjbg79EpwrjhEs9G8h1+HyL9+zBZ4
Xn6X+ZG/cv0/ZYdin0ZRzJMvM0RutbsR77blVCLY97PBuLtBlqJDcxr+lmmjyIZ2
Db8Qd6uW
=IOxM
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-6.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 6.1, take #1
- Fix for stage-2 invalidation holding the VM MMU lock
for too long by limiting the walk to the largest
block mapping size
- Enable stack protection and branch profiling for VHE
- Two selftest fixes
Kernel build with clang and KCFLAGS=-fprofile-sample-use=<profile> fails with:
error: arch/arm64/kvm/hyp/nvhe/kvm_nvhe.tmp.o: Unexpected SHT_REL
section ".rel.llvm.call-graph-profile"
Starting from 13.0.0 llvm can generate SHT_REL section, see
https://reviews.llvm.org/rGca3bdb57fa1ac98b711a735de048c12b5fdd8086.
gen-hyprel does not support SHT_REL relocation section.
Filter out profile use flags to fix the build with profile optimization.
Signed-off-by: Denis Nikitin <denik@chromium.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221014184532.3153551-1-denik@chromium.org
* Fixes for single-stepping in the presence of an async
exception as well as the preservation of PSTATE.SS
* Better handling of AArch32 ID registers on AArch64-only
systems
* Fixes for the dirty-ring API, allowing it to work on
architectures with relaxed memory ordering
* Advertise the new kvmarm mailing list
* Various minor cleanups and spelling fixes
RISC-V:
* Improved instruction encoding infrastructure for
instructions not yet supported by binutils
* Svinval support for both KVM Host and KVM Guest
* Zihintpause support for KVM Guest
* Zicbom support for KVM Guest
* Record number of signal exits as a VCPU stat
* Use generic guest entry infrastructure
x86:
* Misc PMU fixes and cleanups.
* selftests: fixes for Hyper-V hypercall
* selftests: fix nx_huge_pages_test on TDP-disabled hosts
* selftests: cleanups for fix_hypercall_test
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmM7OcMUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPAFgf/Rqc9hrXZVdbh2OZ+gScSsFsPK1zO
DISUksLcXaYVYYsvQAEg/N2BPz3XbmO4jA+z8bIUrYTA7fC98we2C4jfR+EaX/fO
+/Kzf0lAgu/nQZyFzUya+1jRsZqvVbC/HmDCI2kzN4u78e/LZ7NVcMijdV/ly6ib
cq0b0LLqJHe/fcpJ806JZP3p5sndQhDmlUkZ2AWZf6CUKSEFcufbbYkt+84ZK4PL
N9mEqXYQ3DXClLQmIBv+NZhtGlmADkWDE4BNouw8dVxhaXH7Hw/jfBHdb6SSHMRe
tQ6Src1j8AYOhf5J35SMudgkbGcMelm0yeZ7Sizk+5Ft0EmdbZsnkvsGdQ==
=4RA+
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull more kvm updates from Paolo Bonzini:
"The main batch of ARM + RISC-V changes, and a few fixes and cleanups
for x86 (PMU virtualization and selftests).
ARM:
- Fixes for single-stepping in the presence of an async exception as
well as the preservation of PSTATE.SS
- Better handling of AArch32 ID registers on AArch64-only systems
- Fixes for the dirty-ring API, allowing it to work on architectures
with relaxed memory ordering
- Advertise the new kvmarm mailing list
- Various minor cleanups and spelling fixes
RISC-V:
- Improved instruction encoding infrastructure for instructions not
yet supported by binutils
- Svinval support for both KVM Host and KVM Guest
- Zihintpause support for KVM Guest
- Zicbom support for KVM Guest
- Record number of signal exits as a VCPU stat
- Use generic guest entry infrastructure
x86:
- Misc PMU fixes and cleanups.
- selftests: fixes for Hyper-V hypercall
- selftests: fix nx_huge_pages_test on TDP-disabled hosts
- selftests: cleanups for fix_hypercall_test"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (57 commits)
riscv: select HAVE_POSIX_CPU_TIMERS_TASK_WORK
RISC-V: KVM: Use generic guest entry infrastructure
RISC-V: KVM: Record number of signal exits as a vCPU stat
RISC-V: KVM: add __init annotation to riscv_kvm_init()
RISC-V: KVM: Expose Zicbom to the guest
RISC-V: KVM: Provide UAPI for Zicbom block size
RISC-V: KVM: Make ISA ext mappings explicit
RISC-V: KVM: Allow Guest use Zihintpause extension
RISC-V: KVM: Allow Guest use Svinval extension
RISC-V: KVM: Use Svinval for local TLB maintenance when available
RISC-V: Probe Svinval extension form ISA string
RISC-V: KVM: Change the SBI specification version to v1.0
riscv: KVM: Apply insn-def to hlv encodings
riscv: KVM: Apply insn-def to hfence encodings
riscv: Introduce support for defining instructions
riscv: Add X register names to gpr-nums
KVM: arm64: Advertise new kvmarm mailing list
kvm: vmx: keep constant definition format consistent
kvm: mmu: fix typos in struct kvm_arch
KVM: selftests: Fix nx_huge_pages_test on TDP-disabled hosts
...
For historical reasons, the VHE code inherited the build configuration from
nVHE. Now those two parts have their own folder and makefile, we can
enable stack protection and branch profiling for VHE.
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Reviewed-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221004154216.2833636-1-vdonnefort@google.com
* kvm-arm64/misc-6.1:
: .
: Misc KVM/arm64 fixes and improvement for v6.1
:
: - Simplify the affinity check when moving a GICv3 collection
:
: - Tone down the shouting when kvm-arm.mode=protected is passed
: to a guest
:
: - Fix various comments
:
: - Advertise the new kvmarm@lists.linux.dev and deprecate the
: old Columbia list
: .
KVM: arm64: Advertise new kvmarm mailing list
KVM: arm64: Fix comment typo in nvhe/switch.c
KVM: selftests: Update top-of-file comment in psci_test
KVM: arm64: Ignore kvm-arm.mode if !is_hyp_mode_available()
KVM: arm64: vgic: Remove duplicate check in update_affinity_collection()
Signed-off-by: Marc Zyngier <maz@kernel.org>
* for-next/alternatives:
: Alternatives (code patching) improvements
arm64: fix the build with binutils 2.27
arm64: avoid BUILD_BUG_ON() in alternative-macros
arm64: alternatives: add shared NOP callback
arm64: alternatives: add alternative_has_feature_*()
arm64: alternatives: have callbacks take a cap
arm64: alternatives: make alt_region const
arm64: alternatives: hoist print out of __apply_alternatives()
arm64: alternatives: proton-pack: prepare for cap changes
arm64: alternatives: kvm: prepare for cap changes
arm64: cpufeature: make cpus_have_cap() noinstr-safe
Fix the comment of __hyp_vgic_restore_state() from saying VEH to VHE,
also change the underscore to a dash to match the comment
above __hyp_vgic_save_state().
Signed-off-by: Wei-Lin Chang <r09922117@csie.ntu.edu.tw>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220929042839.24277-1-r09922117@csie.ntu.edu.tw
Today, callback alternatives are special-cased within
__apply_alternatives(), and are applied alongside patching for system
capabilities as ARM64_NCAPS is not part of the boot_capabilities feature
mask.
This special-casing is less than ideal. Giving special meaning to
ARM64_NCAPS for this requires some structures and loops to use
ARM64_NCAPS + 1 (AKA ARM64_NPATCHABLE), while others use ARM64_NCAPS.
It's also not immediately clear callback alternatives are only applied
when applying alternatives for system-wide features.
To make this a bit clearer, changes the way that callback alternatives
are identified to remove the special-casing of ARM64_NCAPS, and to allow
callback alternatives to be associated with a cpucap as with all other
alternatives.
New cpucaps, ARM64_ALWAYS_BOOT and ARM64_ALWAYS_SYSTEM are added which
are always detected alongside boot cpu capabilities and system
capabilities respectively. All existing callback alternatives are made
to use ARM64_ALWAYS_SYSTEM, and so will be patched at the same point
during the boot flow as before.
Subsequent patches will make more use of these new cpucaps.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-7-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64DFR0_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220910163354.860255-3-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The naming scheme the architecture uses for the fields in ID_AA64DFR0_EL1
does not align well with kernel conventions, using as it does a lot of
MixedCase in various arrangements. In preparation for automatically
generating the defines for this register rename the defines used to match
what is in the architecture.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220910163354.860255-2-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently unwind_next_frame_record() has an optional callback to convert
the address space of the FP. This is necessary for the NVHE unwinder,
which tracks the stacks in the hyp VA space, but accesses the frame
records in the kernel VA space.
This is a bit unfortunate since it clutters unwind_next_frame_record(),
which will get in the way of future rework.
Instead, this patch changes the NVHE unwinder to track the stacks in the
kernel's VA space and translate to FP prior to calling
unwind_next_frame_record(). This removes the need for the translate_fp()
callback, as all unwinders consistently track stacks in the native
address space of the unwinder.
At the same time, this patch consolidates the generation of the stack
addresses behind the stackinfo_get_*() helpers.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-10-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently we call an on_accessible_stack() callback for each step of the
unwinder, requiring redundant work to be performed in the core of the
unwind loop (e.g. disabling preemption around accesses to per-cpu
variables containing stack boundaries). To prevent unwind loops which go
through a stack multiple times, we have to track the set of unwound
stacks, requiring a stack_type enum which needs to cater for all the
stacks of all possible callees. To prevent loops within a stack, we must
track the prior FP values.
This patch reworks the unwinder to minimize the work in the core of the
unwinder, and to remove the need for the stack_type enum. The set of
accessible stacks (and their boundaries) are determined at the start of
the unwind, and the current stack is tracked during the unwind, with
completed stacks removed from the set of accessible stacks. This makes
the boundary checks more accurate (e.g. detecting overlapped frame
records), and removes the need for separate tracking of the prior FP and
visited stacks.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-9-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In subsequent patches we'll want to acquire the stack boundaries
ahead-of-time, and we'll need to be able to acquire the relevant
stack_info regardless of whether we have an object the happens to be on
the stack.
This patch replaces the on_XXX_stack() helpers with stackinfo_get_XXX()
helpers, with the caller being responsible for the checking whether an
object is on a relevant stack. For the moment this is moved into the
on_accessible_stack() functions, making these slightly larger;
subsequent patches will remove the on_accessible_stack() functions and
simplify the logic.
The on_irq_stack() and on_task_stack() helpers are kept as these are
used by IRQ entry sequences and stackleak respectively. As they're only
used as predicates, the stack_info pointer parameter is removed in both
cases.
As the on_accessible_stack() functions are always passed a non-NULL info
pointer, these now update info unconditionally. When updating the type
to STACK_TYPE_UNKNOWN, the low/high bounds are also modified, but as
these will not be consumed this should have no adverse affect.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-7-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The unwind_next_common() function unwinds a single frame record. There
are other unwind steps (e.g. unwinding through trampolines) which are
handled in the regular kernel unwinder, and in future there may be other
common unwind helpers.
Clarify the purpose of unwind_next_common() by renaming it to
unwind_next_frame_record(). At the same time, add commentary, and delete
the redundant comment at the top of asm/stacktrace/common.h.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently unwind_next_common() takes a pointer to a stack_info which is
only ever used within unwind_next_common().
Make it a local variable and simplify callers.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The architecture refers to the register field identifying advanced SIMD as
AdvSIMD but the kernel refers to it as ASIMD. Use the architecture's
naming. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-15-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We generally refer to the baseline feature implemented as _IMP so in
preparation for automatic generation of register defines update those for
ID_AA64PFR0_EL1 to reflect this.
In the case of ASIMD we don't actually use the define so just remove it.
No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-14-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The kernel refers to ID_AA64MMFR2_EL1.CnP as CNP. In preparation for
automatic generation of defines for the system registers bring the naming
used by the kernel in sync with that of DDI0487H.a. No functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-13-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In preparation for converting the ID_AA64MMFR1_EL1 system register
defines to automatic generation, rename them to follow the conventions
used by other automatically generated registers:
* Add _EL1 in the register name.
* Rename fields to match the names in the ARM ARM:
* LOR -> LO
* HPD -> HPDS
* VHE -> VH
* HADBS -> HAFDBS
* SPECSEI -> SpecSEI
* VMIDBITS -> VMIDBits
There should be no functional change as a result of this patch.
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-11-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For some reason we refer to ID_AA64MMFR0_EL1.ASIDBits as ASID. Add BITS
into the name, bringing the naming into sync with DDI0487H.a. Due to the
large amount of MixedCase in this register which isn't really consistent
with either the kernel style or the majority of the architecture the use of
upper case is preserved. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-10-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For some reason we refer to ID_AA64MMFR0_EL1.BigEnd as BIGENDEL. Remove the
EL from the name, bringing the naming into sync with DDI0487H.a. Due to the
large amount of MixedCase in this register which isn't really consistent
with either the kernel style or the majority of the architecture the use of
upper case is preserved. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-9-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Our standard is to include the _EL1 in the constant names for registers but
we did not do that for ID_AA64PFR1_EL1, update to do so in preparation for
conversion to automatic generation. No functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-8-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64PFR0_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-7-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64MMFR2_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-6-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64MMFR0_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-5-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
There are three independent sets of changes:
- Sai Prakash Ranjan adds tracing support to the asm-generic
version of the MMIO accessors, which is intended to help
understand problems with device drivers and has been part
of Qualcomm's vendor kernels for many years.
- A patch from Sebastian Siewior to rework the handling of
IRQ stacks in softirqs across architectures, which is
needed for enabling PREEMPT_RT.
- The last patch to remove the CONFIG_VIRT_TO_BUS option and
some of the code behind that, after the last users of this
old interface made it in through the netdev, scsi, media and
staging trees.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEo6/YBQwIrVS28WGKmmx57+YAGNkFAmLqPPEACgkQmmx57+YA
GNlUbQ/+NpIsiA0JUrCGtySt8KrLHdA2dH9lJOR5/iuxfphscPFfWtpcPvcXQWmt
a8u7wyI8SHW1ku4U0Y5sO0dBSldDnoIqJ5t4X5d7YNU9yVtEtucqQhZf+GkrPlVD
1HkRu05B7y0k2BMn7BLhSvkpafs3f1lNGXjs8oFBdOF1/zwp/GjcrfCK7KFzqjwU
dYrX0SOFlKFd4BZC75VfK+XcKg4LtwIOmJraRRl7alz2Q5Oop2hgjgZxXDPf//vn
SPOhXJN/97i1FUpY2TkfHVH1NxbPfjCV4pUnjmLG0Y4NSy9UQ/ZcXHcywIdeuhfa
0LySOIsAqBeccpYYYdg2ubiMDZOXkBfANu/sB9o/EhoHfB4svrbPRDhBIQZMFXJr
MJYu+IYce2rvydA/nydo4q++pxR8v1ES1ZIo8bDux+q1CI/zbpQV+f98kPVRA0M7
ajc+5GTIqNIsvHzzadq7eYxcj5Bi8Li2JA9sVkAQ+6iq1TVyeYayMc9eYwONlmqw
MD+PFYc651pKtXZCfkLXPIKSwS0uPqBndAibuVhpZ0hxWaCBBdKvY9mrWcPxt0kA
tMR8lrosbbrV2K48BFdWTOHvCs2FhHQxPGVPZ/iWuxTA0hHZ9tUlaEkSX+VM57IU
KCYQLdWzT8J9vrgqSbgYKlb6pSPz6FIjTfut6NZMmshIbavHV/Q=
=aTR0
-----END PGP SIGNATURE-----
Merge tag 'asm-generic-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull asm-generic updates from Arnd Bergmann:
"There are three independent sets of changes:
- Sai Prakash Ranjan adds tracing support to the asm-generic version
of the MMIO accessors, which is intended to help understand
problems with device drivers and has been part of Qualcomm's vendor
kernels for many years
- A patch from Sebastian Siewior to rework the handling of IRQ stacks
in softirqs across architectures, which is needed for enabling
PREEMPT_RT
- The last patch to remove the CONFIG_VIRT_TO_BUS option and some of
the code behind that, after the last users of this old interface
made it in through the netdev, scsi, media and staging trees"
* tag 'asm-generic-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
uapi: asm-generic: fcntl: Fix typo 'the the' in comment
arch/*/: remove CONFIG_VIRT_TO_BUS
soc: qcom: geni: Disable MMIO tracing for GENI SE
serial: qcom_geni_serial: Disable MMIO tracing for geni serial
asm-generic/io: Add logging support for MMIO accessors
KVM: arm64: Add a flag to disable MMIO trace for nVHE KVM
lib: Add register read/write tracing support
drm/meson: Fix overflow implicit truncation warnings
irqchip/tegra: Fix overflow implicit truncation warnings
coresight: etm4x: Use asm-generic IO memory barriers
arm64: io: Use asm-generic high level MMIO accessors
arch/*: Disable softirq stacks on PREEMPT_RT.
* Unwinder implementations for both nVHE modes (classic and
protected), complete with an overflow stack
* Rework of the sysreg access from userspace, with a complete
rewrite of the vgic-v3 view to allign with the rest of the
infrastructure
* Disagregation of the vcpu flags in separate sets to better track
their use model.
* A fix for the GICv2-on-v3 selftest
* A small set of cosmetic fixes
RISC-V:
* Track ISA extensions used by Guest using bitmap
* Added system instruction emulation framework
* Added CSR emulation framework
* Added gfp_custom flag in struct kvm_mmu_memory_cache
* Added G-stage ioremap() and iounmap() functions
* Added support for Svpbmt inside Guest
s390:
* add an interface to provide a hypervisor dump for secure guests
* improve selftests to use TAP interface
* enable interpretive execution of zPCI instructions (for PCI passthrough)
* First part of deferred teardown
* CPU Topology
* PV attestation
* Minor fixes
x86:
* Permit guests to ignore single-bit ECC errors
* Intel IPI virtualization
* Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS
* PEBS virtualization
* Simplify PMU emulation by just using PERF_TYPE_RAW events
* More accurate event reinjection on SVM (avoid retrying instructions)
* Allow getting/setting the state of the speaker port data bit
* Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent
* "Notify" VM exit (detect microarchitectural hangs) for Intel
* Use try_cmpxchg64 instead of cmpxchg64
* Ignore benign host accesses to PMU MSRs when PMU is disabled
* Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
* Allow NX huge page mitigation to be disabled on a per-vm basis
* Port eager page splitting to shadow MMU as well
* Enable CMCI capability by default and handle injected UCNA errors
* Expose pid of vcpu threads in debugfs
* x2AVIC support for AMD
* cleanup PIO emulation
* Fixes for LLDT/LTR emulation
* Don't require refcounted "struct page" to create huge SPTEs
* Miscellaneous cleanups:
** MCE MSR emulation
** Use separate namespaces for guest PTEs and shadow PTEs bitmasks
** PIO emulation
** Reorganize rmap API, mostly around rmap destruction
** Do not workaround very old KVM bugs for L0 that runs with nesting enabled
** new selftests API for CPUID
Generic:
* Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache
* new selftests API using struct kvm_vcpu instead of a (vm, id) tuple
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmLnyo4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMtQQf/XjVWiRcWLPR9dqzRM/vvRXpiG+UL
jU93R7m6ma99aqTtrxV/AE+kHgamBlma3Cwo+AcWk9uCVNbIhFjv2YKg6HptKU0e
oJT3zRYp+XIjEo7Kfw+TwroZbTlG6gN83l1oBLFMqiFmHsMLnXSI2mm8MXyi3dNB
vR2uIcTAl58KIprqNNsYJ2dNn74ogOMiXYx9XzoA9/5Xb6c0h4rreHJa5t+0s9RO
Gz7Io3PxumgsbJngjyL1Ve5oxhlIAcZA8DU0PQmjxo3eS+k6BcmavGFd45gNL5zg
iLpCh4k86spmzh8CWkAAwWPQE4dZknK6jTctJc0OFVad3Z7+X7n0E8TFrA==
=PM8o
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"Quite a large pull request due to a selftest API overhaul and some
patches that had come in too late for 5.19.
ARM:
- Unwinder implementations for both nVHE modes (classic and
protected), complete with an overflow stack
- Rework of the sysreg access from userspace, with a complete rewrite
of the vgic-v3 view to allign with the rest of the infrastructure
- Disagregation of the vcpu flags in separate sets to better track
their use model.
- A fix for the GICv2-on-v3 selftest
- A small set of cosmetic fixes
RISC-V:
- Track ISA extensions used by Guest using bitmap
- Added system instruction emulation framework
- Added CSR emulation framework
- Added gfp_custom flag in struct kvm_mmu_memory_cache
- Added G-stage ioremap() and iounmap() functions
- Added support for Svpbmt inside Guest
s390:
- add an interface to provide a hypervisor dump for secure guests
- improve selftests to use TAP interface
- enable interpretive execution of zPCI instructions (for PCI
passthrough)
- First part of deferred teardown
- CPU Topology
- PV attestation
- Minor fixes
x86:
- Permit guests to ignore single-bit ECC errors
- Intel IPI virtualization
- Allow getting/setting pending triple fault with
KVM_GET/SET_VCPU_EVENTS
- PEBS virtualization
- Simplify PMU emulation by just using PERF_TYPE_RAW events
- More accurate event reinjection on SVM (avoid retrying
instructions)
- Allow getting/setting the state of the speaker port data bit
- Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls
are inconsistent
- "Notify" VM exit (detect microarchitectural hangs) for Intel
- Use try_cmpxchg64 instead of cmpxchg64
- Ignore benign host accesses to PMU MSRs when PMU is disabled
- Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
- Allow NX huge page mitigation to be disabled on a per-vm basis
- Port eager page splitting to shadow MMU as well
- Enable CMCI capability by default and handle injected UCNA errors
- Expose pid of vcpu threads in debugfs
- x2AVIC support for AMD
- cleanup PIO emulation
- Fixes for LLDT/LTR emulation
- Don't require refcounted "struct page" to create huge SPTEs
- Miscellaneous cleanups:
- MCE MSR emulation
- Use separate namespaces for guest PTEs and shadow PTEs bitmasks
- PIO emulation
- Reorganize rmap API, mostly around rmap destruction
- Do not workaround very old KVM bugs for L0 that runs with nesting enabled
- new selftests API for CPUID
Generic:
- Fix races in gfn->pfn cache refresh; do not pin pages tracked by
the cache
- new selftests API using struct kvm_vcpu instead of a (vm, id)
tuple"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (606 commits)
selftests: kvm: set rax before vmcall
selftests: KVM: Add exponent check for boolean stats
selftests: KVM: Provide descriptive assertions in kvm_binary_stats_test
selftests: KVM: Check stat name before other fields
KVM: x86/mmu: remove unused variable
RISC-V: KVM: Add support for Svpbmt inside Guest/VM
RISC-V: KVM: Use PAGE_KERNEL_IO in kvm_riscv_gstage_ioremap()
RISC-V: KVM: Add G-stage ioremap() and iounmap() functions
KVM: Add gfp_custom flag in struct kvm_mmu_memory_cache
RISC-V: KVM: Add extensible CSR emulation framework
RISC-V: KVM: Add extensible system instruction emulation framework
RISC-V: KVM: Factor-out instruction emulation into separate sources
RISC-V: KVM: move preempt_disable() call in kvm_arch_vcpu_ioctl_run
RISC-V: KVM: Make kvm_riscv_guest_timer_init a void function
RISC-V: KVM: Fix variable spelling mistake
RISC-V: KVM: Improve ISA extension by using a bitmap
KVM, x86/mmu: Fix the comment around kvm_tdp_mmu_zap_leafs()
KVM: SVM: Dump Virtual Machine Save Area (VMSA) to klog
KVM: x86/mmu: Treat NX as a valid SPTE bit for NPT
KVM: x86: Do not block APIC write for non ICR registers
...
* kvm-arm64/nvhe-stacktrace: (27 commits)
: .
: Add an overflow stack to the nVHE EL2 code, allowing
: the implementation of an unwinder, courtesy of
: Kalesh Singh. From the cover letter (slightly edited):
:
: "nVHE has two modes of operation: protected (pKVM) and unprotected
: (conventional nVHE). Depending on the mode, a slightly different approach
: is used to dump the hypervisor stacktrace but the core unwinding logic
: remains the same.
:
: * Protected nVHE (pKVM) stacktraces:
:
: In protected nVHE mode, the host cannot directly access hypervisor memory.
:
: The hypervisor stack unwinding happens in EL2 and is made accessible to
: the host via a shared buffer. Symbolizing and printing the stacktrace
: addresses is delegated to the host and happens in EL1.
:
: * Non-protected (Conventional) nVHE stacktraces:
:
: In non-protected mode, the host is able to directly access the hypervisor
: stack pages.
:
: The hypervisor stack unwinding and dumping of the stacktrace is performed
: by the host in EL1, as this avoids the memory overhead of setting up
: shared buffers between the host and hypervisor."
:
: Additional patches from Oliver Upton and Marc Zyngier, tidying up
: the initial series.
: .
arm64: Update 'unwinder howto'
KVM: arm64: Don't open code ARRAY_SIZE()
KVM: arm64: Move nVHE-only helpers into kvm/stacktrace.c
KVM: arm64: Make unwind()/on_accessible_stack() per-unwinder functions
KVM: arm64: Move nVHE stacktrace unwinding into its own compilation unit
KVM: arm64: Move PROTECTED_NVHE_STACKTRACE around
KVM: arm64: Introduce pkvm_dump_backtrace()
KVM: arm64: Implement protected nVHE hyp stack unwinder
KVM: arm64: Save protected-nVHE (pKVM) hyp stacktrace
KVM: arm64: Stub implementation of pKVM HYP stack unwinder
KVM: arm64: Allocate shared pKVM hyp stacktrace buffers
KVM: arm64: Add PROTECTED_NVHE_STACKTRACE Kconfig
KVM: arm64: Introduce hyp_dump_backtrace()
KVM: arm64: Implement non-protected nVHE hyp stack unwinder
KVM: arm64: Prepare non-protected nVHE hypervisor stacktrace
KVM: arm64: Stub implementation of non-protected nVHE HYP stack unwinder
KVM: arm64: On stack overflow switch to hyp overflow_stack
arm64: stacktrace: Add description of stacktrace/common.h
arm64: stacktrace: Factor out common unwind()
arm64: stacktrace: Handle frame pointer from different address spaces
...
Signed-off-by: Marc Zyngier <maz@kernel.org>
Use ARRAY_SIZE() instead of an open-coded version.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Tested-by: Kalesh Singh <kaleshsingh@google.com>
Link: https://lore.kernel.org/r/20220727142906.1856759-6-maz@kernel.org
Having multiple versions of on_accessible_stack() (one per unwinder)
makes it very hard to reason about what is used where due to the
complexity of the various includes, the forward declarations, and
the reliance on everything being 'inline'.
Instead, move the code back where it should be. Each unwinder
implements:
- on_accessible_stack() as well as the helpers it depends on,
- unwind()/unwind_next(), as they pass on_accessible_stack as
a parameter to unwind_next_common() (which is the only common
code here)
This hardly results in any duplication, and makes it much
easier to reason about the code.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Tested-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20220727142906.1856759-4-maz@kernel.org
In protected nVHE mode, the host cannot access private owned hypervisor
memory. Also the hypervisor aims to remains simple to reduce the attack
surface and does not provide any printk support.
For the above reasons, the approach taken to provide hypervisor stacktraces
in protected mode is:
1) Unwind and save the hyp stack addresses in EL2 to a shared buffer
with the host (done in this patch).
2) Delegate the dumping and symbolization of the addresses to the
host in EL1 (later patch in the series).
On hyp_panic(), the hypervisor prepares the stacktrace before returning to
the host.
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220726073750.3219117-16-kaleshsingh@google.com
In protected nVHE mode the host cannot directly access
hypervisor memory, so we will dump the hypervisor stacktrace
to a shared buffer with the host.
The minimum size for the buffer required, assuming the min frame
size of [x29, x30] (2 * sizeof(long)), is half the combined size of
the hypervisor and overflow stacks plus an additional entry to
delimit the end of the stacktrace.
The stacktrace buffers are used later in the series to dump the
nVHE hypervisor stacktrace when using protected-mode.
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220726073750.3219117-14-kaleshsingh@google.com
In non-protected nVHE mode (non-pKVM) the host can directly access
hypervisor memory; and unwinding of the hypervisor stacktrace is
done from EL1 to save on memory for shared buffers.
To unwind the hypervisor stack from EL1 the host needs to know the
starting point for the unwind and information that will allow it to
translate hypervisor stack addresses to the corresponding kernel
addresses. This patch sets up this book keeping. It is made use of
later in the series.
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220726073750.3219117-10-kaleshsingh@google.com
On hyp stack overflow switch to 16-byte aligned secondary stack.
This provides us stack space to better handle overflows; and is
used in a subsequent patch to dump the hypervisor stacktrace.
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220726073750.3219117-8-kaleshsingh@google.com
Although harmless, the return statement in kvm_unexpected_el2_exception
is rather confusing as the function itself has a void return type. The
C standard is also pretty clear that "A return statement with an
expression shall not appear in a function whose return type is void".
Given that this return statement does not seem to add any actual value,
let's not pointlessly violate the standard.
Build-tested with GCC 10 and CLANG 13 for good measure, the disassembled
code is identical with or without the return statement.
Fixes: e9ee186bb7 ("KVM: arm64: Add kvm_extable for vaxorcism code")
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220705142310.3847918-1-qperret@google.com
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64ISAR2_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220704170302.2609529-17-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64ISAR1_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220704170302.2609529-16-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
This Makefile appends several objects to obj-y from line 15, but none
of them is linked to vmlinux in an ordinary way.
obj-y is overwritten at line 30:
obj-y := kvm_nvhe.o
So, kvm_nvhe.o is the only object directly linked to vmlinux.
Replace the abused obj-y with hyp-obj-y.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220613092026.1705630-1-masahiroy@kernel.org
* kvm-arm64/burn-the-flags:
: .
: Rework the per-vcpu flags to make them more manageable,
: splitting them in different sets that have specific
: uses:
:
: - configuration flags
: - input to the world-switch
: - state bookkeeping for the kernel itself
:
: The FP tracking is also simplified and tracked outside
: of the flags as a separate state.
: .
KVM: arm64: Move the handling of !FP outside of the fast path
KVM: arm64: Document why pause cannot be turned into a flag
KVM: arm64: Reduce the size of the vcpu flag members
KVM: arm64: Add build-time sanity checks for flags
KVM: arm64: Warn when PENDING_EXCEPTION and INCREMENT_PC are set together
KVM: arm64: Convert vcpu sysregs_loaded_on_cpu to a state flag
KVM: arm64: Kill unused vcpu flags field
KVM: arm64: Move vcpu WFIT flag to the state flag set
KVM: arm64: Move vcpu ON_UNSUPPORTED_CPU flag to the state flag set
KVM: arm64: Move vcpu SVE/SME flags to the state flag set
KVM: arm64: Move vcpu debug/SPE/TRBE flags to the input flag set
KVM: arm64: Move vcpu PC/Exception flags to the input flag set
KVM: arm64: Move vcpu configuration flags into their own set
KVM: arm64: Add three sets of flags to the vcpu state
KVM: arm64: Add helpers to manipulate vcpu flags among a set
KVM: arm64: Move FP state ownership from flag to a tristate
KVM: arm64: Drop FP_FOREIGN_STATE from the hypervisor code
Signed-off-by: Marc Zyngier <maz@kernel.org>
The aptly named boolean 'sysregs_loaded_on_cpu' tracks whether
some of the vcpu system registers are resident on the physical
CPU when running in VHE mode.
This is obviously a flag in hidding, so let's convert it to
a state flag, since this is solely a host concern (the hypervisor
itself always knows which state we're in).
Reviewed-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
The three debug flags (which deal with the debug registers, SPE and
TRBE) all are input flags to the hypervisor code.
Move them into the input set and convert them to the new accessors.
Reviewed-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Add a generic flag (__DISABLE_TRACE_MMIO__) to disable MMIO
tracing in nVHE KVM as the tracepoint and MMIO logging symbols
should not be visible at nVHE KVM as there is no way to execute
them. It can also be used to disable MMIO tracing for specific
drivers.
Signed-off-by: Sai Prakash Ranjan <quic_saipraka@quicinc.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
The PC update flags (which also deal with exception injection)
is one of the most complicated use of the flag we have. Make it
more fool prof by:
- moving it over to the new accessors and assign it to the
input flag set
- turn the combination of generic ELx flags with another flag
indicating the target EL itself into an explicit set of
flags for each EL and vector combination
- add a new accessor to pend the exception
This is otherwise a pretty straightformward conversion.
Reviewed-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
host_stage2_try() asserts that the KVM host lock is held, so there's no
need to duplicate the assertion in its wrappers.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220609121223.2551-6-will@kernel.org
A protected VM accessing ID_AA64ISAR2_EL1 gets punished with an UNDEF,
while it really should only get a zero back if the register is not
handled by the hypervisor emulation (as mandated by the architecture).
Introduce all the missing ID registers (including the unallocated ones),
and have them to return 0.
Reported-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220609121223.2551-3-will@kernel.org
The KVM FP code uses a pair of flags to denote three states:
- FP_ENABLED set: the guest owns the FP state
- FP_HOST set: the host owns the FP state
- FP_ENABLED and FP_HOST clear: nobody owns the FP state at all
and both flags set is an illegal state, which nothing ever checks
for...
As it turns out, this isn't really a good match for flags, and
we'd be better off if this was a simpler tristate, each state
having a name that actually reflect the state:
- FP_STATE_FREE
- FP_STATE_HOST_OWNED
- FP_STATE_GUEST_OWNED
Kill the two flags, and move over to an enum encoding these
three states. This results in less confusing code, and less risk of
ending up in the uncharted territory of a 4th state if we forget
to clear one of the two flags.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
The vcpu KVM_ARM64_FP_FOREIGN_FPSTATE flag tracks the thread's own
TIF_FOREIGN_FPSTATE so that we can evaluate just before running
the vcpu whether it the FP regs contain something that is owned
by the vcpu or not by updating the rest of the FP flags.
We do this in the hypervisor code in order to make sure we're
in a context where we are not interruptible. But we already
have a hook in the run loop to generate this flag. We may as
well update the FP flags directly and save the pointless flag
tracking.
Whilst we're at it, rename update_fp_enabled() to guest_owns_fp_regs()
to indicate what the leftover of this helper actually do.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
* ultravisor communication device driver
* fix TEID on terminating storage key ops
RISC-V:
* Added Sv57x4 support for G-stage page table
* Added range based local HFENCE functions
* Added remote HFENCE functions based on VCPU requests
* Added ISA extension registers in ONE_REG interface
* Updated KVM RISC-V maintainers entry to cover selftests support
ARM:
* Add support for the ARMv8.6 WFxT extension
* Guard pages for the EL2 stacks
* Trap and emulate AArch32 ID registers to hide unsupported features
* Ability to select and save/restore the set of hypercalls exposed
to the guest
* Support for PSCI-initiated suspend in collaboration with userspace
* GICv3 register-based LPI invalidation support
* Move host PMU event merging into the vcpu data structure
* GICv3 ITS save/restore fixes
* The usual set of small-scale cleanups and fixes
x86:
* New ioctls to get/set TSC frequency for a whole VM
* Allow userspace to opt out of hypercall patching
* Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
AMD SEV improvements:
* Add KVM_EXIT_SHUTDOWN metadata for SEV-ES
* V_TSC_AUX support
Nested virtualization improvements for AMD:
* Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
nested vGIF)
* Allow AVIC to co-exist with a nested guest running
* Fixes for LBR virtualizations when a nested guest is running,
and nested LBR virtualization support
* PAUSE filtering for nested hypervisors
Guest support:
* Decoupling of vcpu_is_preempted from PV spinlocks
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmKN9M4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNLeAf+KizAlQwxEehHHeNyTkZuKyMawrD6
zsqAENR6i1TxiXe7fDfPFbO2NR0ZulQopHbD9mwnHJ+nNw0J4UT7g3ii1IAVcXPu
rQNRGMVWiu54jt+lep8/gDg0JvPGKVVKLhxUaU1kdWT9PhIOC6lwpP3vmeWkUfRi
PFL/TMT0M8Nfryi0zHB0tXeqg41BiXfqO8wMySfBAHUbpv8D53D2eXQL6YlMM0pL
2quB1HxHnpueE5vj3WEPQ3PCdy1M2MTfCDBJAbZGG78Ljx45FxSGoQcmiBpPnhJr
C6UGP4ZDWpml5YULUoA70k5ylCbP+vI61U4vUtzEiOjHugpPV5wFKtx5nw==
=ozWx
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"S390:
- ultravisor communication device driver
- fix TEID on terminating storage key ops
RISC-V:
- Added Sv57x4 support for G-stage page table
- Added range based local HFENCE functions
- Added remote HFENCE functions based on VCPU requests
- Added ISA extension registers in ONE_REG interface
- Updated KVM RISC-V maintainers entry to cover selftests support
ARM:
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed to
the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
x86:
- New ioctls to get/set TSC frequency for a whole VM
- Allow userspace to opt out of hypercall patching
- Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
AMD SEV improvements:
- Add KVM_EXIT_SHUTDOWN metadata for SEV-ES
- V_TSC_AUX support
Nested virtualization improvements for AMD:
- Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
nested vGIF)
- Allow AVIC to co-exist with a nested guest running
- Fixes for LBR virtualizations when a nested guest is running, and
nested LBR virtualization support
- PAUSE filtering for nested hypervisors
Guest support:
- Decoupling of vcpu_is_preempted from PV spinlocks"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (199 commits)
KVM: x86: Fix the intel_pt PMI handling wrongly considered from guest
KVM: selftests: x86: Sync the new name of the test case to .gitignore
Documentation: kvm: reorder ARM-specific section about KVM_SYSTEM_EVENT_SUSPEND
x86, kvm: use correct GFP flags for preemption disabled
KVM: LAPIC: Drop pending LAPIC timer injection when canceling the timer
x86/kvm: Alloc dummy async #PF token outside of raw spinlock
KVM: x86: avoid calling x86 emulator without a decoded instruction
KVM: SVM: Use kzalloc for sev ioctl interfaces to prevent kernel data leak
x86/fpu: KVM: Set the base guest FPU uABI size to sizeof(struct kvm_xsave)
s390/uv_uapi: depend on CONFIG_S390
KVM: selftests: x86: Fix test failure on arch lbr capable platforms
KVM: LAPIC: Trace LAPIC timer expiration on every vmentry
KVM: s390: selftest: Test suppression indication on key prot exception
KVM: s390: Don't indicate suppression on dirtying, failing memop
selftests: drivers/s390x: Add uvdevice tests
drivers/s390/char: Add Ultravisor io device
MAINTAINERS: Update KVM RISC-V entry to cover selftests support
RISC-V: KVM: Introduce ISA extension register
RISC-V: KVM: Cleanup stale TLB entries when host CPU changes
RISC-V: KVM: Add remote HFENCE functions based on VCPU requests
...
- Initial support for the ARMv9 Scalable Matrix Extension (SME). SME
takes the approach used for vectors in SVE and extends this to provide
architectural support for matrix operations. No KVM support yet, SME
is disabled in guests.
- Support for crashkernel reservations above ZONE_DMA via the
'crashkernel=X,high' command line option.
- btrfs search_ioctl() fix for live-lock with sub-page faults.
- arm64 perf updates: support for the Hisilicon "CPA" PMU for monitoring
coherent I/O traffic, support for Arm's CMN-650 and CMN-700
interconnect PMUs, minor driver fixes, kerneldoc cleanup.
- Kselftest updates for SME, BTI, MTE.
- Automatic generation of the system register macros from a 'sysreg'
file describing the register bitfields.
- Update the type of the function argument holding the ESR_ELx register
value to unsigned long to match the architecture register size
(originally 32-bit but extended since ARMv8.0).
- stacktrace cleanups.
- ftrace cleanups.
- Miscellaneous updates, most notably: arm64-specific huge_ptep_get(),
avoid executable mappings in kexec/hibernate code, drop TLB flushing
from get_clear_flush() (and rename it to get_clear_contig()),
ARCH_NR_GPIO bumped to 2048 for ARCH_APPLE.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmKH19IACgkQa9axLQDI
XvEFWg//bf0p6zjeNaOJmBbyVFsXsVyYiEaLUpFPUs3oB+81s2YZ+9i1rgMrNCft
EIDQ9+/HgScKxJxnzWf68heMdcBDbk76VJtLALExbge6owFsjByQDyfb/b3v/bLd
ezAcGzc6G5/FlI1IP7ct4Z9MnQry4v5AG8lMNAHjnf6GlBS/tYNAqpmj8HpQfgRQ
ZbhfZ8Ayu3TRSLWL39NHVevpmxQm/bGcpP3Q9TtjUqg0r1FQ5sK/LCqOksueIAzT
UOgUVYWSFwTpLEqbYitVqgERQp9LiLoK5RmNYCIEydfGM7+qmgoxofSq5e2hQtH2
SZM1XilzsZctRbBbhMit1qDBqMlr/XAy/R5FO0GauETVKTaBhgtj6mZGyeC9nU/+
RGDljaArbrOzRwMtSuXF+Fp6uVo5spyRn1m8UT/k19lUTdrV9z6EX5Fzuc4Mnhed
oz4iokbl/n8pDObXKauQspPA46QpxUYhrAs10B/ELc3yyp/Qj3jOfzYHKDNFCUOq
HC9mU+YiO9g2TbYgCrrFM6Dah2E8fU6/cR0ZPMeMgWK4tKa+6JMEINYEwak9e7M+
8lZnvu3ntxiJLN+PrPkiPyG+XBh2sux1UfvNQ+nw4Oi9xaydeX7PCbQVWmzTFmHD
q7UPQ8220e2JNCha9pULS8cxDLxiSksce06DQrGXwnHc1Ir7T04=
=0DjE
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- Initial support for the ARMv9 Scalable Matrix Extension (SME).
SME takes the approach used for vectors in SVE and extends this to
provide architectural support for matrix operations. No KVM support
yet, SME is disabled in guests.
- Support for crashkernel reservations above ZONE_DMA via the
'crashkernel=X,high' command line option.
- btrfs search_ioctl() fix for live-lock with sub-page faults.
- arm64 perf updates: support for the Hisilicon "CPA" PMU for
monitoring coherent I/O traffic, support for Arm's CMN-650 and
CMN-700 interconnect PMUs, minor driver fixes, kerneldoc cleanup.
- Kselftest updates for SME, BTI, MTE.
- Automatic generation of the system register macros from a 'sysreg'
file describing the register bitfields.
- Update the type of the function argument holding the ESR_ELx register
value to unsigned long to match the architecture register size
(originally 32-bit but extended since ARMv8.0).
- stacktrace cleanups.
- ftrace cleanups.
- Miscellaneous updates, most notably: arm64-specific huge_ptep_get(),
avoid executable mappings in kexec/hibernate code, drop TLB flushing
from get_clear_flush() (and rename it to get_clear_contig()),
ARCH_NR_GPIO bumped to 2048 for ARCH_APPLE.
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (145 commits)
arm64/sysreg: Generate definitions for FAR_ELx
arm64/sysreg: Generate definitions for DACR32_EL2
arm64/sysreg: Generate definitions for CSSELR_EL1
arm64/sysreg: Generate definitions for CPACR_ELx
arm64/sysreg: Generate definitions for CONTEXTIDR_ELx
arm64/sysreg: Generate definitions for CLIDR_EL1
arm64/sve: Move sve_free() into SVE code section
arm64: Kconfig.platforms: Add comments
arm64: Kconfig: Fix indentation and add comments
arm64: mm: avoid writable executable mappings in kexec/hibernate code
arm64: lds: move special code sections out of kernel exec segment
arm64/hugetlb: Implement arm64 specific huge_ptep_get()
arm64/hugetlb: Use ptep_get() to get the pte value of a huge page
arm64: kdump: Do not allocate crash low memory if not needed
arm64/sve: Generate ZCR definitions
arm64/sme: Generate defintions for SVCR
arm64/sme: Generate SMPRI_EL1 definitions
arm64/sme: Automatically generate SMPRIMAP_EL2 definitions
arm64/sme: Automatically generate SMIDR_EL1 defines
arm64/sme: Automatically generate defines for SMCR
...
* for-next/esr-elx-64-bit:
: Treat ESR_ELx as a 64-bit register.
KVM: arm64: uapi: Add kvm_debug_exit_arch.hsr_high
KVM: arm64: Treat ESR_EL2 as a 64-bit register
arm64: Treat ESR_ELx as a 64-bit register
arm64: compat: Do not treat syscall number as ESR_ELx for a bad syscall
arm64: Make ESR_ELx_xVC_IMM_MASK compatible with assembly
* for-next/sme: (29 commits)
: Scalable Matrix Extensions support.
arm64/sve: Make kernel FPU protection RT friendly
arm64/sve: Delay freeing memory in fpsimd_flush_thread()
arm64/sme: More sensibly define the size for the ZA register set
arm64/sme: Fix NULL check after kzalloc
arm64/sme: Add ID_AA64SMFR0_EL1 to __read_sysreg_by_encoding()
arm64/sme: Provide Kconfig for SME
KVM: arm64: Handle SME host state when running guests
KVM: arm64: Trap SME usage in guest
KVM: arm64: Hide SME system registers from guests
arm64/sme: Save and restore streaming mode over EFI runtime calls
arm64/sme: Disable streaming mode and ZA when flushing CPU state
arm64/sme: Add ptrace support for ZA
arm64/sme: Implement ptrace support for streaming mode SVE registers
arm64/sme: Implement ZA signal handling
arm64/sme: Implement streaming SVE signal handling
arm64/sme: Disable ZA and streaming mode when handling signals
arm64/sme: Implement traps and syscall handling for SME
arm64/sme: Implement ZA context switching
arm64/sme: Implement streaming SVE context switching
arm64/sme: Implement SVCR context switching
...
* kvm-arm64/misc-5.19:
: .
: Misc fixes and general improvements for KVMM/arm64:
:
: - Better handle out of sequence sysregs in the global tables
:
: - Remove a couple of unnecessary loads from constant pool
:
: - Drop unnecessary pKVM checks
:
: - Add all known M1 implementations to the SEIS workaround
:
: - Cleanup kerneldoc warnings
: .
KVM: arm64: vgic-v3: List M1 Pro/Max as requiring the SEIS workaround
KVM: arm64: pkvm: Don't mask already zeroed FEAT_SVE
KVM: arm64: pkvm: Drop unnecessary FP/SIMD trap handler
KVM: arm64: nvhe: Eliminate kernel-doc warnings
KVM: arm64: Avoid unnecessary absolute addressing via literals
KVM: arm64: Print emulated register table name when it is unsorted
KVM: arm64: Don't BUG_ON() if emulated register table is unsorted
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/per-vcpu-host-pmu-data:
: .
: Pass the host PMU state in the vcpu to avoid the use of additional
: shared memory between EL1 and EL2 (this obviously only applies
: to nVHE and Protected setups).
:
: Patches courtesy of Fuad Tabba.
: .
KVM: arm64: pmu: Restore compilation when HW_PERF_EVENTS isn't selected
KVM: arm64: Reenable pmu in Protected Mode
KVM: arm64: Pass pmu events to hyp via vcpu
KVM: arm64: Repack struct kvm_pmu to reduce size
KVM: arm64: Wrapper for getting pmu_events
Signed-off-by: Marc Zyngier <maz@kernel.org>
Moving kvm_pmu_events into the vcpu (and refering to it) broke the
somewhat unusual case where the kernel has no support for a PMU
at all.
In order to solve this, move things around a bit so that we can
easily avoid refering to the pmu structure outside of PMU-aware
code. As a bonus, pmu.c isn't compiled in when HW_PERF_EVENTS
isn't selected.
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/202205161814.KQHpOzsJ-lkp@intel.com
Instead of the host accessing hyp data directly, pass the pmu
events of the current cpu to hyp via the vcpu.
This adds 64 bits (in two fields) to the vcpu that need to be
synced before every vcpu run in nvhe and protected modes.
However, it isolates the hypervisor from the host, which allows
us to use pmu in protected mode in a subsequent patch.
No visible side effects in behavior intended.
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220510095710.148178-4-tabba@google.com
FEAT_SVE is already masked by the fixed configuration for
ID_AA64PFR0_EL1; don't try and mask it at runtime.
No functional change intended.
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220509162559.2387784-3-oupton@google.com
The pVM-specific FP/SIMD trap handler just calls straight into the
generic trap handler. Avoid the indirection and just call the hyp
handler directly.
Note that the BUILD_BUG_ON() pattern is repeated in
pvm_init_traps_aa64pfr0(), which is likely a better home for it.
No functional change intended.
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220509162559.2387784-2-oupton@google.com
Don't use begin-kernel-doc notation (/**) for comments that are not in
kernel-doc format.
This prevents these kernel-doc warnings:
arch/arm64/kvm/hyp/nvhe/switch.c:126: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst
* Disable host events, enable guest events
arch/arm64/kvm/hyp/nvhe/switch.c:146: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst
* Disable guest events, enable host events
arch/arm64/kvm/hyp/nvhe/switch.c:164: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst
* Handler for protected VM restricted exceptions.
arch/arm64/kvm/hyp/nvhe/switch.c:176: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst
* Handler for protected VM MSR, MRS or System instruction execution in AArch64.
arch/arm64/kvm/hyp/nvhe/switch.c:196: warning: Function parameter or member 'vcpu' not described in 'kvm_handle_pvm_fpsimd'
arch/arm64/kvm/hyp/nvhe/switch.c:196: warning: Function parameter or member 'exit_code' not described in 'kvm_handle_pvm_fpsimd'
arch/arm64/kvm/hyp/nvhe/switch.c:196: warning: expecting prototype for Handler for protected floating(). Prototype was for kvm_handle_pvm_fpsimd() instead
Fixes: 09cf57eba3 ("KVM: arm64: Split hyp/switch.c to VHE/nVHE")
Fixes: 1423afcb41 ("KVM: arm64: Trap access to pVM restricted features")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: kernel test robot <lkp@intel.com>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: David Brazdil <dbrazdil@google.com>
Cc: James Morse <james.morse@arm.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: kvmarm@lists.cs.columbia.edu
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220430050123.2844-1-rdunlap@infradead.org
There are a few cases in the nVHE code where we take the absolute
address of a symbol via a literal pool entry, and subsequently translate
it to another address space (PA, kimg VA, kernel linear VA, etc).
Originally, this literal was needed because we relied on a different
translation for absolute references, but this is no longer the case, so
we can simply use relative addressing instead. This removes a couple of
RELA entries pointing into the .text segment.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220428140350.3303481-1-ardb@kernel.org
The macros for accessing fields in ID_AA64ISAR0_EL1 omit the _EL1 from the
name of the register. In preparation for converting this register to be
automatically generated update the names to include an _EL1, there should
be no functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20220503170233.507788-8-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The architecture reference manual refers to the field in bits 23:20 of
ID_AA64ISAR0_EL1 with the name "atomic" but the kernel defines for this
bitfield use the name "atomics". Bring the two into sync to make it easier
to cross reference with the specification.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20220503170233.507788-7-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ESR_EL2 was defined as a 32-bit register in the initial release of the
ARM Architecture Manual for Armv8-A, and was later extended to 64 bits,
with bits [63:32] RES0. ARMv8.7 introduced FEAT_LS64, which makes use of
bits [36:32].
KVM treats ESR_EL1 as a 64-bit register when saving and restoring the
guest context, but ESR_EL2 is handled as a 32-bit register. Start
treating ESR_EL2 as a 64-bit register to allow KVM to make use of the
most significant 32 bits in the future.
The type chosen to represent ESR_EL2 is u64, as that is consistent with the
notation KVM overwhelmingly uses today (u32), and how the rest of the
registers are declared.
Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220425114444.368693-5-alexandru.elisei@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The hypervisor stacks (for both nVHE Hyp mode and nVHE protected mode)
are aligned such that any valid stack address has PAGE_SHIFT bit as 1.
This allows us to conveniently check for overflow in the exception entry
without corrupting any GPRs. We won't recover from a stack overflow so
panic the hypervisor.
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220420214317.3303360-6-kaleshsingh@google.com
Map the stack pages in the flexible private VA range and allocate
guard pages below the stack as unbacked VA space. The stack is aligned
so that any valid stack address has PAGE_SHIFT bit as 1 - this is used
for overflow detection (implemented in a subsequent patch in the series)
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220420214317.3303360-5-kaleshsingh@google.com
pkvm_hyp_alloc_private_va_range() can be used to reserve private VA ranges
in the pKVM nVHE hypervisor. Allocations are aligned based on the order of
the requested size.
This will be used to implement stack guard pages for pKVM nVHE hypervisor
(in a subsequent patch in the series).
Credits to Quentin Perret <qperret@google.com> for the idea of moving
private VA allocation out of __pkvm_create_private_mapping()
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220420214317.3303360-3-kaleshsingh@google.com
When pKVM is enabled, host memory accesses are translated by an identity
mapping at stage-2, which is populated lazily in response to synchronous
exceptions from 64-bit EL1 and EL0.
Extend this handling to cover exceptions originating from 32-bit EL0 as
well. Although these are very unlikely to occur in practice, as the
kernel typically ensures that user pages are initialised before mapping
them in, drivers could still map previously untouched device pages into
userspace and expect things to work rather than panic the system.
Cc: Quentin Perret <qperret@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220427171332.13635-1-will@kernel.org
SME defines two new traps which need to be enabled for guests to ensure
that they can't use SME, one for the main SME operations which mirrors the
traps for SVE and another for access to TPIDR2 in SCTLR_EL2.
For VHE manage SMEN along with ZEN in activate_traps() and the FP state
management callbacks, along with SCTLR_EL2.EnTPIDR2. There is no
existing dynamic management of SCTLR_EL2.
For nVHE manage TSM in activate_traps() along with the fine grained
traps for TPIDR2 and SMPRI. There is no existing dynamic management of
fine grained traps.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220419112247.711548-26-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- Proper emulation of the OSLock feature of the debug architecture
- Scalibility improvements for the MMU lock when dirty logging is on
- New VMID allocator, which will eventually help with SVA in VMs
- Better support for PMUs in heterogenous systems
- PSCI 1.1 support, enabling support for SYSTEM_RESET2
- Implement CONFIG_DEBUG_LIST at EL2
- Make CONFIG_ARM64_ERRATUM_2077057 default y
- Reduce the overhead of VM exit when no interrupt is pending
- Remove traces of 32bit ARM host support from the documentation
- Updated vgic selftests
- Various cleanups, doc updates and spelling fixes
RISC-V:
- Prevent KVM_COMPAT from being selected
- Optimize __kvm_riscv_switch_to() implementation
- RISC-V SBI v0.3 support
s390:
- memop selftest
- fix SCK locking
- adapter interruptions virtualization for secure guests
- add Claudio Imbrenda as maintainer
- first step to do proper storage key checking
x86:
- Continue switching kvm_x86_ops to static_call(); introduce
static_call_cond() and __static_call_ret0 when applicable.
- Cleanup unused arguments in several functions
- Synthesize AMD 0x80000021 leaf
- Fixes and optimization for Hyper-V sparse-bank hypercalls
- Implement Hyper-V's enlightened MSR bitmap for nested SVM
- Remove MMU auditing
- Eager splitting of page tables (new aka "TDP" MMU only) when dirty
page tracking is enabled
- Cleanup the implementation of the guest PGD cache
- Preparation for the implementation of Intel IPI virtualization
- Fix some segment descriptor checks in the emulator
- Allow AMD AVIC support on systems with physical APIC ID above 255
- Better API to disable virtualization quirks
- Fixes and optimizations for the zapping of page tables:
- Zap roots in two passes, avoiding RCU read-side critical sections
that last too long for very large guests backed by 4 KiB SPTEs.
- Zap invalid and defunct roots asynchronously via concurrency-managed
work queue.
- Allowing yielding when zapping TDP MMU roots in response to the root's
last reference being put.
- Batch more TLB flushes with an RCU trick. Whoever frees the paging
structure now holds RCU as a proxy for all vCPUs running in the guest,
i.e. to prolongs the grace period on their behalf. It then kicks the
the vCPUs out of guest mode before doing rcu_read_unlock().
Generic:
- Introduce __vcalloc and use it for very large allocations that
need memcg accounting
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmI4fdwUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMq8gf/WoeVHtw2QlL5Mmz6McvRRmPAYPLV
wLUIFNrRqRvd8Tw4kivzZoh/xTpwmnojv0YdK5SjKAiMjgv094YI1LrNp1JSPvmL
pitocMkA10RSJNWHeEMg9cMSKH0rKiqeYl6S1e2XsdB+UZZ2BINOCVtvglmjTAvJ
dFBdKdBkqjAUZbdXAGIvz4JEEER3N/LkFDKGaUGX+0QIQOzGBPIyLTxynxIDG6mt
RViCCFyXdy5NkVp5hZFm96vQ2qAlWL9B9+iKruQN++82+oqWbeTdSqPhdwF7GyFz
BfOv3gobQ2c4ef/aMLO5LswZ9joI1t/4kQbbAn6dNybpOAz/NXfDnbNefg==
=keox
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Proper emulation of the OSLock feature of the debug architecture
- Scalibility improvements for the MMU lock when dirty logging is on
- New VMID allocator, which will eventually help with SVA in VMs
- Better support for PMUs in heterogenous systems
- PSCI 1.1 support, enabling support for SYSTEM_RESET2
- Implement CONFIG_DEBUG_LIST at EL2
- Make CONFIG_ARM64_ERRATUM_2077057 default y
- Reduce the overhead of VM exit when no interrupt is pending
- Remove traces of 32bit ARM host support from the documentation
- Updated vgic selftests
- Various cleanups, doc updates and spelling fixes
RISC-V:
- Prevent KVM_COMPAT from being selected
- Optimize __kvm_riscv_switch_to() implementation
- RISC-V SBI v0.3 support
s390:
- memop selftest
- fix SCK locking
- adapter interruptions virtualization for secure guests
- add Claudio Imbrenda as maintainer
- first step to do proper storage key checking
x86:
- Continue switching kvm_x86_ops to static_call(); introduce
static_call_cond() and __static_call_ret0 when applicable.
- Cleanup unused arguments in several functions
- Synthesize AMD 0x80000021 leaf
- Fixes and optimization for Hyper-V sparse-bank hypercalls
- Implement Hyper-V's enlightened MSR bitmap for nested SVM
- Remove MMU auditing
- Eager splitting of page tables (new aka "TDP" MMU only) when dirty
page tracking is enabled
- Cleanup the implementation of the guest PGD cache
- Preparation for the implementation of Intel IPI virtualization
- Fix some segment descriptor checks in the emulator
- Allow AMD AVIC support on systems with physical APIC ID above 255
- Better API to disable virtualization quirks
- Fixes and optimizations for the zapping of page tables:
- Zap roots in two passes, avoiding RCU read-side critical
sections that last too long for very large guests backed by 4
KiB SPTEs.
- Zap invalid and defunct roots asynchronously via
concurrency-managed work queue.
- Allowing yielding when zapping TDP MMU roots in response to the
root's last reference being put.
- Batch more TLB flushes with an RCU trick. Whoever frees the
paging structure now holds RCU as a proxy for all vCPUs running
in the guest, i.e. to prolongs the grace period on their behalf.
It then kicks the the vCPUs out of guest mode before doing
rcu_read_unlock().
Generic:
- Introduce __vcalloc and use it for very large allocations that need
memcg accounting"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
KVM: use kvcalloc for array allocations
KVM: x86: Introduce KVM_CAP_DISABLE_QUIRKS2
kvm: x86: Require const tsc for RT
KVM: x86: synthesize CPUID leaf 0x80000021h if useful
KVM: x86: add support for CPUID leaf 0x80000021
KVM: x86: do not use KVM_X86_OP_OPTIONAL_RET0 for get_mt_mask
Revert "KVM: x86/mmu: Zap only TDP MMU leafs in kvm_zap_gfn_range()"
kvm: x86/mmu: Flush TLB before zap_gfn_range releases RCU
KVM: arm64: fix typos in comments
KVM: arm64: Generalise VM features into a set of flags
KVM: s390: selftests: Add error memop tests
KVM: s390: selftests: Add more copy memop tests
KVM: s390: selftests: Add named stages for memop test
KVM: s390: selftests: Add macro as abstraction for MEM_OP
KVM: s390: selftests: Split memop tests
KVM: s390x: fix SCK locking
RISC-V: KVM: Implement SBI HSM suspend call
RISC-V: KVM: Add common kvm_riscv_vcpu_wfi() function
RISC-V: Add SBI HSM suspend related defines
RISC-V: KVM: Implement SBI v0.3 SRST extension
...
Merge in the latest Spectre mess to fix up conflicts with what was
already queued for 5.18 when the embargo finally lifted.
* for-next/spectre-bhb: (21 commits)
arm64: Do not include __READ_ONCE() block in assembly files
arm64: proton-pack: Include unprivileged eBPF status in Spectre v2 mitigation reporting
arm64: Use the clearbhb instruction in mitigations
KVM: arm64: Allow SMCCC_ARCH_WORKAROUND_3 to be discovered and migrated
arm64: Mitigate spectre style branch history side channels
arm64: proton-pack: Report Spectre-BHB vulnerabilities as part of Spectre-v2
arm64: Add percpu vectors for EL1
arm64: entry: Add macro for reading symbol addresses from the trampoline
arm64: entry: Add vectors that have the bhb mitigation sequences
arm64: entry: Add non-kpti __bp_harden_el1_vectors for mitigations
arm64: entry: Allow the trampoline text to occupy multiple pages
arm64: entry: Make the kpti trampoline's kpti sequence optional
arm64: entry: Move trampoline macros out of ifdef'd section
arm64: entry: Don't assume tramp_vectors is the start of the vectors
arm64: entry: Allow tramp_alias to access symbols after the 4K boundary
arm64: entry: Move the trampoline data page before the text page
arm64: entry: Free up another register on kpti's tramp_exit path
arm64: entry: Make the trampoline cleanup optional
KVM: arm64: Allow indirect vectors to be used without SPECTRE_V3A
arm64: spectre: Rename spectre_v4_patch_fw_mitigation_conduit
...
* for-next/fpsimd:
arm64: cpufeature: Warn if we attempt to read a zero width field
arm64: cpufeature: Add missing .field_width for GIC system registers
arm64: signal: nofpsimd: Do not allocate fp/simd context when not available
arm64: cpufeature: Always specify and use a field width for capabilities
arm64: Always use individual bits in CPACR floating point enables
arm64: Define CPACR_EL1_FPEN similarly to other floating point controls
* for-next/pauth:
arm64: Add support of PAuth QARMA3 architected algorithm
arm64: cpufeature: Mark existing PAuth architected algorithm as QARMA5
arm64: cpufeature: Account min_field_value when cheking secondaries for PAuth
CPACR_EL1 has several bitfields for controlling traps for floating point
features to EL1, each of which has a separate bits for EL0 and EL1. Marc
Zyngier noted that we are not consistent in our use of defines to
manipulate these, sometimes using a define covering the whole field and
sometimes using defines for the individual bits. Make this consistent by
expanding the whole field defines where they are used (currently only in
the KVM code) and deleting them so that no further uses can be
introduced.
Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220207152109.197566-3-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
QARMA3 is relaxed version of the QARMA5 algorithm which expected to
reduce the latency of calculation while still delivering a suitable
level of security.
Support for QARMA3 can be discovered via ID_AA64ISAR2_EL1
APA3, bits [15:12] Indicates whether the QARMA3 algorithm is
implemented in the PE for address
authentication in AArch64 state.
GPA3, bits [11:8] Indicates whether the QARMA3 algorithm is
implemented in the PE for generic code
authentication in AArch64 state.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220224124952.119612-4-vladimir.murzin@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Future CPUs may implement a clearbhb instruction that is sufficient
to mitigate SpectreBHB. CPUs that implement this instruction, but
not CSV2.3 must be affected by Spectre-BHB.
Add support to use this instruction as the BHB mitigation on CPUs
that support it. The instruction is in the hint space, so it will
be treated by a NOP as older CPUs.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Speculation attacks against some high-performance processors can
make use of branch history to influence future speculation.
When taking an exception from user-space, a sequence of branches
or a firmware call overwrites or invalidates the branch history.
The sequence of branches is added to the vectors, and should appear
before the first indirect branch. For systems using KPTI the sequence
is added to the kpti trampoline where it has a free register as the exit
from the trampoline is via a 'ret'. For systems not using KPTI, the same
register tricks are used to free up a register in the vectors.
For the firmware call, arch-workaround-3 clobbers 4 registers, so
there is no choice but to save them to the EL1 stack. This only happens
for entry from EL0, so if we take an exception due to the stack access,
it will not become re-entrant.
For KVM, the existing branch-predictor-hardening vectors are used.
When a spectre version of these vectors is in use, the firmware call
is sufficient to mitigate against Spectre-BHB. For the non-spectre
versions, the sequence of branches is added to the indirect vector.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Now that we have SYM_FUNC_ALIAS() and SYM_FUNC_ALIAS_WEAK(), use those
to simplify and more consistently define function aliases across
arch/arm64.
Aliases are now defined in terms of a canonical function name. For
position-independent functions I've made the __pi_<func> name the
canonical name, and defined other alises in terms of this.
The SYM_FUNC_{START,END}_PI(func) macros obscure the __pi_<func> name,
and make this hard to seatch for. The SYM_FUNC_START_WEAK_PI() macro
also obscures the fact that the __pi_<func> fymbol is global and the
<func> symbol is weak. For clarity, I have removed these macros and used
SYM_FUNC_{START,END}() directly with the __pi_<func> name.
For example:
SYM_FUNC_START_WEAK_PI(func)
... asm insns ...
SYM_FUNC_END_PI(func)
EXPORT_SYMBOL(func)
... becomes:
SYM_FUNC_START(__pi_func)
... asm insns ...
SYM_FUNC_END(__pi_func)
SYM_FUNC_ALIAS_WEAK(func, __pi_func)
EXPORT_SYMBOL(func)
For clarity, where there are multiple annotations such as
EXPORT_SYMBOL(), I've tried to keep annotations grouped by symbol. For
example, where a function has a name and an alias which are both
exported, this is organised as:
SYM_FUNC_START(func)
... asm insns ...
SYM_FUNC_END(func)
EXPORT_SYMBOL(func)
SYM_FUNC_ALIAS(alias, func)
EXPORT_SYMBOL(alias)
For consistency with the other string functions, I've defined strrchr as
a position-independent function, as it can safely be used as such even
though we have no users today.
As we no longer use SYM_FUNC_{START,END}_ALIAS(), our local copies are
removed. The common versions will be removed by a subsequent patch.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Mark Brown <broonie@kernel.org>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Will Deacon <will@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220216162229.1076788-3-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
The Spectre-BHB workaround adds a firmware call to the vectors. This
is needed on some CPUs, but not others. To avoid the unaffected CPU in
a big/little pair from making the firmware call, create per cpu vectors.
The per-cpu vectors only apply when returning from EL0.
Systems using KPTI can use the canonical 'full-fat' vectors directly at
EL1, the trampoline exit code will switch to this_cpu_vector on exit to
EL0. Systems not using KPTI should always use this_cpu_vector.
this_cpu_vector will point at a vector in tramp_vecs or
__bp_harden_el1_vectors, depending on whether KPTI is in use.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
CPUs vulnerable to Spectre-BHB either need to make an SMC-CC firmware
call from the vectors, or run a sequence of branches. This gets added
to the hyp vectors. If there is no support for arch-workaround-1 in
firmware, the indirect vector will be used.
kvm_init_vector_slots() only initialises the two indirect slots if
the platform is vulnerable to Spectre-v3a. pKVM's hyp_map_vectors()
only initialises __hyp_bp_vect_base if the platform is vulnerable to
Spectre-v3a.
As there are about to more users of the indirect vectors, ensure
their entries in hyp_spectre_vector_selector[] are always initialised,
and __hyp_bp_vect_base defaults to the regular VA mapping.
The Spectre-v3a check is moved to a helper
kvm_system_needs_idmapped_vectors(), and merged with the code
that creates the hyp mappings.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Currently the check functions are stubbed out at EL2. Implement
versions suitable for the constrained EL2 environment.
Signed-off-by: Keir Fraser <keirf@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220131124114.3103337-1-keirf@google.com
* kvm-arm64/vmid-allocator:
: .
: VMID allocation rewrite from Shameerali Kolothum Thodi, paving the
: way for pinned VMIDs and SVA.
: .
KVM: arm64: Make active_vmids invalid on vCPU schedule out
KVM: arm64: Align the VMID allocation with the arm64 ASID
KVM: arm64: Make VMID bits accessible outside of allocator
KVM: arm64: Introduce a new VMID allocator for KVM
Signed-off-by: Marc Zyngier <maz@kernel.org>
At the moment, the VMID algorithm will send an SGI to all the
CPUs to force an exit and then broadcast a full TLB flush and
I-Cache invalidation.
This patch uses the new VMID allocator. The benefits are:
- Aligns with arm64 ASID algorithm.
- CPUs are not forced to exit at roll-over. Instead,
the VMID will be marked reserved and context invalidation
is broadcasted. This will reduce the IPIs traffic.
- More flexible to add support for pinned KVM VMIDs in
the future.
With the new algo, the code is now adapted:
- The call to update_vmid() will be done with preemption
disabled as the new algo requires to store information
per-CPU.
Signed-off-by: Julien Grall <julien.grall@arm.com>
Signed-off-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211122121844.867-4-shameerali.kolothum.thodi@huawei.com
The handling for FPSIMD/SVE traps is multi stage and involves some trap
manipulation which isn't quite so immediately obvious as might be desired
so add a few more comments.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220124155720.3943374-3-broonie@kernel.org
Cortex-A510's erratum #2077057 causes SPSR_EL2 to be corrupted when
single-stepping authenticated ERET instructions. A single step is
expected, but a pointer authentication trap is taken instead. The
erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
Because the conditions require an ERET into active-not-pending state,
this is only a problem for the EL2 when EL2 is stepping EL1. In this case
the previous SPSR_EL2 value is preserved in struct kvm_vcpu, and can be
restored.
Cc: stable@vger.kernel.org # 53960faf2b: arm64: Add Cortex-A510 CPU part definition
Cc: stable@vger.kernel.org
Signed-off-by: James Morse <james.morse@arm.com>
[maz: fixup cpucaps ordering]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220127122052.1584324-5-james.morse@arm.com
When any exception other than an IRQ occurs, the CPU updates the ESR_EL2
register with the exception syndrome. An SError may also become pending,
and will be synchronised by KVM. KVM notes the exception type, and whether
an SError was synchronised in exit_code.
When an exception other than an IRQ occurs, fixup_guest_exit() updates
vcpu->arch.fault.esr_el2 from the hardware register. When an SError was
synchronised, the vcpu esr value is used to determine if the exception
was due to an HVC. If so, ELR_EL2 is moved back one instruction. This
is so that KVM can process the SError first, and re-execute the HVC if
the guest survives the SError.
But if an IRQ synchronises an SError, the vcpu's esr value is stale.
If the previous non-IRQ exception was an HVC, KVM will corrupt ELR_EL2,
causing an unrelated guest instruction to be executed twice.
Check ARM_EXCEPTION_CODE() before messing with ELR_EL2, IRQs don't
update this register so don't need to check.
Fixes: defe21f49b ("KVM: arm64: Move PC rollback on SError to HYP")
Cc: stable@vger.kernel.org
Reported-by: Steven Price <steven.price@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220127122052.1584324-3-james.morse@arm.com
* Redo incorrect fix for SEV/SMAP erratum
* Windows 11 Hyper-V workaround
Other x86 changes:
* Various x86 cleanups
* Re-enable access_tracking_perf_test
* Fix for #GP handling on SVM
* Fix for CPUID leaf 0Dh in KVM_GET_SUPPORTED_CPUID
* Fix for ICEBP in interrupt shadow
* Avoid false-positive RCU splat
* Enable Enlightened MSR-Bitmap support for real
ARM:
* Correctly update the shadow register on exception injection when
running in nVHE mode
* Correctly use the mm_ops indirection when performing cache invalidation
from the page-table walker
* Restrict the vgic-v3 workaround for SEIS to the two known broken
implementations
Generic code changes:
* Dead code cleanup
There will be another pull request for ARM fixes next week, but
those patches need a bit more soak time.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmHz5eIUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNv4wgAopj0Zlutrrtw3KT4/XnmSdMPgN0j
jQNzysSLTO5wGQCEogycjYXkGUDFu1Gdi+K91QAyjeKja20pIhPLeS2CBDRJyOc5
73K7sxqz51JnQiVFzkTuA+qzn+lXaJ9LUXtdg8BnQMSKyt2AJOqE8uT10kcYOD5q
mW4V3QUA0QpVKN0cYHv/G/zvBwQGGSLZetFbuAzwH2EDTpIi1aio5ZN1r0AoH18L
2x5kYPpqmnoBvo2cB4b7SNmxv3ZPQ5K+wta0uwZ4pO+UuYiRd84RPr5lErywJC3w
nci0eC0DoXrC6h+35UItqM8RqAGv6LADbDnr1RGojmfogSD0OtbX8y3hjw==
=iKnI
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Two larger x86 series:
- Redo incorrect fix for SEV/SMAP erratum
- Windows 11 Hyper-V workaround
Other x86 changes:
- Various x86 cleanups
- Re-enable access_tracking_perf_test
- Fix for #GP handling on SVM
- Fix for CPUID leaf 0Dh in KVM_GET_SUPPORTED_CPUID
- Fix for ICEBP in interrupt shadow
- Avoid false-positive RCU splat
- Enable Enlightened MSR-Bitmap support for real
ARM:
- Correctly update the shadow register on exception injection when
running in nVHE mode
- Correctly use the mm_ops indirection when performing cache
invalidation from the page-table walker
- Restrict the vgic-v3 workaround for SEIS to the two known broken
implementations
Generic code changes:
- Dead code cleanup"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (43 commits)
KVM: eventfd: Fix false positive RCU usage warning
KVM: nVMX: Allow VMREAD when Enlightened VMCS is in use
KVM: nVMX: Implement evmcs_field_offset() suitable for handle_vmread()
KVM: nVMX: Rename vmcs_to_field_offset{,_table}
KVM: nVMX: eVMCS: Filter out VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
KVM: nVMX: Also filter MSR_IA32_VMX_TRUE_PINBASED_CTLS when eVMCS
selftests: kvm: check dynamic bits against KVM_X86_XCOMP_GUEST_SUPP
KVM: x86: add system attribute to retrieve full set of supported xsave states
KVM: x86: Add a helper to retrieve userspace address from kvm_device_attr
selftests: kvm: move vm_xsave_req_perm call to amx_test
KVM: x86: Sync the states size with the XCR0/IA32_XSS at, any time
KVM: x86: Update vCPU's runtime CPUID on write to MSR_IA32_XSS
KVM: x86: Keep MSR_IA32_XSS unchanged for INIT
KVM: x86: Free kvm_cpuid_entry2 array on post-KVM_RUN KVM_SET_CPUID{,2}
KVM: nVMX: WARN on any attempt to allocate shadow VMCS for vmcs02
KVM: selftests: Don't skip L2's VMCALL in SMM test for SVM guest
KVM: x86: Check .flags in kvm_cpuid_check_equal() too
KVM: x86: Forcibly leave nested virt when SMM state is toggled
KVM: SVM: drop unnecessary code in svm_hv_vmcb_dirty_nested_enlightenments()
KVM: SVM: hyper-v: Enable Enlightened MSR-Bitmap support for real
...
- Correctly update the shadow register on exception injection when
running in nVHE mode
- Correctly use the mm_ops indirection when performing cache invalidation
from the page-table walker
- Restrict the vgic-v3 workaround for SEIS to the two known broken
implementations
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmHzv5EPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpD0DcQAMF0hcKYxwuXi+UwQ8u5SsrpQQZ1BWC6euvB
FFQiUPANXq/u0xM2kV+5FhjEfHqqjnh7nYLVKpBcetcvGSfWUnZlVI4DKI+5pdte
PTa/minS5sq9BDZ/clRnnomNw0UwtH2OLeolg7+UAqBMihicddVBBU6IqvY1Nx+z
F2qovZa3Qqb1EB+9+hPS+qGcjlguaBOEzrJ9uIaw532G1JD1K9hhMlabdhJhiJA3
gWuUJO+cuYEdctli+OJb9g92zIDt0hVP+/1tndlbib5BUw6e2vkdyKF0+/7u77xr
SDKNmUosvZt/fABZpv6ycgRszoKRjBCIC5takQCZI/l2QzZFbiP/414E8L0J/zLV
PI8e1bs/H9pBF3c7WG+if/3jYs+D+/nYhkE+PeW3k5lxzsHo7XE5ei6mzoxzBusC
l4c0QQ7lpwep4dOWm4oRxzE0/9IONgVKKlIKGBkpSbtznDkAToTWobAIFVeZj+nm
BVxf+A6ddcnQSzXYa/FUsfV3ZEsJVPSs/DL6mBBJuG8lxNzZnabkt+ODfXuhyrXe
6kGkF9+4HE9XyItieZVDUgRcZ9x57c+3q7A9b7Kl+Ds1Z+hsu0tVqghf5YVQAj3a
4IkOBdPEtaGCSrJWxupX+oimCXqdNfbnOqf4VsO8l1O0O8WBRvYaqYL2RKR32kX2
n3nzO/vE
=BKqv
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-5.17-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 5.17, take #1
- Correctly update the shadow register on exception injection when
running in nVHE mode
- Correctly use the mm_ops indirection when performing cache invalidation
from the page-table walker
- Restrict the vgic-v3 workaround for SEIS to the two known broken
implementations
Injecting an exception into a guest with non-VHE is risky business.
Instead of writing in the shadow register for the switch code to
restore it, we override the CPU register instead. Which gets
overriden a few instructions later by said restore code.
The result is that although the guest correctly gets the exception,
it will return to the original context in some random state,
depending on what was there the first place... Boo.
Fix the issue by writing to the shadow register. The original code
is absolutely fine on VHE, as the state is already loaded, and writing
to the shadow register in that case would actually be a bug.
Fixes: bb666c472c ("KVM: arm64: Inject AArch64 exceptions from HYP")
Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20220121184207.423426-1-maz@kernel.org
Contrary to what df652bcf11 ("KVM: arm64: vgic-v3: Work around GICv3
locally generated SErrors") was asserting, there is at least one other
system out there (Cavium ThunderX2) implementing SEIS, and not in
an obviously broken way.
So instead of imposing the M1 workaround on an innocent bystander,
let's limit it to the two known broken Apple implementations.
Fixes: df652bcf11 ("KVM: arm64: vgic-v3: Work around GICv3 locally generated SErrors")
Reported-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20220122103912.795026-1-maz@kernel.org
- Use common KVM implementation of MMU memory caches
- SBI v0.2 support for Guest
- Initial KVM selftests support
- Fix to avoid spurious virtual interrupts after clearing hideleg CSR
- Update email address for Anup and Atish
ARM:
- Simplification of the 'vcpu first run' by integrating it into
KVM's 'pid change' flow
- Refactoring of the FP and SVE state tracking, also leading to
a simpler state and less shared data between EL1 and EL2 in
the nVHE case
- Tidy up the header file usage for the nvhe hyp object
- New HYP unsharing mechanism, finally allowing pages to be
unmapped from the Stage-1 EL2 page-tables
- Various pKVM cleanups around refcounting and sharing
- A couple of vgic fixes for bugs that would trigger once
the vcpu xarray rework is merged, but not sooner
- Add minimal support for ARMv8.7's PMU extension
- Rework kvm_pgtable initialisation ahead of the NV work
- New selftest for IRQ injection
- Teach selftests about the lack of default IPA space and
page sizes
- Expand sysreg selftest to deal with Pointer Authentication
- The usual bunch of cleanups and doc update
s390:
- fix sigp sense/start/stop/inconsistency
- cleanups
x86:
- Clean up some function prototypes more
- improved gfn_to_pfn_cache with proper invalidation, used by Xen emulation
- add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery
- completely remove potential TOC/TOU races in nested SVM consistency checks
- update some PMCs on emulated instructions
- Intel AMX support (joint work between Thomas and Intel)
- large MMU cleanups
- module parameter to disable PMU virtualization
- cleanup register cache
- first part of halt handling cleanups
- Hyper-V enlightened MSR bitmap support for nested hypervisors
Generic:
- clean up Makefiles
- introduce CONFIG_HAVE_KVM_DIRTY_RING
- optimize memslot lookup using a tree
- optimize vCPU array usage by converting to xarray
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmHhxvsUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPZkAf+Nz92UL/5nNGcdHtE4m7AToMmitE9
bYkesf9BMQvAe5wjkABLuoHGi6ay4jabo4fiGzbdkiK7lO5YgfsWiMB3/MT5fl4E
jRPzaVQabp3YZLM8UYCBmfUVuRj524S967SfSRe0AvYjDEH8y7klPf4+7sCsFT0/
Px9Vf2KGuOlf0eM78yKg4rGaF0jS22eLgXm6FfNMY8/e29ZAo/jyUmqBY+Z2xxZG
aWhceDtSheW1jwLHLj3nOlQJvHTn8LVGXBE/R8Gda3ZjrBV2rKaDi4Fh+HD+dz86
2zVXwzQ7uck2CMW73GMoXMTWoKSHMyvlBOs1BdvBm4UsnGcXR+q8IFCeuQ==
=s73m
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"RISCV:
- Use common KVM implementation of MMU memory caches
- SBI v0.2 support for Guest
- Initial KVM selftests support
- Fix to avoid spurious virtual interrupts after clearing hideleg CSR
- Update email address for Anup and Atish
ARM:
- Simplification of the 'vcpu first run' by integrating it into KVM's
'pid change' flow
- Refactoring of the FP and SVE state tracking, also leading to a
simpler state and less shared data between EL1 and EL2 in the nVHE
case
- Tidy up the header file usage for the nvhe hyp object
- New HYP unsharing mechanism, finally allowing pages to be unmapped
from the Stage-1 EL2 page-tables
- Various pKVM cleanups around refcounting and sharing
- A couple of vgic fixes for bugs that would trigger once the vcpu
xarray rework is merged, but not sooner
- Add minimal support for ARMv8.7's PMU extension
- Rework kvm_pgtable initialisation ahead of the NV work
- New selftest for IRQ injection
- Teach selftests about the lack of default IPA space and page sizes
- Expand sysreg selftest to deal with Pointer Authentication
- The usual bunch of cleanups and doc update
s390:
- fix sigp sense/start/stop/inconsistency
- cleanups
x86:
- Clean up some function prototypes more
- improved gfn_to_pfn_cache with proper invalidation, used by Xen
emulation
- add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery
- completely remove potential TOC/TOU races in nested SVM consistency
checks
- update some PMCs on emulated instructions
- Intel AMX support (joint work between Thomas and Intel)
- large MMU cleanups
- module parameter to disable PMU virtualization
- cleanup register cache
- first part of halt handling cleanups
- Hyper-V enlightened MSR bitmap support for nested hypervisors
Generic:
- clean up Makefiles
- introduce CONFIG_HAVE_KVM_DIRTY_RING
- optimize memslot lookup using a tree
- optimize vCPU array usage by converting to xarray"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (268 commits)
x86/fpu: Fix inline prefix warnings
selftest: kvm: Add amx selftest
selftest: kvm: Move struct kvm_x86_state to header
selftest: kvm: Reorder vcpu_load_state steps for AMX
kvm: x86: Disable interception for IA32_XFD on demand
x86/fpu: Provide fpu_sync_guest_vmexit_xfd_state()
kvm: selftests: Add support for KVM_CAP_XSAVE2
kvm: x86: Add support for getting/setting expanded xstate buffer
x86/fpu: Add uabi_size to guest_fpu
kvm: x86: Add CPUID support for Intel AMX
kvm: x86: Add XCR0 support for Intel AMX
kvm: x86: Disable RDMSR interception of IA32_XFD_ERR
kvm: x86: Emulate IA32_XFD_ERR for guest
kvm: x86: Intercept #NM for saving IA32_XFD_ERR
x86/fpu: Prepare xfd_err in struct fpu_guest
kvm: x86: Add emulation for IA32_XFD
x86/fpu: Provide fpu_update_guest_xfd() for IA32_XFD emulation
kvm: x86: Enable dynamic xfeatures at KVM_SET_CPUID2
x86/fpu: Provide fpu_enable_guest_xfd_features() for KVM
x86/fpu: Add guest support to xfd_enable_feature()
...
CMOs issued from EL2 cannot directly use the kernel helpers,
as EL2 doesn't have a mapping of the guest pages. Oops.
Instead, use the mm_ops indirection to use helpers that will
perform a mapping at EL2 and allow the CMO to be effective.
Fixes: 25aa28691b ("KVM: arm64: Move guest CMOs to the fault handlers")
Reviewed-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220114125038.1336965-1-maz@kernel.org
- KCSAN enabled for arm64.
- Additional kselftests to exercise the syscall ABI w.r.t. SVE/FPSIMD.
- Some more SVE clean-ups and refactoring in preparation for SME support
(scalable matrix extensions).
- BTI clean-ups (SYM_FUNC macros etc.)
- arm64 atomics clean-up and codegen improvements.
- HWCAPs for FEAT_AFP (alternate floating point behaviour) and
FEAT_RPRESS (increased precision of reciprocal estimate and reciprocal
square root estimate).
- Use SHA3 instructions to speed-up XOR.
- arm64 unwind code refactoring/unification.
- Avoid DC (data cache maintenance) instructions when DCZID_EL0.DZP == 1
(potentially set by a hypervisor; user-space already does this).
- Perf updates for arm64: support for CI-700, HiSilicon PCIe PMU,
Marvell CN10K LLC-TAD PMU, miscellaneous clean-ups.
- Other fixes and clean-ups; highlights: fix the handling of erratum
1418040, correct the calculation of the nomap region boundaries,
introduce io_stop_wc() mapped to the new DGH instruction (data
gathering hint).
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmHXNtYACgkQa9axLQDI
XvHBGw/+OVGdbORxwrU+uRb7N6qIJkrW/mmM4x1KLo1i+REZLb8/VlXm0xC60FG+
39x6FSVkRr+lLDfTqpQsOez5FpdsvOe9Fc4L3bwniDg+EPo7x65VmP2dw/Ae2q0i
87xyWCczx5hFEPF/1sb1R1pm3bTXjeklBkdv+OXhwflLOwpCp1J8z8WJK8qJVFX6
CmuE6Q4fDQr0ghl9Nf8DiAr20mHDh8wMKNUJOg4waaQOOCta6q1oJ3qfz6E9z1eW
zEE3dfZgBCx7HCRc3KGgzT7H4Ces3BYvhBYP6bJRliVI88XdPiM4MfdGL4UIb27Q
NLAdr+FVzk/YLzMHtxSfkT10nBqoOPWUTckLu9jIIl5cpBX73Wiz7jfzBvqFmC/y
opSFMZ3lwQPM5WAPtAlZptA3GPPySeInVmvUgB7IQ+1Q1T1n8ri1y5hzTYC4Sc/g
amJI1rXf1Al8+2zFBggr6Up+EOnfV9nAwrzLXkRlASsfmvY4dnVWg3NWfBqtEHAq
VuZCecSgawxuSlpmJ4VGbLrBFaz18bn9EzujR5fFvi5Qcg1CMFOROi2+6IynopNV
IS0R8j6fwgQPA5lcnNIPeJRRkQoqO4l8bPDzeXEny0BSw313EgBSo9aQtnjyIJbp
BTuDHARKs+/NvDPvd8GQkxNPgwJnVOL9pdgNAolEu1/k7JtnIS0=
=ecyi
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- KCSAN enabled for arm64.
- Additional kselftests to exercise the syscall ABI w.r.t. SVE/FPSIMD.
- Some more SVE clean-ups and refactoring in preparation for SME
support (scalable matrix extensions).
- BTI clean-ups (SYM_FUNC macros etc.)
- arm64 atomics clean-up and codegen improvements.
- HWCAPs for FEAT_AFP (alternate floating point behaviour) and
FEAT_RPRESS (increased precision of reciprocal estimate and
reciprocal square root estimate).
- Use SHA3 instructions to speed-up XOR.
- arm64 unwind code refactoring/unification.
- Avoid DC (data cache maintenance) instructions when DCZID_EL0.DZP ==
1 (potentially set by a hypervisor; user-space already does this).
- Perf updates for arm64: support for CI-700, HiSilicon PCIe PMU,
Marvell CN10K LLC-TAD PMU, miscellaneous clean-ups.
- Other fixes and clean-ups; highlights: fix the handling of erratum
1418040, correct the calculation of the nomap region boundaries,
introduce io_stop_wc() mapped to the new DGH instruction (data
gathering hint).
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (81 commits)
arm64: Use correct method to calculate nomap region boundaries
arm64: Drop outdated links in comments
arm64: perf: Don't register user access sysctl handler multiple times
drivers: perf: marvell_cn10k: fix an IS_ERR() vs NULL check
perf/smmuv3: Fix unused variable warning when CONFIG_OF=n
arm64: errata: Fix exec handling in erratum 1418040 workaround
arm64: Unhash early pointer print plus improve comment
asm-generic: introduce io_stop_wc() and add implementation for ARM64
arm64: Ensure that the 'bti' macro is defined where linkage.h is included
arm64: remove __dma_*_area() aliases
docs/arm64: delete a space from tagged-address-abi
arm64: Enable KCSAN
kselftest/arm64: Add pidbench for floating point syscall cases
arm64/fp: Add comments documenting the usage of state restore functions
kselftest/arm64: Add a test program to exercise the syscall ABI
kselftest/arm64: Allow signal tests to trigger from a function
kselftest/arm64: Parameterise ptrace vector length information
arm64/sve: Minor clarification of ABI documentation
arm64/sve: Generalise vector length configuration prctl() for SME
arm64/sve: Make sysctl interface for SVE reusable by SME
...
- Simplification of the 'vcpu first run' by integrating it into
KVM's 'pid change' flow
- Refactoring of the FP and SVE state tracking, also leading to
a simpler state and less shared data between EL1 and EL2 in
the nVHE case
- Tidy up the header file usage for the nvhe hyp object
- New HYP unsharing mechanism, finally allowing pages to be
unmapped from the Stage-1 EL2 page-tables
- Various pKVM cleanups around refcounting and sharing
- A couple of vgic fixes for bugs that would trigger once
the vcpu xarray rework is merged, but not sooner
- Add minimal support for ARMv8.7's PMU extension
- Rework kvm_pgtable initialisation ahead of the NV work
- New selftest for IRQ injection
- Teach selftests about the lack of default IPA space and
page sizes
- Expand sysreg selftest to deal with Pointer Authentication
- The usual bunch of cleanups and doc update
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmHYIpgPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDndsP/RsBmX6bmQnDEhaaqfGAxOETyq/my1eT9r/V
3Ax4fEqSFfD5yHbYvqNRC8ueycH4r8WAr4ACWDAI6XpS/pYx00nx2N+HCSgjGyQR
FeXqITuGPEsn4NkGuPci0PFmI8rVUzanl1ugRGQAETVrZo2ZVH2uqKVGT8XOlu0J
FB/0x6Z4vMuIgEXyfa+DZ8WdW1aCRgPU2oyOdSdWE57/grjyLJqk6EdMmLyaQ19E
vz6vXuRnA/GQwOtByqYEnQ8a4VXsQedCMqg/f9mj0BxpDzxC1ps8Nrpv36aJXKUN
LEXapP9bCWPW9LqaKAOZnQYrUIIEFHsCUom0n3reDHrgObA+jivpz75L8GEr3CdC
Bv78N04Yymjpp2WA6CuO3r9HjL1nJ6tYqobXU2pvqln4nNC3Ukucjq9ZVuWgS6Hx
qOZXgPcZ/HpS3l/U+dAu8yIcV2SchQXDudaq8BsfLd8M1bD+oirSBolZFSvz7MYZ
6+jtEDLUOEO5s4rXiJF46+MauxiELcjaewAEK4WwrS8NBwEyhYe9EPsYcQ5pcrQF
QwAd1+y7oLfhpGHv5KJKWswfvbtlLCm6NOAhawq0UXM8bS+79tu0dGjiDzVPBuSf
SyA3VtBSKxcpvCrljw9ubtjxvKrviE0MDvlmTP2B1NU+lwm8xRBiwUwOH29qP9zU
HDeUj2fy
=HkZk
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for Linux 5.16
- Simplification of the 'vcpu first run' by integrating it into
KVM's 'pid change' flow
- Refactoring of the FP and SVE state tracking, also leading to
a simpler state and less shared data between EL1 and EL2 in
the nVHE case
- Tidy up the header file usage for the nvhe hyp object
- New HYP unsharing mechanism, finally allowing pages to be
unmapped from the Stage-1 EL2 page-tables
- Various pKVM cleanups around refcounting and sharing
- A couple of vgic fixes for bugs that would trigger once
the vcpu xarray rework is merged, but not sooner
- Add minimal support for ARMv8.7's PMU extension
- Rework kvm_pgtable initialisation ahead of the NV work
- New selftest for IRQ injection
- Teach selftests about the lack of default IPA space and
page sizes
- Expand sysreg selftest to deal with Pointer Authentication
- The usual bunch of cleanups and doc update
Ganapatrao reported that the kvm_pgtable->mmu pointer is more or
less hardcoded to the main S2 mmu structure, while the nested
code needs it to point to other instances (as we have one instance
per nested context).
Rework the initialisation of the kvm_pgtable structure so that
this assumtion doesn't hold true anymore. This requires some
minor changes to the order in which things are initialised
(the mmu->arch pointer being the critical one).
Reported-by: Ganapatrao Kulkarni <gankulkarni@os.amperecomputing.com>
Reviewed-by: Ganapatrao Kulkarni <gankulkarni@os.amperecomputing.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211129200150.351436-5-maz@kernel.org
* kvm-arm64/pkvm-hyp-sharing:
: .
: Series from Quentin Perret, implementing HYP page share/unshare:
:
: This series implements an unshare hypercall at EL2 in nVHE
: protected mode, and makes use of it to unmmap guest-specific
: data-structures from EL2 stage-1 during guest tear-down.
: Crucially, the implementation of the share and unshare
: routines use page refcounts in the host kernel to avoid
: accidentally unmapping data-structures that overlap a common
: page.
: [...]
: .
KVM: arm64: pkvm: Unshare guest structs during teardown
KVM: arm64: Expose unshare hypercall to the host
KVM: arm64: Implement do_unshare() helper for unsharing memory
KVM: arm64: Implement __pkvm_host_share_hyp() using do_share()
KVM: arm64: Implement do_share() helper for sharing memory
KVM: arm64: Introduce wrappers for host and hyp spin lock accessors
KVM: arm64: Extend pkvm_page_state enumeration to handle absent pages
KVM: arm64: pkvm: Refcount the pages shared with EL2
KVM: arm64: Introduce kvm_share_hyp()
KVM: arm64: Implement kvm_pgtable_hyp_unmap() at EL2
KVM: arm64: Hook up ->page_count() for hypervisor stage-1 page-table
KVM: arm64: Fixup hyp stage-1 refcount
KVM: arm64: Refcount hyp stage-1 pgtable pages
KVM: arm64: Provide {get,put}_page() stubs for early hyp allocator
Signed-off-by: Marc Zyngier <maz@kernel.org>
Introduce an unshare hypercall which can be used to unmap memory from
the hypervisor stage-1 in nVHE protected mode. This will be useful to
update the EL2 ownership state of pages during guest teardown, and
avoids keeping dangling mappings to unreferenced portions of memory.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211215161232.1480836-14-qperret@google.com
Tearing down a previously shared memory region results in the borrower
losing access to the underlying pages and returning them to the "owned"
state in the owner.
Implement a do_unshare() helper, along the same lines as do_share(), to
provide this functionality for the host-to-hyp case.
Reviewed-by: Andrew Walbran <qwandor@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211215161232.1480836-13-qperret@google.com
__pkvm_host_share_hyp() shares memory between the host and the
hypervisor so implement it as an invocation of the new do_share()
mechanism.
Note that double-sharing is no longer permitted (as this allows us to
reduce the number of page-table walks significantly), but is thankfully
no longer relied upon by the host.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211215161232.1480836-12-qperret@google.com
By default, protected KVM isolates memory pages so that they are
accessible only to their owner: be it the host kernel, the hypervisor
at EL2 or (in future) the guest. Establishing shared-memory regions
between these components therefore involves a transition for each page
so that the owner can share memory with a borrower under a certain set
of permissions.
Introduce a do_share() helper for safely sharing a memory region between
two components. Currently, only host-to-hyp sharing is implemented, but
the code is easily extended to handle other combinations and the
permission checks for each component are reusable.
Reviewed-by: Andrew Walbran <qwandor@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211215161232.1480836-11-qperret@google.com
In preparation for adding additional locked sections for manipulating
page-tables at EL2, introduce some simple wrappers around the host and
hypervisor locks so that it's a bit easier to read and bit more difficult
to take the wrong lock (or even take them in the wrong order).
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211215161232.1480836-10-qperret@google.com
Explicitly name the combination of SW0 | SW1 as reserved in the pte and
introduce a new PKVM_NOPAGE meta-state which, although not directly
stored in the software bits of the pte, can be used to represent an
entry for which there is no underlying page. This is distinct from an
invalid pte, as stage-2 identity mappings for the host are created
lazily and so an invalid pte there is the same as a valid mapping for
the purposes of ownership information.
This state will be used for permission checking during page transitions
in later patches.
Reviewed-by: Andrew Walbran <qwandor@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211215161232.1480836-9-qperret@google.com
Implement kvm_pgtable_hyp_unmap() which can be used to remove hypervisor
stage-1 mappings at EL2.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211215161232.1480836-6-qperret@google.com
kvm_pgtable_hyp_unmap() relies on the ->page_count() function callback
being provided by the memory-management operations for the page-table.
Wire up this callback for the hypervisor stage-1 page-table.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211215161232.1480836-5-qperret@google.com
In nVHE-protected mode, the hyp stage-1 page-table refcount is broken
due to the lack of refcount support in the early allocator. Fix-up the
refcount in the finalize walker, once the 'hyp_vmemmap' is up and running.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211215161232.1480836-4-qperret@google.com
To prepare the ground for allowing hyp stage-1 mappings to be removed at
run-time, update the KVM page-table code to maintain a correct refcount
using the ->{get,put}_page() function callbacks.
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211215161232.1480836-3-qperret@google.com
In nVHE protected mode, the EL2 code uses a temporary allocator during
boot while re-creating its stage-1 page-table. Unfortunately, the
hyp_vmmemap is not ready to use at this stage, so refcounting pages
is not possible. That is not currently a problem because hyp stage-1
mappings are never removed, which implies refcounting of page-table
pages is unnecessary.
In preparation for allowing hypervisor stage-1 mappings to be removed,
provide stub implementations for {get,put}_page() in the early allocator.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211215161232.1480836-2-qperret@google.com
* kvm-arm64/pkvm-cleanups-5.17:
: .
: pKVM cleanups from Quentin Perret:
:
: This series is a collection of various fixes and cleanups for KVM/arm64
: when running in nVHE protected mode. The first two patches are real
: fixes/improvements, the following two are minor cleanups, and the last
: two help satisfy my paranoia so they're certainly optional.
: .
KVM: arm64: pkvm: Make kvm_host_owns_hyp_mappings() robust to VHE
KVM: arm64: pkvm: Stub io map functions
KVM: arm64: Make __io_map_base static
KVM: arm64: Make the hyp memory pool static
KVM: arm64: pkvm: Disable GICv2 support
KVM: arm64: pkvm: Fix hyp_pool max order
Signed-off-by: Marc Zyngier <maz@kernel.org>
The __io_map_base variable is used at EL2 to track the end of the
hypervisor's "private" VA range in nVHE protected mode. However it
doesn't need to be used outside of mm.c, so let's make it static to keep
all the hyp VA allocation logic in one place.
Signed-off-by: Quentin Perret <qperret@google.com>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211208152300.2478542-5-qperret@google.com
The hyp memory pool struct is sized to fit exactly the needs of the
hypervisor stage-1 page-table allocator, so it is important it is not
used for anything else. As it is currently used only from setup.c,
reduce its visibility by marking it static.
Signed-off-by: Quentin Perret <qperret@google.com>
Reviewed-by: Andrew Walbran <qwandor@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211208152300.2478542-4-qperret@google.com
The EL2 page allocator in protected mode maintains a per-pool max order
value to optimize allocations when the memory region it covers is small.
However, the max order value is currently under-estimated whenever the
number of pages in the region is a power of two. Fix the estimation.
Signed-off-by: Quentin Perret <qperret@google.com>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211208152300.2478542-2-qperret@google.com
This patch enables KCSAN for arm64, with updates to build rules
to not use KCSAN for several incompatible compilation units.
Recent GCC version(at least GCC10) made outline-atomics as the
default option(unlike Clang), which will cause linker errors
for kernel/kcsan/core.o. Disables the out-of-line atomics by
no-outline-atomics to fix the linker errors.
Meanwhile, as Mark said[1], some latent issues are needed to be
fixed which isn't just a KCSAN problem, we make the KCSAN depends
on EXPERT for now.
Tested selftest and kcsan_test(built with GCC11 and Clang 13),
and all passed.
[1] https://lkml.kernel.org/r/YadiUPpJ0gADbiHQ@FVFF77S0Q05N
Acked-by: Marco Elver <elver@google.com> # kernel/kcsan
Tested-by: Joey Gouly <joey.gouly@arm.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Link: https://lore.kernel.org/r/20211211131734.126874-1-wangkefeng.wang@huawei.com
[catalin.marinas@arm.com: added comment to justify EXPERT]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* kvm-arm64/hyp-header-split:
: .
: Tidy up the header file usage for the nvhe hyp object so
: that header files under arch/arm64/kvm/hyp/include are not
: included by host code running at EL1.
: .
KVM: arm64: Move host EL1 code out of hyp/ directory
KVM: arm64: Generate hyp_constants.h for the host
arm64: Add missing include of asm/cpufeature.h to asm/mmu.h
Signed-off-by: Marc Zyngier <maz@kernel.org>
kvm/hyp/reserved_mem.c contains host code executing at EL1 and is not
linked into the hypervisor object. Move the file into kvm/pkvm.c and
rework the headers so that the definitions shared between the host and
the hypervisor live in asm/kvm_pkvm.h.
Signed-off-by: Will Deacon <will@kernel.org>
Tested-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211202171048.26924-4-will@kernel.org
In order to avoid exposing hypervisor (EL2) data structures directly to
the host, generate hyp_constants.h to provide constants such as structure
sizes to the host without dragging in the definitions themselves.
Signed-off-by: Will Deacon <will@kernel.org>
Tested-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211202171048.26924-3-will@kernel.org
Protected KVM is trying to turn AArch32 exceptions into an illegal
exception entry. Unfortunately, it does that in a way that is a bit
abrupt, and too early for PSTATE to be available.
Instead, move it to the fixup code, which is a more reasonable place
for it. This will also be useful for the NV code.
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
In order to be able to use primitives such as vcpu_mode_is_32bit(),
we need to synchronize the guest PSTATE. However, this is currently
done deep into the bowels of the world-switch code, and we do have
helpers evaluating this much earlier (__vgic_v3_perform_cpuif_access
and handle_aarch32_guest, for example).
Move the saving of the guest pstate into the early fixups, which
cures the first issue. The second one will be addressed separately.
Tested-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Now that we can track an equivalent of TIF_FOREIGN_FPSTATE, drop
the mapping of current's thread_info at EL2.
Signed-off-by: Marc Zyngier <maz@kernel.org>
We currently have to maintain a mapping the thread_info structure
at EL2 in order to be able to check the TIF_FOREIGN_FPSTATE flag.
In order to eventually get rid of this, start with a vcpu flag that
shadows the thread flag on each entry into the hypervisor.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Now that we don't have any users left for __sve_save_state, remove
it altogether. Should we ever need to save the SVE state from the
hypervisor again, we can always re-introduce it.
Suggested-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
The SVE host tracking in KVM is pretty involved. It relies on a
set of flags tracking the ownership of the SVE register, as well
as that of the EL0 access.
It is also pretty scary: __hyp_sve_save_host() computes
a thread_struct pointer and obtains a sve_state which gets directly
accessed without further ado, even on nVHE. How can this even work?
The answer to that is that it doesn't, and that this is mostly dead
code. Closer examination shows that on executing a syscall, userspace
loses its SVE state entirely. This is part of the ABI. Another
thing to notice is that although the kernel provides helpers such as
kernel_neon_begin()/end(), they only deal with the FP/NEON state,
and not SVE.
Given that you can only execute a guest as the result of a syscall,
and that the kernel cannot use SVE by itself, it becomes pretty
obvious that there is never any host SVE state to save, and that
this code is only there to increase confusion.
Get rid of the TIF_SVE tracking and host save infrastructure altogether.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
- Fix the host S2 finalization by solely iterating over the memblocks
instead of the whole IPA space
- Tighten the return value of kvm_vcpu_preferred_target() now that
32bit support is long gone
- Make sure the extraction of ESR_ELx.EC is limited to the architected
bits
- Comment fixups
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmGNhFYPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDA18P/RUmhBWJhx/KE4atccFK6Iy+L4q0vdZehBJN
v/lqMQzqj2DOxClFWTYrLt/GJGjxy9IQorW1F2FTLGWVUp4LgwUPtWJed7qmXYD9
loPq69eVc/c8uwtYRFEsfYSbIGHmwJr6WOO0oA7z8Q0HNusO7mLbSywmo4Uz8eYN
hQHIBZ19WLCoNOz1SctxNfOj4RDav0ybKaR6XZbvuOHOd3wa8zgbNp9e495/ovtG
agWhicFrBOccU7/mZhcGwP4wMI/A/lbxY7KicjrGFHjTCnCOCcFjB+smhhJsjQOr
4KCK4cBvFkXjTRgh764K+KftT+PPQU82ThOoI2S9ZP5v7KdZON0813u/NlXFW/eI
fiJegq568AuQvcJ3RJtNSBV3pgJYVVnG1wlrLNhFmm9F9Wzq9BTw62rgHEV2+k/7
BTGzdHSluCKwxjX7CckEk8ZUsJHRdyApFJBwbPEZhngNg7ZVRqW9oGhO1Oxf8auP
6DlTlCkT436/54YtWiN/Ipp9CptMsPqbX2pQp1kKIgtypmZLjTEGZcYflVu3v2lr
IJYizOfgjJcosjgF4K7hEJLnviow1u7u9S6Odl0XMJ0SJwD+MPkv5KAZLTdkmRa3
0bjayOtaOn1S3R3b3jXVn8v2FXmHAMTmkvboaSEc2bQ9EuTODgBxwXlm8E6TBdoY
Btbmm7DU
=IxVi
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-5.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-master
KVM/arm64 fixes for 5.16, take #1
- Fix the host S2 finalization by solely iterating over the memblocks
instead of the whole IPA space
- Tighten the return value of kvm_vcpu_preferred_target() now that
32bit support is long gone
- Make sure the extraction of ESR_ELx.EC is limited to the architected
bits
- Comment fixups
We currently walk the hypervisor stage-1 page-table towards the end of
hyp init in nVHE protected mode and adjust the host page ownership
attributes in its stage-2 in order to get a consistent state from both
point of views. The walk is done on the entire hyp VA space, and expects
to only ever find page-level mappings. While this expectation is
reasonable in the half of hyp VA space that maps memory with a fixed
offset (see the loop in pkvm_create_mappings_locked()), it can be
incorrect in the other half where nothing prevents the usage of block
mappings. For instance, on systems where memory is physically aligned at
an address that happens to maps to a PMD aligned VA in the hyp_vmemmap,
kvm_pgtable_hyp_map() will install block mappings when backing the
hyp_vmemmap, which will later cause finalize_host_mappings() to fail.
Furthermore, it should be noted that all pages backing the hyp_vmemmap
are also mapped in the 'fixed offset range' of the hypervisor, which
implies that finalize_host_mappings() will walk both aliases and update
the host stage-2 attributes twice. The order in which this happens is
unpredictable, though, since the hyp VA layout is highly dependent on
the position of the idmap page, hence resulting in a fragile mess at
best.
In order to fix all of this, let's restrict the finalization walk to
only cover memory regions in the 'fixed-offset range' of the hyp VA
space and nothing else. This not only fixes a correctness issue, but
will also result in a slighlty faster hyp initialization overall.
Fixes: 2c50166c62 ("KVM: arm64: Mark host bss and rodata section as shared")
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211108154636.393384-1-qperret@google.com
Do not use kernel-doc "/**" notation when the comment is not in
kernel-doc format.
Fixes this docs build warning:
arch/arm64/kvm/hyp/nvhe/sys_regs.c:478: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst
* Handler for protected VM restricted exceptions.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: kernel test robot <lkp@intel.com>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: kvmarm@lists.cs.columbia.edu
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211106032529.15057-1-rdunlap@infradead.org
Since ARMv8.0 the upper 32 bits of ESR_ELx have been RES0, and recently
some of the upper bits gained a meaning and can be non-zero. For
example, when FEAT_LS64 is implemented, ESR_ELx[36:32] contain ISS2,
which for an ST64BV or ST64BV0 can be non-zero. This can be seen in ARM
DDI 0487G.b, page D13-3145, section D13.2.37.
Generally, we must not rely on RES0 bit remaining zero in future, and
when extracting ESR_ELx.EC we must mask out all other bits.
All C code uses the ESR_ELx_EC() macro, which masks out the irrelevant
bits, and therefore no alterations are required to C code to avoid
consuming irrelevant bits.
In a couple of places the KVM assembly extracts ESR_ELx.EC using LSR on
an X register, and so could in theory consume previously RES0 bits. In
both cases this is for comparison with EC values ESR_ELx_EC_HVC32 and
ESR_ELx_EC_HVC64, for which the upper bits of ESR_ELx must currently be
zero, but this could change in future.
This patch adjusts the KVM vectors to use UBFX rather than LSR to
extract ESR_ELx.EC, ensuring these are robust to future additions to
ESR_ELx.
Cc: stable@vger.kernel.org
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211103110545.4613-1-mark.rutland@arm.com
* More progress on the protected VM front, now with the full
fixed feature set as well as the limitation of some hypercalls
after initialisation.
* Cleanup of the RAZ/WI sysreg handling, which was pointlessly
complicated
* Fixes for the vgic placement in the IPA space, together with a
bunch of selftests
* More memcg accounting of the memory allocated on behalf of a guest
* Timer and vgic selftests
* Workarounds for the Apple M1 broken vgic implementation
* KConfig cleanups
* New kvmarm.mode=none option, for those who really dislike us
RISC-V:
* New KVM port.
x86:
* New API to control TSC offset from userspace
* TSC scaling for nested hypervisors on SVM
* Switch masterclock protection from raw_spin_lock to seqcount
* Clean up function prototypes in the page fault code and avoid
repeated memslot lookups
* Convey the exit reason to userspace on emulation failure
* Configure time between NX page recovery iterations
* Expose Predictive Store Forwarding Disable CPUID leaf
* Allocate page tracking data structures lazily (if the i915
KVM-GT functionality is not compiled in)
* Cleanups, fixes and optimizations for the shadow MMU code
s390:
* SIGP Fixes
* initial preparations for lazy destroy of secure VMs
* storage key improvements/fixes
* Log the guest CPNC
Starting from this release, KVM-PPC patches will come from
Michael Ellerman's PPC tree.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmGBOiEUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNowwf/axlx3g9sgCwQHr12/6UF/7hL/RwP
9z+pGiUzjl2YQE+RjSvLqyd6zXh+h4dOdOKbZDLSkSTbcral/8U70ojKnQsXM0XM
1LoymxBTJqkgQBLm9LjYreEbzrPV4irk4ygEmuk3CPOHZu8xX1ei6c5LdandtM/n
XVUkXsQY+STkmnGv4P3GcPoDththCr0tBTWrFWtxa0w9hYOxx0ay1AZFlgM4FFX0
QFuRc8VBLoDJpIUjbkhsIRIbrlHc/YDGjuYnAU7lV/CIME8vf2BW6uBwIZJdYcDj
0ejozLjodEnuKXQGnc8sXFioLX2gbMyQJEvwCgRvUu/EU7ncFm1lfs7THQ==
=UxKM
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- More progress on the protected VM front, now with the full fixed
feature set as well as the limitation of some hypercalls after
initialisation.
- Cleanup of the RAZ/WI sysreg handling, which was pointlessly
complicated
- Fixes for the vgic placement in the IPA space, together with a
bunch of selftests
- More memcg accounting of the memory allocated on behalf of a guest
- Timer and vgic selftests
- Workarounds for the Apple M1 broken vgic implementation
- KConfig cleanups
- New kvmarm.mode=none option, for those who really dislike us
RISC-V:
- New KVM port.
x86:
- New API to control TSC offset from userspace
- TSC scaling for nested hypervisors on SVM
- Switch masterclock protection from raw_spin_lock to seqcount
- Clean up function prototypes in the page fault code and avoid
repeated memslot lookups
- Convey the exit reason to userspace on emulation failure
- Configure time between NX page recovery iterations
- Expose Predictive Store Forwarding Disable CPUID leaf
- Allocate page tracking data structures lazily (if the i915 KVM-GT
functionality is not compiled in)
- Cleanups, fixes and optimizations for the shadow MMU code
s390:
- SIGP Fixes
- initial preparations for lazy destroy of secure VMs
- storage key improvements/fixes
- Log the guest CPNC
Starting from this release, KVM-PPC patches will come from Michael
Ellerman's PPC tree"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
RISC-V: KVM: fix boolreturn.cocci warnings
RISC-V: KVM: remove unneeded semicolon
RISC-V: KVM: Fix GPA passed to __kvm_riscv_hfence_gvma_xyz() functions
RISC-V: KVM: Factor-out FP virtualization into separate sources
KVM: s390: add debug statement for diag 318 CPNC data
KVM: s390: pv: properly handle page flags for protected guests
KVM: s390: Fix handle_sske page fault handling
KVM: x86: SGX must obey the KVM_INTERNAL_ERROR_EMULATION protocol
KVM: x86: On emulation failure, convey the exit reason, etc. to userspace
KVM: x86: Get exit_reason as part of kvm_x86_ops.get_exit_info
KVM: x86: Clarify the kvm_run.emulation_failure structure layout
KVM: s390: Add a routine for setting userspace CPU state
KVM: s390: Simplify SIGP Set Arch handling
KVM: s390: pv: avoid stalls when making pages secure
KVM: s390: pv: avoid stalls for kvm_s390_pv_init_vm
KVM: s390: pv: avoid double free of sida page
KVM: s390: pv: add macros for UVC CC values
s390/mm: optimize reset_guest_reference_bit()
s390/mm: optimize set_guest_storage_key()
s390/mm: no need for pte_alloc_map_lock() if we know the pmd is present
...
- Support for the Arm8.6 timer extensions, including a self-synchronising
view of the system registers to elide some expensive ISB instructions.
- Exception table cleanup and rework so that the fixup handlers appear
correctly in backtraces.
- A handful of miscellaneous changes, the main one being selection of
CONFIG_HAVE_POSIX_CPU_TIMERS_TASK_WORK.
- More mm and pgtable cleanups.
- KASAN support for "asymmetric" MTE, where tag faults are reported
synchronously for loads (via an exception) and asynchronously for
stores (via a register).
- Support for leaving the MMU enabled during kexec relocation, which
significantly speeds up the operation.
- Minor improvements to our perf PMU drivers.
- Improvements to the compat vDSO build system, particularly when
building with LLVM=1.
- Preparatory work for handling some Coresight TRBE tracing errata.
- Cleanup and refactoring of the SVE code to pave the way for SME
support in future.
- Ensure SCS pages are unpoisoned immediately prior to freeing them
when KASAN is enabled for the vmalloc area.
- Try moving to the generic pfn_valid() implementation again now that
the DMA mapping issue from last time has been resolved.
- Numerous improvements and additions to our FPSIMD and SVE selftests.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmF74ZYQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNI/eB/UZYAtmNi6xC5StPaETyMLeZph9BV/IqIFq
N71ds7MFzlX/agR6MwLbH2tBHezBtlQ90O732Jjz8zAec2cHd+7sx/w82JesX7PB
IuOfqP78rvtU4ZkKe1Rcd96QtYvbtNAqcRhIo95OzfV9xwuzkvdXI+ZTYhtCfCuZ
GozCqQoJtnNDayMtfzbDSXyJLNJc/qnIcUQhrt3vg12zbF3BcHxnmp0nBcHCqZEo
lDJYufju7p87kCzaFYda2WhlI3t+NThqKOiZ332wQfqzNcr+rw1Y4jWbnCfrdLtI
JfHT9yiuHDmFSYaJrk7NU8kftW31NV70bbhD7rZ+DQCVndl0lRc=
=3R3j
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"There's the usual summary below, but the highlights are support for
the Armv8.6 timer extensions, KASAN support for asymmetric MTE, the
ability to kexec() with the MMU enabled and a second attempt at
switching to the generic pfn_valid() implementation.
Summary:
- Support for the Arm8.6 timer extensions, including a
self-synchronising view of the system registers to elide some
expensive ISB instructions.
- Exception table cleanup and rework so that the fixup handlers
appear correctly in backtraces.
- A handful of miscellaneous changes, the main one being selection of
CONFIG_HAVE_POSIX_CPU_TIMERS_TASK_WORK.
- More mm and pgtable cleanups.
- KASAN support for "asymmetric" MTE, where tag faults are reported
synchronously for loads (via an exception) and asynchronously for
stores (via a register).
- Support for leaving the MMU enabled during kexec relocation, which
significantly speeds up the operation.
- Minor improvements to our perf PMU drivers.
- Improvements to the compat vDSO build system, particularly when
building with LLVM=1.
- Preparatory work for handling some Coresight TRBE tracing errata.
- Cleanup and refactoring of the SVE code to pave the way for SME
support in future.
- Ensure SCS pages are unpoisoned immediately prior to freeing them
when KASAN is enabled for the vmalloc area.
- Try moving to the generic pfn_valid() implementation again now that
the DMA mapping issue from last time has been resolved.
- Numerous improvements and additions to our FPSIMD and SVE
selftests"
[ armv8.6 timer updates were in a shared branch and already came in
through -tip in the timer pull - Linus ]
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (85 commits)
arm64: Select POSIX_CPU_TIMERS_TASK_WORK
arm64: Document boot requirements for FEAT_SME_FA64
arm64/sve: Fix warnings when SVE is disabled
arm64/sve: Add stub for sve_max_virtualisable_vl()
arm64: errata: Add detection for TRBE write to out-of-range
arm64: errata: Add workaround for TSB flush failures
arm64: errata: Add detection for TRBE overwrite in FILL mode
arm64: Add Neoverse-N2, Cortex-A710 CPU part definition
selftests: arm64: Factor out utility functions for assembly FP tests
arm64: vmlinux.lds.S: remove `.fixup` section
arm64: extable: add load_unaligned_zeropad() handler
arm64: extable: add a dedicated uaccess handler
arm64: extable: add `type` and `data` fields
arm64: extable: use `ex` for `exception_table_entry`
arm64: extable: make fixup_exception() return bool
arm64: extable: consolidate definitions
arm64: gpr-num: support W registers
arm64: factor out GPR numbering helpers
arm64: kvm: use kvm_exception_table_entry
arm64: lib: __arch_copy_to_user(): fold fixups into body
...
- More progress on the protected VM front, now with the full
fixed feature set as well as the limitation of some hypercalls
after initialisation.
- Cleanup of the RAZ/WI sysreg handling, which was pointlessly
complicated
- Fixes for the vgic placement in the IPA space, together with a
bunch of selftests
- More memcg accounting of the memory allocated on behalf of a guest
- Timer and vgic selftests
- Workarounds for the Apple M1 broken vgic implementation
- KConfig cleanups
- New kvmarm.mode=none option, for those who really dislike us
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmF7u5YPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpD6w8QAIKDLJCTqkxv5Vh4ZSmtXxg4gTZMBlg8oSQ8
sVL639aqBvFe3A6Vmz6IwBm+NT7Sm1zxkuH9qHzVR1gmXq0oLYNrIuyrzRW8PvqO
hIkSRRoVsf03755TmkxwR7/2jAFxb6FhEVAy6VWdQyI44orihIPvMp8aTIq+jvU+
XoNGb/rPf9HpSUtvuaHYvZhSZBhoi5dRnkr33R1+VR69n7Axs8lm905xcl6Pt0a0
QqYZWQvFu/BXPyNflG7LUsegRF/iiV2vNTbNNowkzlV5suqxBpJAp6ApDL/gWrHv
ya/6cMqicSjBIkWnawhXY98w6/5xfzK4IV/zc00FNWOlUdVP89Thqrgc8EkigS9R
BGcxFFqj41snr+ensSBBIkNtV+dBX52H3rUE0F9seiTXm8QWI86JobdeNadT8tUP
TXdOeCUcA+cp4Ngln18lsbOEaBkPA5H1po1nUFPHbKnVOxnqXScB7E/xF6rAbryV
m+Z+oidU7MyS/Ev/Da0ww/XFx7cs2ez9EgeQvjcdFAvUMqS6kcXEExvgGYlm+KRQ
GBMKPLCNHKdflMANoSpol7MZUmPJ45XoWKW1rntj2r9X+oJW2Z2hEx32xrWDJdqK
ixnbjog5kNZb0CjLGsUC90lo2hpRJecaLhAjgTLYaNC1QxGPrt92eat6gnwuMTBc
mpADqi7w
=qBAO
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for Linux 5.16
- More progress on the protected VM front, now with the full
fixed feature set as well as the limitation of some hypercalls
after initialisation.
- Cleanup of the RAZ/WI sysreg handling, which was pointlessly
complicated
- Fixes for the vgic placement in the IPA space, together with a
bunch of selftests
- More memcg accounting of the memory allocated on behalf of a guest
- Timer and vgic selftests
- Workarounds for the Apple M1 broken vgic implementation
- KConfig cleanups
- New kvmarm.mode=none option, for those who really dislike us
* for-next/sve:
arm64/sve: Fix warnings when SVE is disabled
arm64/sve: Add stub for sve_max_virtualisable_vl()
arm64/sve: Track vector lengths for tasks in an array
arm64/sve: Explicitly load vector length when restoring SVE state
arm64/sve: Put system wide vector length information into structs
arm64/sve: Use accessor functions for vector lengths in thread_struct
arm64/sve: Rename find_supported_vector_length()
arm64/sve: Make access to FFR optional
arm64/sve: Make sve_state_size() static
arm64/sve: Remove sve_load_from_fpsimd_state()
arm64/fp: Reindent fpsimd_save()
In subsequent patches we'll alter `struct exception_table_entry`, adding
fields that are not needed for KVM exception fixups.
In preparation for this, migrate KVM to its own `struct
kvm_exception_table_entry`, which is identical to the current format of
`struct exception_table_entry`. Comments are updated accordingly.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211019160219.5202-5-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Currently when restoring the SVE state we supply the SVE vector length
as an argument to sve_load_state() and the underlying macros. This becomes
inconvenient with the addition of SME since we may need to restore any
combination of SVE and SME vector lengths, and we already separately
restore the vector length in the KVM code. We don't need to know the vector
length during the actual register load since the SME load instructions can
index into the data array for us.
Refactor the interface so we explicitly set the vector length separately
to restoring the SVE registers in preparation for adding SME support, no
functional change should be involved.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20211019172247.3045838-9-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
SME introduces streaming SVE mode in which FFR is not present and the
instructions for accessing it UNDEF. In preparation for handling this
update the low level SVE state access functions to take a flag specifying
if FFR should be handled. When saving the register state we store a zero
for FFR to guard against uninitialized data being read. No behaviour change
should be introduced by this patch.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20211019172247.3045838-5-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
* kvm-arm64/pkvm/fixed-features: (22 commits)
: .
: Add the pKVM fixed feature that allows a bunch of exceptions
: to either be forbidden or be easily handled at EL2.
: .
KVM: arm64: pkvm: Give priority to standard traps over pvm handling
KVM: arm64: pkvm: Pass vpcu instead of kvm to kvm_get_exit_handler_array()
KVM: arm64: pkvm: Move kvm_handle_pvm_restricted around
KVM: arm64: pkvm: Consolidate include files
KVM: arm64: pkvm: Preserve pending SError on exit from AArch32
KVM: arm64: pkvm: Handle GICv3 traps as required
KVM: arm64: pkvm: Drop sysregs that should never be routed to the host
KVM: arm64: pkvm: Drop AArch32-specific registers
KVM: arm64: pkvm: Make the ERR/ERX*_EL1 registers RAZ/WI
KVM: arm64: pkvm: Use a single function to expose all id-regs
KVM: arm64: Fix early exit ptrauth handling
KVM: arm64: Handle protected guests at 32 bits
KVM: arm64: Trap access to pVM restricted features
KVM: arm64: Move sanitized copies of CPU features
KVM: arm64: Initialize trap registers for protected VMs
KVM: arm64: Add handlers for protected VM System Registers
KVM: arm64: Simplify masking out MTE in feature id reg
KVM: arm64: Add missing field descriptor for MDCR_EL2
KVM: arm64: Pass struct kvm to per-EC handlers
KVM: arm64: Move early handlers to per-EC handlers
...
Signed-off-by: Marc Zyngier <maz@kernel.org>
Checking for pvm handling first means that we cannot handle ptrauth
traps or apply any of the workarounds (GICv3 or TX2 #219).
Flip the order around.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20211013120346.2926621-12-maz@kernel.org
Passing a VM pointer around is odd, and results in extra work on
VHE. Follow the rest of the design that uses the vcpu instead, and
let the nVHE code look into the struct kvm as required.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20211013120346.2926621-11-maz@kernel.org
Place kvm_handle_pvm_restricted() next to its little friends such
as kvm_handle_pvm_sysreg().
This allows to make inject_undef64() static.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20211013120346.2926621-10-maz@kernel.org