vhost-device/i2c/src/i2c.rs
Sergii Glushchenko c2e8d01cb9 Fix clippy warnings and adjust coverage
Signed-off-by: Sergii Glushchenko <gsserge@amazon.com>
2022-01-19 13:30:06 +01:00

1118 lines
32 KiB
Rust

// Low level I2C definitions
//
// Copyright 2021 Linaro Ltd. All Rights Reserved.
// Viresh Kumar <viresh.kumar@linaro.org>
//
// SPDX-License-Identifier: Apache-2.0
use log::info;
use std::collections::HashMap;
use std::fs::{File, OpenOptions};
use std::os::unix::io::AsRawFd;
use libc::{c_ulong, ioctl};
use thiserror::Error as ThisError;
use vmm_sys_util::errno::Error as IoError;
use super::AdapterConfig;
// The type of the `req` parameter is different for the `musl` library. This will enable
// successful build for other non-musl libraries.
#[cfg(target_env = "musl")]
type IoctlRequest = libc::c_int;
#[cfg(not(target_env = "musl"))]
type IoctlRequest = c_ulong;
type Result<T> = std::result::Result<T, Error>;
#[derive(Copy, Clone, Debug, PartialEq, ThisError)]
/// Errors related to low level i2c helpers
pub enum Error {
#[error("Incorrect message length for {0} operation: {1}")]
MessageLengthInvalid(&'static str, usize),
#[error("Invalid SMBUS command: {0}")]
SMBusCommandInvalid(u32),
#[error("Invalid SMBus transfer, request-count: {0}, req[0].len: {1}, req[1].len: {2}")]
SMBusTransferInvalid(usize, u16, u16),
#[error("Invalid I2C transfer, request with invalid count: {0}")]
I2cTransferInvalid(usize),
#[error("Failed to open adapter at /dev/i2c-{0}")]
DeviceOpenFailed(u32),
#[error("Ioctl command failed for {0} operation: {1}")]
IoctlFailure(&'static str, IoError),
#[error("Invalid Adapter function: {0:x}")]
AdapterFunctionInvalid(u64),
#[error("Invalid Client Address")]
ClientAddressInvalid,
}
/// Linux I2C/SMBUS definitions
/// IOCTL commands, refer Linux's Documentation/i2c/dev-interface.rst for further details.
/// NOTE: Slave address is 7 or 10 bits, but 10-bit addresses are NOT supported!
/// (due to code brokenness)
const I2C_SLAVE: IoctlRequest = 0x0703; // Use this slave address
const I2C_FUNCS: IoctlRequest = 0x0705; // Get the adapter functionality mask
const I2C_RDWR: IoctlRequest = 0x0707; // Combined R/W transfer (one STOP only)
const I2C_SMBUS: IoctlRequest = 0x0720; // SMBus transfer
/// Functions
const I2C_FUNC_I2C: u64 = 0x00000001;
const I2C_FUNC_SMBUS_READ_BYTE: u64 = 0x00020000;
const I2C_FUNC_SMBUS_WRITE_BYTE: u64 = 0x00040000;
const I2C_FUNC_SMBUS_READ_BYTE_DATA: u64 = 0x00080000;
const I2C_FUNC_SMBUS_WRITE_BYTE_DATA: u64 = 0x00100000;
const I2C_FUNC_SMBUS_READ_WORD_DATA: u64 = 0x00200000;
const I2C_FUNC_SMBUS_WRITE_WORD_DATA: u64 = 0x00400000;
const I2C_FUNC_SMBUS_BYTE: u64 = I2C_FUNC_SMBUS_READ_BYTE | I2C_FUNC_SMBUS_WRITE_BYTE;
const I2C_FUNC_SMBUS_BYTE_DATA: u64 =
I2C_FUNC_SMBUS_READ_BYTE_DATA | I2C_FUNC_SMBUS_WRITE_BYTE_DATA;
const I2C_FUNC_SMBUS_WORD_DATA: u64 =
I2C_FUNC_SMBUS_READ_WORD_DATA | I2C_FUNC_SMBUS_WRITE_WORD_DATA;
const I2C_FUNC_SMBUS_ALL: u64 =
I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA;
/// I2C protocol definitions
pub const I2C_M_RD: u16 = 0x0001; // read data, from slave to master
/// Copied (partially) from Linux's include/uapi/linux/i2c.h
///
/// I2cMsg - an I2C transaction segment beginning with START
///
/// @addr: Slave address, only 7 bit supported by virtio specification.
///
/// @flags:
/// Supported by all adapters:
/// %I2C_M_RD: read data (from slave to master). Guaranteed to be 0x0001!
///
/// Optional:
/// These aren't supported by virtio specification yet.
///
/// @len: Number of data bytes in @buf being read from or written to the I2C
/// slave address.
///
/// @buf: The buffer into which data is read, or from which it's written.
///
/// An I2cMsg is the low level representation of one segment of an I2C
/// transaction.
///
/// Each transaction begins with a START. That is followed by the slave
/// address, and a bit encoding read versus write. Then follow all the
/// data bytes, possibly including a byte with SMBus PEC. The transfer
/// terminates with a NAK, or when all those bytes have been transferred
/// and ACKed. If this is the last message in a group, it is followed by
/// a STOP. Otherwise it is followed by the next @I2cMsg transaction
/// segment, beginning with a (repeated) START.
#[repr(C)]
struct I2cMsg {
addr: u16,
flags: u16,
len: u16,
buf: *mut u8,
}
/// This is the structure as used in the I2C_RDWR ioctl call
#[repr(C)]
pub struct I2cRdwrIoctlData {
msgs: *mut I2cMsg,
nmsgs: u32,
}
/// SMBUS protocol definitions
/// SMBUS read or write markers
const I2C_SMBUS_WRITE: u8 = 0;
const I2C_SMBUS_READ: u8 = 1;
/// SMBus transaction types (size parameter in the above functions)
const I2C_SMBUS_QUICK: u32 = 0;
const I2C_SMBUS_BYTE: u32 = 1;
const I2C_SMBUS_BYTE_DATA: u32 = 2;
const I2C_SMBUS_WORD_DATA: u32 = 3;
/// As specified in SMBus standard
const I2C_SMBUS_BLOCK_MAX: usize = 32;
#[repr(C)]
union I2cSmbusData {
byte: u8,
word: u16,
/// block[0] is used for length, and one more for user-space compatibility
block: [u8; I2C_SMBUS_BLOCK_MAX + 2],
}
impl I2cSmbusData {
fn read_byte(&self) -> u8 {
// Safe as we will only read the relevant bytes
unsafe { self.byte }
}
fn read_word(&self) -> u16 {
// Safe as we will only read the relevant bytes
unsafe { self.word }
}
}
/// This is the structure as used in the I2C_SMBUS ioctl call
#[repr(C)]
pub struct I2cSmbusIoctlData {
read_write: u8,
command: u8,
size: u32,
data: *mut I2cSmbusData,
}
pub struct SmbusMsg {
read_write: u8,
command: u8,
size: u32,
data: Option<I2cSmbusData>,
}
impl SmbusMsg {
/// Based on Linux's drivers/i2c/i2c-core-smbus.c:i2c_smbus_xfer_emulated().
///
/// These smbus related functions try to reverse what Linux does, only
/// support basic modes (up to word transfer).
fn new(reqs: &mut [I2cReq]) -> Result<SmbusMsg> {
let mut data = I2cSmbusData {
block: [0; I2C_SMBUS_BLOCK_MAX + 2],
};
// Write messages have only one request message, while read messages
// will have two (except for few special cases of I2C_SMBUS_QUICK and
// I2C_SMBUS_BYTE, where only one request messages is sent).
match reqs.len() {
// Write requests (with some exceptions as mentioned above)
1 => {
let read_write = match reqs[0].flags & I2C_M_RD {
0 => I2C_SMBUS_WRITE,
_ => I2C_SMBUS_READ,
};
match reqs[0].len {
// Special Read requests
0 => Ok(SmbusMsg {
read_write,
command: 0,
size: I2C_SMBUS_QUICK,
data: None,
}),
1 => Ok(SmbusMsg {
read_write,
command: reqs[0].buf[0],
size: I2C_SMBUS_BYTE,
data: Some(data),
}),
// Write requests
2 => {
if read_write == I2C_SMBUS_READ {
// Special Read requests, reqs[0].len can be 0 or 1 only.
Err(Error::MessageLengthInvalid("read", 2))
} else {
data.byte = reqs[0].buf[1];
Ok(SmbusMsg {
read_write,
command: reqs[0].buf[0],
size: I2C_SMBUS_BYTE_DATA,
data: Some(data),
})
}
}
3 => {
if read_write == I2C_SMBUS_READ {
// Special Read requests, reqs[0].len can be 0 or 1 only.
Err(Error::MessageLengthInvalid("read", 3))
} else {
data.word = reqs[0].buf[1] as u16 | ((reqs[0].buf[2] as u16) << 8);
Ok(SmbusMsg {
read_write,
command: reqs[0].buf[0],
size: I2C_SMBUS_WORD_DATA,
data: Some(data),
})
}
}
_ => Err(Error::MessageLengthInvalid("write", reqs[0].len as usize)),
}
}
// Read requests
2 => {
// The first request contains the command, so its length must be
// set to 1 and shouldn't have I2C_M_RD set in flags.
//
// The second request contains the read buffer, so must have its
// I2C_M_RD flag set. We don't support block transfers yet and
// so its length shouldn't be greater than 2.
if ((reqs[0].flags & I2C_M_RD) != 0)
|| ((reqs[1].flags & I2C_M_RD) == 0)
|| (reqs[0].len != 1)
|| (reqs[1].len > 2)
{
Err(Error::SMBusTransferInvalid(
reqs.len(),
reqs[0].len,
reqs[1].len,
))
} else {
Ok(SmbusMsg {
read_write: I2C_SMBUS_READ,
command: reqs[0].buf[0],
size: if reqs[1].len == 1 {
I2C_SMBUS_BYTE_DATA
} else {
I2C_SMBUS_WORD_DATA
},
data: Some(data),
})
}
}
_ => Err(Error::SMBusTransferInvalid(
reqs.len(),
reqs[0].len,
reqs[1].len,
)),
}
}
}
/// I2C definitions
pub struct I2cReq {
pub addr: u16,
pub flags: u16,
pub len: u16,
pub buf: Vec<u8>,
}
/// Trait that represents an I2C Device.
///
/// This trait is introduced for development purposes only, and should not
/// be used outside of this crate. The purpose of this trait is to provide a
/// mock implementation for the I2C driver so that we can test the I2C
/// functionality without the need of a physical device.
pub trait I2cDevice {
// Open the device specified by the adapter number.
fn open(device_path: &str, adapter_no: u32) -> Result<Self>
where
Self: Sized;
// Corresponds to the I2C_FUNCS ioctl call.
fn funcs(&mut self) -> Result<u64>;
// Corresponds to the I2C_RDWR ioctl call.
fn rdwr(&self, reqs: &mut [I2cReq]) -> Result<()>;
// Corresponds to the I2C_SMBUS ioctl call.
fn smbus(&self, msg: &mut SmbusMsg) -> Result<()>;
// Corresponds to the I2C_SLAVE ioctl call.
fn slave(&self, addr: u64) -> Result<()>;
// Returns the adapter number corresponding to this device.
fn adapter_no(&self) -> u32;
}
/// A physical I2C device. This structure can only be initialized on hosts
/// where `/dev/i2c-XX` is available.
#[derive(Debug)]
pub struct PhysDevice {
file: File,
adapter_no: u32,
}
impl I2cDevice for PhysDevice {
fn open(device_path: &str, adapter_no: u32) -> Result<Self> {
Ok(PhysDevice {
file: OpenOptions::new()
.read(true)
.write(true)
.open(device_path)
.map_err(|_| Error::DeviceOpenFailed(adapter_no))?,
adapter_no,
})
}
fn funcs(&mut self) -> Result<u64> {
let mut func: u64 = 0;
// Safe as the file is a valid I2C adapter, the kernel will only
// update the correct amount of memory in func.
let ret = unsafe { ioctl(self.file.as_raw_fd(), I2C_FUNCS, &mut func) };
if ret == -1 {
Err(Error::IoctlFailure("funcs", IoError::last()))
} else {
Ok(func)
}
}
fn rdwr(&self, reqs: &mut [I2cReq]) -> Result<()> {
let mut msgs: Vec<I2cMsg> = Vec::with_capacity(reqs.len());
let len = reqs.len();
for req in reqs {
if req.len == 0 {
return Err(Error::I2cTransferInvalid(0));
}
msgs.push(I2cMsg {
addr: req.addr,
flags: req.flags,
len: req.len,
buf: req.buf.as_mut_ptr(),
});
}
let mut data = I2cRdwrIoctlData {
msgs: msgs.as_mut_ptr(),
nmsgs: len as u32,
};
// Safe as the file is a valid I2C adapter, the kernel will only
// update the correct amount of memory in data.
let ret = unsafe { ioctl(self.file.as_raw_fd(), I2C_RDWR, &mut data) };
if ret == -1 {
Err(Error::IoctlFailure("rdwr", IoError::last()))
} else {
Ok(())
}
}
fn smbus(&self, msg: &mut SmbusMsg) -> Result<()> {
let mut smbus_data = I2cSmbusIoctlData {
read_write: msg.read_write,
command: msg.command,
size: msg.size,
data: match &mut msg.data {
Some(data) => data,
_ => std::ptr::null_mut(),
},
};
// Safe as the file is a valid I2C adapter, the kernel will only
// update the correct amount of memory in data.
let ret = unsafe { ioctl(self.file.as_raw_fd(), I2C_SMBUS, &mut smbus_data) };
if ret == -1 {
Err(Error::IoctlFailure("smbus", IoError::last()))
} else {
Ok(())
}
}
fn slave(&self, addr: u64) -> Result<()> {
// Safe as the file is a valid I2C adapter.
let ret = unsafe { ioctl(self.file.as_raw_fd(), I2C_SLAVE, addr as c_ulong) };
if ret == -1 {
Err(Error::IoctlFailure("slave", IoError::last()))
} else {
Ok(())
}
}
fn adapter_no(&self) -> u32 {
self.adapter_no
}
}
#[derive(Debug)]
pub struct I2cAdapter<D: I2cDevice> {
device: D,
adapter_no: u32,
smbus: bool,
}
impl<D: I2cDevice> I2cAdapter<D> {
// Creates a new adapter corresponding to `device`.
fn new(mut device: D) -> Result<I2cAdapter<D>> {
let smbus;
let func = device.funcs()?;
if (func & I2C_FUNC_I2C) != 0 {
smbus = false;
} else if (func & I2C_FUNC_SMBUS_ALL) != 0 {
smbus = true;
} else {
return Err(Error::AdapterFunctionInvalid(func));
}
Ok(I2cAdapter {
adapter_no: device.adapter_no(),
device,
smbus,
})
}
/// Perform I2C_RDWR transfer
fn i2c_transfer(&self, reqs: &mut [I2cReq]) -> Result<()> {
self.device.rdwr(reqs)
}
/// Perform I2C_SMBUS transfer
fn smbus_transfer(&self, reqs: &mut [I2cReq]) -> Result<()> {
let mut msg = SmbusMsg::new(reqs)?;
self.device.smbus(&mut msg)?;
if msg.read_write == I2C_SMBUS_READ {
match msg.size {
I2C_SMBUS_QUICK => {}
I2C_SMBUS_BYTE => reqs[0].buf[0] = msg.data.unwrap().read_byte(),
I2C_SMBUS_BYTE_DATA => reqs[1].buf[0] = msg.data.unwrap().read_byte(),
I2C_SMBUS_WORD_DATA => {
let word = msg.data.unwrap().read_word();
reqs[1].buf[0] = (word & 0xff) as u8;
reqs[1].buf[1] = (word >> 8) as u8;
}
_ => {
return Err(Error::SMBusCommandInvalid(msg.size));
}
}
}
Ok(())
}
fn adapter_no(&self) -> u32 {
self.adapter_no
}
fn is_smbus(&self) -> bool {
self.smbus
}
/// Sets device's address for an I2C adapter.
fn set_device_addr(&self, addr: usize) -> Result<()> {
self.device.slave(addr as u64)
}
fn transfer(&self, reqs: &mut [I2cReq]) -> Result<()> {
if self.is_smbus() {
self.smbus_transfer(reqs)
} else {
self.i2c_transfer(reqs)
}
}
}
/// I2C map and helpers
pub(crate) const MAX_I2C_VDEV: usize = 1 << 7;
pub struct I2cMap<D: I2cDevice> {
adapters: Vec<I2cAdapter<D>>,
device_map: HashMap<u16, usize>,
}
impl<D: I2cDevice> I2cMap<D> {
pub(crate) fn new(device_config: &AdapterConfig) -> Result<Self>
where
Self: Sized,
{
let mut device_map = HashMap::new();
let mut adapters: Vec<I2cAdapter<D>> = Vec::new();
let prefix = "/dev/i2c-";
for (i, device_cfg) in device_config.inner.iter().enumerate() {
let device = D::open(
&format!("{}{}", prefix, device_cfg.adapter_no),
device_cfg.adapter_no,
)?;
let adapter = I2cAdapter::new(device)?;
// Check that all addresses corresponding to the adapter are valid.
for addr in &device_cfg.addr {
adapter.set_device_addr(*addr as usize)?;
device_map.insert(*addr, i);
}
info!(
"Added I2C master with bus id: {:x} for devices",
adapter.adapter_no(),
);
adapters.push(adapter);
}
Ok(I2cMap {
adapters,
device_map,
})
}
pub fn transfer(&self, reqs: &mut [I2cReq]) -> Result<()> {
let device = reqs[0].addr;
// identify the device in the device_map
let index = match self.device_map.get(&device) {
Some(&index) => index,
// This can happen a lot while scanning the bus, don't print any errors.
None => return Err(Error::ClientAddressInvalid),
};
// get the corresponding adapter based on the device config.
let adapter = &self.adapters[index as usize];
// Set device's address
adapter.set_device_addr(device as usize)?;
adapter.transfer(reqs)
}
}
#[cfg(test)]
pub mod tests {
use super::*;
use std::convert::TryFrom;
use vmm_sys_util::tempfile::TempFile;
// Update read-buffer of each write-buffer with index + 1 value.
pub fn update_rdwr_buf(buf: &mut Vec<u8>) {
for (i, byte) in buf.iter_mut().enumerate() {
*byte = i as u8 + 1;
}
}
// Verify the write-buffer passed to us
pub fn verify_rdwr_buf(buf: &[u8]) {
for (i, byte) in buf.iter().enumerate() {
assert_eq!(*byte, i as u8 + 1);
}
}
#[derive(Debug)]
pub struct DummyDevice {
funcs_result: Result<u64>,
rdwr_result: Result<()>,
smbus_result: Result<()>,
slave_result: Result<()>,
adapter_no: u32,
}
impl Default for DummyDevice {
fn default() -> Self {
Self {
funcs_result: Ok(I2C_FUNC_I2C),
rdwr_result: Ok(()),
smbus_result: Ok(()),
slave_result: Ok(()),
adapter_no: 0,
}
}
}
impl I2cDevice for DummyDevice {
fn open(_path: &str, adapter_no: u32) -> Result<Self>
where
Self: Sized,
{
Ok(DummyDevice {
adapter_no,
..Default::default()
})
}
fn funcs(&mut self) -> Result<u64> {
self.funcs_result
}
fn rdwr(&self, reqs: &mut [I2cReq]) -> Result<()> {
for req in reqs {
if req.len == 0 {
return Err(Error::I2cTransferInvalid(0));
}
if (req.flags & I2C_M_RD) != 0 {
update_rdwr_buf(&mut req.buf);
} else {
verify_rdwr_buf(&req.buf);
}
}
self.rdwr_result
}
fn smbus(&self, msg: &mut SmbusMsg) -> Result<()> {
// Update data unconditionally to 1 and 2.
if let Some(data) = &mut msg.data {
data.word = 0x0201;
}
self.smbus_result
}
fn slave(&self, _addr: u64) -> Result<()> {
self.slave_result
}
fn adapter_no(&self) -> u32 {
self.adapter_no
}
}
fn verify_rdwr_data(reqs: &[I2cReq]) {
// Match what's done by DummyDevice::rdwr()
for req in reqs {
if (req.flags & I2C_M_RD) != 0 {
verify_rdwr_buf(&req.buf);
}
}
}
#[test]
fn test_funcs() {
let i2c_device = DummyDevice {
funcs_result: Ok(I2C_FUNC_SMBUS_ALL),
..Default::default()
};
let adapter = I2cAdapter::new(i2c_device).unwrap();
assert!(adapter.smbus);
let i2c_device = DummyDevice {
funcs_result: Ok(I2C_FUNC_I2C),
..Default::default()
};
let adapter = I2cAdapter::new(i2c_device).unwrap();
assert!(!adapter.smbus);
let i2c_device = DummyDevice {
funcs_result: Ok(0),
..Default::default()
};
assert_eq!(
I2cAdapter::new(i2c_device).unwrap_err(),
Error::AdapterFunctionInvalid(0)
);
}
#[test]
fn test_i2c_map() {
let adapter_config = AdapterConfig::try_from("1:4,2:32:21,5:10:23").unwrap();
let i2c_map: I2cMap<DummyDevice> = I2cMap::new(&adapter_config).unwrap();
assert_eq!(i2c_map.adapters.len(), 3);
assert_eq!(i2c_map.adapters[0].adapter_no(), 1);
assert_eq!(i2c_map.adapters[1].adapter_no(), 2);
assert_eq!(i2c_map.adapters[2].adapter_no(), 5);
assert_eq!(i2c_map.device_map.get(&4), Some(&0));
assert_eq!(i2c_map.device_map.get(&32), Some(&1));
assert_eq!(i2c_map.device_map.get(&21), Some(&1));
assert_eq!(i2c_map.device_map.get(&10), Some(&2));
assert_eq!(i2c_map.device_map.get(&23), Some(&2));
}
#[test]
fn test_i2c_transfer() {
let adapter_config = AdapterConfig::try_from("1:3").unwrap();
let mut i2c_map: I2cMap<DummyDevice> = I2cMap::new(&adapter_config).unwrap();
i2c_map.adapters[0].smbus = false;
// Read-Write-Read-Write-Read block
let mut reqs: Vec<I2cReq> = vec![
I2cReq {
addr: 0x3,
flags: I2C_M_RD,
len: 20,
buf: vec![0; 20],
},
I2cReq {
addr: 0x3,
flags: 0,
len: 10,
buf: vec![0; 10],
},
I2cReq {
addr: 0x3,
flags: I2C_M_RD,
len: 25,
buf: vec![0; 25],
},
I2cReq {
addr: 0x3,
flags: 0,
len: 11,
buf: vec![0; 11],
},
I2cReq {
addr: 0x3,
flags: I2C_M_RD,
len: 30,
buf: vec![0; 30],
},
];
for req in &mut reqs {
if (req.flags & I2C_M_RD) == 0 {
update_rdwr_buf(&mut req.buf);
}
}
i2c_map.transfer(&mut *reqs).unwrap();
verify_rdwr_data(&reqs);
}
#[test]
fn test_verify_smbus_data() {
let data = I2cSmbusData { word: 0x050A };
assert_eq!(data.read_byte(), 0x0A);
assert_eq!(data.read_word(), 0x050A);
}
#[test]
fn test_smbus_transfer() {
let adapter_config = AdapterConfig::try_from("1:3").unwrap();
let mut i2c_map: I2cMap<DummyDevice> = I2cMap::new(&adapter_config).unwrap();
i2c_map.adapters[0].smbus = true;
// I2C_SMBUS_WRITE (I2C_SMBUS_QUICK) operation
let mut reqs: Vec<I2cReq> = vec![I2cReq {
addr: 0x3,
flags: 0,
len: 0,
buf: Vec::<u8>::new(),
}];
i2c_map.transfer(&mut reqs).unwrap();
// I2C_SMBUS_READ (I2C_SMBUS_QUICK) operation
let mut reqs: Vec<I2cReq> = vec![I2cReq {
addr: 0x3,
flags: I2C_M_RD,
len: 0,
buf: vec![0],
}];
i2c_map.transfer(&mut reqs).unwrap();
// I2C_SMBUS_WRITE (I2C_SMBUS_BYTE) operation
let mut reqs: Vec<I2cReq> = vec![I2cReq {
addr: 0x3,
flags: 0,
len: 1,
buf: vec![0],
}];
i2c_map.transfer(&mut reqs).unwrap();
// I2C_SMBUS_READ (I2C_SMBUS_BYTE) operation
let mut reqs: Vec<I2cReq> = vec![I2cReq {
addr: 0x3,
flags: I2C_M_RD,
len: 1,
buf: vec![0],
}];
i2c_map.transfer(&mut reqs).unwrap();
assert_eq!(reqs[0].buf[0], 1);
// I2C_SMBUS_WRITE (I2C_SMBUS_BYTE_DATA) operation
let mut reqs: Vec<I2cReq> = vec![I2cReq {
addr: 0x3,
flags: 0,
len: 2,
buf: [7, 4].to_vec(),
}];
i2c_map.transfer(&mut reqs).unwrap();
// I2C_SMBUS_READ (I2C_SMBUS_BYTE_DATA) operation
let mut reqs = vec![
I2cReq {
addr: 0x3,
flags: 0,
len: 1,
buf: vec![0],
},
I2cReq {
addr: 0x3,
flags: I2C_M_RD,
len: 1,
buf: vec![0],
},
];
i2c_map.transfer(&mut reqs).unwrap();
assert_eq!(reqs[1].buf[0], 1);
// I2C_SMBUS_WRITE (I2C_SMBUS_WORD_DATA) operation
let mut reqs: Vec<I2cReq> = vec![I2cReq {
addr: 0x3,
flags: 0,
len: 3,
buf: [7, 4, 3].to_vec(),
}];
i2c_map.transfer(&mut reqs).unwrap();
// I2C_SMBUS_READ (I2C_SMBUS_WORD_DATA) operation
let mut reqs = vec![
I2cReq {
addr: 0x3,
flags: 0,
len: 1,
buf: vec![0],
},
I2cReq {
addr: 0x3,
flags: I2C_M_RD,
len: 2,
buf: vec![0; 2],
},
];
i2c_map.transfer(&mut reqs).unwrap();
assert_eq!(reqs[1].buf[0], 1);
assert_eq!(reqs[1].buf[1], 2);
}
#[test]
fn test_transfer_failure() {
let adapter_config = AdapterConfig::try_from("1:3").unwrap();
let mut i2c_map: I2cMap<DummyDevice> = I2cMap::new(&adapter_config).unwrap();
i2c_map.adapters[0].smbus = false;
let mut reqs: Vec<I2cReq> = vec![I2cReq {
// Will cause failure
addr: 0x4,
flags: 0,
len: 2,
buf: vec![7, 4],
}];
assert_eq!(
i2c_map.transfer(&mut reqs).unwrap_err(),
Error::ClientAddressInvalid
);
}
#[test]
fn test_smbus_transfer_failure() {
let adapter_config = AdapterConfig::try_from("1:3").unwrap();
let mut i2c_map: I2cMap<DummyDevice> = I2cMap::new(&adapter_config).unwrap();
i2c_map.adapters[0].smbus = true;
// I2C_SMBUS_READ (Invalid size) failure operation
let mut reqs: Vec<I2cReq> = vec![I2cReq {
addr: 0x3,
flags: I2C_M_RD,
// Will cause failure
len: 2,
buf: [34].to_vec(),
}];
assert_eq!(
i2c_map.transfer(&mut reqs).unwrap_err(),
Error::MessageLengthInvalid("read", 2)
);
// I2C_SMBUS_WRITE (Invalid size) failure operation
let mut reqs: Vec<I2cReq> = vec![I2cReq {
addr: 0x3,
flags: 0,
// Will cause failure
len: 4,
buf: [34].to_vec(),
}];
assert_eq!(
i2c_map.transfer(&mut reqs).unwrap_err(),
Error::MessageLengthInvalid("write", 4)
);
// I2C_SMBUS_WRITE (I2C_SMBUS_WORD_DATA) failure operation
let mut reqs: Vec<I2cReq> = vec![I2cReq {
addr: 0x3,
// Will cause failure
flags: I2C_M_RD,
len: 3,
buf: [7, 4, 3].to_vec(),
}];
assert_eq!(
i2c_map.transfer(&mut reqs).unwrap_err(),
Error::MessageLengthInvalid("read", 3)
);
// I2C_SMBUS_READ (I2C_SMBUS_WORD_DATA) failure operation
let mut reqs: Vec<I2cReq> = vec![
I2cReq {
addr: 0x3,
// Will cause failure
flags: I2C_M_RD,
len: 1,
buf: [34].to_vec(),
},
I2cReq {
addr: 0x3,
flags: I2C_M_RD,
len: 2,
buf: [3, 4].to_vec(),
},
];
assert_eq!(
i2c_map.transfer(&mut reqs).unwrap_err(),
Error::SMBusTransferInvalid(2, 1, 2)
);
// I2C_SMBUS_READ (I2C_SMBUS_WORD_DATA) failure operation
let mut reqs = vec![
I2cReq {
addr: 0x3,
flags: 0,
len: 1,
buf: [34].to_vec(),
},
I2cReq {
addr: 0x3,
// Will cause failure
flags: 0,
len: 2,
buf: [3, 4].to_vec(),
},
];
assert_eq!(
i2c_map.transfer(&mut reqs).unwrap_err(),
Error::SMBusTransferInvalid(2, 1, 2)
);
// I2C_SMBUS_READ (I2C_SMBUS_WORD_DATA) failure operation
let mut reqs = vec![
I2cReq {
addr: 0x3,
flags: 0,
// Will cause failure
len: 2,
buf: [3, 4].to_vec(),
},
I2cReq {
addr: 0x3,
flags: I2C_M_RD,
len: 2,
buf: [3, 4].to_vec(),
},
];
assert_eq!(
i2c_map.transfer(&mut reqs).unwrap_err(),
Error::SMBusTransferInvalid(2, 2, 2)
);
// I2C_SMBUS_READ (I2C_SMBUS_WORD_DATA) failure operation
let mut reqs = vec![
I2cReq {
addr: 0x3,
flags: 0,
len: 1,
buf: [34].to_vec(),
},
I2cReq {
addr: 0x3,
flags: I2C_M_RD,
// Will cause failure
len: 3,
buf: [3, 4, 5].to_vec(),
},
];
assert_eq!(
i2c_map.transfer(&mut reqs).unwrap_err(),
Error::SMBusTransferInvalid(2, 1, 3)
);
// I2C_SMBUS_READ (Invalid request count) failure operation
let mut reqs = vec![
I2cReq {
addr: 0x3,
flags: 0,
len: 1,
buf: [34].to_vec(),
},
I2cReq {
addr: 0x3,
flags: I2C_M_RD,
len: 2,
buf: [3, 4].to_vec(),
},
// Will cause failure
I2cReq {
addr: 0,
flags: 0,
len: 0,
buf: [0].to_vec(),
},
];
assert_eq!(
i2c_map.transfer(&mut reqs).unwrap_err(),
Error::SMBusTransferInvalid(3, 1, 2)
);
}
#[test]
fn test_phys_device_failure() {
// Open failure
assert_eq!(
PhysDevice::open("/dev/i2c-invalid-path", 0).unwrap_err(),
Error::DeviceOpenFailed(0)
);
let file = TempFile::new().unwrap();
let mut dev = PhysDevice::open(file.as_path().to_str().unwrap(), 1).unwrap();
// Match adapter number
assert_eq!(dev.adapter_no(), 1);
// funcs failure
assert_eq!(
dev.funcs().unwrap_err(),
Error::IoctlFailure("funcs", IoError::last())
);
// rdwr failure
let mut reqs = [I2cReq {
addr: 0x4,
flags: 0,
len: 2,
buf: vec![7, 4],
}];
assert_eq!(
dev.rdwr(&mut reqs).unwrap_err(),
Error::IoctlFailure("rdwr", IoError::last())
);
// rdwr failure - missing buffer
let mut reqs = [I2cReq {
addr: 0x4,
flags: 0,
len: 0,
buf: Vec::<u8>::new(),
}];
assert_eq!(
dev.rdwr(&mut reqs).unwrap_err(),
Error::I2cTransferInvalid(0)
);
// smbus failure
let mut data = SmbusMsg {
read_write: 0,
command: 0,
size: 0,
data: None,
};
assert_eq!(
dev.smbus(&mut data).unwrap_err(),
Error::IoctlFailure("smbus", IoError::last())
);
// slave failure
assert_eq!(
dev.slave(0).unwrap_err(),
Error::IoctlFailure("slave", IoError::last())
);
}
}