sunshine-sdk/src/rtsp.cpp

1219 lines
43 KiB
C++

/**
* @file src/rtsp.cpp
* @brief Definitions for RTSP streaming.
*/
#define BOOST_BIND_GLOBAL_PLACEHOLDERS
extern "C" {
#include <moonlight-common-c/src/Limelight-internal.h>
#include <moonlight-common-c/src/Rtsp.h>
}
#include <array>
#include <cctype>
#include <utility>
#include <boost/asio.hpp>
#include <boost/bind.hpp>
#include "config.h"
#include "globals.h"
#include "input.h"
#include "logging.h"
#include "network.h"
#include "rtsp.h"
#include "stream.h"
#include "sync.h"
#include "video.h"
#include <set>
#include <unordered_map>
namespace asio = boost::asio;
using asio::ip::tcp;
using asio::ip::udp;
using namespace std::literals;
namespace rtsp_stream {
void
free_msg(PRTSP_MESSAGE msg) {
freeMessage(msg);
delete msg;
}
#pragma pack(push, 1)
struct encrypted_rtsp_header_t {
// We set the MSB in encrypted RTSP messages to allow format-agnostic
// parsing code to be able to tell encrypted from plaintext messages.
static constexpr std::uint32_t ENCRYPTED_MESSAGE_TYPE_BIT = 0x80000000;
uint8_t *
payload() {
return (uint8_t *) (this + 1);
}
std::uint32_t
payload_length() {
return util::endian::big<std::uint32_t>(typeAndLength) & ~ENCRYPTED_MESSAGE_TYPE_BIT;
}
bool
is_encrypted() {
return !!(util::endian::big<std::uint32_t>(typeAndLength) & ENCRYPTED_MESSAGE_TYPE_BIT);
}
// This field is the length of the payload + ENCRYPTED_MESSAGE_TYPE_BIT in big-endian
std::uint32_t typeAndLength;
// This field is the number used to initialize the bottom 4 bytes of the AES IV in big-endian
std::uint32_t sequenceNumber;
// This field is the AES GCM authentication tag
std::uint8_t tag[16];
};
#pragma pack(pop)
class rtsp_server_t;
using msg_t = util::safe_ptr<RTSP_MESSAGE, free_msg>;
using cmd_func_t = std::function<void(rtsp_server_t *server, tcp::socket &, launch_session_t &, msg_t &&)>;
void
print_msg(PRTSP_MESSAGE msg);
void
cmd_not_found(tcp::socket &sock, launch_session_t &, msg_t &&req);
void
respond(tcp::socket &sock, launch_session_t &session, POPTION_ITEM options, int statuscode, const char *status_msg, int seqn, const std::string_view &payload);
class socket_t: public std::enable_shared_from_this<socket_t> {
public:
socket_t(boost::asio::io_service &ios, std::function<void(tcp::socket &sock, launch_session_t &, msg_t &&)> &&handle_data_fn):
handle_data_fn { std::move(handle_data_fn) }, sock { ios } {}
/**
* @brief Queue an asynchronous read to begin the next message.
*/
void
read() {
if (begin == std::end(msg_buf) || (session->rtsp_cipher && begin + sizeof(encrypted_rtsp_header_t) >= std::end(msg_buf))) {
BOOST_LOG(error) << "RTSP: read(): Exceeded maximum rtsp packet size: "sv << msg_buf.size();
respond(sock, *session, nullptr, 400, "BAD REQUEST", 0, {});
boost::system::error_code ec;
sock.close(ec);
return;
}
if (session->rtsp_cipher) {
// For encrypted RTSP, we will read the the entire header first
boost::asio::async_read(sock,
boost::asio::buffer(begin, sizeof(encrypted_rtsp_header_t)),
boost::bind(
&socket_t::handle_read_encrypted_header, shared_from_this(),
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));
}
else {
sock.async_read_some(
boost::asio::buffer(begin, (std::size_t)(std::end(msg_buf) - begin)),
boost::bind(
&socket_t::handle_read_plaintext, shared_from_this(),
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));
}
}
/**
* @brief Handle the initial read of the header of an encrypted message.
* @param socket The socket the message was received on.
* @param ec The error code of the read operation.
* @param bytes The number of bytes read.
*/
static void
handle_read_encrypted_header(std::shared_ptr<socket_t> &socket, const boost::system::error_code &ec, std::size_t bytes) {
BOOST_LOG(debug) << "handle_read_encrypted_header(): Handle read of size: "sv << bytes << " bytes"sv;
auto sock_close = util::fail_guard([&socket]() {
boost::system::error_code ec;
socket->sock.close(ec);
if (ec) {
BOOST_LOG(error) << "RTSP: handle_read_encrypted_header(): Couldn't close tcp socket: "sv << ec.message();
}
});
if (ec || bytes < sizeof(encrypted_rtsp_header_t)) {
BOOST_LOG(error) << "RTSP: handle_read_encrypted_header(): Couldn't read from tcp socket: "sv << ec.message();
respond(socket->sock, *socket->session, nullptr, 400, "BAD REQUEST", 0, {});
return;
}
auto header = (encrypted_rtsp_header_t *) socket->begin;
if (!header->is_encrypted()) {
BOOST_LOG(error) << "RTSP: handle_read_encrypted_header(): Rejecting unencrypted RTSP message"sv;
respond(socket->sock, *socket->session, nullptr, 400, "BAD REQUEST", 0, {});
return;
}
auto payload_length = header->payload_length();
// Check if we have enough space to read this message
if (socket->begin + sizeof(*header) + payload_length >= std::end(socket->msg_buf)) {
BOOST_LOG(error) << "RTSP: handle_read_encrypted_header(): Exceeded maximum rtsp packet size: "sv << socket->msg_buf.size();
respond(socket->sock, *socket->session, nullptr, 400, "BAD REQUEST", 0, {});
return;
}
sock_close.disable();
// Read the remainder of the header and full encrypted payload
boost::asio::async_read(socket->sock,
boost::asio::buffer(socket->begin + bytes, payload_length),
boost::bind(
&socket_t::handle_read_encrypted_message, socket->shared_from_this(),
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));
}
/**
* @brief Handle the final read of the content of an encrypted message.
* @param socket The socket the message was received on.
* @param ec The error code of the read operation.
* @param bytes The number of bytes read.
*/
static void
handle_read_encrypted_message(std::shared_ptr<socket_t> &socket, const boost::system::error_code &ec, std::size_t bytes) {
BOOST_LOG(debug) << "handle_read_encrypted(): Handle read of size: "sv << bytes << " bytes"sv;
auto sock_close = util::fail_guard([&socket]() {
boost::system::error_code ec;
socket->sock.close(ec);
if (ec) {
BOOST_LOG(error) << "RTSP: handle_read_encrypted_message(): Couldn't close tcp socket: "sv << ec.message();
}
});
auto header = (encrypted_rtsp_header_t *) socket->begin;
auto payload_length = header->payload_length();
auto seq = util::endian::big<std::uint32_t>(header->sequenceNumber);
if (ec || bytes < payload_length) {
BOOST_LOG(error) << "RTSP: handle_read_encrypted(): Couldn't read from tcp socket: "sv << ec.message();
respond(socket->sock, *socket->session, nullptr, 400, "BAD REQUEST", 0, {});
return;
}
// We use the deterministic IV construction algorithm specified in NIST SP 800-38D
// Section 8.2.1. The sequence number is our "invocation" field and the 'RC' in the
// high bytes is the "fixed" field. Because each client provides their own unique
// key, our values in the fixed field need only uniquely identify each independent
// use of the client's key with AES-GCM in our code.
//
// The sequence number is 32 bits long which allows for 2^32 RTSP messages to be
// received from each client before the IV repeats.
crypto::aes_t iv(12);
std::copy_n((uint8_t *) &seq, sizeof(seq), std::begin(iv));
iv[10] = 'C'; // Client originated
iv[11] = 'R'; // RTSP
std::vector<uint8_t> plaintext;
if (socket->session->rtsp_cipher->decrypt(std::string_view { (const char *) header->tag, sizeof(header->tag) + bytes }, plaintext, &iv)) {
BOOST_LOG(error) << "Failed to verify RTSP message tag"sv;
respond(socket->sock, *socket->session, nullptr, 400, "BAD REQUEST", 0, {});
return;
}
msg_t req { new msg_t::element_type {} };
if (auto status = parseRtspMessage(req.get(), (char *) plaintext.data(), plaintext.size())) {
BOOST_LOG(error) << "Malformed RTSP message: ["sv << status << ']';
respond(socket->sock, *socket->session, nullptr, 400, "BAD REQUEST", 0, {});
return;
}
sock_close.disable();
print_msg(req.get());
socket->handle_data(std::move(req));
}
/**
* @brief Queue an asynchronous read of the payload portion of a plaintext message.
*/
void
read_plaintext_payload() {
if (begin == std::end(msg_buf)) {
BOOST_LOG(error) << "RTSP: read_plaintext_payload(): Exceeded maximum rtsp packet size: "sv << msg_buf.size();
respond(sock, *session, nullptr, 400, "BAD REQUEST", 0, {});
boost::system::error_code ec;
sock.close(ec);
return;
}
sock.async_read_some(
boost::asio::buffer(begin, (std::size_t)(std::end(msg_buf) - begin)),
boost::bind(
&socket_t::handle_plaintext_payload, shared_from_this(),
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));
}
/**
* @brief Handle the read of the payload portion of a plaintext message.
* @param socket The socket the message was received on.
* @param ec The error code of the read operation.
* @param bytes The number of bytes read.
*/
static void
handle_plaintext_payload(std::shared_ptr<socket_t> &socket, const boost::system::error_code &ec, std::size_t bytes) {
BOOST_LOG(debug) << "handle_plaintext_payload(): Handle read of size: "sv << bytes << " bytes"sv;
auto sock_close = util::fail_guard([&socket]() {
boost::system::error_code ec;
socket->sock.close(ec);
if (ec) {
BOOST_LOG(error) << "RTSP: handle_plaintext_payload(): Couldn't close tcp socket: "sv << ec.message();
}
});
if (ec) {
BOOST_LOG(error) << "RTSP: handle_plaintext_payload(): Couldn't read from tcp socket: "sv << ec.message();
return;
}
auto end = socket->begin + bytes;
msg_t req { new msg_t::element_type {} };
if (auto status = parseRtspMessage(req.get(), socket->msg_buf.data(), (std::size_t)(end - socket->msg_buf.data()))) {
BOOST_LOG(error) << "Malformed RTSP message: ["sv << status << ']';
respond(socket->sock, *socket->session, nullptr, 400, "BAD REQUEST", 0, {});
return;
}
sock_close.disable();
auto fg = util::fail_guard([&socket]() {
socket->read_plaintext_payload();
});
auto content_length = 0;
for (auto option = req->options; option != nullptr; option = option->next) {
if ("Content-length"sv == option->option) {
BOOST_LOG(debug) << "Found Content-Length: "sv << option->content << " bytes"sv;
// If content_length > bytes read, then we need to store current data read,
// to be appended by the next read.
std::string_view content { option->content };
auto begin = std::find_if(std::begin(content), std::end(content), [](auto ch) { return (bool) std::isdigit(ch); });
content_length = util::from_chars(begin, std::end(content));
break;
}
}
if (end - socket->crlf >= content_length) {
if (end - socket->crlf > content_length) {
BOOST_LOG(warning) << "(end - socket->crlf) > content_length -- "sv << (std::size_t)(end - socket->crlf) << " > "sv << content_length;
}
fg.disable();
print_msg(req.get());
socket->handle_data(std::move(req));
}
socket->begin = end;
}
/**
* @brief Handle the read of the header portion of a plaintext message.
* @param socket The socket the message was received on.
* @param ec The error code of the read operation.
* @param bytes The number of bytes read.
*/
static void
handle_read_plaintext(std::shared_ptr<socket_t> &socket, const boost::system::error_code &ec, std::size_t bytes) {
BOOST_LOG(debug) << "handle_read_plaintext(): Handle read of size: "sv << bytes << " bytes"sv;
if (ec) {
BOOST_LOG(error) << "RTSP: handle_read_plaintext(): Couldn't read from tcp socket: "sv << ec.message();
boost::system::error_code ec;
socket->sock.close(ec);
if (ec) {
BOOST_LOG(error) << "RTSP: handle_read_plaintext(): Couldn't close tcp socket: "sv << ec.message();
}
return;
}
auto fg = util::fail_guard([&socket]() {
socket->read();
});
auto begin = std::max(socket->begin - 4, socket->begin);
auto buf_size = bytes + (begin - socket->begin);
auto end = begin + buf_size;
constexpr auto needle = "\r\n\r\n"sv;
auto it = std::search(begin, begin + buf_size, std::begin(needle), std::end(needle));
if (it == end) {
socket->begin = end;
return;
}
// Emulate read completion for payload data
socket->begin = it + needle.size();
socket->crlf = socket->begin;
buf_size = end - socket->begin;
fg.disable();
handle_plaintext_payload(socket, ec, buf_size);
}
void
handle_data(msg_t &&req) {
handle_data_fn(sock, *session, std::move(req));
}
std::function<void(tcp::socket &sock, launch_session_t &, msg_t &&)> handle_data_fn;
tcp::socket sock;
std::array<char, 2048> msg_buf;
char *crlf;
char *begin = msg_buf.data();
std::shared_ptr<launch_session_t> session;
};
class rtsp_server_t {
public:
~rtsp_server_t() {
clear();
}
int
bind(net::af_e af, std::uint16_t port, boost::system::error_code &ec) {
acceptor.open(af == net::IPV4 ? tcp::v4() : tcp::v6(), ec);
if (ec) {
return -1;
}
acceptor.set_option(boost::asio::socket_base::reuse_address { true });
acceptor.bind(tcp::endpoint(af == net::IPV4 ? tcp::v4() : tcp::v6(), port), ec);
if (ec) {
return -1;
}
acceptor.listen(4096, ec);
if (ec) {
return -1;
}
next_socket = std::make_shared<socket_t>(ios, [this](tcp::socket &sock, launch_session_t &session, msg_t &&msg) {
handle_msg(sock, session, std::move(msg));
});
acceptor.async_accept(next_socket->sock, [this](const auto &ec) {
handle_accept(ec);
});
return 0;
}
template <class T, class X>
void
iterate(std::chrono::duration<T, X> timeout) {
ios.run_one_for(timeout);
}
void
handle_msg(tcp::socket &sock, launch_session_t &session, msg_t &&req) {
auto func = _map_cmd_cb.find(req->message.request.command);
if (func != std::end(_map_cmd_cb)) {
func->second(this, sock, session, std::move(req));
}
else {
cmd_not_found(sock, session, std::move(req));
}
boost::system::error_code ec;
sock.shutdown(boost::asio::socket_base::shutdown_type::shutdown_both, ec);
}
void
handle_accept(const boost::system::error_code &ec) {
if (ec) {
BOOST_LOG(error) << "Couldn't accept incoming connections: "sv << ec.message();
// Stop server
clear();
return;
}
auto socket = std::move(next_socket);
auto launch_session { launch_event.view(0s) };
if (launch_session) {
// Associate the current RTSP session with this socket and start reading
socket->session = launch_session;
socket->read();
}
else {
// This can happen due to normal things like port scanning, so let's not make these visible by default
BOOST_LOG(debug) << "No pending session for incoming RTSP connection"sv;
// If there is no session pending, close the connection immediately
boost::system::error_code ec;
socket->sock.close(ec);
}
// Queue another asynchronous accept for the next incoming connection
next_socket = std::make_shared<socket_t>(ios, [this](tcp::socket &sock, launch_session_t &session, msg_t &&msg) {
handle_msg(sock, session, std::move(msg));
});
acceptor.async_accept(next_socket->sock, [this](const auto &ec) {
handle_accept(ec);
});
}
void
map(const std::string_view &type, cmd_func_t cb) {
_map_cmd_cb.emplace(type, std::move(cb));
}
/**
* @brief Launch a new streaming session.
* @note If the client does not begin streaming within the ping_timeout,
* the session will be discarded.
* @param launch_session Streaming session information.
*/
void
session_raise(std::shared_ptr<launch_session_t> launch_session) {
auto now = std::chrono::steady_clock::now();
// If a launch event is still pending, don't overwrite it.
if (raised_timeout > now && launch_event.peek()) {
return;
}
raised_timeout = now + config::stream.ping_timeout;
launch_event.raise(std::move(launch_session));
}
/**
* @brief Clear state for the oldest launch session.
* @param launch_session_id The ID of the session to clear.
*/
void
session_clear(uint32_t launch_session_id) {
// We currently only support a single pending RTSP session,
// so the ID should always match the one for that session.
auto launch_session = launch_event.view(0s);
if (launch_session) {
if (launch_session->id != launch_session_id) {
BOOST_LOG(error) << "Attempted to clear unexpected session: "sv << launch_session_id << " vs "sv << launch_session->id;
}
else {
launch_event.pop();
}
}
}
/**
* @brief Get the number of active sessions.
* @return Count of active sessions.
*/
int
session_count() {
auto lg = _session_slots.lock();
return _session_slots->size();
}
safe::event_t<std::shared_ptr<launch_session_t>> launch_event;
/**
* @brief Clear launch sessions.
* @param all If true, clear all sessions. Otherwise, only clear timed out and stopped sessions.
* @examples
* clear(false);
* @examples_end
*/
void
clear(bool all = true) {
// if a launch event timed out --> Remove it.
if (raised_timeout < std::chrono::steady_clock::now()) {
auto discarded = launch_event.pop(0s);
if (discarded) {
BOOST_LOG(debug) << "Event timeout: "sv << discarded->unique_id;
}
}
auto lg = _session_slots.lock();
for (auto i = _session_slots->begin(); i != _session_slots->end();) {
auto &slot = *(*i);
if (all || stream::session::state(slot) == stream::session::state_e::STOPPING) {
stream::session::stop(slot);
stream::session::join(slot);
i = _session_slots->erase(i);
}
else {
i++;
}
}
if (all && !ios.stopped()) {
ios.stop();
}
}
/**
* @brief Removes the provided session from the set of sessions.
* @param session The session to remove.
*/
void
remove(const std::shared_ptr<stream::session_t> &session) {
auto lg = _session_slots.lock();
_session_slots->erase(session);
}
/**
* @brief Inserts the provided session into the set of sessions.
* @param session The session to insert.
*/
void
insert(const std::shared_ptr<stream::session_t> &session) {
auto lg = _session_slots.lock();
_session_slots->emplace(session);
BOOST_LOG(info) << "New streaming session started [active sessions: "sv << _session_slots->size() << ']';
}
private:
std::unordered_map<std::string_view, cmd_func_t> _map_cmd_cb;
sync_util::sync_t<std::set<std::shared_ptr<stream::session_t>>> _session_slots;
std::chrono::steady_clock::time_point raised_timeout;
boost::asio::io_service ios;
tcp::acceptor acceptor { ios };
std::shared_ptr<socket_t> next_socket;
};
rtsp_server_t server {};
void
launch_session_raise(std::shared_ptr<launch_session_t> launch_session) {
server.session_raise(std::move(launch_session));
}
void
launch_session_clear(uint32_t launch_session_id) {
server.session_clear(launch_session_id);
}
int
session_count() {
// Ensure session_count is up-to-date
server.clear(false);
return server.session_count();
}
void
terminate_sessions() {
server.clear(true);
}
int
send(tcp::socket &sock, const std::string_view &sv) {
std::size_t bytes_send = 0;
while (bytes_send != sv.size()) {
boost::system::error_code ec;
bytes_send += sock.send(boost::asio::buffer(sv.substr(bytes_send)), 0, ec);
if (ec) {
BOOST_LOG(error) << "RTSP: Couldn't send data over tcp socket: "sv << ec.message();
return -1;
}
}
return 0;
}
void
respond(tcp::socket &sock, launch_session_t &session, msg_t &resp) {
auto payload = std::make_pair(resp->payload, resp->payloadLength);
// Restore response message for proper destruction
auto lg = util::fail_guard([&]() {
resp->payload = payload.first;
resp->payloadLength = payload.second;
});
resp->payload = nullptr;
resp->payloadLength = 0;
int serialized_len;
util::c_ptr<char> raw_resp { serializeRtspMessage(resp.get(), &serialized_len) };
BOOST_LOG(debug)
<< "---Begin Response---"sv << std::endl
<< std::string_view { raw_resp.get(), (std::size_t) serialized_len } << std::endl
<< std::string_view { payload.first, (std::size_t) payload.second } << std::endl
<< "---End Response---"sv << std::endl;
// Encrypt the RTSP message if encryption is enabled
if (session.rtsp_cipher) {
// We use the deterministic IV construction algorithm specified in NIST SP 800-38D
// Section 8.2.1. The sequence number is our "invocation" field and the 'RH' in the
// high bytes is the "fixed" field. Because each client provides their own unique
// key, our values in the fixed field need only uniquely identify each independent
// use of the client's key with AES-GCM in our code.
//
// The sequence number is 32 bits long which allows for 2^32 RTSP messages to be
// sent to each client before the IV repeats.
crypto::aes_t iv(12);
session.rtsp_iv_counter++;
std::copy_n((uint8_t *) &session.rtsp_iv_counter, sizeof(session.rtsp_iv_counter), std::begin(iv));
iv[10] = 'H'; // Host originated
iv[11] = 'R'; // RTSP
// Allocate the message with an empty header and reserved space for the payload
auto payload_length = serialized_len + payload.second;
std::vector<uint8_t> message(sizeof(encrypted_rtsp_header_t));
message.reserve(message.size() + payload_length);
// Copy the complete plaintext into the message
std::copy_n(raw_resp.get(), serialized_len, std::back_inserter(message));
std::copy_n(payload.first, payload.second, std::back_inserter(message));
// Initialize the message header
auto header = (encrypted_rtsp_header_t *) message.data();
header->typeAndLength = util::endian::big<std::uint32_t>(encrypted_rtsp_header_t::ENCRYPTED_MESSAGE_TYPE_BIT + payload_length);
header->sequenceNumber = util::endian::big<std::uint32_t>(session.rtsp_iv_counter);
// Encrypt the RTSP message in place
session.rtsp_cipher->encrypt(std::string_view { (const char *) header->payload(), (std::size_t) payload_length }, header->tag, &iv);
// Send the full encrypted message
send(sock, std::string_view { (char *) message.data(), message.size() });
}
else {
std::string_view tmp_resp { raw_resp.get(), (size_t) serialized_len };
// Send the plaintext RTSP message header
if (send(sock, tmp_resp)) {
return;
}
// Send the plaintext RTSP message payload (if present)
send(sock, std::string_view { payload.first, (std::size_t) payload.second });
}
}
void
respond(tcp::socket &sock, launch_session_t &session, POPTION_ITEM options, int statuscode, const char *status_msg, int seqn, const std::string_view &payload) {
msg_t resp { new msg_t::element_type };
createRtspResponse(resp.get(), nullptr, 0, const_cast<char *>("RTSP/1.0"), statuscode, const_cast<char *>(status_msg), seqn, options, const_cast<char *>(payload.data()), (int) payload.size());
respond(sock, session, resp);
}
void
cmd_not_found(tcp::socket &sock, launch_session_t &session, msg_t &&req) {
respond(sock, session, nullptr, 404, "NOT FOUND", req->sequenceNumber, {});
}
void
cmd_option(rtsp_server_t *server, tcp::socket &sock, launch_session_t &session, msg_t &&req) {
OPTION_ITEM option {};
// I know these string literals will not be modified
option.option = const_cast<char *>("CSeq");
auto seqn_str = std::to_string(req->sequenceNumber);
option.content = const_cast<char *>(seqn_str.c_str());
respond(sock, session, &option, 200, "OK", req->sequenceNumber, {});
}
void
cmd_describe(rtsp_server_t *server, tcp::socket &sock, launch_session_t &session, msg_t &&req) {
OPTION_ITEM option {};
// I know these string literals will not be modified
option.option = const_cast<char *>("CSeq");
auto seqn_str = std::to_string(req->sequenceNumber);
option.content = const_cast<char *>(seqn_str.c_str());
std::stringstream ss;
// Tell the client about our supported features
ss << "a=x-ss-general.featureFlags:" << (uint32_t) platf::get_capabilities() << std::endl;
// Always request new control stream encryption if the client supports it
uint32_t encryption_flags_supported = SS_ENC_CONTROL_V2 | SS_ENC_AUDIO;
uint32_t encryption_flags_requested = SS_ENC_CONTROL_V2;
// Determine the encryption desired for this remote endpoint
auto encryption_mode = net::encryption_mode_for_address(sock.remote_endpoint().address());
if (encryption_mode != config::ENCRYPTION_MODE_NEVER) {
// Advertise support for video encryption if it's not disabled
encryption_flags_supported |= SS_ENC_VIDEO;
// If it's mandatory, also request it to enable use if the client
// didn't explicitly opt in, but it otherwise has support.
if (encryption_mode == config::ENCRYPTION_MODE_MANDATORY) {
encryption_flags_requested |= SS_ENC_VIDEO | SS_ENC_AUDIO;
}
}
// Report supported and required encryption flags
ss << "a=x-ss-general.encryptionSupported:" << encryption_flags_supported << std::endl;
ss << "a=x-ss-general.encryptionRequested:" << encryption_flags_requested << std::endl;
if (video::last_encoder_probe_supported_ref_frames_invalidation) {
ss << "a=x-nv-video[0].refPicInvalidation:1"sv << std::endl;
}
if (video::active_hevc_mode != 1) {
ss << "sprop-parameter-sets=AAAAAU"sv << std::endl;
}
if (video::active_av1_mode != 1) {
ss << "a=rtpmap:98 AV1/90000"sv << std::endl;
}
if (!session.surround_params.empty()) {
// If we have our own surround parameters, advertise them twice first
ss << "a=fmtp:97 surround-params="sv << session.surround_params << std::endl;
ss << "a=fmtp:97 surround-params="sv << session.surround_params << std::endl;
}
for (int x = 0; x < audio::MAX_STREAM_CONFIG; ++x) {
auto &stream_config = audio::stream_configs[x];
std::uint8_t mapping[platf::speaker::MAX_SPEAKERS];
auto mapping_p = stream_config.mapping;
/**
* GFE advertises incorrect mapping for normal quality configurations,
* as a result, Moonlight rotates all channels from index '3' to the right
* To work around this, rotate channels to the left from index '3'
*/
if (x == audio::SURROUND51 || x == audio::SURROUND71) {
std::copy_n(mapping_p, stream_config.channelCount, mapping);
std::rotate(mapping + 3, mapping + 4, mapping + audio::MAX_STREAM_CONFIG);
mapping_p = mapping;
}
ss << "a=fmtp:97 surround-params="sv << stream_config.channelCount << stream_config.streams << stream_config.coupledStreams;
std::for_each_n(mapping_p, stream_config.channelCount, [&ss](std::uint8_t digit) {
ss << (char) (digit + '0');
});
ss << std::endl;
}
respond(sock, session, &option, 200, "OK", req->sequenceNumber, ss.str());
}
void
cmd_setup(rtsp_server_t *server, tcp::socket &sock, launch_session_t &session, msg_t &&req) {
OPTION_ITEM options[4] {};
auto &seqn = options[0];
auto &session_option = options[1];
auto &port_option = options[2];
auto &payload_option = options[3];
seqn.option = const_cast<char *>("CSeq");
auto seqn_str = std::to_string(req->sequenceNumber);
seqn.content = const_cast<char *>(seqn_str.c_str());
std::string_view target { req->message.request.target };
auto begin = std::find(std::begin(target), std::end(target), '=') + 1;
auto end = std::find(begin, std::end(target), '/');
std::string_view type { begin, (size_t) std::distance(begin, end) };
std::uint16_t port;
if (type == "audio"sv) {
port = net::map_port(stream::AUDIO_STREAM_PORT);
}
else if (type == "video"sv) {
port = net::map_port(stream::VIDEO_STREAM_PORT);
}
else if (type == "control"sv) {
port = net::map_port(stream::CONTROL_PORT);
}
else {
cmd_not_found(sock, session, std::move(req));
return;
}
seqn.next = &session_option;
session_option.option = const_cast<char *>("Session");
session_option.content = const_cast<char *>("DEADBEEFCAFE;timeout = 90");
session_option.next = &port_option;
// Moonlight merely requires 'server_port=<port>'
auto port_value = "server_port=" + std::to_string(port);
port_option.option = const_cast<char *>("Transport");
port_option.content = port_value.data();
// Send identifiers that will be echoed in the other connections
auto connect_data = std::to_string(session.control_connect_data);
if (type == "control"sv) {
payload_option.option = const_cast<char *>("X-SS-Connect-Data");
payload_option.content = connect_data.data();
}
else {
payload_option.option = const_cast<char *>("X-SS-Ping-Payload");
payload_option.content = session.av_ping_payload.data();
}
port_option.next = &payload_option;
respond(sock, session, &seqn, 200, "OK", req->sequenceNumber, {});
}
void
cmd_announce(rtsp_server_t *server, tcp::socket &sock, launch_session_t &session, msg_t &&req) {
OPTION_ITEM option {};
// I know these string literals will not be modified
option.option = const_cast<char *>("CSeq");
auto seqn_str = std::to_string(req->sequenceNumber);
option.content = const_cast<char *>(seqn_str.c_str());
std::string_view payload { req->payload, (size_t) req->payloadLength };
std::vector<std::string_view> lines;
auto whitespace = [](char ch) {
return ch == '\n' || ch == '\r';
};
{
auto pos = std::begin(payload);
auto begin = pos;
while (pos != std::end(payload)) {
if (whitespace(*pos++)) {
lines.emplace_back(begin, pos - begin - 1);
while (pos != std::end(payload) && whitespace(*pos)) { ++pos; }
begin = pos;
}
}
}
std::string_view client;
std::unordered_map<std::string_view, std::string_view> args;
for (auto line : lines) {
auto type = line.substr(0, 2);
if (type == "s="sv) {
client = line.substr(2);
}
else if (type == "a=") {
auto pos = line.find(':');
auto name = line.substr(2, pos - 2);
auto val = line.substr(pos + 1);
if (val[val.size() - 1] == ' ') {
val = val.substr(0, val.size() - 1);
}
args.emplace(name, val);
}
}
// Initialize any omitted parameters to defaults
args.try_emplace("x-nv-video[0].encoderCscMode"sv, "0"sv);
args.try_emplace("x-nv-vqos[0].bitStreamFormat"sv, "0"sv);
args.try_emplace("x-nv-video[0].dynamicRangeMode"sv, "0"sv);
args.try_emplace("x-nv-aqos.packetDuration"sv, "5"sv);
args.try_emplace("x-nv-general.useReliableUdp"sv, "1"sv);
args.try_emplace("x-nv-vqos[0].fec.minRequiredFecPackets"sv, "0"sv);
args.try_emplace("x-nv-general.featureFlags"sv, "135"sv);
args.try_emplace("x-ml-general.featureFlags"sv, "0"sv);
args.try_emplace("x-nv-vqos[0].qosTrafficType"sv, "5"sv);
args.try_emplace("x-nv-aqos.qosTrafficType"sv, "4"sv);
args.try_emplace("x-ml-video.configuredBitrateKbps"sv, "0"sv);
args.try_emplace("x-ss-general.encryptionEnabled"sv, "0"sv);
args.try_emplace("x-ss-video[0].chromaSamplingType"sv, "0"sv);
stream::config_t config;
std::int64_t configuredBitrateKbps;
config.audio.flags[audio::config_t::HOST_AUDIO] = session.host_audio;
try {
config.audio.channels = util::from_view(args.at("x-nv-audio.surround.numChannels"sv));
config.audio.mask = util::from_view(args.at("x-nv-audio.surround.channelMask"sv));
config.audio.packetDuration = util::from_view(args.at("x-nv-aqos.packetDuration"sv));
config.audio.flags[audio::config_t::HIGH_QUALITY] =
util::from_view(args.at("x-nv-audio.surround.AudioQuality"sv));
config.controlProtocolType = util::from_view(args.at("x-nv-general.useReliableUdp"sv));
config.packetsize = util::from_view(args.at("x-nv-video[0].packetSize"sv));
config.minRequiredFecPackets = util::from_view(args.at("x-nv-vqos[0].fec.minRequiredFecPackets"sv));
config.mlFeatureFlags = util::from_view(args.at("x-ml-general.featureFlags"sv));
config.audioQosType = util::from_view(args.at("x-nv-aqos.qosTrafficType"sv));
config.videoQosType = util::from_view(args.at("x-nv-vqos[0].qosTrafficType"sv));
config.encryptionFlagsEnabled = util::from_view(args.at("x-ss-general.encryptionEnabled"sv));
// Legacy clients use nvFeatureFlags to indicate support for audio encryption
if (util::from_view(args.at("x-nv-general.featureFlags"sv)) & 0x20) {
config.encryptionFlagsEnabled |= SS_ENC_AUDIO;
}
config.monitor.height = util::from_view(args.at("x-nv-video[0].clientViewportHt"sv));
config.monitor.width = util::from_view(args.at("x-nv-video[0].clientViewportWd"sv));
config.monitor.framerate = util::from_view(args.at("x-nv-video[0].maxFPS"sv));
config.monitor.bitrate = util::from_view(args.at("x-nv-vqos[0].bw.maximumBitrateKbps"sv));
config.monitor.slicesPerFrame = util::from_view(args.at("x-nv-video[0].videoEncoderSlicesPerFrame"sv));
config.monitor.numRefFrames = util::from_view(args.at("x-nv-video[0].maxNumReferenceFrames"sv));
config.monitor.encoderCscMode = util::from_view(args.at("x-nv-video[0].encoderCscMode"sv));
config.monitor.videoFormat = util::from_view(args.at("x-nv-vqos[0].bitStreamFormat"sv));
config.monitor.dynamicRange = util::from_view(args.at("x-nv-video[0].dynamicRangeMode"sv));
config.monitor.chromaSamplingType = util::from_view(args.at("x-ss-video[0].chromaSamplingType"sv));
configuredBitrateKbps = util::from_view(args.at("x-ml-video.configuredBitrateKbps"sv));
}
catch (std::out_of_range &) {
respond(sock, session, &option, 400, "BAD REQUEST", req->sequenceNumber, {});
return;
}
// When using stereo audio, the audio quality is (strangely) indicated by whether the Host field
// in the RTSP message matches a local interface's IP address. Fortunately, Moonlight always sends
// 0.0.0.0 when it wants low quality, so it is easy to check without enumerating interfaces.
if (config.audio.channels == 2) {
for (auto option = req->options; option != nullptr; option = option->next) {
if ("Host"sv == option->option) {
std::string_view content { option->content };
BOOST_LOG(debug) << "Found Host: "sv << content;
config.audio.flags[audio::config_t::HIGH_QUALITY] = (content.find("0.0.0.0"sv) == std::string::npos);
}
}
}
else if (session.surround_params.length() > 3) {
// Channels
std::uint8_t c = session.surround_params[0] - '0';
// Streams
std::uint8_t n = session.surround_params[1] - '0';
// Coupled streams
std::uint8_t m = session.surround_params[2] - '0';
auto valid = false;
if ((c == 6 || c == 8) && c == config.audio.channels && n + m == c && session.surround_params.length() == c + 3) {
config.audio.customStreamParams.channelCount = c;
config.audio.customStreamParams.streams = n;
config.audio.customStreamParams.coupledStreams = m;
valid = true;
for (std::uint8_t i = 0; i < c; i++) {
config.audio.customStreamParams.mapping[i] = session.surround_params[i + 3] - '0';
if (config.audio.customStreamParams.mapping[i] >= c) {
valid = false;
break;
}
}
}
config.audio.flags[audio::config_t::CUSTOM_SURROUND_PARAMS] = valid;
}
// If the client sent a configured bitrate, we will choose the actual bitrate ourselves
// by using FEC percentage and audio quality settings. If the calculated bitrate ends up
// too low, we'll allow it to exceed the limits rather than reducing the encoding bitrate
// down to nearly nothing.
if (configuredBitrateKbps) {
BOOST_LOG(debug) << "Client configured bitrate is "sv << configuredBitrateKbps << " Kbps"sv;
// If the FEC percentage isn't too high, adjust the configured bitrate to ensure video
// traffic doesn't exceed the user's selected bitrate when the FEC shards are included.
if (config::stream.fec_percentage <= 80) {
configuredBitrateKbps /= 100.f / (100 - config::stream.fec_percentage);
}
// Adjust the bitrate to account for audio traffic bandwidth usage (capped at 20% reduction).
// The bitrate per channel is 256 Kbps for high quality mode and 96 Kbps for normal quality.
auto audioBitrateAdjustment = (config.audio.flags[audio::config_t::HIGH_QUALITY] ? 256 : 96) * config.audio.channels;
configuredBitrateKbps -= std::min((std::int64_t) audioBitrateAdjustment, configuredBitrateKbps / 5);
// Reduce it by another 500Kbps to account for A/V packet overhead and control data
// traffic (capped at 10% reduction).
configuredBitrateKbps -= std::min((std::int64_t) 500, configuredBitrateKbps / 10);
BOOST_LOG(debug) << "Final adjusted video encoding bitrate is "sv << configuredBitrateKbps << " Kbps"sv;
config.monitor.bitrate = configuredBitrateKbps;
}
if (config.monitor.videoFormat == 1 && video::active_hevc_mode == 1) {
BOOST_LOG(warning) << "HEVC is disabled, yet the client requested HEVC"sv;
respond(sock, session, &option, 400, "BAD REQUEST", req->sequenceNumber, {});
return;
}
if (config.monitor.videoFormat == 2 && video::active_av1_mode == 1) {
BOOST_LOG(warning) << "AV1 is disabled, yet the client requested AV1"sv;
respond(sock, session, &option, 400, "BAD REQUEST", req->sequenceNumber, {});
return;
}
// Check that any required encryption is enabled
auto encryption_mode = net::encryption_mode_for_address(sock.remote_endpoint().address());
if (encryption_mode == config::ENCRYPTION_MODE_MANDATORY &&
(config.encryptionFlagsEnabled & (SS_ENC_VIDEO | SS_ENC_AUDIO)) != (SS_ENC_VIDEO | SS_ENC_AUDIO)) {
BOOST_LOG(error) << "Rejecting client that cannot comply with mandatory encryption requirement"sv;
respond(sock, session, &option, 403, "Forbidden", req->sequenceNumber, {});
return;
}
auto stream_session = stream::session::alloc(config, session);
server->insert(stream_session);
if (stream::session::start(*stream_session, sock.remote_endpoint().address().to_string())) {
BOOST_LOG(error) << "Failed to start a streaming session"sv;
server->remove(stream_session);
respond(sock, session, &option, 500, "Internal Server Error", req->sequenceNumber, {});
return;
}
respond(sock, session, &option, 200, "OK", req->sequenceNumber, {});
}
void
cmd_play(rtsp_server_t *server, tcp::socket &sock, launch_session_t &session, msg_t &&req) {
OPTION_ITEM option {};
// I know these string literals will not be modified
option.option = const_cast<char *>("CSeq");
auto seqn_str = std::to_string(req->sequenceNumber);
option.content = const_cast<char *>(seqn_str.c_str());
respond(sock, session, &option, 200, "OK", req->sequenceNumber, {});
}
void
rtpThread() {
auto shutdown_event = mail::man->event<bool>(mail::shutdown);
auto broadcast_shutdown_event = mail::man->event<bool>(mail::broadcast_shutdown);
server.map("OPTIONS"sv, &cmd_option);
server.map("DESCRIBE"sv, &cmd_describe);
server.map("SETUP"sv, &cmd_setup);
server.map("ANNOUNCE"sv, &cmd_announce);
server.map("PLAY"sv, &cmd_play);
boost::system::error_code ec;
if (server.bind(net::af_from_enum_string(config::sunshine.address_family), net::map_port(rtsp_stream::RTSP_SETUP_PORT), ec)) {
BOOST_LOG(fatal) << "Couldn't bind RTSP server to port ["sv << net::map_port(rtsp_stream::RTSP_SETUP_PORT) << "], " << ec.message();
shutdown_event->raise(true);
return;
}
while (!shutdown_event->peek()) {
server.iterate(std::min(500ms, config::stream.ping_timeout));
if (broadcast_shutdown_event->peek()) {
server.clear();
}
else {
// cleanup all stopped sessions
server.clear(false);
}
}
server.clear();
}
void
print_msg(PRTSP_MESSAGE msg) {
std::string_view type = msg->type == TYPE_RESPONSE ? "RESPONSE"sv : "REQUEST"sv;
std::string_view payload { msg->payload, (size_t) msg->payloadLength };
std::string_view protocol { msg->protocol };
auto seqnm = msg->sequenceNumber;
std::string_view messageBuffer { msg->messageBuffer };
BOOST_LOG(debug) << "type ["sv << type << ']';
BOOST_LOG(debug) << "sequence number ["sv << seqnm << ']';
BOOST_LOG(debug) << "protocol :: "sv << protocol;
BOOST_LOG(debug) << "payload :: "sv << payload;
if (msg->type == TYPE_RESPONSE) {
auto &resp = msg->message.response;
auto statuscode = resp.statusCode;
std::string_view status { resp.statusString };
BOOST_LOG(debug) << "statuscode :: "sv << statuscode;
BOOST_LOG(debug) << "status :: "sv << status;
}
else {
auto &req = msg->message.request;
std::string_view command { req.command };
std::string_view target { req.target };
BOOST_LOG(debug) << "command :: "sv << command;
BOOST_LOG(debug) << "target :: "sv << target;
}
for (auto option = msg->options; option != nullptr; option = option->next) {
std::string_view content { option->content };
std::string_view name { option->option };
BOOST_LOG(debug) << name << " :: "sv << content;
}
BOOST_LOG(debug) << "---Begin MessageBuffer---"sv << std::endl
<< messageBuffer << std::endl
<< "---End MessageBuffer---"sv << std::endl;
}
} // namespace rtsp_stream