sunshine-sdk/src/platform/linux/misc.cpp
Cameron Gutman 1303defb67 Fix crash during UDP segmentation due to stack garbage
CMSG_NXTHDR() tries to read the _next_ message to check if it fits in
the provided control buffer length. If that part of the stack has some
large value stored in the uninitialized cmsg_len there, CMSG_NXTHDR()
will return NULL and we will crash.
2023-10-02 00:13:47 -05:00

791 lines
22 KiB
C++

/**
* @file src/misc.cpp
* @brief todo
*/
// Required for in6_pktinfo with glibc headers
#ifndef _GNU_SOURCE
#define _GNU_SOURCE 1
#endif
// standard includes
#include <fstream>
// lib includes
#include <arpa/inet.h>
#include <boost/asio/ip/address.hpp>
#include <boost/process.hpp>
#include <dlfcn.h>
#include <fcntl.h>
#include <ifaddrs.h>
#include <netinet/udp.h>
#include <pwd.h>
#include <unistd.h>
// local includes
#include "graphics.h"
#include "misc.h"
#include "src/config.h"
#include "src/main.h"
#include "src/platform/common.h"
#include "vaapi.h"
#ifdef __GNUC__
#define SUNSHINE_GNUC_EXTENSION __extension__
#else
#define SUNSHINE_GNUC_EXTENSION
#endif
using namespace std::literals;
namespace fs = std::filesystem;
namespace bp = boost::process;
window_system_e window_system;
namespace dyn {
void *
handle(const std::vector<const char *> &libs) {
void *handle;
for (auto lib : libs) {
handle = dlopen(lib, RTLD_LAZY | RTLD_LOCAL);
if (handle) {
return handle;
}
}
std::stringstream ss;
ss << "Couldn't find any of the following libraries: ["sv << libs.front();
std::for_each(std::begin(libs) + 1, std::end(libs), [&](auto lib) {
ss << ", "sv << lib;
});
ss << ']';
BOOST_LOG(error) << ss.str();
return nullptr;
}
int
load(void *handle, const std::vector<std::tuple<apiproc *, const char *>> &funcs, bool strict) {
int err = 0;
for (auto &func : funcs) {
TUPLE_2D_REF(fn, name, func);
*fn = SUNSHINE_GNUC_EXTENSION(apiproc) dlsym(handle, name);
if (!*fn && strict) {
BOOST_LOG(error) << "Couldn't find function: "sv << name;
err = -1;
}
}
return err;
}
} // namespace dyn
namespace platf {
using ifaddr_t = util::safe_ptr<ifaddrs, freeifaddrs>;
ifaddr_t
get_ifaddrs() {
ifaddrs *p { nullptr };
getifaddrs(&p);
return ifaddr_t { p };
}
fs::path
appdata() {
const char *homedir;
if ((homedir = getenv("HOME")) == nullptr) {
homedir = getpwuid(geteuid())->pw_dir;
}
return fs::path { homedir } / ".config/sunshine"sv;
}
std::string
from_sockaddr(const sockaddr *const ip_addr) {
char data[INET6_ADDRSTRLEN] = {};
auto family = ip_addr->sa_family;
if (family == AF_INET6) {
inet_ntop(AF_INET6, &((sockaddr_in6 *) ip_addr)->sin6_addr, data,
INET6_ADDRSTRLEN);
}
else if (family == AF_INET) {
inet_ntop(AF_INET, &((sockaddr_in *) ip_addr)->sin_addr, data,
INET_ADDRSTRLEN);
}
return std::string { data };
}
std::pair<std::uint16_t, std::string>
from_sockaddr_ex(const sockaddr *const ip_addr) {
char data[INET6_ADDRSTRLEN] = {};
auto family = ip_addr->sa_family;
std::uint16_t port = 0;
if (family == AF_INET6) {
inet_ntop(AF_INET6, &((sockaddr_in6 *) ip_addr)->sin6_addr, data,
INET6_ADDRSTRLEN);
port = ((sockaddr_in6 *) ip_addr)->sin6_port;
}
else if (family == AF_INET) {
inet_ntop(AF_INET, &((sockaddr_in *) ip_addr)->sin_addr, data,
INET_ADDRSTRLEN);
port = ((sockaddr_in *) ip_addr)->sin_port;
}
return { port, std::string { data } };
}
std::string
get_mac_address(const std::string_view &address) {
auto ifaddrs = get_ifaddrs();
for (auto pos = ifaddrs.get(); pos != nullptr; pos = pos->ifa_next) {
if (pos->ifa_addr && address == from_sockaddr(pos->ifa_addr)) {
std::ifstream mac_file("/sys/class/net/"s + pos->ifa_name + "/address");
if (mac_file.good()) {
std::string mac_address;
std::getline(mac_file, mac_address);
return mac_address;
}
}
}
BOOST_LOG(warning) << "Unable to find MAC address for "sv << address;
return "00:00:00:00:00:00"s;
}
bp::child
run_command(bool elevated, bool interactive, const std::string &cmd, boost::filesystem::path &working_dir, const bp::environment &env, FILE *file, std::error_code &ec, bp::group *group) {
if (!group) {
if (!file) {
return bp::child(cmd, env, bp::start_dir(working_dir), bp::std_out > bp::null, bp::std_err > bp::null, ec);
}
else {
return bp::child(cmd, env, bp::start_dir(working_dir), bp::std_out > file, bp::std_err > file, ec);
}
}
else {
if (!file) {
return bp::child(cmd, env, bp::start_dir(working_dir), bp::std_out > bp::null, bp::std_err > bp::null, ec, *group);
}
else {
return bp::child(cmd, env, bp::start_dir(working_dir), bp::std_out > file, bp::std_err > file, ec, *group);
}
}
}
/**
* @brief Open a url in the default web browser.
* @param url The url to open.
*/
void
open_url(const std::string &url) {
// set working dir to user home directory
auto working_dir = boost::filesystem::path(std::getenv("HOME"));
std::string cmd = R"(xdg-open ")" + url + R"(")";
boost::process::environment _env = boost::this_process::environment();
std::error_code ec;
auto child = run_command(false, false, cmd, working_dir, _env, nullptr, ec, nullptr);
if (ec) {
BOOST_LOG(warning) << "Couldn't open url ["sv << url << "]: System: "sv << ec.message();
}
else {
BOOST_LOG(info) << "Opened url ["sv << url << "]"sv;
child.detach();
}
}
void
adjust_thread_priority(thread_priority_e priority) {
// Unimplemented
}
void
streaming_will_start() {
// Nothing to do
}
void
streaming_will_stop() {
// Nothing to do
}
void
restart_on_exit() {
char executable[PATH_MAX];
ssize_t len = readlink("/proc/self/exe", executable, PATH_MAX - 1);
if (len == -1) {
BOOST_LOG(fatal) << "readlink() failed: "sv << errno;
return;
}
executable[len] = '\0';
// ASIO doesn't use O_CLOEXEC, so we have to close all fds ourselves
int openmax = (int) sysconf(_SC_OPEN_MAX);
for (int fd = STDERR_FILENO + 1; fd < openmax; fd++) {
close(fd);
}
// Re-exec ourselves with the same arguments
if (execv(executable, lifetime::get_argv()) < 0) {
BOOST_LOG(fatal) << "execv() failed: "sv << errno;
return;
}
}
void
restart() {
// Gracefully clean up and restart ourselves instead of exiting
atexit(restart_on_exit);
lifetime::exit_sunshine(0, true);
}
struct sockaddr_in
to_sockaddr(boost::asio::ip::address_v4 address, uint16_t port) {
struct sockaddr_in saddr_v4 = {};
saddr_v4.sin_family = AF_INET;
saddr_v4.sin_port = htons(port);
auto addr_bytes = address.to_bytes();
memcpy(&saddr_v4.sin_addr, addr_bytes.data(), sizeof(saddr_v4.sin_addr));
return saddr_v4;
}
struct sockaddr_in6
to_sockaddr(boost::asio::ip::address_v6 address, uint16_t port) {
struct sockaddr_in6 saddr_v6 = {};
saddr_v6.sin6_family = AF_INET6;
saddr_v6.sin6_port = htons(port);
saddr_v6.sin6_scope_id = address.scope_id();
auto addr_bytes = address.to_bytes();
memcpy(&saddr_v6.sin6_addr, addr_bytes.data(), sizeof(saddr_v6.sin6_addr));
return saddr_v6;
}
bool
send_batch(batched_send_info_t &send_info) {
auto sockfd = (int) send_info.native_socket;
struct msghdr msg = {};
// Convert the target address into a sockaddr
struct sockaddr_in taddr_v4 = {};
struct sockaddr_in6 taddr_v6 = {};
if (send_info.target_address.is_v6()) {
taddr_v6 = to_sockaddr(send_info.target_address.to_v6(), send_info.target_port);
msg.msg_name = (struct sockaddr *) &taddr_v6;
msg.msg_namelen = sizeof(taddr_v6);
}
else {
taddr_v4 = to_sockaddr(send_info.target_address.to_v4(), send_info.target_port);
msg.msg_name = (struct sockaddr *) &taddr_v4;
msg.msg_namelen = sizeof(taddr_v4);
}
union {
char buf[CMSG_SPACE(sizeof(uint16_t)) +
std::max(CMSG_SPACE(sizeof(struct in_pktinfo)), CMSG_SPACE(sizeof(struct in6_pktinfo)))];
struct cmsghdr alignment;
} cmbuf = {}; // Must be zeroed for CMSG_NXTHDR()
socklen_t cmbuflen = 0;
msg.msg_control = cmbuf.buf;
msg.msg_controllen = sizeof(cmbuf.buf);
// The PKTINFO option will always be first, then we will conditionally
// append the UDP_SEGMENT option next if applicable.
auto pktinfo_cm = CMSG_FIRSTHDR(&msg);
if (send_info.source_address.is_v6()) {
struct in6_pktinfo pktInfo;
struct sockaddr_in6 saddr_v6 = to_sockaddr(send_info.source_address.to_v6(), 0);
pktInfo.ipi6_addr = saddr_v6.sin6_addr;
pktInfo.ipi6_ifindex = 0;
cmbuflen += CMSG_SPACE(sizeof(pktInfo));
pktinfo_cm->cmsg_level = IPPROTO_IPV6;
pktinfo_cm->cmsg_type = IPV6_PKTINFO;
pktinfo_cm->cmsg_len = CMSG_LEN(sizeof(pktInfo));
memcpy(CMSG_DATA(pktinfo_cm), &pktInfo, sizeof(pktInfo));
}
else {
struct in_pktinfo pktInfo;
struct sockaddr_in saddr_v4 = to_sockaddr(send_info.source_address.to_v4(), 0);
pktInfo.ipi_spec_dst = saddr_v4.sin_addr;
pktInfo.ipi_ifindex = 0;
cmbuflen += CMSG_SPACE(sizeof(pktInfo));
pktinfo_cm->cmsg_level = IPPROTO_IP;
pktinfo_cm->cmsg_type = IP_PKTINFO;
pktinfo_cm->cmsg_len = CMSG_LEN(sizeof(pktInfo));
memcpy(CMSG_DATA(pktinfo_cm), &pktInfo, sizeof(pktInfo));
}
#ifdef UDP_SEGMENT
{
struct iovec iov = {};
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
// UDP GSO on Linux currently only supports sending 64K or 64 segments at a time
size_t seg_index = 0;
const size_t seg_max = 65536 / 1500;
while (seg_index < send_info.block_count) {
iov.iov_base = (void *) &send_info.buffer[seg_index * send_info.block_size];
iov.iov_len = send_info.block_size * std::min(send_info.block_count - seg_index, seg_max);
// We should not use GSO if the data is <= one full block size
if (iov.iov_len > send_info.block_size) {
msg.msg_controllen = cmbuflen + CMSG_SPACE(sizeof(uint16_t));
// Enable GSO to perform segmentation of our buffer for us
auto cm = CMSG_NXTHDR(&msg, pktinfo_cm);
cm->cmsg_level = SOL_UDP;
cm->cmsg_type = UDP_SEGMENT;
cm->cmsg_len = CMSG_LEN(sizeof(uint16_t));
*((uint16_t *) CMSG_DATA(cm)) = send_info.block_size;
}
else {
msg.msg_controllen = cmbuflen;
}
// This will fail if GSO is not available, so we will fall back to non-GSO if
// it's the first sendmsg() call. On subsequent calls, we will treat errors as
// actual failures and return to the caller.
auto bytes_sent = sendmsg(sockfd, &msg, 0);
if (bytes_sent < 0) {
// If there's no send buffer space, wait for some to be available
if (errno == EAGAIN) {
struct pollfd pfd;
pfd.fd = sockfd;
pfd.events = POLLOUT;
if (poll(&pfd, 1, -1) != 1) {
BOOST_LOG(warning) << "poll() failed: "sv << errno;
break;
}
// Try to send again
continue;
}
break;
}
seg_index += bytes_sent / send_info.block_size;
}
// If we sent something, return the status and don't fall back to the non-GSO path.
if (seg_index != 0) {
return seg_index >= send_info.block_count;
}
}
#endif
{
// If GSO is not supported, use sendmmsg() instead.
struct mmsghdr msgs[send_info.block_count];
struct iovec iovs[send_info.block_count];
for (size_t i = 0; i < send_info.block_count; i++) {
iovs[i] = {};
iovs[i].iov_base = (void *) &send_info.buffer[i * send_info.block_size];
iovs[i].iov_len = send_info.block_size;
msgs[i] = {};
msgs[i].msg_hdr.msg_name = msg.msg_name;
msgs[i].msg_hdr.msg_namelen = msg.msg_namelen;
msgs[i].msg_hdr.msg_iov = &iovs[i];
msgs[i].msg_hdr.msg_iovlen = 1;
msgs[i].msg_hdr.msg_control = cmbuf.buf;
msgs[i].msg_hdr.msg_controllen = cmbuflen;
}
// Call sendmmsg() until all messages are sent
size_t blocks_sent = 0;
while (blocks_sent < send_info.block_count) {
int msgs_sent = sendmmsg(sockfd, &msgs[blocks_sent], send_info.block_count - blocks_sent, 0);
if (msgs_sent < 0) {
// If there's no send buffer space, wait for some to be available
if (errno == EAGAIN) {
struct pollfd pfd;
pfd.fd = sockfd;
pfd.events = POLLOUT;
if (poll(&pfd, 1, -1) != 1) {
BOOST_LOG(warning) << "poll() failed: "sv << errno;
break;
}
// Try to send again
continue;
}
BOOST_LOG(warning) << "sendmmsg() failed: "sv << errno;
return false;
}
blocks_sent += msgs_sent;
}
return true;
}
}
bool
send(send_info_t &send_info) {
auto sockfd = (int) send_info.native_socket;
struct msghdr msg = {};
// Convert the target address into a sockaddr
struct sockaddr_in taddr_v4 = {};
struct sockaddr_in6 taddr_v6 = {};
if (send_info.target_address.is_v6()) {
taddr_v6 = to_sockaddr(send_info.target_address.to_v6(), send_info.target_port);
msg.msg_name = (struct sockaddr *) &taddr_v6;
msg.msg_namelen = sizeof(taddr_v6);
}
else {
taddr_v4 = to_sockaddr(send_info.target_address.to_v4(), send_info.target_port);
msg.msg_name = (struct sockaddr *) &taddr_v4;
msg.msg_namelen = sizeof(taddr_v4);
}
union {
char buf[std::max(CMSG_SPACE(sizeof(struct in_pktinfo)), CMSG_SPACE(sizeof(struct in6_pktinfo)))];
struct cmsghdr alignment;
} cmbuf;
socklen_t cmbuflen = 0;
msg.msg_control = cmbuf.buf;
msg.msg_controllen = sizeof(cmbuf.buf);
auto pktinfo_cm = CMSG_FIRSTHDR(&msg);
if (send_info.source_address.is_v6()) {
struct in6_pktinfo pktInfo;
struct sockaddr_in6 saddr_v6 = to_sockaddr(send_info.source_address.to_v6(), 0);
pktInfo.ipi6_addr = saddr_v6.sin6_addr;
pktInfo.ipi6_ifindex = 0;
cmbuflen += CMSG_SPACE(sizeof(pktInfo));
pktinfo_cm->cmsg_level = IPPROTO_IPV6;
pktinfo_cm->cmsg_type = IPV6_PKTINFO;
pktinfo_cm->cmsg_len = CMSG_LEN(sizeof(pktInfo));
memcpy(CMSG_DATA(pktinfo_cm), &pktInfo, sizeof(pktInfo));
}
else {
struct in_pktinfo pktInfo;
struct sockaddr_in saddr_v4 = to_sockaddr(send_info.source_address.to_v4(), 0);
pktInfo.ipi_spec_dst = saddr_v4.sin_addr;
pktInfo.ipi_ifindex = 0;
cmbuflen += CMSG_SPACE(sizeof(pktInfo));
pktinfo_cm->cmsg_level = IPPROTO_IP;
pktinfo_cm->cmsg_type = IP_PKTINFO;
pktinfo_cm->cmsg_len = CMSG_LEN(sizeof(pktInfo));
memcpy(CMSG_DATA(pktinfo_cm), &pktInfo, sizeof(pktInfo));
}
struct iovec iov = {};
iov.iov_base = (void *) send_info.buffer;
iov.iov_len = send_info.size;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_controllen = cmbuflen;
auto bytes_sent = sendmsg(sockfd, &msg, 0);
// If there's no send buffer space, wait for some to be available
while (bytes_sent < 0 && errno == EAGAIN) {
struct pollfd pfd;
pfd.fd = sockfd;
pfd.events = POLLOUT;
if (poll(&pfd, 1, -1) != 1) {
BOOST_LOG(warning) << "poll() failed: "sv << errno;
break;
}
// Try to send again
bytes_sent = sendmsg(sockfd, &msg, 0);
}
if (bytes_sent < 0) {
BOOST_LOG(warning) << "sendmsg() failed: "sv << errno;
return false;
}
return true;
}
class qos_t: public deinit_t {
public:
qos_t(int sockfd, int level, int option):
sockfd(sockfd), level(level), option(option) {}
virtual ~qos_t() {
int reset_val = -1;
if (setsockopt(sockfd, level, option, &reset_val, sizeof(reset_val)) < 0) {
BOOST_LOG(warning) << "Failed to reset IP TOS: "sv << errno;
}
}
private:
int sockfd;
int level;
int option;
};
std::unique_ptr<deinit_t>
enable_socket_qos(uintptr_t native_socket, boost::asio::ip::address &address, uint16_t port, qos_data_type_e data_type) {
int sockfd = (int) native_socket;
int level;
int option;
if (address.is_v6()) {
level = SOL_IPV6;
option = IPV6_TCLASS;
}
else {
level = SOL_IP;
option = IP_TOS;
}
// The specific DSCP values here are chosen to be consistent with Windows
int dscp;
switch (data_type) {
case qos_data_type_e::video:
dscp = 40;
break;
case qos_data_type_e::audio:
dscp = 56;
break;
default:
BOOST_LOG(error) << "Unknown traffic type: "sv << (int) data_type;
return nullptr;
}
// Shift to put the DSCP value in the correct position in the TOS field
dscp <<= 2;
if (setsockopt(sockfd, level, option, &dscp, sizeof(dscp)) < 0) {
return nullptr;
}
return std::make_unique<qos_t>(sockfd, level, option);
}
namespace source {
enum source_e : std::size_t {
#ifdef SUNSHINE_BUILD_CUDA
NVFBC,
#endif
#ifdef SUNSHINE_BUILD_WAYLAND
WAYLAND,
#endif
#ifdef SUNSHINE_BUILD_DRM
KMS,
#endif
#ifdef SUNSHINE_BUILD_X11
X11,
#endif
MAX_FLAGS
};
} // namespace source
static std::bitset<source::MAX_FLAGS> sources;
#ifdef SUNSHINE_BUILD_CUDA
std::vector<std::string>
nvfbc_display_names();
std::shared_ptr<display_t>
nvfbc_display(mem_type_e hwdevice_type, const std::string &display_name, const video::config_t &config);
bool
verify_nvfbc() {
return !nvfbc_display_names().empty();
}
#endif
#ifdef SUNSHINE_BUILD_WAYLAND
std::vector<std::string>
wl_display_names();
std::shared_ptr<display_t>
wl_display(mem_type_e hwdevice_type, const std::string &display_name, const video::config_t &config);
bool
verify_wl() {
return window_system == window_system_e::WAYLAND && !wl_display_names().empty();
}
#endif
#ifdef SUNSHINE_BUILD_DRM
std::vector<std::string>
kms_display_names();
std::shared_ptr<display_t>
kms_display(mem_type_e hwdevice_type, const std::string &display_name, const video::config_t &config);
bool
verify_kms() {
return !kms_display_names().empty();
}
#endif
#ifdef SUNSHINE_BUILD_X11
std::vector<std::string>
x11_display_names();
std::shared_ptr<display_t>
x11_display(mem_type_e hwdevice_type, const std::string &display_name, const video::config_t &config);
bool
verify_x11() {
return window_system == window_system_e::X11 && !x11_display_names().empty();
}
#endif
std::vector<std::string>
display_names(mem_type_e hwdevice_type) {
#ifdef SUNSHINE_BUILD_CUDA
// display using NvFBC only supports mem_type_e::cuda
if (sources[source::NVFBC] && hwdevice_type == mem_type_e::cuda) return nvfbc_display_names();
#endif
#ifdef SUNSHINE_BUILD_WAYLAND
if (sources[source::WAYLAND]) return wl_display_names();
#endif
#ifdef SUNSHINE_BUILD_DRM
if (sources[source::KMS]) return kms_display_names();
#endif
#ifdef SUNSHINE_BUILD_X11
if (sources[source::X11]) return x11_display_names();
#endif
return {};
}
std::shared_ptr<display_t>
display(mem_type_e hwdevice_type, const std::string &display_name, const video::config_t &config) {
#ifdef SUNSHINE_BUILD_CUDA
if (sources[source::NVFBC] && hwdevice_type == mem_type_e::cuda) {
BOOST_LOG(info) << "Screencasting with NvFBC"sv;
return nvfbc_display(hwdevice_type, display_name, config);
}
#endif
#ifdef SUNSHINE_BUILD_WAYLAND
if (sources[source::WAYLAND]) {
BOOST_LOG(info) << "Screencasting with Wayland's protocol"sv;
return wl_display(hwdevice_type, display_name, config);
}
#endif
#ifdef SUNSHINE_BUILD_DRM
if (sources[source::KMS]) {
BOOST_LOG(info) << "Screencasting with KMS"sv;
return kms_display(hwdevice_type, display_name, config);
}
#endif
#ifdef SUNSHINE_BUILD_X11
if (sources[source::X11]) {
BOOST_LOG(info) << "Screencasting with X11"sv;
return x11_display(hwdevice_type, display_name, config);
}
#endif
return nullptr;
}
std::unique_ptr<deinit_t>
init() {
// These are allowed to fail.
gbm::init();
va::init();
window_system = window_system_e::NONE;
#ifdef SUNSHINE_BUILD_WAYLAND
if (std::getenv("WAYLAND_DISPLAY")) {
window_system = window_system_e::WAYLAND;
}
#endif
#if defined(SUNSHINE_BUILD_X11) || defined(SUNSHINE_BUILD_CUDA)
if (std::getenv("DISPLAY") && window_system != window_system_e::WAYLAND) {
if (std::getenv("WAYLAND_DISPLAY")) {
BOOST_LOG(warning) << "Wayland detected, yet sunshine will use X11 for screencasting, screencasting will only work on XWayland applications"sv;
}
window_system = window_system_e::X11;
}
#endif
#ifdef SUNSHINE_BUILD_CUDA
if (config::video.capture.empty() || config::video.capture == "nvfbc") {
if (verify_nvfbc()) {
sources[source::NVFBC] = true;
}
}
#endif
#ifdef SUNSHINE_BUILD_WAYLAND
if (config::video.capture.empty() || config::video.capture == "wlr") {
if (verify_wl()) {
sources[source::WAYLAND] = true;
}
}
#endif
#ifdef SUNSHINE_BUILD_DRM
if (config::video.capture.empty() || config::video.capture == "kms") {
if (verify_kms()) {
if (window_system == window_system_e::WAYLAND) {
// On Wayland, using KMS, the cursor is unreliable.
// Hide it by default
display_cursor = false;
}
sources[source::KMS] = true;
}
}
#endif
#ifdef SUNSHINE_BUILD_X11
if (config::video.capture.empty() || config::video.capture == "x11") {
if (verify_x11()) {
sources[source::X11] = true;
}
}
#endif
if (sources.none()) {
BOOST_LOG(error) << "Unable to initialize capture method"sv;
return nullptr;
}
if (!gladLoaderLoadEGL(EGL_NO_DISPLAY) || !eglGetPlatformDisplay) {
BOOST_LOG(warning) << "Couldn't load EGL library"sv;
}
return std::make_unique<deinit_t>();
}
} // namespace platf