#include #include #include #include #include #include #include // prevent clang format from "optimizing" the header include order // clang-format off #include #include #include #include #include #include #include #include #include #include #include #include // clang-format on #include "src/main.h" #include "src/platform/common.h" #include "src/utility.h" #include // UDP_SEND_MSG_SIZE was added in the Windows 10 20H1 SDK #ifndef UDP_SEND_MSG_SIZE #define UDP_SEND_MSG_SIZE 2 #endif // MinGW headers are missing qWAVE stuff typedef UINT32 QOS_FLOWID, *PQOS_FLOWID; #define QOS_NON_ADAPTIVE_FLOW 0x00000002 #include #ifndef WLAN_API_MAKE_VERSION #define WLAN_API_MAKE_VERSION(_major, _minor) (((DWORD) (_minor)) << 16 | (_major)) #endif namespace bp = boost::process; using namespace std::literals; namespace platf { using adapteraddrs_t = util::c_ptr; bool enabled_mouse_keys = false; MOUSEKEYS previous_mouse_keys_state; HANDLE qos_handle = nullptr; decltype(QOSCreateHandle) *fn_QOSCreateHandle = nullptr; decltype(QOSAddSocketToFlow) *fn_QOSAddSocketToFlow = nullptr; decltype(QOSRemoveSocketFromFlow) *fn_QOSRemoveSocketFromFlow = nullptr; HANDLE wlan_handle = nullptr; decltype(WlanOpenHandle) *fn_WlanOpenHandle = nullptr; decltype(WlanCloseHandle) *fn_WlanCloseHandle = nullptr; decltype(WlanFreeMemory) *fn_WlanFreeMemory = nullptr; decltype(WlanEnumInterfaces) *fn_WlanEnumInterfaces = nullptr; decltype(WlanSetInterface) *fn_WlanSetInterface = nullptr; std::filesystem::path appdata() { WCHAR sunshine_path[MAX_PATH]; GetModuleFileNameW(NULL, sunshine_path, _countof(sunshine_path)); return std::filesystem::path { sunshine_path }.remove_filename() / L"config"sv; } std::string from_sockaddr(const sockaddr *const socket_address) { char data[INET6_ADDRSTRLEN]; auto family = socket_address->sa_family; if (family == AF_INET6) { inet_ntop(AF_INET6, &((sockaddr_in6 *) socket_address)->sin6_addr, data, INET6_ADDRSTRLEN); } if (family == AF_INET) { inet_ntop(AF_INET, &((sockaddr_in *) socket_address)->sin_addr, data, INET_ADDRSTRLEN); } return std::string { data }; } std::pair from_sockaddr_ex(const sockaddr *const ip_addr) { char data[INET6_ADDRSTRLEN]; auto family = ip_addr->sa_family; std::uint16_t port; if (family == AF_INET6) { inet_ntop(AF_INET6, &((sockaddr_in6 *) ip_addr)->sin6_addr, data, INET6_ADDRSTRLEN); port = ((sockaddr_in6 *) ip_addr)->sin6_port; } if (family == AF_INET) { inet_ntop(AF_INET, &((sockaddr_in *) ip_addr)->sin_addr, data, INET_ADDRSTRLEN); port = ((sockaddr_in *) ip_addr)->sin_port; } return { port, std::string { data } }; } adapteraddrs_t get_adapteraddrs() { adapteraddrs_t info { nullptr }; ULONG size = 0; while (GetAdaptersAddresses(AF_UNSPEC, 0, nullptr, info.get(), &size) == ERROR_BUFFER_OVERFLOW) { info.reset((PIP_ADAPTER_ADDRESSES) malloc(size)); } return info; } std::string get_mac_address(const std::string_view &address) { adapteraddrs_t info = get_adapteraddrs(); for (auto adapter_pos = info.get(); adapter_pos != nullptr; adapter_pos = adapter_pos->Next) { for (auto addr_pos = adapter_pos->FirstUnicastAddress; addr_pos != nullptr; addr_pos = addr_pos->Next) { if (adapter_pos->PhysicalAddressLength != 0 && address == from_sockaddr(addr_pos->Address.lpSockaddr)) { std::stringstream mac_addr; mac_addr << std::hex; for (int i = 0; i < adapter_pos->PhysicalAddressLength; i++) { if (i > 0) { mac_addr << ':'; } mac_addr << std::setw(2) << std::setfill('0') << (int) adapter_pos->PhysicalAddress[i]; } return mac_addr.str(); } } } BOOST_LOG(warning) << "Unable to find MAC address for "sv << address; return "00:00:00:00:00:00"s; } HDESK syncThreadDesktop() { auto hDesk = OpenInputDesktop(DF_ALLOWOTHERACCOUNTHOOK, FALSE, GENERIC_ALL); if (!hDesk) { auto err = GetLastError(); BOOST_LOG(error) << "Failed to Open Input Desktop [0x"sv << util::hex(err).to_string_view() << ']'; return nullptr; } if (!SetThreadDesktop(hDesk)) { auto err = GetLastError(); BOOST_LOG(error) << "Failed to sync desktop to thread [0x"sv << util::hex(err).to_string_view() << ']'; } CloseDesktop(hDesk); return hDesk; } void print_status(const std::string_view &prefix, HRESULT status) { char err_string[1024]; DWORD bytes = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, nullptr, status, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), err_string, sizeof(err_string), nullptr); BOOST_LOG(error) << prefix << ": "sv << std::string_view { err_string, bytes }; } std::wstring utf8_to_wide_string(const std::string &str) { // Determine the size required for the destination string int chars = MultiByteToWideChar(CP_UTF8, 0, str.data(), str.length(), NULL, 0); // Allocate it wchar_t buffer[chars] = {}; // Do the conversion for real chars = MultiByteToWideChar(CP_UTF8, 0, str.data(), str.length(), buffer, chars); return std::wstring(buffer, chars); } std::string wide_to_utf8_string(const std::wstring &str) { // Determine the size required for the destination string int bytes = WideCharToMultiByte(CP_UTF8, 0, str.data(), str.length(), NULL, 0, NULL, NULL); // Allocate it char buffer[bytes] = {}; // Do the conversion for real bytes = WideCharToMultiByte(CP_UTF8, 0, str.data(), str.length(), buffer, bytes, NULL, NULL); return std::string(buffer, bytes); } bool IsUserAdmin(HANDLE user_token) { WINBOOL ret; SID_IDENTIFIER_AUTHORITY NtAuthority = SECURITY_NT_AUTHORITY; PSID AdministratorsGroup; ret = AllocateAndInitializeSid( &NtAuthority, 2, SECURITY_BUILTIN_DOMAIN_RID, DOMAIN_ALIAS_RID_ADMINS, 0, 0, 0, 0, 0, 0, &AdministratorsGroup); if (ret) { if (!CheckTokenMembership(user_token, AdministratorsGroup, &ret)) { ret = false; BOOST_LOG(error) << "Failed to verify token membership for administrative access: " << GetLastError(); } FreeSid(AdministratorsGroup); } else { BOOST_LOG(error) << "Unable to allocate SID to check administrative access: " << GetLastError(); } return ret; } /** * @brief A function to obtain the current sessions user's primary token with elevated privileges * * @return The users token, if user has admin capability it will be elevated. If not, it will return back a limited token. On error, nullptrs */ HANDLE retrieve_users_token(bool elevated) { DWORD consoleSessionId; HANDLE userToken; TOKEN_ELEVATION_TYPE elevationType; DWORD dwSize; // Get the session ID of the active console session consoleSessionId = WTSGetActiveConsoleSessionId(); if (0xFFFFFFFF == consoleSessionId) { // If there is no active console session, log a warning and return null BOOST_LOG(warning) << "There isn't an active user session, therefore it is not possible to execute commands under the users profile."; return nullptr; } // Get the user token for the active console session if (!WTSQueryUserToken(consoleSessionId, &userToken)) { BOOST_LOG(debug) << "QueryUserToken failed, this would prevent commands from launching under the users profile."; return nullptr; } // We need to know if this is an elevated token or not. // Get the elevation type of the user token // Elevation - Default: User is not an admin, UAC enabled/disabled does not matter. // Elevation - Limited: User is an admin, has UAC enabled. // Elevation - Full: User is an admin, has UAC disabled. if (!GetTokenInformation(userToken, TokenElevationType, &elevationType, sizeof(TOKEN_ELEVATION_TYPE), &dwSize)) { BOOST_LOG(debug) << "Retrieving token information failed: " << GetLastError(); CloseHandle(userToken); return nullptr; } // User is currently not an administrator // The documentation for this scenario is conflicting, so we'll double check to see if user is actually an admin. if (elevated && (elevationType == TokenElevationTypeDefault && !IsUserAdmin(userToken))) { // We don't have to strip the token or do anything here, but let's give the user a warning so they're aware what is happening. BOOST_LOG(warning) << "This command requires elevation and the current user account logged in does not have administrator rights. " << "For security reasons Sunshine will retain the same access level as the current user and will not elevate it."; } // User has a limited token, this means they have UAC enabled and is an Administrator if (elevated && elevationType == TokenElevationTypeLimited) { TOKEN_LINKED_TOKEN linkedToken; // Retrieve the administrator token that is linked to the limited token if (!GetTokenInformation(userToken, TokenLinkedToken, reinterpret_cast(&linkedToken), sizeof(TOKEN_LINKED_TOKEN), &dwSize)) { // If the retrieval failed, log an error message and return null BOOST_LOG(error) << "Retrieving linked token information failed: " << GetLastError(); CloseHandle(userToken); // There is no scenario where this should be hit, except for an actual error. return nullptr; } // Since we need the elevated token, we'll replace it with their administrative token. CloseHandle(userToken); userToken = linkedToken.LinkedToken; } // We don't need to do anything for TokenElevationTypeFull users here, because they're already elevated. return userToken; } bool merge_user_environment_block(bp::environment &env, HANDLE shell_token) { // Get the target user's environment block PVOID env_block; if (!CreateEnvironmentBlock(&env_block, shell_token, FALSE)) { return false; } // Parse the environment block and populate env for (auto c = (PWCHAR) env_block; *c != UNICODE_NULL; c += wcslen(c) + 1) { // Environment variable entries end with a null-terminator, so std::wstring() will get an entire entry. std::string env_tuple = wide_to_utf8_string(std::wstring { c }); std::string env_name = env_tuple.substr(0, env_tuple.find('=')); std::string env_val = env_tuple.substr(env_tuple.find('=') + 1); // Perform a case-insensitive search to see if this variable name already exists auto itr = std::find_if(env.cbegin(), env.cend(), [&](const auto &e) { return boost::iequals(e.get_name(), env_name); }); if (itr != env.cend()) { // Use this existing name if it is already present to ensure we merge properly env_name = itr->get_name(); } // For the PATH variable, we will merge the values together if (boost::iequals(env_name, "PATH")) { env[env_name] = env_val + ";" + env[env_name].to_string(); } else { // Other variables will be superseded by those in the user's environment block env[env_name] = env_val; } } DestroyEnvironmentBlock(env_block); return true; } /** @brief Check if the current process is running with system-level privileges. @return true if the current process has system-level privileges, false otherwise. */ bool is_running_as_system() { BOOL ret; PSID SystemSid; DWORD dwSize = SECURITY_MAX_SID_SIZE; // Allocate memory for the SID structure SystemSid = LocalAlloc(LMEM_FIXED, dwSize); if (SystemSid == nullptr) { BOOST_LOG(error) << "Failed to allocate memory for the SID structure: " << GetLastError(); return false; } // Create a SID for the local system account ret = CreateWellKnownSid(WinLocalSystemSid, nullptr, SystemSid, &dwSize); if (ret) { // Check if the current process token contains this SID if (!CheckTokenMembership(nullptr, SystemSid, &ret)) { BOOST_LOG(error) << "Failed to check token membership: " << GetLastError(); ret = false; } } else { BOOST_LOG(error) << "Failed to create a SID for the local system account. This may happen if the system is out of memory or if the SID buffer is too small: " << GetLastError(); } // Free the memory allocated for the SID structure LocalFree(SystemSid); return ret; } // Note: This does NOT append a null terminator void append_string_to_environment_block(wchar_t *env_block, int &offset, const std::wstring &wstr) { std::memcpy(&env_block[offset], wstr.data(), wstr.length() * sizeof(wchar_t)); offset += wstr.length(); } std::wstring create_environment_block(bp::environment &env) { int size = 0; for (const auto &entry : env) { auto name = entry.get_name(); auto value = entry.to_string(); size += utf8_to_wide_string(name).length() + 1 /* L'=' */ + utf8_to_wide_string(value).length() + 1 /* L'\0' */; } size += 1 /* L'\0' */; wchar_t env_block[size]; int offset = 0; for (const auto &entry : env) { auto name = entry.get_name(); auto value = entry.to_string(); // Construct the NAME=VAL\0 string append_string_to_environment_block(env_block, offset, utf8_to_wide_string(name)); env_block[offset++] = L'='; append_string_to_environment_block(env_block, offset, utf8_to_wide_string(value)); env_block[offset++] = L'\0'; } // Append a final null terminator env_block[offset++] = L'\0'; return std::wstring(env_block, offset); } LPPROC_THREAD_ATTRIBUTE_LIST allocate_proc_thread_attr_list(DWORD attribute_count) { SIZE_T size; InitializeProcThreadAttributeList(NULL, attribute_count, 0, &size); auto list = (LPPROC_THREAD_ATTRIBUTE_LIST) HeapAlloc(GetProcessHeap(), 0, size); if (list == NULL) { return NULL; } if (!InitializeProcThreadAttributeList(list, attribute_count, 0, &size)) { HeapFree(GetProcessHeap(), 0, list); return NULL; } return list; } void free_proc_thread_attr_list(LPPROC_THREAD_ATTRIBUTE_LIST list) { DeleteProcThreadAttributeList(list); HeapFree(GetProcessHeap(), 0, list); } /** * @brief Creates a bp::child object from the results of launching a process * * @param process_launched A boolean indicating whether the launch was successful or not * @param cmd The command that was used to launch the process * @param ec A reference to an std::error_code object that will store any error that occurred during the launch * @param process_info A reference to a PROCESS_INFORMATION structure that contains information about the new process * @param group A pointer to a bp::group object that will add the new process to its group, if not null * @return A bp::child object representing the new process, or an empty bp::child object if the launch failed or an error occurred */ bp::child create_boost_child_from_results(bool process_launched, const std::string &cmd, std::error_code &ec, PROCESS_INFORMATION &process_info, bp::group *group) { // Use RAII to ensure the process is closed when we're done with it, even if there was an error. auto close_process_handles = util::fail_guard([process_launched, process_info]() { if (process_launched) { CloseHandle(process_info.hThread); CloseHandle(process_info.hProcess); } }); if (ec) { // If there was an error, return an empty bp::child object return bp::child(); } if (process_launched) { // If the launch was successful, create a new bp::child object representing the new process auto child = bp::child((bp::pid_t) process_info.dwProcessId); if (group) { // If a group was provided, add the new process to the group group->add(child); } BOOST_LOG(info) << cmd << " running with PID "sv << child.id(); return child; } else { auto winerror = GetLastError(); BOOST_LOG(error) << "Failed to launch process: "sv << winerror; ec = std::make_error_code(std::errc::invalid_argument); // We must NOT attach the failed process here, since this case can potentially be induced by ACL // manipulation (denying yourself execute permission) to cause an escalation of privilege. // So to protect ourselves against that, we'll return an empty child process instead. return bp::child(); } } /** * @brief Impersonate the current user, invoke the callback function, then returns back to system context. * * @param user_token A handle to the user's token that was obtained from the shell * @param callback A function that will be executed while impersonating the user * @return An std::error_code object that will store any error that occurred during the impersonation */ std::error_code impersonate_current_user(HANDLE user_token, std::function callback) { std::error_code ec; // Impersonate the user when launching the process. This will ensure that appropriate access // checks are done against the user token, not our SYSTEM token. It will also allow network // shares and mapped network drives to be used as launch targets, since those credentials // are stored per-user. if (!ImpersonateLoggedOnUser(user_token)) { auto winerror = GetLastError(); // Log the failure of impersonating the user and its error code BOOST_LOG(error) << "Failed to impersonate user: "sv << winerror; ec = std::make_error_code(std::errc::permission_denied); return ec; } // Execute the callback function while impersonating the user callback(); // End impersonation of the logged on user. If this fails (which is extremely unlikely), // we will be running with an unknown user token. The only safe thing to do in that case // is terminate ourselves. if (!RevertToSelf()) { auto winerror = GetLastError(); // Log the failure of reverting to self and its error code BOOST_LOG(fatal) << "Failed to revert to self after impersonation: "sv << winerror; std::abort(); } return ec; } /** * @brief A function to create a STARTUPINFOEXW structure for launching a process * * @param file A pointer to a FILE object that will be used as the standard output and error for the new process, or null if not needed * @param ec A reference to an std::error_code object that will store any error that occurred during the creation of the structure * @return A STARTUPINFOEXW structure that contains information about how to launch the new process */ STARTUPINFOEXW create_startup_info(FILE *file, std::error_code &ec) { // Initialize a zeroed-out STARTUPINFOEXW structure and set its size STARTUPINFOEXW startup_info = {}; startup_info.StartupInfo.cb = sizeof(startup_info); // Allocate a process attribute list with space for 1 element startup_info.lpAttributeList = allocate_proc_thread_attr_list(1); if (startup_info.lpAttributeList == NULL) { // If the allocation failed, set ec to an appropriate error code and return the structure ec = std::make_error_code(std::errc::not_enough_memory); return startup_info; } if (file) { // If a file was provided, get its handle and use it as the standard output and error for the new process HANDLE log_file_handle = (HANDLE) _get_osfhandle(_fileno(file)); // Populate std handles if the caller gave us a log file to use startup_info.StartupInfo.dwFlags |= STARTF_USESTDHANDLES; startup_info.StartupInfo.hStdInput = NULL; startup_info.StartupInfo.hStdOutput = log_file_handle; startup_info.StartupInfo.hStdError = log_file_handle; // Allow the log file handle to be inherited by the child process (without inheriting all of // our inheritable handles, such as our own log file handle created by SunshineSvc). UpdateProcThreadAttribute(startup_info.lpAttributeList, 0, PROC_THREAD_ATTRIBUTE_HANDLE_LIST, &log_file_handle, sizeof(log_file_handle), NULL, NULL); } return startup_info; } /** * @brief Runs a command on the users profile * * This function launches a child process as the user, using the current user's environment * and a specific working directory. If the launch is successful, a `bp::child` object representing the new * process is returned. Otherwise, an error code is returned. * * @param elevated Specify to elevate the process or not * @param cmd The command to run * @param working_dir The working directory for the new process * @param env The environment variables to use for the new process * @param file A file object to redirect the child process's output to (may be nullptr) * @param ec An error code, set to indicate any errors that occur during the launch process * @param group A pointer to a `bp::group` object to which the new process should belong (may be nullptr) * * @return A `bp::child` object representing the new process, or an empty `bp::child` object if the launch fails */ bp::child run_command(bool elevated, const std::string &cmd, boost::filesystem::path &working_dir, bp::environment &env, FILE *file, std::error_code &ec, bp::group *group) { BOOL ret; // Convert cmd, env, and working_dir to the appropriate character sets for Win32 APIs std::wstring wcmd = utf8_to_wide_string(cmd); std::wstring env_block = create_environment_block(env); std::wstring start_dir = utf8_to_wide_string(working_dir.string()); STARTUPINFOEXW startup_info = create_startup_info(file, ec); PROCESS_INFORMATION process_info; if (ec) { // In the event that startup_info failed, return a blank child process. return bp::child(); } // Use RAII to ensure the attribute list is freed when we're done with it auto attr_list_free = util::fail_guard([list = startup_info.lpAttributeList]() { free_proc_thread_attr_list(list); }); if (is_running_as_system()) { // Duplicate the current user's token HANDLE user_token = retrieve_users_token(elevated); if (!user_token) { // Fail the launch rather than risking launching with Sunshine's permissions unmodified. ec = std::make_error_code(std::errc::no_such_process); return bp::child(); } // Use RAII to ensure the shell token is closed when we're done with it auto token_close = util::fail_guard([user_token]() { CloseHandle(user_token); }); // Populate env with user-specific environment variables if (!merge_user_environment_block(env, user_token)) { ec = std::make_error_code(std::errc::not_enough_memory); return bp::child(); } // Open the process as the current user account, elevation is handled in the token itself. ec = impersonate_current_user(user_token, [&]() { ret = CreateProcessAsUserW(user_token, NULL, (LPWSTR) wcmd.c_str(), NULL, NULL, !!(startup_info.StartupInfo.dwFlags & STARTF_USESTDHANDLES), EXTENDED_STARTUPINFO_PRESENT | CREATE_UNICODE_ENVIRONMENT | CREATE_NEW_CONSOLE | CREATE_BREAKAWAY_FROM_JOB, env_block.data(), start_dir.empty() ? NULL : start_dir.c_str(), (LPSTARTUPINFOW) &startup_info, &process_info); }); } // Otherwise, launch the process using CreateProcessW() // This will inherit the elevation of whatever the user launched Sunshine with. else { ret = CreateProcessW(NULL, (LPWSTR) wcmd.c_str(), NULL, NULL, !!(startup_info.StartupInfo.dwFlags & STARTF_USESTDHANDLES), EXTENDED_STARTUPINFO_PRESENT | CREATE_UNICODE_ENVIRONMENT | CREATE_NEW_CONSOLE | CREATE_BREAKAWAY_FROM_JOB, env_block.data(), start_dir.empty() ? NULL : start_dir.c_str(), (LPSTARTUPINFOW) &startup_info, &process_info); } // Use the results of the launch to create a bp::child object return create_boost_child_from_results(ret, cmd, ec, process_info, group); } void adjust_thread_priority(thread_priority_e priority) { int win32_priority; switch (priority) { case thread_priority_e::low: win32_priority = THREAD_PRIORITY_BELOW_NORMAL; break; case thread_priority_e::normal: win32_priority = THREAD_PRIORITY_NORMAL; break; case thread_priority_e::high: win32_priority = THREAD_PRIORITY_ABOVE_NORMAL; break; case thread_priority_e::critical: win32_priority = THREAD_PRIORITY_HIGHEST; break; default: BOOST_LOG(error) << "Unknown thread priority: "sv << (int) priority; return; } if (!SetThreadPriority(GetCurrentThread(), win32_priority)) { auto winerr = GetLastError(); BOOST_LOG(warning) << "Unable to set thread priority to "sv << win32_priority << ": "sv << winerr; } } void streaming_will_start() { static std::once_flag load_wlanapi_once_flag; std::call_once(load_wlanapi_once_flag, []() { // wlanapi.dll is not installed by default on Windows Server, so we load it dynamically HMODULE wlanapi = LoadLibraryExA("wlanapi.dll", NULL, LOAD_LIBRARY_SEARCH_SYSTEM32); if (!wlanapi) { BOOST_LOG(debug) << "wlanapi.dll is not available on this OS"sv; return; } fn_WlanOpenHandle = (decltype(fn_WlanOpenHandle)) GetProcAddress(wlanapi, "WlanOpenHandle"); fn_WlanCloseHandle = (decltype(fn_WlanCloseHandle)) GetProcAddress(wlanapi, "WlanCloseHandle"); fn_WlanFreeMemory = (decltype(fn_WlanFreeMemory)) GetProcAddress(wlanapi, "WlanFreeMemory"); fn_WlanEnumInterfaces = (decltype(fn_WlanEnumInterfaces)) GetProcAddress(wlanapi, "WlanEnumInterfaces"); fn_WlanSetInterface = (decltype(fn_WlanSetInterface)) GetProcAddress(wlanapi, "WlanSetInterface"); if (!fn_WlanOpenHandle || !fn_WlanCloseHandle || !fn_WlanFreeMemory || !fn_WlanEnumInterfaces || !fn_WlanSetInterface) { BOOST_LOG(error) << "wlanapi.dll is missing exports?"sv; fn_WlanOpenHandle = nullptr; fn_WlanCloseHandle = nullptr; fn_WlanFreeMemory = nullptr; fn_WlanEnumInterfaces = nullptr; fn_WlanSetInterface = nullptr; FreeLibrary(wlanapi); return; } }); // Enable MMCSS scheduling for DWM DwmEnableMMCSS(true); // Reduce timer period to 1ms timeBeginPeriod(1); // Promote ourselves to high priority class SetPriorityClass(GetCurrentProcess(), HIGH_PRIORITY_CLASS); // Enable low latency mode on all connected WLAN NICs if wlanapi.dll is available if (fn_WlanOpenHandle) { DWORD negotiated_version; if (fn_WlanOpenHandle(WLAN_API_MAKE_VERSION(2, 0), nullptr, &negotiated_version, &wlan_handle) == ERROR_SUCCESS) { PWLAN_INTERFACE_INFO_LIST wlan_interface_list; if (fn_WlanEnumInterfaces(wlan_handle, nullptr, &wlan_interface_list) == ERROR_SUCCESS) { for (DWORD i = 0; i < wlan_interface_list->dwNumberOfItems; i++) { if (wlan_interface_list->InterfaceInfo[i].isState == wlan_interface_state_connected) { // Enable media streaming mode for 802.11 wireless interfaces to reduce latency and // unneccessary background scanning operations that cause packet loss and jitter. // // https://docs.microsoft.com/en-us/windows-hardware/drivers/network/oid-wdi-set-connection-quality // https://docs.microsoft.com/en-us/previous-versions/windows/hardware/wireless/native-802-11-media-streaming BOOL value = TRUE; auto error = fn_WlanSetInterface(wlan_handle, &wlan_interface_list->InterfaceInfo[i].InterfaceGuid, wlan_intf_opcode_media_streaming_mode, sizeof(value), &value, nullptr); if (error == ERROR_SUCCESS) { BOOST_LOG(info) << "WLAN interface "sv << i << " is now in low latency mode"sv; } } } fn_WlanFreeMemory(wlan_interface_list); } else { fn_WlanCloseHandle(wlan_handle, nullptr); wlan_handle = NULL; } } } // If there is no mouse connected, enable Mouse Keys to force the cursor to appear if (!GetSystemMetrics(SM_MOUSEPRESENT)) { BOOST_LOG(info) << "A mouse was not detected. Sunshine will enable Mouse Keys while streaming to force the mouse cursor to appear."; // Get the current state of Mouse Keys so we can restore it when streaming is over previous_mouse_keys_state.cbSize = sizeof(previous_mouse_keys_state); if (SystemParametersInfoW(SPI_GETMOUSEKEYS, 0, &previous_mouse_keys_state, 0)) { MOUSEKEYS new_mouse_keys_state = {}; // Enable Mouse Keys new_mouse_keys_state.cbSize = sizeof(new_mouse_keys_state); new_mouse_keys_state.dwFlags = MKF_MOUSEKEYSON | MKF_AVAILABLE; new_mouse_keys_state.iMaxSpeed = 10; new_mouse_keys_state.iTimeToMaxSpeed = 1000; if (SystemParametersInfoW(SPI_SETMOUSEKEYS, 0, &new_mouse_keys_state, 0)) { // Remember to restore the previous settings when we stop streaming enabled_mouse_keys = true; } else { auto winerr = GetLastError(); BOOST_LOG(warning) << "Unable to enable Mouse Keys: "sv << winerr; } } else { auto winerr = GetLastError(); BOOST_LOG(warning) << "Unable to get current state of Mouse Keys: "sv << winerr; } } } void streaming_will_stop() { // Demote ourselves back to normal priority class SetPriorityClass(GetCurrentProcess(), NORMAL_PRIORITY_CLASS); // End our 1ms timer request timeEndPeriod(1); // Disable MMCSS scheduling for DWM DwmEnableMMCSS(false); // Closing our WLAN client handle will undo our optimizations if (wlan_handle != nullptr) { fn_WlanCloseHandle(wlan_handle, nullptr); wlan_handle = nullptr; } // Restore Mouse Keys back to the previous settings if we turned it on if (enabled_mouse_keys) { enabled_mouse_keys = false; if (!SystemParametersInfoW(SPI_SETMOUSEKEYS, 0, &previous_mouse_keys_state, 0)) { auto winerr = GetLastError(); BOOST_LOG(warning) << "Unable to restore original state of Mouse Keys: "sv << winerr; } } } void restart_on_exit() { STARTUPINFOEXW startup_info {}; startup_info.StartupInfo.cb = sizeof(startup_info); WCHAR executable[MAX_PATH]; if (GetModuleFileNameW(NULL, executable, ARRAYSIZE(executable)) == 0) { auto winerr = GetLastError(); BOOST_LOG(fatal) << "Failed to get Sunshine path: "sv << winerr; return; } PROCESS_INFORMATION process_info; if (!CreateProcessW(executable, GetCommandLineW(), nullptr, nullptr, false, CREATE_UNICODE_ENVIRONMENT | EXTENDED_STARTUPINFO_PRESENT, nullptr, nullptr, (LPSTARTUPINFOW) &startup_info, &process_info)) { auto winerr = GetLastError(); BOOST_LOG(fatal) << "Unable to restart Sunshine: "sv << winerr; return; } CloseHandle(process_info.hProcess); CloseHandle(process_info.hThread); } void restart() { // If we're running standalone, we have to respawn ourselves via CreateProcess(). // If we're running from the service, we should just exit and let it respawn us. if (GetConsoleWindow() != NULL) { // Avoid racing with the new process by waiting until we're exiting to start it. atexit(restart_on_exit); } // We use an async exit call here because we can't block the HTTP thread or we'll hang shutdown. lifetime::exit_sunshine(0, true); } SOCKADDR_IN to_sockaddr(boost::asio::ip::address_v4 address, uint16_t port) { SOCKADDR_IN saddr_v4 = {}; saddr_v4.sin_family = AF_INET; saddr_v4.sin_port = htons(port); auto addr_bytes = address.to_bytes(); memcpy(&saddr_v4.sin_addr, addr_bytes.data(), sizeof(saddr_v4.sin_addr)); return saddr_v4; } SOCKADDR_IN6 to_sockaddr(boost::asio::ip::address_v6 address, uint16_t port) { SOCKADDR_IN6 saddr_v6 = {}; saddr_v6.sin6_family = AF_INET6; saddr_v6.sin6_port = htons(port); saddr_v6.sin6_scope_id = address.scope_id(); auto addr_bytes = address.to_bytes(); memcpy(&saddr_v6.sin6_addr, addr_bytes.data(), sizeof(saddr_v6.sin6_addr)); return saddr_v6; } // Use UDP segmentation offload if it is supported by the OS. If the NIC is capable, this will use // hardware acceleration to reduce CPU usage. Support for USO was introduced in Windows 10 20H1. bool send_batch(batched_send_info_t &send_info) { WSAMSG msg; // Convert the target address into a SOCKADDR SOCKADDR_IN saddr_v4; SOCKADDR_IN6 saddr_v6; if (send_info.target_address.is_v6()) { saddr_v6 = to_sockaddr(send_info.target_address.to_v6(), send_info.target_port); msg.name = (PSOCKADDR) &saddr_v6; msg.namelen = sizeof(saddr_v6); } else { saddr_v4 = to_sockaddr(send_info.target_address.to_v4(), send_info.target_port); msg.name = (PSOCKADDR) &saddr_v4; msg.namelen = sizeof(saddr_v4); } WSABUF buf; buf.buf = (char *) send_info.buffer; buf.len = send_info.block_size * send_info.block_count; msg.lpBuffers = &buf; msg.dwBufferCount = 1; msg.dwFlags = 0; char cmbuf[WSA_CMSG_SPACE(sizeof(DWORD))]; msg.Control.buf = cmbuf; msg.Control.len = 0; if (send_info.block_count > 1) { msg.Control.len += WSA_CMSG_SPACE(sizeof(DWORD)); auto cm = WSA_CMSG_FIRSTHDR(&msg); cm->cmsg_level = IPPROTO_UDP; cm->cmsg_type = UDP_SEND_MSG_SIZE; cm->cmsg_len = WSA_CMSG_LEN(sizeof(DWORD)); *((DWORD *) WSA_CMSG_DATA(cm)) = send_info.block_size; } // If USO is not supported, this will fail and the caller will fall back to unbatched sends. DWORD bytes_sent; return WSASendMsg((SOCKET) send_info.native_socket, &msg, 1, &bytes_sent, nullptr, nullptr) != SOCKET_ERROR; } class qos_t: public deinit_t { public: qos_t(QOS_FLOWID flow_id): flow_id(flow_id) {} virtual ~qos_t() { if (!fn_QOSRemoveSocketFromFlow(qos_handle, (SOCKET) NULL, flow_id, 0)) { auto winerr = GetLastError(); BOOST_LOG(warning) << "QOSRemoveSocketFromFlow() failed: "sv << winerr; } } private: QOS_FLOWID flow_id; }; std::unique_ptr enable_socket_qos(uintptr_t native_socket, boost::asio::ip::address &address, uint16_t port, qos_data_type_e data_type) { SOCKADDR_IN saddr_v4; SOCKADDR_IN6 saddr_v6; PSOCKADDR dest_addr; static std::once_flag load_qwave_once_flag; std::call_once(load_qwave_once_flag, []() { // qWAVE is not installed by default on Windows Server, so we load it dynamically HMODULE qwave = LoadLibraryExA("qwave.dll", NULL, LOAD_LIBRARY_SEARCH_SYSTEM32); if (!qwave) { BOOST_LOG(debug) << "qwave.dll is not available on this OS"sv; return; } fn_QOSCreateHandle = (decltype(fn_QOSCreateHandle)) GetProcAddress(qwave, "QOSCreateHandle"); fn_QOSAddSocketToFlow = (decltype(fn_QOSAddSocketToFlow)) GetProcAddress(qwave, "QOSAddSocketToFlow"); fn_QOSRemoveSocketFromFlow = (decltype(fn_QOSRemoveSocketFromFlow)) GetProcAddress(qwave, "QOSRemoveSocketFromFlow"); if (!fn_QOSCreateHandle || !fn_QOSAddSocketToFlow || !fn_QOSRemoveSocketFromFlow) { BOOST_LOG(error) << "qwave.dll is missing exports?"sv; fn_QOSCreateHandle = nullptr; fn_QOSAddSocketToFlow = nullptr; fn_QOSRemoveSocketFromFlow = nullptr; FreeLibrary(qwave); return; } QOS_VERSION qos_version { 1, 0 }; if (!fn_QOSCreateHandle(&qos_version, &qos_handle)) { auto winerr = GetLastError(); BOOST_LOG(warning) << "QOSCreateHandle() failed: "sv << winerr; return; } }); // If qWAVE is unavailable, just return if (!fn_QOSAddSocketToFlow || !qos_handle) { return nullptr; } if (address.is_v6()) { saddr_v6 = to_sockaddr(address.to_v6(), port); dest_addr = (PSOCKADDR) &saddr_v6; } else { saddr_v4 = to_sockaddr(address.to_v4(), port); dest_addr = (PSOCKADDR) &saddr_v4; } QOS_TRAFFIC_TYPE traffic_type; switch (data_type) { case qos_data_type_e::audio: traffic_type = QOSTrafficTypeVoice; break; case qos_data_type_e::video: traffic_type = QOSTrafficTypeAudioVideo; break; default: BOOST_LOG(error) << "Unknown traffic type: "sv << (int) data_type; return nullptr; } QOS_FLOWID flow_id = 0; if (!fn_QOSAddSocketToFlow(qos_handle, (SOCKET) native_socket, dest_addr, traffic_type, QOS_NON_ADAPTIVE_FLOW, &flow_id)) { auto winerr = GetLastError(); BOOST_LOG(warning) << "QOSAddSocketToFlow() failed: "sv << winerr; return nullptr; } return std::make_unique(flow_id); } int64_t qpc_counter() { LARGE_INTEGER performace_counter; if (QueryPerformanceCounter(&performace_counter)) return performace_counter.QuadPart; return 0; } std::chrono::nanoseconds qpc_time_difference(int64_t performance_counter1, int64_t performance_counter2) { auto get_frequency = []() { LARGE_INTEGER frequency; frequency.QuadPart = 0; QueryPerformanceFrequency(&frequency); return frequency.QuadPart; }; static const double frequency = get_frequency(); if (frequency) { return std::chrono::nanoseconds((int64_t) ((performance_counter1 - performance_counter2) * frequency / std::nano::den)); } return {}; } } // namespace platf