spice/client/windows/named_pipe.cpp
Yonit Halperin 8d5b738ba1 spice client: creating a general process loop.
The process loop is responsible for: 1) waiting for events 2) timers 3) events queue for
actions that should be performed in the context of the thread and are pushed from other threads.
The benefits:
1) remove duplicity: till now, there was one implementaion of events loop for the channels and
another one for the main thread.
2) timers can be executed on each thread and not only on the main thread.
3) events can be pushed to each thread and not only to the main thread.
In this commit, only the main thread was modified to use the new process loop.
2009-11-09 14:39:33 +02:00

227 lines
6.1 KiB
C++

/*
Copyright (C) 2009 Red Hat, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "named_pipe.h"
#include "utils.h"
#include "debug.h"
PipeBuffer::PipeBuffer(HANDLE pipe, ProcessLoop& process_loop)
: _handler (NULL)
, _pipe (pipe)
, _start (0)
, _end (0)
, _pending (false)
, _process_loop(process_loop)
{
ZeroMemory(&_overlap, sizeof(_overlap));
_overlap.hEvent = this->get_handle();
_process_loop.add_handle(*this);
}
PipeBuffer::~PipeBuffer()
{
_process_loop.remove_handle(*this);
}
DWORD PipeBuffer::get_overlapped_bytes()
{
DWORD bytes = 0;
if (!GetOverlappedResult(_pipe, &_overlap, &bytes, FALSE) || bytes == 0) {
_pending = false;
_handler->on_data();
}
return bytes;
}
int32_t PipeReader::read(uint8_t *buf, int32_t size)
{
ASSERT(buf && size >= 0);
if (_start < _end) {
int32_t bytes_read = 0;
bytes_read = MIN(_end - _start, (uint32_t)size);
CopyMemory(buf, _data + _start, bytes_read);
_start += bytes_read;
if (_start == _end) {
_start = _end = 0;
}
return bytes_read;
}
if (_pending) {
return 0;
}
if (!ReadFile(_pipe, _data + _end, sizeof(_data) - _end, NULL, &_overlap) &&
GetLastError() != ERROR_IO_PENDING) {
DBG(0, "ReadFile() failed %u", GetLastError());
return -1;
}
_pending = true;
return 0;
}
void PipeReader::on_event()
{
ASSERT(_pending);
DWORD bytes = get_overlapped_bytes();
if (!bytes) {
return;
}
_end += bytes;
_pending = false;
_handler->on_data();
}
int32_t PipeWriter::write(const uint8_t *buf, int32_t size)
{
int32_t bytes_written = 0;
ASSERT(buf && size >= 0);
if (!_pending && _start == _end) {
_start = _end = 0;
}
if (_end < sizeof(_data)) {
bytes_written = MIN(sizeof(_data) - _end, (uint32_t)size);
CopyMemory(_data + _end, buf, bytes_written);
_end += bytes_written;
}
if (!_pending && _start < _end) {
if (!WriteFile(_pipe, _data + _start, _end - _start, NULL, &_overlap) &&
GetLastError() != ERROR_IO_PENDING) {
DBG(0, "WriteFile() failed %u", GetLastError());
return -1;
}
_pending = true;
}
return bytes_written;
}
void PipeWriter::on_event()
{
ASSERT(_pending);
DWORD bytes = get_overlapped_bytes();
if (!bytes) {
return;
}
_start += bytes;
_pending = false;
if (_start == sizeof(_data)) {
_handler->on_data();
}
}
WinConnection::WinConnection(HANDLE pipe, ProcessLoop& process_loop)
: _pipe (pipe)
, _writer (pipe, process_loop)
, _reader (pipe, process_loop)
{
}
WinConnection::~WinConnection()
{
if (!DisconnectNamedPipe(_pipe)) {
DBG(0, "DisconnectNamedPipe failed %d", GetLastError());
}
CloseHandle(_pipe);
}
int32_t WinConnection::read(uint8_t *buf, int32_t size)
{
return _reader.read(buf, size);
}
int32_t WinConnection::write(const uint8_t *buf, int32_t size)
{
return _writer.write(buf, size);
}
void WinConnection::set_handler(NamedPipe::ConnectionInterface* handler)
{
_reader.set_handler(handler);
_writer.set_handler(handler);
}
WinListener::WinListener(const char *name, NamedPipe::ListenerInterface &listener_interface,
ProcessLoop& process_loop)
: _listener_interface (listener_interface)
, _pipe (0)
, _process_loop (process_loop)
{
_pipename = new TCHAR[PIPE_MAX_NAME_LEN];
swprintf_s(_pipename, PIPE_MAX_NAME_LEN, L"%s%S", PIPE_PREFIX, name);
ZeroMemory(&_overlap, sizeof(_overlap));
_overlap.hEvent = this->get_handle();
_process_loop.add_handle(*this);
create_pipe();
}
WinListener::~WinListener()
{
CancelIo(_pipe);
_process_loop.remove_handle(*this);
delete[] _pipename;
}
void WinListener::on_event()
{
DWORD bytes;
if (!GetOverlappedResult(_pipe, &_overlap, &bytes, FALSE)) {
DBG(0, "GetOverlappedResult() failed %u", GetLastError());
return;
}
DBG(0, "Pipe connected 0x%p", _pipe);
WinConnection *con = new WinConnection(_pipe, _process_loop);
NamedPipe::ConnectionInterface &con_interface = _listener_interface.create();
con->set_handler(&con_interface);
con_interface.bind((NamedPipe::ConnectionRef)con);
create_pipe();
}
void WinListener::create_pipe()
{
_pipe = CreateNamedPipe(_pipename, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
PIPE_TYPE_MESSAGE | PIPE_READMODE_MESSAGE | PIPE_WAIT,
PIPE_UNLIMITED_INSTANCES, PIPE_BUF_SIZE, PIPE_BUF_SIZE,
PIPE_TIMEOUT, NULL);
if (_pipe == INVALID_HANDLE_VALUE) {
THROW("CreateNamedPipe() failed %u", GetLastError());
}
if (ConnectNamedPipe(_pipe, &_overlap)) {
THROW("ConnectNamedPipe() is not pending");
}
switch (GetLastError()) {
case ERROR_IO_PENDING:
DBG(0, "Pipe waits for connection");
break;
case ERROR_PIPE_CONNECTED: {
DBG(0, "Pipe already connected");
WinConnection *con = new WinConnection(_pipe, _process_loop);
NamedPipe::ConnectionInterface &con_interface = _listener_interface.create();
con->set_handler(&con_interface);
con_interface.bind((NamedPipe::ConnectionRef)con);
create_pipe();
break;
}
default:
THROW("ConnectNamedPipe() failed %u", GetLastError());
}
}