spice/server/red_memslots.c
Christophe Fergeau 78c1465ed3 add #include <config.h> to all source files
When using config.h, it must be the very first include in all source
files since it contains #define that may change the compilation process
(eg libc structure layout changes when it's used to enable large file
support on 32 bit x86 archs). This commit adds it at the beginning
of all .c and .cpp files
2011-05-03 14:44:10 +02:00

218 lines
7.1 KiB
C

/* -*- Mode: C; c-basic-offset: 4; indent-tabs-mode: nil -*- */
/*
Copyright (C) 2009,2010 Red Hat, Inc.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "red_common.h"
#include "red_memslots.h"
static unsigned long __get_clean_virt(RedMemSlotInfo *info, unsigned long addr)
{
return addr & info->memslot_clean_virt_mask;
}
static void print_memslots(RedMemSlotInfo *info)
{
int i;
int x;
for (i = 0; i < info->num_memslots_groups; ++i) {
for (x = 0; x < info->num_memslots; ++x) {
if (!info->mem_slots[i][x].virt_start_addr &&
!info->mem_slots[i][x].virt_end_addr) {
continue;
}
printf("id %d, group %d, virt start %lx, virt end %lx, generation %u, delta %lx\n",
x, i, info->mem_slots[i][x].virt_start_addr,
info->mem_slots[i][x].virt_end_addr, info->mem_slots[i][x].generation,
info->mem_slots[i][x].address_delta);
}
}
}
unsigned long get_virt_delta(RedMemSlotInfo *info, unsigned long addr, int group_id)
{
MemSlot *slot;
int slot_id;
int generation;
if (group_id > info->num_memslots_groups) {
PANIC("group_id %d too big", group_id);
}
slot_id = get_memslot_id(info, addr);
if (slot_id > info->num_memslots) {
PANIC("slot_id %d too big", slot_id);
}
slot = &info->mem_slots[group_id][slot_id];
generation = get_generation(info, addr);
if (generation != slot->generation) {
PANIC("address generation is not valid");
}
return (slot->address_delta - (addr - __get_clean_virt(info, addr)));
}
void validate_virt(RedMemSlotInfo *info, unsigned long virt, int slot_id,
uint32_t add_size, uint32_t group_id)
{
MemSlot *slot;
slot = &info->mem_slots[group_id][slot_id];
if ((virt + add_size) < virt) {
PANIC("virtual address overlap");
}
if (virt < slot->virt_start_addr || (virt + add_size) > slot->virt_end_addr) {
print_memslots(info);
PANIC("virtual address out of range\n"
" virt=0x%lx+0x%x slot_id=%d group_id=%d\n"
" slot=0x%lx-0x%lx delta=0x%lx",
virt, add_size, slot_id, group_id,
slot->virt_start_addr, slot->virt_end_addr, slot->address_delta);
}
}
unsigned long get_virt(RedMemSlotInfo *info, unsigned long addr, uint32_t add_size,
int group_id)
{
int slot_id;
int generation;
unsigned long h_virt;
MemSlot *slot;
if (group_id > info->num_memslots_groups) {
PANIC("group_id too big");
}
slot_id = get_memslot_id(info, addr);
if (slot_id > info->num_memslots) {
print_memslots(info);
PANIC("slot_id too big, addr=%lx", addr);
}
slot = &info->mem_slots[group_id][slot_id];
generation = get_generation(info, addr);
if (generation != slot->generation) {
print_memslots(info);
PANIC("address generation is not valid, group_id %d, slot_id %d, gen %d, slot_gen %d\n",
group_id, slot_id, generation, slot->generation);
}
h_virt = __get_clean_virt(info, addr);
h_virt += slot->address_delta;
validate_virt(info, h_virt, slot_id, add_size, group_id);
return h_virt;
}
void *cb_get_virt(void *opaque, unsigned long addr,
uint32_t add_size, uint32_t group_id)
{
return (void *)get_virt((RedMemSlotInfo *)opaque, addr, add_size, group_id);
}
void cb_validate_virt(void *opaque,
unsigned long virt, unsigned long from_addr,
uint32_t add_size, uint32_t group_id)
{
int slot_id = get_memslot_id((RedMemSlotInfo *)opaque, from_addr);
validate_virt((RedMemSlotInfo *)opaque, virt, slot_id, add_size, group_id);
}
void *validate_chunk (RedMemSlotInfo *info, QXLPHYSICAL data, uint32_t group_id, uint32_t *data_size_out, QXLPHYSICAL *next_out)
{
QXLDataChunk *chunk;
uint32_t data_size;
chunk = (QXLDataChunk *)get_virt(info, data, sizeof(QXLDataChunk), group_id);
data_size = chunk->data_size;
validate_virt(info, (unsigned long)chunk->data, get_memslot_id(info, data),
data_size, group_id);
*next_out = chunk->next_chunk;
*data_size_out = data_size;
return chunk->data;
}
void red_memslot_info_init(RedMemSlotInfo *info,
uint32_t num_groups, uint32_t num_slots,
uint8_t generation_bits,
uint8_t id_bits,
uint8_t internal_groupslot_id)
{
uint32_t i;
ASSERT(num_slots > 0);
ASSERT(num_groups > 0);
info->num_memslots_groups = num_groups;
info->num_memslots = num_slots;
info->generation_bits = generation_bits;
info->mem_slot_bits = id_bits;
info->internal_groupslot_id = internal_groupslot_id;
info->mem_slots = spice_new(MemSlot *, num_groups);
for (i = 0; i < num_groups; ++i) {
info->mem_slots[i] = spice_new0(MemSlot, num_slots);
}
info->memslot_id_shift = 64 - info->mem_slot_bits;
info->memslot_gen_shift = 64 - (info->mem_slot_bits + info->generation_bits);
info->memslot_gen_mask = ~((unsigned long)-1 << info->generation_bits);
info->memslot_clean_virt_mask = (((unsigned long)(-1)) >>
(info->mem_slot_bits + info->generation_bits));
}
void red_memslot_info_add_slot(RedMemSlotInfo *info, uint32_t slot_group_id, uint32_t slot_id,
uint64_t addr_delta, unsigned long virt_start, unsigned long virt_end,
uint32_t generation)
{
ASSERT(info->num_memslots_groups > slot_group_id);
ASSERT(info->num_memslots > slot_id);
info->mem_slots[slot_group_id][slot_id].address_delta = addr_delta;
info->mem_slots[slot_group_id][slot_id].virt_start_addr = virt_start;
info->mem_slots[slot_group_id][slot_id].virt_end_addr = virt_end;
info->mem_slots[slot_group_id][slot_id].generation = generation;
}
void red_memslot_info_del_slot(RedMemSlotInfo *info, uint32_t slot_group_id, uint32_t slot_id)
{
ASSERT(info->num_memslots_groups > slot_group_id);
ASSERT(info->num_memslots > slot_id);
info->mem_slots[slot_group_id][slot_id].virt_start_addr = 0;
info->mem_slots[slot_group_id][slot_id].virt_end_addr = 0;
}
void red_memslot_info_reset(RedMemSlotInfo *info)
{
uint32_t i;
for (i = 0; i < info->num_memslots_groups; ++i) {
memset(info->mem_slots[i], 0, sizeof(MemSlot) * info->num_memslots);
}
}