spice/common/lz_compress_tmpl.c
Christophe Fergeau 78c1465ed3 add #include <config.h> to all source files
When using config.h, it must be the very first include in all source
files since it contains #define that may change the compilation process
(eg libc structure layout changes when it's used to enable large file
support on 32 bit x86 archs). This commit adds it at the beginning
of all .c and .cpp files
2011-05-03 14:44:10 +02:00

530 lines
17 KiB
C

/* -*- Mode: C; c-basic-offset: 4; indent-tabs-mode: nil -*- */
/*
Copyright 2009 Red Hat, Inc. and/or its affiliates.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
This file incorporates work covered by the following copyright and
permission notice:
Copyright (C) 2007 Ariya Hidayat (ariya@kde.org)
Copyright (C) 2006 Ariya Hidayat (ariya@kde.org)
Copyright (C) 2005 Ariya Hidayat (ariya@kde.org)
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#define DJB2_START 5381;
#define DJB2_HASH(hash, c) (hash = ((hash << 5) + hash) ^ (c)) //|{hash = ((hash << 5) + hash) + c;}
/*
For each pixel type the following macros are defined:
PIXEL : input type
FNAME(name)
ENCODE_PIXEL(encoder, pixel) : writing a pixel to the compressed buffer (byte by byte)
SAME_PIXEL(pix1, pix2) : comparing two pixels
HASH_FUNC(value, pix_ptr) : hash func of 3 consecutive pixels
*/
#ifdef LZ_PLT
#define PIXEL one_byte_pixel_t
#define FNAME(name) lz_plt_##name
#define ENCODE_PIXEL(e, pix) encode(e, (pix).a) // gets the pixel and write only the needed bytes
// from the pixel
#define SAME_PIXEL(pix1, pix2) ((pix1).a == (pix2).a)
#define HASH_FUNC(v, p) { \
v = DJB2_START; \
DJB2_HASH(v, p[0].a); \
DJB2_HASH(v, p[1].a); \
DJB2_HASH(v, p[2].a); \
v &= HASH_MASK; \
}
#endif
#ifdef LZ_RGB_ALPHA
//#undef LZ_RGB_ALPHA
#define PIXEL rgb32_pixel_t
#define FNAME(name) lz_rgb_alpha_##name
#define ENCODE_PIXEL(e, pix) {encode(e, (pix).pad);}
#define SAME_PIXEL(pix1, pix2) ((pix1).pad == (pix2).pad)
#define HASH_FUNC(v, p) { \
v = DJB2_START; \
DJB2_HASH(v, p[0].pad); \
DJB2_HASH(v, p[1].pad); \
DJB2_HASH(v, p[2].pad); \
v &= HASH_MASK; \
}
#endif
#ifdef LZ_RGB16
#define PIXEL rgb16_pixel_t
#define FNAME(name) lz_rgb16_##name
#define GET_r(pix) (((pix) >> 10) & 0x1f)
#define GET_g(pix) (((pix) >> 5) & 0x1f)
#define GET_b(pix) ((pix) & 0x1f)
#define ENCODE_PIXEL(e, pix) {encode(e, (pix) >> 8); encode(e, (pix) & 0xff);}
#define HASH_FUNC(v, p) { \
v = DJB2_START; \
DJB2_HASH(v, p[0] & (0x00ff)); \
DJB2_HASH(v, (p[0] >> 8) & (0x007f)); \
DJB2_HASH(v, p[1]&(0x00ff)); \
DJB2_HASH(v, (p[1] >> 8) & (0x007f)); \
DJB2_HASH(v, p[2] & (0x00ff)); \
DJB2_HASH(v, (p[2] >> 8) & (0x007f)); \
v &= HASH_MASK; \
}
#endif
#ifdef LZ_RGB24
#define PIXEL rgb24_pixel_t
#define FNAME(name) lz_rgb24_##name
#define ENCODE_PIXEL(e, pix) {encode(e, (pix).b); encode(e, (pix).g); encode(e, (pix).r);}
#endif
#ifdef LZ_RGB32
#define PIXEL rgb32_pixel_t
#define FNAME(name) lz_rgb32_##name
#define ENCODE_PIXEL(e, pix) {encode(e, (pix).b); encode(e, (pix).g); encode(e, (pix).r);}
#endif
#if defined(LZ_RGB24) || defined(LZ_RGB32)
#define GET_r(pix) ((pix).r)
#define GET_g(pix) ((pix).g)
#define GET_b(pix) ((pix).b)
#define HASH_FUNC(v, p) { \
v = DJB2_START; \
DJB2_HASH(v, p[0].r); \
DJB2_HASH(v, p[0].g); \
DJB2_HASH(v, p[0].b); \
DJB2_HASH(v, p[1].r); \
DJB2_HASH(v, p[1].g); \
DJB2_HASH(v, p[1].b); \
DJB2_HASH(v, p[2].r); \
DJB2_HASH(v, p[2].g); \
DJB2_HASH(v, p[2].b); \
v &= HASH_MASK; \
}
#endif
#if defined(LZ_RGB16) || defined(LZ_RGB24) || defined(LZ_RGB32)
#define SAME_PIXEL(p1, p2) (GET_r(p1) == GET_r(p2) && GET_g(p1) == GET_g(p2) && \
GET_b(p1) == GET_b(p2))
#endif
#define PIXEL_ID(pix_ptr, seg_ptr) (pix_ptr - ((PIXEL *)seg_ptr->lines) + seg_ptr->size_delta)
// when encoding, the ref can be in previous segment, and we should check that it doesn't
// exceeds its bounds.
// TODO: optimization: when only one chunk exists or when the reference is in the same segment,
// don't make checks if we reach end of segments
// TODO: optimize to continue match between segments?
// TODO: check hash function
// TODO: check times
/* compresses one segment starting from 'from'.*/
static void FNAME(compress_seg)(Encoder *encoder, LzImageSegment *seg, PIXEL *from, int copied)
{
const PIXEL *ip = from;
const PIXEL *ip_bound = (PIXEL *)(seg->lines_end) - BOUND_OFFSET;
const PIXEL *ip_limit = (PIXEL *)(seg->lines_end) - LIMIT_OFFSET;
HashEntry *hslot;
int hval;
int copy = copied;
if (copy == 0) {
encode_copy_count(encoder, MAX_COPY - 1);
}
while (LZ_EXPECT_CONDITIONAL(ip < ip_limit)) { // TODO: maybe change ip_limit and enabling
// moving to the next seg
const PIXEL *ref;
const PIXEL *ref_limit;
size_t distance;
/* minimum match length */
#if defined(LZ_PLT) || defined(LZ_RGB_ALPHA)
size_t len = 3;
#elif defined(LZ_RGB16)
size_t len = 2;
#else
size_t len = 1;
#endif
/* comparison starting-point */
const PIXEL *anchor = ip;
// TODO: RLE without checking if not first byte.
// TODO: optimize comparisons
/* check for a run */ // TODO for RGB we can use less pixels
if (LZ_EXPECT_CONDITIONAL(ip > (PIXEL *)(seg->lines))) {
if (SAME_PIXEL(ip[-1], ip[0]) && SAME_PIXEL(ip[0], ip[1]) && SAME_PIXEL(ip[1], ip[2])) {
distance = 1;
ip += 3;
ref = anchor + 2;
ref_limit = (PIXEL *)(seg->lines_end);
#if defined(LZ_RGB16) || defined(LZ_RGB24) || defined(LZ_RGB32)
len = 3;
#endif
goto match;
}
}
/* find potential match */
HASH_FUNC(hval, ip);
hslot = encoder->htab + hval;
ref = (PIXEL *)(hslot->ref);
ref_limit = (PIXEL *)(hslot->image_seg->lines_end);
/* calculate distance to the match */
distance = PIXEL_ID(anchor, seg) - PIXEL_ID(ref, hslot->image_seg);
/* update hash table */
hslot->image_seg = seg;
hslot->ref = (uint8_t *)anchor;
/* is this a match? check the first 3 pixels */
if (distance == 0 || (distance >= MAX_FARDISTANCE)) {
goto literal;
}
/* check if the hval key identical*/
// no need to check ref limit here because the word size in the htab is 3 pixels
if (!SAME_PIXEL(*ref, *ip)) {
ref++;
ip++;
goto literal;
}
ref++;
ip++;
/* minimum match length for rgb16 is 2 and for plt and alpha is 3 */
#if defined(LZ_PLT) || defined(LZ_RGB_ALPHA) || defined(LZ_RGB16)
if (!SAME_PIXEL(*ref, *ip)) {
ref++;
ip++;
goto literal;
}
ref++;
ip++;
#endif
#if defined(LZ_PLT) || defined(LZ_RGB_ALPHA)
if (!SAME_PIXEL(*ref, *ip)) {
ref++;
ip++;
goto literal;
}
ref++;
ip++;
#endif
/* far, needs at least 5-byte match */
if (distance >= MAX_DISTANCE) {
#if defined(LZ_PLT) || defined(LZ_RGB_ALPHA)
if (ref >= (ref_limit - 1)) {
goto literal;
}
#else
if (ref > (ref_limit - 1)) {
goto literal;
}
#endif
if (!SAME_PIXEL(*ref, *ip)) {
ref++;
ip++;
goto literal;
}
ref++;
ip++;
len++;
#if defined(LZ_PLT) || defined(LZ_RGB_ALPHA)
if (!SAME_PIXEL(*ref, *ip)) {
ref++;
ip++;
goto literal;
}
ref++;
ip++;
len++;
#endif
}
match: // RLE or dictionary (both are encoded by distance from ref (-1) and length)
/* distance is biased */
distance--;
// ip is located now at the position of the second mismatch.
// later it will be subtracted by 3
if (!distance) {
/* zero distance means a run */
PIXEL x = *ref;
while ((ip < ip_bound) && (ref < ref_limit)) { // TODO: maybe separate a run from
// the same seg or from different
// ones in order to spare
// ref < ref_limit
if (!SAME_PIXEL(*ref, x)) {
ref++;
break;
} else {
ref++;
ip++;
}
}
} else {
// TODO: maybe separate a run from the same seg or from different ones in order
// to spare ref < ref_limit and that way we can also perform 8 calls of
// (ref++ != ip++) outside a loop
for (;;) {
while ((ip < ip_bound) && (ref < ref_limit)) {
if (!SAME_PIXEL(*ref, *ip)) {
ref++;
ip++;
break;
} else {
ref++;
ip++;
}
}
break;
}
}
/* if we have copied something, adjust the copy count */
if (copy) {
/* copy is biased, '0' means 1 byte copy */
update_copy_count(encoder, copy - 1);
} else {
/* back, to overwrite the copy count */
compress_output_prev(encoder);
}
/* reset literal counter */
copy = 0;
/* length is biased, '1' means a match of 3 pixels for PLT and alpha*/
/* for RGB 16 1 means 2 */
/* for RGB24/32 1 means 1...*/
ip -= 3;
len = ip - anchor;
#if defined(LZ_RGB16)
len++;
#elif defined(LZ_RGB24) || defined(LZ_RGB32)
len += 2;
#endif
/* encode the match (like fastlz level 2)*/
if (distance < MAX_DISTANCE) { // MAX_DISTANCE is 2^13 - 1
// when copy is performed, the byte that holds the copy count is smaller than 32.
// When there is a reference, the first byte is always larger then 32
// 3 bits = length, 5 bits = 5 MSB of distance, 8 bits = 8 LSB of distance
if (len < 7) {
encode(encoder, (uint8_t)((len << 5) + (distance >> 8)));
encode(encoder, (uint8_t)(distance & 255));
} else { // more than 3 bits are needed for length
// 3 bits 7, 5 bits = 5 MSB of distance, next bytes are 255 till we
// receive a smaller number, last byte = 8 LSB of distance
encode(encoder, (uint8_t)((7 << 5) + (distance >> 8)));
for (len -= 7; len >= 255; len -= 255) {
encode(encoder, 255);
}
encode(encoder, (uint8_t)len);
encode(encoder, (uint8_t)(distance & 255));
}
} else {
/* far away */
if (len < 7) { // the max_far_distance is ~2^16+2^13 so two more bytes are needed
// 3 bits = length, 5 bits = 5 MSB of MAX_DISTANCE, 8 bits = 8 LSB of MAX_DISTANCE,
// 8 bits = 8 MSB distance-MAX_distance (smaller than 2^16),8 bits=8 LSB of
// distance-MAX_distance
distance -= MAX_DISTANCE;
encode(encoder, (uint8_t)((len << 5) + 31));
encode(encoder, (uint8_t)255);
encode(encoder, (uint8_t)(distance >> 8));
encode(encoder, (uint8_t)(distance & 255));
} else {
// same as before, but the first byte is followed by the left overs of len
distance -= MAX_DISTANCE;
encode(encoder, (uint8_t)((7 << 5) + 31));
for (len -= 7; len >= 255; len -= 255) {
encode(encoder, 255);
}
encode(encoder, (uint8_t)len);
encode(encoder, 255);
encode(encoder, (uint8_t)(distance >> 8));
encode(encoder, (uint8_t)(distance & 255));
}
}
/* update the hash at match boundary */
#if defined(LZ_RGB16) || defined(LZ_RGB24) || defined(LZ_RGB32)
if (ip > anchor) {
#endif
HASH_FUNC(hval, ip);
encoder->htab[hval].ref = (uint8_t *)ip;
ip++;
encoder->htab[hval].image_seg = seg;
#if defined(LZ_RGB16) || defined(LZ_RGB24) || defined(LZ_RGB32)
} else {ip++;
}
#endif
#if defined(LZ_RGB24) || defined(LZ_RGB32)
if (ip > anchor) {
#endif
HASH_FUNC(hval, ip);
encoder->htab[hval].ref = (uint8_t *)ip;
ip++;
encoder->htab[hval].image_seg = seg;
#if defined(LZ_RGB24) || defined(LZ_RGB32)
} else {ip++;
}
#endif
/* assuming literal copy */
encode_copy_count(encoder, MAX_COPY - 1);
continue;
literal:
ENCODE_PIXEL(encoder, *anchor);
anchor++;
ip = anchor;
copy++;
if (LZ_UNEXPECT_CONDITIONAL(copy == MAX_COPY)) {
copy = 0;
encode_copy_count(encoder, MAX_COPY - 1);
}
} // END LOOP (ip < ip_limit)
/* left-over as literal copy */
ip_bound++;
while (ip <= ip_bound) {
ENCODE_PIXEL(encoder, *ip);
ip++;
copy++;
if (copy == MAX_COPY) {
copy = 0;
encode_copy_count(encoder, MAX_COPY - 1);
}
}
/* if we have copied something, adjust the copy length */
if (copy) {
update_copy_count(encoder, copy - 1);
} else {
compress_output_prev(encoder); // in case we created a new buffer for copy, check that
// red_worker could handle size that do not contain the
// ne buffer
}
}
/* initializes the hash table. if the file is very small, copies it.
copies the first two pixels of the first segment, and sends the segments
one by one to compress_seg.
the number of bytes compressed are stored inside encoder.
*/
static void FNAME(compress)(Encoder *encoder)
{
LzImageSegment *cur_seg = encoder->head_image_segs;
HashEntry *hslot;
PIXEL *ip;
// fetch the first image segment that is not too small
while (cur_seg && ((((PIXEL *)cur_seg->lines_end) - ((PIXEL *)cur_seg->lines)) < 4)) {
// coping the segment
if (cur_seg->lines != cur_seg->lines_end) {
ip = (PIXEL *)cur_seg->lines;
// Note: we assume MAX_COPY > 3
encode_copy_count(encoder, (uint8_t)(
(((PIXEL *)cur_seg->lines_end) - ((PIXEL *)cur_seg->lines)) - 1));
while (ip < (PIXEL *)cur_seg->lines_end) {
ENCODE_PIXEL(encoder, *ip);
ip++;
}
}
cur_seg = cur_seg->next;
}
if (!cur_seg) {
return;
}
ip = (PIXEL *)cur_seg->lines;
/* initialize hash table */
for (hslot = encoder->htab; hslot < encoder->htab + HASH_SIZE; hslot++) {
hslot->ref = (uint8_t*)ip;
hslot->image_seg = cur_seg;
}
encode_copy_count(encoder, MAX_COPY - 1);
ENCODE_PIXEL(encoder, *ip);
ip++;
ENCODE_PIXEL(encoder, *ip);
ip++;
// compressing the first segment
FNAME(compress_seg)(encoder, cur_seg, ip, 2);
// compressing the next segments
for (cur_seg = cur_seg->next; cur_seg; cur_seg = cur_seg->next) {
FNAME(compress_seg)(encoder, cur_seg, (PIXEL *)cur_seg->lines, 0);
}
}
#undef FNAME
#undef PIXEL_ID
#undef PIXEL
#undef ENCODE_PIXEL
#undef SAME_PIXEL
#undef LZ_READU16
#undef HASH_FUNC
#undef BYTES_TO_16
#undef HASH_FUNC_16
#undef GET_r
#undef GET_g
#undef GET_b
#undef GET_CODE
#undef LZ_PLT
#undef LZ_RGB_ALPHA
#undef LZ_RGB16
#undef LZ_RGB24
#undef LZ_RGB32
#undef HASH_FUNC2