mirror of
https://git.proxmox.com/git/systemd
synced 2026-01-24 05:14:54 +00:00
3192 lines
131 KiB
C
3192 lines
131 KiB
C
/* SPDX-License-Identifier: LGPL-2.1-or-later */
|
||
|
||
#if HAVE_VALGRIND_MEMCHECK_H
|
||
#include <valgrind/memcheck.h>
|
||
#endif
|
||
|
||
#include <linux/blkpg.h>
|
||
#include <linux/dm-ioctl.h>
|
||
#include <linux/loop.h>
|
||
#include <sys/mount.h>
|
||
#include <sys/prctl.h>
|
||
#include <sys/wait.h>
|
||
#include <sysexits.h>
|
||
|
||
#if HAVE_OPENSSL
|
||
#include <openssl/err.h>
|
||
#include <openssl/pem.h>
|
||
#include <openssl/x509.h>
|
||
#endif
|
||
|
||
#include "sd-device.h"
|
||
#include "sd-id128.h"
|
||
|
||
#include "architecture.h"
|
||
#include "ask-password-api.h"
|
||
#include "blkid-util.h"
|
||
#include "blockdev-util.h"
|
||
#include "chase-symlinks.h"
|
||
#include "conf-files.h"
|
||
#include "copy.h"
|
||
#include "cryptsetup-util.h"
|
||
#include "def.h"
|
||
#include "device-nodes.h"
|
||
#include "device-util.h"
|
||
#include "discover-image.h"
|
||
#include "dissect-image.h"
|
||
#include "dm-util.h"
|
||
#include "env-file.h"
|
||
#include "env-util.h"
|
||
#include "extension-release.h"
|
||
#include "fd-util.h"
|
||
#include "fileio.h"
|
||
#include "fs-util.h"
|
||
#include "fsck-util.h"
|
||
#include "gpt.h"
|
||
#include "hexdecoct.h"
|
||
#include "hostname-setup.h"
|
||
#include "id128-util.h"
|
||
#include "import-util.h"
|
||
#include "io-util.h"
|
||
#include "mkdir-label.h"
|
||
#include "mount-util.h"
|
||
#include "mountpoint-util.h"
|
||
#include "namespace-util.h"
|
||
#include "nulstr-util.h"
|
||
#include "openssl-util.h"
|
||
#include "os-util.h"
|
||
#include "path-util.h"
|
||
#include "process-util.h"
|
||
#include "raw-clone.h"
|
||
#include "resize-fs.h"
|
||
#include "signal-util.h"
|
||
#include "stat-util.h"
|
||
#include "stdio-util.h"
|
||
#include "string-table.h"
|
||
#include "string-util.h"
|
||
#include "strv.h"
|
||
#include "tmpfile-util.h"
|
||
#include "udev-util.h"
|
||
#include "user-util.h"
|
||
#include "xattr-util.h"
|
||
|
||
/* how many times to wait for the device nodes to appear */
|
||
#define N_DEVICE_NODE_LIST_ATTEMPTS 10
|
||
|
||
int probe_filesystem(const char *node, char **ret_fstype) {
|
||
/* Try to find device content type and return it in *ret_fstype. If nothing is found,
|
||
* 0/NULL will be returned. -EUCLEAN will be returned for ambiguous results, and an
|
||
* different error otherwise. */
|
||
|
||
#if HAVE_BLKID
|
||
_cleanup_(blkid_free_probep) blkid_probe b = NULL;
|
||
const char *fstype;
|
||
int r;
|
||
|
||
errno = 0;
|
||
b = blkid_new_probe_from_filename(node);
|
||
if (!b)
|
||
return errno_or_else(ENOMEM);
|
||
|
||
blkid_probe_enable_superblocks(b, 1);
|
||
blkid_probe_set_superblocks_flags(b, BLKID_SUBLKS_TYPE);
|
||
|
||
errno = 0;
|
||
r = blkid_do_safeprobe(b);
|
||
if (r == 1)
|
||
goto not_found;
|
||
if (r == -2)
|
||
return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN),
|
||
"Results ambiguous for partition %s", node);
|
||
if (r != 0)
|
||
return log_debug_errno(errno_or_else(EIO), "Failed to probe partition %s: %m", node);
|
||
|
||
(void) blkid_probe_lookup_value(b, "TYPE", &fstype, NULL);
|
||
|
||
if (fstype) {
|
||
char *t;
|
||
|
||
log_debug("Probed fstype '%s' on partition %s.", fstype, node);
|
||
|
||
t = strdup(fstype);
|
||
if (!t)
|
||
return -ENOMEM;
|
||
|
||
*ret_fstype = t;
|
||
return 1;
|
||
}
|
||
|
||
not_found:
|
||
log_debug("No type detected on partition %s", node);
|
||
*ret_fstype = NULL;
|
||
return 0;
|
||
#else
|
||
return -EOPNOTSUPP;
|
||
#endif
|
||
}
|
||
|
||
#if HAVE_BLKID
|
||
static void check_partition_flags(
|
||
const char *node,
|
||
unsigned long long pflags,
|
||
unsigned long long supported) {
|
||
|
||
assert(node);
|
||
|
||
/* Mask away all flags supported by this partition's type and the three flags the UEFI spec defines generically */
|
||
pflags &= ~(supported | GPT_FLAG_REQUIRED_PARTITION | GPT_FLAG_NO_BLOCK_IO_PROTOCOL | GPT_FLAG_LEGACY_BIOS_BOOTABLE);
|
||
|
||
if (pflags == 0)
|
||
return;
|
||
|
||
/* If there are other bits set, then log about it, to make things discoverable */
|
||
for (unsigned i = 0; i < sizeof(pflags) * 8; i++) {
|
||
unsigned long long bit = 1ULL << i;
|
||
if (!FLAGS_SET(pflags, bit))
|
||
continue;
|
||
|
||
log_debug("Unexpected partition flag %llu set on %s!", bit, node);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
static void dissected_partition_done(DissectedPartition *p) {
|
||
assert(p);
|
||
|
||
free(p->fstype);
|
||
free(p->node);
|
||
free(p->label);
|
||
free(p->decrypted_fstype);
|
||
free(p->decrypted_node);
|
||
free(p->mount_options);
|
||
|
||
*p = (DissectedPartition) {
|
||
.partno = -1,
|
||
.architecture = _ARCHITECTURE_INVALID,
|
||
};
|
||
}
|
||
|
||
#if HAVE_BLKID
|
||
static int ioctl_partition_add(
|
||
int fd,
|
||
const char *name,
|
||
int nr,
|
||
uint64_t start,
|
||
uint64_t size) {
|
||
|
||
assert(fd >= 0);
|
||
assert(name);
|
||
assert(nr > 0);
|
||
|
||
struct blkpg_partition bp = {
|
||
.pno = nr,
|
||
.start = start,
|
||
.length = size,
|
||
};
|
||
|
||
struct blkpg_ioctl_arg ba = {
|
||
.op = BLKPG_ADD_PARTITION,
|
||
.data = &bp,
|
||
.datalen = sizeof(bp),
|
||
};
|
||
|
||
if (strlen(name) >= sizeof(bp.devname))
|
||
return -EINVAL;
|
||
|
||
strcpy(bp.devname, name);
|
||
|
||
return RET_NERRNO(ioctl(fd, BLKPG, &ba));
|
||
}
|
||
|
||
static int make_partition_devname(
|
||
const char *whole_devname,
|
||
int nr,
|
||
char **ret) {
|
||
|
||
bool need_p;
|
||
|
||
assert(whole_devname);
|
||
assert(nr > 0);
|
||
|
||
/* Given a whole block device node name (e.g. /dev/sda or /dev/loop7) generate a partition device
|
||
* name (e.g. /dev/sda7 or /dev/loop7p5). The rule the kernel uses is simple: if whole block device
|
||
* node name ends in a digit, then suffix a 'p', followed by the partition number. Otherwise, just
|
||
* suffix the partition number without any 'p'. */
|
||
|
||
if (isempty(whole_devname)) /* Make sure there *is* a last char */
|
||
return -EINVAL;
|
||
|
||
need_p = strchr(DIGITS, whole_devname[strlen(whole_devname)-1]); /* Last char a digit? */
|
||
|
||
return asprintf(ret, "%s%s%i", whole_devname, need_p ? "p" : "", nr);
|
||
}
|
||
#endif
|
||
|
||
int dissect_image(
|
||
int fd,
|
||
const VeritySettings *verity,
|
||
const MountOptions *mount_options,
|
||
uint64_t diskseq,
|
||
uint64_t uevent_seqnum_not_before,
|
||
usec_t timestamp_not_before,
|
||
DissectImageFlags flags,
|
||
DissectedImage **ret) {
|
||
|
||
#if HAVE_BLKID
|
||
sd_id128_t root_uuid = SD_ID128_NULL, root_verity_uuid = SD_ID128_NULL;
|
||
sd_id128_t usr_uuid = SD_ID128_NULL, usr_verity_uuid = SD_ID128_NULL;
|
||
bool is_gpt, is_mbr, multiple_generic = false,
|
||
generic_rw = false, /* initialize to appease gcc */
|
||
generic_growfs = false;
|
||
_cleanup_(sd_device_unrefp) sd_device *d = NULL;
|
||
_cleanup_(dissected_image_unrefp) DissectedImage *m = NULL;
|
||
_cleanup_(blkid_free_probep) blkid_probe b = NULL;
|
||
_cleanup_free_ char *generic_node = NULL;
|
||
sd_id128_t generic_uuid = SD_ID128_NULL;
|
||
const char *pttype = NULL, *sysname = NULL, *devname = NULL;
|
||
blkid_partlist pl;
|
||
int r, generic_nr = -1, n_partitions;
|
||
struct stat st;
|
||
|
||
assert(fd >= 0);
|
||
assert(ret);
|
||
assert(!verity || verity->designator < 0 || IN_SET(verity->designator, PARTITION_ROOT, PARTITION_USR));
|
||
assert(!verity || verity->root_hash || verity->root_hash_size == 0);
|
||
assert(!verity || verity->root_hash_sig || verity->root_hash_sig_size == 0);
|
||
assert(!verity || (verity->root_hash || !verity->root_hash_sig));
|
||
assert(!((flags & DISSECT_IMAGE_GPT_ONLY) && (flags & DISSECT_IMAGE_NO_PARTITION_TABLE)));
|
||
|
||
/* Probes a disk image, and returns information about what it found in *ret.
|
||
*
|
||
* Returns -ENOPKG if no suitable partition table or file system could be found.
|
||
* Returns -EADDRNOTAVAIL if a root hash was specified but no matching root/verity partitions found.
|
||
* Returns -ENXIO if we couldn't find any partition suitable as root or /usr partition
|
||
* Returns -ENOTUNIQ if we only found multiple generic partitions and thus don't know what to do with that */
|
||
|
||
if (verity && verity->root_hash) {
|
||
sd_id128_t fsuuid, vuuid;
|
||
|
||
/* If a root hash is supplied, then we use the root partition that has a UUID that match the
|
||
* first 128bit of the root hash. And we use the verity partition that has a UUID that match
|
||
* the final 128bit. */
|
||
|
||
if (verity->root_hash_size < sizeof(sd_id128_t))
|
||
return -EINVAL;
|
||
|
||
memcpy(&fsuuid, verity->root_hash, sizeof(sd_id128_t));
|
||
memcpy(&vuuid, (const uint8_t*) verity->root_hash + verity->root_hash_size - sizeof(sd_id128_t), sizeof(sd_id128_t));
|
||
|
||
if (sd_id128_is_null(fsuuid))
|
||
return -EINVAL;
|
||
if (sd_id128_is_null(vuuid))
|
||
return -EINVAL;
|
||
|
||
/* If the verity data declares it's for the /usr partition, then search for that, in all
|
||
* other cases assume it's for the root partition. */
|
||
if (verity->designator == PARTITION_USR) {
|
||
usr_uuid = fsuuid;
|
||
usr_verity_uuid = vuuid;
|
||
} else {
|
||
root_uuid = fsuuid;
|
||
root_verity_uuid = vuuid;
|
||
}
|
||
}
|
||
|
||
if (fstat(fd, &st) < 0)
|
||
return -errno;
|
||
|
||
if (!S_ISBLK(st.st_mode))
|
||
return -ENOTBLK;
|
||
|
||
r = sd_device_new_from_stat_rdev(&d, &st);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
b = blkid_new_probe();
|
||
if (!b)
|
||
return -ENOMEM;
|
||
|
||
errno = 0;
|
||
r = blkid_probe_set_device(b, fd, 0, 0);
|
||
if (r != 0)
|
||
return errno_or_else(ENOMEM);
|
||
|
||
if ((flags & DISSECT_IMAGE_GPT_ONLY) == 0) {
|
||
/* Look for file system superblocks, unless we only shall look for GPT partition tables */
|
||
blkid_probe_enable_superblocks(b, 1);
|
||
blkid_probe_set_superblocks_flags(b, BLKID_SUBLKS_TYPE|BLKID_SUBLKS_USAGE);
|
||
}
|
||
|
||
blkid_probe_enable_partitions(b, 1);
|
||
blkid_probe_set_partitions_flags(b, BLKID_PARTS_ENTRY_DETAILS);
|
||
|
||
errno = 0;
|
||
r = blkid_do_safeprobe(b);
|
||
if (IN_SET(r, -2, 1))
|
||
return log_debug_errno(SYNTHETIC_ERRNO(ENOPKG), "Failed to identify any partition table.");
|
||
if (r != 0)
|
||
return errno_or_else(EIO);
|
||
|
||
m = new(DissectedImage, 1);
|
||
if (!m)
|
||
return -ENOMEM;
|
||
|
||
*m = (DissectedImage) {
|
||
.has_init_system = -1,
|
||
};
|
||
|
||
r = sd_device_get_sysname(d, &sysname);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to get device sysname: %m");
|
||
if (startswith(sysname, "loop")) {
|
||
_cleanup_free_ char *name_stripped = NULL;
|
||
const char *full_path;
|
||
|
||
r = sd_device_get_sysattr_value(d, "loop/backing_file", &full_path);
|
||
if (r < 0)
|
||
log_debug_errno(r, "Failed to lookup image name via loop device backing file sysattr, ignoring: %m");
|
||
else {
|
||
r = raw_strip_suffixes(basename(full_path), &name_stripped);
|
||
if (r < 0)
|
||
return r;
|
||
}
|
||
|
||
free_and_replace(m->image_name, name_stripped);
|
||
} else {
|
||
r = free_and_strdup(&m->image_name, sysname);
|
||
if (r < 0)
|
||
return r;
|
||
}
|
||
r = sd_device_get_devname(d, &devname);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to get device devname: %m");
|
||
|
||
if (!image_name_is_valid(m->image_name)) {
|
||
log_debug("Image name %s is not valid, ignoring", strempty(m->image_name));
|
||
m->image_name = mfree(m->image_name);
|
||
}
|
||
|
||
if ((!(flags & DISSECT_IMAGE_GPT_ONLY) &&
|
||
(flags & DISSECT_IMAGE_GENERIC_ROOT)) ||
|
||
(flags & DISSECT_IMAGE_NO_PARTITION_TABLE)) {
|
||
const char *usage = NULL;
|
||
|
||
/* If flags permit this, also allow using non-partitioned single-filesystem images */
|
||
|
||
(void) blkid_probe_lookup_value(b, "USAGE", &usage, NULL);
|
||
if (STRPTR_IN_SET(usage, "filesystem", "crypto")) {
|
||
_cleanup_free_ char *t = NULL, *n = NULL, *o = NULL;
|
||
const char *fstype = NULL, *options = NULL;
|
||
|
||
/* OK, we have found a file system, that's our root partition then. */
|
||
(void) blkid_probe_lookup_value(b, "TYPE", &fstype, NULL);
|
||
|
||
if (fstype) {
|
||
t = strdup(fstype);
|
||
if (!t)
|
||
return -ENOMEM;
|
||
}
|
||
|
||
n = strdup(devname);
|
||
if (!n)
|
||
return -ENOMEM;
|
||
|
||
m->single_file_system = true;
|
||
m->encrypted = streq_ptr(fstype, "crypto_LUKS");
|
||
|
||
m->has_verity = verity && verity->data_path;
|
||
m->verity_ready = m->has_verity &&
|
||
verity->root_hash &&
|
||
(verity->designator < 0 || verity->designator == PARTITION_ROOT);
|
||
|
||
m->has_verity_sig = false; /* signature not embedded, must be specified */
|
||
m->verity_sig_ready = m->verity_ready &&
|
||
verity->root_hash_sig;
|
||
|
||
options = mount_options_from_designator(mount_options, PARTITION_ROOT);
|
||
if (options) {
|
||
o = strdup(options);
|
||
if (!o)
|
||
return -ENOMEM;
|
||
}
|
||
|
||
m->partitions[PARTITION_ROOT] = (DissectedPartition) {
|
||
.found = true,
|
||
.rw = !m->verity_ready && !fstype_is_ro(fstype),
|
||
.partno = -1,
|
||
.architecture = _ARCHITECTURE_INVALID,
|
||
.fstype = TAKE_PTR(t),
|
||
.node = TAKE_PTR(n),
|
||
.mount_options = TAKE_PTR(o),
|
||
.offset = 0,
|
||
.size = UINT64_MAX,
|
||
};
|
||
|
||
*ret = TAKE_PTR(m);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
(void) blkid_probe_lookup_value(b, "PTTYPE", &pttype, NULL);
|
||
if (!pttype)
|
||
return -ENOPKG;
|
||
|
||
is_gpt = streq_ptr(pttype, "gpt");
|
||
is_mbr = streq_ptr(pttype, "dos");
|
||
|
||
if (!is_gpt && ((flags & DISSECT_IMAGE_GPT_ONLY) || !is_mbr))
|
||
return -ENOPKG;
|
||
|
||
/* We support external verity data partitions only if the image has no partition table */
|
||
if (verity && verity->data_path)
|
||
return -EBADR;
|
||
|
||
/* Safety check: refuse block devices that carry a partition table but for which the kernel doesn't
|
||
* do partition scanning. */
|
||
r = blockdev_partscan_enabled(fd);
|
||
if (r < 0)
|
||
return r;
|
||
if (r == 0)
|
||
return -EPROTONOSUPPORT;
|
||
|
||
errno = 0;
|
||
pl = blkid_probe_get_partitions(b);
|
||
if (!pl)
|
||
return errno_or_else(ENOMEM);
|
||
|
||
errno = 0;
|
||
n_partitions = blkid_partlist_numof_partitions(pl);
|
||
if (n_partitions < 0)
|
||
return errno_or_else(EIO);
|
||
|
||
for (int i = 0; i < n_partitions; i++) {
|
||
_cleanup_free_ char *node = NULL;
|
||
unsigned long long pflags;
|
||
blkid_loff_t start, size;
|
||
blkid_partition pp;
|
||
int nr;
|
||
|
||
errno = 0;
|
||
pp = blkid_partlist_get_partition(pl, i);
|
||
if (!pp)
|
||
return errno_or_else(EIO);
|
||
|
||
pflags = blkid_partition_get_flags(pp);
|
||
|
||
errno = 0;
|
||
nr = blkid_partition_get_partno(pp);
|
||
if (nr < 0)
|
||
return errno_or_else(EIO);
|
||
|
||
errno = 0;
|
||
start = blkid_partition_get_start(pp);
|
||
if (start < 0)
|
||
return errno_or_else(EIO);
|
||
|
||
assert((uint64_t) start < UINT64_MAX/512);
|
||
|
||
errno = 0;
|
||
size = blkid_partition_get_size(pp);
|
||
if (size < 0)
|
||
return errno_or_else(EIO);
|
||
|
||
assert((uint64_t) size < UINT64_MAX/512);
|
||
|
||
r = make_partition_devname(devname, nr, &node);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
/* So here's the thing: after the main ("whole") block device popped up it might take a while
|
||
* before the kernel fully probed the partition table. Waiting for that to finish is icky in
|
||
* userspace. So here's what we do instead. We issue the BLKPG_ADD_PARTITION ioctl to add the
|
||
* partition ourselves, racing against the kernel. Good thing is: if this call fails with
|
||
* EBUSY then the kernel was quicker than us, and that's totally OK, the outcome is good for
|
||
* us: the device node will exist. If OTOH our call was successful we won the race. Which is
|
||
* also good as the outcome is the same: the partition block device exists, and we can use
|
||
* it.
|
||
*
|
||
* Kernel returns EBUSY if there's already a partition by that number or an overlapping
|
||
* partition already existent. */
|
||
|
||
r = ioctl_partition_add(fd, node, nr, (uint64_t) start * 512, (uint64_t) size * 512);
|
||
if (r < 0) {
|
||
if (r != -EBUSY)
|
||
return log_debug_errno(r, "BLKPG_ADD_PARTITION failed: %m");
|
||
|
||
log_debug_errno(r, "Kernel was quicker than us in adding partition %i.", nr);
|
||
} else
|
||
log_debug("We were quicker than kernel in adding partition %i.", nr);
|
||
|
||
if (is_gpt) {
|
||
PartitionDesignator designator = _PARTITION_DESIGNATOR_INVALID;
|
||
Architecture architecture = _ARCHITECTURE_INVALID;
|
||
const char *stype, *sid, *fstype = NULL, *label;
|
||
sd_id128_t type_id, id;
|
||
bool rw = true, growfs = false;
|
||
|
||
sid = blkid_partition_get_uuid(pp);
|
||
if (!sid)
|
||
continue;
|
||
if (sd_id128_from_string(sid, &id) < 0)
|
||
continue;
|
||
|
||
stype = blkid_partition_get_type_string(pp);
|
||
if (!stype)
|
||
continue;
|
||
if (sd_id128_from_string(stype, &type_id) < 0)
|
||
continue;
|
||
|
||
label = blkid_partition_get_name(pp); /* libblkid returns NULL here if empty */
|
||
|
||
if (sd_id128_equal(type_id, GPT_HOME)) {
|
||
|
||
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY|GPT_FLAG_GROWFS);
|
||
|
||
if (pflags & GPT_FLAG_NO_AUTO)
|
||
continue;
|
||
|
||
designator = PARTITION_HOME;
|
||
rw = !(pflags & GPT_FLAG_READ_ONLY);
|
||
growfs = FLAGS_SET(pflags, GPT_FLAG_GROWFS);
|
||
|
||
} else if (sd_id128_equal(type_id, GPT_SRV)) {
|
||
|
||
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY|GPT_FLAG_GROWFS);
|
||
|
||
if (pflags & GPT_FLAG_NO_AUTO)
|
||
continue;
|
||
|
||
designator = PARTITION_SRV;
|
||
rw = !(pflags & GPT_FLAG_READ_ONLY);
|
||
growfs = FLAGS_SET(pflags, GPT_FLAG_GROWFS);
|
||
|
||
} else if (sd_id128_equal(type_id, GPT_ESP)) {
|
||
|
||
/* Note that we don't check the GPT_FLAG_NO_AUTO flag for the ESP, as it is
|
||
* not defined there. We instead check the GPT_FLAG_NO_BLOCK_IO_PROTOCOL, as
|
||
* recommended by the UEFI spec (See "12.3.3 Number and Location of System
|
||
* Partitions"). */
|
||
|
||
if (pflags & GPT_FLAG_NO_BLOCK_IO_PROTOCOL)
|
||
continue;
|
||
|
||
designator = PARTITION_ESP;
|
||
fstype = "vfat";
|
||
|
||
} else if (sd_id128_equal(type_id, GPT_XBOOTLDR)) {
|
||
|
||
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY|GPT_FLAG_GROWFS);
|
||
|
||
if (pflags & GPT_FLAG_NO_AUTO)
|
||
continue;
|
||
|
||
designator = PARTITION_XBOOTLDR;
|
||
rw = !(pflags & GPT_FLAG_READ_ONLY);
|
||
growfs = FLAGS_SET(pflags, GPT_FLAG_GROWFS);
|
||
|
||
} else if (gpt_partition_type_is_root(type_id)) {
|
||
|
||
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY|GPT_FLAG_GROWFS);
|
||
|
||
if (pflags & GPT_FLAG_NO_AUTO)
|
||
continue;
|
||
|
||
/* If a root ID is specified, ignore everything but the root id */
|
||
if (!sd_id128_is_null(root_uuid) && !sd_id128_equal(root_uuid, id))
|
||
continue;
|
||
|
||
assert_se((architecture = gpt_partition_type_uuid_to_arch(type_id)) >= 0);
|
||
designator = PARTITION_ROOT_OF_ARCH(architecture);
|
||
rw = !(pflags & GPT_FLAG_READ_ONLY);
|
||
growfs = FLAGS_SET(pflags, GPT_FLAG_GROWFS);
|
||
|
||
} else if (gpt_partition_type_is_root_verity(type_id)) {
|
||
|
||
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
|
||
|
||
if (pflags & GPT_FLAG_NO_AUTO)
|
||
continue;
|
||
|
||
m->has_verity = true;
|
||
|
||
/* If no verity configuration is specified, then don't do verity */
|
||
if (!verity)
|
||
continue;
|
||
if (verity->designator >= 0 && verity->designator != PARTITION_ROOT)
|
||
continue;
|
||
|
||
/* If root hash is specified, then ignore everything but the root id */
|
||
if (!sd_id128_is_null(root_verity_uuid) && !sd_id128_equal(root_verity_uuid, id))
|
||
continue;
|
||
|
||
assert_se((architecture = gpt_partition_type_uuid_to_arch(type_id)) >= 0);
|
||
designator = PARTITION_VERITY_OF(PARTITION_ROOT_OF_ARCH(architecture));
|
||
fstype = "DM_verity_hash";
|
||
rw = false;
|
||
|
||
} else if (gpt_partition_type_is_root_verity_sig(type_id)) {
|
||
|
||
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
|
||
|
||
if (pflags & GPT_FLAG_NO_AUTO)
|
||
continue;
|
||
|
||
m->has_verity_sig = true;
|
||
|
||
/* If root hash is specified explicitly, then ignore any embedded signature */
|
||
if (!verity)
|
||
continue;
|
||
if (verity->designator >= 0 && verity->designator != PARTITION_ROOT)
|
||
continue;
|
||
if (verity->root_hash)
|
||
continue;
|
||
|
||
assert_se((architecture = gpt_partition_type_uuid_to_arch(type_id)) >= 0);
|
||
designator = PARTITION_VERITY_SIG_OF(PARTITION_ROOT_OF_ARCH(architecture));
|
||
fstype = "verity_hash_signature";
|
||
rw = false;
|
||
|
||
} else if (gpt_partition_type_is_usr(type_id)) {
|
||
|
||
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY|GPT_FLAG_GROWFS);
|
||
|
||
if (pflags & GPT_FLAG_NO_AUTO)
|
||
continue;
|
||
|
||
/* If a usr ID is specified, ignore everything but the usr id */
|
||
if (!sd_id128_is_null(usr_uuid) && !sd_id128_equal(usr_uuid, id))
|
||
continue;
|
||
|
||
assert_se((architecture = gpt_partition_type_uuid_to_arch(type_id)) >= 0);
|
||
designator = PARTITION_USR_OF_ARCH(architecture);
|
||
rw = !(pflags & GPT_FLAG_READ_ONLY);
|
||
growfs = FLAGS_SET(pflags, GPT_FLAG_GROWFS);
|
||
|
||
} else if (gpt_partition_type_is_usr_verity(type_id)) {
|
||
|
||
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
|
||
|
||
if (pflags & GPT_FLAG_NO_AUTO)
|
||
continue;
|
||
|
||
m->has_verity = true;
|
||
|
||
if (!verity)
|
||
continue;
|
||
if (verity->designator >= 0 && verity->designator != PARTITION_USR)
|
||
continue;
|
||
|
||
/* If usr hash is specified, then ignore everything but the usr id */
|
||
if (!sd_id128_is_null(usr_verity_uuid) && !sd_id128_equal(usr_verity_uuid, id))
|
||
continue;
|
||
|
||
assert_se((architecture = gpt_partition_type_uuid_to_arch(type_id)) >= 0);
|
||
designator = PARTITION_VERITY_OF(PARTITION_USR_OF_ARCH(architecture));
|
||
fstype = "DM_verity_hash";
|
||
rw = false;
|
||
|
||
} else if (gpt_partition_type_is_usr_verity_sig(type_id)) {
|
||
|
||
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
|
||
|
||
if (pflags & GPT_FLAG_NO_AUTO)
|
||
continue;
|
||
|
||
m->has_verity_sig = true;
|
||
|
||
/* If usr hash is specified explicitly, then ignore any embedded signature */
|
||
if (!verity)
|
||
continue;
|
||
if (verity->designator >= 0 && verity->designator != PARTITION_USR)
|
||
continue;
|
||
if (verity->root_hash)
|
||
continue;
|
||
|
||
assert_se((architecture = gpt_partition_type_uuid_to_arch(type_id)) >= 0);
|
||
designator = PARTITION_VERITY_SIG_OF(PARTITION_USR_OF_ARCH(architecture));
|
||
fstype = "verity_hash_signature";
|
||
rw = false;
|
||
|
||
} else if (sd_id128_equal(type_id, GPT_SWAP)) {
|
||
|
||
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO);
|
||
|
||
if (pflags & GPT_FLAG_NO_AUTO)
|
||
continue;
|
||
|
||
designator = PARTITION_SWAP;
|
||
|
||
} else if (sd_id128_equal(type_id, GPT_LINUX_GENERIC)) {
|
||
|
||
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY|GPT_FLAG_GROWFS);
|
||
|
||
if (pflags & GPT_FLAG_NO_AUTO)
|
||
continue;
|
||
|
||
if (generic_node)
|
||
multiple_generic = true;
|
||
else {
|
||
generic_nr = nr;
|
||
generic_rw = !(pflags & GPT_FLAG_READ_ONLY);
|
||
generic_growfs = FLAGS_SET(pflags, GPT_FLAG_GROWFS);
|
||
generic_uuid = id;
|
||
generic_node = strdup(node);
|
||
if (!generic_node)
|
||
return -ENOMEM;
|
||
}
|
||
|
||
} else if (sd_id128_equal(type_id, GPT_TMP)) {
|
||
|
||
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY|GPT_FLAG_GROWFS);
|
||
|
||
if (pflags & GPT_FLAG_NO_AUTO)
|
||
continue;
|
||
|
||
designator = PARTITION_TMP;
|
||
rw = !(pflags & GPT_FLAG_READ_ONLY);
|
||
growfs = FLAGS_SET(pflags, GPT_FLAG_GROWFS);
|
||
|
||
} else if (sd_id128_equal(type_id, GPT_VAR)) {
|
||
|
||
check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY|GPT_FLAG_GROWFS);
|
||
|
||
if (pflags & GPT_FLAG_NO_AUTO)
|
||
continue;
|
||
|
||
if (!FLAGS_SET(flags, DISSECT_IMAGE_RELAX_VAR_CHECK)) {
|
||
sd_id128_t var_uuid;
|
||
|
||
/* For /var we insist that the uuid of the partition matches the
|
||
* HMAC-SHA256 of the /var GPT partition type uuid, keyed by machine
|
||
* ID. Why? Unlike the other partitions /var is inherently
|
||
* installation specific, hence we need to be careful not to mount it
|
||
* in the wrong installation. By hashing the partition UUID from
|
||
* /etc/machine-id we can securely bind the partition to the
|
||
* installation. */
|
||
|
||
r = sd_id128_get_machine_app_specific(GPT_VAR, &var_uuid);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
if (!sd_id128_equal(var_uuid, id)) {
|
||
log_debug("Found a /var/ partition, but its UUID didn't match our expectations, ignoring.");
|
||
continue;
|
||
}
|
||
}
|
||
|
||
designator = PARTITION_VAR;
|
||
rw = !(pflags & GPT_FLAG_READ_ONLY);
|
||
growfs = FLAGS_SET(pflags, GPT_FLAG_GROWFS);
|
||
}
|
||
|
||
if (designator != _PARTITION_DESIGNATOR_INVALID) {
|
||
_cleanup_free_ char *t = NULL, *n = NULL, *o = NULL, *l = NULL;
|
||
const char *options = NULL;
|
||
|
||
if (m->partitions[designator].found) {
|
||
/* For most partition types the first one we see wins. Except for the
|
||
* rootfs and /usr, where we do a version compare of the label, and
|
||
* let the newest version win. This permits a simple A/B versioning
|
||
* scheme in OS images. */
|
||
|
||
if (!PARTITION_DESIGNATOR_VERSIONED(designator) ||
|
||
strverscmp_improved(m->partitions[designator].label, label) >= 0)
|
||
continue;
|
||
|
||
dissected_partition_done(m->partitions + designator);
|
||
}
|
||
|
||
if (fstype) {
|
||
t = strdup(fstype);
|
||
if (!t)
|
||
return -ENOMEM;
|
||
}
|
||
|
||
n = strdup(node);
|
||
if (!n)
|
||
return -ENOMEM;
|
||
|
||
if (label) {
|
||
l = strdup(label);
|
||
if (!l)
|
||
return -ENOMEM;
|
||
}
|
||
|
||
options = mount_options_from_designator(mount_options, designator);
|
||
if (options) {
|
||
o = strdup(options);
|
||
if (!o)
|
||
return -ENOMEM;
|
||
}
|
||
|
||
m->partitions[designator] = (DissectedPartition) {
|
||
.found = true,
|
||
.partno = nr,
|
||
.rw = rw,
|
||
.growfs = growfs,
|
||
.architecture = architecture,
|
||
.node = TAKE_PTR(n),
|
||
.fstype = TAKE_PTR(t),
|
||
.label = TAKE_PTR(l),
|
||
.uuid = id,
|
||
.mount_options = TAKE_PTR(o),
|
||
.offset = (uint64_t) start * 512,
|
||
.size = (uint64_t) size * 512,
|
||
};
|
||
}
|
||
|
||
} else if (is_mbr) {
|
||
|
||
switch (blkid_partition_get_type(pp)) {
|
||
|
||
case 0x83: /* Linux partition */
|
||
|
||
if (pflags != 0x80) /* Bootable flag */
|
||
continue;
|
||
|
||
if (generic_node)
|
||
multiple_generic = true;
|
||
else {
|
||
generic_nr = nr;
|
||
generic_rw = true;
|
||
generic_growfs = false;
|
||
generic_node = strdup(node);
|
||
if (!generic_node)
|
||
return -ENOMEM;
|
||
}
|
||
|
||
break;
|
||
|
||
case 0xEA: { /* Boot Loader Spec extended $BOOT partition */
|
||
_cleanup_free_ char *n = NULL, *o = NULL;
|
||
sd_id128_t id = SD_ID128_NULL;
|
||
const char *sid, *options = NULL;
|
||
|
||
/* First one wins */
|
||
if (m->partitions[PARTITION_XBOOTLDR].found)
|
||
continue;
|
||
|
||
sid = blkid_partition_get_uuid(pp);
|
||
if (sid)
|
||
(void) sd_id128_from_string(sid, &id);
|
||
|
||
n = strdup(node);
|
||
if (!n)
|
||
return -ENOMEM;
|
||
|
||
options = mount_options_from_designator(mount_options, PARTITION_XBOOTLDR);
|
||
if (options) {
|
||
o = strdup(options);
|
||
if (!o)
|
||
return -ENOMEM;
|
||
}
|
||
|
||
m->partitions[PARTITION_XBOOTLDR] = (DissectedPartition) {
|
||
.found = true,
|
||
.partno = nr,
|
||
.rw = true,
|
||
.growfs = false,
|
||
.architecture = _ARCHITECTURE_INVALID,
|
||
.node = TAKE_PTR(n),
|
||
.uuid = id,
|
||
.mount_options = TAKE_PTR(o),
|
||
.offset = (uint64_t) start * 512,
|
||
.size = (uint64_t) size * 512,
|
||
};
|
||
|
||
break;
|
||
}}
|
||
}
|
||
}
|
||
|
||
if (m->partitions[PARTITION_ROOT].found) {
|
||
/* If we found the primary arch, then invalidate the secondary and other arch to avoid any
|
||
* ambiguities, since we never want to mount the secondary or other arch in this case. */
|
||
m->partitions[PARTITION_ROOT_SECONDARY].found = false;
|
||
m->partitions[PARTITION_ROOT_SECONDARY_VERITY].found = false;
|
||
m->partitions[PARTITION_ROOT_SECONDARY_VERITY_SIG].found = false;
|
||
m->partitions[PARTITION_USR_SECONDARY].found = false;
|
||
m->partitions[PARTITION_USR_SECONDARY_VERITY].found = false;
|
||
m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG].found = false;
|
||
|
||
m->partitions[PARTITION_ROOT_OTHER].found = false;
|
||
m->partitions[PARTITION_ROOT_OTHER_VERITY].found = false;
|
||
m->partitions[PARTITION_ROOT_OTHER_VERITY_SIG].found = false;
|
||
m->partitions[PARTITION_USR_OTHER].found = false;
|
||
m->partitions[PARTITION_USR_OTHER_VERITY].found = false;
|
||
m->partitions[PARTITION_USR_OTHER_VERITY_SIG].found = false;
|
||
|
||
} else if (m->partitions[PARTITION_ROOT_VERITY].found ||
|
||
m->partitions[PARTITION_ROOT_VERITY_SIG].found)
|
||
return -EADDRNOTAVAIL; /* Verity found but no matching rootfs? Something is off, refuse. */
|
||
|
||
else if (m->partitions[PARTITION_ROOT_SECONDARY].found) {
|
||
|
||
/* No root partition found but there's one for the secondary architecture? Then upgrade
|
||
* secondary arch to first and invalidate the other arch. */
|
||
|
||
log_debug("No root partition found of the native architecture, falling back to a root "
|
||
"partition of the secondary architecture.");
|
||
|
||
m->partitions[PARTITION_ROOT] = m->partitions[PARTITION_ROOT_SECONDARY];
|
||
zero(m->partitions[PARTITION_ROOT_SECONDARY]);
|
||
m->partitions[PARTITION_ROOT_VERITY] = m->partitions[PARTITION_ROOT_SECONDARY_VERITY];
|
||
zero(m->partitions[PARTITION_ROOT_SECONDARY_VERITY]);
|
||
m->partitions[PARTITION_ROOT_VERITY_SIG] = m->partitions[PARTITION_ROOT_SECONDARY_VERITY_SIG];
|
||
zero(m->partitions[PARTITION_ROOT_SECONDARY_VERITY_SIG]);
|
||
|
||
m->partitions[PARTITION_USR] = m->partitions[PARTITION_USR_SECONDARY];
|
||
zero(m->partitions[PARTITION_USR_SECONDARY]);
|
||
m->partitions[PARTITION_USR_VERITY] = m->partitions[PARTITION_USR_SECONDARY_VERITY];
|
||
zero(m->partitions[PARTITION_USR_SECONDARY_VERITY]);
|
||
m->partitions[PARTITION_USR_VERITY_SIG] = m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG];
|
||
zero(m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG]);
|
||
|
||
m->partitions[PARTITION_ROOT_OTHER].found = false;
|
||
m->partitions[PARTITION_ROOT_OTHER_VERITY].found = false;
|
||
m->partitions[PARTITION_ROOT_OTHER_VERITY_SIG].found = false;
|
||
m->partitions[PARTITION_USR_OTHER].found = false;
|
||
m->partitions[PARTITION_USR_OTHER_VERITY].found = false;
|
||
m->partitions[PARTITION_USR_OTHER_VERITY_SIG].found = false;
|
||
|
||
} else if (m->partitions[PARTITION_ROOT_SECONDARY_VERITY].found ||
|
||
m->partitions[PARTITION_ROOT_SECONDARY_VERITY_SIG].found)
|
||
return -EADDRNOTAVAIL; /* as above */
|
||
|
||
else if (m->partitions[PARTITION_ROOT_OTHER].found) {
|
||
|
||
/* No root or secondary partition found but there's one for another architecture? Then
|
||
* upgrade the other architecture to first. */
|
||
|
||
log_debug("No root partition found of the native architecture or the secondary architecture, "
|
||
"falling back to a root partition of a non-native architecture (%s).",
|
||
architecture_to_string(m->partitions[PARTITION_ROOT_OTHER].architecture));
|
||
|
||
m->partitions[PARTITION_ROOT] = m->partitions[PARTITION_ROOT_OTHER];
|
||
zero(m->partitions[PARTITION_ROOT_OTHER]);
|
||
m->partitions[PARTITION_ROOT_VERITY] = m->partitions[PARTITION_ROOT_OTHER_VERITY];
|
||
zero(m->partitions[PARTITION_ROOT_OTHER_VERITY]);
|
||
m->partitions[PARTITION_ROOT_VERITY_SIG] = m->partitions[PARTITION_ROOT_OTHER_VERITY_SIG];
|
||
zero(m->partitions[PARTITION_ROOT_OTHER_VERITY_SIG]);
|
||
|
||
m->partitions[PARTITION_USR] = m->partitions[PARTITION_USR_OTHER];
|
||
zero(m->partitions[PARTITION_USR_OTHER]);
|
||
m->partitions[PARTITION_USR_VERITY] = m->partitions[PARTITION_USR_OTHER_VERITY];
|
||
zero(m->partitions[PARTITION_USR_OTHER_VERITY]);
|
||
m->partitions[PARTITION_USR_VERITY_SIG] = m->partitions[PARTITION_USR_OTHER_VERITY_SIG];
|
||
zero(m->partitions[PARTITION_USR_OTHER_VERITY_SIG]);
|
||
}
|
||
|
||
/* Hmm, we found a signature partition but no Verity data? Something is off. */
|
||
if (m->partitions[PARTITION_ROOT_VERITY_SIG].found && !m->partitions[PARTITION_ROOT_VERITY].found)
|
||
return -EADDRNOTAVAIL;
|
||
|
||
if (m->partitions[PARTITION_USR].found) {
|
||
/* Invalidate secondary and other arch /usr/ if we found the primary arch */
|
||
m->partitions[PARTITION_USR_SECONDARY].found = false;
|
||
m->partitions[PARTITION_USR_SECONDARY_VERITY].found = false;
|
||
m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG].found = false;
|
||
|
||
m->partitions[PARTITION_USR_OTHER].found = false;
|
||
m->partitions[PARTITION_USR_OTHER_VERITY].found = false;
|
||
m->partitions[PARTITION_USR_OTHER_VERITY_SIG].found = false;
|
||
|
||
} else if (m->partitions[PARTITION_USR_VERITY].found ||
|
||
m->partitions[PARTITION_USR_VERITY_SIG].found)
|
||
return -EADDRNOTAVAIL; /* as above */
|
||
|
||
else if (m->partitions[PARTITION_USR_SECONDARY].found) {
|
||
|
||
log_debug("No usr partition found of the native architecture, falling back to a usr "
|
||
"partition of the secondary architecture.");
|
||
|
||
/* Upgrade secondary arch to primary */
|
||
m->partitions[PARTITION_USR] = m->partitions[PARTITION_USR_SECONDARY];
|
||
zero(m->partitions[PARTITION_USR_SECONDARY]);
|
||
m->partitions[PARTITION_USR_VERITY] = m->partitions[PARTITION_USR_SECONDARY_VERITY];
|
||
zero(m->partitions[PARTITION_USR_SECONDARY_VERITY]);
|
||
m->partitions[PARTITION_USR_VERITY_SIG] = m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG];
|
||
zero(m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG]);
|
||
|
||
m->partitions[PARTITION_USR_OTHER].found = false;
|
||
m->partitions[PARTITION_USR_OTHER_VERITY].found = false;
|
||
m->partitions[PARTITION_USR_OTHER_VERITY_SIG].found = false;
|
||
|
||
} else if (m->partitions[PARTITION_USR_SECONDARY_VERITY].found ||
|
||
m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG].found)
|
||
return -EADDRNOTAVAIL; /* as above */
|
||
|
||
else if (m->partitions[PARTITION_USR_OTHER].found) {
|
||
|
||
log_debug("No usr partition found of the native architecture or the secondary architecture, "
|
||
"falling back to a usr partition of a non-native architecture (%s).",
|
||
architecture_to_string(m->partitions[PARTITION_ROOT_OTHER].architecture));
|
||
|
||
/* Upgrade other arch to primary */
|
||
m->partitions[PARTITION_USR] = m->partitions[PARTITION_USR_OTHER];
|
||
zero(m->partitions[PARTITION_USR_OTHER]);
|
||
m->partitions[PARTITION_USR_VERITY] = m->partitions[PARTITION_USR_OTHER_VERITY];
|
||
zero(m->partitions[PARTITION_USR_OTHER_VERITY]);
|
||
m->partitions[PARTITION_USR_VERITY_SIG] = m->partitions[PARTITION_USR_OTHER_VERITY_SIG];
|
||
zero(m->partitions[PARTITION_USR_OTHER_VERITY_SIG]);
|
||
}
|
||
|
||
/* Hmm, we found a signature partition but no Verity data? Something is off. */
|
||
if (m->partitions[PARTITION_USR_VERITY_SIG].found && !m->partitions[PARTITION_USR_VERITY].found)
|
||
return -EADDRNOTAVAIL;
|
||
|
||
/* If root and /usr are combined then insist that the architecture matches */
|
||
if (m->partitions[PARTITION_ROOT].found &&
|
||
m->partitions[PARTITION_USR].found &&
|
||
(m->partitions[PARTITION_ROOT].architecture >= 0 &&
|
||
m->partitions[PARTITION_USR].architecture >= 0 &&
|
||
m->partitions[PARTITION_ROOT].architecture != m->partitions[PARTITION_USR].architecture))
|
||
return -EADDRNOTAVAIL;
|
||
|
||
if (!m->partitions[PARTITION_ROOT].found &&
|
||
!m->partitions[PARTITION_USR].found &&
|
||
(flags & DISSECT_IMAGE_GENERIC_ROOT) &&
|
||
(!verity || !verity->root_hash || verity->designator != PARTITION_USR)) {
|
||
|
||
/* OK, we found nothing usable, then check if there's a single generic partition, and use
|
||
* that. If the root hash was set however, then we won't fall back to a generic node, because
|
||
* the root hash decides. */
|
||
|
||
/* If we didn't find a properly marked root partition, but we did find a single suitable
|
||
* generic Linux partition, then use this as root partition, if the caller asked for it. */
|
||
if (multiple_generic)
|
||
return -ENOTUNIQ;
|
||
|
||
/* If we didn't find a generic node, then we can't fix this up either */
|
||
if (generic_node) {
|
||
_cleanup_free_ char *o = NULL;
|
||
const char *options;
|
||
|
||
options = mount_options_from_designator(mount_options, PARTITION_ROOT);
|
||
if (options) {
|
||
o = strdup(options);
|
||
if (!o)
|
||
return -ENOMEM;
|
||
}
|
||
|
||
assert(generic_nr >= 0);
|
||
m->partitions[PARTITION_ROOT] = (DissectedPartition) {
|
||
.found = true,
|
||
.rw = generic_rw,
|
||
.growfs = generic_growfs,
|
||
.partno = generic_nr,
|
||
.architecture = _ARCHITECTURE_INVALID,
|
||
.node = TAKE_PTR(generic_node),
|
||
.uuid = generic_uuid,
|
||
.mount_options = TAKE_PTR(o),
|
||
.offset = UINT64_MAX,
|
||
.size = UINT64_MAX,
|
||
};
|
||
}
|
||
}
|
||
|
||
/* Check if we have a root fs if we are told to do check. /usr alone is fine too, but only if appropriate flag for that is set too */
|
||
if (FLAGS_SET(flags, DISSECT_IMAGE_REQUIRE_ROOT) &&
|
||
!(m->partitions[PARTITION_ROOT].found || (m->partitions[PARTITION_USR].found && FLAGS_SET(flags, DISSECT_IMAGE_USR_NO_ROOT))))
|
||
return -ENXIO;
|
||
|
||
if (m->partitions[PARTITION_ROOT_VERITY].found) {
|
||
/* We only support one verity partition per image, i.e. can't do for both /usr and root fs */
|
||
if (m->partitions[PARTITION_USR_VERITY].found)
|
||
return -ENOTUNIQ;
|
||
|
||
/* We don't support verity enabled root with a split out /usr. Neither with nor without
|
||
* verity there. (Note that we do support verity-less root with verity-full /usr, though.) */
|
||
if (m->partitions[PARTITION_USR].found)
|
||
return -EADDRNOTAVAIL;
|
||
}
|
||
|
||
if (verity) {
|
||
/* If a verity designator is specified, then insist that the matching partition exists */
|
||
if (verity->designator >= 0 && !m->partitions[verity->designator].found)
|
||
return -EADDRNOTAVAIL;
|
||
|
||
if (verity->root_hash) {
|
||
/* If we have an explicit root hash and found the partitions for it, then we are ready to use
|
||
* Verity, set things up for it */
|
||
|
||
if (verity->designator < 0 || verity->designator == PARTITION_ROOT) {
|
||
if (!m->partitions[PARTITION_ROOT_VERITY].found || !m->partitions[PARTITION_ROOT].found)
|
||
return -EADDRNOTAVAIL;
|
||
|
||
/* If we found a verity setup, then the root partition is necessarily read-only. */
|
||
m->partitions[PARTITION_ROOT].rw = false;
|
||
m->verity_ready = true;
|
||
|
||
} else {
|
||
assert(verity->designator == PARTITION_USR);
|
||
|
||
if (!m->partitions[PARTITION_USR_VERITY].found || !m->partitions[PARTITION_USR].found)
|
||
return -EADDRNOTAVAIL;
|
||
|
||
m->partitions[PARTITION_USR].rw = false;
|
||
m->verity_ready = true;
|
||
}
|
||
|
||
if (m->verity_ready)
|
||
m->verity_sig_ready = verity->root_hash_sig;
|
||
|
||
} else if (m->partitions[verity->designator == PARTITION_USR ? PARTITION_USR_VERITY_SIG : PARTITION_ROOT_VERITY_SIG].found) {
|
||
|
||
/* If we found an embedded signature partition, we are ready, too. */
|
||
|
||
m->verity_ready = m->verity_sig_ready = true;
|
||
m->partitions[verity->designator == PARTITION_USR ? PARTITION_USR : PARTITION_ROOT].rw = false;
|
||
}
|
||
}
|
||
|
||
blkid_free_probe(b);
|
||
b = NULL;
|
||
|
||
/* Fill in file system types if we don't know them yet. */
|
||
for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) {
|
||
DissectedPartition *p = m->partitions + i;
|
||
|
||
if (!p->found)
|
||
continue;
|
||
|
||
if (!p->fstype && p->node) {
|
||
r = probe_filesystem(p->node, &p->fstype);
|
||
if (r < 0 && r != -EUCLEAN)
|
||
return r;
|
||
}
|
||
|
||
if (streq_ptr(p->fstype, "crypto_LUKS"))
|
||
m->encrypted = true;
|
||
|
||
if (p->fstype && fstype_is_ro(p->fstype))
|
||
p->rw = false;
|
||
|
||
if (!p->rw)
|
||
p->growfs = false;
|
||
}
|
||
|
||
*ret = TAKE_PTR(m);
|
||
return 0;
|
||
#else
|
||
return -EOPNOTSUPP;
|
||
#endif
|
||
}
|
||
|
||
DissectedImage* dissected_image_unref(DissectedImage *m) {
|
||
if (!m)
|
||
return NULL;
|
||
|
||
for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++)
|
||
dissected_partition_done(m->partitions + i);
|
||
|
||
free(m->image_name);
|
||
free(m->hostname);
|
||
strv_free(m->machine_info);
|
||
strv_free(m->os_release);
|
||
strv_free(m->extension_release);
|
||
|
||
return mfree(m);
|
||
}
|
||
|
||
static int is_loop_device(const char *path) {
|
||
char s[SYS_BLOCK_PATH_MAX("/../loop/")];
|
||
struct stat st;
|
||
|
||
assert(path);
|
||
|
||
if (stat(path, &st) < 0)
|
||
return -errno;
|
||
|
||
if (!S_ISBLK(st.st_mode))
|
||
return -ENOTBLK;
|
||
|
||
xsprintf_sys_block_path(s, "/loop/", st.st_dev);
|
||
if (access(s, F_OK) < 0) {
|
||
if (errno != ENOENT)
|
||
return -errno;
|
||
|
||
/* The device itself isn't a loop device, but maybe it's a partition and its parent is? */
|
||
xsprintf_sys_block_path(s, "/../loop/", st.st_dev);
|
||
if (access(s, F_OK) < 0)
|
||
return errno == ENOENT ? false : -errno;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static int run_fsck(const char *node, const char *fstype) {
|
||
int r, exit_status;
|
||
pid_t pid;
|
||
|
||
assert(node);
|
||
assert(fstype);
|
||
|
||
r = fsck_exists(fstype);
|
||
if (r < 0) {
|
||
log_debug_errno(r, "Couldn't determine whether fsck for %s exists, proceeding anyway.", fstype);
|
||
return 0;
|
||
}
|
||
if (r == 0) {
|
||
log_debug("Not checking partition %s, as fsck for %s does not exist.", node, fstype);
|
||
return 0;
|
||
}
|
||
|
||
r = safe_fork("(fsck)", FORK_RESET_SIGNALS|FORK_CLOSE_ALL_FDS|FORK_RLIMIT_NOFILE_SAFE|FORK_DEATHSIG|FORK_NULL_STDIO, &pid);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to fork off fsck: %m");
|
||
if (r == 0) {
|
||
/* Child */
|
||
execl("/sbin/fsck", "/sbin/fsck", "-aT", node, NULL);
|
||
log_open();
|
||
log_debug_errno(errno, "Failed to execl() fsck: %m");
|
||
_exit(FSCK_OPERATIONAL_ERROR);
|
||
}
|
||
|
||
exit_status = wait_for_terminate_and_check("fsck", pid, 0);
|
||
if (exit_status < 0)
|
||
return log_debug_errno(exit_status, "Failed to fork off /sbin/fsck: %m");
|
||
|
||
if ((exit_status & ~FSCK_ERROR_CORRECTED) != FSCK_SUCCESS) {
|
||
log_debug("fsck failed with exit status %i.", exit_status);
|
||
|
||
if ((exit_status & (FSCK_SYSTEM_SHOULD_REBOOT|FSCK_ERRORS_LEFT_UNCORRECTED)) != 0)
|
||
return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN), "File system is corrupted, refusing.");
|
||
|
||
log_debug("Ignoring fsck error.");
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int fs_grow(const char *node_path, const char *mount_path) {
|
||
_cleanup_close_ int mount_fd = -1, node_fd = -1;
|
||
uint64_t size, newsize;
|
||
int r;
|
||
|
||
node_fd = open(node_path, O_RDONLY|O_CLOEXEC|O_NONBLOCK|O_NOCTTY);
|
||
if (node_fd < 0)
|
||
return log_debug_errno(errno, "Failed to open node device %s: %m", node_path);
|
||
|
||
if (ioctl(node_fd, BLKGETSIZE64, &size) != 0)
|
||
return log_debug_errno(errno, "Failed to get block device size of %s: %m", node_path);
|
||
|
||
mount_fd = open(mount_path, O_RDONLY|O_DIRECTORY|O_CLOEXEC);
|
||
if (mount_fd < 0)
|
||
return log_debug_errno(errno, "Failed to open mountd file system %s: %m", mount_path);
|
||
|
||
log_debug("Resizing \"%s\" to %"PRIu64" bytes...", mount_path, size);
|
||
r = resize_fs(mount_fd, size, &newsize);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to resize \"%s\" to %"PRIu64" bytes: %m", mount_path, size);
|
||
|
||
if (newsize == size)
|
||
log_debug("Successfully resized \"%s\" to %s bytes.",
|
||
mount_path, FORMAT_BYTES(newsize));
|
||
else {
|
||
assert(newsize < size);
|
||
log_debug("Successfully resized \"%s\" to %s bytes (%"PRIu64" bytes lost due to blocksize).",
|
||
mount_path, FORMAT_BYTES(newsize), size - newsize);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int mount_partition(
|
||
DissectedPartition *m,
|
||
const char *where,
|
||
const char *directory,
|
||
uid_t uid_shift,
|
||
uid_t uid_range,
|
||
DissectImageFlags flags) {
|
||
|
||
_cleanup_free_ char *chased = NULL, *options = NULL;
|
||
const char *p, *node, *fstype;
|
||
bool rw, remap_uid_gid = false;
|
||
int r;
|
||
|
||
assert(m);
|
||
assert(where);
|
||
|
||
/* Use decrypted node and matching fstype if available, otherwise use the original device */
|
||
node = m->decrypted_node ?: m->node;
|
||
fstype = m->decrypted_node ? m->decrypted_fstype: m->fstype;
|
||
|
||
if (!m->found || !node)
|
||
return 0;
|
||
if (!fstype)
|
||
return -EAFNOSUPPORT;
|
||
|
||
/* We are looking at an encrypted partition? This either means stacked encryption, or the caller
|
||
* didn't call dissected_image_decrypt() beforehand. Let's return a recognizable error for this
|
||
* case. */
|
||
if (streq(fstype, "crypto_LUKS"))
|
||
return -EUNATCH;
|
||
|
||
rw = m->rw && !(flags & DISSECT_IMAGE_MOUNT_READ_ONLY);
|
||
|
||
if (FLAGS_SET(flags, DISSECT_IMAGE_FSCK) && rw) {
|
||
r = run_fsck(node, fstype);
|
||
if (r < 0)
|
||
return r;
|
||
}
|
||
|
||
if (directory) {
|
||
/* Automatically create missing mount points inside the image, if necessary. */
|
||
r = mkdir_p_root(where, directory, uid_shift, (gid_t) uid_shift, 0755);
|
||
if (r < 0 && r != -EROFS)
|
||
return r;
|
||
|
||
r = chase_symlinks(directory, where, CHASE_PREFIX_ROOT, &chased, NULL);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
p = chased;
|
||
} else {
|
||
/* Create top-level mount if missing – but only if this is asked for. This won't modify the
|
||
* image (as the branch above does) but the host hierarchy, and the created directory might
|
||
* survive our mount in the host hierarchy hence. */
|
||
if (FLAGS_SET(flags, DISSECT_IMAGE_MKDIR)) {
|
||
r = mkdir_p(where, 0755);
|
||
if (r < 0)
|
||
return r;
|
||
}
|
||
|
||
p = where;
|
||
}
|
||
|
||
/* If requested, turn on discard support. */
|
||
if (fstype_can_discard(fstype) &&
|
||
((flags & DISSECT_IMAGE_DISCARD) ||
|
||
((flags & DISSECT_IMAGE_DISCARD_ON_LOOP) && is_loop_device(m->node) > 0))) {
|
||
options = strdup("discard");
|
||
if (!options)
|
||
return -ENOMEM;
|
||
}
|
||
|
||
if (uid_is_valid(uid_shift) && uid_shift != 0) {
|
||
|
||
if (fstype_can_uid_gid(fstype)) {
|
||
_cleanup_free_ char *uid_option = NULL;
|
||
|
||
if (asprintf(&uid_option, "uid=" UID_FMT ",gid=" GID_FMT, uid_shift, (gid_t) uid_shift) < 0)
|
||
return -ENOMEM;
|
||
|
||
if (!strextend_with_separator(&options, ",", uid_option))
|
||
return -ENOMEM;
|
||
} else if (FLAGS_SET(flags, DISSECT_IMAGE_MOUNT_IDMAPPED))
|
||
remap_uid_gid = true;
|
||
}
|
||
|
||
if (!isempty(m->mount_options))
|
||
if (!strextend_with_separator(&options, ",", m->mount_options))
|
||
return -ENOMEM;
|
||
|
||
/* So, when you request MS_RDONLY from ext4, then this means nothing. It happily still writes to the
|
||
* backing storage. What's worse, the BLKRO[GS]ET flag and (in case of loopback devices)
|
||
* LO_FLAGS_READ_ONLY don't mean anything, they affect userspace accesses only, and write accesses
|
||
* from the upper file system still get propagated through to the underlying file system,
|
||
* unrestricted. To actually get ext4/xfs/btrfs to stop writing to the device we need to specify
|
||
* "norecovery" as mount option, in addition to MS_RDONLY. Yes, this sucks, since it means we need to
|
||
* carry a per file system table here.
|
||
*
|
||
* Note that this means that we might not be able to mount corrupted file systems as read-only
|
||
* anymore (since in some cases the kernel implementations will refuse mounting when corrupted,
|
||
* read-only and "norecovery" is specified). But I think for the case of automatically determined
|
||
* mount options for loopback devices this is the right choice, since otherwise using the same
|
||
* loopback file twice even in read-only mode, is going to fail badly sooner or later. The usecase of
|
||
* making reuse of the immutable images "just work" is more relevant to us than having read-only
|
||
* access that actually modifies stuff work on such image files. Or to say this differently: if
|
||
* people want their file systems to be fixed up they should just open them in writable mode, where
|
||
* all these problems don't exist. */
|
||
if (!rw && STRPTR_IN_SET(fstype, "ext3", "ext4", "xfs", "btrfs"))
|
||
if (!strextend_with_separator(&options, ",", "norecovery"))
|
||
return -ENOMEM;
|
||
|
||
r = mount_nofollow_verbose(LOG_DEBUG, node, p, fstype, MS_NODEV|(rw ? 0 : MS_RDONLY), options);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
if (rw && m->growfs && FLAGS_SET(flags, DISSECT_IMAGE_GROWFS))
|
||
(void) fs_grow(node, p);
|
||
|
||
if (remap_uid_gid) {
|
||
r = remount_idmap(p, uid_shift, uid_range, REMOUNT_IDMAP_HOST_ROOT);
|
||
if (r < 0)
|
||
return r;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
static int mount_root_tmpfs(const char *where, uid_t uid_shift, DissectImageFlags flags) {
|
||
_cleanup_free_ char *options = NULL;
|
||
int r;
|
||
|
||
assert(where);
|
||
|
||
/* For images that contain /usr/ but no rootfs, let's mount rootfs as tmpfs */
|
||
|
||
if (FLAGS_SET(flags, DISSECT_IMAGE_MKDIR)) {
|
||
r = mkdir_p(where, 0755);
|
||
if (r < 0)
|
||
return r;
|
||
}
|
||
|
||
if (uid_is_valid(uid_shift)) {
|
||
if (asprintf(&options, "uid=" UID_FMT ",gid=" GID_FMT, uid_shift, (gid_t) uid_shift) < 0)
|
||
return -ENOMEM;
|
||
}
|
||
|
||
r = mount_nofollow_verbose(LOG_DEBUG, "rootfs", where, "tmpfs", MS_NODEV, options);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
return 1;
|
||
}
|
||
|
||
int dissected_image_mount(
|
||
DissectedImage *m,
|
||
const char *where,
|
||
uid_t uid_shift,
|
||
uid_t uid_range,
|
||
DissectImageFlags flags) {
|
||
|
||
int r, xbootldr_mounted;
|
||
|
||
assert(m);
|
||
assert(where);
|
||
|
||
/* Returns:
|
||
*
|
||
* -ENXIO → No root partition found
|
||
* -EMEDIUMTYPE → DISSECT_IMAGE_VALIDATE_OS set but no os-release/extension-release file found
|
||
* -EUNATCH → Encrypted partition found for which no dm-crypt was set up yet
|
||
* -EUCLEAN → fsck for file system failed
|
||
* -EBUSY → File system already mounted/used elsewhere (kernel)
|
||
* -EAFNOSUPPORT → File system type not supported or not known
|
||
*/
|
||
|
||
if (!(m->partitions[PARTITION_ROOT].found ||
|
||
(m->partitions[PARTITION_USR].found && FLAGS_SET(flags, DISSECT_IMAGE_USR_NO_ROOT))))
|
||
return -ENXIO; /* Require a root fs or at least a /usr/ fs (the latter is subject to a flag of its own) */
|
||
|
||
if ((flags & DISSECT_IMAGE_MOUNT_NON_ROOT_ONLY) == 0) {
|
||
|
||
/* First mount the root fs. If there's none we use a tmpfs. */
|
||
if (m->partitions[PARTITION_ROOT].found)
|
||
r = mount_partition(m->partitions + PARTITION_ROOT, where, NULL, uid_shift, uid_range, flags);
|
||
else
|
||
r = mount_root_tmpfs(where, uid_shift, flags);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
/* For us mounting root always means mounting /usr as well */
|
||
r = mount_partition(m->partitions + PARTITION_USR, where, "/usr", uid_shift, uid_range, flags);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
if ((flags & (DISSECT_IMAGE_VALIDATE_OS|DISSECT_IMAGE_VALIDATE_OS_EXT)) != 0) {
|
||
/* If either one of the validation flags are set, ensure that the image qualifies
|
||
* as one or the other (or both). */
|
||
bool ok = false;
|
||
|
||
if (FLAGS_SET(flags, DISSECT_IMAGE_VALIDATE_OS)) {
|
||
r = path_is_os_tree(where);
|
||
if (r < 0)
|
||
return r;
|
||
if (r > 0)
|
||
ok = true;
|
||
}
|
||
if (!ok && FLAGS_SET(flags, DISSECT_IMAGE_VALIDATE_OS_EXT)) {
|
||
r = path_is_extension_tree(where, m->image_name);
|
||
if (r < 0)
|
||
return r;
|
||
if (r > 0)
|
||
ok = true;
|
||
}
|
||
|
||
if (!ok)
|
||
return -ENOMEDIUM;
|
||
}
|
||
}
|
||
|
||
if (flags & DISSECT_IMAGE_MOUNT_ROOT_ONLY)
|
||
return 0;
|
||
|
||
r = mount_partition(m->partitions + PARTITION_HOME, where, "/home", uid_shift, uid_range, flags);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
r = mount_partition(m->partitions + PARTITION_SRV, where, "/srv", uid_shift, uid_range, flags);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
r = mount_partition(m->partitions + PARTITION_VAR, where, "/var", uid_shift, uid_range, flags);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
r = mount_partition(m->partitions + PARTITION_TMP, where, "/var/tmp", uid_shift, uid_range, flags);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
xbootldr_mounted = mount_partition(m->partitions + PARTITION_XBOOTLDR, where, "/boot", uid_shift, uid_range, flags);
|
||
if (xbootldr_mounted < 0)
|
||
return xbootldr_mounted;
|
||
|
||
if (m->partitions[PARTITION_ESP].found) {
|
||
int esp_done = false;
|
||
|
||
/* Mount the ESP to /efi if it exists. If it doesn't exist, use /boot instead, but only if it
|
||
* exists and is empty, and we didn't already mount the XBOOTLDR partition into it. */
|
||
|
||
r = chase_symlinks("/efi", where, CHASE_PREFIX_ROOT, NULL, NULL);
|
||
if (r < 0) {
|
||
if (r != -ENOENT)
|
||
return r;
|
||
|
||
/* /efi doesn't exist. Let's see if /boot is suitable then */
|
||
|
||
if (!xbootldr_mounted) {
|
||
_cleanup_free_ char *p = NULL;
|
||
|
||
r = chase_symlinks("/boot", where, CHASE_PREFIX_ROOT, &p, NULL);
|
||
if (r < 0) {
|
||
if (r != -ENOENT)
|
||
return r;
|
||
} else if (dir_is_empty(p, /* ignore_hidden_or_backup= */ false) > 0) {
|
||
/* It exists and is an empty directory. Let's mount the ESP there. */
|
||
r = mount_partition(m->partitions + PARTITION_ESP, where, "/boot", uid_shift, uid_range, flags);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
esp_done = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!esp_done) {
|
||
/* OK, let's mount the ESP now to /efi (possibly creating the dir if missing) */
|
||
|
||
r = mount_partition(m->partitions + PARTITION_ESP, where, "/efi", uid_shift, uid_range, flags);
|
||
if (r < 0)
|
||
return r;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
int dissected_image_mount_and_warn(
|
||
DissectedImage *m,
|
||
const char *where,
|
||
uid_t uid_shift,
|
||
uid_t uid_range,
|
||
DissectImageFlags flags) {
|
||
|
||
int r;
|
||
|
||
assert(m);
|
||
assert(where);
|
||
|
||
r = dissected_image_mount(m, where, uid_shift, uid_range, flags);
|
||
if (r == -ENXIO)
|
||
return log_error_errno(r, "Not root file system found in image.");
|
||
if (r == -EMEDIUMTYPE)
|
||
return log_error_errno(r, "No suitable os-release/extension-release file in image found.");
|
||
if (r == -EUNATCH)
|
||
return log_error_errno(r, "Encrypted file system discovered, but decryption not requested.");
|
||
if (r == -EUCLEAN)
|
||
return log_error_errno(r, "File system check on image failed.");
|
||
if (r == -EBUSY)
|
||
return log_error_errno(r, "File system already mounted elsewhere.");
|
||
if (r == -EAFNOSUPPORT)
|
||
return log_error_errno(r, "File system type not supported or not known.");
|
||
if (r < 0)
|
||
return log_error_errno(r, "Failed to mount image: %m");
|
||
|
||
return r;
|
||
}
|
||
|
||
#if HAVE_LIBCRYPTSETUP
|
||
typedef struct DecryptedPartition {
|
||
struct crypt_device *device;
|
||
char *name;
|
||
bool relinquished;
|
||
} DecryptedPartition;
|
||
|
||
struct DecryptedImage {
|
||
DecryptedPartition *decrypted;
|
||
size_t n_decrypted;
|
||
};
|
||
#endif
|
||
|
||
DecryptedImage* decrypted_image_unref(DecryptedImage* d) {
|
||
#if HAVE_LIBCRYPTSETUP
|
||
int r;
|
||
|
||
if (!d)
|
||
return NULL;
|
||
|
||
for (size_t i = 0; i < d->n_decrypted; i++) {
|
||
DecryptedPartition *p = d->decrypted + i;
|
||
|
||
if (p->device && p->name && !p->relinquished) {
|
||
r = sym_crypt_deactivate_by_name(p->device, p->name, 0);
|
||
if (r < 0)
|
||
log_debug_errno(r, "Failed to deactivate encrypted partition %s", p->name);
|
||
}
|
||
|
||
if (p->device)
|
||
sym_crypt_free(p->device);
|
||
free(p->name);
|
||
}
|
||
|
||
free(d->decrypted);
|
||
free(d);
|
||
#endif
|
||
return NULL;
|
||
}
|
||
|
||
#if HAVE_LIBCRYPTSETUP
|
||
|
||
static int make_dm_name_and_node(const void *original_node, const char *suffix, char **ret_name, char **ret_node) {
|
||
_cleanup_free_ char *name = NULL, *node = NULL;
|
||
const char *base;
|
||
|
||
assert(original_node);
|
||
assert(suffix);
|
||
assert(ret_name);
|
||
assert(ret_node);
|
||
|
||
base = strrchr(original_node, '/');
|
||
if (!base)
|
||
base = original_node;
|
||
else
|
||
base++;
|
||
if (isempty(base))
|
||
return -EINVAL;
|
||
|
||
name = strjoin(base, suffix);
|
||
if (!name)
|
||
return -ENOMEM;
|
||
if (!filename_is_valid(name))
|
||
return -EINVAL;
|
||
|
||
node = path_join(sym_crypt_get_dir(), name);
|
||
if (!node)
|
||
return -ENOMEM;
|
||
|
||
*ret_name = TAKE_PTR(name);
|
||
*ret_node = TAKE_PTR(node);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int decrypt_partition(
|
||
DissectedPartition *m,
|
||
const char *passphrase,
|
||
DissectImageFlags flags,
|
||
DecryptedImage *d) {
|
||
|
||
_cleanup_free_ char *node = NULL, *name = NULL;
|
||
_cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
|
||
int r;
|
||
|
||
assert(m);
|
||
assert(d);
|
||
|
||
if (!m->found || !m->node || !m->fstype)
|
||
return 0;
|
||
|
||
if (!streq(m->fstype, "crypto_LUKS"))
|
||
return 0;
|
||
|
||
if (!passphrase)
|
||
return -ENOKEY;
|
||
|
||
r = dlopen_cryptsetup();
|
||
if (r < 0)
|
||
return r;
|
||
|
||
r = make_dm_name_and_node(m->node, "-decrypted", &name, &node);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
if (!GREEDY_REALLOC0(d->decrypted, d->n_decrypted + 1))
|
||
return -ENOMEM;
|
||
|
||
r = sym_crypt_init(&cd, m->node);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to initialize dm-crypt: %m");
|
||
|
||
cryptsetup_enable_logging(cd);
|
||
|
||
r = sym_crypt_load(cd, CRYPT_LUKS, NULL);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to load LUKS metadata: %m");
|
||
|
||
r = sym_crypt_activate_by_passphrase(cd, name, CRYPT_ANY_SLOT, passphrase, strlen(passphrase),
|
||
((flags & DISSECT_IMAGE_DEVICE_READ_ONLY) ? CRYPT_ACTIVATE_READONLY : 0) |
|
||
((flags & DISSECT_IMAGE_DISCARD_ON_CRYPTO) ? CRYPT_ACTIVATE_ALLOW_DISCARDS : 0));
|
||
if (r < 0) {
|
||
log_debug_errno(r, "Failed to activate LUKS device: %m");
|
||
return r == -EPERM ? -EKEYREJECTED : r;
|
||
}
|
||
|
||
d->decrypted[d->n_decrypted++] = (DecryptedPartition) {
|
||
.name = TAKE_PTR(name),
|
||
.device = TAKE_PTR(cd),
|
||
};
|
||
|
||
m->decrypted_node = TAKE_PTR(node);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int verity_can_reuse(
|
||
const VeritySettings *verity,
|
||
const char *name,
|
||
struct crypt_device **ret_cd) {
|
||
|
||
/* If the same volume was already open, check that the root hashes match, and reuse it if they do */
|
||
_cleanup_free_ char *root_hash_existing = NULL;
|
||
_cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
|
||
struct crypt_params_verity crypt_params = {};
|
||
size_t root_hash_existing_size;
|
||
int r;
|
||
|
||
assert(verity);
|
||
assert(name);
|
||
assert(ret_cd);
|
||
|
||
r = sym_crypt_init_by_name(&cd, name);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Error opening verity device, crypt_init_by_name failed: %m");
|
||
|
||
cryptsetup_enable_logging(cd);
|
||
|
||
r = sym_crypt_get_verity_info(cd, &crypt_params);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Error opening verity device, crypt_get_verity_info failed: %m");
|
||
|
||
root_hash_existing_size = verity->root_hash_size;
|
||
root_hash_existing = malloc0(root_hash_existing_size);
|
||
if (!root_hash_existing)
|
||
return -ENOMEM;
|
||
|
||
r = sym_crypt_volume_key_get(cd, CRYPT_ANY_SLOT, root_hash_existing, &root_hash_existing_size, NULL, 0);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Error opening verity device, crypt_volume_key_get failed: %m");
|
||
if (verity->root_hash_size != root_hash_existing_size ||
|
||
memcmp(root_hash_existing, verity->root_hash, verity->root_hash_size) != 0)
|
||
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Error opening verity device, it already exists but root hashes are different.");
|
||
|
||
#if HAVE_CRYPT_ACTIVATE_BY_SIGNED_KEY
|
||
/* Ensure that, if signatures are supported, we only reuse the device if the previous mount used the
|
||
* same settings, so that a previous unsigned mount will not be reused if the user asks to use
|
||
* signing for the new one, and vice versa. */
|
||
if (!!verity->root_hash_sig != !!(crypt_params.flags & CRYPT_VERITY_ROOT_HASH_SIGNATURE))
|
||
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Error opening verity device, it already exists but signature settings are not the same.");
|
||
#endif
|
||
|
||
*ret_cd = TAKE_PTR(cd);
|
||
return 0;
|
||
}
|
||
|
||
static inline char* dm_deferred_remove_clean(char *name) {
|
||
if (!name)
|
||
return NULL;
|
||
|
||
(void) sym_crypt_deactivate_by_name(NULL, name, CRYPT_DEACTIVATE_DEFERRED);
|
||
return mfree(name);
|
||
}
|
||
DEFINE_TRIVIAL_CLEANUP_FUNC(char *, dm_deferred_remove_clean);
|
||
|
||
static int validate_signature_userspace(const VeritySettings *verity) {
|
||
#if HAVE_OPENSSL
|
||
_cleanup_(sk_X509_free_allp) STACK_OF(X509) *sk = NULL;
|
||
_cleanup_strv_free_ char **certs = NULL;
|
||
_cleanup_(PKCS7_freep) PKCS7 *p7 = NULL;
|
||
_cleanup_free_ char *s = NULL;
|
||
_cleanup_(BIO_freep) BIO *bio = NULL; /* 'bio' must be freed first, 's' second, hence keep this order
|
||
* of declaration in place, please */
|
||
const unsigned char *d;
|
||
int r;
|
||
|
||
assert(verity);
|
||
assert(verity->root_hash);
|
||
assert(verity->root_hash_sig);
|
||
|
||
/* Because installing a signature certificate into the kernel chain is so messy, let's optionally do
|
||
* userspace validation. */
|
||
|
||
r = conf_files_list_nulstr(&certs, ".crt", NULL, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, CONF_PATHS_NULSTR("verity.d"));
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to enumerate certificates: %m");
|
||
if (strv_isempty(certs)) {
|
||
log_debug("No userspace dm-verity certificates found.");
|
||
return 0;
|
||
}
|
||
|
||
d = verity->root_hash_sig;
|
||
p7 = d2i_PKCS7(NULL, &d, (long) verity->root_hash_sig_size);
|
||
if (!p7)
|
||
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to parse PKCS7 DER signature data.");
|
||
|
||
s = hexmem(verity->root_hash, verity->root_hash_size);
|
||
if (!s)
|
||
return log_oom_debug();
|
||
|
||
bio = BIO_new_mem_buf(s, strlen(s));
|
||
if (!bio)
|
||
return log_oom_debug();
|
||
|
||
sk = sk_X509_new_null();
|
||
if (!sk)
|
||
return log_oom_debug();
|
||
|
||
STRV_FOREACH(i, certs) {
|
||
_cleanup_(X509_freep) X509 *c = NULL;
|
||
_cleanup_fclose_ FILE *f = NULL;
|
||
|
||
f = fopen(*i, "re");
|
||
if (!f) {
|
||
log_debug_errno(errno, "Failed to open '%s', ignoring: %m", *i);
|
||
continue;
|
||
}
|
||
|
||
c = PEM_read_X509(f, NULL, NULL, NULL);
|
||
if (!c) {
|
||
log_debug("Failed to load X509 certificate '%s', ignoring.", *i);
|
||
continue;
|
||
}
|
||
|
||
if (sk_X509_push(sk, c) == 0)
|
||
return log_oom_debug();
|
||
|
||
TAKE_PTR(c);
|
||
}
|
||
|
||
r = PKCS7_verify(p7, sk, NULL, bio, NULL, PKCS7_NOINTERN|PKCS7_NOVERIFY);
|
||
if (r)
|
||
log_debug("Userspace PKCS#7 validation succeeded.");
|
||
else
|
||
log_debug("Userspace PKCS#7 validation failed: %s", ERR_error_string(ERR_get_error(), NULL));
|
||
|
||
return r;
|
||
#else
|
||
log_debug("Not doing client-side validation of dm-verity root hash signatures, OpenSSL support disabled.");
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
static int do_crypt_activate_verity(
|
||
struct crypt_device *cd,
|
||
const char *name,
|
||
const VeritySettings *verity) {
|
||
|
||
bool check_signature;
|
||
int r;
|
||
|
||
assert(cd);
|
||
assert(name);
|
||
assert(verity);
|
||
|
||
if (verity->root_hash_sig) {
|
||
r = getenv_bool_secure("SYSTEMD_DISSECT_VERITY_SIGNATURE");
|
||
if (r < 0 && r != -ENXIO)
|
||
log_debug_errno(r, "Failed to parse $SYSTEMD_DISSECT_VERITY_SIGNATURE");
|
||
|
||
check_signature = r != 0;
|
||
} else
|
||
check_signature = false;
|
||
|
||
if (check_signature) {
|
||
|
||
#if HAVE_CRYPT_ACTIVATE_BY_SIGNED_KEY
|
||
/* First, if we have support for signed keys in the kernel, then try that first. */
|
||
r = sym_crypt_activate_by_signed_key(
|
||
cd,
|
||
name,
|
||
verity->root_hash,
|
||
verity->root_hash_size,
|
||
verity->root_hash_sig,
|
||
verity->root_hash_sig_size,
|
||
CRYPT_ACTIVATE_READONLY);
|
||
if (r >= 0)
|
||
return r;
|
||
|
||
log_debug("Validation of dm-verity signature failed via the kernel, trying userspace validation instead.");
|
||
#else
|
||
log_debug("Activation of verity device with signature requested, but not supported via the kernel by %s due to missing crypt_activate_by_signed_key(), trying userspace validation instead.",
|
||
program_invocation_short_name);
|
||
#endif
|
||
|
||
/* So this didn't work via the kernel, then let's try userspace validation instead. If that
|
||
* works we'll try to activate without telling the kernel the signature. */
|
||
|
||
r = validate_signature_userspace(verity);
|
||
if (r < 0)
|
||
return r;
|
||
if (r == 0)
|
||
return log_debug_errno(SYNTHETIC_ERRNO(ENOKEY),
|
||
"Activation of signed Verity volume worked neither via the kernel nor in userspace, can't activate.");
|
||
}
|
||
|
||
return sym_crypt_activate_by_volume_key(
|
||
cd,
|
||
name,
|
||
verity->root_hash,
|
||
verity->root_hash_size,
|
||
CRYPT_ACTIVATE_READONLY);
|
||
}
|
||
|
||
static int verity_partition(
|
||
PartitionDesignator designator,
|
||
DissectedPartition *m,
|
||
DissectedPartition *v,
|
||
const VeritySettings *verity,
|
||
DissectImageFlags flags,
|
||
DecryptedImage *d) {
|
||
|
||
_cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
|
||
_cleanup_(dm_deferred_remove_cleanp) char *restore_deferred_remove = NULL;
|
||
_cleanup_free_ char *node = NULL, *name = NULL;
|
||
int r;
|
||
|
||
assert(m);
|
||
assert(v || (verity && verity->data_path));
|
||
|
||
if (!verity || !verity->root_hash)
|
||
return 0;
|
||
if (!((verity->designator < 0 && designator == PARTITION_ROOT) ||
|
||
(verity->designator == designator)))
|
||
return 0;
|
||
|
||
if (!m->found || !m->node || !m->fstype)
|
||
return 0;
|
||
if (!verity->data_path) {
|
||
if (!v->found || !v->node || !v->fstype)
|
||
return 0;
|
||
|
||
if (!streq(v->fstype, "DM_verity_hash"))
|
||
return 0;
|
||
}
|
||
|
||
r = dlopen_cryptsetup();
|
||
if (r < 0)
|
||
return r;
|
||
|
||
if (FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE)) {
|
||
/* Use the roothash, which is unique per volume, as the device node name, so that it can be reused */
|
||
_cleanup_free_ char *root_hash_encoded = NULL;
|
||
|
||
root_hash_encoded = hexmem(verity->root_hash, verity->root_hash_size);
|
||
if (!root_hash_encoded)
|
||
return -ENOMEM;
|
||
|
||
r = make_dm_name_and_node(root_hash_encoded, "-verity", &name, &node);
|
||
} else
|
||
r = make_dm_name_and_node(m->node, "-verity", &name, &node);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
r = sym_crypt_init(&cd, verity->data_path ?: v->node);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
cryptsetup_enable_logging(cd);
|
||
|
||
r = sym_crypt_load(cd, CRYPT_VERITY, NULL);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
r = sym_crypt_set_data_device(cd, m->node);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
if (!GREEDY_REALLOC0(d->decrypted, d->n_decrypted + 1))
|
||
return -ENOMEM;
|
||
|
||
/* If activating fails because the device already exists, check the metadata and reuse it if it matches.
|
||
* In case of ENODEV/ENOENT, which can happen if another process is activating at the exact same time,
|
||
* retry a few times before giving up. */
|
||
for (unsigned i = 0; i < N_DEVICE_NODE_LIST_ATTEMPTS; i++) {
|
||
|
||
r = do_crypt_activate_verity(cd, name, verity);
|
||
/* libdevmapper can return EINVAL when the device is already in the activation stage.
|
||
* There's no way to distinguish this situation from a genuine error due to invalid
|
||
* parameters, so immediately fall back to activating the device with a unique name.
|
||
* Improvements in libcrypsetup can ensure this never happens:
|
||
* https://gitlab.com/cryptsetup/cryptsetup/-/merge_requests/96 */
|
||
if (r == -EINVAL && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
|
||
return verity_partition(designator, m, v, verity, flags & ~DISSECT_IMAGE_VERITY_SHARE, d);
|
||
if (!IN_SET(r,
|
||
0, /* Success */
|
||
-EEXIST, /* Volume is already open and ready to be used */
|
||
-EBUSY, /* Volume is being opened but not ready, crypt_init_by_name can fetch details */
|
||
-ENODEV /* Volume is being opened but not ready, crypt_init_by_name would fail, try to open again */))
|
||
return r;
|
||
if (IN_SET(r, -EEXIST, -EBUSY)) {
|
||
struct crypt_device *existing_cd = NULL;
|
||
|
||
if (!restore_deferred_remove){
|
||
/* To avoid races, disable automatic removal on umount while setting up the new device. Restore it on failure. */
|
||
r = dm_deferred_remove_cancel(name);
|
||
/* If activation returns EBUSY there might be no deferred removal to cancel, that's fine */
|
||
if (r < 0 && r != -ENXIO)
|
||
return log_debug_errno(r, "Disabling automated deferred removal for verity device %s failed: %m", node);
|
||
if (r == 0) {
|
||
restore_deferred_remove = strdup(name);
|
||
if (!restore_deferred_remove)
|
||
return -ENOMEM;
|
||
}
|
||
}
|
||
|
||
r = verity_can_reuse(verity, name, &existing_cd);
|
||
/* Same as above, -EINVAL can randomly happen when it actually means -EEXIST */
|
||
if (r == -EINVAL && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
|
||
return verity_partition(designator, m, v, verity, flags & ~DISSECT_IMAGE_VERITY_SHARE, d);
|
||
if (!IN_SET(r, 0, -ENODEV, -ENOENT, -EBUSY))
|
||
return log_debug_errno(r, "Checking whether existing verity device %s can be reused failed: %m", node);
|
||
if (r == 0) {
|
||
/* devmapper might say that the device exists, but the devlink might not yet have been
|
||
* created. Check and wait for the udev event in that case. */
|
||
r = device_wait_for_devlink(node, "block", usec_add(now(CLOCK_MONOTONIC), 100 * USEC_PER_MSEC), NULL);
|
||
/* Fallback to activation with a unique device if it's taking too long */
|
||
if (r == -ETIMEDOUT)
|
||
break;
|
||
if (r < 0)
|
||
return r;
|
||
|
||
if (cd)
|
||
sym_crypt_free(cd);
|
||
cd = existing_cd;
|
||
}
|
||
}
|
||
if (r == 0)
|
||
break;
|
||
|
||
/* Device is being opened by another process, but it has not finished yet, yield for 2ms */
|
||
(void) usleep(2 * USEC_PER_MSEC);
|
||
}
|
||
|
||
/* An existing verity device was reported by libcryptsetup/libdevmapper, but we can't use it at this time.
|
||
* Fall back to activating it with a unique device name. */
|
||
if (r != 0 && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
|
||
return verity_partition(designator, m, v, verity, flags & ~DISSECT_IMAGE_VERITY_SHARE, d);
|
||
|
||
/* Everything looks good and we'll be able to mount the device, so deferred remove will be re-enabled at that point. */
|
||
restore_deferred_remove = mfree(restore_deferred_remove);
|
||
|
||
d->decrypted[d->n_decrypted++] = (DecryptedPartition) {
|
||
.name = TAKE_PTR(name),
|
||
.device = TAKE_PTR(cd),
|
||
};
|
||
|
||
m->decrypted_node = TAKE_PTR(node);
|
||
|
||
return 0;
|
||
}
|
||
#endif
|
||
|
||
int dissected_image_decrypt(
|
||
DissectedImage *m,
|
||
const char *passphrase,
|
||
const VeritySettings *verity,
|
||
DissectImageFlags flags,
|
||
DecryptedImage **ret) {
|
||
|
||
#if HAVE_LIBCRYPTSETUP
|
||
_cleanup_(decrypted_image_unrefp) DecryptedImage *d = NULL;
|
||
int r;
|
||
#endif
|
||
|
||
assert(m);
|
||
assert(!verity || verity->root_hash || verity->root_hash_size == 0);
|
||
|
||
/* Returns:
|
||
*
|
||
* = 0 → There was nothing to decrypt
|
||
* > 0 → Decrypted successfully
|
||
* -ENOKEY → There's something to decrypt but no key was supplied
|
||
* -EKEYREJECTED → Passed key was not correct
|
||
*/
|
||
|
||
if (verity && verity->root_hash && verity->root_hash_size < sizeof(sd_id128_t))
|
||
return -EINVAL;
|
||
|
||
if (!m->encrypted && !m->verity_ready) {
|
||
*ret = NULL;
|
||
return 0;
|
||
}
|
||
|
||
#if HAVE_LIBCRYPTSETUP
|
||
d = new0(DecryptedImage, 1);
|
||
if (!d)
|
||
return -ENOMEM;
|
||
|
||
for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) {
|
||
DissectedPartition *p = m->partitions + i;
|
||
PartitionDesignator k;
|
||
|
||
if (!p->found)
|
||
continue;
|
||
|
||
r = decrypt_partition(p, passphrase, flags, d);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
k = PARTITION_VERITY_OF(i);
|
||
if (k >= 0) {
|
||
r = verity_partition(i, p, m->partitions + k, verity, flags | DISSECT_IMAGE_VERITY_SHARE, d);
|
||
if (r < 0)
|
||
return r;
|
||
}
|
||
|
||
if (!p->decrypted_fstype && p->decrypted_node) {
|
||
r = probe_filesystem(p->decrypted_node, &p->decrypted_fstype);
|
||
if (r < 0 && r != -EUCLEAN)
|
||
return r;
|
||
}
|
||
}
|
||
|
||
*ret = TAKE_PTR(d);
|
||
|
||
return 1;
|
||
#else
|
||
return -EOPNOTSUPP;
|
||
#endif
|
||
}
|
||
|
||
int dissected_image_decrypt_interactively(
|
||
DissectedImage *m,
|
||
const char *passphrase,
|
||
const VeritySettings *verity,
|
||
DissectImageFlags flags,
|
||
DecryptedImage **ret) {
|
||
|
||
_cleanup_strv_free_erase_ char **z = NULL;
|
||
int n = 3, r;
|
||
|
||
if (passphrase)
|
||
n--;
|
||
|
||
for (;;) {
|
||
r = dissected_image_decrypt(m, passphrase, verity, flags, ret);
|
||
if (r >= 0)
|
||
return r;
|
||
if (r == -EKEYREJECTED)
|
||
log_error_errno(r, "Incorrect passphrase, try again!");
|
||
else if (r != -ENOKEY)
|
||
return log_error_errno(r, "Failed to decrypt image: %m");
|
||
|
||
if (--n < 0)
|
||
return log_error_errno(SYNTHETIC_ERRNO(EKEYREJECTED),
|
||
"Too many retries.");
|
||
|
||
z = strv_free(z);
|
||
|
||
r = ask_password_auto("Please enter image passphrase:", NULL, "dissect", "dissect", "dissect.passphrase", USEC_INFINITY, 0, &z);
|
||
if (r < 0)
|
||
return log_error_errno(r, "Failed to query for passphrase: %m");
|
||
|
||
passphrase = z[0];
|
||
}
|
||
}
|
||
|
||
int decrypted_image_relinquish(DecryptedImage *d) {
|
||
assert(d);
|
||
|
||
/* Turns on automatic removal after the last use ended for all DM devices of this image, and sets a
|
||
* boolean so that we don't clean it up ourselves either anymore */
|
||
|
||
#if HAVE_LIBCRYPTSETUP
|
||
int r;
|
||
|
||
for (size_t i = 0; i < d->n_decrypted; i++) {
|
||
DecryptedPartition *p = d->decrypted + i;
|
||
|
||
if (p->relinquished)
|
||
continue;
|
||
|
||
r = sym_crypt_deactivate_by_name(NULL, p->name, CRYPT_DEACTIVATE_DEFERRED);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to mark %s for auto-removal: %m", p->name);
|
||
|
||
p->relinquished = true;
|
||
}
|
||
#endif
|
||
|
||
return 0;
|
||
}
|
||
|
||
static char *build_auxiliary_path(const char *image, const char *suffix) {
|
||
const char *e;
|
||
char *n;
|
||
|
||
assert(image);
|
||
assert(suffix);
|
||
|
||
e = endswith(image, ".raw");
|
||
if (!e)
|
||
return strjoin(e, suffix);
|
||
|
||
n = new(char, e - image + strlen(suffix) + 1);
|
||
if (!n)
|
||
return NULL;
|
||
|
||
strcpy(mempcpy(n, image, e - image), suffix);
|
||
return n;
|
||
}
|
||
|
||
void verity_settings_done(VeritySettings *v) {
|
||
assert(v);
|
||
|
||
v->root_hash = mfree(v->root_hash);
|
||
v->root_hash_size = 0;
|
||
|
||
v->root_hash_sig = mfree(v->root_hash_sig);
|
||
v->root_hash_sig_size = 0;
|
||
|
||
v->data_path = mfree(v->data_path);
|
||
}
|
||
|
||
int verity_settings_load(
|
||
VeritySettings *verity,
|
||
const char *image,
|
||
const char *root_hash_path,
|
||
const char *root_hash_sig_path) {
|
||
|
||
_cleanup_free_ void *root_hash = NULL, *root_hash_sig = NULL;
|
||
size_t root_hash_size = 0, root_hash_sig_size = 0;
|
||
_cleanup_free_ char *verity_data_path = NULL;
|
||
PartitionDesignator designator;
|
||
int r;
|
||
|
||
assert(verity);
|
||
assert(image);
|
||
assert(verity->designator < 0 || IN_SET(verity->designator, PARTITION_ROOT, PARTITION_USR));
|
||
|
||
/* If we are asked to load the root hash for a device node, exit early */
|
||
if (is_device_path(image))
|
||
return 0;
|
||
|
||
r = getenv_bool_secure("SYSTEMD_DISSECT_VERITY_SIDECAR");
|
||
if (r < 0 && r != -ENXIO)
|
||
log_debug_errno(r, "Failed to parse $SYSTEMD_DISSECT_VERITY_SIDECAR, ignoring: %m");
|
||
if (r == 0)
|
||
return 0;
|
||
|
||
designator = verity->designator;
|
||
|
||
/* We only fill in what isn't already filled in */
|
||
|
||
if (!verity->root_hash) {
|
||
_cleanup_free_ char *text = NULL;
|
||
|
||
if (root_hash_path) {
|
||
/* If explicitly specified it takes precedence */
|
||
r = read_one_line_file(root_hash_path, &text);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
if (designator < 0)
|
||
designator = PARTITION_ROOT;
|
||
} else {
|
||
/* Otherwise look for xattr and separate file, and first for the data for root and if
|
||
* that doesn't exist for /usr */
|
||
|
||
if (designator < 0 || designator == PARTITION_ROOT) {
|
||
r = getxattr_malloc(image, "user.verity.roothash", &text);
|
||
if (r < 0) {
|
||
_cleanup_free_ char *p = NULL;
|
||
|
||
if (!IN_SET(r, -ENODATA, -ENOENT) && !ERRNO_IS_NOT_SUPPORTED(r))
|
||
return r;
|
||
|
||
p = build_auxiliary_path(image, ".roothash");
|
||
if (!p)
|
||
return -ENOMEM;
|
||
|
||
r = read_one_line_file(p, &text);
|
||
if (r < 0 && r != -ENOENT)
|
||
return r;
|
||
}
|
||
|
||
if (text)
|
||
designator = PARTITION_ROOT;
|
||
}
|
||
|
||
if (!text && (designator < 0 || designator == PARTITION_USR)) {
|
||
/* So in the "roothash" xattr/file name above the "root" of course primarily
|
||
* refers to the root of the Verity Merkle tree. But coincidentally it also
|
||
* is the hash for the *root* file system, i.e. the "root" neatly refers to
|
||
* two distinct concepts called "root". Taking benefit of this happy
|
||
* coincidence we call the file with the root hash for the /usr/ file system
|
||
* `usrhash`, because `usrroothash` or `rootusrhash` would just be too
|
||
* confusing. We thus drop the reference to the root of the Merkle tree, and
|
||
* just indicate which file system it's about. */
|
||
r = getxattr_malloc(image, "user.verity.usrhash", &text);
|
||
if (r < 0) {
|
||
_cleanup_free_ char *p = NULL;
|
||
|
||
if (!IN_SET(r, -ENODATA, -ENOENT) && !ERRNO_IS_NOT_SUPPORTED(r))
|
||
return r;
|
||
|
||
p = build_auxiliary_path(image, ".usrhash");
|
||
if (!p)
|
||
return -ENOMEM;
|
||
|
||
r = read_one_line_file(p, &text);
|
||
if (r < 0 && r != -ENOENT)
|
||
return r;
|
||
}
|
||
|
||
if (text)
|
||
designator = PARTITION_USR;
|
||
}
|
||
}
|
||
|
||
if (text) {
|
||
r = unhexmem(text, strlen(text), &root_hash, &root_hash_size);
|
||
if (r < 0)
|
||
return r;
|
||
if (root_hash_size < sizeof(sd_id128_t))
|
||
return -EINVAL;
|
||
}
|
||
}
|
||
|
||
if ((root_hash || verity->root_hash) && !verity->root_hash_sig) {
|
||
if (root_hash_sig_path) {
|
||
r = read_full_file(root_hash_sig_path, (char**) &root_hash_sig, &root_hash_sig_size);
|
||
if (r < 0 && r != -ENOENT)
|
||
return r;
|
||
|
||
if (designator < 0)
|
||
designator = PARTITION_ROOT;
|
||
} else {
|
||
if (designator < 0 || designator == PARTITION_ROOT) {
|
||
_cleanup_free_ char *p = NULL;
|
||
|
||
/* Follow naming convention recommended by the relevant RFC:
|
||
* https://tools.ietf.org/html/rfc5751#section-3.2.1 */
|
||
p = build_auxiliary_path(image, ".roothash.p7s");
|
||
if (!p)
|
||
return -ENOMEM;
|
||
|
||
r = read_full_file(p, (char**) &root_hash_sig, &root_hash_sig_size);
|
||
if (r < 0 && r != -ENOENT)
|
||
return r;
|
||
if (r >= 0)
|
||
designator = PARTITION_ROOT;
|
||
}
|
||
|
||
if (!root_hash_sig && (designator < 0 || designator == PARTITION_USR)) {
|
||
_cleanup_free_ char *p = NULL;
|
||
|
||
p = build_auxiliary_path(image, ".usrhash.p7s");
|
||
if (!p)
|
||
return -ENOMEM;
|
||
|
||
r = read_full_file(p, (char**) &root_hash_sig, &root_hash_sig_size);
|
||
if (r < 0 && r != -ENOENT)
|
||
return r;
|
||
if (r >= 0)
|
||
designator = PARTITION_USR;
|
||
}
|
||
}
|
||
|
||
if (root_hash_sig && root_hash_sig_size == 0) /* refuse empty size signatures */
|
||
return -EINVAL;
|
||
}
|
||
|
||
if (!verity->data_path) {
|
||
_cleanup_free_ char *p = NULL;
|
||
|
||
p = build_auxiliary_path(image, ".verity");
|
||
if (!p)
|
||
return -ENOMEM;
|
||
|
||
if (access(p, F_OK) < 0) {
|
||
if (errno != ENOENT)
|
||
return -errno;
|
||
} else
|
||
verity_data_path = TAKE_PTR(p);
|
||
}
|
||
|
||
if (root_hash) {
|
||
verity->root_hash = TAKE_PTR(root_hash);
|
||
verity->root_hash_size = root_hash_size;
|
||
}
|
||
|
||
if (root_hash_sig) {
|
||
verity->root_hash_sig = TAKE_PTR(root_hash_sig);
|
||
verity->root_hash_sig_size = root_hash_sig_size;
|
||
}
|
||
|
||
if (verity_data_path)
|
||
verity->data_path = TAKE_PTR(verity_data_path);
|
||
|
||
if (verity->designator < 0)
|
||
verity->designator = designator;
|
||
|
||
return 1;
|
||
}
|
||
|
||
int dissected_image_load_verity_sig_partition(
|
||
DissectedImage *m,
|
||
int fd,
|
||
VeritySettings *verity) {
|
||
|
||
_cleanup_free_ void *root_hash = NULL, *root_hash_sig = NULL;
|
||
_cleanup_(json_variant_unrefp) JsonVariant *v = NULL;
|
||
size_t root_hash_size, root_hash_sig_size;
|
||
_cleanup_free_ char *buf = NULL;
|
||
PartitionDesignator d;
|
||
DissectedPartition *p;
|
||
JsonVariant *rh, *sig;
|
||
ssize_t n;
|
||
char *e;
|
||
int r;
|
||
|
||
assert(m);
|
||
assert(fd >= 0);
|
||
assert(verity);
|
||
|
||
if (verity->root_hash && verity->root_hash_sig) /* Already loaded? */
|
||
return 0;
|
||
|
||
r = getenv_bool_secure("SYSTEMD_DISSECT_VERITY_EMBEDDED");
|
||
if (r < 0 && r != -ENXIO)
|
||
log_debug_errno(r, "Failed to parse $SYSTEMD_DISSECT_VERITY_EMBEDDED, ignoring: %m");
|
||
if (r == 0)
|
||
return 0;
|
||
|
||
d = PARTITION_VERITY_SIG_OF(verity->designator < 0 ? PARTITION_ROOT : verity->designator);
|
||
assert(d >= 0);
|
||
|
||
p = m->partitions + d;
|
||
if (!p->found)
|
||
return 0;
|
||
if (p->offset == UINT64_MAX || p->size == UINT64_MAX)
|
||
return -EINVAL;
|
||
|
||
if (p->size > 4*1024*1024) /* Signature data cannot possible be larger than 4M, refuse that */
|
||
return -EFBIG;
|
||
|
||
buf = new(char, p->size+1);
|
||
if (!buf)
|
||
return -ENOMEM;
|
||
|
||
n = pread(fd, buf, p->size, p->offset);
|
||
if (n < 0)
|
||
return -ENOMEM;
|
||
if ((uint64_t) n != p->size)
|
||
return -EIO;
|
||
|
||
e = memchr(buf, 0, p->size);
|
||
if (e) {
|
||
/* If we found a NUL byte then the rest of the data must be NUL too */
|
||
if (!memeqzero(e, p->size - (e - buf)))
|
||
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Signature data contains embedded NUL byte.");
|
||
} else
|
||
buf[p->size] = 0;
|
||
|
||
r = json_parse(buf, 0, &v, NULL, NULL);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to parse signature JSON data: %m");
|
||
|
||
rh = json_variant_by_key(v, "rootHash");
|
||
if (!rh)
|
||
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Signature JSON object lacks 'rootHash' field.");
|
||
if (!json_variant_is_string(rh))
|
||
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "'rootHash' field of signature JSON object is not a string.");
|
||
|
||
r = unhexmem(json_variant_string(rh), SIZE_MAX, &root_hash, &root_hash_size);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to parse root hash field: %m");
|
||
|
||
/* Check if specified root hash matches if it is specified */
|
||
if (verity->root_hash &&
|
||
memcmp_nn(verity->root_hash, verity->root_hash_size, root_hash, root_hash_size) != 0) {
|
||
_cleanup_free_ char *a = NULL, *b = NULL;
|
||
|
||
a = hexmem(root_hash, root_hash_size);
|
||
b = hexmem(verity->root_hash, verity->root_hash_size);
|
||
|
||
return log_debug_errno(r, "Root hash in signature JSON data (%s) doesn't match configured hash (%s).", strna(a), strna(b));
|
||
}
|
||
|
||
sig = json_variant_by_key(v, "signature");
|
||
if (!sig)
|
||
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Signature JSON object lacks 'signature' field.");
|
||
if (!json_variant_is_string(sig))
|
||
return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "'signature' field of signature JSON object is not a string.");
|
||
|
||
r = unbase64mem(json_variant_string(sig), SIZE_MAX, &root_hash_sig, &root_hash_sig_size);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to parse signature field: %m");
|
||
|
||
free_and_replace(verity->root_hash, root_hash);
|
||
verity->root_hash_size = root_hash_size;
|
||
|
||
free_and_replace(verity->root_hash_sig, root_hash_sig);
|
||
verity->root_hash_sig_size = root_hash_sig_size;
|
||
|
||
return 1;
|
||
}
|
||
|
||
int dissected_image_acquire_metadata(DissectedImage *m, DissectImageFlags extra_flags) {
|
||
|
||
enum {
|
||
META_HOSTNAME,
|
||
META_MACHINE_ID,
|
||
META_MACHINE_INFO,
|
||
META_OS_RELEASE,
|
||
META_EXTENSION_RELEASE,
|
||
META_HAS_INIT_SYSTEM,
|
||
_META_MAX,
|
||
};
|
||
|
||
static const char *const paths[_META_MAX] = {
|
||
[META_HOSTNAME] = "/etc/hostname\0",
|
||
[META_MACHINE_ID] = "/etc/machine-id\0",
|
||
[META_MACHINE_INFO] = "/etc/machine-info\0",
|
||
[META_OS_RELEASE] = ("/etc/os-release\0"
|
||
"/usr/lib/os-release\0"),
|
||
[META_EXTENSION_RELEASE] = "extension-release\0", /* Used only for logging. */
|
||
[META_HAS_INIT_SYSTEM] = "has-init-system\0", /* ditto */
|
||
};
|
||
|
||
_cleanup_strv_free_ char **machine_info = NULL, **os_release = NULL, **extension_release = NULL;
|
||
_cleanup_close_pair_ int error_pipe[2] = { -1, -1 };
|
||
_cleanup_(rmdir_and_freep) char *t = NULL;
|
||
_cleanup_(sigkill_waitp) pid_t child = 0;
|
||
sd_id128_t machine_id = SD_ID128_NULL;
|
||
_cleanup_free_ char *hostname = NULL;
|
||
unsigned n_meta_initialized = 0;
|
||
int fds[2 * _META_MAX], r, v;
|
||
int has_init_system = -1;
|
||
ssize_t n;
|
||
|
||
BLOCK_SIGNALS(SIGCHLD);
|
||
|
||
assert(m);
|
||
|
||
for (; n_meta_initialized < _META_MAX; n_meta_initialized ++) {
|
||
if (!paths[n_meta_initialized]) {
|
||
fds[2*n_meta_initialized] = fds[2*n_meta_initialized+1] = -1;
|
||
continue;
|
||
}
|
||
|
||
if (pipe2(fds + 2*n_meta_initialized, O_CLOEXEC) < 0) {
|
||
r = -errno;
|
||
goto finish;
|
||
}
|
||
}
|
||
|
||
r = mkdtemp_malloc("/tmp/dissect-XXXXXX", &t);
|
||
if (r < 0)
|
||
goto finish;
|
||
|
||
if (pipe2(error_pipe, O_CLOEXEC) < 0) {
|
||
r = -errno;
|
||
goto finish;
|
||
}
|
||
|
||
r = safe_fork("(sd-dissect)", FORK_RESET_SIGNALS|FORK_DEATHSIG|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE, &child);
|
||
if (r < 0)
|
||
goto finish;
|
||
if (r == 0) {
|
||
/* Child in a new mount namespace */
|
||
error_pipe[0] = safe_close(error_pipe[0]);
|
||
|
||
r = dissected_image_mount(
|
||
m,
|
||
t,
|
||
UID_INVALID,
|
||
UID_INVALID,
|
||
extra_flags |
|
||
DISSECT_IMAGE_READ_ONLY |
|
||
DISSECT_IMAGE_MOUNT_ROOT_ONLY |
|
||
DISSECT_IMAGE_USR_NO_ROOT);
|
||
if (r < 0) {
|
||
log_debug_errno(r, "Failed to mount dissected image: %m");
|
||
goto inner_fail;
|
||
}
|
||
|
||
for (unsigned k = 0; k < _META_MAX; k++) {
|
||
_cleanup_close_ int fd = -ENOENT;
|
||
const char *p;
|
||
|
||
if (!paths[k])
|
||
continue;
|
||
|
||
fds[2*k] = safe_close(fds[2*k]);
|
||
|
||
switch (k) {
|
||
|
||
case META_EXTENSION_RELEASE:
|
||
/* As per the os-release spec, if the image is an extension it will have a file
|
||
* named after the image name in extension-release.d/ - we use the image name
|
||
* and try to resolve it with the extension-release helpers, as sometimes
|
||
* the image names are mangled on deployment and do not match anymore.
|
||
* Unlike other paths this is not fixed, and the image name
|
||
* can be mangled on deployment, so by calling into the helper
|
||
* we allow a fallback that matches on the first extension-release
|
||
* file found in the directory, if one named after the image cannot
|
||
* be found first. */
|
||
r = open_extension_release(t, m->image_name, NULL, &fd);
|
||
if (r < 0)
|
||
fd = r; /* Propagate the error. */
|
||
break;
|
||
|
||
case META_HAS_INIT_SYSTEM: {
|
||
bool found = false;
|
||
|
||
FOREACH_STRING(init,
|
||
"/usr/lib/systemd/systemd", /* systemd on /usr merged system */
|
||
"/lib/systemd/systemd", /* systemd on /usr non-merged systems */
|
||
"/sbin/init") { /* traditional path the Linux kernel invokes */
|
||
|
||
r = chase_symlinks(init, t, CHASE_PREFIX_ROOT, NULL, NULL);
|
||
if (r < 0) {
|
||
if (r != -ENOENT)
|
||
log_debug_errno(r, "Failed to resolve %s, ignoring: %m", init);
|
||
} else {
|
||
found = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
r = loop_write(fds[2*k+1], &found, sizeof(found), false);
|
||
if (r < 0)
|
||
goto inner_fail;
|
||
|
||
continue;
|
||
}
|
||
|
||
default:
|
||
NULSTR_FOREACH(p, paths[k]) {
|
||
fd = chase_symlinks_and_open(p, t, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC|O_NOCTTY, NULL);
|
||
if (fd >= 0)
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (fd < 0) {
|
||
log_debug_errno(fd, "Failed to read %s file of image, ignoring: %m", paths[k]);
|
||
fds[2*k+1] = safe_close(fds[2*k+1]);
|
||
continue;
|
||
}
|
||
|
||
r = copy_bytes(fd, fds[2*k+1], UINT64_MAX, 0);
|
||
if (r < 0)
|
||
goto inner_fail;
|
||
|
||
fds[2*k+1] = safe_close(fds[2*k+1]);
|
||
}
|
||
|
||
_exit(EXIT_SUCCESS);
|
||
|
||
inner_fail:
|
||
/* Let parent know the error */
|
||
(void) write(error_pipe[1], &r, sizeof(r));
|
||
_exit(EXIT_FAILURE);
|
||
}
|
||
|
||
error_pipe[1] = safe_close(error_pipe[1]);
|
||
|
||
for (unsigned k = 0; k < _META_MAX; k++) {
|
||
_cleanup_fclose_ FILE *f = NULL;
|
||
|
||
if (!paths[k])
|
||
continue;
|
||
|
||
fds[2*k+1] = safe_close(fds[2*k+1]);
|
||
|
||
f = take_fdopen(&fds[2*k], "r");
|
||
if (!f) {
|
||
r = -errno;
|
||
goto finish;
|
||
}
|
||
|
||
switch (k) {
|
||
|
||
case META_HOSTNAME:
|
||
r = read_etc_hostname_stream(f, &hostname);
|
||
if (r < 0)
|
||
log_debug_errno(r, "Failed to read /etc/hostname of image: %m");
|
||
|
||
break;
|
||
|
||
case META_MACHINE_ID: {
|
||
_cleanup_free_ char *line = NULL;
|
||
|
||
r = read_line(f, LONG_LINE_MAX, &line);
|
||
if (r < 0)
|
||
log_debug_errno(r, "Failed to read /etc/machine-id of image: %m");
|
||
else if (r == 33) {
|
||
r = sd_id128_from_string(line, &machine_id);
|
||
if (r < 0)
|
||
log_debug_errno(r, "Image contains invalid /etc/machine-id: %s", line);
|
||
} else if (r == 0)
|
||
log_debug("/etc/machine-id file of image is empty.");
|
||
else if (streq(line, "uninitialized"))
|
||
log_debug("/etc/machine-id file of image is uninitialized (likely aborted first boot).");
|
||
else
|
||
log_debug("/etc/machine-id file of image has unexpected length %i.", r);
|
||
|
||
break;
|
||
}
|
||
|
||
case META_MACHINE_INFO:
|
||
r = load_env_file_pairs(f, "machine-info", &machine_info);
|
||
if (r < 0)
|
||
log_debug_errno(r, "Failed to read /etc/machine-info of image: %m");
|
||
|
||
break;
|
||
|
||
case META_OS_RELEASE:
|
||
r = load_env_file_pairs(f, "os-release", &os_release);
|
||
if (r < 0)
|
||
log_debug_errno(r, "Failed to read OS release file of image: %m");
|
||
|
||
break;
|
||
|
||
case META_EXTENSION_RELEASE:
|
||
r = load_env_file_pairs(f, "extension-release", &extension_release);
|
||
if (r < 0)
|
||
log_debug_errno(r, "Failed to read extension release file of image: %m");
|
||
|
||
break;
|
||
|
||
case META_HAS_INIT_SYSTEM: {
|
||
bool b = false;
|
||
size_t nr;
|
||
|
||
errno = 0;
|
||
nr = fread(&b, 1, sizeof(b), f);
|
||
if (nr != sizeof(b))
|
||
log_debug_errno(errno_or_else(EIO), "Failed to read has-init-system boolean: %m");
|
||
else
|
||
has_init_system = b;
|
||
|
||
break;
|
||
}}
|
||
}
|
||
|
||
r = wait_for_terminate_and_check("(sd-dissect)", child, 0);
|
||
child = 0;
|
||
if (r < 0)
|
||
return r;
|
||
|
||
n = read(error_pipe[0], &v, sizeof(v));
|
||
if (n < 0)
|
||
return -errno;
|
||
if (n == sizeof(v))
|
||
return v; /* propagate error sent to us from child */
|
||
if (n != 0)
|
||
return -EIO;
|
||
|
||
if (r != EXIT_SUCCESS)
|
||
return -EPROTO;
|
||
|
||
free_and_replace(m->hostname, hostname);
|
||
m->machine_id = machine_id;
|
||
strv_free_and_replace(m->machine_info, machine_info);
|
||
strv_free_and_replace(m->os_release, os_release);
|
||
strv_free_and_replace(m->extension_release, extension_release);
|
||
m->has_init_system = has_init_system;
|
||
|
||
finish:
|
||
for (unsigned k = 0; k < n_meta_initialized; k++)
|
||
safe_close_pair(fds + 2*k);
|
||
|
||
return r;
|
||
}
|
||
|
||
int dissect_image_and_warn(
|
||
int fd,
|
||
const char *name,
|
||
const VeritySettings *verity,
|
||
const MountOptions *mount_options,
|
||
uint64_t diskseq,
|
||
uint64_t uevent_seqnum_not_before,
|
||
usec_t timestamp_not_before,
|
||
DissectImageFlags flags,
|
||
DissectedImage **ret) {
|
||
|
||
_cleanup_free_ char *buffer = NULL;
|
||
int r;
|
||
|
||
if (!name) {
|
||
r = fd_get_path(fd, &buffer);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
name = buffer;
|
||
}
|
||
|
||
r = dissect_image(fd, verity, mount_options, diskseq, uevent_seqnum_not_before, timestamp_not_before, flags, ret);
|
||
switch (r) {
|
||
|
||
case -EOPNOTSUPP:
|
||
return log_error_errno(r, "Dissecting images is not supported, compiled without blkid support.");
|
||
|
||
case -ENOPKG:
|
||
return log_error_errno(r, "%s: Couldn't identify a suitable partition table or file system.", name);
|
||
|
||
case -ENOMEDIUM:
|
||
return log_error_errno(r, "%s: The image does not pass validation.", name);
|
||
|
||
case -EADDRNOTAVAIL:
|
||
return log_error_errno(r, "%s: No root partition for specified root hash found.", name);
|
||
|
||
case -ENOTUNIQ:
|
||
return log_error_errno(r, "%s: Multiple suitable root partitions found in image.", name);
|
||
|
||
case -ENXIO:
|
||
return log_error_errno(r, "%s: No suitable root partition found in image.", name);
|
||
|
||
case -EPROTONOSUPPORT:
|
||
return log_error_errno(r, "Device '%s' is loopback block device with partition scanning turned off, please turn it on.", name);
|
||
|
||
case -ENOTBLK:
|
||
return log_error_errno(r, "%s: Image is not a block device.", name);
|
||
|
||
case -EBADR:
|
||
return log_error_errno(r,
|
||
"Combining partitioned images (such as '%s') with external Verity data (such as '%s') not supported. "
|
||
"(Consider setting $SYSTEMD_DISSECT_VERITY_SIDECAR=0 to disable automatic discovery of external Verity data.)",
|
||
name, strna(verity ? verity->data_path : NULL));
|
||
|
||
default:
|
||
if (r < 0)
|
||
return log_error_errno(r, "Failed to dissect image '%s': %m", name);
|
||
|
||
return r;
|
||
}
|
||
}
|
||
|
||
bool dissected_image_verity_candidate(const DissectedImage *image, PartitionDesignator partition_designator) {
|
||
assert(image);
|
||
|
||
/* Checks if this partition could theoretically do Verity. For non-partitioned images this only works
|
||
* if there's an external verity file supplied, for which we can consult .has_verity. For partitioned
|
||
* images we only check the partition type.
|
||
*
|
||
* This call is used to decide whether to suppress or show a verity column in tabular output of the
|
||
* image. */
|
||
|
||
if (image->single_file_system)
|
||
return partition_designator == PARTITION_ROOT && image->has_verity;
|
||
|
||
return PARTITION_VERITY_OF(partition_designator) >= 0;
|
||
}
|
||
|
||
bool dissected_image_verity_ready(const DissectedImage *image, PartitionDesignator partition_designator) {
|
||
PartitionDesignator k;
|
||
|
||
assert(image);
|
||
|
||
/* Checks if this partition has verity data available that we can activate. For non-partitioned this
|
||
* works for the root partition, for others only if the associated verity partition was found. */
|
||
|
||
if (!image->verity_ready)
|
||
return false;
|
||
|
||
if (image->single_file_system)
|
||
return partition_designator == PARTITION_ROOT;
|
||
|
||
k = PARTITION_VERITY_OF(partition_designator);
|
||
return k >= 0 && image->partitions[k].found;
|
||
}
|
||
|
||
bool dissected_image_verity_sig_ready(const DissectedImage *image, PartitionDesignator partition_designator) {
|
||
PartitionDesignator k;
|
||
|
||
assert(image);
|
||
|
||
/* Checks if this partition has verity signature data available that we can use. */
|
||
|
||
if (!image->verity_sig_ready)
|
||
return false;
|
||
|
||
if (image->single_file_system)
|
||
return partition_designator == PARTITION_ROOT;
|
||
|
||
k = PARTITION_VERITY_SIG_OF(partition_designator);
|
||
return k >= 0 && image->partitions[k].found;
|
||
}
|
||
|
||
MountOptions* mount_options_free_all(MountOptions *options) {
|
||
MountOptions *m;
|
||
|
||
while ((m = options)) {
|
||
LIST_REMOVE(mount_options, options, m);
|
||
free(m->options);
|
||
free(m);
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
const char* mount_options_from_designator(const MountOptions *options, PartitionDesignator designator) {
|
||
LIST_FOREACH(mount_options, m, options)
|
||
if (designator == m->partition_designator && !isempty(m->options))
|
||
return m->options;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
int mount_image_privately_interactively(
|
||
const char *image,
|
||
DissectImageFlags flags,
|
||
char **ret_directory,
|
||
LoopDevice **ret_loop_device,
|
||
DecryptedImage **ret_decrypted_image) {
|
||
|
||
_cleanup_(verity_settings_done) VeritySettings verity = VERITY_SETTINGS_DEFAULT;
|
||
_cleanup_(loop_device_unrefp) LoopDevice *d = NULL;
|
||
_cleanup_(decrypted_image_unrefp) DecryptedImage *decrypted_image = NULL;
|
||
_cleanup_(dissected_image_unrefp) DissectedImage *dissected_image = NULL;
|
||
_cleanup_(rmdir_and_freep) char *created_dir = NULL;
|
||
_cleanup_free_ char *temp = NULL;
|
||
int r;
|
||
|
||
/* Mounts an OS image at a temporary place, inside a newly created mount namespace of our own. This
|
||
* is used by tools such as systemd-tmpfiles or systemd-firstboot to operate on some disk image
|
||
* easily. */
|
||
|
||
assert(image);
|
||
assert(ret_directory);
|
||
assert(ret_loop_device);
|
||
assert(ret_decrypted_image);
|
||
|
||
r = verity_settings_load(&verity, image, NULL, NULL);
|
||
if (r < 0)
|
||
return log_error_errno(r, "Failed to load root hash data: %m");
|
||
|
||
r = tempfn_random_child(NULL, program_invocation_short_name, &temp);
|
||
if (r < 0)
|
||
return log_error_errno(r, "Failed to generate temporary mount directory: %m");
|
||
|
||
r = loop_device_make_by_path(
|
||
image,
|
||
FLAGS_SET(flags, DISSECT_IMAGE_DEVICE_READ_ONLY) ? O_RDONLY : O_RDWR,
|
||
FLAGS_SET(flags, DISSECT_IMAGE_NO_PARTITION_TABLE) ? 0 : LO_FLAGS_PARTSCAN,
|
||
&d);
|
||
if (r < 0)
|
||
return log_error_errno(r, "Failed to set up loopback device for %s: %m", image);
|
||
|
||
/* Make sure udevd doesn't issue BLKRRPART behind our backs */
|
||
r = loop_device_flock(d, LOCK_SH);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
r = dissect_image_and_warn(d->fd, image, &verity, NULL, d->diskseq, d->uevent_seqnum_not_before, d->timestamp_not_before, flags, &dissected_image);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
r = dissected_image_load_verity_sig_partition(dissected_image, d->fd, &verity);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
r = dissected_image_decrypt_interactively(dissected_image, NULL, &verity, flags, &decrypted_image);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
r = detach_mount_namespace();
|
||
if (r < 0)
|
||
return log_error_errno(r, "Failed to detach mount namespace: %m");
|
||
|
||
r = mkdir_p(temp, 0700);
|
||
if (r < 0)
|
||
return log_error_errno(r, "Failed to create mount point: %m");
|
||
|
||
created_dir = TAKE_PTR(temp);
|
||
|
||
r = dissected_image_mount_and_warn(dissected_image, created_dir, UID_INVALID, UID_INVALID, flags);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
r = loop_device_flock(d, LOCK_UN);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
if (decrypted_image) {
|
||
r = decrypted_image_relinquish(decrypted_image);
|
||
if (r < 0)
|
||
return log_error_errno(r, "Failed to relinquish DM devices: %m");
|
||
}
|
||
|
||
loop_device_relinquish(d);
|
||
|
||
*ret_directory = TAKE_PTR(created_dir);
|
||
*ret_loop_device = TAKE_PTR(d);
|
||
*ret_decrypted_image = TAKE_PTR(decrypted_image);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static const char *const partition_designator_table[] = {
|
||
[PARTITION_ROOT] = "root",
|
||
[PARTITION_ROOT_SECONDARY] = "root-secondary",
|
||
[PARTITION_ROOT_OTHER] = "root-other",
|
||
[PARTITION_USR] = "usr",
|
||
[PARTITION_USR_SECONDARY] = "usr-secondary",
|
||
[PARTITION_USR_OTHER] = "usr-other",
|
||
[PARTITION_HOME] = "home",
|
||
[PARTITION_SRV] = "srv",
|
||
[PARTITION_ESP] = "esp",
|
||
[PARTITION_XBOOTLDR] = "xbootldr",
|
||
[PARTITION_SWAP] = "swap",
|
||
[PARTITION_ROOT_VERITY] = "root-verity",
|
||
[PARTITION_ROOT_SECONDARY_VERITY] = "root-secondary-verity",
|
||
[PARTITION_ROOT_OTHER_VERITY] = "root-other-verity",
|
||
[PARTITION_USR_VERITY] = "usr-verity",
|
||
[PARTITION_USR_SECONDARY_VERITY] = "usr-secondary-verity",
|
||
[PARTITION_USR_OTHER_VERITY] = "usr-other-verity",
|
||
[PARTITION_ROOT_VERITY_SIG] = "root-verity-sig",
|
||
[PARTITION_ROOT_SECONDARY_VERITY_SIG] = "root-secondary-verity-sig",
|
||
[PARTITION_ROOT_OTHER_VERITY_SIG] = "root-other-verity-sig",
|
||
[PARTITION_USR_VERITY_SIG] = "usr-verity-sig",
|
||
[PARTITION_USR_SECONDARY_VERITY_SIG] = "usr-secondary-verity-sig",
|
||
[PARTITION_USR_OTHER_VERITY_SIG] = "usr-other-verity-sig",
|
||
[PARTITION_TMP] = "tmp",
|
||
[PARTITION_VAR] = "var",
|
||
};
|
||
|
||
int verity_dissect_and_mount(
|
||
int src_fd,
|
||
const char *src,
|
||
const char *dest,
|
||
const MountOptions *options,
|
||
const char *required_host_os_release_id,
|
||
const char *required_host_os_release_version_id,
|
||
const char *required_host_os_release_sysext_level,
|
||
const char *required_sysext_scope) {
|
||
|
||
_cleanup_(loop_device_unrefp) LoopDevice *loop_device = NULL;
|
||
_cleanup_(decrypted_image_unrefp) DecryptedImage *decrypted_image = NULL;
|
||
_cleanup_(dissected_image_unrefp) DissectedImage *dissected_image = NULL;
|
||
_cleanup_(verity_settings_done) VeritySettings verity = VERITY_SETTINGS_DEFAULT;
|
||
DissectImageFlags dissect_image_flags;
|
||
int r;
|
||
|
||
assert(src);
|
||
assert(dest);
|
||
|
||
/* We might get an FD for the image, but we use the original path to look for the dm-verity files */
|
||
r = verity_settings_load(&verity, src, NULL, NULL);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to load root hash: %m");
|
||
|
||
dissect_image_flags = verity.data_path ? DISSECT_IMAGE_NO_PARTITION_TABLE : 0;
|
||
|
||
/* Note that we don't use loop_device_make here, as the FD is most likely O_PATH which would not be
|
||
* accepted by LOOP_CONFIGURE, so just let loop_device_make_by_path reopen it as a regular FD. */
|
||
r = loop_device_make_by_path(
|
||
src_fd >= 0 ? FORMAT_PROC_FD_PATH(src_fd) : src,
|
||
-1,
|
||
verity.data_path ? 0 : LO_FLAGS_PARTSCAN,
|
||
&loop_device);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to create loop device for image: %m");
|
||
|
||
r = loop_device_flock(loop_device, LOCK_SH);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to lock loop device: %m");
|
||
|
||
r = dissect_image(
|
||
loop_device->fd,
|
||
&verity,
|
||
options,
|
||
loop_device->diskseq,
|
||
loop_device->uevent_seqnum_not_before,
|
||
loop_device->timestamp_not_before,
|
||
dissect_image_flags,
|
||
&dissected_image);
|
||
/* No partition table? Might be a single-filesystem image, try again */
|
||
if (!verity.data_path && r == -ENOPKG)
|
||
r = dissect_image(
|
||
loop_device->fd,
|
||
&verity,
|
||
options,
|
||
loop_device->diskseq,
|
||
loop_device->uevent_seqnum_not_before,
|
||
loop_device->timestamp_not_before,
|
||
dissect_image_flags | DISSECT_IMAGE_NO_PARTITION_TABLE,
|
||
&dissected_image);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to dissect image: %m");
|
||
|
||
r = dissected_image_load_verity_sig_partition(dissected_image, loop_device->fd, &verity);
|
||
if (r < 0)
|
||
return r;
|
||
|
||
r = dissected_image_decrypt(
|
||
dissected_image,
|
||
NULL,
|
||
&verity,
|
||
dissect_image_flags,
|
||
&decrypted_image);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to decrypt dissected image: %m");
|
||
|
||
r = mkdir_p_label(dest, 0755);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to create destination directory %s: %m", dest);
|
||
r = umount_recursive(dest, 0);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to umount under destination directory %s: %m", dest);
|
||
|
||
r = dissected_image_mount(dissected_image, dest, UID_INVALID, UID_INVALID, dissect_image_flags);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to mount image: %m");
|
||
|
||
r = loop_device_flock(loop_device, LOCK_UN);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to unlock loopback device: %m");
|
||
|
||
/* If we got os-release values from the caller, then we need to match them with the image's
|
||
* extension-release.d/ content. Return -EINVAL if there's any mismatch.
|
||
* First, check the distro ID. If that matches, then check the new SYSEXT_LEVEL value if
|
||
* available, or else fallback to VERSION_ID. If neither is present (eg: rolling release),
|
||
* then a simple match on the ID will be performed. */
|
||
if (!isempty(required_host_os_release_id)) {
|
||
_cleanup_strv_free_ char **extension_release = NULL;
|
||
|
||
r = load_extension_release_pairs(dest, dissected_image->image_name, &extension_release);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to parse image %s extension-release metadata: %m", dissected_image->image_name);
|
||
|
||
r = extension_release_validate(
|
||
dissected_image->image_name,
|
||
required_host_os_release_id,
|
||
required_host_os_release_version_id,
|
||
required_host_os_release_sysext_level,
|
||
required_sysext_scope,
|
||
extension_release);
|
||
if (r == 0)
|
||
return log_debug_errno(SYNTHETIC_ERRNO(ESTALE), "Image %s extension-release metadata does not match the root's", dissected_image->image_name);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to compare image %s extension-release metadata with the root's os-release: %m", dissected_image->image_name);
|
||
}
|
||
|
||
if (decrypted_image) {
|
||
r = decrypted_image_relinquish(decrypted_image);
|
||
if (r < 0)
|
||
return log_debug_errno(r, "Failed to relinquish decrypted image: %m");
|
||
}
|
||
|
||
loop_device_relinquish(loop_device);
|
||
|
||
return 0;
|
||
}
|
||
|
||
DEFINE_STRING_TABLE_LOOKUP(partition_designator, PartitionDesignator);
|