mirror of
https://git.proxmox.com/git/rustc
synced 2026-01-12 23:57:21 +00:00
1214 lines
33 KiB
Rust
1214 lines
33 KiB
Rust
//! **arrayvec** provides the types `ArrayVec` and `ArrayString`:
|
||
//! array-backed vector and string types, which store their contents inline.
|
||
//!
|
||
//! The arrayvec package has the following cargo features:
|
||
//!
|
||
//! - `std`
|
||
//! - Optional, enabled by default
|
||
//! - Use libstd; disable to use `no_std` instead.
|
||
//!
|
||
//! - `serde`
|
||
//! - Optional
|
||
//! - Enable serialization for ArrayVec and ArrayString using serde 1.x
|
||
//! - `array-sizes-33-128`, `array-sizes-129-255`
|
||
//! - Optional
|
||
//! - Enable more array sizes (see [Array] for more information)
|
||
//!
|
||
//! - `unstable-const-fn`
|
||
//! - Optional
|
||
//! - Makes [`ArrayVec::new`] and [`ArrayString::new`] `const fn`s,
|
||
//! using the nightly `const_fn` feature.
|
||
//! - Unstable and requires nightly.
|
||
//!
|
||
//! ## Rust Version
|
||
//!
|
||
//! This version of arrayvec requires Rust 1.36 or later.
|
||
//!
|
||
#![doc(html_root_url="https://docs.rs/arrayvec/0.4/")]
|
||
#![cfg_attr(not(feature="std"), no_std)]
|
||
#![cfg_attr(feature="unstable-const-fn", feature(const_fn))]
|
||
|
||
#[cfg(feature="serde")]
|
||
extern crate serde;
|
||
|
||
#[cfg(not(feature="std"))]
|
||
extern crate core as std;
|
||
|
||
use std::cmp;
|
||
use std::iter;
|
||
use std::mem;
|
||
use std::ops::{Bound, Deref, DerefMut, RangeBounds};
|
||
use std::ptr;
|
||
use std::slice;
|
||
|
||
// extra traits
|
||
use std::borrow::{Borrow, BorrowMut};
|
||
use std::hash::{Hash, Hasher};
|
||
use std::fmt;
|
||
|
||
#[cfg(feature="std")]
|
||
use std::io;
|
||
|
||
|
||
mod maybe_uninit;
|
||
use crate::maybe_uninit::MaybeUninit;
|
||
|
||
#[cfg(feature="serde")]
|
||
use serde::{Serialize, Deserialize, Serializer, Deserializer};
|
||
|
||
mod array;
|
||
mod array_string;
|
||
mod char;
|
||
mod errors;
|
||
|
||
pub use crate::array::Array;
|
||
use crate::array::Index;
|
||
pub use crate::array_string::ArrayString;
|
||
pub use crate::errors::CapacityError;
|
||
|
||
|
||
/// A vector with a fixed capacity.
|
||
///
|
||
/// The `ArrayVec` is a vector backed by a fixed size array. It keeps track of
|
||
/// the number of initialized elements.
|
||
///
|
||
/// The vector is a contiguous value that you can store directly on the stack
|
||
/// if needed.
|
||
///
|
||
/// It offers a simple API but also dereferences to a slice, so
|
||
/// that the full slice API is available.
|
||
///
|
||
/// ArrayVec can be converted into a by value iterator.
|
||
pub struct ArrayVec<A: Array> {
|
||
xs: MaybeUninit<A>,
|
||
len: A::Index,
|
||
}
|
||
|
||
impl<A: Array> Drop for ArrayVec<A> {
|
||
fn drop(&mut self) {
|
||
self.clear();
|
||
|
||
// MaybeUninit inhibits array's drop
|
||
}
|
||
}
|
||
|
||
macro_rules! panic_oob {
|
||
($method_name:expr, $index:expr, $len:expr) => {
|
||
panic!(concat!("ArrayVec::", $method_name, ": index {} is out of bounds in vector of length {}"),
|
||
$index, $len)
|
||
}
|
||
}
|
||
|
||
impl<A: Array> ArrayVec<A> {
|
||
/// Create a new empty `ArrayVec`.
|
||
///
|
||
/// Capacity is inferred from the type parameter.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut array = ArrayVec::<[_; 16]>::new();
|
||
/// array.push(1);
|
||
/// array.push(2);
|
||
/// assert_eq!(&array[..], &[1, 2]);
|
||
/// assert_eq!(array.capacity(), 16);
|
||
/// ```
|
||
#[cfg(not(feature="unstable-const-fn"))]
|
||
pub fn new() -> ArrayVec<A> {
|
||
unsafe {
|
||
ArrayVec { xs: MaybeUninit::uninitialized(), len: Index::ZERO }
|
||
}
|
||
}
|
||
|
||
#[cfg(feature="unstable-const-fn")]
|
||
pub const fn new() -> ArrayVec<A> {
|
||
unsafe {
|
||
ArrayVec { xs: MaybeUninit::uninitialized(), len: Index::ZERO }
|
||
}
|
||
}
|
||
|
||
/// Return the number of elements in the `ArrayVec`.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut array = ArrayVec::from([1, 2, 3]);
|
||
/// array.pop();
|
||
/// assert_eq!(array.len(), 2);
|
||
/// ```
|
||
#[inline]
|
||
pub fn len(&self) -> usize { self.len.to_usize() }
|
||
|
||
/// Returns whether the `ArrayVec` is empty.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut array = ArrayVec::from([1]);
|
||
/// array.pop();
|
||
/// assert_eq!(array.is_empty(), true);
|
||
/// ```
|
||
#[inline]
|
||
pub fn is_empty(&self) -> bool { self.len() == 0 }
|
||
|
||
/// Return the capacity of the `ArrayVec`.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let array = ArrayVec::from([1, 2, 3]);
|
||
/// assert_eq!(array.capacity(), 3);
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn capacity(&self) -> usize { A::CAPACITY }
|
||
|
||
/// Return if the `ArrayVec` is completely filled.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut array = ArrayVec::<[_; 1]>::new();
|
||
/// assert!(!array.is_full());
|
||
/// array.push(1);
|
||
/// assert!(array.is_full());
|
||
/// ```
|
||
pub fn is_full(&self) -> bool { self.len() == self.capacity() }
|
||
|
||
/// Returns the capacity left in the `ArrayVec`.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut array = ArrayVec::from([1, 2, 3]);
|
||
/// array.pop();
|
||
/// assert_eq!(array.remaining_capacity(), 1);
|
||
/// ```
|
||
pub fn remaining_capacity(&self) -> usize {
|
||
self.capacity() - self.len()
|
||
}
|
||
|
||
/// Push `element` to the end of the vector.
|
||
///
|
||
/// ***Panics*** if the vector is already full.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut array = ArrayVec::<[_; 2]>::new();
|
||
///
|
||
/// array.push(1);
|
||
/// array.push(2);
|
||
///
|
||
/// assert_eq!(&array[..], &[1, 2]);
|
||
/// ```
|
||
pub fn push(&mut self, element: A::Item) {
|
||
self.try_push(element).unwrap()
|
||
}
|
||
|
||
/// Push `element` to the end of the vector.
|
||
///
|
||
/// Return `Ok` if the push succeeds, or return an error if the vector
|
||
/// is already full.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut array = ArrayVec::<[_; 2]>::new();
|
||
///
|
||
/// let push1 = array.try_push(1);
|
||
/// let push2 = array.try_push(2);
|
||
///
|
||
/// assert!(push1.is_ok());
|
||
/// assert!(push2.is_ok());
|
||
///
|
||
/// assert_eq!(&array[..], &[1, 2]);
|
||
///
|
||
/// let overflow = array.try_push(3);
|
||
///
|
||
/// assert!(overflow.is_err());
|
||
/// ```
|
||
pub fn try_push(&mut self, element: A::Item) -> Result<(), CapacityError<A::Item>> {
|
||
if self.len() < A::CAPACITY {
|
||
unsafe {
|
||
self.push_unchecked(element);
|
||
}
|
||
Ok(())
|
||
} else {
|
||
Err(CapacityError::new(element))
|
||
}
|
||
}
|
||
|
||
|
||
/// Push `element` to the end of the vector without checking the capacity.
|
||
///
|
||
/// It is up to the caller to ensure the capacity of the vector is
|
||
/// sufficiently large.
|
||
///
|
||
/// This method uses *debug assertions* to check that the arrayvec is not full.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut array = ArrayVec::<[_; 2]>::new();
|
||
///
|
||
/// if array.len() + 2 <= array.capacity() {
|
||
/// unsafe {
|
||
/// array.push_unchecked(1);
|
||
/// array.push_unchecked(2);
|
||
/// }
|
||
/// }
|
||
///
|
||
/// assert_eq!(&array[..], &[1, 2]);
|
||
/// ```
|
||
pub unsafe fn push_unchecked(&mut self, element: A::Item) {
|
||
let len = self.len();
|
||
debug_assert!(len < A::CAPACITY);
|
||
ptr::write(self.get_unchecked_ptr(len), element);
|
||
self.set_len(len + 1);
|
||
}
|
||
|
||
/// Get pointer to where element at `index` would be
|
||
unsafe fn get_unchecked_ptr(&mut self, index: usize) -> *mut A::Item {
|
||
self.xs.ptr_mut().add(index)
|
||
}
|
||
|
||
/// Insert `element` at position `index`.
|
||
///
|
||
/// Shift up all elements after `index`.
|
||
///
|
||
/// It is an error if the index is greater than the length or if the
|
||
/// arrayvec is full.
|
||
///
|
||
/// ***Panics*** if the array is full or the `index` is out of bounds. See
|
||
/// `try_insert` for fallible version.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut array = ArrayVec::<[_; 2]>::new();
|
||
///
|
||
/// array.insert(0, "x");
|
||
/// array.insert(0, "y");
|
||
/// assert_eq!(&array[..], &["y", "x"]);
|
||
///
|
||
/// ```
|
||
pub fn insert(&mut self, index: usize, element: A::Item) {
|
||
self.try_insert(index, element).unwrap()
|
||
}
|
||
|
||
/// Insert `element` at position `index`.
|
||
///
|
||
/// Shift up all elements after `index`; the `index` must be less than
|
||
/// or equal to the length.
|
||
///
|
||
/// Returns an error if vector is already at full capacity.
|
||
///
|
||
/// ***Panics*** `index` is out of bounds.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut array = ArrayVec::<[_; 2]>::new();
|
||
///
|
||
/// assert!(array.try_insert(0, "x").is_ok());
|
||
/// assert!(array.try_insert(0, "y").is_ok());
|
||
/// assert!(array.try_insert(0, "z").is_err());
|
||
/// assert_eq!(&array[..], &["y", "x"]);
|
||
///
|
||
/// ```
|
||
pub fn try_insert(&mut self, index: usize, element: A::Item) -> Result<(), CapacityError<A::Item>> {
|
||
if index > self.len() {
|
||
panic_oob!("try_insert", index, self.len())
|
||
}
|
||
if self.len() == self.capacity() {
|
||
return Err(CapacityError::new(element));
|
||
}
|
||
let len = self.len();
|
||
|
||
// follows is just like Vec<T>
|
||
unsafe { // infallible
|
||
// The spot to put the new value
|
||
{
|
||
let p: *mut _ = self.get_unchecked_ptr(index);
|
||
// Shift everything over to make space. (Duplicating the
|
||
// `index`th element into two consecutive places.)
|
||
ptr::copy(p, p.offset(1), len - index);
|
||
// Write it in, overwriting the first copy of the `index`th
|
||
// element.
|
||
ptr::write(p, element);
|
||
}
|
||
self.set_len(len + 1);
|
||
}
|
||
Ok(())
|
||
}
|
||
|
||
/// Remove the last element in the vector and return it.
|
||
///
|
||
/// Return `Some(` *element* `)` if the vector is non-empty, else `None`.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut array = ArrayVec::<[_; 2]>::new();
|
||
///
|
||
/// array.push(1);
|
||
///
|
||
/// assert_eq!(array.pop(), Some(1));
|
||
/// assert_eq!(array.pop(), None);
|
||
/// ```
|
||
pub fn pop(&mut self) -> Option<A::Item> {
|
||
if self.len() == 0 {
|
||
return None;
|
||
}
|
||
unsafe {
|
||
let new_len = self.len() - 1;
|
||
self.set_len(new_len);
|
||
Some(ptr::read(self.get_unchecked_ptr(new_len)))
|
||
}
|
||
}
|
||
|
||
/// Remove the element at `index` and swap the last element into its place.
|
||
///
|
||
/// This operation is O(1).
|
||
///
|
||
/// Return the *element* if the index is in bounds, else panic.
|
||
///
|
||
/// ***Panics*** if the `index` is out of bounds.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut array = ArrayVec::from([1, 2, 3]);
|
||
///
|
||
/// assert_eq!(array.swap_remove(0), 1);
|
||
/// assert_eq!(&array[..], &[3, 2]);
|
||
///
|
||
/// assert_eq!(array.swap_remove(1), 2);
|
||
/// assert_eq!(&array[..], &[3]);
|
||
/// ```
|
||
pub fn swap_remove(&mut self, index: usize) -> A::Item {
|
||
self.swap_pop(index)
|
||
.unwrap_or_else(|| {
|
||
panic_oob!("swap_remove", index, self.len())
|
||
})
|
||
}
|
||
|
||
/// Remove the element at `index` and swap the last element into its place.
|
||
///
|
||
/// This is a checked version of `.swap_remove`.
|
||
/// This operation is O(1).
|
||
///
|
||
/// Return `Some(` *element* `)` if the index is in bounds, else `None`.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut array = ArrayVec::from([1, 2, 3]);
|
||
///
|
||
/// assert_eq!(array.swap_pop(0), Some(1));
|
||
/// assert_eq!(&array[..], &[3, 2]);
|
||
///
|
||
/// assert_eq!(array.swap_pop(10), None);
|
||
/// ```
|
||
pub fn swap_pop(&mut self, index: usize) -> Option<A::Item> {
|
||
let len = self.len();
|
||
if index >= len {
|
||
return None;
|
||
}
|
||
self.swap(index, len - 1);
|
||
self.pop()
|
||
}
|
||
|
||
/// Remove the element at `index` and shift down the following elements.
|
||
///
|
||
/// The `index` must be strictly less than the length of the vector.
|
||
///
|
||
/// ***Panics*** if the `index` is out of bounds.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut array = ArrayVec::from([1, 2, 3]);
|
||
///
|
||
/// let removed_elt = array.remove(0);
|
||
/// assert_eq!(removed_elt, 1);
|
||
/// assert_eq!(&array[..], &[2, 3]);
|
||
/// ```
|
||
pub fn remove(&mut self, index: usize) -> A::Item {
|
||
self.pop_at(index)
|
||
.unwrap_or_else(|| {
|
||
panic_oob!("remove", index, self.len())
|
||
})
|
||
}
|
||
|
||
/// Remove the element at `index` and shift down the following elements.
|
||
///
|
||
/// This is a checked version of `.remove(index)`. Returns `None` if there
|
||
/// is no element at `index`. Otherwise, return the element inside `Some`.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut array = ArrayVec::from([1, 2, 3]);
|
||
///
|
||
/// assert!(array.pop_at(0).is_some());
|
||
/// assert_eq!(&array[..], &[2, 3]);
|
||
///
|
||
/// assert!(array.pop_at(2).is_none());
|
||
/// assert!(array.pop_at(10).is_none());
|
||
/// ```
|
||
pub fn pop_at(&mut self, index: usize) -> Option<A::Item> {
|
||
if index >= self.len() {
|
||
None
|
||
} else {
|
||
self.drain(index..index + 1).next()
|
||
}
|
||
}
|
||
|
||
/// Shortens the vector, keeping the first `len` elements and dropping
|
||
/// the rest.
|
||
///
|
||
/// If `len` is greater than the vector’s current length this has no
|
||
/// effect.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut array = ArrayVec::from([1, 2, 3, 4, 5]);
|
||
/// array.truncate(3);
|
||
/// assert_eq!(&array[..], &[1, 2, 3]);
|
||
/// array.truncate(4);
|
||
/// assert_eq!(&array[..], &[1, 2, 3]);
|
||
/// ```
|
||
pub fn truncate(&mut self, new_len: usize) {
|
||
unsafe {
|
||
if new_len < self.len() {
|
||
let tail: *mut [_] = &mut self[new_len..];
|
||
self.len = Index::from(new_len);
|
||
ptr::drop_in_place(tail);
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Remove all elements in the vector.
|
||
pub fn clear(&mut self) {
|
||
self.truncate(0)
|
||
}
|
||
|
||
/// Retains only the elements specified by the predicate.
|
||
///
|
||
/// In other words, remove all elements `e` such that `f(&mut e)` returns false.
|
||
/// This method operates in place and preserves the order of the retained
|
||
/// elements.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut array = ArrayVec::from([1, 2, 3, 4]);
|
||
/// array.retain(|x| *x & 1 != 0 );
|
||
/// assert_eq!(&array[..], &[1, 3]);
|
||
/// ```
|
||
pub fn retain<F>(&mut self, mut f: F)
|
||
where F: FnMut(&mut A::Item) -> bool
|
||
{
|
||
let len = self.len();
|
||
let mut del = 0;
|
||
{
|
||
let v = &mut **self;
|
||
|
||
for i in 0..len {
|
||
if !f(&mut v[i]) {
|
||
del += 1;
|
||
} else if del > 0 {
|
||
v.swap(i - del, i);
|
||
}
|
||
}
|
||
}
|
||
if del > 0 {
|
||
self.drain(len - del..);
|
||
}
|
||
}
|
||
|
||
/// Set the vector’s length without dropping or moving out elements
|
||
///
|
||
/// This method is `unsafe` because it changes the notion of the
|
||
/// number of “valid” elements in the vector. Use with care.
|
||
///
|
||
/// This method uses *debug assertions* to check that `length` is
|
||
/// not greater than the capacity.
|
||
pub unsafe fn set_len(&mut self, length: usize) {
|
||
debug_assert!(length <= self.capacity());
|
||
self.len = Index::from(length);
|
||
}
|
||
|
||
/// Copy and appends all elements in a slice to the `ArrayVec`.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut vec: ArrayVec<[usize; 10]> = ArrayVec::new();
|
||
/// vec.push(1);
|
||
/// vec.try_extend_from_slice(&[2, 3]).unwrap();
|
||
/// assert_eq!(&vec[..], &[1, 2, 3]);
|
||
/// ```
|
||
///
|
||
/// # Errors
|
||
///
|
||
/// This method will return an error if the capacity left (see
|
||
/// [`remaining_capacity`]) is smaller then the length of the provided
|
||
/// slice.
|
||
///
|
||
/// [`remaining_capacity`]: #method.remaining_capacity
|
||
pub fn try_extend_from_slice(&mut self, other: &[A::Item]) -> Result<(), CapacityError>
|
||
where A::Item: Copy,
|
||
{
|
||
if self.remaining_capacity() < other.len() {
|
||
return Err(CapacityError::new(()));
|
||
}
|
||
|
||
let self_len = self.len();
|
||
let other_len = other.len();
|
||
|
||
unsafe {
|
||
let dst = self.xs.ptr_mut().add(self_len);
|
||
ptr::copy_nonoverlapping(other.as_ptr(), dst, other_len);
|
||
self.set_len(self_len + other_len);
|
||
}
|
||
Ok(())
|
||
}
|
||
|
||
/// Create a draining iterator that removes the specified range in the vector
|
||
/// and yields the removed items from start to end. The element range is
|
||
/// removed even if the iterator is not consumed until the end.
|
||
///
|
||
/// Note: It is unspecified how many elements are removed from the vector,
|
||
/// if the `Drain` value is leaked.
|
||
///
|
||
/// **Panics** if the starting point is greater than the end point or if
|
||
/// the end point is greater than the length of the vector.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut v = ArrayVec::from([1, 2, 3]);
|
||
/// let u: ArrayVec<[_; 3]> = v.drain(0..2).collect();
|
||
/// assert_eq!(&v[..], &[3]);
|
||
/// assert_eq!(&u[..], &[1, 2]);
|
||
/// ```
|
||
pub fn drain<R>(&mut self, range: R) -> Drain<A>
|
||
where R: RangeBounds<usize>
|
||
{
|
||
// Memory safety
|
||
//
|
||
// When the Drain is first created, it shortens the length of
|
||
// the source vector to make sure no uninitialized or moved-from elements
|
||
// are accessible at all if the Drain's destructor never gets to run.
|
||
//
|
||
// Drain will ptr::read out the values to remove.
|
||
// When finished, remaining tail of the vec is copied back to cover
|
||
// the hole, and the vector length is restored to the new length.
|
||
//
|
||
let len = self.len();
|
||
let start = match range.start_bound() {
|
||
Bound::Unbounded => 0,
|
||
Bound::Included(&i) => i,
|
||
Bound::Excluded(&i) => i.saturating_add(1),
|
||
};
|
||
let end = match range.end_bound() {
|
||
Bound::Excluded(&j) => j,
|
||
Bound::Included(&j) => j.saturating_add(1),
|
||
Bound::Unbounded => len,
|
||
};
|
||
self.drain_range(start, end)
|
||
}
|
||
|
||
fn drain_range(&mut self, start: usize, end: usize) -> Drain<A>
|
||
{
|
||
let len = self.len();
|
||
|
||
// bounds check happens here (before length is changed!)
|
||
let range_slice: *const _ = &self[start..end];
|
||
|
||
// Calling `set_len` creates a fresh and thus unique mutable references, making all
|
||
// older aliases we created invalid. So we cannot call that function.
|
||
self.len = Index::from(start);
|
||
|
||
unsafe {
|
||
Drain {
|
||
tail_start: end,
|
||
tail_len: len - end,
|
||
iter: (*range_slice).iter(),
|
||
vec: self as *mut _,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Return the inner fixed size array, if it is full to its capacity.
|
||
///
|
||
/// Return an `Ok` value with the array if length equals capacity,
|
||
/// return an `Err` with self otherwise.
|
||
pub fn into_inner(self) -> Result<A, Self> {
|
||
if self.len() < self.capacity() {
|
||
Err(self)
|
||
} else {
|
||
unsafe {
|
||
let array = ptr::read(self.xs.ptr() as *const A);
|
||
mem::forget(self);
|
||
Ok(array)
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Dispose of `self` (same as drop)
|
||
#[deprecated="Use std::mem::drop instead, if at all needed."]
|
||
pub fn dispose(mut self) {
|
||
self.clear();
|
||
mem::forget(self);
|
||
}
|
||
|
||
/// Return a slice containing all elements of the vector.
|
||
pub fn as_slice(&self) -> &[A::Item] {
|
||
self
|
||
}
|
||
|
||
/// Return a mutable slice containing all elements of the vector.
|
||
pub fn as_mut_slice(&mut self) -> &mut [A::Item] {
|
||
self
|
||
}
|
||
|
||
/// Return a raw pointer to the vector's buffer.
|
||
pub fn as_ptr(&self) -> *const A::Item {
|
||
self.xs.ptr()
|
||
}
|
||
|
||
/// Return a raw mutable pointer to the vector's buffer.
|
||
pub fn as_mut_ptr(&mut self) -> *mut A::Item {
|
||
self.xs.ptr_mut()
|
||
}
|
||
}
|
||
|
||
impl<A: Array> Deref for ArrayVec<A> {
|
||
type Target = [A::Item];
|
||
#[inline]
|
||
fn deref(&self) -> &[A::Item] {
|
||
unsafe {
|
||
slice::from_raw_parts(self.xs.ptr(), self.len())
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<A: Array> DerefMut for ArrayVec<A> {
|
||
#[inline]
|
||
fn deref_mut(&mut self) -> &mut [A::Item] {
|
||
let len = self.len();
|
||
unsafe {
|
||
slice::from_raw_parts_mut(self.xs.ptr_mut(), len)
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Create an `ArrayVec` from an array.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut array = ArrayVec::from([1, 2, 3]);
|
||
/// assert_eq!(array.len(), 3);
|
||
/// assert_eq!(array.capacity(), 3);
|
||
/// ```
|
||
impl<A: Array> From<A> for ArrayVec<A> {
|
||
fn from(array: A) -> Self {
|
||
ArrayVec { xs: MaybeUninit::from(array), len: Index::from(A::CAPACITY) }
|
||
}
|
||
}
|
||
|
||
|
||
/// Try to create an `ArrayVec` from a slice. This will return an error if the slice was too big to
|
||
/// fit.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
/// use std::convert::TryInto as _;
|
||
///
|
||
/// let array: ArrayVec<[_; 4]> = (&[1, 2, 3] as &[_]).try_into().unwrap();
|
||
/// assert_eq!(array.len(), 3);
|
||
/// assert_eq!(array.capacity(), 4);
|
||
/// ```
|
||
impl<A: Array> std::convert::TryFrom<&[A::Item]> for ArrayVec<A>
|
||
where
|
||
A::Item: Clone,
|
||
{
|
||
type Error = CapacityError;
|
||
|
||
fn try_from(slice: &[A::Item]) -> Result<Self, Self::Error> {
|
||
if A::CAPACITY < slice.len() {
|
||
Err(CapacityError::new(()))
|
||
} else {
|
||
let mut array = Self::new();
|
||
array.extend(slice.iter().cloned());
|
||
Ok(array)
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/// Iterate the `ArrayVec` with references to each element.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let array = ArrayVec::from([1, 2, 3]);
|
||
///
|
||
/// for elt in &array {
|
||
/// // ...
|
||
/// }
|
||
/// ```
|
||
impl<'a, A: Array> IntoIterator for &'a ArrayVec<A> {
|
||
type Item = &'a A::Item;
|
||
type IntoIter = slice::Iter<'a, A::Item>;
|
||
fn into_iter(self) -> Self::IntoIter { self.iter() }
|
||
}
|
||
|
||
/// Iterate the `ArrayVec` with mutable references to each element.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// let mut array = ArrayVec::from([1, 2, 3]);
|
||
///
|
||
/// for elt in &mut array {
|
||
/// // ...
|
||
/// }
|
||
/// ```
|
||
impl<'a, A: Array> IntoIterator for &'a mut ArrayVec<A> {
|
||
type Item = &'a mut A::Item;
|
||
type IntoIter = slice::IterMut<'a, A::Item>;
|
||
fn into_iter(self) -> Self::IntoIter { self.iter_mut() }
|
||
}
|
||
|
||
/// Iterate the `ArrayVec` with each element by value.
|
||
///
|
||
/// The vector is consumed by this operation.
|
||
///
|
||
/// ```
|
||
/// use arrayvec::ArrayVec;
|
||
///
|
||
/// for elt in ArrayVec::from([1, 2, 3]) {
|
||
/// // ...
|
||
/// }
|
||
/// ```
|
||
impl<A: Array> IntoIterator for ArrayVec<A> {
|
||
type Item = A::Item;
|
||
type IntoIter = IntoIter<A>;
|
||
fn into_iter(self) -> IntoIter<A> {
|
||
IntoIter { index: Index::from(0), v: self, }
|
||
}
|
||
}
|
||
|
||
|
||
/// By-value iterator for `ArrayVec`.
|
||
pub struct IntoIter<A: Array> {
|
||
index: A::Index,
|
||
v: ArrayVec<A>,
|
||
}
|
||
|
||
impl<A: Array> Iterator for IntoIter<A> {
|
||
type Item = A::Item;
|
||
|
||
fn next(&mut self) -> Option<A::Item> {
|
||
if self.index == self.v.len {
|
||
None
|
||
} else {
|
||
unsafe {
|
||
let index = self.index.to_usize();
|
||
self.index = Index::from(index + 1);
|
||
Some(ptr::read(self.v.get_unchecked_ptr(index)))
|
||
}
|
||
}
|
||
}
|
||
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
let len = self.v.len() - self.index.to_usize();
|
||
(len, Some(len))
|
||
}
|
||
}
|
||
|
||
impl<A: Array> DoubleEndedIterator for IntoIter<A> {
|
||
fn next_back(&mut self) -> Option<A::Item> {
|
||
if self.index == self.v.len {
|
||
None
|
||
} else {
|
||
unsafe {
|
||
let new_len = self.v.len() - 1;
|
||
self.v.set_len(new_len);
|
||
Some(ptr::read(self.v.get_unchecked_ptr(new_len)))
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<A: Array> ExactSizeIterator for IntoIter<A> { }
|
||
|
||
impl<A: Array> Drop for IntoIter<A> {
|
||
fn drop(&mut self) {
|
||
// panic safety: Set length to 0 before dropping elements.
|
||
let index = self.index.to_usize();
|
||
let len = self.v.len();
|
||
unsafe {
|
||
self.v.set_len(0);
|
||
let elements = slice::from_raw_parts_mut(
|
||
self.v.get_unchecked_ptr(index),
|
||
len - index);
|
||
ptr::drop_in_place(elements);
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<A: Array> Clone for IntoIter<A>
|
||
where
|
||
A::Item: Clone,
|
||
{
|
||
fn clone(&self) -> IntoIter<A> {
|
||
self.v[self.index.to_usize()..]
|
||
.iter()
|
||
.cloned()
|
||
.collect::<ArrayVec<A>>()
|
||
.into_iter()
|
||
}
|
||
}
|
||
|
||
impl<A: Array> fmt::Debug for IntoIter<A>
|
||
where
|
||
A::Item: fmt::Debug,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
f.debug_list()
|
||
.entries(&self.v[self.index.to_usize()..])
|
||
.finish()
|
||
}
|
||
}
|
||
|
||
/// A draining iterator for `ArrayVec`.
|
||
pub struct Drain<'a, A>
|
||
where A: Array,
|
||
A::Item: 'a,
|
||
{
|
||
/// Index of tail to preserve
|
||
tail_start: usize,
|
||
/// Length of tail
|
||
tail_len: usize,
|
||
/// Current remaining range to remove
|
||
iter: slice::Iter<'a, A::Item>,
|
||
vec: *mut ArrayVec<A>,
|
||
}
|
||
|
||
unsafe impl<'a, A: Array + Sync> Sync for Drain<'a, A> {}
|
||
unsafe impl<'a, A: Array + Send> Send for Drain<'a, A> {}
|
||
|
||
impl<'a, A: Array> Iterator for Drain<'a, A>
|
||
where A::Item: 'a,
|
||
{
|
||
type Item = A::Item;
|
||
|
||
fn next(&mut self) -> Option<Self::Item> {
|
||
self.iter.next().map(|elt|
|
||
unsafe {
|
||
ptr::read(elt as *const _)
|
||
}
|
||
)
|
||
}
|
||
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
self.iter.size_hint()
|
||
}
|
||
}
|
||
|
||
impl<'a, A: Array> DoubleEndedIterator for Drain<'a, A>
|
||
where A::Item: 'a,
|
||
{
|
||
fn next_back(&mut self) -> Option<Self::Item> {
|
||
self.iter.next_back().map(|elt|
|
||
unsafe {
|
||
ptr::read(elt as *const _)
|
||
}
|
||
)
|
||
}
|
||
}
|
||
|
||
impl<'a, A: Array> ExactSizeIterator for Drain<'a, A> where A::Item: 'a {}
|
||
|
||
impl<'a, A: Array> Drop for Drain<'a, A>
|
||
where A::Item: 'a
|
||
{
|
||
fn drop(&mut self) {
|
||
// len is currently 0 so panicking while dropping will not cause a double drop.
|
||
|
||
// exhaust self first
|
||
while let Some(_) = self.next() { }
|
||
|
||
if self.tail_len > 0 {
|
||
unsafe {
|
||
let source_vec = &mut *self.vec;
|
||
// memmove back untouched tail, update to new length
|
||
let start = source_vec.len();
|
||
let tail = self.tail_start;
|
||
let src = source_vec.as_ptr().add(tail);
|
||
let dst = source_vec.as_mut_ptr().add(start);
|
||
ptr::copy(src, dst, self.tail_len);
|
||
source_vec.set_len(start + self.tail_len);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
struct ScopeExitGuard<T, Data, F>
|
||
where F: FnMut(&Data, &mut T)
|
||
{
|
||
value: T,
|
||
data: Data,
|
||
f: F,
|
||
}
|
||
|
||
impl<T, Data, F> Drop for ScopeExitGuard<T, Data, F>
|
||
where F: FnMut(&Data, &mut T)
|
||
{
|
||
fn drop(&mut self) {
|
||
(self.f)(&self.data, &mut self.value)
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/// Extend the `ArrayVec` with an iterator.
|
||
///
|
||
/// Does not extract more items than there is space for. No error
|
||
/// occurs if there are more iterator elements.
|
||
impl<A: Array> Extend<A::Item> for ArrayVec<A> {
|
||
fn extend<T: IntoIterator<Item=A::Item>>(&mut self, iter: T) {
|
||
let take = self.capacity() - self.len();
|
||
unsafe {
|
||
let len = self.len();
|
||
let mut ptr = raw_ptr_add(self.as_mut_ptr(), len);
|
||
let end_ptr = raw_ptr_add(ptr, take);
|
||
// Keep the length in a separate variable, write it back on scope
|
||
// exit. To help the compiler with alias analysis and stuff.
|
||
// We update the length to handle panic in the iteration of the
|
||
// user's iterator, without dropping any elements on the floor.
|
||
let mut guard = ScopeExitGuard {
|
||
value: &mut self.len,
|
||
data: len,
|
||
f: move |&len, self_len| {
|
||
**self_len = Index::from(len);
|
||
}
|
||
};
|
||
let mut iter = iter.into_iter();
|
||
loop {
|
||
if ptr == end_ptr { break; }
|
||
if let Some(elt) = iter.next() {
|
||
raw_ptr_write(ptr, elt);
|
||
ptr = raw_ptr_add(ptr, 1);
|
||
guard.data += 1;
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Rawptr add but uses arithmetic distance for ZST
|
||
unsafe fn raw_ptr_add<T>(ptr: *mut T, offset: usize) -> *mut T {
|
||
if mem::size_of::<T>() == 0 {
|
||
// Special case for ZST
|
||
(ptr as usize).wrapping_add(offset) as _
|
||
} else {
|
||
ptr.add(offset)
|
||
}
|
||
}
|
||
|
||
unsafe fn raw_ptr_write<T>(ptr: *mut T, value: T) {
|
||
if mem::size_of::<T>() == 0 {
|
||
/* nothing */
|
||
} else {
|
||
ptr::write(ptr, value)
|
||
}
|
||
}
|
||
|
||
/// Create an `ArrayVec` from an iterator.
|
||
///
|
||
/// Does not extract more items than there is space for. No error
|
||
/// occurs if there are more iterator elements.
|
||
impl<A: Array> iter::FromIterator<A::Item> for ArrayVec<A> {
|
||
fn from_iter<T: IntoIterator<Item=A::Item>>(iter: T) -> Self {
|
||
let mut array = ArrayVec::new();
|
||
array.extend(iter);
|
||
array
|
||
}
|
||
}
|
||
|
||
impl<A: Array> Clone for ArrayVec<A>
|
||
where A::Item: Clone
|
||
{
|
||
fn clone(&self) -> Self {
|
||
self.iter().cloned().collect()
|
||
}
|
||
|
||
fn clone_from(&mut self, rhs: &Self) {
|
||
// recursive case for the common prefix
|
||
let prefix = cmp::min(self.len(), rhs.len());
|
||
self[..prefix].clone_from_slice(&rhs[..prefix]);
|
||
|
||
if prefix < self.len() {
|
||
// rhs was shorter
|
||
for _ in 0..self.len() - prefix {
|
||
self.pop();
|
||
}
|
||
} else {
|
||
let rhs_elems = rhs[self.len()..].iter().cloned();
|
||
self.extend(rhs_elems);
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<A: Array> Hash for ArrayVec<A>
|
||
where A::Item: Hash
|
||
{
|
||
fn hash<H: Hasher>(&self, state: &mut H) {
|
||
Hash::hash(&**self, state)
|
||
}
|
||
}
|
||
|
||
impl<A: Array> PartialEq for ArrayVec<A>
|
||
where A::Item: PartialEq
|
||
{
|
||
fn eq(&self, other: &Self) -> bool {
|
||
**self == **other
|
||
}
|
||
}
|
||
|
||
impl<A: Array> PartialEq<[A::Item]> for ArrayVec<A>
|
||
where A::Item: PartialEq
|
||
{
|
||
fn eq(&self, other: &[A::Item]) -> bool {
|
||
**self == *other
|
||
}
|
||
}
|
||
|
||
impl<A: Array> Eq for ArrayVec<A> where A::Item: Eq { }
|
||
|
||
impl<A: Array> Borrow<[A::Item]> for ArrayVec<A> {
|
||
fn borrow(&self) -> &[A::Item] { self }
|
||
}
|
||
|
||
impl<A: Array> BorrowMut<[A::Item]> for ArrayVec<A> {
|
||
fn borrow_mut(&mut self) -> &mut [A::Item] { self }
|
||
}
|
||
|
||
impl<A: Array> AsRef<[A::Item]> for ArrayVec<A> {
|
||
fn as_ref(&self) -> &[A::Item] { self }
|
||
}
|
||
|
||
impl<A: Array> AsMut<[A::Item]> for ArrayVec<A> {
|
||
fn as_mut(&mut self) -> &mut [A::Item] { self }
|
||
}
|
||
|
||
impl<A: Array> fmt::Debug for ArrayVec<A> where A::Item: fmt::Debug {
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { (**self).fmt(f) }
|
||
}
|
||
|
||
impl<A: Array> Default for ArrayVec<A> {
|
||
/// Return an empty array
|
||
fn default() -> ArrayVec<A> {
|
||
ArrayVec::new()
|
||
}
|
||
}
|
||
|
||
impl<A: Array> PartialOrd for ArrayVec<A> where A::Item: PartialOrd {
|
||
fn partial_cmp(&self, other: &ArrayVec<A>) -> Option<cmp::Ordering> {
|
||
(**self).partial_cmp(other)
|
||
}
|
||
|
||
fn lt(&self, other: &Self) -> bool {
|
||
(**self).lt(other)
|
||
}
|
||
|
||
fn le(&self, other: &Self) -> bool {
|
||
(**self).le(other)
|
||
}
|
||
|
||
fn ge(&self, other: &Self) -> bool {
|
||
(**self).ge(other)
|
||
}
|
||
|
||
fn gt(&self, other: &Self) -> bool {
|
||
(**self).gt(other)
|
||
}
|
||
}
|
||
|
||
impl<A: Array> Ord for ArrayVec<A> where A::Item: Ord {
|
||
fn cmp(&self, other: &ArrayVec<A>) -> cmp::Ordering {
|
||
(**self).cmp(other)
|
||
}
|
||
}
|
||
|
||
#[cfg(feature="std")]
|
||
/// `Write` appends written data to the end of the vector.
|
||
///
|
||
/// Requires `features="std"`.
|
||
impl<A: Array<Item=u8>> io::Write for ArrayVec<A> {
|
||
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
|
||
let len = cmp::min(self.remaining_capacity(), data.len());
|
||
let _result = self.try_extend_from_slice(&data[..len]);
|
||
debug_assert!(_result.is_ok());
|
||
Ok(len)
|
||
}
|
||
fn flush(&mut self) -> io::Result<()> { Ok(()) }
|
||
}
|
||
|
||
#[cfg(feature="serde")]
|
||
/// Requires crate feature `"serde"`
|
||
impl<T: Serialize, A: Array<Item=T>> Serialize for ArrayVec<A> {
|
||
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||
where S: Serializer
|
||
{
|
||
serializer.collect_seq(self)
|
||
}
|
||
}
|
||
|
||
#[cfg(feature="serde")]
|
||
/// Requires crate feature `"serde"`
|
||
impl<'de, T: Deserialize<'de>, A: Array<Item=T>> Deserialize<'de> for ArrayVec<A> {
|
||
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
||
where D: Deserializer<'de>
|
||
{
|
||
use serde::de::{Visitor, SeqAccess, Error};
|
||
use std::marker::PhantomData;
|
||
|
||
struct ArrayVecVisitor<'de, T: Deserialize<'de>, A: Array<Item=T>>(PhantomData<(&'de (), T, A)>);
|
||
|
||
impl<'de, T: Deserialize<'de>, A: Array<Item=T>> Visitor<'de> for ArrayVecVisitor<'de, T, A> {
|
||
type Value = ArrayVec<A>;
|
||
|
||
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
|
||
write!(formatter, "an array with no more than {} items", A::CAPACITY)
|
||
}
|
||
|
||
fn visit_seq<SA>(self, mut seq: SA) -> Result<Self::Value, SA::Error>
|
||
where SA: SeqAccess<'de>,
|
||
{
|
||
let mut values = ArrayVec::<A>::new();
|
||
|
||
while let Some(value) = seq.next_element()? {
|
||
if let Err(_) = values.try_push(value) {
|
||
return Err(SA::Error::invalid_length(A::CAPACITY + 1, &self));
|
||
}
|
||
}
|
||
|
||
Ok(values)
|
||
}
|
||
}
|
||
|
||
deserializer.deserialize_seq(ArrayVecVisitor::<T, A>(PhantomData))
|
||
}
|
||
}
|