rustc/vendor/regex-automata/tests/hybrid/api.rs
2023-07-05 13:41:24 +02:00

196 lines
6.7 KiB
Rust

use std::error::Error;
use regex_automata::{
hybrid::{
dfa::{self, DFA},
regex::Regex,
OverlappingState,
},
nfa::thompson,
HalfMatch, MatchError, MatchKind, MultiMatch,
};
use crate::util::{BunkPrefilter, SubstringPrefilter};
// Tests that too many cache resets cause the lazy DFA to quit.
//
// We only test this on 64-bit because the test is gingerly crafted based on
// implementation details of cache sizes. It's not a great test because of
// that, but it does check some interesting properties around how positions are
// reported when a search "gives up."
#[test]
#[cfg(target_pointer_width = "64")]
fn too_many_cache_resets_cause_quit() -> Result<(), Box<dyn Error>> {
// This is a carefully chosen regex. The idea is to pick one that requires
// some decent number of states (hence the bounded repetition). But we
// specifically choose to create a class with an ASCII letter and a
// non-ASCII letter so that we can check that no new states are created
// once the cache is full. Namely, if we fill up the cache on a haystack
// of 'a's, then in order to match one 'β', a new state will need to be
// created since a 'β' is encoded with multiple bytes. Since there's no
// room for this state, the search should quit at the very first position.
let pattern = r"[aβ]{100}";
let dfa = DFA::builder()
.configure(
// Configure it so that we have the minimum cache capacity
// possible. And that if any resets occur, the search quits.
DFA::config()
.skip_cache_capacity_check(true)
.cache_capacity(0)
.minimum_cache_clear_count(Some(0)),
)
.build(pattern)?;
let mut cache = dfa.create_cache();
let haystack = "a".repeat(101).into_bytes();
let err = MatchError::GaveUp { offset: 25 };
assert_eq!(dfa.find_earliest_fwd(&mut cache, &haystack), Err(err.clone()));
assert_eq!(dfa.find_leftmost_fwd(&mut cache, &haystack), Err(err.clone()));
assert_eq!(
dfa.find_overlapping_fwd(
&mut cache,
&haystack,
&mut OverlappingState::start()
),
Err(err.clone())
);
let haystack = "β".repeat(101).into_bytes();
let err = MatchError::GaveUp { offset: 0 };
assert_eq!(dfa.find_earliest_fwd(&mut cache, &haystack), Err(err));
// no need to test that other find routines quit, since we did that above
// OK, if we reset the cache, then we should be able to create more states
// and make more progress with searching for betas.
cache.reset(&dfa);
let err = MatchError::GaveUp { offset: 26 };
assert_eq!(dfa.find_earliest_fwd(&mut cache, &haystack), Err(err));
// ... switching back to ASCII still makes progress since it just needs to
// set transitions on existing states!
let haystack = "a".repeat(101).into_bytes();
let err = MatchError::GaveUp { offset: 13 };
assert_eq!(dfa.find_earliest_fwd(&mut cache, &haystack), Err(err));
Ok(())
}
// Tests that quit bytes in the forward direction work correctly.
#[test]
fn quit_fwd() -> Result<(), Box<dyn Error>> {
let dfa = DFA::builder()
.configure(DFA::config().quit(b'x', true))
.build("[[:word:]]+$")?;
let mut cache = dfa.create_cache();
assert_eq!(
dfa.find_earliest_fwd(&mut cache, b"abcxyz"),
Err(MatchError::Quit { byte: b'x', offset: 3 })
);
assert_eq!(
dfa.find_leftmost_fwd(&mut cache, b"abcxyz"),
Err(MatchError::Quit { byte: b'x', offset: 3 })
);
assert_eq!(
dfa.find_overlapping_fwd(
&mut cache,
b"abcxyz",
&mut OverlappingState::start()
),
Err(MatchError::Quit { byte: b'x', offset: 3 })
);
Ok(())
}
// Tests that quit bytes in the reverse direction work correctly.
#[test]
fn quit_rev() -> Result<(), Box<dyn Error>> {
let dfa = DFA::builder()
.configure(DFA::config().quit(b'x', true))
.thompson(thompson::Config::new().reverse(true))
.build("^[[:word:]]+")?;
let mut cache = dfa.create_cache();
assert_eq!(
dfa.find_earliest_rev(&mut cache, b"abcxyz"),
Err(MatchError::Quit { byte: b'x', offset: 3 })
);
assert_eq!(
dfa.find_leftmost_rev(&mut cache, b"abcxyz"),
Err(MatchError::Quit { byte: b'x', offset: 3 })
);
Ok(())
}
// Tests that if we heuristically enable Unicode word boundaries but then
// instruct that a non-ASCII byte should NOT be a quit byte, then the builder
// will panic.
#[test]
#[should_panic]
fn quit_panics() {
DFA::config().unicode_word_boundary(true).quit(b'\xFF', false);
}
// This tests an intesting case where even if the Unicode word boundary option
// is disabled, setting all non-ASCII bytes to be quit bytes will cause Unicode
// word boundaries to be enabled.
#[test]
fn unicode_word_implicitly_works() -> Result<(), Box<dyn Error>> {
let mut config = DFA::config();
for b in 0x80..=0xFF {
config = config.quit(b, true);
}
let dfa = DFA::builder().configure(config).build(r"\b")?;
let mut cache = dfa.create_cache();
let expected = HalfMatch::must(0, 1);
assert_eq!(dfa.find_leftmost_fwd(&mut cache, b" a"), Ok(Some(expected)));
Ok(())
}
// Tests that we can provide a prefilter to a Regex, and the search reports
// correct results.
#[test]
fn prefilter_works() -> Result<(), Box<dyn Error>> {
let mut re = Regex::new(r"a[0-9]+").unwrap();
re.set_prefilter(Some(Box::new(SubstringPrefilter::new("a"))));
let mut cache = re.create_cache();
let text = b"foo abc foo a1a2a3 foo a123 bar aa456";
let matches: Vec<(usize, usize)> = re
.find_leftmost_iter(&mut cache, text)
.map(|m| (m.start(), m.end()))
.collect();
assert_eq!(
matches,
vec![(12, 14), (14, 16), (16, 18), (23, 27), (33, 37),]
);
Ok(())
}
// This test confirms that a prefilter is active by using a prefilter that
// reports false negatives.
#[test]
fn prefilter_is_active() -> Result<(), Box<dyn Error>> {
let text = b"za123";
let mut re = Regex::new(r"a[0-9]+").unwrap();
let mut cache = re.create_cache();
re.set_prefilter(Some(Box::new(SubstringPrefilter::new("a"))));
assert_eq!(
re.find_leftmost(&mut cache, b"za123"),
Some(MultiMatch::must(0, 1, 5))
);
assert_eq!(
re.find_leftmost(&mut cache, b"a123"),
Some(MultiMatch::must(0, 0, 4))
);
re.set_prefilter(Some(Box::new(BunkPrefilter::new())));
assert_eq!(re.find_leftmost(&mut cache, b"za123"), None);
// This checks that the prefilter is used when first starting the search,
// instead of waiting until at least one transition has occurred.
assert_eq!(re.find_leftmost(&mut cache, b"a123"), None);
Ok(())
}