Add unsigned 32-bit integers "a" and "b" with unsigned 8-bit carry-in "c_in" (carry or overflow flag), and store the unsigned 32-bit result in "out", and the carry-out in "dst" (carry or overflow flag). tmp[32:0] := a[31:0] + b[31:0] + (c_in > 0 ? 1 : 0) MEM[out+31:out] := tmp[31:0] dst[0] := tmp[32] dst[7:1] := 0 ADX
immintrin.h
Arithmetic
Add unsigned 64-bit integers "a" and "b" with unsigned 8-bit carry-in "c_in" (carry or overflow flag), and store the unsigned 64-bit result in "out", and the carry-out in "dst" (carry or overflow flag). tmp[64:0] := a[63:0] + b[63:0] + (c_in > 0 ? 1 : 0) MEM[out+63:out] := tmp[63:0] dst[0] := tmp[64] dst[7:1] := 0 ADX
immintrin.h
Arithmetic
Perform one round of an AES encryption flow on data (state) in "a" using the round key in "RoundKey", and store the result in "dst"." a[127:0] := ShiftRows(a[127:0]) a[127:0] := SubBytes(a[127:0]) a[127:0] := MixColumns(a[127:0]) dst[127:0] := a[127:0] XOR RoundKey[127:0] AES
wmmintrin.h
Cryptography
Perform the last round of an AES encryption flow on data (state) in "a" using the round key in "RoundKey", and store the result in "dst"." a[127:0] := ShiftRows(a[127:0]) a[127:0] := SubBytes(a[127:0]) dst[127:0] := a[127:0] XOR RoundKey[127:0] AES
wmmintrin.h
Cryptography
Perform one round of an AES decryption flow on data (state) in "a" using the round key in "RoundKey", and store the result in "dst". a[127:0] := InvShiftRows(a[127:0]) a[127:0] := InvSubBytes(a[127:0]) a[127:0] := InvMixColumns(a[127:0]) dst[127:0] := a[127:0] XOR RoundKey[127:0] AES
wmmintrin.h
Cryptography
Perform the last round of an AES decryption flow on data (state) in "a" using the round key in "RoundKey", and store the result in "dst". a[127:0] := InvShiftRows(a[127:0]) a[127:0] := InvSubBytes(a[127:0]) dst[127:0] := a[127:0] XOR RoundKey[127:0] AES
wmmintrin.h
Cryptography
Perform the InvMixColumns transformation on "a" and store the result in "dst". dst[127:0] := InvMixColumns(a[127:0]) AES
wmmintrin.h
Cryptography
Assist in expanding the AES cipher key by computing steps towards generating a round key for encryption cipher using data from "a" and an 8-bit round constant specified in "imm8", and store the result in "dst"." X3[31:0] := a[127:96] X2[31:0] := a[95:64] X1[31:0] := a[63:32] X0[31:0] := a[31:0] RCON[31:0] := ZeroExtend32(imm8[7:0]) dst[31:0] := SubWord(X1) dst[63:32] := RotWord(SubWord(X1)) XOR RCON dst[95:64] := SubWord(X3) dst[127:96] := RotWord(SubWord(X3)) XOR RCON AES
wmmintrin.h
Cryptography
Compute dot-product of BF16 (16-bit) floating-point pairs in tiles "a" and "b", accumulating the intermediate single-precision (32-bit) floating-point elements with elements in "dst", and store the 32-bit result back to tile "dst". FOR m := 0 TO dst.rows - 1 tmp := dst.row[m] FOR k := 0 TO (a.colsb / 4) - 1 FOR n := 0 TO (dst.colsb / 4) - 1 tmp.fp32[n] += FP32(a.row[m].bf16[2*k+0]) * FP32(b.row[k].bf16[2*n+0]) tmp.fp32[n] += FP32(a.row[m].bf16[2*k+1]) * FP32(b.row[k].bf16[2*n+1]) ENDFOR ENDFOR write_row_and_zero(dst, m, tmp, dst.colsb) ENDFOR zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-BF16
immintrin.h
Application-Targeted
Compute dot-product of BF16 (16-bit) floating-point pairs in tiles "src0" and "src1", accumulating the intermediate single-precision (32-bit) floating-point elements with elements in "dst", and store the 32-bit result back to tile "dst". The shape of tile is specified in the struct of __tile1024i. The register of the tile is allocated by compiler. FOR m := 0 TO dst.rows - 1 tmp := dst.row[m] FOR k := 0 TO (src0.colsb / 4) - 1 FOR n := 0 TO (dst.colsb / 4) - 1 tmp.fp32[n] += FP32(src0.row[m].bf16[2*k+0]) * FP32(src1.row[k].bf16[2*n+0]) tmp.fp32[n] += FP32(src0.row[m].bf16[2*k+1]) * FP32(src1.row[k].bf16[2*n+1]) ENDFOR ENDFOR write_row_and_zero(dst, m, tmp, dst.colsb) ENDFOR zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-BF16
immintrin.h
Application-Targeted
Perform matrix multiplication of two tiles containing complex elements and accumulate the results into a packed single precision tile. Each dword element in input tiles "a" and "b" is interpreted as a complex number with FP16 real part and FP16 imaginary part. Calculates the imaginary part of the result. For each possible combination of (row of "a", column of "b"), it performs a set of multiplication and accumulations on all corresponding complex numbers (one from "a" and one from "b"). The imaginary part of the "a" element is multiplied with the real part of the corresponding "b" element, and the real part of the "a" element is multiplied with the imaginary part of the corresponding "b" elements. The two accumulated results are added, and then accumulated into the corresponding row and column of "dst". FOR m := 0 TO dst.rows - 1 tmp := dst.row[m] FOR k := 0 TO (a.colsb / 4) - 1 FOR n := 0 TO (dst.colsb / 4) - 1 tmp.fp32[n] += FP32(a.row[m].fp16[2*k+0]) * FP32(b.row[k].fp16[2*n+1]) tmp.fp32[n] += FP32(a.row[m].fp16[2*k+1]) * FP32(b.row[k].fp16[2*n+0]) ENDFOR ENDFOR write_row_and_zero(dst, m, tmp, dst.colsb) ENDFOR zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-COMPLEX
immintrin.h
Application-Targeted
Perform matrix multiplication of two tiles containing complex elements and accumulate the results into a packed single precision tile. Each dword element in input tiles "a" and "b" is interpreted as a complex number with FP16 real part and FP16 imaginary part. Calculates the real part of the result. For each possible combination of (row of "a", column of "b"), it performs a set of multiplication and accumulations on all corresponding complex numbers (one from "a" and one from "b"). The real part of the "a" element is multiplied with the real part of the corresponding "b" element, and the negated imaginary part of the "a" element is multiplied with the imaginary part of the corresponding "b" elements. The two accumulated results are added, and then accumulated into the corresponding row and column of "dst". FOR m := 0 TO dst.rows - 1 tmp := dst.row[m] FOR k := 0 TO (a.colsb / 4) - 1 FOR n := 0 TO (dst.colsb / 4) - 1 tmp.fp32[n] += FP32(a.row[m].fp16[2*k+0]) * FP32(b.row[k].fp16[2*n+0]) tmp.fp32[n] += FP32(-a.row[m].fp16[2*k+1]) * FP32(b.row[k].fp16[2*n+1]) ENDFOR ENDFOR write_row_and_zero(dst, m, tmp, dst.colsb) ENDFOR zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-COMPLEX
immintrin.h
Application-Targeted
Perform matrix multiplication of two tiles containing complex elements and accumulate the results into a packed single precision tile. Each dword element in input tiles "src0" and "src1" is interpreted as a complex number with FP16 real part and FP16 imaginary part. This function calculates the imaginary part of the result. FOR m := 0 TO dst.rows - 1 tmp := dst.row[m] FOR k := 0 TO (src0.colsb / 4) - 1 FOR n := 0 TO (dst.colsb / 4) - 1 tmp.fp32[n] += FP32(src0.row[m].fp16[2*k+0]) * FP32(src1.row[k].fp16[2*n+1]) tmp.fp32[n] += FP32(src0.row[m].fp16[2*k+1]) * FP32(src1.row[k].fp16[2*n+0]) ENDFOR ENDFOR write_row_and_zero(dst, m, tmp, dst.colsb) ENDFOR zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-COMPLEX
immintrin.h
Application-Targeted
Perform matrix multiplication of two tiles containing complex elements and accumulate the results into a packed single precision tile. Each dword element in input tiles src0 and src1 is interpreted as a complex number with FP16 real part and FP16 imaginary part. This function calculates the real part of the result. FOR m := 0 TO dst.rows - 1 tmp := dst.row[m] FOR k := 0 TO (src0.colsb / 4) - 1 FOR n := 0 TO (dst.colsb / 4) - 1 tmp.fp32[n] += FP32(src0.row[m].fp16[2*k+0]) * FP32(src1.row[k].fp16[2*n+0]) tmp.fp32[n] += FP32(-src0.row[m].fp16[2*k+1]) * FP32(src1.row[k].fp16[2*n+1]) ENDFOR ENDFOR write_row_and_zero(dst, m, tmp, dst.colsb) ENDFOR zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-COMPLEX
immintrin.h
Application-Targeted
Compute dot-product of FP16 (16-bit) floating-point pairs in tiles "a" and "b", accumulating the intermediate single-precision (32-bit) floating-point elements with elements in "dst", and store the 32-bit result back to tile "dst". FOR m := 0 TO dst.rows - 1 tmp := dst.row[m] FOR k := 0 TO (a.colsb / 4) - 1 FOR n := 0 TO (dst.colsb / 4) - 1 tmp.fp32[n] += FP32(a.row[m].fp16[2*k+0]) * FP32(b.row[k].fp16[2*n+0]) tmp.fp32[n] += FP32(a.row[m].fp16[2*k+1]) * FP32(b.row[k].fp16[2*n+1]) ENDFOR ENDFOR write_row_and_zero(dst, m, tmp, dst.colsb) ENDFOR zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-FP16
immintrin.h
Application-Targeted
Compute dot-product of FP16 (16-bit) floating-point pairs in tiles "src0" and "src1", accumulating the intermediate single-precision (32-bit) floating-point elements with elements in "dst", and store the 32-bit result back to tile "dst". The shape of tile is specified in the struct of __tile1024i. The register of the tile is allocated by compiler. FOR m := 0 TO dst.rows - 1 tmp := dst.row[m] FOR k := 0 TO (src0.colsb / 4) - 1 FOR n := 0 TO (dst.colsb / 4) - 1 tmp.fp32[n] += FP32(src0.row[m].fp16[2*k+0]) * FP32(src1.row[k].fp16[2*n+0]) tmp.fp32[n] += FP32(src0.row[m].fp16[2*k+1]) * FP32(src1.row[k].fp16[2*n+1]) ENDFOR ENDFOR write_row_and_zero(dst, m, tmp, dst.colsb) ENDFOR zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-FP16
immintrin.h
Application-Targeted
Compute dot-product of bytes in tiles with a source/destination accumulator. Multiply groups of 4 adjacent pairs of signed 8-bit integers in "a" with corresponding unsigned 8-bit integers in "b", producing 4 intermediate 32-bit results. Sum these 4 results with the corresponding 32-bit integer in "dst", and store the 32-bit result back to tile "dst". DEFINE DPBD(c, x, y) { tmp1 := SignExtend32(x.byte[0]) * ZeroExtend32(y.byte[0]) tmp2 := SignExtend32(x.byte[1]) * ZeroExtend32(y.byte[1]) tmp3 := SignExtend32(x.byte[2]) * ZeroExtend32(y.byte[2]) tmp4 := SignExtend32(x.byte[3]) * ZeroExtend32(y.byte[3]) RETURN c + tmp1 + tmp2 + tmp3 + tmp4 } FOR m := 0 TO dst.rows - 1 tmp := dst.row[m] FOR k := 0 TO (a.colsb / 4) - 1 FOR n := 0 TO (dst.colsb / 4) - 1 tmp.dword[n] := DPBD(tmp.dword[n], a.row[m].dword[k], b.row[k].dword[n]) ENDFOR ENDFOR write_row_and_zero(dst, m, tmp, dst.colsb) ENDFOR zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-INT8
immintrin.h
Application-Targeted
Compute dot-product of bytes in tiles with a source/destination accumulator. Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate 32-bit results. Sum these 4 results with the corresponding 32-bit integer in "dst", and store the 32-bit result back to tile "dst". DEFINE DPBD(c, x, y) { tmp1 := ZeroExtend32(x.byte[0]) * SignExtend32(y.byte[0]) tmp2 := ZeroExtend32(x.byte[1]) * SignExtend32(y.byte[1]) tmp3 := ZeroExtend32(x.byte[2]) * SignExtend32(y.byte[2]) tmp4 := ZeroExtend32(x.byte[3]) * SignExtend32(y.byte[3]) RETURN c + tmp1 + tmp2 + tmp3 + tmp4 } FOR m := 0 TO dst.rows - 1 tmp := dst.row[m] FOR k := 0 TO (a.colsb / 4) - 1 FOR n := 0 TO (dst.colsb / 4) - 1 tmp.dword[n] := DPBD(tmp.dword[n], a.row[m].dword[k], b.row[k].dword[n]) ENDFOR ENDFOR write_row_and_zero(dst, m, tmp, dst.colsb) ENDFOR zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-INT8
immintrin.h
Application-Targeted
Compute dot-product of bytes in tiles with a source/destination accumulator. Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding unsigned 8-bit integers in "b", producing 4 intermediate 32-bit results. Sum these 4 results with the corresponding 32-bit integer in "dst", and store the 32-bit result back to tile "dst". DEFINE DPBD(c, x, y) { tmp1 := ZeroExtend32(x.byte[0]) * ZeroExtend32(y.byte[0]) tmp2 := ZeroExtend32(x.byte[1]) * ZeroExtend32(y.byte[1]) tmp3 := ZeroExtend32(x.byte[2]) * ZeroExtend32(y.byte[2]) tmp4 := ZeroExtend32(x.byte[3]) * ZeroExtend32(y.byte[3]) RETURN c + tmp1 + tmp2 + tmp3 + tmp4 } FOR m := 0 TO dst.rows - 1 tmp := dst.row[m] FOR k := 0 TO (a.colsb / 4) - 1 FOR n := 0 TO (dst.colsb / 4) - 1 tmp.dword[n] := DPBD(tmp.dword[n], a.row[m].dword[k], b.row[k].dword[n]) ENDFOR ENDFOR write_row_and_zero(dst, m, tmp, dst.colsb) ENDFOR zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-INT8
immintrin.h
Application-Targeted
Compute dot-product of bytes in tiles with a source/destination accumulator. Multiply groups of 4 adjacent pairs of signed 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate 32-bit results. Sum these 4 results with the corresponding 32-bit integer in "dst", and store the 32-bit result back to tile "dst". DEFINE DPBD(c, x, y) { tmp1 := SignExtend32(x.byte[0]) * SignExtend32(y.byte[0]) tmp2 := SignExtend32(x.byte[1]) * SignExtend32(y.byte[1]) tmp3 := SignExtend32(x.byte[2]) * SignExtend32(y.byte[2]) tmp4 := SignExtend32(x.byte[3]) * SignExtend32(y.byte[3]) RETURN c + tmp1 + tmp2 + tmp3 + tmp4 } FOR m := 0 TO dst.rows - 1 tmp := dst.row[m] FOR k := 0 TO (a.colsb / 4) - 1 FOR n := 0 TO (dst.colsb / 4) - 1 tmp.dword[n] := DPBD(tmp.dword[n], a.row[m].dword[k], b.row[k].dword[n]) ENDFOR ENDFOR write_row_and_zero(dst, m, tmp, dst.colsb) ENDFOR zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-INT8
immintrin.h
Application-Targeted
Compute dot-product of bytes in tiles with a source/destination accumulator. Multiply groups of 4 adjacent pairs of signed 8-bit integers in "src0" with corresponding signed 8-bit integers in "src1", producing 4 intermediate 32-bit results. Sum these 4 results with the corresponding 32-bit integer in "dst", and store the 32-bit result back to tile "dst". The shape of tile is specified in the struct of __tile1024i. The register of the tile is allocated by compiler. DEFINE DPBD(c, x, y) { tmp1 := SignExtend32(x.byte[0]) * SignExtend32(y.byte[0]) tmp2 := SignExtend32(x.byte[1]) * SignExtend32(y.byte[1]) tmp3 := SignExtend32(x.byte[2]) * SignExtend32(y.byte[2]) tmp4 := SignExtend32(x.byte[3]) * SignExtend32(y.byte[3]) RETURN c + tmp1 + tmp2 + tmp3 + tmp4 } FOR m := 0 TO dst.rows - 1 tmp := dst.row[m] FOR k := 0 TO (src0.colsb / 4) - 1 FOR n := 0 TO (dst.colsb / 4) - 1 tmp.dword[n] := DPBD(tmp.dword[n], src0.row[m].dword[k], src1.row[k].dword[n]) ENDFOR ENDFOR write_row_and_zero(dst, m, tmp, dst.colsb) ENDFOR zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-INT8
immintrin.h
Application-Targeted
Compute dot-product of bytes in tiles with a source/destination accumulator. Multiply groups of 4 adjacent pairs of signed 8-bit integers in "src0" with corresponding unsigned 8-bit integers in "src1", producing 4 intermediate 32-bit results. Sum these 4 results with the corresponding 32-bit integer in "dst", and store the 32-bit result back to tile "dst". The shape of tile is specified in the struct of __tile1024i. The register of the tile is allocated by compiler. DEFINE DPBD(c, x, y) { tmp1 := SignExtend32(x.byte[0]) * ZeroExtend32(y.byte[0]) tmp2 := SignExtend32(x.byte[1]) * ZeroExtend32(y.byte[1]) tmp3 := SignExtend32(x.byte[2]) * ZeroExtend32(y.byte[2]) tmp4 := SignExtend32(x.byte[3]) * ZeroExtend32(y.byte[3]) RETURN c + tmp1 + tmp2 + tmp3 + tmp4 } FOR m := 0 TO dst.rows - 1 tmp := dst.row[m] FOR k := 0 TO (src0.colsb / 4) - 1 FOR n := 0 TO (dst.colsb / 4) - 1 tmp.dword[n] := DPBD(tmp.dword[n], src0.row[m].dword[k], src1.row[k].dword[n]) ENDFOR ENDFOR write_row_and_zero(dst, m, tmp, dst.colsb) ENDFOR zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-INT8
immintrin.h
Application-Targeted
Compute dot-product of bytes in tiles with a source/destination accumulator. Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "src0" with corresponding signed 8-bit integers in "src1", producing 4 intermediate 32-bit results. Sum these 4 results with the corresponding 32-bit integer in "dst", and store the 32-bit result back to tile "dst". The shape of tile is specified in the struct of __tile1024i. The register of the tile is allocated by compiler. DEFINE DPBD(c, x, y) { tmp1 := ZeroExtend32(x.byte[0]) * SignExtend32(y.byte[0]) tmp2 := ZeroExtend32(x.byte[1]) * SignExtend32(y.byte[1]) tmp3 := ZeroExtend32(x.byte[2]) * SignExtend32(y.byte[2]) tmp4 := ZeroExtend32(x.byte[3]) * SignExtend32(y.byte[3]) RETURN c + tmp1 + tmp2 + tmp3 + tmp4 } FOR m := 0 TO dst.rows - 1 tmp := dst.row[m] FOR k := 0 TO (src0.colsb / 4) - 1 FOR n := 0 TO (dst.colsb / 4) - 1 tmp.dword[n] := DPBD(tmp.dword[n], src0.row[m].dword[k], src1.row[k].dword[n]) ENDFOR ENDFOR write_row_and_zero(dst, m, tmp, dst.colsb) ENDFOR zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-INT8
immintrin.h
Application-Targeted
Compute dot-product of bytes in tiles with a source/destination accumulator. Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "src0" with corresponding unsigned 8-bit integers in "src1", producing 4 intermediate 32-bit results. Sum these 4 results with the corresponding 32-bit integer in "dst", and store the 32-bit result back to tile "dst". The shape of tile is specified in the struct of __tile1024i. The register of the tile is allocated by compiler. DEFINE DPBD(c, x, y) { tmp1 := ZeroExtend32(x.byte[0]) * ZeroExtend32(y.byte[0]) tmp2 := ZeroExtend32(x.byte[1]) * ZeroExtend32(y.byte[1]) tmp3 := ZeroExtend32(x.byte[2]) * ZeroExtend32(y.byte[2]) tmp4 := ZeroExtend32(x.byte[3]) * ZeroExtend32(y.byte[3]) RETURN c + tmp1 + tmp2 + tmp3 + tmp4 } FOR m := 0 TO dst.rows - 1 tmp := dst.row[m] FOR k := 0 TO (src0.colsb / 4) - 1 FOR n := 0 TO (dst.colsb / 4) - 1 tmp.dword[n] := DPBD(tmp.dword[n], src0.row[m].dword[k], src1.row[k].dword[n]) ENDFOR ENDFOR write_row_and_zero(dst, m, tmp, dst.colsb) ENDFOR zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-INT8
immintrin.h
Application-Targeted
Load tile configuration from a 64-byte memory location specified by "mem_addr". The tile configuration format is specified below, and includes the tile type pallette, the number of bytes per row, and the number of rows. If the specified pallette_id is zero, that signifies the init state for both the tile config and the tile data, and the tiles are zeroed. Any invalid configurations will result in #GP fault. // format of memory payload. each field is a byte. // 0: palette // 1: start_row // 2-15: reserved, must be zero // 16-17: tile0.colsb // 18-19: tile1.colsb // 20-21: tile2.colsb // ... // 30-31: tile7.colsb // 32-47: reserved, must be zero // 48: tile0.rows // 49: tile1.rows // 50: tile2.rows // ... // 55: tile7.rows // 56-63: reserved, must be zero AMX-TILE
immintrin.h
Application-Targeted
Stores the current tile configuration to a 64-byte memory location specified by "mem_addr". The tile configuration format is specified below, and includes the tile type pallette, the number of bytes per row, and the number of rows. If tiles are not configured, all zeroes will be stored to memory. // format of memory payload. each field is a byte. // 0: palette // 1: start_row // 2-15: reserved, must be zero // 16-17: tile0.colsb // 18-19: tile1.colsb // 20-21: tile2.colsb // ... // 30-31: tile7.colsb // 32-47: reserved, must be zero // 48: tile0.rows // 49: tile1.rows // 50: tile2.rows // ... // 55: tile7.rows // 56-63: reserved, must be zero AMX-TILE
immintrin.h
Application-Targeted
Load tile rows from memory specifieid by "base" address and "stride" into destination tile "dst" using the tile configuration previously configured via "_tile_loadconfig". start := tileconfig.startRow IF start == 0 // not restarting, zero incoming state tilezero(dst) FI nbytes := dst.colsb DO WHILE start < dst.rows memptr := base + start * stride write_row_and_zero(dst, start, read_memory(memptr, nbytes), nbytes) start := start + 1 OD zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-TILE
immintrin.h
Application-Targeted
Load tile rows from memory specifieid by "base" address and "stride" into destination tile "dst" using the tile configuration previously configured via "_tile_loadconfig". This intrinsic provides a hint to the implementation that the data will likely not be reused in the near future and the data caching can be optimized accordingly. start := tileconfig.startRow IF start == 0 // not restarting, zero incoming state tilezero(dst) FI nbytes := dst.colsb DO WHILE start < dst.rows memptr := base + start * stride write_row_and_zero(dst, start, read_memory(memptr, nbytes), nbytes) start := start + 1 OD zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-TILE
immintrin.h
Application-Targeted
Release the tile configuration to return to the init state, which releases all storage it currently holds. AMX-TILE
immintrin.h
Application-Targeted
Store the tile specified by "src" to memory specifieid by "base" address and "stride" using the tile configuration previously configured via "_tile_loadconfig". start := tileconfig.startRow DO WHILE start < src.rows memptr := base + start * stride write_memory(memptr, src.colsb, src.row[start]) start := start + 1 OD zero_tileconfig_start() AMX-TILE
immintrin.h
Application-Targeted
Zero the tile specified by "tdest". nbytes := palette_table[tileconfig.palette_id].bytes_per_row FOR i := 0 TO palette_table[tileconfig.palette_id].max_rows-1 FOR j := 0 TO nbytes-1 tdest.row[i].byte[j] := 0 ENDFOR ENDFOR AMX-TILE
immintrin.h
Application-Targeted
Load tile rows from memory specifieid by "base" address and "stride" into destination tile "dst". The shape of tile is specified in the struct of __tile1024i. The register of the tile is allocated by compiler. start := tileconfig.startRow IF start == 0 // not restarting, zero incoming state tilezero(dst) FI nbytes := dst.colsb DO WHILE start < dst.rows memptr := base + start * stride write_row_and_zero(dst, start, read_memory(memptr, nbytes), nbytes) start := start + 1 OD zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-TILE
immintrin.h
Application-Targeted
Store the tile specified by "src" to memory specifieid by "base" address and "stride". The shape of tile is specified in the struct of __tile1024i. The register of the tile is allocated by compiler. start := tileconfig.startRow DO WHILE start < src.rows memptr := base + start * stride write_memory(memptr, src.colsb, src.row[start]) start := start + 1 OD zero_tileconfig_start() AMX-TILE
immintrin.h
Application-Targeted
Load tile rows from memory specifieid by "base" address and "stride" into destination tile "dst". This intrinsic provides a hint to the implementation that the data will likely not be reused in the near future and the data caching can be optimized accordingly. The shape of tile is specified in the struct of __tile1024i. The register of the tile is allocated by compiler. start := tileconfig.startRow IF start == 0 // not restarting, zero incoming state tilezero(dst) FI nbytes := dst.colsb DO WHILE start < dst.rows memptr := base + start * stride write_row_and_zero(dst, start, read_memory(memptr, nbytes), nbytes) start := start + 1 OD zero_upper_rows(dst, dst.rows) zero_tileconfig_start() AMX-TILE
immintrin.h
Application-Targeted
Zero the tile specified by "dst". The shape of tile is specified in the struct of __tile1024i. The register of the tile is allocated by compiler. nbytes := palette_table[tileconfig.palette_id].bytes_per_row FOR i := 0 TO palette_table[tileconfig.palette_id].max_rows-1 FOR j := 0 TO nbytes-1 tdest.row[i].byte[j] := 0 ENDFOR ENDFOR AMX-TILE
immintrin.h
Application-Targeted
Compute the inverse cosine of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := ACOS(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the inverse cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := ACOS(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the inverse hyperbolic cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := ACOSH(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the inverse hyperbolic cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := ACOSH(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the inverse sine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := ASIN(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the inverse sine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := ASIN(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the inverse hyperbolic sine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := ASINH(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the inverse hyperbolic sine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := ASINH(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the inverse tangent of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := ATAN(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the inverse tangent of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := ATAN(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the inverse tangent of packed double-precision (64-bit) floating-point elements in "a" divided by packed elements in "b", and store the results in "dst" expressed in radians. FOR j := 0 to 3 i := j*64 dst[i+63:i] := ATAN2(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the inverse tangent of packed single-precision (32-bit) floating-point elements in "a" divided by packed elements in "b", and store the results in "dst" expressed in radians. FOR j := 0 to 7 i := j*32 dst[i+31:i] := ATAN2(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the inverse hyperbolic tangent of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := ATANH(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the inverse hyperbolic tangent of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := ATANH(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := COS(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := COS(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := COSD(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := COSD(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the hyperbolic cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := COSH(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the hyperbolic cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := COSH(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the length of the hypotenous of a right triangle, with the lengths of the other two sides of the triangle stored as packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := SQRT(POW(a[i+63:i], 2.0) + POW(b[i+63:i], 2.0)) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the length of the hypotenous of a right triangle, with the lengths of the other two sides of the triangle stored as packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := SQRT(POW(a[i+31:i], 2.0) + POW(b[i+31:i], 2.0)) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the sine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := SIN(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the sine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := SIN(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the sine and cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, store the sine in "dst", and store the cosine into memory at "mem_addr". FOR j := 0 to 3 i := j*64 dst[i+63:i] := SIN(a[i+63:i]) MEM[mem_addr+i+63:mem_addr+i] := COS(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the sine and cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, store the sine in "dst", and store the cosine into memory at "mem_addr". FOR j := 0 to 7 i := j*32 dst[i+31:i] := SIN(a[i+31:i]) MEM[mem_addr+i+31:mem_addr+i] := COS(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the sine of packed double-precision (64-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := SIND(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the sine of packed single-precision (32-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := SIND(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the hyperbolic sine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := SINH(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the hyperbolic sine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := SINH(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the tangent of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := TAN(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the tangent of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := TAN(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the tangent of packed double-precision (64-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := TAND(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the tangent of packed single-precision (32-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := TAND(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the hyperbolic tangent of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := TANH(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the hyperbolic tangent of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := TANH(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Trigonometry
Compute the cube root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := CubeRoot(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the cube root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := CubeRoot(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the exponential value of "e" raised to the power of packed complex numbers in "a", and store the complex results in "dst". Each complex number is composed of two adjacent single-precision (32-bit) floating-point elements, which defines the complex number "complex = vec.fp32[0] + i * vec.fp32[1]". DEFINE CEXP(a[31:0], b[31:0]) { result[31:0] := POW(FP32(e), a[31:0]) * COS(b[31:0]) result[63:32] := POW(FP32(e), a[31:0]) * SIN(b[31:0]) RETURN result } FOR j := 0 to 3 i := j*64 dst[i+63:i] := CEXP(a[i+31:i], a[i+63:i+32]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the natural logarithm of packed complex numbers in "a", and store the complex results in "dst". Each complex number is composed of two adjacent single-precision (32-bit) floating-point elements, which defines the complex number "complex = vec.fp32[0] + i * vec.fp32[1]". DEFINE CLOG(a[31:0], b[31:0]) { result[31:0] := LOG(SQRT(POW(a, 2.0) + POW(b, 2.0))) result[63:32] := ATAN2(b, a) RETURN result } FOR j := 0 to 3 i := j*64 dst[i+63:i] := CLOG(a[i+31:i], a[i+63:i+32]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the square root of packed complex snumbers in "a", and store the complex results in "dst". Each complex number is composed of two adjacent single-precision (32-bit) floating-point elements, which defines the complex number "complex = vec.fp32[0] + i * vec.fp32[1]". DEFINE CSQRT(a[31:0], b[31:0]) { sign[31:0] := (b < 0.0) ? -FP32(1.0) : FP32(1.0) result[31:0] := SQRT((a + SQRT(POW(a, 2.0) + POW(b, 2.0))) / 2.0) result[63:32] := sign * SQRT((-a + SQRT(POW(a, 2.0) + POW(b, 2.0))) / 2.0) RETURN result } FOR j := 0 to 3 i := j*64 dst[i+63:i] := CSQRT(a[i+31:i], a[i+63:i+32]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the exponential value of "e" raised to the power of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := POW(e, a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the exponential value of "e" raised to the power of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := POW(FP32(e), a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the exponential value of 10 raised to the power of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := POW(10.0, a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the exponential value of 10 raised to the power of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := POW(FP32(10.0), a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the exponential value of 2 raised to the power of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := POW(2.0, a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the exponential value of 2 raised to the power of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := POW(FP32(2.0), a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the exponential value of "e" raised to the power of packed double-precision (64-bit) floating-point elements in "a", subtract one from each element, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := POW(e, a[i+63:i]) - 1.0 ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the exponential value of "e" raised to the power of packed single-precision (32-bit) floating-point elements in "a", subtract one from each element, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := POW(FP32(e), a[i+31:i]) - 1.0 ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the inverse cube root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := InvCubeRoot(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the inverse cube root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := InvCubeRoot(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the inverse square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := InvSQRT(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the inverse square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := InvSQRT(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the natural logarithm of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := LOG(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the natural logarithm of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := LOG(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the base-10 logarithm of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := LOG(a[i+63:i]) / LOG(10.0) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the base-10 logarithm of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := LOG(a[i+31:i]) / LOG(10.0) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the natural logarithm of one plus packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := LOG(1.0 + a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the natural logarithm of one plus packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := LOG(1.0 + a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the base-2 logarithm of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := LOG(a[i+63:i]) / LOG(2.0) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the base-2 logarithm of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := LOG(a[i+31:i]) / LOG(2.0) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Convert the exponent of each packed double-precision (64-bit) floating-point element in "a" to a double-precision floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 3 i := j*64 dst[i+63:i] := ConvertExpFP64(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Convert the exponent of each packed single-precision (32-bit) floating-point element in "a" to a single-precision floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 7 i := j*32 dst[i+31:i] := ConvertExpFP32(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the exponential value of packed double-precision (64-bit) floating-point elements in "a" raised by packed elements in "b", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := POW(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the exponential value of packed single-precision (32-bit) floating-point elements in "a" raised by packed elements in "b", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := POW(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". Note that this intrinsic is less efficient than "_mm_sqrt_pd". FOR j := 0 to 3 i := j*64 dst[i+63:i] := SQRT(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". Note that this intrinsic is less efficient than "_mm_sqrt_ps". FOR j := 0 to 7 i := j*32 dst[i+31:i] := SQRT(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the cumulative distribution function of packed double-precision (64-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := CDFNormal(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Probability/Statistics
Compute the cumulative distribution function of packed single-precision (32-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := CDFNormal(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Probability/Statistics
Compute the inverse cumulative distribution function of packed double-precision (64-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := InverseCDFNormal(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Probability/Statistics
Compute the inverse cumulative distribution function of packed single-precision (32-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := InverseCDFNormal(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Probability/Statistics
Compute the error function of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := ERF(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Probability/Statistics
Compute the error function of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := ERF(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Probability/Statistics
Compute the complementary error function of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := 1.0 - ERF(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Probability/Statistics
Compute the complementary error function of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+63:i] := 1.0 - ERF(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Probability/Statistics
Compute the inverse complementary error function of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := 1.0 / (1.0 - ERF(a[i+63:i])) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Probability/Statistics
Compute the inverse complementary error function of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+63:i] := 1.0 / (1.0 - ERF(a[i+31:i])) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Probability/Statistics
Compute the inverse error function of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := 1.0 / ERF(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Probability/Statistics
Compute the inverse error function of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+63:i] := 1.0 / ERF(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Probability/Statistics
Divide packed signed 8-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 31 i := 8*j IF b[i+7:i] == 0 #DE FI dst[i+7:i] := Truncate8(a[i+7:i] / b[i+7:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed signed 16-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 15 i := 16*j IF b[i+15:i] == 0 #DE FI dst[i+15:i] := Truncate16(a[i+15:i] / b[i+15:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed signed 32-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 7 i := 32*j IF b[i+31:i] == 0 #DE FI dst[i+31:i] := Truncate32(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed signed 64-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 3 i := 64*j IF b[i+63:i] == 0 #DE FI dst[i+63:i] := Truncate64(a[i+63:i] / b[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed unsigned 8-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 31 i := 8*j IF b[i+7:i] == 0 #DE FI dst[i+7:i] := Truncate8(a[i+7:i] / b[i+7:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed unsigned 16-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 15 i := 16*j IF b[i+15:i] == 0 #DE FI dst[i+15:i] := Truncate16(a[i+15:i] / b[i+15:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed unsigned 32-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 7 i := 32*j IF b[i+31:i] == 0 #DE FI dst[i+31:i] := Truncate32(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed unsigned 64-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 3 i := 64*j IF b[i+63:i] == 0 #DE FI dst[i+63:i] := Truncate64(a[i+63:i] / b[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed 32-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 7 i := 32*j dst[i+31:i] := TRUNCATE(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed 32-bit integers in "a" by packed elements in "b", store the truncated results in "dst", and store the remainders as packed 32-bit integers into memory at "mem_addr". FOR j := 0 to 7 i := 32*j dst[i+31:i] := TRUNCATE(a[i+31:i] / b[i+31:i]) MEM[mem_addr+i+31:mem_addr+i] := REMAINDER(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed 32-bit integers in "a" by packed elements in "b", and store the remainders as packed 32-bit integers in "dst". FOR j := 0 to 7 i := 32*j dst[i+31:i] := REMAINDER(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed 8-bit integers in "a" by packed elements in "b", and store the remainders as packed 32-bit integers in "dst". FOR j := 0 to 31 i := 8*j dst[i+7:i] := REMAINDER(a[i+7:i] / b[i+7:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed 16-bit integers in "a" by packed elements in "b", and store the remainders as packed 32-bit integers in "dst". FOR j := 0 to 15 i := 16*j dst[i+15:i] := REMAINDER(a[i+15:i] / b[i+15:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed 32-bit integers in "a" by packed elements in "b", and store the remainders as packed 32-bit integers in "dst". FOR j := 0 to 7 i := 32*j dst[i+31:i] := REMAINDER(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed 64-bit integers in "a" by packed elements in "b", and store the remainders as packed 32-bit integers in "dst". FOR j := 0 to 3 i := 64*j dst[i+63:i] := REMAINDER(a[i+63:i] / b[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed unsigned 8-bit integers in "a" by packed elements in "b", and store the remainders as packed unsigned 32-bit integers in "dst". FOR j := 0 to 31 i := 8*j dst[i+7:i] := REMAINDER(a[i+7:i] / b[i+7:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed unsigned 16-bit integers in "a" by packed elements in "b", and store the remainders as packed unsigned 32-bit integers in "dst". FOR j := 0 to 15 i := 16*j dst[i+15:i] := REMAINDER(a[i+15:i] / b[i+15:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed unsigned 32-bit integers in "a" by packed elements in "b", and store the remainders as packed unsigned 32-bit integers in "dst". FOR j := 0 to 7 i := 32*j dst[i+31:i] := REMAINDER(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed unsigned 64-bit integers in "a" by packed elements in "b", and store the remainders as packed unsigned 32-bit integers in "dst". FOR j := 0 to 3 i := 64*j dst[i+63:i] := REMAINDER(a[i+63:i] / b[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed unsigned 32-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 7 i := 32*j dst[i+31:i] := TRUNCATE(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed unsigned 32-bit integers in "a" by packed elements in "b", store the truncated results in "dst", and store the remainders as packed unsigned 32-bit integers into memory at "mem_addr". FOR j := 0 to 7 i := 32*j dst[i+31:i] := TRUNCATE(a[i+31:i] / b[i+31:i]) MEM[mem_addr+i+31:mem_addr+i] := REMAINDER(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed unsigned 32-bit integers in "a" by packed elements in "b", and store the remainders as packed unsigned 32-bit integers in "dst". FOR j := 0 to 7 i := 32*j dst[i+31:i] := REMAINDER(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Round the packed double-precision (64-bit) floating-point elements in "a" up to an integer value, and store the results as packed double-precision floating-point elements in "dst". This intrinsic may generate the "roundpd"/"vroundpd" instruction. FOR j := 0 to 3 i := j*64 dst[i+63:i] := CEIL(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Special Math Functions
Round the packed single-precision (32-bit) floating-point elements in "a" up to an integer value, and store the results as packed single-precision floating-point elements in "dst". This intrinsic may generate the "roundps"/"vroundps" instruction. FOR j := 0 to 7 i := j*32 dst[i+31:i] := CEIL(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Special Math Functions
Round the packed double-precision (64-bit) floating-point elements in "a" down to an integer value, and store the results as packed double-precision floating-point elements in "dst". This intrinsic may generate the "roundpd"/"vroundpd" instruction. FOR j := 0 to 3 i := j*64 dst[i+63:i] := FLOOR(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Special Math Functions
Round the packed single-precision (32-bit) floating-point elements in "a" down to an integer value, and store the results as packed single-precision floating-point elements in "dst". This intrinsic may generate the "roundps"/"vroundps" instruction. FOR j := 0 to 7 i := j*32 dst[i+31:i] := FLOOR(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Special Math Functions
Round the packed double-precision (64-bit) floating-point elements in "a" to the nearest integer value, and store the results as packed double-precision floating-point elements in "dst". This intrinsic may generate the "roundpd"/"vroundpd" instruction. FOR j := 0 to 3 i := j*64 dst[i+63:i] := ROUND(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Special Math Functions
Round the packed single-precision (32-bit) floating-point elements in "a" to the nearest integer value, and store the results as packed single-precision floating-point elements in "dst". This intrinsic may generate the "roundps"/"vroundps" instruction. FOR j := 0 to 7 i := j*32 dst[i+31:i] := ROUND(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Special Math Functions
Truncate the packed double-precision (64-bit) floating-point elements in "a", and store the results as packed double-precision floating-point elements in "dst". This intrinsic may generate the "roundpd"/"vroundpd" instruction. FOR j := 0 to 3 i := j*64 dst[i+63:i] := TRUNCATE(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Miscellaneous
Truncate the packed single-precision (32-bit) floating-point elements in "a", and store the results as packed single-precision floating-point elements in "dst". This intrinsic may generate the "roundps"/"vroundps" instruction. FOR j := 0 to 7 i := j*32 dst[i+31:i] := TRUNCATE(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Miscellaneous
Add packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := a[i+63:i] + b[i+63:i] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Add packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := a[i+31:i] + b[i+31:i] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Alternatively add and subtract packed double-precision (64-bit) floating-point elements in "a" to/from packed elements in "b", and store the results in "dst". FOR j := 0 to 3 i := j*64 IF ((j & 1) == 0) dst[i+63:i] := a[i+63:i] - b[i+63:i] ELSE dst[i+63:i] := a[i+63:i] + b[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Alternatively add and subtract packed single-precision (32-bit) floating-point elements in "a" to/from packed elements in "b", and store the results in "dst". FOR j := 0 to 7 i := j*32 IF ((j & 1) == 0) dst[i+31:i] := a[i+31:i] - b[i+31:i] ELSE dst[i+31:i] := a[i+31:i] + b[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed double-precision (64-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst". FOR j := 0 to 3 i := 64*j dst[i+63:i] := a[i+63:i] / b[i+63:i] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Divide packed single-precision (32-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst". FOR j := 0 to 7 i := 32*j dst[i+31:i] := a[i+31:i] / b[i+31:i] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Conditionally multiply the packed single-precision (32-bit) floating-point elements in "a" and "b" using the high 4 bits in "imm8", sum the four products, and conditionally store the sum in "dst" using the low 4 bits of "imm8". DEFINE DP(a[127:0], b[127:0], imm8[7:0]) { FOR j := 0 to 3 i := j*32 IF imm8[(4+j)%8] temp[i+31:i] := a[i+31:i] * b[i+31:i] ELSE temp[i+31:i] := FP32(0.0) FI ENDFOR sum[31:0] := (temp[127:96] + temp[95:64]) + (temp[63:32] + temp[31:0]) FOR j := 0 to 3 i := j*32 IF imm8[j%8] tmpdst[i+31:i] := sum[31:0] ELSE tmpdst[i+31:i] := FP32(0.0) FI ENDFOR RETURN tmpdst[127:0] } dst[127:0] := DP(a[127:0], b[127:0], imm8[7:0]) dst[255:128] := DP(a[255:128], b[255:128], imm8[7:0]) dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Horizontally add adjacent pairs of double-precision (64-bit) floating-point elements in "a" and "b", and pack the results in "dst". dst[63:0] := a[127:64] + a[63:0] dst[127:64] := b[127:64] + b[63:0] dst[191:128] := a[255:192] + a[191:128] dst[255:192] := b[255:192] + b[191:128] dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Horizontally add adjacent pairs of single-precision (32-bit) floating-point elements in "a" and "b", and pack the results in "dst". dst[31:0] := a[63:32] + a[31:0] dst[63:32] := a[127:96] + a[95:64] dst[95:64] := b[63:32] + b[31:0] dst[127:96] := b[127:96] + b[95:64] dst[159:128] := a[191:160] + a[159:128] dst[191:160] := a[255:224] + a[223:192] dst[223:192] := b[191:160] + b[159:128] dst[255:224] := b[255:224] + b[223:192] dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Horizontally subtract adjacent pairs of double-precision (64-bit) floating-point elements in "a" and "b", and pack the results in "dst". dst[63:0] := a[63:0] - a[127:64] dst[127:64] := b[63:0] - b[127:64] dst[191:128] := a[191:128] - a[255:192] dst[255:192] := b[191:128] - b[255:192] dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Horizontally subtract adjacent pairs of single-precision (32-bit) floating-point elements in "a" and "b", and pack the results in "dst". dst[31:0] := a[31:0] - a[63:32] dst[63:32] := a[95:64] - a[127:96] dst[95:64] := b[31:0] - b[63:32] dst[127:96] := b[95:64] - b[127:96] dst[159:128] := a[159:128] - a[191:160] dst[191:160] := a[223:192] - a[255:224] dst[223:192] := b[159:128] - b[191:160] dst[255:224] := b[223:192] - b[255:224] dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := a[i+63:i] * b[i+63:i] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := a[i+31:i] * b[i+31:i] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Subtract packed double-precision (64-bit) floating-point elements in "b" from packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := a[i+63:i] - b[i+63:i] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Subtract packed single-precision (32-bit) floating-point elements in "b" from packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := a[i+31:i] - b[i+31:i] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Arithmetic
Compute the bitwise AND of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := (a[i+63:i] AND b[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Logical
Compute the bitwise AND of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := (a[i+31:i] AND b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Logical
Compute the bitwise NOT of packed double-precision (64-bit) floating-point elements in "a" and then AND with "b", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Logical
Compute the bitwise NOT of packed single-precision (32-bit) floating-point elements in "a" and then AND with "b", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := ((NOT a[i+31:i]) AND b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Logical
Compute the bitwise OR of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := a[i+63:i] OR b[i+63:i] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Logical
Compute the bitwise OR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := a[i+31:i] OR b[i+31:i] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Logical
Compute the bitwise XOR of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := a[i+63:i] XOR b[i+63:i] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Logical
Compute the bitwise XOR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := a[i+31:i] XOR b[i+31:i] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Logical
Compute the bitwise AND of 256 bits (representing integer data) in "a" and "b", and set "ZF" to 1 if the result is zero, otherwise set "ZF" to 0. Compute the bitwise NOT of "a" and then AND with "b", and set "CF" to 1 if the result is zero, otherwise set "CF" to 0. Return the "ZF" value. IF ((a[255:0] AND b[255:0]) == 0) ZF := 1 ELSE ZF := 0 FI IF (((NOT a[255:0]) AND b[255:0]) == 0) CF := 1 ELSE CF := 0 FI RETURN ZF AVX
immintrin.h
Logical
Compute the bitwise AND of 256 bits (representing integer data) in "a" and "b", and set "ZF" to 1 if the result is zero, otherwise set "ZF" to 0. Compute the bitwise NOT of "a" and then AND with "b", and set "CF" to 1 if the result is zero, otherwise set "CF" to 0. Return the "CF" value. IF ((a[255:0] AND b[255:0]) == 0) ZF := 1 ELSE ZF := 0 FI IF (((NOT a[255:0]) AND b[255:0]) == 0) CF := 1 ELSE CF := 0 FI RETURN CF AVX
immintrin.h
Logical
Compute the bitwise AND of 256 bits (representing integer data) in "a" and "b", and set "ZF" to 1 if the result is zero, otherwise set "ZF" to 0. Compute the bitwise NOT of "a" and then AND with "b", and set "CF" to 1 if the result is zero, otherwise set "CF" to 0. Return 1 if both the "ZF" and "CF" values are zero, otherwise return 0. IF ((a[255:0] AND b[255:0]) == 0) ZF := 1 ELSE ZF := 0 FI IF (((NOT a[255:0]) AND b[255:0]) == 0) CF := 1 ELSE CF := 0 FI IF (ZF == 0 && CF == 0) dst := 1 ELSE dst := 0 FI AVX
immintrin.h
Logical
Compute the bitwise AND of 256 bits (representing double-precision (64-bit) floating-point elements) in "a" and "b", producing an intermediate 256-bit value, and set "ZF" to 1 if the sign bit of each 64-bit element in the intermediate value is zero, otherwise set "ZF" to 0. Compute the bitwise NOT of "a" and then AND with "b", producing an intermediate value, and set "CF" to 1 if the sign bit of each 64-bit element in the intermediate value is zero, otherwise set "CF" to 0. Return the "ZF" value. tmp[255:0] := a[255:0] AND b[255:0] IF (tmp[63] == 0 && tmp[127] == 0 && tmp[191] == 0 && tmp[255] == 0) ZF := 1 ELSE ZF := 0 FI tmp[255:0] := (NOT a[255:0]) AND b[255:0] IF (tmp[63] == 0 && tmp[127] == 0 && tmp[191] == 0 && tmp[255] == 0) CF := 1 ELSE CF := 0 FI dst := ZF AVX
immintrin.h
Logical
Compute the bitwise AND of 256 bits (representing double-precision (64-bit) floating-point elements) in "a" and "b", producing an intermediate 256-bit value, and set "ZF" to 1 if the sign bit of each 64-bit element in the intermediate value is zero, otherwise set "ZF" to 0. Compute the bitwise NOT of "a" and then AND with "b", producing an intermediate value, and set "CF" to 1 if the sign bit of each 64-bit element in the intermediate value is zero, otherwise set "CF" to 0. Return the "CF" value. tmp[255:0] := a[255:0] AND b[255:0] IF (tmp[63] == 0 && tmp[127] == 0 && tmp[191] == 0 && tmp[255] == 0) ZF := 1 ELSE ZF := 0 FI tmp[255:0] := (NOT a[255:0]) AND b[255:0] IF (tmp[63] == 0 && tmp[127] == 0 && tmp[191] == 0 && tmp[255] == 0) CF := 1 ELSE CF := 0 FI dst := CF AVX
immintrin.h
Logical
Compute the bitwise AND of 256 bits (representing double-precision (64-bit) floating-point elements) in "a" and "b", producing an intermediate 256-bit value, and set "ZF" to 1 if the sign bit of each 64-bit element in the intermediate value is zero, otherwise set "ZF" to 0. Compute the bitwise NOT of "a" and then AND with "b", producing an intermediate value, and set "CF" to 1 if the sign bit of each 64-bit element in the intermediate value is zero, otherwise set "CF" to 0. Return 1 if both the "ZF" and "CF" values are zero, otherwise return 0. tmp[255:0] := a[255:0] AND b[255:0] IF (tmp[63] == 0 && tmp[127] == 0 && tmp[191] == 0 && tmp[255] == 0) ZF := 1 ELSE ZF := 0 FI tmp[255:0] := (NOT a[255:0]) AND b[255:0] IF (tmp[63] == 0 && tmp[127] == 0 && tmp[191] == 0 && tmp[255] == 0) CF := 1 ELSE CF := 0 FI IF (ZF == 0 && CF == 0) dst := 1 ELSE dst := 0 FI AVX
immintrin.h
Logical
Compute the bitwise AND of 128 bits (representing double-precision (64-bit) floating-point elements) in "a" and "b", producing an intermediate 128-bit value, and set "ZF" to 1 if the sign bit of each 64-bit element in the intermediate value is zero, otherwise set "ZF" to 0. Compute the bitwise NOT of "a" and then AND with "b", producing an intermediate value, and set "CF" to 1 if the sign bit of each 64-bit element in the intermediate value is zero, otherwise set "CF" to 0. Return the "ZF" value. tmp[127:0] := a[127:0] AND b[127:0] IF (tmp[63] == 0 && tmp[127] == 0) ZF := 1 ELSE ZF := 0 FI tmp[127:0] := (NOT a[127:0]) AND b[127:0] IF (tmp[63] == 0 && tmp[127] == 0) CF := 1 ELSE CF := 0 FI dst := ZF AVX
immintrin.h
Logical
Compute the bitwise AND of 128 bits (representing double-precision (64-bit) floating-point elements) in "a" and "b", producing an intermediate 128-bit value, and set "ZF" to 1 if the sign bit of each 64-bit element in the intermediate value is zero, otherwise set "ZF" to 0. Compute the bitwise NOT of "a" and then AND with "b", producing an intermediate value, and set "CF" to 1 if the sign bit of each 64-bit element in the intermediate value is zero, otherwise set "CF" to 0. Return the "CF" value. tmp[127:0] := a[127:0] AND b[127:0] IF (tmp[63] == 0 && tmp[127] == 0) ZF := 1 ELSE ZF := 0 FI tmp[127:0] := (NOT a[127:0]) AND b[127:0] IF (tmp[63] == 0 && tmp[127] == 0) CF := 1 ELSE CF := 0 FI dst := CF AVX
immintrin.h
Logical
Compute the bitwise AND of 128 bits (representing double-precision (64-bit) floating-point elements) in "a" and "b", producing an intermediate 128-bit value, and set "ZF" to 1 if the sign bit of each 64-bit element in the intermediate value is zero, otherwise set "ZF" to 0. Compute the bitwise NOT of "a" and then AND with "b", producing an intermediate value, and set "CF" to 1 if the sign bit of each 64-bit element in the intermediate value is zero, otherwise set "CF" to 0. Return 1 if both the "ZF" and "CF" values are zero, otherwise return 0. tmp[127:0] := a[127:0] AND b[127:0] IF (tmp[63] == 0 && tmp[127] == 0) ZF := 1 ELSE ZF := 0 FI tmp[127:0] := (NOT a[127:0]) AND b[127:0] IF (tmp[63] == 0 && tmp[127] == 0) CF := 1 ELSE CF := 0 FI IF (ZF == 0 && CF == 0) dst := 1 ELSE dst := 0 FI AVX
immintrin.h
Logical
Compute the bitwise AND of 256 bits (representing single-precision (32-bit) floating-point elements) in "a" and "b", producing an intermediate 256-bit value, and set "ZF" to 1 if the sign bit of each 32-bit element in the intermediate value is zero, otherwise set "ZF" to 0. Compute the bitwise NOT of "a" and then AND with "b", producing an intermediate value, and set "CF" to 1 if the sign bit of each 32-bit element in the intermediate value is zero, otherwise set "CF" to 0. Return the "ZF" value. tmp[255:0] := a[255:0] AND b[255:0] IF (tmp[31] == 0 && tmp[63] == 0 && tmp[95] == 0 && tmp[127] == 0 && \ tmp[159] == 0 && tmp[191] == 0 && tmp[223] == 0 && tmp[255] == 0) ZF := 1 ELSE ZF := 0 FI tmp[255:0] := (NOT a[255:0]) AND b[255:0] IF (tmp[31] == 0 && tmp[63] == 0 && tmp[95] == 0 && tmp[127] == 0 && \ tmp[159] == 0 && tmp[191] == 0 && tmp[223] == 0 && tmp[255] == 0) CF := 1 ELSE CF := 0 FI dst := ZF AVX
immintrin.h
Logical
Compute the bitwise AND of 256 bits (representing single-precision (32-bit) floating-point elements) in "a" and "b", producing an intermediate 256-bit value, and set "ZF" to 1 if the sign bit of each 32-bit element in the intermediate value is zero, otherwise set "ZF" to 0. Compute the bitwise NOT of "a" and then AND with "b", producing an intermediate value, and set "CF" to 1 if the sign bit of each 32-bit element in the intermediate value is zero, otherwise set "CF" to 0. Return the "CF" value. tmp[255:0] := a[255:0] AND b[255:0] IF (tmp[31] == 0 && tmp[63] == 0 && tmp[95] == 0 && tmp[127] == 0 && \ tmp[159] == 0 && tmp[191] == 0 && tmp[223] == 0 && tmp[255] == 0) ZF := 1 ELSE ZF := 0 FI tmp[255:0] := (NOT a[255:0]) AND b[255:0] IF (tmp[31] == 0 && tmp[63] == 0 && tmp[95] == 0 && tmp[127] == 0 && \ tmp[159] == 0 && tmp[191] == 0 && tmp[223] == 0 && tmp[255] == 0) CF := 1 ELSE CF := 0 FI dst := CF AVX
immintrin.h
Logical
Compute the bitwise AND of 256 bits (representing single-precision (32-bit) floating-point elements) in "a" and "b", producing an intermediate 256-bit value, and set "ZF" to 1 if the sign bit of each 32-bit element in the intermediate value is zero, otherwise set "ZF" to 0. Compute the bitwise NOT of "a" and then AND with "b", producing an intermediate value, and set "CF" to 1 if the sign bit of each 32-bit element in the intermediate value is zero, otherwise set "CF" to 0. Return 1 if both the "ZF" and "CF" values are zero, otherwise return 0. tmp[255:0] := a[255:0] AND b[255:0] IF (tmp[31] == 0 && tmp[63] == 0 && tmp[95] == 0 && tmp[127] == 0 && \ tmp[159] == 0 && tmp[191] == 0 && tmp[223] == 0 && tmp[255] == 0) ZF := 1 ELSE ZF := 0 FI tmp[255:0] := (NOT a[255:0]) AND b[255:0] IF (tmp[31] == 0 && tmp[63] == 0 && tmp[95] == 0 && tmp[127] == 0 && \ tmp[159] == 0 && tmp[191] == 0 && tmp[223] == 0 && tmp[255] == 0) CF := 1 ELSE CF := 0 FI IF (ZF == 0 && CF == 0) dst := 1 ELSE dst := 0 FI AVX
immintrin.h
Logical
Compute the bitwise AND of 128 bits (representing single-precision (32-bit) floating-point elements) in "a" and "b", producing an intermediate 128-bit value, and set "ZF" to 1 if the sign bit of each 32-bit element in the intermediate value is zero, otherwise set "ZF" to 0. Compute the bitwise NOT of "a" and then AND with "b", producing an intermediate value, and set "CF" to 1 if the sign bit of each 32-bit element in the intermediate value is zero, otherwise set "CF" to 0. Return the "ZF" value. tmp[127:0] := a[127:0] AND b[127:0] IF (tmp[31] == 0 && tmp[63] == 0 && tmp[95] == 0 && tmp[127] == 0) ZF := 1 ELSE ZF := 0 FI tmp[127:0] := (NOT a[127:0]) AND b[127:0] IF (tmp[31] == 0 && tmp[63] == 0 && tmp[95] == 0 && tmp[127] == 0) CF := 1 ELSE CF := 0 FI dst := ZF AVX
immintrin.h
Logical
Compute the bitwise AND of 128 bits (representing single-precision (32-bit) floating-point elements) in "a" and "b", producing an intermediate 128-bit value, and set "ZF" to 1 if the sign bit of each 32-bit element in the intermediate value is zero, otherwise set "ZF" to 0. Compute the bitwise NOT of "a" and then AND with "b", producing an intermediate value, and set "CF" to 1 if the sign bit of each 32-bit element in the intermediate value is zero, otherwise set "CF" to 0. Return the "CF" value. tmp[127:0] := a[127:0] AND b[127:0] IF (tmp[31] == 0 && tmp[63] == 0 && tmp[95] == 0 && tmp[127] == 0) ZF := 1 ELSE ZF := 0 FI tmp[127:0] := (NOT a[127:0]) AND b[127:0] IF (tmp[31] == 0 && tmp[63] == 0 && tmp[95] == 0 && tmp[127] == 0) CF := 1 ELSE CF := 0 FI dst := CF AVX
immintrin.h
Logical
Compute the bitwise AND of 128 bits (representing single-precision (32-bit) floating-point elements) in "a" and "b", producing an intermediate 128-bit value, and set "ZF" to 1 if the sign bit of each 32-bit element in the intermediate value is zero, otherwise set "ZF" to 0. Compute the bitwise NOT of "a" and then AND with "b", producing an intermediate value, and set "CF" to 1 if the sign bit of each 32-bit element in the intermediate value is zero, otherwise set "CF" to 0. Return 1 if both the "ZF" and "CF" values are zero, otherwise return 0. tmp[127:0] := a[127:0] AND b[127:0] IF (tmp[31] == 0 && tmp[63] == 0 && tmp[95] == 0 && tmp[127] == 0) ZF := 1 ELSE ZF := 0 FI tmp[127:0] := (NOT a[127:0]) AND b[127:0] IF (tmp[31] == 0 && tmp[63] == 0 && tmp[95] == 0 && tmp[127] == 0) CF := 1 ELSE CF := 0 FI IF (ZF == 0 && CF == 0) dst := 1 ELSE dst := 0 FI AVX
immintrin.h
Logical
Blend packed double-precision (64-bit) floating-point elements from "a" and "b" using control mask "imm8", and store the results in "dst". FOR j := 0 to 3 i := j*64 IF imm8[j] dst[i+63:i] := b[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Blend packed single-precision (32-bit) floating-point elements from "a" and "b" using control mask "imm8", and store the results in "dst". FOR j := 0 to 7 i := j*32 IF imm8[j] dst[i+31:i] := b[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Blend packed double-precision (64-bit) floating-point elements from "a" and "b" using "mask", and store the results in "dst". FOR j := 0 to 3 i := j*64 IF mask[i+63] dst[i+63:i] := b[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Blend packed single-precision (32-bit) floating-point elements from "a" and "b" using "mask", and store the results in "dst". FOR j := 0 to 7 i := j*32 IF mask[i+31] dst[i+31:i] := b[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements within 128-bit lanes using the control in "imm8", and store the results in "dst". dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64] dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64] dst[191:128] := (imm8[2] == 0) ? a[191:128] : a[255:192] dst[255:192] := (imm8[3] == 0) ? b[191:128] : b[255:192] dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } dst[31:0] := SELECT4(a[127:0], imm8[1:0]) dst[63:32] := SELECT4(a[127:0], imm8[3:2]) dst[95:64] := SELECT4(b[127:0], imm8[5:4]) dst[127:96] := SELECT4(b[127:0], imm8[7:6]) dst[159:128] := SELECT4(a[255:128], imm8[1:0]) dst[191:160] := SELECT4(a[255:128], imm8[3:2]) dst[223:192] := SELECT4(b[255:128], imm8[5:4]) dst[255:224] := SELECT4(b[255:128], imm8[7:6]) dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from "a", selected with "imm8", and store the result in "dst". CASE imm8[0] OF 0: dst[127:0] := a[127:0] 1: dst[127:0] := a[255:128] ESAC dst[MAX:128] := 0 AVX
immintrin.h
Swizzle
Extract 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from "a", selected with "imm8", and store the result in "dst". CASE imm8[0] OF 0: dst[127:0] := a[127:0] 1: dst[127:0] := a[255:128] ESAC dst[MAX:128] := 0 AVX
immintrin.h
Swizzle
Extract 128 bits (composed of integer data) from "a", selected with "imm8", and store the result in "dst". CASE imm8[0] OF 0: dst[127:0] := a[127:0] 1: dst[127:0] := a[255:128] ESAC dst[MAX:128] := 0 AVX
immintrin.h
Swizzle
Extract a 32-bit integer from "a", selected with "index", and store the result in "dst". dst[31:0] := (a[255:0] >> (index[2:0] * 32))[31:0] AVX
immintrin.h
Swizzle
Extract a 64-bit integer from "a", selected with "index", and store the result in "dst". dst[63:0] := (a[255:0] >> (index[1:0] * 64))[63:0] AVX
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" within 128-bit lanes using the control in "b", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } dst[31:0] := SELECT4(a[127:0], b[1:0]) dst[63:32] := SELECT4(a[127:0], b[33:32]) dst[95:64] := SELECT4(a[127:0], b[65:64]) dst[127:96] := SELECT4(a[127:0], b[97:96]) dst[159:128] := SELECT4(a[255:128], b[129:128]) dst[191:160] := SELECT4(a[255:128], b[161:160]) dst[223:192] := SELECT4(a[255:128], b[193:192]) dst[255:224] := SELECT4(a[255:128], b[225:224]) dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" using the control in "b", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } dst[31:0] := SELECT4(a[127:0], b[1:0]) dst[63:32] := SELECT4(a[127:0], b[33:32]) dst[95:64] := SELECT4(a[127:0], b[65:64]) dst[127:96] := SELECT4(a[127:0], b[97:96]) dst[MAX:128] := 0 AVX
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } dst[31:0] := SELECT4(a[127:0], imm8[1:0]) dst[63:32] := SELECT4(a[127:0], imm8[3:2]) dst[95:64] := SELECT4(a[127:0], imm8[5:4]) dst[127:96] := SELECT4(a[127:0], imm8[7:6]) dst[159:128] := SELECT4(a[255:128], imm8[1:0]) dst[191:160] := SELECT4(a[255:128], imm8[3:2]) dst[223:192] := SELECT4(a[255:128], imm8[5:4]) dst[255:224] := SELECT4(a[255:128], imm8[7:6]) dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" using the control in "imm8", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } dst[31:0] := SELECT4(a[127:0], imm8[1:0]) dst[63:32] := SELECT4(a[127:0], imm8[3:2]) dst[95:64] := SELECT4(a[127:0], imm8[5:4]) dst[127:96] := SELECT4(a[127:0], imm8[7:6]) dst[MAX:128] := 0 AVX
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" within 128-bit lanes using the control in "b", and store the results in "dst". IF (b[1] == 0) dst[63:0] := a[63:0]; FI IF (b[1] == 1) dst[63:0] := a[127:64]; FI IF (b[65] == 0) dst[127:64] := a[63:0]; FI IF (b[65] == 1) dst[127:64] := a[127:64]; FI IF (b[129] == 0) dst[191:128] := a[191:128]; FI IF (b[129] == 1) dst[191:128] := a[255:192]; FI IF (b[193] == 0) dst[255:192] := a[191:128]; FI IF (b[193] == 1) dst[255:192] := a[255:192]; FI dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" using the control in "b", and store the results in "dst". IF (b[1] == 0) dst[63:0] := a[63:0]; FI IF (b[1] == 1) dst[63:0] := a[127:64]; FI IF (b[65] == 0) dst[127:64] := a[63:0]; FI IF (b[65] == 1) dst[127:64] := a[127:64]; FI dst[MAX:128] := 0 AVX
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst". IF (imm8[0] == 0) dst[63:0] := a[63:0]; FI IF (imm8[0] == 1) dst[63:0] := a[127:64]; FI IF (imm8[1] == 0) dst[127:64] := a[63:0]; FI IF (imm8[1] == 1) dst[127:64] := a[127:64]; FI IF (imm8[2] == 0) dst[191:128] := a[191:128]; FI IF (imm8[2] == 1) dst[191:128] := a[255:192]; FI IF (imm8[3] == 0) dst[255:192] := a[191:128]; FI IF (imm8[3] == 1) dst[255:192] := a[255:192]; FI dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" using the control in "imm8", and store the results in "dst". IF (imm8[0] == 0) dst[63:0] := a[63:0]; FI IF (imm8[0] == 1) dst[63:0] := a[127:64]; FI IF (imm8[1] == 0) dst[127:64] := a[63:0]; FI IF (imm8[1] == 1) dst[127:64] := a[127:64]; FI dst[MAX:128] := 0 AVX
immintrin.h
Swizzle
Shuffle 128-bits (composed of 4 packed single-precision (32-bit) floating-point elements) selected by "imm8" from "a" and "b", and store the results in "dst". DEFINE SELECT4(src1, src2, control) { CASE(control[1:0]) OF 0: tmp[127:0] := src1[127:0] 1: tmp[127:0] := src1[255:128] 2: tmp[127:0] := src2[127:0] 3: tmp[127:0] := src2[255:128] ESAC IF control[3] tmp[127:0] := 0 FI RETURN tmp[127:0] } dst[127:0] := SELECT4(a[255:0], b[255:0], imm8[3:0]) dst[255:128] := SELECT4(a[255:0], b[255:0], imm8[7:4]) dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Shuffle 128-bits (composed of 2 packed double-precision (64-bit) floating-point elements) selected by "imm8" from "a" and "b", and store the results in "dst". DEFINE SELECT4(src1, src2, control) { CASE(control[1:0]) OF 0: tmp[127:0] := src1[127:0] 1: tmp[127:0] := src1[255:128] 2: tmp[127:0] := src2[127:0] 3: tmp[127:0] := src2[255:128] ESAC IF control[3] tmp[127:0] := 0 FI RETURN tmp[127:0] } dst[127:0] := SELECT4(a[255:0], b[255:0], imm8[3:0]) dst[255:128] := SELECT4(a[255:0], b[255:0], imm8[7:4]) dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Shuffle 128-bits (composed of integer data) selected by "imm8" from "a" and "b", and store the results in "dst". DEFINE SELECT4(src1, src2, control) { CASE(control[1:0]) OF 0: tmp[127:0] := src1[127:0] 1: tmp[127:0] := src1[255:128] 2: tmp[127:0] := src2[127:0] 3: tmp[127:0] := src2[255:128] ESAC IF control[3] tmp[127:0] := 0 FI RETURN tmp[127:0] } dst[127:0] := SELECT4(a[255:0], b[255:0], imm8[3:0]) dst[255:128] := SELECT4(a[255:0], b[255:0], imm8[7:4]) dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Copy "a" to "dst", then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from "b" into "dst" at the location specified by "imm8". dst[255:0] := a[255:0] CASE (imm8[0]) OF 0: dst[127:0] := b[127:0] 1: dst[255:128] := b[127:0] ESAC dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Copy "a" to "dst", then insert 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from "b" into "dst" at the location specified by "imm8". dst[255:0] := a[255:0] CASE imm8[0] OF 0: dst[127:0] := b[127:0] 1: dst[255:128] := b[127:0] ESAC dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Copy "a" to "dst", then insert 128 bits from "b" into "dst" at the location specified by "imm8". dst[255:0] := a[255:0] CASE (imm8[0]) OF 0: dst[127:0] := b[127:0] 1: dst[255:128] := b[127:0] ESAC dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Copy "a" to "dst", and insert the 8-bit integer "i" into "dst" at the location specified by "index". dst[255:0] := a[255:0] sel := index[4:0]*8 dst[sel+7:sel] := i[7:0] AVX
immintrin.h
Swizzle
Copy "a" to "dst", and insert the 16-bit integer "i" into "dst" at the location specified by "index". dst[255:0] := a[255:0] sel := index[3:0]*16 dst[sel+15:sel] := i[15:0] AVX
immintrin.h
Swizzle
Copy "a" to "dst", and insert the 32-bit integer "i" into "dst" at the location specified by "index". dst[255:0] := a[255:0] sel := index[2:0]*32 dst[sel+31:sel] := i[31:0] AVX
immintrin.h
Swizzle
Copy "a" to "dst", and insert the 64-bit integer "i" into "dst" at the location specified by "index". dst[255:0] := a[255:0] sel := index[1:0]*64 dst[sel+63:sel] := i[63:0] AVX
immintrin.h
Swizzle
Unpack and interleave double-precision (64-bit) floating-point elements from the high half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[127:64] dst[127:64] := src2[127:64] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_HIGH_QWORDS(a[255:128], b[255:128]) dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Unpack and interleave single-precision (32-bit) floating-point elements from the high half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[95:64] dst[63:32] := src2[95:64] dst[95:64] := src1[127:96] dst[127:96] := src2[127:96] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_HIGH_DWORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_HIGH_DWORDS(a[255:128], b[255:128]) dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Unpack and interleave double-precision (64-bit) floating-point elements from the low half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[63:0] dst[127:64] := src2[63:0] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_QWORDS(a[255:128], b[255:128]) dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Unpack and interleave single-precision (32-bit) floating-point elements from the low half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[31:0] dst[63:32] := src2[31:0] dst[95:64] := src1[63:32] dst[127:96] := src2[63:32] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_DWORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_DWORDS(a[255:128], b[255:128]) dst[MAX:256] := 0 AVX
immintrin.h
Swizzle
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst". [max_float_note] FOR j := 0 to 3 i := j*64 dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Special Math Functions
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst". [max_float_note] FOR j := 0 to 7 i := j*32 dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Special Math Functions
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst". [min_float_note] FOR j := 0 to 3 i := j*64 dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Special Math Functions
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst". [min_float_note] FOR j := 0 to 7 i := j*32 dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Special Math Functions
Round the packed double-precision (64-bit) floating-point elements in "a" using the "rounding" parameter, and store the results as packed double-precision floating-point elements in "dst". [round_note] FOR j := 0 to 3 i := j*64 dst[i+63:i] := ROUND(a[i+63:i], rounding) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Special Math Functions
Round the packed single-precision (32-bit) floating-point elements in "a" using the "rounding" parameter, and store the results as packed single-precision floating-point elements in "dst". [round_note] FOR j := 0 to 7 i := j*32 dst[i+31:i] := ROUND(a[i+31:i], rounding) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Special Math Functions
Round the packed single-precision (32-bit) floating-point elements in "a" down to an integer value, and store the results as packed single-precision floating-point elements in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := FLOOR(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Special Math Functions
Round the packed single-precision (32-bit) floating-point elements in "a" up to an integer value, and store the results as packed single-precision floating-point elements in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := CEIL(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Special Math Functions
Round the packed double-precision (64-bit) floating-point elements in "a" down to an integer value, and store the results as packed double-precision floating-point elements in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := FLOOR(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Special Math Functions
Round the packed double-precision (64-bit) floating-point elements in "a" up to an integer value, and store the results as packed double-precision floating-point elements in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := CEIL(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Special Math Functions
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in "dst". CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 1 i := j*64 dst[i+63:i] := ( a[i+63:i] OP b[i+63:i] ) ? 0xFFFFFFFFFFFFFFFF : 0 ENDFOR dst[MAX:128] := 0 AVX
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in "dst". CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 3 i := j*64 dst[i+63:i] := ( a[i+63:i] OP b[i+63:i] ) ? 0xFFFFFFFFFFFFFFFF : 0 ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in "dst". CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 3 i := j*32 dst[i+31:i] := ( a[i+31:i] OP b[i+31:i] ) ? 0xFFFFFFFF : 0 ENDFOR dst[MAX:128] := 0 AVX
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in "dst". CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 7 i := j*32 dst[i+31:i] := ( a[i+31:i] OP b[i+31:i] ) ? 0xFFFFFFFF : 0 ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point element in "a" and "b" based on the comparison operand specified by "imm8", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC dst[63:0] := ( a[63:0] OP b[63:0] ) ? 0xFFFFFFFFFFFFFFFF : 0 dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX
immintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point element in "a" and "b" based on the comparison operand specified by "imm8", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC dst[31:0] := ( a[31:0] OP b[31:0] ) ? 0xFFFFFFFF : 0 dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX
immintrin.h
Compare
Convert packed signed 32-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 i := j*32 m := j*64 dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 i := 32*j dst[i+31:i] := Convert_Int32_To_FP32(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_FP32(a[k+63:k]) ENDFOR dst[MAX:128] := 0 AVX
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 7 i := 32*j dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 i := 64*j k := 32*j dst[i+63:i] := Convert_FP32_To_FP64(a[k+31:k]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst". FOR j := 0 to 3 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_Int32_Truncate(a[k+63:k]) ENDFOR dst[MAX:128] := 0 AVX
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 3 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k]) ENDFOR dst[MAX:128] := 0 AVX
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst". FOR j := 0 to 7 i := 32*j dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Convert
Copy the lower single-precision (32-bit) floating-point element of "a" to "dst". dst[31:0] := a[31:0] AVX
immintrin.h
Convert
Copy the lower double-precision (64-bit) floating-point element of "a" to "dst". dst[63:0] := a[63:0] AVX
immintrin.h
Convert
Copy the lower 32-bit integer in "a" to "dst". dst[31:0] := a[31:0] AVX
immintrin.h
Convert
Zero the contents of all XMM or YMM registers. YMM0[MAX:0] := 0 YMM1[MAX:0] := 0 YMM2[MAX:0] := 0 YMM3[MAX:0] := 0 YMM4[MAX:0] := 0 YMM5[MAX:0] := 0 YMM6[MAX:0] := 0 YMM7[MAX:0] := 0 IF _64_BIT_MODE YMM8[MAX:0] := 0 YMM9[MAX:0] := 0 YMM10[MAX:0] := 0 YMM11[MAX:0] := 0 YMM12[MAX:0] := 0 YMM13[MAX:0] := 0 YMM14[MAX:0] := 0 YMM15[MAX:0] := 0 FI AVX
immintrin.h
General Support
Zero the upper 128 bits of all YMM registers; the lower 128-bits of the registers are unmodified. YMM0[MAX:128] := 0 YMM1[MAX:128] := 0 YMM2[MAX:128] := 0 YMM3[MAX:128] := 0 YMM4[MAX:128] := 0 YMM5[MAX:128] := 0 YMM6[MAX:128] := 0 YMM7[MAX:128] := 0 IF _64_BIT_MODE YMM8[MAX:128] := 0 YMM9[MAX:128] := 0 YMM10[MAX:128] := 0 YMM11[MAX:128] := 0 YMM12[MAX:128] := 0 YMM13[MAX:128] := 0 YMM14[MAX:128] := 0 YMM15[MAX:128] := 0 FI AVX
immintrin.h
General Support
Return vector of type __m256 with undefined elements. AVX
immintrin.h
General Support
Return vector of type __m256d with undefined elements. AVX
immintrin.h
General Support
Return vector of type __m256i with undefined elements. AVX
immintrin.h
General Support
Broadcast a single-precision (32-bit) floating-point element from memory to all elements of "dst". tmp[31:0] := MEM[mem_addr+31:mem_addr] FOR j := 0 to 7 i := j*32 dst[i+31:i] := tmp[31:0] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Load
Swizzle Broadcast a single-precision (32-bit) floating-point element from memory to all elements of "dst". tmp[31:0] := MEM[mem_addr+31:mem_addr] FOR j := 0 to 3 i := j*32 dst[i+31:i] := tmp[31:0] ENDFOR dst[MAX:128] := 0 AVX
immintrin.h
Load
Swizzle Broadcast a double-precision (64-bit) floating-point element from memory to all elements of "dst". tmp[63:0] := MEM[mem_addr+63:mem_addr] FOR j := 0 to 3 i := j*64 dst[i+63:i] := tmp[63:0] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Load
Swizzle Broadcast 128 bits from memory (composed of 4 packed single-precision (32-bit) floating-point elements) to all elements of "dst". tmp[127:0] := MEM[mem_addr+127:mem_addr] dst[127:0] := tmp[127:0] dst[255:128] := tmp[127:0] dst[MAX:256] := 0 AVX
immintrin.h
Load
Swizzle Broadcast 128 bits from memory (composed of 2 packed double-precision (64-bit) floating-point elements) to all elements of "dst". tmp[127:0] := MEM[mem_addr+127:mem_addr] dst[127:0] := tmp[127:0] dst[255:128] := tmp[127:0] dst[MAX:256] := 0 AVX
immintrin.h
Load
Load 256-bits (composed of 4 packed double-precision (64-bit) floating-point elements) from memory into "dst". "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. dst[255:0] := MEM[mem_addr+255:mem_addr] dst[MAX:256] := 0 AVX
immintrin.h
Load
Load 256-bits (composed of 8 packed single-precision (32-bit) floating-point elements) from memory into "dst". "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. dst[255:0] := MEM[mem_addr+255:mem_addr] dst[MAX:256] := 0 AVX
immintrin.h
Load
Load 256-bits (composed of 4 packed double-precision (64-bit) floating-point elements) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[255:0] := MEM[mem_addr+255:mem_addr] dst[MAX:256] := 0 AVX
immintrin.h
Load
Load 256-bits (composed of 8 packed single-precision (32-bit) floating-point elements) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[255:0] := MEM[mem_addr+255:mem_addr] dst[MAX:256] := 0 AVX
immintrin.h
Load
Load 256-bits of integer data from memory into "dst". "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. dst[255:0] := MEM[mem_addr+255:mem_addr] dst[MAX:256] := 0 AVX
immintrin.h
Load
Load 256-bits of integer data from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[255:0] := MEM[mem_addr+255:mem_addr] dst[MAX:256] := 0 AVX
immintrin.h
Load
Load packed double-precision (64-bit) floating-point elements from memory into "dst" using "mask" (elements are zeroed out when the high bit of the corresponding element is not set). FOR j := 0 to 3 i := j*64 IF mask[i+63] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Load
Load packed double-precision (64-bit) floating-point elements from memory into "dst" using "mask" (elements are zeroed out when the high bit of the corresponding element is not set). FOR j := 0 to 1 i := j*64 IF mask[i+63] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX
immintrin.h
Load
Load packed single-precision (32-bit) floating-point elements from memory into "dst" using "mask" (elements are zeroed out when the high bit of the corresponding element is not set). FOR j := 0 to 7 i := j*32 IF mask[i+31] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Load
Load packed single-precision (32-bit) floating-point elements from memory into "dst" using "mask" (elements are zeroed out when the high bit of the corresponding element is not set). FOR j := 0 to 3 i := j*32 IF mask[i+31] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX
immintrin.h
Load
Load 256-bits of integer data from unaligned memory into "dst". This intrinsic may perform better than "_mm256_loadu_si256" when the data crosses a cache line boundary. dst[255:0] := MEM[mem_addr+255:mem_addr] dst[MAX:256] := 0 AVX
immintrin.h
Load
Load two 128-bit values (composed of 4 packed single-precision (32-bit) floating-point elements) from memory, and combine them into a 256-bit value in "dst". "hiaddr" and "loaddr" do not need to be aligned on any particular boundary. dst[127:0] := MEM[loaddr+127:loaddr] dst[255:128] := MEM[hiaddr+127:hiaddr] dst[MAX:256] := 0 AVX
immintrin.h
Load
Load two 128-bit values (composed of 2 packed double-precision (64-bit) floating-point elements) from memory, and combine them into a 256-bit value in "dst". "hiaddr" and "loaddr" do not need to be aligned on any particular boundary. dst[127:0] := MEM[loaddr+127:loaddr] dst[255:128] := MEM[hiaddr+127:hiaddr] dst[MAX:256] := 0 AVX
immintrin.h
Load
Load two 128-bit values (composed of integer data) from memory, and combine them into a 256-bit value in "dst". "hiaddr" and "loaddr" do not need to be aligned on any particular boundary. dst[127:0] := MEM[loaddr+127:loaddr] dst[255:128] := MEM[hiaddr+127:hiaddr] dst[MAX:256] := 0 AVX
immintrin.h
Load
Store 256-bits (composed of 4 packed double-precision (64-bit) floating-point elements) from "a" into memory. "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. MEM[mem_addr+255:mem_addr] := a[255:0] AVX
immintrin.h
Store
Store 256-bits (composed of 8 packed single-precision (32-bit) floating-point elements) from "a" into memory. "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. MEM[mem_addr+255:mem_addr] := a[255:0] AVX
immintrin.h
Store
Store 256-bits (composed of 4 packed double-precision (64-bit) floating-point elements) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+255:mem_addr] := a[255:0] AVX
immintrin.h
Store
Store 256-bits (composed of 8 packed single-precision (32-bit) floating-point elements) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+255:mem_addr] := a[255:0] AVX
immintrin.h
Store
Store 256-bits of integer data from "a" into memory. "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. MEM[mem_addr+255:mem_addr] := a[255:0] AVX
immintrin.h
Store
Store 256-bits of integer data from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+255:mem_addr] := a[255:0] AVX
immintrin.h
Store
Store packed double-precision (64-bit) floating-point elements from "a" into memory using "mask". FOR j := 0 to 3 i := j*64 IF mask[i+63] MEM[mem_addr+i+63:mem_addr+i] := a[i+63:i] FI ENDFOR AVX
immintrin.h
Store
Store packed double-precision (64-bit) floating-point elements from "a" into memory using "mask". FOR j := 0 to 1 i := j*64 IF mask[i+63] MEM[mem_addr+i+63:mem_addr+i] := a[i+63:i] FI ENDFOR AVX
immintrin.h
Store
Store packed single-precision (32-bit) floating-point elements from "a" into memory using "mask". FOR j := 0 to 7 i := j*32 IF mask[i+31] MEM[mem_addr+i+31:mem_addr+i] := a[i+31:i] FI ENDFOR AVX
immintrin.h
Store
Store packed single-precision (32-bit) floating-point elements from "a" into memory using "mask". FOR j := 0 to 3 i := j*32 IF mask[i+31] MEM[mem_addr+i+31:mem_addr+i] := a[i+31:i] FI ENDFOR AVX
immintrin.h
Store
Store 256-bits of integer data from "a" into memory using a non-temporal memory hint. "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. MEM[mem_addr+255:mem_addr] := a[255:0] AVX
immintrin.h
Store
Store 256-bits (composed of 4 packed double-precision (64-bit) floating-point elements) from "a" into memory using a non-temporal memory hint. "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. MEM[mem_addr+255:mem_addr] := a[255:0] AVX
immintrin.h
Store
Store 256-bits (composed of 8 packed single-precision (32-bit) floating-point elements) from "a" into memory using a non-temporal memory hint. "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. MEM[mem_addr+255:mem_addr] := a[255:0] AVX
immintrin.h
Store
Store the high and low 128-bit halves (each composed of 4 packed single-precision (32-bit) floating-point elements) from "a" into memory two different 128-bit locations. "hiaddr" and "loaddr" do not need to be aligned on any particular boundary. MEM[loaddr+127:loaddr] := a[127:0] MEM[hiaddr+127:hiaddr] := a[255:128] AVX
immintrin.h
Store
Store the high and low 128-bit halves (each composed of 2 packed double-precision (64-bit) floating-point elements) from "a" into memory two different 128-bit locations. "hiaddr" and "loaddr" do not need to be aligned on any particular boundary. MEM[loaddr+127:loaddr] := a[127:0] MEM[hiaddr+127:hiaddr] := a[255:128] AVX
immintrin.h
Store
Store the high and low 128-bit halves (each composed of integer data) from "a" into memory two different 128-bit locations. "hiaddr" and "loaddr" do not need to be aligned on any particular boundary. MEM[loaddr+127:loaddr] := a[127:0] MEM[hiaddr+127:hiaddr] := a[255:128] AVX
immintrin.h
Store
Duplicate odd-indexed single-precision (32-bit) floating-point elements from "a", and store the results in "dst". dst[31:0] := a[63:32] dst[63:32] := a[63:32] dst[95:64] := a[127:96] dst[127:96] := a[127:96] dst[159:128] := a[191:160] dst[191:160] := a[191:160] dst[223:192] := a[255:224] dst[255:224] := a[255:224] dst[MAX:256] := 0 AVX
immintrin.h
Move
Duplicate even-indexed single-precision (32-bit) floating-point elements from "a", and store the results in "dst". dst[31:0] := a[31:0] dst[63:32] := a[31:0] dst[95:64] := a[95:64] dst[127:96] := a[95:64] dst[159:128] := a[159:128] dst[191:160] := a[159:128] dst[223:192] := a[223:192] dst[255:224] := a[223:192] dst[MAX:256] := 0 AVX
immintrin.h
Move
Duplicate even-indexed double-precision (64-bit) floating-point elements from "a", and store the results in "dst". dst[63:0] := a[63:0] dst[127:64] := a[63:0] dst[191:128] := a[191:128] dst[255:192] := a[191:128] dst[MAX:256] := 0 AVX
immintrin.h
Move
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 1.5*2^-12. FOR j := 0 to 7 i := j*32 dst[i+31:i] := 1.0 / a[i+31:i] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 1.5*2^-12. FOR j := 0 to 7 i := j*32 dst[i+31:i] := (1.0 / SQRT(a[i+31:i])) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := SQRT(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Compute the square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := SQRT(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Elementary Math Functions
Set each bit of mask "dst" based on the most significant bit of the corresponding packed double-precision (64-bit) floating-point element in "a". FOR j := 0 to 3 i := j*64 IF a[i+63] dst[j] := 1 ELSE dst[j] := 0 FI ENDFOR dst[MAX:4] := 0 AVX
immintrin.h
Miscellaneous
Set each bit of mask "dst" based on the most significant bit of the corresponding packed single-precision (32-bit) floating-point element in "a". FOR j := 0 to 7 i := j*32 IF a[i+31] dst[j] := 1 ELSE dst[j] := 0 FI ENDFOR dst[MAX:8] := 0 AVX
immintrin.h
Miscellaneous
Return vector of type __m256d with all elements set to zero. dst[MAX:0] := 0 AVX
immintrin.h
Set
Return vector of type __m256 with all elements set to zero. dst[MAX:0] := 0 AVX
immintrin.h
Set
Return vector of type __m256i with all elements set to zero. dst[MAX:0] := 0 AVX
immintrin.h
Set
Set packed double-precision (64-bit) floating-point elements in "dst" with the supplied values. dst[63:0] := e0 dst[127:64] := e1 dst[191:128] := e2 dst[255:192] := e3 dst[MAX:256] := 0 AVX
immintrin.h
Set
Set packed single-precision (32-bit) floating-point elements in "dst" with the supplied values. dst[31:0] := e0 dst[63:32] := e1 dst[95:64] := e2 dst[127:96] := e3 dst[159:128] := e4 dst[191:160] := e5 dst[223:192] := e6 dst[255:224] := e7 dst[MAX:256] := 0 AVX
immintrin.h
Set
Set packed 8-bit integers in "dst" with the supplied values. dst[7:0] := e0 dst[15:8] := e1 dst[23:16] := e2 dst[31:24] := e3 dst[39:32] := e4 dst[47:40] := e5 dst[55:48] := e6 dst[63:56] := e7 dst[71:64] := e8 dst[79:72] := e9 dst[87:80] := e10 dst[95:88] := e11 dst[103:96] := e12 dst[111:104] := e13 dst[119:112] := e14 dst[127:120] := e15 dst[135:128] := e16 dst[143:136] := e17 dst[151:144] := e18 dst[159:152] := e19 dst[167:160] := e20 dst[175:168] := e21 dst[183:176] := e22 dst[191:184] := e23 dst[199:192] := e24 dst[207:200] := e25 dst[215:208] := e26 dst[223:216] := e27 dst[231:224] := e28 dst[239:232] := e29 dst[247:240] := e30 dst[255:248] := e31 dst[MAX:256] := 0 AVX
immintrin.h
Set
Set packed 16-bit integers in "dst" with the supplied values. dst[15:0] := e0 dst[31:16] := e1 dst[47:32] := e2 dst[63:48] := e3 dst[79:64] := e4 dst[95:80] := e5 dst[111:96] := e6 dst[127:112] := e7 dst[143:128] := e8 dst[159:144] := e9 dst[175:160] := e10 dst[191:176] := e11 dst[207:192] := e12 dst[223:208] := e13 dst[239:224] := e14 dst[255:240] := e15 dst[MAX:256] := 0 AVX
immintrin.h
Set
Set packed 32-bit integers in "dst" with the supplied values. dst[31:0] := e0 dst[63:32] := e1 dst[95:64] := e2 dst[127:96] := e3 dst[159:128] := e4 dst[191:160] := e5 dst[223:192] := e6 dst[255:224] := e7 dst[MAX:256] := 0 AVX
immintrin.h
Set
Set packed 64-bit integers in "dst" with the supplied values. dst[63:0] := e0 dst[127:64] := e1 dst[191:128] := e2 dst[255:192] := e3 dst[MAX:256] := 0 AVX
immintrin.h
Set
Set packed double-precision (64-bit) floating-point elements in "dst" with the supplied values in reverse order. dst[63:0] := e3 dst[127:64] := e2 dst[191:128] := e1 dst[255:192] := e0 dst[MAX:256] := 0 AVX
immintrin.h
Set
Set packed single-precision (32-bit) floating-point elements in "dst" with the supplied values in reverse order. dst[31:0] := e7 dst[63:32] := e6 dst[95:64] := e5 dst[127:96] := e4 dst[159:128] := e3 dst[191:160] := e2 dst[223:192] := e1 dst[255:224] := e0 dst[MAX:256] := 0 AVX
immintrin.h
Set
Set packed 8-bit integers in "dst" with the supplied values in reverse order. dst[7:0] := e31 dst[15:8] := e30 dst[23:16] := e29 dst[31:24] := e28 dst[39:32] := e27 dst[47:40] := e26 dst[55:48] := e25 dst[63:56] := e24 dst[71:64] := e23 dst[79:72] := e22 dst[87:80] := e21 dst[95:88] := e20 dst[103:96] := e19 dst[111:104] := e18 dst[119:112] := e17 dst[127:120] := e16 dst[135:128] := e15 dst[143:136] := e14 dst[151:144] := e13 dst[159:152] := e12 dst[167:160] := e11 dst[175:168] := e10 dst[183:176] := e9 dst[191:184] := e8 dst[199:192] := e7 dst[207:200] := e6 dst[215:208] := e5 dst[223:216] := e4 dst[231:224] := e3 dst[239:232] := e2 dst[247:240] := e1 dst[255:248] := e0 dst[MAX:256] := 0 AVX
immintrin.h
Set
Set packed 16-bit integers in "dst" with the supplied values in reverse order. dst[15:0] := e15 dst[31:16] := e14 dst[47:32] := e13 dst[63:48] := e12 dst[79:64] := e11 dst[95:80] := e10 dst[111:96] := e9 dst[127:112] := e8 dst[143:128] := e7 dst[159:144] := e6 dst[175:160] := e5 dst[191:176] := e4 dst[207:192] := e3 dst[223:208] := e2 dst[239:224] := e1 dst[255:240] := e0 dst[MAX:256] := 0 AVX
immintrin.h
Set
Set packed 32-bit integers in "dst" with the supplied values in reverse order. dst[31:0] := e7 dst[63:32] := e6 dst[95:64] := e5 dst[127:96] := e4 dst[159:128] := e3 dst[191:160] := e2 dst[223:192] := e1 dst[255:224] := e0 dst[MAX:256] := 0 AVX
immintrin.h
Set
Set packed 64-bit integers in "dst" with the supplied values in reverse order. dst[63:0] := e3 dst[127:64] := e2 dst[191:128] := e1 dst[255:192] := e0 dst[MAX:256] := 0 AVX
immintrin.h
Set
Broadcast double-precision (64-bit) floating-point value "a" to all elements of "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := a[63:0] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Set
Broadcast single-precision (32-bit) floating-point value "a" to all elements of "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := a[31:0] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Set
Broadcast 8-bit integer "a" to all elements of "dst". This intrinsic may generate the "vpbroadcastb". FOR j := 0 to 31 i := j*8 dst[i+7:i] := a[7:0] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Set
Broadcast 16-bit integer "a" to all all elements of "dst". This intrinsic may generate the "vpbroadcastw". FOR j := 0 to 15 i := j*16 dst[i+15:i] := a[15:0] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Set
Broadcast 32-bit integer "a" to all elements of "dst". This intrinsic may generate the "vpbroadcastd". FOR j := 0 to 7 i := j*32 dst[i+31:i] := a[31:0] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Set
Broadcast 64-bit integer "a" to all elements of "dst". This intrinsic may generate the "vpbroadcastq". FOR j := 0 to 3 i := j*64 dst[i+63:i] := a[63:0] ENDFOR dst[MAX:256] := 0 AVX
immintrin.h
Set
Set packed __m256 vector "dst" with the supplied values. dst[127:0] := lo[127:0] dst[255:128] := hi[127:0] dst[MAX:256] := 0 AVX
immintrin.h
Set
Set packed __m256d vector "dst" with the supplied values. dst[127:0] := lo[127:0] dst[255:128] := hi[127:0] dst[MAX:256] := 0 AVX
immintrin.h
Set
Set packed __m256i vector "dst" with the supplied values. dst[127:0] := lo[127:0] dst[255:128] := hi[127:0] dst[MAX:256] := 0 AVX
immintrin.h
Set
Set packed __m256 vector "dst" with the supplied values. dst[127:0] := lo[127:0] dst[255:128] := hi[127:0] dst[MAX:256] := 0 AVX
immintrin.h
Set
Set packed __m256d vector "dst" with the supplied values. dst[127:0] := lo[127:0] dst[255:128] := hi[127:0] dst[MAX:256] := 0 AVX
immintrin.h
Set
Set packed __m256i vector "dst" with the supplied values. dst[127:0] := lo[127:0] dst[255:128] := hi[127:0] dst[MAX:256] := 0 AVX
immintrin.h
Set
Cast vector of type __m256d to type __m256. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX
immintrin.h
Cast
Cast vector of type __m256 to type __m256d. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX
immintrin.h
Cast
Cast vector of type __m256 to type __m256i. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX
immintrin.h
Cast
Cast vector of type __m256d to type __m256i. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX
immintrin.h
Cast
Cast vector of type __m256i to type __m256. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX
immintrin.h
Cast
Cast vector of type __m256i to type __m256d. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX
immintrin.h
Cast
Cast vector of type __m256 to type __m128. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX
immintrin.h
Cast
Cast vector of type __m256d to type __m128d. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX
immintrin.h
Cast
Cast vector of type __m256i to type __m128i. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX
immintrin.h
Cast
Cast vector of type __m128 to type __m256; the upper 128 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX
immintrin.h
Cast
Cast vector of type __m128d to type __m256d; the upper 128 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX
immintrin.h
Cast
Cast vector of type __m128i to type __m256i; the upper 128 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX
immintrin.h
Cast
Cast vector of type __m128 to type __m256; the upper 128 bits of the result are zeroed. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX
immintrin.h
Cast
Cast vector of type __m128d to type __m256d; the upper 128 bits of the result are zeroed. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX
immintrin.h
Cast
Cast vector of type __m128i to type __m256i; the upper 128 bits of the result are zeroed. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX
immintrin.h
Cast
Extract an 8-bit integer from "a", selected with "index", and store the result in "dst". dst[7:0] := (a[255:0] >> (index[4:0] * 8))[7:0] AVX2
immintrin.h
Swizzle
Extract a 16-bit integer from "a", selected with "index", and store the result in "dst". dst[15:0] := (a[255:0] >> (index[3:0] * 16))[15:0] AVX2
immintrin.h
Swizzle
Blend packed 16-bit integers from "a" and "b" within 128-bit lanes using control mask "imm8", and store the results in "dst". FOR j := 0 to 15 i := j*16 IF imm8[j%8] dst[i+15:i] := b[i+15:i] ELSE dst[i+15:i] := a[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Blend packed 32-bit integers from "a" and "b" using control mask "imm8", and store the results in "dst". FOR j := 0 to 3 i := j*32 IF imm8[j] dst[i+31:i] := b[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Swizzle
Blend packed 32-bit integers from "a" and "b" using control mask "imm8", and store the results in "dst". FOR j := 0 to 7 i := j*32 IF imm8[j] dst[i+31:i] := b[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Blend packed 8-bit integers from "a" and "b" using "mask", and store the results in "dst". FOR j := 0 to 31 i := j*8 IF mask[i+7] dst[i+7:i] := b[i+7:i] ELSE dst[i+7:i] := a[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Broadcast the low packed 8-bit integer from "a" to all elements of "dst". FOR j := 0 to 15 i := j*8 dst[i+7:i] := a[7:0] ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Swizzle
Broadcast the low packed 8-bit integer from "a" to all elements of "dst". FOR j := 0 to 31 i := j*8 dst[i+7:i] := a[7:0] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Broadcast the low packed 32-bit integer from "a" to all elements of "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := a[31:0] ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Swizzle
Broadcast the low packed 32-bit integer from "a" to all elements of "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := a[31:0] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Broadcast the low packed 64-bit integer from "a" to all elements of "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := a[63:0] ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Swizzle
Broadcast the low packed 64-bit integer from "a" to all elements of "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := a[63:0] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Broadcast the low double-precision (64-bit) floating-point element from "a" to all elements of "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := a[63:0] ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Swizzle
Broadcast the low double-precision (64-bit) floating-point element from "a" to all elements of "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := a[63:0] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Broadcast 128 bits of integer data from "a" to all 128-bit lanes in "dst". dst[127:0] := a[127:0] dst[255:128] := a[127:0] dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Broadcast 128 bits of integer data from "a" to all 128-bit lanes in "dst". dst[127:0] := a[127:0] dst[255:128] := a[127:0] dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Broadcast the low single-precision (32-bit) floating-point element from "a" to all elements of "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := a[31:0] ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Swizzle
Broadcast the low single-precision (32-bit) floating-point element from "a" to all elements of "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := a[31:0] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Broadcast the low packed 16-bit integer from "a" to all elements of "dst". FOR j := 0 to 7 i := j*16 dst[i+15:i] := a[15:0] ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Swizzle
Broadcast the low packed 16-bit integer from "a" to all elements of "dst". FOR j := 0 to 15 i := j*16 dst[i+15:i] := a[15:0] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Extract 128 bits (composed of integer data) from "a", selected with "imm8", and store the result in "dst". CASE imm8[0] OF 0: dst[127:0] := a[127:0] 1: dst[127:0] := a[255:128] ESAC dst[MAX:128] := 0 AVX2
immintrin.h
Swizzle
Copy "a" to "dst", then insert 128 bits (composed of integer data) from "b" into "dst" at the location specified by "imm8". dst[255:0] := a[255:0] CASE (imm8[0]) OF 0: dst[127:0] := b[127:0] 1: dst[255:128] := b[127:0] ESAC dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Shuffle 128-bits (composed of integer data) selected by "imm8" from "a" and "b", and store the results in "dst". DEFINE SELECT4(src1, src2, control) { CASE(control[1:0]) OF 0: tmp[127:0] := src1[127:0] 1: tmp[127:0] := src1[255:128] 2: tmp[127:0] := src2[127:0] 3: tmp[127:0] := src2[255:128] ESAC IF control[3] tmp[127:0] := 0 FI RETURN tmp[127:0] } dst[127:0] := SELECT4(a[255:0], b[255:0], imm8[3:0]) dst[255:128] := SELECT4(a[255:0], b[255:0], imm8[7:4]) dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Shuffle 64-bit integers in "a" across lanes using the control in "imm8", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[63:0] := src[63:0] 1: tmp[63:0] := src[127:64] 2: tmp[63:0] := src[191:128] 3: tmp[63:0] := src[255:192] ESAC RETURN tmp[63:0] } dst[63:0] := SELECT4(a[255:0], imm8[1:0]) dst[127:64] := SELECT4(a[255:0], imm8[3:2]) dst[191:128] := SELECT4(a[255:0], imm8[5:4]) dst[255:192] := SELECT4(a[255:0], imm8[7:6]) dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" across lanes using the control in "imm8", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[63:0] := src[63:0] 1: tmp[63:0] := src[127:64] 2: tmp[63:0] := src[191:128] 3: tmp[63:0] := src[255:192] ESAC RETURN tmp[63:0] } dst[63:0] := SELECT4(a[255:0], imm8[1:0]) dst[127:64] := SELECT4(a[255:0], imm8[3:2]) dst[191:128] := SELECT4(a[255:0], imm8[5:4]) dst[255:192] := SELECT4(a[255:0], imm8[7:6]) dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Shuffle 32-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst". FOR j := 0 to 7 i := j*32 id := idx[i+2:i]*32 dst[i+31:i] := a[id+31:id] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" across lanes using the corresponding index in "idx". FOR j := 0 to 7 i := j*32 id := idx[i+2:i]*32 dst[i+31:i] := a[id+31:id] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Shuffle 32-bit integers in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } dst[31:0] := SELECT4(a[127:0], imm8[1:0]) dst[63:32] := SELECT4(a[127:0], imm8[3:2]) dst[95:64] := SELECT4(a[127:0], imm8[5:4]) dst[127:96] := SELECT4(a[127:0], imm8[7:6]) dst[159:128] := SELECT4(a[255:128], imm8[1:0]) dst[191:160] := SELECT4(a[255:128], imm8[3:2]) dst[223:192] := SELECT4(a[255:128], imm8[5:4]) dst[255:224] := SELECT4(a[255:128], imm8[7:6]) dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" within 128-bit lanes according to shuffle control mask in the corresponding 8-bit element of "b", and store the results in "dst". FOR j := 0 to 15 i := j*8 IF b[i+7] == 1 dst[i+7:i] := 0 ELSE index[3:0] := b[i+3:i] dst[i+7:i] := a[index*8+7:index*8] FI IF b[128+i+7] == 1 dst[128+i+7:128+i] := 0 ELSE index[3:0] := b[128+i+3:128+i] dst[128+i+7:128+i] := a[128+index*8+7:128+index*8] FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Shuffle 16-bit integers in the high 64 bits of 128-bit lanes of "a" using the control in "imm8". Store the results in the high 64 bits of 128-bit lanes of "dst", with the low 64 bits of 128-bit lanes being copied from from "a" to "dst". dst[63:0] := a[63:0] dst[79:64] := (a >> (imm8[1:0] * 16))[79:64] dst[95:80] := (a >> (imm8[3:2] * 16))[79:64] dst[111:96] := (a >> (imm8[5:4] * 16))[79:64] dst[127:112] := (a >> (imm8[7:6] * 16))[79:64] dst[191:128] := a[191:128] dst[207:192] := (a >> (imm8[1:0] * 16))[207:192] dst[223:208] := (a >> (imm8[3:2] * 16))[207:192] dst[239:224] := (a >> (imm8[5:4] * 16))[207:192] dst[255:240] := (a >> (imm8[7:6] * 16))[207:192] dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Shuffle 16-bit integers in the low 64 bits of 128-bit lanes of "a" using the control in "imm8". Store the results in the low 64 bits of 128-bit lanes of "dst", with the high 64 bits of 128-bit lanes being copied from from "a" to "dst". dst[15:0] := (a >> (imm8[1:0] * 16))[15:0] dst[31:16] := (a >> (imm8[3:2] * 16))[15:0] dst[47:32] := (a >> (imm8[5:4] * 16))[15:0] dst[63:48] := (a >> (imm8[7:6] * 16))[15:0] dst[127:64] := a[127:64] dst[143:128] := (a >> (imm8[1:0] * 16))[143:128] dst[159:144] := (a >> (imm8[3:2] * 16))[143:128] dst[175:160] := (a >> (imm8[5:4] * 16))[143:128] dst[191:176] := (a >> (imm8[7:6] * 16))[143:128] dst[255:192] := a[255:192] dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Unpack and interleave 8-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_BYTES(src1[127:0], src2[127:0]) { dst[7:0] := src1[71:64] dst[15:8] := src2[71:64] dst[23:16] := src1[79:72] dst[31:24] := src2[79:72] dst[39:32] := src1[87:80] dst[47:40] := src2[87:80] dst[55:48] := src1[95:88] dst[63:56] := src2[95:88] dst[71:64] := src1[103:96] dst[79:72] := src2[103:96] dst[87:80] := src1[111:104] dst[95:88] := src2[111:104] dst[103:96] := src1[119:112] dst[111:104] := src2[119:112] dst[119:112] := src1[127:120] dst[127:120] := src2[127:120] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_HIGH_BYTES(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_HIGH_BYTES(a[255:128], b[255:128]) dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Unpack and interleave 16-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_WORDS(src1[127:0], src2[127:0]) { dst[15:0] := src1[79:64] dst[31:16] := src2[79:64] dst[47:32] := src1[95:80] dst[63:48] := src2[95:80] dst[79:64] := src1[111:96] dst[95:80] := src2[111:96] dst[111:96] := src1[127:112] dst[127:112] := src2[127:112] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_HIGH_WORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_HIGH_WORDS(a[255:128], b[255:128]) dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Unpack and interleave 32-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[95:64] dst[63:32] := src2[95:64] dst[95:64] := src1[127:96] dst[127:96] := src2[127:96] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_HIGH_DWORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_HIGH_DWORDS(a[255:128], b[255:128]) dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Unpack and interleave 64-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[127:64] dst[127:64] := src2[127:64] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_HIGH_QWORDS(a[255:128], b[255:128]) dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Unpack and interleave 8-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_BYTES(src1[127:0], src2[127:0]) { dst[7:0] := src1[7:0] dst[15:8] := src2[7:0] dst[23:16] := src1[15:8] dst[31:24] := src2[15:8] dst[39:32] := src1[23:16] dst[47:40] := src2[23:16] dst[55:48] := src1[31:24] dst[63:56] := src2[31:24] dst[71:64] := src1[39:32] dst[79:72] := src2[39:32] dst[87:80] := src1[47:40] dst[95:88] := src2[47:40] dst[103:96] := src1[55:48] dst[111:104] := src2[55:48] dst[119:112] := src1[63:56] dst[127:120] := src2[63:56] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_BYTES(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_BYTES(a[255:128], b[255:128]) dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Unpack and interleave 16-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_WORDS(src1[127:0], src2[127:0]) { dst[15:0] := src1[15:0] dst[31:16] := src2[15:0] dst[47:32] := src1[31:16] dst[63:48] := src2[31:16] dst[79:64] := src1[47:32] dst[95:80] := src2[47:32] dst[111:96] := src1[63:48] dst[127:112] := src2[63:48] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_WORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_WORDS(a[255:128], b[255:128]) dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Unpack and interleave 32-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[31:0] dst[63:32] := src2[31:0] dst[95:64] := src1[63:32] dst[127:96] := src2[63:32] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_DWORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_DWORDS(a[255:128], b[255:128]) dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Unpack and interleave 64-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[63:0] dst[127:64] := src2[63:0] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_QWORDS(a[255:128], b[255:128]) dst[MAX:256] := 0 AVX2
immintrin.h
Swizzle
Compute the absolute value of packed signed 8-bit integers in "a", and store the unsigned results in "dst". FOR j := 0 to 31 i := j*8 dst[i+7:i] := ABS(a[i+7:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Special Math Functions
Compute the absolute value of packed signed 16-bit integers in "a", and store the unsigned results in "dst". FOR j := 0 to 15 i := j*16 dst[i+15:i] := ABS(a[i+15:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Special Math Functions
Compute the absolute value of packed signed 32-bit integers in "a", and store the unsigned results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := ABS(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Special Math Functions
Compare packed signed 8-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 31 i := j*8 dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Special Math Functions
Compare packed signed 16-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 15 i := j*16 dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Special Math Functions
Compare packed signed 32-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Special Math Functions
Compare packed unsigned 8-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 31 i := j*8 dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Special Math Functions
Compare packed unsigned 16-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 15 i := j*16 dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Special Math Functions
Compare packed unsigned 32-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Special Math Functions
Compare packed signed 8-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 31 i := j*8 dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Special Math Functions
Compare packed signed 16-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 15 i := j*16 dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Special Math Functions
Compare packed signed 32-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Special Math Functions
Compare packed unsigned 8-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 31 i := j*8 dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Special Math Functions
Compare packed unsigned 16-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 15 i := j*16 dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Special Math Functions
Compare packed unsigned 32-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Special Math Functions
Add packed 8-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 31 i := j*8 dst[i+7:i] := a[i+7:i] + b[i+7:i] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Add packed 16-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 15 i := j*16 dst[i+15:i] := a[i+15:i] + b[i+15:i] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Add packed 32-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := a[i+31:i] + b[i+31:i] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Add packed 64-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := a[i+63:i] + b[i+63:i] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Add packed 8-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 31 i := j*8 dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] ) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Add packed 16-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 15 i := j*16 dst[i+15:i] := Saturate16( a[i+15:i] + b[i+15:i] ) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Add packed unsigned 8-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 31 i := j*8 dst[i+7:i] := SaturateU8( a[i+7:i] + b[i+7:i] ) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Add packed unsigned 16-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 15 i := j*16 dst[i+15:i] := SaturateU16( a[i+15:i] + b[i+15:i] ) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Horizontally add adjacent pairs of 16-bit integers in "a" and "b", and pack the signed 16-bit results in "dst". dst[15:0] := a[31:16] + a[15:0] dst[31:16] := a[63:48] + a[47:32] dst[47:32] := a[95:80] + a[79:64] dst[63:48] := a[127:112] + a[111:96] dst[79:64] := b[31:16] + b[15:0] dst[95:80] := b[63:48] + b[47:32] dst[111:96] := b[95:80] + b[79:64] dst[127:112] := b[127:112] + b[111:96] dst[143:128] := a[159:144] + a[143:128] dst[159:144] := a[191:176] + a[175:160] dst[175:160] := a[223:208] + a[207:192] dst[191:176] := a[255:240] + a[239:224] dst[207:192] := b[159:144] + b[143:128] dst[223:208] := b[191:176] + b[175:160] dst[239:224] := b[223:208] + b[207:192] dst[255:240] := b[255:240] + b[239:224] dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Horizontally add adjacent pairs of 32-bit integers in "a" and "b", and pack the signed 32-bit results in "dst". dst[31:0] := a[63:32] + a[31:0] dst[63:32] := a[127:96] + a[95:64] dst[95:64] := b[63:32] + b[31:0] dst[127:96] := b[127:96] + b[95:64] dst[159:128] := a[191:160] + a[159:128] dst[191:160] := a[255:224] + a[223:192] dst[223:192] := b[191:160] + b[159:128] dst[255:224] := b[255:224] + b[223:192] dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Horizontally add adjacent pairs of signed 16-bit integers in "a" and "b" using saturation, and pack the signed 16-bit results in "dst". dst[15:0] := Saturate16(a[31:16] + a[15:0]) dst[31:16] := Saturate16(a[63:48] + a[47:32]) dst[47:32] := Saturate16(a[95:80] + a[79:64]) dst[63:48] := Saturate16(a[127:112] + a[111:96]) dst[79:64] := Saturate16(b[31:16] + b[15:0]) dst[95:80] := Saturate16(b[63:48] + b[47:32]) dst[111:96] := Saturate16(b[95:80] + b[79:64]) dst[127:112] := Saturate16(b[127:112] + b[111:96]) dst[143:128] := Saturate16(a[159:144] + a[143:128]) dst[159:144] := Saturate16(a[191:176] + a[175:160]) dst[175:160] := Saturate16(a[223:208] + a[207:192]) dst[191:176] := Saturate16(a[255:240] + a[239:224]) dst[207:192] := Saturate16(b[159:144] + b[143:128]) dst[223:208] := Saturate16(b[191:176] + b[175:160]) dst[239:224] := Saturate16(b[223:208] + b[207:192]) dst[255:240] := Saturate16(b[255:240] + b[239:224]) dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Horizontally subtract adjacent pairs of 16-bit integers in "a" and "b", and pack the signed 16-bit results in "dst". dst[15:0] := a[15:0] - a[31:16] dst[31:16] := a[47:32] - a[63:48] dst[47:32] := a[79:64] - a[95:80] dst[63:48] := a[111:96] - a[127:112] dst[79:64] := b[15:0] - b[31:16] dst[95:80] := b[47:32] - b[63:48] dst[111:96] := b[79:64] - b[95:80] dst[127:112] := b[111:96] - b[127:112] dst[143:128] := a[143:128] - a[159:144] dst[159:144] := a[175:160] - a[191:176] dst[175:160] := a[207:192] - a[223:208] dst[191:176] := a[239:224] - a[255:240] dst[207:192] := b[143:128] - b[159:144] dst[223:208] := b[175:160] - b[191:176] dst[239:224] := b[207:192] - b[223:208] dst[255:240] := b[239:224] - b[255:240] dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Horizontally subtract adjacent pairs of 32-bit integers in "a" and "b", and pack the signed 32-bit results in "dst". dst[31:0] := a[31:0] - a[63:32] dst[63:32] := a[95:64] - a[127:96] dst[95:64] := b[31:0] - b[63:32] dst[127:96] := b[95:64] - b[127:96] dst[159:128] := a[159:128] - a[191:160] dst[191:160] := a[223:192] - a[255:224] dst[223:192] := b[159:128] - b[191:160] dst[255:224] := b[223:192] - b[255:224] dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Horizontally subtract adjacent pairs of signed 16-bit integers in "a" and "b" using saturation, and pack the signed 16-bit results in "dst". dst[15:0] := Saturate16(a[15:0] - a[31:16]) dst[31:16] := Saturate16(a[47:32] - a[63:48]) dst[47:32] := Saturate16(a[79:64] - a[95:80]) dst[63:48] := Saturate16(a[111:96] - a[127:112]) dst[79:64] := Saturate16(b[15:0] - b[31:16]) dst[95:80] := Saturate16(b[47:32] - b[63:48]) dst[111:96] := Saturate16(b[79:64] - b[95:80]) dst[127:112] := Saturate16(b[111:96] - b[127:112]) dst[143:128] := Saturate16(a[143:128] - a[159:144]) dst[159:144] := Saturate16(a[175:160] - a[191:176]) dst[175:160] := Saturate16(a[207:192] - a[223:208]) dst[191:176] := Saturate16(a[239:224] - a[255:240]) dst[207:192] := Saturate16(b[143:128] - b[159:144]) dst[223:208] := Saturate16(b[175:160] - b[191:176]) dst[239:224] := Saturate16(b[207:192] - b[223:208]) dst[255:240] := Saturate16(b[239:224] - b[255:240]) dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Horizontally add adjacent pairs of intermediate 32-bit integers, and pack the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := SignExtend32(a[i+31:i+16]*b[i+31:i+16]) + SignExtend32(a[i+15:i]*b[i+15:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Vertically multiply each unsigned 8-bit integer from "a" with the corresponding signed 8-bit integer from "b", producing intermediate signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit integers, and pack the saturated results in "dst". FOR j := 0 to 15 i := j*16 dst[i+15:i] := Saturate16( a[i+15:i+8]*b[i+15:i+8] + a[i+7:i]*b[i+7:i] ) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Multiply the low signed 32-bit integers from each packed 64-bit element in "a" and "b", and store the signed 64-bit results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := SignExtend64(a[i+31:i]) * SignExtend64(b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Multiply the low unsigned 32-bit integers from each packed 64-bit element in "a" and "b", and store the unsigned 64-bit results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := a[i+31:i] * b[i+31:i] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Multiply the packed signed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst". FOR j := 0 to 15 i := j*16 tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[31:16] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Multiply the packed unsigned 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst". FOR j := 0 to 15 i := j*16 tmp[31:0] := a[i+15:i] * b[i+15:i] dst[i+15:i] := tmp[31:16] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Truncate each intermediate integer to the 18 most significant bits, round by adding 1, and store bits [16:1] to "dst". FOR j := 0 to 15 i := j*16 tmp[31:0] := ((SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i])) >> 14) + 1 dst[i+15:i] := tmp[16:1] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Multiply the packed signed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the low 16 bits of the intermediate integers in "dst". FOR j := 0 to 15 i := j*16 tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[15:0] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Multiply the packed signed 32-bit integers in "a" and "b", producing intermediate 64-bit integers, and store the low 32 bits of the intermediate integers in "dst". FOR j := 0 to 7 i := j*32 tmp[63:0] := a[i+31:i] * b[i+31:i] dst[i+31:i] := tmp[31:0] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Compute the absolute differences of packed unsigned 8-bit integers in "a" and "b", then horizontally sum each consecutive 8 differences to produce four unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low 16 bits of 64-bit elements in "dst". FOR j := 0 to 31 i := j*8 tmp[i+7:i] := ABS(a[i+7:i] - b[i+7:i]) ENDFOR FOR j := 0 to 3 i := j*64 dst[i+15:i] := tmp[i+7:i] + tmp[i+15:i+8] + tmp[i+23:i+16] + tmp[i+31:i+24] + \ tmp[i+39:i+32] + tmp[i+47:i+40] + tmp[i+55:i+48] + tmp[i+63:i+56] dst[i+63:i+16] := 0 ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Negate packed signed 8-bit integers in "a" when the corresponding signed 8-bit integer in "b" is negative, and store the results in "dst". Element in "dst" are zeroed out when the corresponding element in "b" is zero. FOR j := 0 to 31 i := j*8 IF b[i+7:i] < 0 dst[i+7:i] := -(a[i+7:i]) ELSE IF b[i+7:i] == 0 dst[i+7:i] := 0 ELSE dst[i+7:i] := a[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Negate packed signed 16-bit integers in "a" when the corresponding signed 16-bit integer in "b" is negative, and store the results in "dst". Element in "dst" are zeroed out when the corresponding element in "b" is zero. FOR j := 0 to 15 i := j*16 IF b[i+15:i] < 0 dst[i+15:i] := -(a[i+15:i]) ELSE IF b[i+15:i] == 0 dst[i+15:i] := 0 ELSE dst[i+15:i] := a[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Negate packed signed 32-bit integers in "a" when the corresponding signed 32-bit integer in "b" is negative, and store the results in "dst". Element in "dst" are zeroed out when the corresponding element in "b" is zero. FOR j := 0 to 7 i := j*32 IF b[i+31:i] < 0 dst[i+31:i] := -(a[i+31:i]) ELSE IF b[i+31:i] == 0 dst[i+31:i] := 0 ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Subtract packed 8-bit integers in "b" from packed 8-bit integers in "a", and store the results in "dst". FOR j := 0 to 31 i := j*8 dst[i+7:i] := a[i+7:i] - b[i+7:i] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Subtract packed 16-bit integers in "b" from packed 16-bit integers in "a", and store the results in "dst". FOR j := 0 to 15 i := j*16 dst[i+15:i] := a[i+15:i] - b[i+15:i] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Subtract packed 32-bit integers in "b" from packed 32-bit integers in "a", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := a[i+31:i] - b[i+31:i] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Subtract packed 64-bit integers in "b" from packed 64-bit integers in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := a[i+63:i] - b[i+63:i] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Subtract packed signed 8-bit integers in "b" from packed 8-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 31 i := j*8 dst[i+7:i] := Saturate8(a[i+7:i] - b[i+7:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Subtract packed signed 16-bit integers in "b" from packed 16-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 15 i := j*16 dst[i+15:i] := Saturate16(a[i+15:i] - b[i+15:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Subtract packed unsigned 8-bit integers in "b" from packed unsigned 8-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 31 i := j*8 dst[i+7:i] := SaturateU8(a[i+7:i] - b[i+7:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Subtract packed unsigned 16-bit integers in "b" from packed unsigned 16-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 15 i := j*16 dst[i+15:i] := SaturateU16(a[i+15:i] - b[i+15:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Arithmetic
Concatenate pairs of 16-byte blocks in "a" and "b" into a 32-byte temporary result, shift the result right by "imm8" bytes, and store the low 16 bytes in "dst". FOR j := 0 to 1 i := j*128 tmp[255:0] := ((a[i+127:i] << 128)[255:0] OR b[i+127:i]) >> (imm8*8) dst[i+127:i] := tmp[127:0] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Miscellaneous
Create mask from the most significant bit of each 8-bit element in "a", and store the result in "dst". FOR j := 0 to 31 i := j*8 dst[j] := a[i+7] ENDFOR AVX2
immintrin.h
Miscellaneous
Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in "a" compared to those in "b", and store the 16-bit results in "dst". Eight SADs are performed for each 128-bit lane using one quadruplet from "b" and eight quadruplets from "a". One quadruplet is selected from "b" starting at on the offset specified in "imm8". Eight quadruplets are formed from sequential 8-bit integers selected from "a" starting at the offset specified in "imm8". DEFINE MPSADBW(a[127:0], b[127:0], imm8[2:0]) { a_offset := imm8[2]*32 b_offset := imm8[1:0]*32 FOR j := 0 to 7 i := j*8 k := a_offset+i l := b_offset tmp[i*2+15:i*2] := ABS(Signed(a[k+7:k] - b[l+7:l])) + ABS(Signed(a[k+15:k+8] - b[l+15:l+8])) + \ ABS(Signed(a[k+23:k+16] - b[l+23:l+16])) + ABS(Signed(a[k+31:k+24] - b[l+31:l+24])) ENDFOR RETURN tmp[127:0] } dst[127:0] := MPSADBW(a[127:0], b[127:0], imm8[2:0]) dst[255:128] := MPSADBW(a[255:128], b[255:128], imm8[5:3]) dst[MAX:256] := 0 AVX2
immintrin.h
Miscellaneous
Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using signed saturation, and store the results in "dst". dst[7:0] := Saturate8(a[15:0]) dst[15:8] := Saturate8(a[31:16]) dst[23:16] := Saturate8(a[47:32]) dst[31:24] := Saturate8(a[63:48]) dst[39:32] := Saturate8(a[79:64]) dst[47:40] := Saturate8(a[95:80]) dst[55:48] := Saturate8(a[111:96]) dst[63:56] := Saturate8(a[127:112]) dst[71:64] := Saturate8(b[15:0]) dst[79:72] := Saturate8(b[31:16]) dst[87:80] := Saturate8(b[47:32]) dst[95:88] := Saturate8(b[63:48]) dst[103:96] := Saturate8(b[79:64]) dst[111:104] := Saturate8(b[95:80]) dst[119:112] := Saturate8(b[111:96]) dst[127:120] := Saturate8(b[127:112]) dst[135:128] := Saturate8(a[143:128]) dst[143:136] := Saturate8(a[159:144]) dst[151:144] := Saturate8(a[175:160]) dst[159:152] := Saturate8(a[191:176]) dst[167:160] := Saturate8(a[207:192]) dst[175:168] := Saturate8(a[223:208]) dst[183:176] := Saturate8(a[239:224]) dst[191:184] := Saturate8(a[255:240]) dst[199:192] := Saturate8(b[143:128]) dst[207:200] := Saturate8(b[159:144]) dst[215:208] := Saturate8(b[175:160]) dst[223:216] := Saturate8(b[191:176]) dst[231:224] := Saturate8(b[207:192]) dst[239:232] := Saturate8(b[223:208]) dst[247:240] := Saturate8(b[239:224]) dst[255:248] := Saturate8(b[255:240]) dst[MAX:256] := 0 AVX2
immintrin.h
Miscellaneous
Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using signed saturation, and store the results in "dst". dst[15:0] := Saturate16(a[31:0]) dst[31:16] := Saturate16(a[63:32]) dst[47:32] := Saturate16(a[95:64]) dst[63:48] := Saturate16(a[127:96]) dst[79:64] := Saturate16(b[31:0]) dst[95:80] := Saturate16(b[63:32]) dst[111:96] := Saturate16(b[95:64]) dst[127:112] := Saturate16(b[127:96]) dst[143:128] := Saturate16(a[159:128]) dst[159:144] := Saturate16(a[191:160]) dst[175:160] := Saturate16(a[223:192]) dst[191:176] := Saturate16(a[255:224]) dst[207:192] := Saturate16(b[159:128]) dst[223:208] := Saturate16(b[191:160]) dst[239:224] := Saturate16(b[223:192]) dst[255:240] := Saturate16(b[255:224]) dst[MAX:256] := 0 AVX2
immintrin.h
Miscellaneous
Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using unsigned saturation, and store the results in "dst". dst[7:0] := SaturateU8(a[15:0]) dst[15:8] := SaturateU8(a[31:16]) dst[23:16] := SaturateU8(a[47:32]) dst[31:24] := SaturateU8(a[63:48]) dst[39:32] := SaturateU8(a[79:64]) dst[47:40] := SaturateU8(a[95:80]) dst[55:48] := SaturateU8(a[111:96]) dst[63:56] := SaturateU8(a[127:112]) dst[71:64] := SaturateU8(b[15:0]) dst[79:72] := SaturateU8(b[31:16]) dst[87:80] := SaturateU8(b[47:32]) dst[95:88] := SaturateU8(b[63:48]) dst[103:96] := SaturateU8(b[79:64]) dst[111:104] := SaturateU8(b[95:80]) dst[119:112] := SaturateU8(b[111:96]) dst[127:120] := SaturateU8(b[127:112]) dst[135:128] := SaturateU8(a[143:128]) dst[143:136] := SaturateU8(a[159:144]) dst[151:144] := SaturateU8(a[175:160]) dst[159:152] := SaturateU8(a[191:176]) dst[167:160] := SaturateU8(a[207:192]) dst[175:168] := SaturateU8(a[223:208]) dst[183:176] := SaturateU8(a[239:224]) dst[191:184] := SaturateU8(a[255:240]) dst[199:192] := SaturateU8(b[143:128]) dst[207:200] := SaturateU8(b[159:144]) dst[215:208] := SaturateU8(b[175:160]) dst[223:216] := SaturateU8(b[191:176]) dst[231:224] := SaturateU8(b[207:192]) dst[239:232] := SaturateU8(b[223:208]) dst[247:240] := SaturateU8(b[239:224]) dst[255:248] := SaturateU8(b[255:240]) dst[MAX:256] := 0 AVX2
immintrin.h
Miscellaneous
Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using unsigned saturation, and store the results in "dst". dst[15:0] := SaturateU16(a[31:0]) dst[31:16] := SaturateU16(a[63:32]) dst[47:32] := SaturateU16(a[95:64]) dst[63:48] := SaturateU16(a[127:96]) dst[79:64] := SaturateU16(b[31:0]) dst[95:80] := SaturateU16(b[63:32]) dst[111:96] := SaturateU16(b[95:64]) dst[127:112] := SaturateU16(b[127:96]) dst[143:128] := SaturateU16(a[159:128]) dst[159:144] := SaturateU16(a[191:160]) dst[175:160] := SaturateU16(a[223:192]) dst[191:176] := SaturateU16(a[255:224]) dst[207:192] := SaturateU16(b[159:128]) dst[223:208] := SaturateU16(b[191:160]) dst[239:224] := SaturateU16(b[223:192]) dst[255:240] := SaturateU16(b[255:224]) dst[MAX:256] := 0 AVX2
immintrin.h
Miscellaneous
Compute the bitwise AND of 256 bits (representing integer data) in "a" and "b", and store the result in "dst". dst[255:0] := (a[255:0] AND b[255:0]) dst[MAX:256] := 0 AVX2
immintrin.h
Logical
Compute the bitwise NOT of 256 bits (representing integer data) in "a" and then AND with "b", and store the result in "dst". dst[255:0] := ((NOT a[255:0]) AND b[255:0]) dst[MAX:256] := 0 AVX2
immintrin.h
Logical
Compute the bitwise OR of 256 bits (representing integer data) in "a" and "b", and store the result in "dst". dst[255:0] := (a[255:0] OR b[255:0]) dst[MAX:256] := 0 AVX2
immintrin.h
Logical
Compute the bitwise XOR of 256 bits (representing integer data) in "a" and "b", and store the result in "dst". dst[255:0] := (a[255:0] XOR b[255:0]) dst[MAX:256] := 0 AVX2
immintrin.h
Logical
Average packed unsigned 8-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 31 i := j*8 dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Probability/Statistics
Average packed unsigned 16-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 15 i := j*16 dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Probability/Statistics
Compare packed 8-bit integers in "a" and "b" for equality, and store the results in "dst". FOR j := 0 to 31 i := j*8 dst[i+7:i] := ( a[i+7:i] == b[i+7:i] ) ? 0xFF : 0 ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Compare
Compare packed 16-bit integers in "a" and "b" for equality, and store the results in "dst". FOR j := 0 to 15 i := j*16 dst[i+15:i] := ( a[i+15:i] == b[i+15:i] ) ? 0xFFFF : 0 ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Compare
Compare packed 32-bit integers in "a" and "b" for equality, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := ( a[i+31:i] == b[i+31:i] ) ? 0xFFFFFFFF : 0 ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Compare
Compare packed 64-bit integers in "a" and "b" for equality, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := ( a[i+63:i] == b[i+63:i] ) ? 0xFFFFFFFFFFFFFFFF : 0 ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for greater-than, and store the results in "dst". FOR j := 0 to 31 i := j*8 dst[i+7:i] := ( a[i+7:i] > b[i+7:i] ) ? 0xFF : 0 ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for greater-than, and store the results in "dst". FOR j := 0 to 15 i := j*16 dst[i+15:i] := ( a[i+15:i] > b[i+15:i] ) ? 0xFFFF : 0 ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for greater-than, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := ( a[i+31:i] > b[i+31:i] ) ? 0xFFFFFFFF : 0 ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for greater-than, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := ( a[i+63:i] > b[i+63:i] ) ? 0xFFFFFFFFFFFFFFFF : 0 ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Compare
Sign extend packed 16-bit integers in "a" to packed 32-bit integers, and store the results in "dst". FOR j:= 0 to 7 i := 32*j k := 16*j dst[i+31:i] := SignExtend32(a[k+15:k]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Convert
Sign extend packed 16-bit integers in "a" to packed 64-bit integers, and store the results in "dst". FOR j:= 0 to 3 i := 64*j k := 16*j dst[i+63:i] := SignExtend64(a[k+15:k]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Convert
Sign extend packed 32-bit integers in "a" to packed 64-bit integers, and store the results in "dst". FOR j:= 0 to 3 i := 64*j k := 32*j dst[i+63:i] := SignExtend64(a[k+31:k]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Convert
Sign extend packed 8-bit integers in "a" to packed 16-bit integers, and store the results in "dst". FOR j := 0 to 15 i := j*8 l := j*16 dst[l+15:l] := SignExtend16(a[i+7:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Convert
Sign extend packed 8-bit integers in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 7 i := 32*j k := 8*j dst[i+31:i] := SignExtend32(a[k+7:k]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Convert
Sign extend packed 8-bit integers in the low 8 bytes of "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 3 i := 64*j k := 8*j dst[i+63:i] := SignExtend64(a[k+7:k]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Convert
Zero extend packed unsigned 16-bit integers in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 7 i := 32*j k := 16*j dst[i+31:i] := ZeroExtend32(a[k+15:k]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Convert
Zero extend packed unsigned 16-bit integers in "a" to packed 64-bit integers, and store the results in "dst". FOR j:= 0 to 3 i := 64*j k := 16*j dst[i+63:i] := ZeroExtend64(a[k+15:k]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Convert
Zero extend packed unsigned 32-bit integers in "a" to packed 64-bit integers, and store the results in "dst". FOR j:= 0 to 3 i := 64*j k := 32*j dst[i+63:i] := ZeroExtend64(a[k+31:k]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in "a" to packed 16-bit integers, and store the results in "dst". FOR j := 0 to 15 i := j*8 l := j*16 dst[l+15:l] := ZeroExtend16(a[i+7:i]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 7 i := 32*j k := 8*j dst[i+31:i] := ZeroExtend32(a[k+7:k]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in the low 8 byte sof "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 3 i := 64*j k := 8*j dst[i+63:i] := ZeroExtend64(a[k+7:k]) ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Convert
Gather double-precision (64-bit) floating-point elements from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Load
Gather double-precision (64-bit) floating-point elements from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Load
Gather single-precision (32-bit) floating-point elements from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Load
Gather single-precision (32-bit) floating-point elements from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*32 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Load
Gather 32-bit integers from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Load
Gather 32-bit integers from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*32 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Load
Gather 64-bit integers from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Load
Gather 64-bit integers from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Load
Gather double-precision (64-bit) floating-point elements from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Load
Gather double-precision (64-bit) floating-point elements from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Load
Gather single-precision (32-bit) floating-point elements from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*32 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ENDFOR dst[MAX:64] := 0 AVX2
immintrin.h
Load
Gather single-precision (32-bit) floating-point elements from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Load
Gather 32-bit integers from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*32 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ENDFOR dst[MAX:64] := 0 AVX2
immintrin.h
Load
Gather 32-bit integers from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Load
Gather 64-bit integers from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Load
Gather 64-bit integers from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Load
Gather double-precision (64-bit) floating-point elements from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using "mask" (elements are copied from "src" when the highest bit is not set in the corresponding element). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*32 IF mask[i+63] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR mask[MAX:128] := 0 dst[MAX:128] := 0 AVX2
immintrin.h
Load
Gather double-precision (64-bit) floating-point elements from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using "mask" (elements are copied from "src" when the highest bit is not set in the corresponding element). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*32 IF mask[i+63] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR mask[MAX:256] := 0 dst[MAX:256] := 0 AVX2
immintrin.h
Load
Gather single-precision (32-bit) floating-point elements from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using "mask" (elements are copied from "src" when the highest bit is not set in the corresponding element). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*32 IF mask[i+31] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR mask[MAX:128] := 0 dst[MAX:128] := 0 AVX2
immintrin.h
Load
Gather single-precision (32-bit) floating-point elements from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using "mask" (elements are copied from "src" when the highest bit is not set in the corresponding element). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*32 m := j*32 IF mask[i+31] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR mask[MAX:256] := 0 dst[MAX:256] := 0 AVX2
immintrin.h
Load
Gather 32-bit integers from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using "mask" (elements are copied from "src" when the highest bit is not set in the corresponding element). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*32 IF mask[i+31] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR mask[MAX:128] := 0 dst[MAX:128] := 0 AVX2
immintrin.h
Load
Gather 32-bit integers from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using "mask" (elements are copied from "src" when the highest bit is not set in the corresponding element). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*32 m := j*32 IF mask[i+31] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR mask[MAX:256] := 0 dst[MAX:256] := 0 AVX2
immintrin.h
Load
Gather 64-bit integers from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using "mask" (elements are copied from "src" when the highest bit is not set in the corresponding element). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*32 IF mask[i+63] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR mask[MAX:128] := 0 dst[MAX:128] := 0 AVX2
immintrin.h
Load
Gather 64-bit integers from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using "mask" (elements are copied from "src" when the highest bit is not set in the corresponding element). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*32 IF mask[i+63] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR mask[MAX:256] := 0 dst[MAX:256] := 0 AVX2
immintrin.h
Load
Gather double-precision (64-bit) floating-point elements from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using "mask" (elements are copied from "src" when the highest bit is not set in the corresponding element). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*64 IF mask[i+63] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR mask[MAX:128] := 0 dst[MAX:128] := 0 AVX2
immintrin.h
Load
Gather double-precision (64-bit) floating-point elements from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using "mask" (elements are copied from "src" when the highest bit is not set in the corresponding element). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*64 IF mask[i+63] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR mask[MAX:256] := 0 dst[MAX:256] := 0 AVX2
immintrin.h
Load
Gather single-precision (32-bit) floating-point elements from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using "mask" (elements are copied from "src" when the highest bit is not set in the corresponding element). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*32 m := j*64 IF mask[i+31] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR mask[MAX:64] := 0 dst[MAX:64] := 0 AVX2
immintrin.h
Load
Gather single-precision (32-bit) floating-point elements from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using "mask" (elements are copied from "src" when the highest bit is not set in the corresponding element). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*64 IF mask[i+31] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR mask[MAX:128] := 0 dst[MAX:128] := 0 AVX2
immintrin.h
Load
Gather 32-bit integers from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using "mask" (elements are copied from "src" when the highest bit is not set in the corresponding element). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*32 m := j*64 IF mask[i+31] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR mask[MAX:64] := 0 dst[MAX:64] := 0 AVX2
immintrin.h
Load
Gather 32-bit integers from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using "mask" (elements are copied from "src" when the highest bit is not set in the corresponding element). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*64 IF mask[i+31] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR mask[MAX:128] := 0 dst[MAX:128] := 0 AVX2
immintrin.h
Load
Gather 64-bit integers from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using "mask" (elements are copied from "src" when the highest bit is not set in the corresponding element). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*64 IF mask[i+63] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR mask[MAX:128] := 0 dst[MAX:128] := 0 AVX2
immintrin.h
Load
Gather 64-bit integers from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using "mask" (elements are copied from "src" when the highest bit is not set in the corresponding element). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*64 IF mask[i+63] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR mask[MAX:256] := 0 dst[MAX:256] := 0 AVX2
immintrin.h
Load
Load packed 32-bit integers from memory into "dst" using "mask" (elements are zeroed out when the highest bit is not set in the corresponding element). FOR j := 0 to 3 i := j*32 IF mask[i+31] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Load
Load packed 32-bit integers from memory into "dst" using "mask" (elements are zeroed out when the highest bit is not set in the corresponding element). FOR j := 0 to 7 i := j*32 IF mask[i+31] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Load
Load packed 64-bit integers from memory into "dst" using "mask" (elements are zeroed out when the highest bit is not set in the corresponding element). FOR j := 0 to 1 i := j*64 IF mask[i+63] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Load
Load packed 64-bit integers from memory into "dst" using "mask" (elements are zeroed out when the highest bit is not set in the corresponding element). FOR j := 0 to 3 i := j*64 IF mask[i+63] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Load
Load 256-bits of integer data from memory into "dst" using a non-temporal memory hint. "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. dst[255:0] := MEM[mem_addr+255:mem_addr] dst[MAX:256] := 0 AVX2
immintrin.h
Load
Store packed 32-bit integers from "a" into memory using "mask" (elements are not stored when the highest bit is not set in the corresponding element). FOR j := 0 to 3 i := j*32 IF mask[i+31] MEM[mem_addr+i+31:mem_addr+i] := a[i+31:i] FI ENDFOR AVX2
immintrin.h
Store
Store packed 32-bit integers from "a" into memory using "mask" (elements are not stored when the highest bit is not set in the corresponding element). FOR j := 0 to 7 i := j*32 IF mask[i+31] MEM[mem_addr+i+31:mem_addr+i] := a[i+31:i] FI ENDFOR AVX2
immintrin.h
Store
Store packed 64-bit integers from "a" into memory using "mask" (elements are not stored when the highest bit is not set in the corresponding element). FOR j := 0 to 1 i := j*64 IF mask[i+63] MEM[mem_addr+i+63:mem_addr+i] := a[i+63:i] FI ENDFOR AVX2
immintrin.h
Store
Store packed 64-bit integers from "a" into memory using "mask" (elements are not stored when the highest bit is not set in the corresponding element). FOR j := 0 to 3 i := j*64 IF mask[i+63] MEM[mem_addr+i+63:mem_addr+i] := a[i+63:i] FI ENDFOR AVX2
immintrin.h
Store
Shift 128-bit lanes in "a" left by "imm8" bytes while shifting in zeros, and store the results in "dst". tmp := imm8[7:0] IF tmp > 15 tmp := 16 FI dst[127:0] := a[127:0] << (tmp*8) dst[255:128] := a[255:128] << (tmp*8) dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift 128-bit lanes in "a" left by "imm8" bytes while shifting in zeros, and store the results in "dst". tmp := imm8[7:0] IF tmp > 15 tmp := 16 FI dst[127:0] := a[127:0] << (tmp*8) dst[255:128] := a[255:128] << (tmp*8) dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 15 i := j*16 IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[63:0]) FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 15 i := j*16 IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << imm8[7:0]) FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 7 i := j*32 IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[63:0]) FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 7 i := j*32 IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << imm8[7:0]) FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*64 IF count[63:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[63:0]) FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*64 IF imm8[7:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] << imm8[7:0]) FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*32 IF count[i+31:i] < 32 dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 7 i := j*32 IF count[i+31:i] < 32 dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 1 i := j*64 IF count[i+63:i] < 64 dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*64 IF count[i+63:i] < 64 dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 15 i := j*16 IF count[63:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> count[63:0]) FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 15 i := j*16 IF imm8[7:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> imm8[7:0]) FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 7 i := j*32 IF count[63:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> count[63:0]) FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 7 i := j*32 IF imm8[7:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0]) FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 3 i := j*32 IF count[i+31:i] < 32 dst[i+31:i] := SignExtend32(a[i+31:i] >> count[i+31:i]) ELSE dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0) FI ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 7 i := j*32 IF count[i+31:i] < 32 dst[i+31:i] := SignExtend32(a[i+31:i] >> count[i+31:i]) ELSE dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0) FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift 128-bit lanes in "a" right by "imm8" bytes while shifting in zeros, and store the results in "dst". tmp := imm8[7:0] IF tmp > 15 tmp := 16 FI dst[127:0] := a[127:0] >> (tmp*8) dst[255:128] := a[255:128] >> (tmp*8) dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift 128-bit lanes in "a" right by "imm8" bytes while shifting in zeros, and store the results in "dst". tmp := imm8[7:0] IF tmp > 15 tmp := 16 FI dst[127:0] := a[127:0] >> (tmp*8) dst[255:128] := a[255:128] >> (tmp*8) dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 15 i := j*16 IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[63:0]) FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 15 i := j*16 IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0]) FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 7 i := j*32 IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[63:0]) FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 7 i := j*32 IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0]) FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*64 IF count[63:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[63:0]) FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*64 IF imm8[7:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0]) FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*32 IF count[i+31:i] < 32 dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 7 i := j*32 IF count[i+31:i] < 32 dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 1 i := j*64 IF count[i+63:i] < 64 dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX2
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*64 IF count[i+63:i] < 64 dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX2
immintrin.h
Shift
Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in "a" compared to those in "b", and store the 16-bit results in "dst". Four SADs are performed on four 8-bit quadruplets for each 64-bit lane. The first two SADs use the lower 8-bit quadruplet of the lane from "a", and the last two SADs use the uppper 8-bit quadruplet of the lane from "a". Quadruplets from "b" are selected from within 128-bit lanes according to the control in "imm8", and each SAD in each 64-bit lane uses the selected quadruplet at 8-bit offsets. FOR i := 0 to 1 tmp.m128[i].dword[0] := b.m128[i].dword[ imm8[1:0] ] tmp.m128[i].dword[1] := b.m128[i].dword[ imm8[3:2] ] tmp.m128[i].dword[2] := b.m128[i].dword[ imm8[5:4] ] tmp.m128[i].dword[3] := b.m128[i].dword[ imm8[7:6] ] ENDFOR FOR j := 0 to 3 i := j*64 dst[i+15:i] := ABS(a[i+7:i] - tmp[i+7:i]) + ABS(a[i+15:i+8] - tmp[i+15:i+8]) +\ ABS(a[i+23:i+16] - tmp[i+23:i+16]) + ABS(a[i+31:i+24] - tmp[i+31:i+24]) dst[i+31:i+16] := ABS(a[i+7:i] - tmp[i+15:i+8]) + ABS(a[i+15:i+8] - tmp[i+23:i+16]) +\ ABS(a[i+23:i+16] - tmp[i+31:i+24]) + ABS(a[i+31:i+24] - tmp[i+39:i+32]) dst[i+47:i+32] := ABS(a[i+39:i+32] - tmp[i+23:i+16]) + ABS(a[i+47:i+40] - tmp[i+31:i+24]) +\ ABS(a[i+55:i+48] - tmp[i+39:i+32]) + ABS(a[i+63:i+56] - tmp[i+47:i+40]) dst[i+63:i+48] := ABS(a[i+39:i+32] - tmp[i+31:i+24]) + ABS(a[i+47:i+40] - tmp[i+39:i+32]) +\ ABS(a[i+55:i+48] - tmp[i+47:i+40]) + ABS(a[i+63:i+56] - tmp[i+55:i+48]) ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in "a" compared to those in "b", and store the 16-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Four SADs are performed on four 8-bit quadruplets for each 64-bit lane. The first two SADs use the lower 8-bit quadruplet of the lane from "a", and the last two SADs use the uppper 8-bit quadruplet of the lane from "a". Quadruplets from "b" are selected from within 128-bit lanes according to the control in "imm8", and each SAD in each 64-bit lane uses the selected quadruplet at 8-bit offsets. FOR i := 0 to 1 tmp.m128[i].dword[0] := b.m128[i].dword[ imm8[1:0] ] tmp.m128[i].dword[1] := b.m128[i].dword[ imm8[3:2] ] tmp.m128[i].dword[2] := b.m128[i].dword[ imm8[5:4] ] tmp.m128[i].dword[3] := b.m128[i].dword[ imm8[7:6] ] ENDFOR FOR j := 0 to 3 i := j*64 tmp_dst[i+15:i] := ABS(a[i+7:i] - tmp[i+7:i]) + ABS(a[i+15:i+8] - tmp[i+15:i+8]) +\ ABS(a[i+23:i+16] - tmp[i+23:i+16]) + ABS(a[i+31:i+24] - tmp[i+31:i+24]) tmp_dst[i+31:i+16] := ABS(a[i+7:i] - tmp[i+15:i+8]) + ABS(a[i+15:i+8] - tmp[i+23:i+16]) +\ ABS(a[i+23:i+16] - tmp[i+31:i+24]) + ABS(a[i+31:i+24] - tmp[i+39:i+32]) tmp_dst[i+47:i+32] := ABS(a[i+39:i+32] - tmp[i+23:i+16]) + ABS(a[i+47:i+40] - tmp[i+31:i+24]) +\ ABS(a[i+55:i+48] - tmp[i+39:i+32]) + ABS(a[i+63:i+56] - tmp[i+47:i+40]) tmp_dst[i+63:i+48] := ABS(a[i+39:i+32] - tmp[i+31:i+24]) + ABS(a[i+47:i+40] - tmp[i+39:i+32]) +\ ABS(a[i+55:i+48] - tmp[i+47:i+40]) + ABS(a[i+63:i+56] - tmp[i+55:i+48]) ENDFOR FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in "a" compared to those in "b", and store the 16-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Four SADs are performed on four 8-bit quadruplets for each 64-bit lane. The first two SADs use the lower 8-bit quadruplet of the lane from "a", and the last two SADs use the uppper 8-bit quadruplet of the lane from "a". Quadruplets from "b" are selected from within 128-bit lanes according to the control in "imm8", and each SAD in each 64-bit lane uses the selected quadruplet at 8-bit offsets. FOR i := 0 to 1 tmp.m128[i].dword[0] := b.m128[i].dword[ imm8[1:0] ] tmp.m128[i].dword[1] := b.m128[i].dword[ imm8[3:2] ] tmp.m128[i].dword[2] := b.m128[i].dword[ imm8[5:4] ] tmp.m128[i].dword[3] := b.m128[i].dword[ imm8[7:6] ] ENDFOR FOR j := 0 to 3 i := j*64 tmp_dst[i+15:i] := ABS(a[i+7:i] - tmp[i+7:i]) + ABS(a[i+15:i+8] - tmp[i+15:i+8]) +\ ABS(a[i+23:i+16] - tmp[i+23:i+16]) + ABS(a[i+31:i+24] - tmp[i+31:i+24]) tmp_dst[i+31:i+16] := ABS(a[i+7:i] - tmp[i+15:i+8]) + ABS(a[i+15:i+8] - tmp[i+23:i+16]) +\ ABS(a[i+23:i+16] - tmp[i+31:i+24]) + ABS(a[i+31:i+24] - tmp[i+39:i+32]) tmp_dst[i+47:i+32] := ABS(a[i+39:i+32] - tmp[i+23:i+16]) + ABS(a[i+47:i+40] - tmp[i+31:i+24]) +\ ABS(a[i+55:i+48] - tmp[i+39:i+32]) + ABS(a[i+63:i+56] - tmp[i+47:i+40]) tmp_dst[i+63:i+48] := ABS(a[i+39:i+32] - tmp[i+31:i+24]) + ABS(a[i+47:i+40] - tmp[i+39:i+32]) +\ ABS(a[i+55:i+48] - tmp[i+47:i+40]) + ABS(a[i+63:i+56] - tmp[i+55:i+48]) ENDFOR FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in "a" compared to those in "b", and store the 16-bit results in "dst". Four SADs are performed on four 8-bit quadruplets for each 64-bit lane. The first two SADs use the lower 8-bit quadruplet of the lane from "a", and the last two SADs use the uppper 8-bit quadruplet of the lane from "a". Quadruplets from "b" are selected according to the control in "imm8", and each SAD in each 64-bit lane uses the selected quadruplet at 8-bit offsets. tmp.dword[0] := b.dword[ imm8[1:0] ] tmp.dword[1] := b.dword[ imm8[3:2] ] tmp.dword[2] := b.dword[ imm8[5:4] ] tmp.dword[3] := b.dword[ imm8[7:6] ] FOR j := 0 to 1 i := j*64 dst[i+15:i] := ABS(a[i+7:i] - tmp[i+7:i]) + ABS(a[i+15:i+8] - tmp[i+15:i+8]) +\ ABS(a[i+23:i+16] - tmp[i+23:i+16]) + ABS(a[i+31:i+24] - tmp[i+31:i+24]) dst[i+31:i+16] := ABS(a[i+7:i] - tmp[i+15:i+8]) + ABS(a[i+15:i+8] - tmp[i+23:i+16]) +\ ABS(a[i+23:i+16] - tmp[i+31:i+24]) + ABS(a[i+31:i+24] - tmp[i+39:i+32]) dst[i+47:i+32] := ABS(a[i+39:i+32] - tmp[i+23:i+16]) + ABS(a[i+47:i+40] - tmp[i+31:i+24]) +\ ABS(a[i+55:i+48] - tmp[i+39:i+32]) + ABS(a[i+63:i+56] - tmp[i+47:i+40]) dst[i+63:i+48] := ABS(a[i+39:i+32] - tmp[i+31:i+24]) + ABS(a[i+47:i+40] - tmp[i+39:i+32]) +\ ABS(a[i+55:i+48] - tmp[i+47:i+40]) + ABS(a[i+63:i+56] - tmp[i+55:i+48]) ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in "a" compared to those in "b", and store the 16-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Four SADs are performed on four 8-bit quadruplets for each 64-bit lane. The first two SADs use the lower 8-bit quadruplet of the lane from "a", and the last two SADs use the uppper 8-bit quadruplet of the lane from "a". Quadruplets from "b" are selected according to the control in "imm8", and each SAD in each 64-bit lane uses the selected quadruplet at 8-bit offsets. tmp.dword[0] := b.dword[ imm8[1:0] ] tmp.dword[1] := b.dword[ imm8[3:2] ] tmp.dword[2] := b.dword[ imm8[5:4] ] tmp.dword[3] := b.dword[ imm8[7:6] ] FOR j := 0 to 1 i := j*64 tmp_dst[i+15:i] := ABS(a[i+7:i] - tmp[i+7:i]) + ABS(a[i+15:i+8] - tmp[i+15:i+8]) +\ ABS(a[i+23:i+16] - tmp[i+23:i+16]) + ABS(a[i+31:i+24] - tmp[i+31:i+24]) tmp_dst[i+31:i+16] := ABS(a[i+7:i] - tmp[i+15:i+8]) + ABS(a[i+15:i+8] - tmp[i+23:i+16]) +\ ABS(a[i+23:i+16] - tmp[i+31:i+24]) + ABS(a[i+31:i+24] - tmp[i+39:i+32]) tmp_dst[i+47:i+32] := ABS(a[i+39:i+32] - tmp[i+23:i+16]) + ABS(a[i+47:i+40] - tmp[i+31:i+24]) +\ ABS(a[i+55:i+48] - tmp[i+39:i+32]) + ABS(a[i+63:i+56] - tmp[i+47:i+40]) tmp_dst[i+63:i+48] := ABS(a[i+39:i+32] - tmp[i+31:i+24]) + ABS(a[i+47:i+40] - tmp[i+39:i+32]) +\ ABS(a[i+55:i+48] - tmp[i+47:i+40]) + ABS(a[i+63:i+56] - tmp[i+55:i+48]) ENDFOR FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in "a" compared to those in "b", and store the 16-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Four SADs are performed on four 8-bit quadruplets for each 64-bit lane. The first two SADs use the lower 8-bit quadruplet of the lane from "a", and the last two SADs use the uppper 8-bit quadruplet of the lane from "a". Quadruplets from "b" are selected according to the control in "imm8", and each SAD in each 64-bit lane uses the selected quadruplet at 8-bit offsets. tmp.dword[0] := b.dword[ imm8[1:0] ] tmp.dword[1] := b.dword[ imm8[3:2] ] tmp.dword[2] := b.dword[ imm8[5:4] ] tmp.dword[3] := b.dword[ imm8[7:6] ] FOR j := 0 to 1 i := j*64 tmp_dst[i+15:i] := ABS(a[i+7:i] - tmp[i+7:i]) + ABS(a[i+15:i+8] - tmp[i+15:i+8]) +\ ABS(a[i+23:i+16] - tmp[i+23:i+16]) + ABS(a[i+31:i+24] - tmp[i+31:i+24]) tmp_dst[i+31:i+16] := ABS(a[i+7:i] - tmp[i+15:i+8]) + ABS(a[i+15:i+8] - tmp[i+23:i+16]) +\ ABS(a[i+23:i+16] - tmp[i+31:i+24]) + ABS(a[i+31:i+24] - tmp[i+39:i+32]) tmp_dst[i+47:i+32] := ABS(a[i+39:i+32] - tmp[i+23:i+16]) + ABS(a[i+47:i+40] - tmp[i+31:i+24]) +\ ABS(a[i+55:i+48] - tmp[i+39:i+32]) + ABS(a[i+63:i+56] - tmp[i+47:i+40]) tmp_dst[i+63:i+48] := ABS(a[i+39:i+32] - tmp[i+31:i+24]) + ABS(a[i+47:i+40] - tmp[i+39:i+32]) +\ ABS(a[i+55:i+48] - tmp[i+47:i+40]) + ABS(a[i+63:i+56] - tmp[i+55:i+48]) ENDFOR FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Concatenate pairs of 16-byte blocks in "a" and "b" into a 32-byte temporary result, shift the result right by "imm8" bytes, and store the low 16 bytes in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*128 tmp[255:0] := ((a[i+127:i] << 128)[255:0] OR b[i+127:i]) >> (imm8*8) tmp_dst[i+127:i] := tmp[127:0] ENDFOR FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Concatenate pairs of 16-byte blocks in "a" and "b" into a 32-byte temporary result, shift the result right by "imm8" bytes, and store the low 16 bytes in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*128 tmp[255:0] := ((a[i+127:i] << 128)[255:0] OR b[i+127:i]) >> (imm8*8) tmp_dst[i+127:i] := tmp[127:0] ENDFOR FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Concatenate pairs of 16-byte blocks in "a" and "b" into a 32-byte temporary result, shift the result right by "imm8" bytes, and store the low 16 bytes in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[255:0] := ((a[127:0] << 128)[255:0] OR b[127:0]) >> (imm8*8) FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Concatenate pairs of 16-byte blocks in "a" and "b" into a 32-byte temporary result, shift the result right by "imm8" bytes, and store the low 16 bytes in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[255:0] := ((a[127:0] << 128)[255:0] OR b[127:0]) >> (imm8*8) FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Blend packed 8-bit integers from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := b[i+7:i] ELSE dst[i+7:i] := a[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Blend packed 8-bit integers from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := b[i+7:i] ELSE dst[i+7:i] := a[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Blend packed 16-bit integers from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := b[i+15:i] ELSE dst[i+15:i] := a[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Blend packed 16-bit integers from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := b[i+15:i] ELSE dst[i+15:i] := a[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Broadcast the low packed 8-bit integer from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := a[7:0] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Broadcast the low packed 8-bit integer from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := a[7:0] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Broadcast the low packed 8-bit integer from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := a[7:0] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Broadcast the low packed 8-bit integer from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := a[7:0] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Broadcast the low packed 16-bit integer from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := a[15:0] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Broadcast the low packed 16-bit integer from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := a[15:0] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Broadcast the low packed 16-bit integer from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := a[15:0] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Broadcast the low packed 16-bit integer from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := a[15:0] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "idx" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] off := 16*idx[i+3:i] dst[i+15:i] := idx[i+4] ? b[off+15:off] : a[off+15:off] ELSE dst[i+15:i] := idx[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] off := 16*idx[i+3:i] dst[i+15:i] := idx[i+4] ? b[off+15:off] : a[off+15:off] ELSE dst[i+15:i] := a[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] off := 16*idx[i+3:i] dst[i+15:i] := idx[i+4] ? b[off+15:off] : a[off+15:off] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 15 i := j*16 off := 16*idx[i+3:i] dst[i+15:i] := idx[i+4] ? b[off+15:off] : a[off+15:off] ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "idx" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] off := 16*idx[i+2:i] dst[i+15:i] := idx[i+3] ? b[off+15:off] : a[off+15:off] ELSE dst[i+15:i] := idx[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] off := 16*idx[i+2:i] dst[i+15:i] := idx[i+3] ? b[off+15:off] : a[off+15:off] ELSE dst[i+15:i] := a[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] off := 16*idx[i+2:i] dst[i+15:i] := idx[i+3] ? b[off+15:off] : a[off+15:off] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 7 i := j*16 off := 16*idx[i+2:i] dst[i+15:i] := idx[i+3] ? b[off+15:off] : a[off+15:off] ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 id := idx[i+3:i]*16 IF k[j] dst[i+15:i] := a[id+15:id] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 id := idx[i+3:i]*16 IF k[j] dst[i+15:i] := a[id+15:id] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst". FOR j := 0 to 15 i := j*16 id := idx[i+3:i]*16 dst[i+15:i] := a[id+15:id] ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" using the corresponding index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 id := idx[i+2:i]*16 IF k[j] dst[i+15:i] := a[id+15:id] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" using the corresponding index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 id := idx[i+2:i]*16 IF k[j] dst[i+15:i] := a[id+15:id] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" using the corresponding index in "idx", and store the results in "dst". FOR j := 0 to 7 i := j*16 id := idx[i+2:i]*16 dst[i+15:i] := a[id+15:id] ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Set each bit of mask register "k" based on the most significant bit of the corresponding packed 8-bit integer in "a". FOR j := 0 to 31 i := j*8 IF a[i+7] k[j] := 1 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Set each bit of mask register "k" based on the most significant bit of the corresponding packed 8-bit integer in "a". FOR j := 0 to 15 i := j*8 IF a[i+7] k[j] := 1 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Set each packed 8-bit integer in "dst" to all ones or all zeros based on the value of the corresponding bit in "k". FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := 0xFF ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Set each packed 8-bit integer in "dst" to all ones or all zeros based on the value of the corresponding bit in "k". FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := 0xFF ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Set each packed 16-bit integer in "dst" to all ones or all zeros based on the value of the corresponding bit in "k". FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := 0xFFFF ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Set each packed 16-bit integer in "dst" to all ones or all zeros based on the value of the corresponding bit in "k". FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := 0xFFFF ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Set each bit of mask register "k" based on the most significant bit of the corresponding packed 16-bit integer in "a". FOR j := 0 to 15 i := j*16 IF a[i+15] k[j] := 1 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Set each bit of mask register "k" based on the most significant bit of the corresponding packed 16-bit integer in "a". FOR j := 0 to 7 i := j*16 IF a[i+15] k[j] := 1 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle packed 8-bit integers in "a" according to shuffle control mask in the corresponding 8-bit element of "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] IF b[i+7] == 1 dst[i+7:i] := 0 ELSE index[4:0] := b[i+3:i] + (j & 0x10) dst[i+7:i] := a[index*8+7:index*8] FI ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Swizzle
Shuffle packed 8-bit integers in "a" according to shuffle control mask in the corresponding 8-bit element of "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] IF b[i+7] == 1 dst[i+7:i] := 0 ELSE index[4:0] := b[i+3:i] + (j & 0x10) dst[i+7:i] := a[index*8+7:index*8] FI ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Swizzle
Shuffle packed 8-bit integers in "a" according to shuffle control mask in the corresponding 8-bit element of "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] IF b[i+7] == 1 dst[i+7:i] := 0 ELSE index[3:0] := b[i+3:i] dst[i+7:i] := a[index*8+7:index*8] FI ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Swizzle
Shuffle packed 8-bit integers in "a" according to shuffle control mask in the corresponding 8-bit element of "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] IF b[i+7] == 1 dst[i+7:i] := 0 ELSE index[3:0] := b[i+3:i] dst[i+7:i] := a[index*8+7:index*8] FI ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Swizzle
Shuffle 16-bit integers in the high 64 bits of 128-bit lanes of "a" using the control in "imm8". Store the results in the high 64 bits of 128-bit lanes of "dst", with the low 64 bits of 128-bit lanes being copied from from "a" to "dst", using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[63:0] := a[63:0] tmp_dst[79:64] := (a >> (imm8[1:0] * 16))[79:64] tmp_dst[95:80] := (a >> (imm8[3:2] * 16))[79:64] tmp_dst[111:96] := (a >> (imm8[5:4] * 16))[79:64] tmp_dst[127:112] := (a >> (imm8[7:6] * 16))[79:64] tmp_dst[191:128] := a[191:128] tmp_dst[207:192] := (a >> (imm8[1:0] * 16))[207:192] tmp_dst[223:208] := (a >> (imm8[3:2] * 16))[207:192] tmp_dst[239:224] := (a >> (imm8[5:4] * 16))[207:192] tmp_dst[255:240] := (a >> (imm8[7:6] * 16))[207:192] FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in the high 64 bits of 128-bit lanes of "a" using the control in "imm8". Store the results in the high 64 bits of 128-bit lanes of "dst", with the low 64 bits of 128-bit lanes being copied from from "a" to "dst", using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[63:0] := a[63:0] tmp_dst[79:64] := (a >> (imm8[1:0] * 16))[79:64] tmp_dst[95:80] := (a >> (imm8[3:2] * 16))[79:64] tmp_dst[111:96] := (a >> (imm8[5:4] * 16))[79:64] tmp_dst[127:112] := (a >> (imm8[7:6] * 16))[79:64] tmp_dst[191:128] := a[191:128] tmp_dst[207:192] := (a >> (imm8[1:0] * 16))[207:192] tmp_dst[223:208] := (a >> (imm8[3:2] * 16))[207:192] tmp_dst[239:224] := (a >> (imm8[5:4] * 16))[207:192] tmp_dst[255:240] := (a >> (imm8[7:6] * 16))[207:192] FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in the high 64 bits of "a" using the control in "imm8". Store the results in the high 64 bits of "dst", with the low 64 bits being copied from from "a" to "dst", using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[63:0] := a[63:0] tmp_dst[79:64] := (a >> (imm8[1:0] * 16))[79:64] tmp_dst[95:80] := (a >> (imm8[3:2] * 16))[79:64] tmp_dst[111:96] := (a >> (imm8[5:4] * 16))[79:64] tmp_dst[127:112] := (a >> (imm8[7:6] * 16))[79:64] FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in the high 64 bits of "a" using the control in "imm8". Store the results in the high 64 bits of "dst", with the low 64 bits being copied from from "a" to "dst", using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[63:0] := a[63:0] tmp_dst[79:64] := (a >> (imm8[1:0] * 16))[79:64] tmp_dst[95:80] := (a >> (imm8[3:2] * 16))[79:64] tmp_dst[111:96] := (a >> (imm8[5:4] * 16))[79:64] tmp_dst[127:112] := (a >> (imm8[7:6] * 16))[79:64] FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in the low 64 bits of 128-bit lanes of "a" using the control in "imm8". Store the results in the low 64 bits of 128-bit lanes of "dst", with the high 64 bits of 128-bit lanes being copied from from "a" to "dst", using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[15:0] := (a >> (imm8[1:0] * 16))[15:0] tmp_dst[31:16] := (a >> (imm8[3:2] * 16))[15:0] tmp_dst[47:32] := (a >> (imm8[5:4] * 16))[15:0] tmp_dst[63:48] := (a >> (imm8[7:6] * 16))[15:0] tmp_dst[127:64] := a[127:64] tmp_dst[143:128] := (a >> (imm8[1:0] * 16))[143:128] tmp_dst[159:144] := (a >> (imm8[3:2] * 16))[143:128] tmp_dst[175:160] := (a >> (imm8[5:4] * 16))[143:128] tmp_dst[191:176] := (a >> (imm8[7:6] * 16))[143:128] tmp_dst[255:192] := a[255:192] FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in the low 64 bits of 128-bit lanes of "a" using the control in "imm8". Store the results in the low 64 bits of 128-bit lanes of "dst", with the high 64 bits of 128-bit lanes being copied from from "a" to "dst", using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[15:0] := (a >> (imm8[1:0] * 16))[15:0] tmp_dst[31:16] := (a >> (imm8[3:2] * 16))[15:0] tmp_dst[47:32] := (a >> (imm8[5:4] * 16))[15:0] tmp_dst[63:48] := (a >> (imm8[7:6] * 16))[15:0] tmp_dst[127:64] := a[127:64] tmp_dst[143:128] := (a >> (imm8[1:0] * 16))[143:128] tmp_dst[159:144] := (a >> (imm8[3:2] * 16))[143:128] tmp_dst[175:160] := (a >> (imm8[5:4] * 16))[143:128] tmp_dst[191:176] := (a >> (imm8[7:6] * 16))[143:128] tmp_dst[255:192] := a[255:192] FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in the low 64 bits of "a" using the control in "imm8". Store the results in the low 64 bits of "dst", with the high 64 bits being copied from from "a" to "dst", using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[15:0] := (a >> (imm8[1:0] * 16))[15:0] tmp_dst[31:16] := (a >> (imm8[3:2] * 16))[15:0] tmp_dst[47:32] := (a >> (imm8[5:4] * 16))[15:0] tmp_dst[63:48] := (a >> (imm8[7:6] * 16))[15:0] tmp_dst[127:64] := a[127:64] FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Shuffle 16-bit integers in the low 64 bits of "a" using the control in "imm8". Store the results in the low 64 bits of "dst", with the high 64 bits being copied from from "a" to "dst", using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[15:0] := (a >> (imm8[1:0] * 16))[15:0] tmp_dst[31:16] := (a >> (imm8[3:2] * 16))[15:0] tmp_dst[47:32] := (a >> (imm8[5:4] * 16))[15:0] tmp_dst[63:48] := (a >> (imm8[7:6] * 16))[15:0] tmp_dst[127:64] := a[127:64] FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 8-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_BYTES(src1[127:0], src2[127:0]) { dst[7:0] := src1[71:64] dst[15:8] := src2[71:64] dst[23:16] := src1[79:72] dst[31:24] := src2[79:72] dst[39:32] := src1[87:80] dst[47:40] := src2[87:80] dst[55:48] := src1[95:88] dst[63:56] := src2[95:88] dst[71:64] := src1[103:96] dst[79:72] := src2[103:96] dst[87:80] := src1[111:104] dst[95:88] := src2[111:104] dst[103:96] := src1[119:112] dst[111:104] := src2[119:112] dst[119:112] := src1[127:120] dst[127:120] := src2[127:120] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_BYTES(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_BYTES(a[255:128], b[255:128]) FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 8-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_BYTES(src1[127:0], src2[127:0]) { dst[7:0] := src1[71:64] dst[15:8] := src2[71:64] dst[23:16] := src1[79:72] dst[31:24] := src2[79:72] dst[39:32] := src1[87:80] dst[47:40] := src2[87:80] dst[55:48] := src1[95:88] dst[63:56] := src2[95:88] dst[71:64] := src1[103:96] dst[79:72] := src2[103:96] dst[87:80] := src1[111:104] dst[95:88] := src2[111:104] dst[103:96] := src1[119:112] dst[111:104] := src2[119:112] dst[119:112] := src1[127:120] dst[127:120] := src2[127:120] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_BYTES(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_BYTES(a[255:128], b[255:128]) FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 8-bit integers from the high half of "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_BYTES(src1[127:0], src2[127:0]) { dst[7:0] := src1[71:64] dst[15:8] := src2[71:64] dst[23:16] := src1[79:72] dst[31:24] := src2[79:72] dst[39:32] := src1[87:80] dst[47:40] := src2[87:80] dst[55:48] := src1[95:88] dst[63:56] := src2[95:88] dst[71:64] := src1[103:96] dst[79:72] := src2[103:96] dst[87:80] := src1[111:104] dst[95:88] := src2[111:104] dst[103:96] := src1[119:112] dst[111:104] := src2[119:112] dst[119:112] := src1[127:120] dst[127:120] := src2[127:120] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_BYTES(a[127:0], b[127:0]) FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 8-bit integers from the high half of "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_BYTES(src1[127:0], src2[127:0]) { dst[7:0] := src1[71:64] dst[15:8] := src2[71:64] dst[23:16] := src1[79:72] dst[31:24] := src2[79:72] dst[39:32] := src1[87:80] dst[47:40] := src2[87:80] dst[55:48] := src1[95:88] dst[63:56] := src2[95:88] dst[71:64] := src1[103:96] dst[79:72] := src2[103:96] dst[87:80] := src1[111:104] dst[95:88] := src2[111:104] dst[103:96] := src1[119:112] dst[111:104] := src2[119:112] dst[119:112] := src1[127:120] dst[127:120] := src2[127:120] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_BYTES(a[127:0], b[127:0]) FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 16-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_WORDS(src1[127:0], src2[127:0]) { dst[15:0] := src1[79:64] dst[31:16] := src2[79:64] dst[47:32] := src1[95:80] dst[63:48] := src2[95:80] dst[79:64] := src1[111:96] dst[95:80] := src2[111:96] dst[111:96] := src1[127:112] dst[127:112] := src2[127:112] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_WORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_WORDS(a[255:128], b[255:128]) FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 16-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_WORDS(src1[127:0], src2[127:0]) { dst[15:0] := src1[79:64] dst[31:16] := src2[79:64] dst[47:32] := src1[95:80] dst[63:48] := src2[95:80] dst[79:64] := src1[111:96] dst[95:80] := src2[111:96] dst[111:96] := src1[127:112] dst[127:112] := src2[127:112] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_WORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_WORDS(a[255:128], b[255:128]) FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 16-bit integers from the high half of "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_WORDS(src1[127:0], src2[127:0]) { dst[15:0] := src1[79:64] dst[31:16] := src2[79:64] dst[47:32] := src1[95:80] dst[63:48] := src2[95:80] dst[79:64] := src1[111:96] dst[95:80] := src2[111:96] dst[111:96] := src1[127:112] dst[127:112] := src2[127:112] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_WORDS(a[127:0], b[127:0]) FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 16-bit integers from the high half of "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_WORDS(src1[127:0], src2[127:0]) { dst[15:0] := src1[79:64] dst[31:16] := src2[79:64] dst[47:32] := src1[95:80] dst[63:48] := src2[95:80] dst[79:64] := src1[111:96] dst[95:80] := src2[111:96] dst[111:96] := src1[127:112] dst[127:112] := src2[127:112] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_WORDS(a[127:0], b[127:0]) FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 8-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_BYTES(src1[127:0], src2[127:0]) { dst[7:0] := src1[7:0] dst[15:8] := src2[7:0] dst[23:16] := src1[15:8] dst[31:24] := src2[15:8] dst[39:32] := src1[23:16] dst[47:40] := src2[23:16] dst[55:48] := src1[31:24] dst[63:56] := src2[31:24] dst[71:64] := src1[39:32] dst[79:72] := src2[39:32] dst[87:80] := src1[47:40] dst[95:88] := src2[47:40] dst[103:96] := src1[55:48] dst[111:104] := src2[55:48] dst[119:112] := src1[63:56] dst[127:120] := src2[63:56] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_BYTES(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_BYTES(a[255:128], b[255:128]) FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 8-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_BYTES(src1[127:0], src2[127:0]) { dst[7:0] := src1[7:0] dst[15:8] := src2[7:0] dst[23:16] := src1[15:8] dst[31:24] := src2[15:8] dst[39:32] := src1[23:16] dst[47:40] := src2[23:16] dst[55:48] := src1[31:24] dst[63:56] := src2[31:24] dst[71:64] := src1[39:32] dst[79:72] := src2[39:32] dst[87:80] := src1[47:40] dst[95:88] := src2[47:40] dst[103:96] := src1[55:48] dst[111:104] := src2[55:48] dst[119:112] := src1[63:56] dst[127:120] := src2[63:56] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_BYTES(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_BYTES(a[255:128], b[255:128]) FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 8-bit integers from the low half of "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_BYTES(src1[127:0], src2[127:0]) { dst[7:0] := src1[7:0] dst[15:8] := src2[7:0] dst[23:16] := src1[15:8] dst[31:24] := src2[15:8] dst[39:32] := src1[23:16] dst[47:40] := src2[23:16] dst[55:48] := src1[31:24] dst[63:56] := src2[31:24] dst[71:64] := src1[39:32] dst[79:72] := src2[39:32] dst[87:80] := src1[47:40] dst[95:88] := src2[47:40] dst[103:96] := src1[55:48] dst[111:104] := src2[55:48] dst[119:112] := src1[63:56] dst[127:120] := src2[63:56] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_BYTES(a[127:0], b[127:0]) FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 8-bit integers from the low half of "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_BYTES(src1[127:0], src2[127:0]) { dst[7:0] := src1[7:0] dst[15:8] := src2[7:0] dst[23:16] := src1[15:8] dst[31:24] := src2[15:8] dst[39:32] := src1[23:16] dst[47:40] := src2[23:16] dst[55:48] := src1[31:24] dst[63:56] := src2[31:24] dst[71:64] := src1[39:32] dst[79:72] := src2[39:32] dst[87:80] := src1[47:40] dst[95:88] := src2[47:40] dst[103:96] := src1[55:48] dst[111:104] := src2[55:48] dst[119:112] := src1[63:56] dst[127:120] := src2[63:56] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_BYTES(a[127:0], b[127:0]) FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 16-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_WORDS(src1[127:0], src2[127:0]) { dst[15:0] := src1[15:0] dst[31:16] := src2[15:0] dst[47:32] := src1[31:16] dst[63:48] := src2[31:16] dst[79:64] := src1[47:32] dst[95:80] := src2[47:32] dst[111:96] := src1[63:48] dst[127:112] := src2[63:48] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_WORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_WORDS(a[255:128], b[255:128]) FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 16-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_WORDS(src1[127:0], src2[127:0]) { dst[15:0] := src1[15:0] dst[31:16] := src2[15:0] dst[47:32] := src1[31:16] dst[63:48] := src2[31:16] dst[79:64] := src1[47:32] dst[95:80] := src2[47:32] dst[111:96] := src1[63:48] dst[127:112] := src2[63:48] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_WORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_WORDS(a[255:128], b[255:128]) FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 16-bit integers from the low half of "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_WORDS(src1[127:0], src2[127:0]) { dst[15:0] := src1[15:0] dst[31:16] := src2[15:0] dst[47:32] := src1[31:16] dst[63:48] := src2[31:16] dst[79:64] := src1[47:32] dst[95:80] := src2[47:32] dst[111:96] := src1[63:48] dst[127:112] := src2[63:48] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_WORDS(a[127:0], b[127:0]) FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 16-bit integers from the low half of "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_WORDS(src1[127:0], src2[127:0]) { dst[15:0] := src1[15:0] dst[31:16] := src2[15:0] dst[47:32] := src1[31:16] dst[63:48] := src2[31:16] dst[79:64] := src1[47:32] dst[95:80] := src2[47:32] dst[111:96] := src1[63:48] dst[127:112] := src2[63:48] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_WORDS(a[127:0], b[127:0]) FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Miscellaneous
Load packed 16-bit integers from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := MEM[mem_addr+i+15:mem_addr+i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Load
Load packed 16-bit integers from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := MEM[mem_addr+i+15:mem_addr+i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Load
Load packed 16-bit integers from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := MEM[mem_addr+i+15:mem_addr+i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Load
Load packed 16-bit integers from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := MEM[mem_addr+i+15:mem_addr+i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Load
Load packed 8-bit integers from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := MEM[mem_addr+i+7:mem_addr+i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Load
Load packed 8-bit integers from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := MEM[mem_addr+i+7:mem_addr+i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Load
Load packed 8-bit integers from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := MEM[mem_addr+i+7:mem_addr+i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Load
Load packed 8-bit integers from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := MEM[mem_addr+i+7:mem_addr+i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Load
Load 256-bits (composed of 16 packed 16-bit integers) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[255:0] := MEM[mem_addr+255:mem_addr] dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Load
Load 256-bits (composed of 32 packed 8-bit integers) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[255:0] := MEM[mem_addr+255:mem_addr] dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Load
Load 128-bits (composed of 8 packed 16-bit integers) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[127:0] := MEM[mem_addr+127:mem_addr] dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Load
Load 128-bits (composed of 16 packed 8-bit integers) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[127:0] := MEM[mem_addr+127:mem_addr] dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Load
Move packed 16-bit integers from "a" into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := a[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Move
Move packed 16-bit integers from "a" into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := a[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Move
Move packed 16-bit integers from "a" into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := a[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Move
Move packed 16-bit integers from "a" into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := a[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Move
Move packed 8-bit integers from "a" into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := a[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Move
Move packed 8-bit integers from "a" into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := a[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Move
Move packed 8-bit integers from "a" into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := a[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Move
Move packed 8-bit integers from "a" into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := a[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Move
Store packed 16-bit integers from "a" into memory using writemask "k". "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 15 i := j*16 IF k[j] MEM[mem_addr+i+15:mem_addr+i] := a[i+15:i] FI ENDFOR AVX512BW AVX512VL
immintrin.h
Store
Store packed 16-bit integers from "a" into memory using writemask "k". "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 7 i := j*16 IF k[j] MEM[mem_addr+i+15:mem_addr+i] := a[i+15:i] FI ENDFOR AVX512BW AVX512VL
immintrin.h
Store
Store packed 8-bit integers from "a" into memory using writemask "k". "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 31 i := j*8 IF k[j] MEM[mem_addr+i+7:mem_addr+i] := a[i+7:i] FI ENDFOR AVX512BW AVX512VL
immintrin.h
Store
Store packed 8-bit integers from "a" into memory using writemask "k". "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 15 i := j*8 IF k[j] MEM[mem_addr+i+7:mem_addr+i] := a[i+7:i] FI ENDFOR AVX512BW AVX512VL
immintrin.h
Store
Store 256-bits (composed of 16 packed 16-bit integers) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+255:mem_addr] := a[255:0] AVX512BW AVX512VL
immintrin.h
Store
Store 256-bits (composed of 32 packed 8-bit integers) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+255:mem_addr] := a[255:0] AVX512BW AVX512VL
immintrin.h
Store
Store 128-bits (composed of 8 packed 16-bit integers) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+127:mem_addr] := a[127:0] AVX512BW AVX512VL
immintrin.h
Store
Store 128-bits (composed of 16 packed 8-bit integers) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+127:mem_addr] := a[127:0] AVX512BW AVX512VL
immintrin.h
Store
Compute the absolute value of packed signed 8-bit integers in "a", and store the unsigned results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := ABS(a[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compute the absolute value of packed signed 8-bit integers in "a", and store the unsigned results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := ABS(a[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compute the absolute value of packed signed 8-bit integers in "a", and store the unsigned results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := ABS(a[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compute the absolute value of packed signed 8-bit integers in "a", and store the unsigned results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := ABS(a[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compute the absolute value of packed signed 16-bit integers in "a", and store the unsigned results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := ABS(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compute the absolute value of packed signed 16-bit integers in "a", and store the unsigned results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := ABS(a[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compute the absolute value of packed signed 16-bit integers in "a", and store the unsigned results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := ABS(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compute the absolute value of packed signed 16-bit integers in "a", and store the unsigned results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := ABS(a[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed 8-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := a[i+7:i] + b[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed 8-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := a[i+7:i] + b[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed 8-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := a[i+7:i] + b[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed 8-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := a[i+7:i] + b[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed signed 8-bit integers in "a" and "b" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] ) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed signed 8-bit integers in "a" and "b" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] ) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed signed 8-bit integers in "a" and "b" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] ) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed signed 8-bit integers in "a" and "b" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] ) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed signed 16-bit integers in "a" and "b" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := Saturate16( a[i+15:i] + b[i+15:i] ) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed signed 16-bit integers in "a" and "b" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := Saturate16( a[i+15:i] + b[i+15:i] ) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed signed 16-bit integers in "a" and "b" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := Saturate16( a[i+15:i] + b[i+15:i] ) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed signed 16-bit integers in "a" and "b" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := Saturate16( a[i+15:i] + b[i+15:i] ) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed unsigned 8-bit integers in "a" and "b" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := SaturateU8( a[i+7:i] + b[i+7:i] ) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed unsigned 8-bit integers in "a" and "b" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := SaturateU8( a[i+7:i] + b[i+7:i] ) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed unsigned 8-bit integers in "a" and "b" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := SaturateU8( a[i+7:i] + b[i+7:i] ) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed unsigned 8-bit integers in "a" and "b" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := SaturateU8( a[i+7:i] + b[i+7:i] ) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed unsigned 16-bit integers in "a" and "b" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := SaturateU16( a[i+15:i] + b[i+15:i] ) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed unsigned 16-bit integers in "a" and "b" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := SaturateU16( a[i+15:i] + b[i+15:i] ) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed unsigned 16-bit integers in "a" and "b" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := SaturateU16( a[i+15:i] + b[i+15:i] ) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed unsigned 16-bit integers in "a" and "b" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := SaturateU16( a[i+15:i] + b[i+15:i] ) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed 16-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := a[i+15:i] + b[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed 16-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := a[i+15:i] + b[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed 16-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := a[i+15:i] + b[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Add packed 16-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := a[i+15:i] + b[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Average packed unsigned 8-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Average packed unsigned 8-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Average packed unsigned 8-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Average packed unsigned 8-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Average packed unsigned 16-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Average packed unsigned 16-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Average packed unsigned 16-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Average packed unsigned 16-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply packed unsigned 8-bit integers in "a" by packed signed 8-bit integers in "b", producing intermediate signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit integers, and pack the saturated results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := Saturate16( a[i+15:i+8]*b[i+15:i+8] + a[i+7:i]*b[i+7:i] ) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply packed unsigned 8-bit integers in "a" by packed signed 8-bit integers in "b", producing intermediate signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit integers, and pack the saturated results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := Saturate16( a[i+15:i+8]*b[i+15:i+8] + a[i+7:i]*b[i+7:i] ) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply packed unsigned 8-bit integers in "a" by packed signed 8-bit integers in "b", producing intermediate signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit integers, and pack the saturated results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := Saturate16( a[i+15:i+8]*b[i+15:i+8] + a[i+7:i]*b[i+7:i] ) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply packed unsigned 8-bit integers in "a" by packed signed 8-bit integers in "b", producing intermediate signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit integers, and pack the saturated results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := Saturate16( a[i+15:i+8]*b[i+15:i+8] + a[i+7:i]*b[i+7:i] ) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Horizontally add adjacent pairs of intermediate 32-bit integers, and pack the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := SignExtend32(a[i+31:i+16]*b[i+31:i+16]) + SignExtend32(a[i+15:i]*b[i+15:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Horizontally add adjacent pairs of intermediate 32-bit integers, and pack the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := SignExtend32(a[i+31:i+16]*b[i+31:i+16]) + SignExtend32(a[i+15:i]*b[i+15:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Horizontally add adjacent pairs of intermediate 32-bit integers, and pack the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := SignExtend32(a[i+31:i+16]*b[i+31:i+16]) + SignExtend32(a[i+15:i]*b[i+15:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Horizontally add adjacent pairs of intermediate 32-bit integers, and pack the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := SignExtend32(a[i+31:i+16]*b[i+31:i+16]) + SignExtend32(a[i+15:i]*b[i+15:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed signed 8-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed signed 8-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed signed 8-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed signed 8-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed signed 16-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed signed 16-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed signed 16-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed signed 16-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 8-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 8-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 8-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 8-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 16-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 16-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 16-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 16-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed signed 8-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed signed 8-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed signed 8-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed signed 8-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed signed 16-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed signed 16-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed signed 16-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed signed 16-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 8-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 8-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 8-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 8-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 16-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 16-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 16-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 16-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Truncate each intermediate integer to the 18 most significant bits, round by adding 1, and store bits [16:1] to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] tmp[31:0] := ((SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i])) >> 14) + 1 dst[i+15:i] := tmp[16:1] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Truncate each intermediate integer to the 18 most significant bits, round by adding 1, and store bits [16:1] to "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] tmp[31:0] := ((SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i])) >> 14) + 1 dst[i+15:i] := tmp[16:1] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Truncate each intermediate integer to the 18 most significant bits, round by adding 1, and store bits [16:1] to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] tmp[31:0] := ((SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i])) >> 14) + 1 dst[i+15:i] := tmp[16:1] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Truncate each intermediate integer to the 18 most significant bits, round by adding 1, and store bits [16:1] to "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] tmp[31:0] := ((SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i])) >> 14) + 1 dst[i+15:i] := tmp[16:1] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply the packed unsigned 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] tmp[31:0] := a[i+15:i] * b[i+15:i] dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply the packed unsigned 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] tmp[31:0] := a[i+15:i] * b[i+15:i] dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply the packed unsigned 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] tmp[31:0] := a[i+15:i] * b[i+15:i] dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply the packed unsigned 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] tmp[31:0] := a[i+15:i] * b[i+15:i] dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply the packed signed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply the packed signed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply the packed signed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply the packed signed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply the packed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the low 16 bits of the intermediate integers in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[15:0] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply the packed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the low 16 bits of the intermediate integers in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[15:0] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply the packed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the low 16 bits of the intermediate integers in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[15:0] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Multiply the packed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the low 16 bits of the intermediate integers in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[15:0] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed 8-bit integers in "b" from packed 8-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := a[i+7:i] - b[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed 8-bit integers in "b" from packed 8-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := a[i+7:i] - b[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed 8-bit integers in "b" from packed 8-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := a[i+7:i] - b[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed 8-bit integers in "b" from packed 8-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := a[i+7:i] - b[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed signed 8-bit integers in "b" from packed 8-bit integers in "a" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := Saturate8(a[i+7:i] - b[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed signed 8-bit integers in "b" from packed 8-bit integers in "a" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := Saturate8(a[i+7:i] - b[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed signed 8-bit integers in "b" from packed 8-bit integers in "a" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := Saturate8(a[i+7:i] - b[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed signed 8-bit integers in "b" from packed 8-bit integers in "a" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := Saturate8(a[i+7:i] - b[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed signed 16-bit integers in "b" from packed 16-bit integers in "a" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := Saturate16(a[i+15:i] - b[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed signed 16-bit integers in "b" from packed 16-bit integers in "a" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := Saturate16(a[i+15:i] - b[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed signed 16-bit integers in "b" from packed 16-bit integers in "a" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := Saturate16(a[i+15:i] - b[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed signed 16-bit integers in "b" from packed 16-bit integers in "a" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := Saturate16(a[i+15:i] - b[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed unsigned 8-bit integers in "b" from packed unsigned 8-bit integers in "a" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := SaturateU8(a[i+7:i] - b[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed unsigned 8-bit integers in "b" from packed unsigned 8-bit integers in "a" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := SaturateU8(a[i+7:i] - b[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed unsigned 8-bit integers in "b" from packed unsigned 8-bit integers in "a" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := SaturateU8(a[i+7:i] - b[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed unsigned 8-bit integers in "b" from packed unsigned 8-bit integers in "a" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := SaturateU8(a[i+7:i] - b[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed unsigned 16-bit integers in "b" from packed unsigned 16-bit integers in "a" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := SaturateU16(a[i+15:i] - b[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed unsigned 16-bit integers in "b" from packed unsigned 16-bit integers in "a" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := SaturateU16(a[i+15:i] - b[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed unsigned 16-bit integers in "b" from packed unsigned 16-bit integers in "a" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := SaturateU16(a[i+15:i] - b[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed unsigned 16-bit integers in "b" from packed unsigned 16-bit integers in "a" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := SaturateU16(a[i+15:i] - b[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed 16-bit integers in "b" from packed 16-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := a[i+15:i] - b[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed 16-bit integers in "b" from packed 16-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := a[i+15:i] - b[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed 16-bit integers in "b" from packed 16-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := a[i+15:i] - b[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Subtract packed 16-bit integers in "b" from packed 16-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := a[i+15:i] - b[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Arithmetic
Miscellaneous Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[15:0] := Saturate16(a[31:0]) tmp_dst[31:16] := Saturate16(a[63:32]) tmp_dst[47:32] := Saturate16(a[95:64]) tmp_dst[63:48] := Saturate16(a[127:96]) tmp_dst[79:64] := Saturate16(b[31:0]) tmp_dst[95:80] := Saturate16(b[63:32]) tmp_dst[111:96] := Saturate16(b[95:64]) tmp_dst[127:112] := Saturate16(b[127:96]) tmp_dst[143:128] := Saturate16(a[159:128]) tmp_dst[159:144] := Saturate16(a[191:160]) tmp_dst[175:160] := Saturate16(a[223:192]) tmp_dst[191:176] := Saturate16(a[255:224]) tmp_dst[207:192] := Saturate16(b[159:128]) tmp_dst[223:208] := Saturate16(b[191:160]) tmp_dst[239:224] := Saturate16(b[223:192]) tmp_dst[255:240] := Saturate16(b[255:224]) FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Miscellaneous Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[15:0] := Saturate16(a[31:0]) tmp_dst[31:16] := Saturate16(a[63:32]) tmp_dst[47:32] := Saturate16(a[95:64]) tmp_dst[63:48] := Saturate16(a[127:96]) tmp_dst[79:64] := Saturate16(b[31:0]) tmp_dst[95:80] := Saturate16(b[63:32]) tmp_dst[111:96] := Saturate16(b[95:64]) tmp_dst[127:112] := Saturate16(b[127:96]) tmp_dst[143:128] := Saturate16(a[159:128]) tmp_dst[159:144] := Saturate16(a[191:160]) tmp_dst[175:160] := Saturate16(a[223:192]) tmp_dst[191:176] := Saturate16(a[255:224]) tmp_dst[207:192] := Saturate16(b[159:128]) tmp_dst[223:208] := Saturate16(b[191:160]) tmp_dst[239:224] := Saturate16(b[223:192]) tmp_dst[255:240] := Saturate16(b[255:224]) FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Miscellaneous Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[15:0] := Saturate16(a[31:0]) tmp_dst[31:16] := Saturate16(a[63:32]) tmp_dst[47:32] := Saturate16(a[95:64]) tmp_dst[63:48] := Saturate16(a[127:96]) tmp_dst[79:64] := Saturate16(b[31:0]) tmp_dst[95:80] := Saturate16(b[63:32]) tmp_dst[111:96] := Saturate16(b[95:64]) tmp_dst[127:112] := Saturate16(b[127:96]) FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Miscellaneous Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[15:0] := Saturate16(a[31:0]) tmp_dst[31:16] := Saturate16(a[63:32]) tmp_dst[47:32] := Saturate16(a[95:64]) tmp_dst[63:48] := Saturate16(a[127:96]) tmp_dst[79:64] := Saturate16(b[31:0]) tmp_dst[95:80] := Saturate16(b[63:32]) tmp_dst[111:96] := Saturate16(b[95:64]) tmp_dst[127:112] := Saturate16(b[127:96]) FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Miscellaneous Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[7:0] := Saturate8(a[15:0]) tmp_dst[15:8] := Saturate8(a[31:16]) tmp_dst[23:16] := Saturate8(a[47:32]) tmp_dst[31:24] := Saturate8(a[63:48]) tmp_dst[39:32] := Saturate8(a[79:64]) tmp_dst[47:40] := Saturate8(a[95:80]) tmp_dst[55:48] := Saturate8(a[111:96]) tmp_dst[63:56] := Saturate8(a[127:112]) tmp_dst[71:64] := Saturate8(b[15:0]) tmp_dst[79:72] := Saturate8(b[31:16]) tmp_dst[87:80] := Saturate8(b[47:32]) tmp_dst[95:88] := Saturate8(b[63:48]) tmp_dst[103:96] := Saturate8(b[79:64]) tmp_dst[111:104] := Saturate8(b[95:80]) tmp_dst[119:112] := Saturate8(b[111:96]) tmp_dst[127:120] := Saturate8(b[127:112]) tmp_dst[135:128] := Saturate8(a[143:128]) tmp_dst[143:136] := Saturate8(a[159:144]) tmp_dst[151:144] := Saturate8(a[175:160]) tmp_dst[159:152] := Saturate8(a[191:176]) tmp_dst[167:160] := Saturate8(a[207:192]) tmp_dst[175:168] := Saturate8(a[223:208]) tmp_dst[183:176] := Saturate8(a[239:224]) tmp_dst[191:184] := Saturate8(a[255:240]) tmp_dst[199:192] := Saturate8(b[143:128]) tmp_dst[207:200] := Saturate8(b[159:144]) tmp_dst[215:208] := Saturate8(b[175:160]) tmp_dst[223:216] := Saturate8(b[191:176]) tmp_dst[231:224] := Saturate8(b[207:192]) tmp_dst[239:232] := Saturate8(b[223:208]) tmp_dst[247:240] := Saturate8(b[239:224]) tmp_dst[255:248] := Saturate8(b[255:240]) FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Miscellaneous Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[7:0] := Saturate8(a[15:0]) tmp_dst[15:8] := Saturate8(a[31:16]) tmp_dst[23:16] := Saturate8(a[47:32]) tmp_dst[31:24] := Saturate8(a[63:48]) tmp_dst[39:32] := Saturate8(a[79:64]) tmp_dst[47:40] := Saturate8(a[95:80]) tmp_dst[55:48] := Saturate8(a[111:96]) tmp_dst[63:56] := Saturate8(a[127:112]) tmp_dst[71:64] := Saturate8(b[15:0]) tmp_dst[79:72] := Saturate8(b[31:16]) tmp_dst[87:80] := Saturate8(b[47:32]) tmp_dst[95:88] := Saturate8(b[63:48]) tmp_dst[103:96] := Saturate8(b[79:64]) tmp_dst[111:104] := Saturate8(b[95:80]) tmp_dst[119:112] := Saturate8(b[111:96]) tmp_dst[127:120] := Saturate8(b[127:112]) tmp_dst[135:128] := Saturate8(a[143:128]) tmp_dst[143:136] := Saturate8(a[159:144]) tmp_dst[151:144] := Saturate8(a[175:160]) tmp_dst[159:152] := Saturate8(a[191:176]) tmp_dst[167:160] := Saturate8(a[207:192]) tmp_dst[175:168] := Saturate8(a[223:208]) tmp_dst[183:176] := Saturate8(a[239:224]) tmp_dst[191:184] := Saturate8(a[255:240]) tmp_dst[199:192] := Saturate8(b[143:128]) tmp_dst[207:200] := Saturate8(b[159:144]) tmp_dst[215:208] := Saturate8(b[175:160]) tmp_dst[223:216] := Saturate8(b[191:176]) tmp_dst[231:224] := Saturate8(b[207:192]) tmp_dst[239:232] := Saturate8(b[223:208]) tmp_dst[247:240] := Saturate8(b[239:224]) tmp_dst[255:248] := Saturate8(b[255:240]) FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Miscellaneous Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[7:0] := Saturate8(a[15:0]) tmp_dst[15:8] := Saturate8(a[31:16]) tmp_dst[23:16] := Saturate8(a[47:32]) tmp_dst[31:24] := Saturate8(a[63:48]) tmp_dst[39:32] := Saturate8(a[79:64]) tmp_dst[47:40] := Saturate8(a[95:80]) tmp_dst[55:48] := Saturate8(a[111:96]) tmp_dst[63:56] := Saturate8(a[127:112]) tmp_dst[71:64] := Saturate8(b[15:0]) tmp_dst[79:72] := Saturate8(b[31:16]) tmp_dst[87:80] := Saturate8(b[47:32]) tmp_dst[95:88] := Saturate8(b[63:48]) tmp_dst[103:96] := Saturate8(b[79:64]) tmp_dst[111:104] := Saturate8(b[95:80]) tmp_dst[119:112] := Saturate8(b[111:96]) tmp_dst[127:120] := Saturate8(b[127:112]) FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Miscellaneous Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[7:0] := Saturate8(a[15:0]) tmp_dst[15:8] := Saturate8(a[31:16]) tmp_dst[23:16] := Saturate8(a[47:32]) tmp_dst[31:24] := Saturate8(a[63:48]) tmp_dst[39:32] := Saturate8(a[79:64]) tmp_dst[47:40] := Saturate8(a[95:80]) tmp_dst[55:48] := Saturate8(a[111:96]) tmp_dst[63:56] := Saturate8(a[127:112]) tmp_dst[71:64] := Saturate8(b[15:0]) tmp_dst[79:72] := Saturate8(b[31:16]) tmp_dst[87:80] := Saturate8(b[47:32]) tmp_dst[95:88] := Saturate8(b[63:48]) tmp_dst[103:96] := Saturate8(b[79:64]) tmp_dst[111:104] := Saturate8(b[95:80]) tmp_dst[119:112] := Saturate8(b[111:96]) tmp_dst[127:120] := Saturate8(b[127:112]) FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Miscellaneous Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[15:0] := SaturateU16(a[31:0]) tmp_dst[31:16] := SaturateU16(a[63:32]) tmp_dst[47:32] := SaturateU16(a[95:64]) tmp_dst[63:48] := SaturateU16(a[127:96]) tmp_dst[79:64] := SaturateU16(b[31:0]) tmp_dst[95:80] := SaturateU16(b[63:32]) tmp_dst[111:96] := SaturateU16(b[95:64]) tmp_dst[127:112] := SaturateU16(b[127:96]) tmp_dst[143:128] := SaturateU16(a[159:128]) tmp_dst[159:144] := SaturateU16(a[191:160]) tmp_dst[175:160] := SaturateU16(a[223:192]) tmp_dst[191:176] := SaturateU16(a[255:224]) tmp_dst[207:192] := SaturateU16(b[159:128]) tmp_dst[223:208] := SaturateU16(b[191:160]) tmp_dst[239:224] := SaturateU16(b[223:192]) tmp_dst[255:240] := SaturateU16(b[255:224]) FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Miscellaneous Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[15:0] := SaturateU16(a[31:0]) tmp_dst[31:16] := SaturateU16(a[63:32]) tmp_dst[47:32] := SaturateU16(a[95:64]) tmp_dst[63:48] := SaturateU16(a[127:96]) tmp_dst[79:64] := SaturateU16(b[31:0]) tmp_dst[95:80] := SaturateU16(b[63:32]) tmp_dst[111:96] := SaturateU16(b[95:64]) tmp_dst[127:112] := SaturateU16(b[127:96]) tmp_dst[143:128] := SaturateU16(a[159:128]) tmp_dst[159:144] := SaturateU16(a[191:160]) tmp_dst[175:160] := SaturateU16(a[223:192]) tmp_dst[191:176] := SaturateU16(a[255:224]) tmp_dst[207:192] := SaturateU16(b[159:128]) tmp_dst[223:208] := SaturateU16(b[191:160]) tmp_dst[239:224] := SaturateU16(b[223:192]) tmp_dst[255:240] := SaturateU16(b[255:224]) FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Miscellaneous Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[15:0] := SaturateU16(a[31:0]) tmp_dst[31:16] := SaturateU16(a[63:32]) tmp_dst[47:32] := SaturateU16(a[95:64]) tmp_dst[63:48] := SaturateU16(a[127:96]) tmp_dst[79:64] := SaturateU16(b[31:0]) tmp_dst[95:80] := SaturateU16(b[63:32]) tmp_dst[111:96] := SaturateU16(b[95:64]) tmp_dst[127:112] := SaturateU16(b[127:96]) FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Miscellaneous Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[15:0] := SaturateU16(a[31:0]) tmp_dst[31:16] := SaturateU16(a[63:32]) tmp_dst[47:32] := SaturateU16(a[95:64]) tmp_dst[63:48] := SaturateU16(a[127:96]) tmp_dst[79:64] := SaturateU16(b[31:0]) tmp_dst[95:80] := SaturateU16(b[63:32]) tmp_dst[111:96] := SaturateU16(b[95:64]) tmp_dst[127:112] := SaturateU16(b[127:96]) FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Miscellaneous Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[7:0] := SaturateU8(a[15:0]) tmp_dst[15:8] := SaturateU8(a[31:16]) tmp_dst[23:16] := SaturateU8(a[47:32]) tmp_dst[31:24] := SaturateU8(a[63:48]) tmp_dst[39:32] := SaturateU8(a[79:64]) tmp_dst[47:40] := SaturateU8(a[95:80]) tmp_dst[55:48] := SaturateU8(a[111:96]) tmp_dst[63:56] := SaturateU8(a[127:112]) tmp_dst[71:64] := SaturateU8(b[15:0]) tmp_dst[79:72] := SaturateU8(b[31:16]) tmp_dst[87:80] := SaturateU8(b[47:32]) tmp_dst[95:88] := SaturateU8(b[63:48]) tmp_dst[103:96] := SaturateU8(b[79:64]) tmp_dst[111:104] := SaturateU8(b[95:80]) tmp_dst[119:112] := SaturateU8(b[111:96]) tmp_dst[127:120] := SaturateU8(b[127:112]) tmp_dst[135:128] := SaturateU8(a[143:128]) tmp_dst[143:136] := SaturateU8(a[159:144]) tmp_dst[151:144] := SaturateU8(a[175:160]) tmp_dst[159:152] := SaturateU8(a[191:176]) tmp_dst[167:160] := SaturateU8(a[207:192]) tmp_dst[175:168] := SaturateU8(a[223:208]) tmp_dst[183:176] := SaturateU8(a[239:224]) tmp_dst[191:184] := SaturateU8(a[255:240]) tmp_dst[199:192] := SaturateU8(b[143:128]) tmp_dst[207:200] := SaturateU8(b[159:144]) tmp_dst[215:208] := SaturateU8(b[175:160]) tmp_dst[223:216] := SaturateU8(b[191:176]) tmp_dst[231:224] := SaturateU8(b[207:192]) tmp_dst[239:232] := SaturateU8(b[223:208]) tmp_dst[247:240] := SaturateU8(b[239:224]) tmp_dst[255:248] := SaturateU8(b[255:240]) FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Miscellaneous Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[7:0] := SaturateU8(a[15:0]) tmp_dst[15:8] := SaturateU8(a[31:16]) tmp_dst[23:16] := SaturateU8(a[47:32]) tmp_dst[31:24] := SaturateU8(a[63:48]) tmp_dst[39:32] := SaturateU8(a[79:64]) tmp_dst[47:40] := SaturateU8(a[95:80]) tmp_dst[55:48] := SaturateU8(a[111:96]) tmp_dst[63:56] := SaturateU8(a[127:112]) tmp_dst[71:64] := SaturateU8(b[15:0]) tmp_dst[79:72] := SaturateU8(b[31:16]) tmp_dst[87:80] := SaturateU8(b[47:32]) tmp_dst[95:88] := SaturateU8(b[63:48]) tmp_dst[103:96] := SaturateU8(b[79:64]) tmp_dst[111:104] := SaturateU8(b[95:80]) tmp_dst[119:112] := SaturateU8(b[111:96]) tmp_dst[127:120] := SaturateU8(b[127:112]) tmp_dst[135:128] := SaturateU8(a[143:128]) tmp_dst[143:136] := SaturateU8(a[159:144]) tmp_dst[151:144] := SaturateU8(a[175:160]) tmp_dst[159:152] := SaturateU8(a[191:176]) tmp_dst[167:160] := SaturateU8(a[207:192]) tmp_dst[175:168] := SaturateU8(a[223:208]) tmp_dst[183:176] := SaturateU8(a[239:224]) tmp_dst[191:184] := SaturateU8(a[255:240]) tmp_dst[199:192] := SaturateU8(b[143:128]) tmp_dst[207:200] := SaturateU8(b[159:144]) tmp_dst[215:208] := SaturateU8(b[175:160]) tmp_dst[223:216] := SaturateU8(b[191:176]) tmp_dst[231:224] := SaturateU8(b[207:192]) tmp_dst[239:232] := SaturateU8(b[223:208]) tmp_dst[247:240] := SaturateU8(b[239:224]) tmp_dst[255:248] := SaturateU8(b[255:240]) FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Miscellaneous Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[7:0] := SaturateU8(a[15:0]) tmp_dst[15:8] := SaturateU8(a[31:16]) tmp_dst[23:16] := SaturateU8(a[47:32]) tmp_dst[31:24] := SaturateU8(a[63:48]) tmp_dst[39:32] := SaturateU8(a[79:64]) tmp_dst[47:40] := SaturateU8(a[95:80]) tmp_dst[55:48] := SaturateU8(a[111:96]) tmp_dst[63:56] := SaturateU8(a[127:112]) tmp_dst[71:64] := SaturateU8(b[15:0]) tmp_dst[79:72] := SaturateU8(b[31:16]) tmp_dst[87:80] := SaturateU8(b[47:32]) tmp_dst[95:88] := SaturateU8(b[63:48]) tmp_dst[103:96] := SaturateU8(b[79:64]) tmp_dst[111:104] := SaturateU8(b[95:80]) tmp_dst[119:112] := SaturateU8(b[111:96]) tmp_dst[127:120] := SaturateU8(b[127:112]) FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Miscellaneous Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[7:0] := SaturateU8(a[15:0]) tmp_dst[15:8] := SaturateU8(a[31:16]) tmp_dst[23:16] := SaturateU8(a[47:32]) tmp_dst[31:24] := SaturateU8(a[63:48]) tmp_dst[39:32] := SaturateU8(a[79:64]) tmp_dst[47:40] := SaturateU8(a[95:80]) tmp_dst[55:48] := SaturateU8(a[111:96]) tmp_dst[63:56] := SaturateU8(a[127:112]) tmp_dst[71:64] := SaturateU8(b[15:0]) tmp_dst[79:72] := SaturateU8(b[31:16]) tmp_dst[87:80] := SaturateU8(b[47:32]) tmp_dst[95:88] := SaturateU8(b[63:48]) tmp_dst[103:96] := SaturateU8(b[79:64]) tmp_dst[111:104] := SaturateU8(b[95:80]) tmp_dst[119:112] := SaturateU8(b[111:96]) tmp_dst[127:120] := SaturateU8(b[127:112]) FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Convert packed signed 16-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst". FOR j := 0 to 15 i := 16*j l := 8*j dst[l+7:l] := Saturate8(a[i+15:i]) ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Convert packed signed 16-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 16*j l := 8*j IF k[j] dst[l+7:l] := Saturate8(a[i+15:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Store Convert packed signed 16-bit integers in "a" to packed 8-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 15 i := 16*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := Saturate8(a[i+15:i]) FI ENDFOR AVX512BW AVX512VL
immintrin.h
Convert
Convert packed signed 16-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 16*j l := 8*j IF k[j] dst[l+7:l] := Saturate8(a[i+15:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Convert packed signed 16-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst". FOR j := 0 to 7 i := 16*j l := 8*j dst[l+7:l] := Saturate8(a[i+15:i]) ENDFOR dst[MAX:64] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Convert packed signed 16-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 16*j l := 8*j IF k[j] dst[l+7:l] := Saturate8(a[i+15:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:64] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Store Convert packed signed 16-bit integers in "a" to packed 8-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 7 i := 16*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := Saturate8(a[i+15:i]) FI ENDFOR AVX512BW AVX512VL
immintrin.h
Convert
Convert packed signed 16-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 16*j l := 8*j IF k[j] dst[l+7:l] := Saturate8(a[i+15:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Sign extend packed 8-bit integers in "a" to packed 16-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 l := j*16 IF k[j] dst[l+15:l] := SignExtend16(a[i+7:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Sign extend packed 8-bit integers in "a" to packed 16-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 l := j*16 IF k[j] dst[l+15:l] := SignExtend16(a[i+7:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Sign extend packed 8-bit integers in "a" to packed 16-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*8 l := j*16 IF k[j] dst[l+15:l] := SignExtend16(a[i+7:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Sign extend packed 8-bit integers in "a" to packed 16-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*8 l := j*16 IF k[j] dst[l+15:l] := SignExtend16(a[i+7:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst". FOR j := 0 to 15 i := 16*j l := 8*j dst[l+7:l] := SaturateU8(a[i+15:i]) ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 16*j l := 8*j IF k[j] dst[l+7:l] := SaturateU8(a[i+15:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Store Convert packed unsigned 16-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 15 i := 16*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := SaturateU8(a[i+15:i]) FI ENDFOR AVX512BW AVX512VL
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 16*j l := 8*j IF k[j] dst[l+7:l] := SaturateU8(a[i+15:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst". FOR j := 0 to 7 i := 16*j l := 8*j dst[l+7:l] := SaturateU8(a[i+15:i]) ENDFOR dst[MAX:64] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 16*j l := 8*j IF k[j] dst[l+7:l] := SaturateU8(a[i+15:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:64] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Store Convert packed unsigned 16-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 7 i := 16*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := SaturateU8(a[i+15:i]) FI ENDFOR AVX512BW AVX512VL
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 16*j l := 8*j IF k[j] dst[l+7:l] := SaturateU8(a[i+15:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Convert packed 16-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst". FOR j := 0 to 15 i := 16*j l := 8*j dst[l+7:l] := Truncate8(a[i+15:i]) ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Convert packed 16-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 16*j l := 8*j IF k[j] dst[l+7:l] := Truncate8(a[i+15:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Store Convert packed 16-bit integers in "a" to packed 8-bit integers with truncation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 15 i := 16*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := Truncate8(a[i+15:i]) FI ENDFOR AVX512BW AVX512VL
immintrin.h
Convert
Convert packed 16-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 16*j l := 8*j IF k[j] dst[l+7:l] := Truncate8(a[i+15:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Convert packed 16-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst". FOR j := 0 to 7 i := 16*j l := 8*j dst[l+7:l] := Truncate8(a[i+15:i]) ENDFOR dst[MAX:64] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Convert packed 16-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 16*j l := 8*j IF k[j] dst[l+7:l] := Truncate8(a[i+15:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:64] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Store Convert packed 16-bit integers in "a" to packed 8-bit integers with truncation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 7 i := 16*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := Truncate8(a[i+15:i]) FI ENDFOR AVX512BW AVX512VL
immintrin.h
Convert
Convert packed 16-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 16*j l := 8*j IF k[j] dst[l+7:l] := Truncate8(a[i+15:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in "a" to packed 16-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 l := j*16 IF k[j] dst[l+15:l] := ZeroExtend16(a[i+7:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in "a" to packed 16-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 l := j*16 IF k[j] dst[l+15:l] := ZeroExtend16(a[i+7:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in "a" to packed 16-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*8 l := j*16 IF k[j] dst[l+15:l] := ZeroExtend16(a[i+7:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in "a" to packed 16-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*8 l := j*16 IF k[j] dst[l+15:l] := ZeroExtend16(a[i+7:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Convert
Broadcast 8-bit integer "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := a[7:0] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Set
Broadcast 8-bit integer "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := a[7:0] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Set
Broadcast 8-bit integer "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := a[7:0] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Set
Broadcast 8-bit integer "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := a[7:0] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Set
Broadcast the low packed 16-bit integer from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := a[15:0] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Set
Broadcast 16-bit integer "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := a[15:0] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Set
Broadcast the low packed 16-bit integer from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := a[15:0] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Set
Broadcast the low packed 16-bit integer from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := a[15:0] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Set
Compare packed signed 8-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 31 i := j*8 k[j] := ( a[i+7:i] OP b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 31 i := j*8 k[j] := ( a[i+7:i] == b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 31 i := j*8 k[j] := ( a[i+7:i] >= b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 31 i := j*8 k[j] := ( a[i+7:i] > b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 31 i := j*8 k[j] := ( a[i+7:i] <= b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 31 i := j*8 k[j] := ( a[i+7:i] < b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 31 i := j*8 k[j] := ( a[i+7:i] != b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 31 i := j*8 IF k1[j] k[j] := ( a[i+7:i] OP b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k1[j] k[j] := ( a[i+7:i] == b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k1[j] k[j] := ( a[i+7:i] >= b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k1[j] k[j] := ( a[i+7:i] > b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k1[j] k[j] := ( a[i+7:i] <= b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k1[j] k[j] := ( a[i+7:i] < b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k1[j] k[j] := ( a[i+7:i] != b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 15 i := j*8 k[j] := ( a[i+7:i] OP b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 15 i := j*8 k[j] := ( a[i+7:i] == b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*8 k[j] := ( a[i+7:i] >= b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 15 i := j*8 k[j] := ( a[i+7:i] > b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*8 k[j] := ( a[i+7:i] <= b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 15 i := j*8 k[j] := ( a[i+7:i] < b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*8 k[j] := ( a[i+7:i] != b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 15 i := j*8 IF k1[j] k[j] := ( a[i+7:i] OP b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k1[j] k[j] := ( a[i+7:i] == b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k1[j] k[j] := ( a[i+7:i] >= b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k1[j] k[j] := ( a[i+7:i] > b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k1[j] k[j] := ( a[i+7:i] <= b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k1[j] k[j] := ( a[i+7:i] < b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k1[j] k[j] := ( a[i+7:i] != b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 31 i := j*8 k[j] := ( a[i+7:i] OP b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 31 i := j*8 k[j] := ( a[i+7:i] == b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 31 i := j*8 k[j] := ( a[i+7:i] >= b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 31 i := j*8 k[j] := ( a[i+7:i] > b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 31 i := j*8 k[j] := ( a[i+7:i] <= b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 31 i := j*8 k[j] := ( a[i+7:i] < b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 31 i := j*8 k[j] := ( a[i+7:i] != b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 31 i := j*8 IF k1[j] k[j] := ( a[i+7:i] OP b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k1[j] k[j] := ( a[i+7:i] == b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k1[j] k[j] := ( a[i+7:i] >= b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k1[j] k[j] := ( a[i+7:i] > b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k1[j] k[j] := ( a[i+7:i] <= b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k1[j] k[j] := ( a[i+7:i] < b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k1[j] k[j] := ( a[i+7:i] != b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 15 i := j*8 k[j] := ( a[i+7:i] OP b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 15 i := j*8 k[j] := ( a[i+7:i] == b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*8 k[j] := ( a[i+7:i] >= b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 15 i := j*8 k[j] := ( a[i+7:i] > b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*8 k[j] := ( a[i+7:i] <= b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 15 i := j*8 k[j] := ( a[i+7:i] < b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*8 k[j] := ( a[i+7:i] != b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 15 i := j*8 IF k1[j] k[j] := ( a[i+7:i] OP b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k1[j] k[j] := ( a[i+7:i] == b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k1[j] k[j] := ( a[i+7:i] >= b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k1[j] k[j] := ( a[i+7:i] > b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k1[j] k[j] := ( a[i+7:i] <= b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k1[j] k[j] := ( a[i+7:i] < b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k1[j] k[j] := ( a[i+7:i] != b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 15 i := j*16 k[j] := ( a[i+15:i] OP b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 15 i := j*16 k[j] := ( a[i+15:i] == b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*16 k[j] := ( a[i+15:i] >= b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 15 i := j*16 k[j] := ( a[i+15:i] > b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*16 k[j] := ( a[i+15:i] <= b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 15 i := j*16 k[j] := ( a[i+15:i] < b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*16 k[j] := ( a[i+15:i] != b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 15 i := j*16 IF k1[j] k[j] := ( a[i+15:i] OP b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k1[j] k[j] := ( a[i+15:i] == b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k1[j] k[j] := ( a[i+15:i] >= b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k1[j] k[j] := ( a[i+15:i] > b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k1[j] k[j] := ( a[i+15:i] <= b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k1[j] k[j] := ( a[i+15:i] < b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k1[j] k[j] := ( a[i+15:i] != b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 7 i := j*16 k[j] := ( a[i+15:i] OP b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 7 i := j*16 k[j] := ( a[i+15:i] == b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*16 k[j] := ( a[i+15:i] >= b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 7 i := j*16 k[j] := ( a[i+15:i] > b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*16 k[j] := ( a[i+15:i] <= b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 7 i := j*16 k[j] := ( a[i+15:i] < b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*16 k[j] := ( a[i+15:i] != b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 7 i := j*16 IF k1[j] k[j] := ( a[i+15:i] OP b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k1[j] k[j] := ( a[i+15:i] == b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k1[j] k[j] := ( a[i+15:i] >= b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k1[j] k[j] := ( a[i+15:i] > b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k1[j] k[j] := ( a[i+15:i] <= b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k1[j] k[j] := ( a[i+15:i] < b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k1[j] k[j] := ( a[i+15:i] != b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 15 i := j*16 k[j] := ( a[i+15:i] OP b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 15 i := j*16 k[j] := ( a[i+15:i] == b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*16 k[j] := ( a[i+15:i] >= b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 15 i := j*16 k[j] := ( a[i+15:i] > b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*16 k[j] := ( a[i+15:i] <= b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 15 i := j*16 k[j] := ( a[i+15:i] < b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*16 k[j] := ( a[i+15:i] != b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 15 i := j*16 IF k1[j] k[j] := ( a[i+15:i] OP b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k1[j] k[j] := ( a[i+15:i] == b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k1[j] k[j] := ( a[i+15:i] >= b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k1[j] k[j] := ( a[i+15:i] > b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k1[j] k[j] := ( a[i+15:i] <= b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k1[j] k[j] := ( a[i+15:i] < b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k1[j] k[j] := ( a[i+15:i] != b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 7 i := j*16 k[j] := ( a[i+15:i] OP b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 7 i := j*16 k[j] := ( a[i+15:i] == b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*16 k[j] := ( a[i+15:i] >= b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 7 i := j*16 k[j] := ( a[i+15:i] > b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*16 k[j] := ( a[i+15:i] <= b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 7 i := j*16 k[j] := ( a[i+15:i] < b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*16 k[j] := ( a[i+15:i] != b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 7 i := j*16 IF k1[j] k[j] := ( a[i+15:i] OP b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k1[j] k[j] := ( a[i+15:i] == b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k1[j] k[j] := ( a[i+15:i] >= b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k1[j] k[j] := ( a[i+15:i] > b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k1[j] k[j] := ( a[i+15:i] <= b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k1[j] k[j] := ( a[i+15:i] < b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k1[j] k[j] := ( a[i+15:i] != b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compute the bitwise AND of packed 8-bit integers in "a" and "b", producing intermediate 8-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is non-zero. FOR j := 0 to 31 i := j*8 IF k1[j] k[j] := ((a[i+7:i] AND b[i+7:i]) != 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compute the bitwise AND of packed 8-bit integers in "a" and "b", producing intermediate 8-bit values, and set the corresponding bit in result mask "k" if the intermediate value is non-zero. FOR j := 0 to 31 i := j*8 k[j] := ((a[i+7:i] AND b[i+7:i]) != 0) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compute the bitwise AND of packed 8-bit integers in "a" and "b", producing intermediate 8-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is non-zero. FOR j := 0 to 15 i := j*8 IF k1[j] k[j] := ((a[i+7:i] AND b[i+7:i]) != 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compute the bitwise AND of packed 8-bit integers in "a" and "b", producing intermediate 8-bit values, and set the corresponding bit in result mask "k" if the intermediate value is non-zero. FOR j := 0 to 15 i := j*8 k[j] := ((a[i+7:i] AND b[i+7:i]) != 0) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compute the bitwise AND of packed 16-bit integers in "a" and "b", producing intermediate 16-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is non-zero. FOR j := 0 to 15 i := j*16 IF k1[j] k[j] := ((a[i+15:i] AND b[i+15:i]) != 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compute the bitwise AND of packed 16-bit integers in "a" and "b", producing intermediate 16-bit values, and set the corresponding bit in result mask "k" if the intermediate value is non-zero. FOR j := 0 to 15 i := j*16 k[j] := ((a[i+15:i] AND b[i+15:i]) != 0) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compute the bitwise AND of packed 16-bit integers in "a" and "b", producing intermediate 16-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is non-zero. FOR j := 0 to 7 i := j*16 IF k1[j] k[j] := ((a[i+15:i] AND b[i+15:i]) != 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compute the bitwise AND of packed 16-bit integers in "a" and "b", producing intermediate 16-bit values, and set the corresponding bit in result mask "k" if the intermediate value is non-zero. FOR j := 0 to 7 i := j*16 k[j] := ((a[i+15:i] AND b[i+15:i]) != 0) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compute the bitwise NAND of packed 8-bit integers in "a" and "b", producing intermediate 8-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is zero. FOR j := 0 to 31 i := j*8 IF k1[j] k[j] := ((a[i+7:i] AND b[i+7:i]) == 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compute the bitwise NAND of packed 8-bit integers in "a" and "b", producing intermediate 8-bit values, and set the corresponding bit in result mask "k" if the intermediate value is zero. FOR j := 0 to 31 i := j*8 k[j] := ((a[i+7:i] AND b[i+7:i]) == 0) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compute the bitwise NAND of packed 8-bit integers in "a" and "b", producing intermediate 8-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is zero. FOR j := 0 to 15 i := j*8 IF k1[j] k[j] := ((a[i+7:i] AND b[i+7:i]) == 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compute the bitwise NAND of packed 8-bit integers in "a" and "b", producing intermediate 8-bit values, and set the corresponding bit in result mask "k" if the intermediate value is zero. FOR j := 0 to 15 i := j*8 k[j] := ((a[i+7:i] AND b[i+7:i]) == 0) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compute the bitwise NAND of packed 16-bit integers in "a" and "b", producing intermediate 16-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is zero. FOR j := 0 to 15 i := j*16 IF k1[j] k[j] := ((a[i+15:i] AND b[i+15:i]) == 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compute the bitwise NAND of packed 16-bit integers in "a" and "b", producing intermediate 16-bit values, and set the corresponding bit in result mask "k" if the intermediate value is zero. FOR j := 0 to 15 i := j*16 k[j] := ((a[i+15:i] AND b[i+15:i]) == 0) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compute the bitwise NAND of packed 16-bit integers in "a" and "b", producing intermediate 16-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is zero. FOR j := 0 to 7 i := j*16 IF k1[j] k[j] := ((a[i+15:i] AND b[i+15:i]) == 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Compute the bitwise NAND of packed 16-bit integers in "a" and "b", producing intermediate 16-bit values, and set the corresponding bit in result mask "k" if the intermediate value is zero. FOR j := 0 to 7 i := j*16 k[j] := ((a[i+15:i] AND b[i+15:i]) == 0) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512BW AVX512VL
immintrin.h
Compare
Shift packed 16-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] IF count[i+15:i] < 16 dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[i+15:i]) ELSE dst[i+15:i] := 0 FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] IF count[i+15:i] < 16 dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[i+15:i]) ELSE dst[i+15:i] := 0 FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 15 i := j*16 IF count[i+15:i] < 16 dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] IF count[i+15:i] < 16 dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[i+15:i]) ELSE dst[i+15:i] := 0 FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] IF count[i+15:i] < 16 dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[i+15:i]) ELSE dst[i+15:i] := 0 FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 7 i := j*16 IF count[i+15:i] < 16 dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[63:0]) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << imm8[7:0]) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[63:0]) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << imm8[7:0]) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[63:0]) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << imm8[7:0]) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[63:0]) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << imm8[7:0]) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] IF count[i+15:i] < 16 dst[i+15:i] := SignExtend16(a[i+15:i] >> count[i+15:i]) ELSE dst[i+15:i] := (a[i+15] ? 0xFFFF : 0) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] IF count[i+15:i] < 16 dst[i+15:i] := SignExtend16(a[i+15:i] >> count[i+15:i]) ELSE dst[i+15:i] := (a[i+15] ? 0xFFFF : 0) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 15 i := j*16 IF count[i+15:i] < 16 dst[i+15:i] := SignExtend16(a[i+15:i] >> count[i+15:i]) ELSE dst[i+15:i] := (a[i+15] ? 0xFFFF : 0) FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] IF count[i+15:i] < 16 dst[i+15:i] := SignExtend16(a[i+15:i] >> count[i+15:i]) ELSE dst[i+15:i] := (a[i+15] ? 0xFFFF : 0) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] IF count[i+15:i] < 16 dst[i+15:i] := SignExtend16(a[i+15:i] >> count[i+15:i]) ELSE dst[i+15:i] := (a[i+15] ? 0xFFFF : 0) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 7 i := j*16 IF count[i+15:i] < 16 dst[i+15:i] := SignExtend16(a[i+15:i] >> count[i+15:i]) ELSE dst[i+15:i] := (a[i+15] ? 0xFFFF : 0) FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] IF count[63:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> count[63:0]) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] IF imm8[7:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> imm8[7:0]) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] IF count[63:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> count[63:0]) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] IF imm8[7:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> imm8[7:0]) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] IF count[63:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> count[63:0]) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] IF imm8[7:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> imm8[7:0]) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] IF count[63:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> count[63:0]) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] IF imm8[7:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> imm8[7:0]) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] IF count[i+15:i] < 16 dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[i+15:i]) ELSE dst[i+15:i] := 0 FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] IF count[i+15:i] < 16 dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[i+15:i]) ELSE dst[i+15:i] := 0 FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 15 i := j*16 IF count[i+15:i] < 16 dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] IF count[i+15:i] < 16 dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[i+15:i]) ELSE dst[i+15:i] := 0 FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] IF count[i+15:i] < 16 dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[i+15:i]) ELSE dst[i+15:i] := 0 FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 7 i := j*16 IF count[i+15:i] < 16 dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[63:0]) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0]) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[63:0]) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0]) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[63:0]) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0]) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[63:0]) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0]) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512BW AVX512VL
immintrin.h
Shift
Reduce the packed 16-bit integers in "a" by addition. Returns the sum of all elements in "a". DEFINE REDUCE_ADD(src, len) { IF len == 2 RETURN src[15:0] + src[31:16] FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := src[i+15:i] + src[i+16*len+31:i+16*len] ENDFOR RETURN REDUCE_ADD(src[16*len-1:0], len) } dst[15:0] := REDUCE_ADD(a, 8) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 16-bit integers in "a" by addition using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_ADD(src, len) { IF len == 2 RETURN src[15:0] + src[31:16] FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := src[i+15:i] + src[i+16*len+15:i+16*len] ENDFOR RETURN REDUCE_ADD(src[16*len-1:0], len) } tmp := a FOR j := 0 to 7 i := j*16 IF k[j] tmp[i+15:i] := a[i+15:i] ELSE tmp[i+15:i] := 0 FI ENDFOR dst[15:0] := REDUCE_ADD(tmp, 8) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 16-bit integers in "a" by addition. Returns the sum of all elements in "a". DEFINE REDUCE_ADD(src, len) { IF len == 2 RETURN src[15:0] + src[31:16] FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := src[i+15:i] + src[i+16*len+31:i+16*len] ENDFOR RETURN REDUCE_ADD(src[16*len-1:0], len) } dst[15:0] := REDUCE_ADD(a, 16) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 16-bit integers in "a" by addition using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_ADD(src, len) { IF len == 2 RETURN src[15:0] + src[31:16] FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := src[i+15:i] + src[i+16*len+15:i+16*len] ENDFOR RETURN REDUCE_ADD(src[16*len-1:0], len) } tmp := a FOR j := 0 to 15 i := j*16 IF k[j] tmp[i+15:i] := a[i+15:i] ELSE tmp[i+15:i] := 0 FI ENDFOR dst[15:0] := REDUCE_ADD(tmp, 16) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 8-bit integers in "a" by addition. Returns the sum of all elements in "a". DEFINE REDUCE_ADD(src, len) { IF len == 2 RETURN src[7:0] + src[15:8] FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := src[i+7:i] + src[i+8*len+15:i+8*len] ENDFOR RETURN REDUCE_ADD(src[8*len-1:0], len) } dst[7:0] := REDUCE_ADD(a, 16) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 8-bit integers in "a" by addition using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_ADD(src, len) { IF len == 2 RETURN src[7:0] + src[15:8] FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := src[i+7:i] + src[i+8*len+7:i+8*len] ENDFOR RETURN REDUCE_ADD(src[8*len-1:0], len) } tmp := a FOR j := 0 to 15 i := j*8 IF k[j] tmp[i+7:i] := a[i+7:i] ELSE tmp[i+7:i] := 0 FI ENDFOR dst[7:0] := REDUCE_ADD(tmp, 16) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 8-bit integers in "a" by addition. Returns the sum of all elements in "a". DEFINE REDUCE_ADD(src, len) { IF len == 2 RETURN src[7:0] + src[15:8] FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := src[i+7:i] + src[i+8*len+15:i+8*len] ENDFOR RETURN REDUCE_ADD(src[8*len-1:0], len) } dst[7:0] := REDUCE_ADD(a, 32) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 8-bit integers in "a" by addition using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_ADD(src, len) { IF len == 2 RETURN src[7:0] + src[15:8] FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := src[i+7:i] + src[i+8*len+7:i+8*len] ENDFOR RETURN REDUCE_ADD(src[8*len-1:0], len) } tmp := a FOR j := 0 to 31 i := j*8 IF k[j] tmp[i+7:i] := a[i+7:i] ELSE tmp[i+7:i] := 0 FI ENDFOR dst[7:0] := REDUCE_ADD(tmp, 32) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 16-bit integers in "a" by multiplication. Returns the sum of all elements in "a". DEFINE REDUCE_MUL(src, len) { IF len == 2 RETURN src[15:0] * src[31:16] FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := src[i+15:i] * src[i+16*len+31:i+16*len] ENDFOR RETURN REDUCE_MUL(src[16*len-1:0], len) } dst[15:0] := REDUCE_MUL(a, 8) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 16-bit integers in "a" by multiplication using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_MUL(src, len) { IF len == 2 RETURN src[15:0] * src[31:16] FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := src[i+15:i] * src[i+16*len+15:i+16*len] ENDFOR RETURN REDUCE_MUL(src[16*len-1:0], len) } tmp := a FOR j := 0 to 7 i := j*16 IF k[j] tmp[i+15:i] := a[i+15:i] ELSE tmp[i+15:i] := 1 FI ENDFOR dst[15:0] := REDUCE_MUL(tmp, 8) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 16-bit integers in "a" by multiplication. Returns the sum of all elements in "a". DEFINE REDUCE_MUL(src, len) { IF len == 2 RETURN src[15:0] * src[31:16] FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := src[i+15:i] * src[i+16*len+31:i+16*len] ENDFOR RETURN REDUCE_MUL(src[16*len-1:0], len) } dst[15:0] := REDUCE_MUL(a, 16) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 16-bit integers in "a" by multiplication using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_MUL(src, len) { IF len == 2 RETURN src[15:0] * src[31:16] FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := src[i+15:i] * src[i+16*len+15:i+16*len] ENDFOR RETURN REDUCE_MUL(src[16*len-1:0], len) } tmp := a FOR j := 0 to 15 i := j*16 IF k[j] tmp[i+15:i] := a[i+15:i] ELSE tmp[i+15:i] := 1 FI ENDFOR dst[15:0] := REDUCE_MUL(tmp, 16) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 8-bit integers in "a" by multiplication. Returns the sum of all elements in "a". DEFINE REDUCE_MUL(src, len) { IF len == 2 RETURN src[7:0] * src[15:8] FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := src[i+7:i] * src[i+8*len+15:i+8*len] ENDFOR RETURN REDUCE_MUL(src[8*len-1:0], len) } dst[7:0] := REDUCE_MUL(a, 16) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 8-bit integers in "a" by multiplication using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_MUL(src, len) { IF len == 2 RETURN src[7:0] * src[15:8] FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := src[i+7:i] * src[i+8*len+7:i+8*len] ENDFOR RETURN REDUCE_MUL(src[8*len-1:0], len) } tmp := a FOR j := 0 to 15 i := j*8 IF k[j] tmp[i+7:i] := a[i+7:i] ELSE tmp[i+7:i] := 1 FI ENDFOR dst[7:0] := REDUCE_MUL(tmp, 16) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 8-bit integers in "a" by multiplication. Returns the sum of all elements in "a". DEFINE REDUCE_MUL(src, len) { IF len == 2 RETURN src[7:0] * src[15:8] FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := src[i+7:i] * src[i+8*len+15:i+8*len] ENDFOR RETURN REDUCE_MUL(src[8*len-1:0], len) } dst[7:0] := REDUCE_MUL(a, 32) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 8-bit integers in "a" by multiplication using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_MUL(src, len) { IF len == 2 RETURN src[7:0] * src[15:8] FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := src[i+7:i] * src[i+8*len+7:i+8*len] ENDFOR RETURN REDUCE_MUL(src[8*len-1:0], len) } tmp := a FOR j := 0 to 31 i := j*8 IF k[j] tmp[i+7:i] := a[i+7:i] ELSE tmp[i+7:i] := 1 FI ENDFOR dst[7:0] := REDUCE_MUL(tmp, 32) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 16-bit integers in "a" by multiplication. Returns the sum of all elements in "a". DEFINE REDUCE_OR(src, len) { IF len == 2 RETURN src[15:0] OR src[31:16] FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := src[i+15:i] OR src[i+16*len+31:i+16*len] ENDFOR RETURN REDUCE_OR(src[16*len-1:0], len) } dst[15:0] := REDUCE_OR(a, 8) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 16-bit integers in "a" by multiplication using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_OR(src, len) { IF len == 2 RETURN src[15:0] OR src[31:16] FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := src[i+15:i] OR src[i+16*len+15:i+16*len] ENDFOR RETURN REDUCE_OR(src[16*len-1:0], len) } tmp := a FOR j := 0 to 7 i := j*16 IF k[j] tmp[i+15:i] := a[i+15:i] ELSE tmp[i+15:i] := 0 FI ENDFOR dst[15:0] := REDUCE_OR(tmp, 8) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 16-bit integers in "a" by multiplication. Returns the sum of all elements in "a". DEFINE REDUCE_OR(src, len) { IF len == 2 RETURN src[15:0] OR src[31:16] FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := src[i+15:i] OR src[i+16*len+31:i+16*len] ENDFOR RETURN REDUCE_OR(src[16*len-1:0], len) } dst[15:0] := REDUCE_OR(a, 16) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 16-bit integers in "a" by multiplication using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_OR(src, len) { IF len == 2 RETURN src[15:0] OR src[31:16] FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := src[i+15:i] OR src[i+16*len+15:i+16*len] ENDFOR RETURN REDUCE_OR(src[16*len-1:0], len) } tmp := a FOR j := 0 to 15 i := j*16 IF k[j] tmp[i+15:i] := a[i+15:i] ELSE tmp[i+15:i] := 0 FI ENDFOR dst[15:0] := REDUCE_OR(tmp, 16) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 8-bit integers in "a" by multiplication. Returns the sum of all elements in "a". DEFINE REDUCE_OR(src, len) { IF len == 2 RETURN src[7:0] OR src[15:8] FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := src[i+7:i] OR src[i+8*len+15:i+8*len] ENDFOR RETURN REDUCE_OR(src[8*len-1:0], len) } dst[7:0] := REDUCE_OR(a, 16) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 8-bit integers in "a" by multiplication using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_OR(src, len) { IF len == 2 RETURN src[7:0] OR src[15:8] FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := src[i+7:i] OR src[i+8*len+7:i+8*len] ENDFOR RETURN REDUCE_OR(src[8*len-1:0], len) } tmp := a FOR j := 0 to 15 i := j*8 IF k[j] tmp[i+7:i] := a[i+7:i] ELSE tmp[i+7:i] := 0 FI ENDFOR dst[7:0] := REDUCE_OR(tmp, 16) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 8-bit integers in "a" by multiplication. Returns the sum of all elements in "a". DEFINE REDUCE_OR(src, len) { IF len == 2 RETURN src[7:0] OR src[15:8] FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := src[i+7:i] OR src[i+8*len+15:i+8*len] ENDFOR RETURN REDUCE_OR(src[8*len-1:0], len) } dst[7:0] := REDUCE_OR(a, 32) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 8-bit integers in "a" by multiplication using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_OR(src, len) { IF len == 2 RETURN src[7:0] OR src[15:8] FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := src[i+7:i] OR src[i+8*len+7:i+8*len] ENDFOR RETURN REDUCE_OR(src[8*len-1:0], len) } tmp := a FOR j := 0 to 31 i := j*8 IF k[j] tmp[i+7:i] := a[i+7:i] ELSE tmp[i+7:i] := 0 FI ENDFOR dst[7:0] := REDUCE_OR(tmp, 32) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 16-bit integers in "a" by multiplication. Returns the sum of all elements in "a". DEFINE REDUCE_AND(src, len) { IF len == 2 RETURN src[15:0] AND src[31:16] FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := src[i+15:i] AND src[i+16*len+31:i+16*len] ENDFOR RETURN REDUCE_AND(src[16*len-1:0], len) } dst[15:0] := REDUCE_AND(a, 8) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 16-bit integers in "a" by multiplication using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_AND(src, len) { IF len == 2 RETURN src[15:0] AND src[31:16] FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := src[i+15:i] AND src[i+16*len+15:i+16*len] ENDFOR RETURN REDUCE_AND(src[16*len-1:0], len) } tmp := a FOR j := 0 to 7 i := j*16 IF k[j] tmp[i+15:i] := a[i+15:i] ELSE tmp[i+15:i] := 0xFFFF FI ENDFOR dst[15:0] := REDUCE_AND(tmp, 8) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 16-bit integers in "a" by multiplication. Returns the sum of all elements in "a". DEFINE REDUCE_AND(src, len) { IF len == 2 RETURN src[15:0] AND src[31:16] FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := src[i+15:i] AND src[i+16*len+31:i+16*len] ENDFOR RETURN REDUCE_AND(src[16*len-1:0], len) } dst[15:0] := REDUCE_AND(a, 16) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 16-bit integers in "a" by multiplication using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_AND(src, len) { IF len == 2 RETURN src[15:0] AND src[31:16] FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := src[i+15:i] AND src[i+16*len+15:i+16*len] ENDFOR RETURN REDUCE_AND(src[16*len-1:0], len) } tmp := a FOR j := 0 to 15 i := j*16 IF k[j] tmp[i+15:i] := a[i+15:i] ELSE tmp[i+15:i] := 0xFFFF FI ENDFOR dst[15:0] := REDUCE_AND(tmp, 16) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 8-bit integers in "a" by multiplication. Returns the sum of all elements in "a". DEFINE REDUCE_AND(src, len) { IF len == 2 RETURN src[7:0] AND src[15:8] FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := src[i+7:i] AND src[i+8*len+15:i+8*len] ENDFOR RETURN REDUCE_AND(src[8*len-1:0], len) } dst[7:0] := REDUCE_AND(a, 16) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 8-bit integers in "a" by multiplication using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_AND(src, len) { IF len == 2 RETURN src[7:0] AND src[15:8] FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := src[i+7:i] AND src[i+8*len+7:i+8*len] ENDFOR RETURN REDUCE_AND(src[8*len-1:0], len) } tmp := a FOR j := 0 to 15 i := j*8 IF k[j] tmp[i+7:i] := a[i+7:i] ELSE tmp[i+7:i] := 0xFF FI ENDFOR dst[7:0] := REDUCE_AND(tmp, 16) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 8-bit integers in "a" by multiplication. Returns the sum of all elements in "a". DEFINE REDUCE_AND(src, len) { IF len == 2 RETURN src[7:0] AND src[15:8] FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := src[i+7:i] AND src[i+8*len+15:i+8*len] ENDFOR RETURN REDUCE_AND(src[8*len-1:0], len) } dst[7:0] := REDUCE_AND(a, 32) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed 8-bit integers in "a" by multiplication using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_AND(src, len) { IF len == 2 RETURN src[7:0] AND src[15:8] FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := src[i+7:i] AND src[i+8*len+7:i+8*len] ENDFOR RETURN REDUCE_AND(src[8*len-1:0], len) } tmp := a FOR j := 0 to 31 i := j*8 IF k[j] tmp[i+7:i] := a[i+7:i] ELSE tmp[i+7:i] := 0xFF FI ENDFOR dst[7:0] := REDUCE_AND(tmp, 32) AVX512BW AVX512VL
immintrin.h
Arithmetic
Reduce the packed signed 16-bit integers in "a" by maximum. Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[15:0] > src[31:16] ? src[15:0] : src[31:16]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := (src[i+15:i] > src[i+16*len+15:i+16*len] ? src[i+15:i] : src[i+16*len+15:i+16*len]) ENDFOR RETURN REDUCE_MAX(src[16*len-1:0], len) } dst[15:0] := REDUCE_MAX(a, 8) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed signed 16-bit integers in "a" by maximum using mask "k". Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[15:0] > src[31:16] ? src[15:0] : src[31:16]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := (src[i+15:i] > src[i+16*len+15:i+16*len] ? src[i+15:i] : src[i+16*len+15:i+16*len]) ENDFOR RETURN REDUCE_MAX(src[16*len-1:0], len) } tmp := a FOR j := 0 to 7 i := j*16 IF k[j] tmp[i+15:i] := a[i+15:i] ELSE tmp[i+15:i] := Int16(-0x8000) FI ENDFOR dst[15:0] := REDUCE_MAX(tmp, 8) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed signed 16-bit integers in "a" by maximum. Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[15:0] > src[31:16] ? src[15:0] : src[31:16]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := (src[i+15:i] > src[i+16*len+15:i+16*len] ? src[i+15:i] : src[i+16*len+15:i+16*len]) ENDFOR RETURN REDUCE_MAX(src[16*len-1:0], len) } dst[15:0] := REDUCE_MAX(a, 16) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed signed 16-bit integers in "a" by maximum using mask "k". Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[15:0] > src[31:16] ? src[15:0] : src[31:16]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := (src[i+15:i] > src[i+16*len+15:i+16*len] ? src[i+15:i] : src[i+16*len+15:i+16*len]) ENDFOR RETURN REDUCE_MAX(src[16*len-1:0], len) } tmp := a FOR j := 0 to 15 i := j*16 IF k[j] tmp[i+15:i] := a[i+15:i] ELSE tmp[i+15:i] := Int16(-0x8000) FI ENDFOR dst[15:0] := REDUCE_MAX(tmp, 16) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed signed 8-bit integers in "a" by maximum. Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[7:0] > src[15:8] ? src[7:0] : src[15:8]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := (src[i+7:i] > src[i+8*len+7:i+8*len] ? src[i+7:i] : src[i+8*len+7:i+8*len]) ENDFOR RETURN REDUCE_MAX(src[8*len-1:0], len) } dst[7:0] := REDUCE_MAX(a, 16) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed signed 8-bit integers in "a" by maximum using mask "k". Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[7:0] > src[15:8] ? src[7:0] : src[15:8]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := (src[i+7:i] > src[i+8*len+7:i+8*len] ? src[i+7:i] : src[i+8*len+7:i+8*len]) ENDFOR RETURN REDUCE_MAX(src[8*len-1:0], len) } tmp := a FOR j := 0 to 15 i := j*8 IF k[j] tmp[i+7:i] := a[i+7:i] ELSE tmp[i+7:i] := Int8(-0x80) FI ENDFOR dst[7:0] := REDUCE_MAX(tmp, 16) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed signed 8-bit integers in "a" by maximum. Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[7:0] > src[15:8] ? src[7:0] : src[15:8]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := (src[i+7:i] > src[i+8*len+7:i+8*len] ? src[i+7:i] : src[i+8*len+7:i+8*len]) ENDFOR RETURN REDUCE_MAX(src[8*len-1:0], len) } dst[7:0] := REDUCE_MAX(a, 32) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed signed 8-bit integers in "a" by maximum using mask "k". Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[7:0] > src[15:8] ? src[7:0] : src[15:8]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := (src[i+7:i] > src[i+8*len+7:i+8*len] ? src[i+7:i] : src[i+8*len+7:i+8*len]) ENDFOR RETURN REDUCE_MAX(src[8*len-1:0], len) } tmp := a FOR j := 0 to 31 i := j*8 IF k[j] tmp[i+7:i] := a[i+7:i] ELSE tmp[i+7:i] := Int8(-0x80) FI ENDFOR dst[7:0] := REDUCE_MAX(tmp, 32) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed unsigned 16-bit integers in "a" by maximum. Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[15:0] > src[31:16] ? src[15:0] : src[31:16]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := (src[i+15:i] > src[i+16*len+15:i+16*len] ? src[i+15:i] : src[i+16*len+15:i+16*len]) ENDFOR RETURN REDUCE_MAX(src[16*len-1:0], len) } dst[15:0] := REDUCE_MAX(a, 8) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed unsigned 16-bit integers in "a" by maximum using mask "k". Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[15:0] > src[31:16] ? src[15:0] : src[31:16]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := (src[i+15:i] > src[i+16*len+15:i+16*len] ? src[i+15:i] : src[i+16*len+15:i+16*len]) ENDFOR RETURN REDUCE_MAX(src[16*len-1:0], len) } tmp := a FOR j := 0 to 7 i := j*16 IF k[j] tmp[i+15:i] := a[i+15:i] ELSE tmp[i+15:i] := 0 FI ENDFOR dst[15:0] := REDUCE_MAX(tmp, 8) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed unsigned 16-bit integers in "a" by maximum. Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[15:0] > src[31:16] ? src[15:0] : src[31:16]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := (src[i+15:i] > src[i+16*len+15:i+16*len] ? src[i+15:i] : src[i+16*len+15:i+16*len]) ENDFOR RETURN REDUCE_MAX(src[16*len-1:0], len) } dst[15:0] := REDUCE_MAX(a, 16) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed unsigned 16-bit integers in "a" by maximum using mask "k". Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[15:0] > src[31:16] ? src[15:0] : src[31:16]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := (src[i+15:i] > src[i+16*len+15:i+16*len] ? src[i+15:i] : src[i+16*len+15:i+16*len]) ENDFOR RETURN REDUCE_MAX(src[16*len-1:0], len) } tmp := a FOR j := 0 to 15 i := j*16 IF k[j] tmp[i+15:i] := a[i+15:i] ELSE tmp[i+15:i] := 0 FI ENDFOR dst[15:0] := REDUCE_MAX(tmp, 16) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed unsigned 8-bit integers in "a" by maximum. Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[7:0] > src[15:8] ? src[7:0] : src[15:8]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := (src[i+7:i] > src[i+8*len+7:i+8*len] ? src[i+7:i] : src[i+8*len+7:i+8*len]) ENDFOR RETURN REDUCE_MAX(src[8*len-1:0], len) } dst[7:0] := REDUCE_MAX(a, 16) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed unsigned 8-bit integers in "a" by maximum using mask "k". Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[7:0] > src[15:8] ? src[7:0] : src[15:8]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := (src[i+7:i] > src[i+8*len+7:i+8*len] ? src[i+7:i] : src[i+8*len+7:i+8*len]) ENDFOR RETURN REDUCE_MAX(src[8*len-1:0], len) } tmp := a FOR j := 0 to 15 i := j*8 IF k[j] tmp[i+7:i] := a[i+7:i] ELSE tmp[i+7:i] := 0 FI ENDFOR dst[7:0] := REDUCE_MAX(tmp, 16) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed unsigned 8-bit integers in "a" by maximum. Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[7:0] > src[15:8] ? src[7:0] : src[15:8]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := (src[i+7:i] > src[i+8*len+7:i+8*len] ? src[i+7:i] : src[i+8*len+7:i+8*len]) ENDFOR RETURN REDUCE_MAX(src[8*len-1:0], len) } dst[7:0] := REDUCE_MAX(a, 32) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed unsigned 8-bit integers in "a" by maximum using mask "k". Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[7:0] > src[15:8] ? src[7:0] : src[15:8]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := (src[i+7:i] > src[i+8*len+7:i+8*len] ? src[i+7:i] : src[i+8*len+7:i+8*len]) ENDFOR RETURN REDUCE_MAX(src[8*len-1:0], len) } tmp := a FOR j := 0 to 31 i := j*8 IF k[j] tmp[i+7:i] := a[i+7:i] ELSE tmp[i+7:i] := 0 FI ENDFOR dst[7:0] := REDUCE_MAX(tmp, 32) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed signed 16-bit integers in "a" by minimum. Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[15:0] < src[31:16] ? src[15:0] : src[31:16]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := (src[i+15:i] < src[i+16*len+15:i+16*len] ? src[i+15:i] : src[i+16*len+15:i+16*len]) ENDFOR RETURN REDUCE_MIN(src[16*len-1:0], len) } dst[15:0] := REDUCE_MIN(a, 8) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed signed 16-bit integers in "a" by minimum using mask "k". Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[15:0] < src[31:16] ? src[15:0] : src[31:16]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := (src[i+15:i] < src[i+16*len+15:i+16*len] ? src[i+15:i] : src[i+16*len+15:i+16*len]) ENDFOR RETURN REDUCE_MIN(src[16*len-1:0], len) } tmp := a FOR j := 0 to 7 i := j*16 IF k[j] tmp[i+15:i] := a[i+15:i] ELSE tmp[i+15:i] := Int16(0x7FFF) FI ENDFOR dst[15:0] := REDUCE_MIN(tmp, 8) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed signed 16-bit integers in "a" by minimum. Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[15:0] < src[31:16] ? src[15:0] : src[31:16]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := (src[i+15:i] < src[i+16*len+15:i+16*len] ? src[i+15:i] : src[i+16*len+15:i+16*len]) ENDFOR RETURN REDUCE_MIN(src[16*len-1:0], len) } dst[15:0] := REDUCE_MIN(a, 16) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed signed 16-bit integers in "a" by minimum using mask "k". Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[15:0] < src[31:16] ? src[15:0] : src[31:16]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := (src[i+15:i] < src[i+16*len+15:i+16*len] ? src[i+15:i] : src[i+16*len+15:i+16*len]) ENDFOR RETURN REDUCE_MIN(src[16*len-1:0], len) } tmp := a FOR j := 0 to 15 i := j*16 IF k[j] tmp[i+15:i] := a[i+15:i] ELSE tmp[i+15:i] := Int16(0x7FFF) FI ENDFOR dst[15:0] := REDUCE_MIN(tmp, 16) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed signed 8-bit integers in "a" by minimum. Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[7:0] < src[15:8] ? src[7:0] : src[15:8]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := (src[i+7:i] < src[i+8*len+7:i+8*len] ? src[i+7:i] : src[i+8*len+7:i+8*len]) ENDFOR RETURN REDUCE_MIN(src[8*len-1:0], len) } dst[7:0] := REDUCE_MIN(a, 16) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed signed 8-bit integers in "a" by minimum using mask "k". Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[7:0] < src[15:8] ? src[7:0] : src[15:8]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := (src[i+7:i] < src[i+8*len+7:i+8*len] ? src[i+7:i] : src[i+8*len+7:i+8*len]) ENDFOR RETURN REDUCE_MIN(src[8*len-1:0], len) } tmp := a FOR j := 0 to 15 i := j*8 IF k[j] tmp[i+7:i] := a[i+7:i] ELSE tmp[i+7:i] := Int8(0x7F) FI ENDFOR dst[7:0] := REDUCE_MIN(tmp, 16) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed signed 8-bit integers in "a" by minimum. Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[7:0] < src[15:8] ? src[7:0] : src[15:8]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := (src[i+7:i] < src[i+8*len+7:i+8*len] ? src[i+7:i] : src[i+8*len+7:i+8*len]) ENDFOR RETURN REDUCE_MIN(src[8*len-1:0], len) } dst[7:0] := REDUCE_MIN(a, 32) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed signed 8-bit integers in "a" by minimum using mask "k". Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[7:0] < src[15:8] ? src[7:0] : src[15:8]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := (src[i+7:i] < src[i+8*len+7:i+8*len] ? src[i+7:i] : src[i+8*len+7:i+8*len]) ENDFOR RETURN REDUCE_MIN(src[8*len-1:0], len) } tmp := a FOR j := 0 to 31 i := j*8 IF k[j] tmp[i+7:i] := a[i+7:i] ELSE tmp[i+7:i] := Int8(0x7F) FI ENDFOR dst[7:0] := REDUCE_MIN(tmp, 32) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed unsigned 16-bit integers in "a" by minimum. Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[15:0] < src[31:16] ? src[15:0] : src[31:16]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := (src[i+15:i] < src[i+16*len+15:i+16*len] ? src[i+15:i] : src[i+16*len+15:i+16*len]) ENDFOR RETURN REDUCE_MIN(src[16*len-1:0], len) } dst[15:0] := REDUCE_MIN(a, 8) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed unsigned 16-bit integers in "a" by minimum using mask "k". Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[15:0] < src[31:16] ? src[15:0] : src[31:16]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := (src[i+15:i] < src[i+16*len+15:i+16*len] ? src[i+15:i] : src[i+16*len+15:i+16*len]) ENDFOR RETURN REDUCE_MIN(src[16*len-1:0], len) } tmp := a FOR j := 0 to 7 i := j*16 IF k[j] tmp[i+15:i] := a[i+15:i] ELSE tmp[i+15:i] := 0xFFFF FI ENDFOR dst[15:0] := REDUCE_MIN(tmp, 8) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed unsigned 16-bit integers in "a" by minimum. Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[15:0] < src[31:16] ? src[15:0] : src[31:16]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := (src[i+15:i] < src[i+16*len+15:i+16*len] ? src[i+15:i] : src[i+16*len+15:i+16*len]) ENDFOR RETURN REDUCE_MIN(src[16*len-1:0], len) } dst[15:0] := REDUCE_MIN(a, 16) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed unsigned 16-bit integers in "a" by minimum using mask "k". Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[15:0] < src[31:16] ? src[15:0] : src[31:16]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*16 src[i+15:i] := (src[i+15:i] < src[i+16*len+15:i+16*len] ? src[i+15:i] : src[i+16*len+15:i+16*len]) ENDFOR RETURN REDUCE_MIN(src[16*len-1:0], len) } tmp := a FOR j := 0 to 15 i := j*16 IF k[j] tmp[i+15:i] := a[i+15:i] ELSE tmp[i+15:i] := 0xFFFF FI ENDFOR dst[15:0] := REDUCE_MIN(tmp, 16) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed unsigned 8-bit integers in "a" by minimum. Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[7:0] < src[15:8] ? src[7:0] : src[15:8]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := (src[i+7:i] < src[i+8*len+7:i+8*len] ? src[i+7:i] : src[i+8*len+7:i+8*len]) ENDFOR RETURN REDUCE_MIN(src[8*len-1:0], len) } dst[7:0] := REDUCE_MIN(a, 16) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed unsigned 8-bit integers in "a" by minimum using mask "k". Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[7:0] < src[15:8] ? src[7:0] : src[15:8]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := (src[i+7:i] < src[i+8*len+7:i+8*len] ? src[i+7:i] : src[i+8*len+7:i+8*len]) ENDFOR RETURN REDUCE_MIN(src[8*len-1:0], len) } tmp := a FOR j := 0 to 15 i := j*8 IF k[j] tmp[i+7:i] := a[i+7:i] ELSE tmp[i+7:i] := 0xFF FI ENDFOR dst[7:0] := REDUCE_MIN(tmp, 16) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed unsigned 8-bit integers in "a" by minimum. Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[7:0] < src[15:8] ? src[7:0] : src[15:8]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := (src[i+7:i] < src[i+8*len+7:i+8*len] ? src[i+7:i] : src[i+8*len+7:i+8*len]) ENDFOR RETURN REDUCE_MIN(src[8*len-1:0], len) } dst[7:0] := REDUCE_MIN(a, 32) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Reduce the packed unsigned 8-bit integers in "a" by minimum using mask "k". Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[7:0] < src[15:8] ? src[7:0] : src[15:8]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*8 src[i+7:i] := (src[i+7:i] < src[i+8*len+7:i+8*len] ? src[i+7:i] : src[i+8*len+7:i+8*len]) ENDFOR RETURN REDUCE_MIN(src[8*len-1:0], len) } tmp := a FOR j := 0 to 15 i := j*8 IF k[j] tmp[i+7:i] := a[i+7:i] ELSE tmp[i+7:i] := 0xFF FI ENDFOR dst[7:0] := REDUCE_MIN(tmp, 16) AVX512BW AVX512VL
immintrin.h
Special Math Functions
Unpack and interleave 32 bits from masks "a" and "b", and store the 64-bit result in "dst". dst[31:0] := b[31:0] dst[63:32] := a[31:0] dst[MAX:64] := 0 AVX512BW
immintrin.h
Miscellaneous
Unpack and interleave 16 bits from masks "a" and "b", and store the 32-bit result in "dst". dst[15:0] := b[15:0] dst[31:16] := a[15:0] dst[MAX:32] := 0 AVX512BW
immintrin.h
Miscellaneous
Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in "a" compared to those in "b", and store the 16-bit results in "dst". Four SADs are performed on four 8-bit quadruplets for each 64-bit lane. The first two SADs use the lower 8-bit quadruplet of the lane from "a", and the last two SADs use the uppper 8-bit quadruplet of the lane from "a". Quadruplets from "b" are selected from within 128-bit lanes according to the control in "imm8", and each SAD in each 64-bit lane uses the selected quadruplet at 8-bit offsets. FOR i := 0 to 3 tmp.m128[i].dword[0] := b.m128[i].dword[ imm8[1:0] ] tmp.m128[i].dword[1] := b.m128[i].dword[ imm8[3:2] ] tmp.m128[i].dword[2] := b.m128[i].dword[ imm8[5:4] ] tmp.m128[i].dword[3] := b.m128[i].dword[ imm8[7:6] ] ENDFOR FOR j := 0 to 7 i := j*64 dst[i+15:i] := ABS(a[i+7:i] - tmp[i+7:i]) + ABS(a[i+15:i+8] - tmp[i+15:i+8]) +\ ABS(a[i+23:i+16] - tmp[i+23:i+16]) + ABS(a[i+31:i+24] - tmp[i+31:i+24]) dst[i+31:i+16] := ABS(a[i+7:i] - tmp[i+15:i+8]) + ABS(a[i+15:i+8] - tmp[i+23:i+16]) +\ ABS(a[i+23:i+16] - tmp[i+31:i+24]) + ABS(a[i+31:i+24] - tmp[i+39:i+32]) dst[i+47:i+32] := ABS(a[i+39:i+32] - tmp[i+23:i+16]) + ABS(a[i+47:i+40] - tmp[i+31:i+24]) +\ ABS(a[i+55:i+48] - tmp[i+39:i+32]) + ABS(a[i+63:i+56] - tmp[i+47:i+40]) dst[i+63:i+48] := ABS(a[i+39:i+32] - tmp[i+31:i+24]) + ABS(a[i+47:i+40] - tmp[i+39:i+32]) +\ ABS(a[i+55:i+48] - tmp[i+47:i+40]) + ABS(a[i+63:i+56] - tmp[i+55:i+48]) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in "a" compared to those in "b", and store the 16-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Four SADs are performed on four 8-bit quadruplets for each 64-bit lane. The first two SADs use the lower 8-bit quadruplet of the lane from "a", and the last two SADs use the uppper 8-bit quadruplet of the lane from "a". Quadruplets from "b" are selected from within 128-bit lanes according to the control in "imm8", and each SAD in each 64-bit lane uses the selected quadruplet at 8-bit offsets. FOR i := 0 to 3 tmp.m128[i].dword[0] := b.m128[i].dword[ imm8[1:0] ] tmp.m128[i].dword[1] := b.m128[i].dword[ imm8[3:2] ] tmp.m128[i].dword[2] := b.m128[i].dword[ imm8[5:4] ] tmp.m128[i].dword[3] := b.m128[i].dword[ imm8[7:6] ] ENDFOR FOR j := 0 to 7 i := j*64 tmp_dst[i+15:i] := ABS(a[i+7:i] - tmp[i+7:i]) + ABS(a[i+15:i+8] - tmp[i+15:i+8]) +\ ABS(a[i+23:i+16] - tmp[i+23:i+16]) + ABS(a[i+31:i+24] - tmp[i+31:i+24]) tmp_dst[i+31:i+16] := ABS(a[i+7:i] - tmp[i+15:i+8]) + ABS(a[i+15:i+8] - tmp[i+23:i+16]) +\ ABS(a[i+23:i+16] - tmp[i+31:i+24]) + ABS(a[i+31:i+24] - tmp[i+39:i+32]) tmp_dst[i+47:i+32] := ABS(a[i+39:i+32] - tmp[i+23:i+16]) + ABS(a[i+47:i+40] - tmp[i+31:i+24]) +\ ABS(a[i+55:i+48] - tmp[i+39:i+32]) + ABS(a[i+63:i+56] - tmp[i+47:i+40]) tmp_dst[i+63:i+48] := ABS(a[i+39:i+32] - tmp[i+31:i+24]) + ABS(a[i+47:i+40] - tmp[i+39:i+32]) +\ ABS(a[i+55:i+48] - tmp[i+47:i+40]) + ABS(a[i+63:i+56] - tmp[i+55:i+48]) ENDFOR FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in "a" compared to those in "b", and store the 16-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Four SADs are performed on four 8-bit quadruplets for each 64-bit lane. The first two SADs use the lower 8-bit quadruplet of the lane from "a", and the last two SADs use the uppper 8-bit quadruplet of the lane from "a". Quadruplets from "b" are selected from within 128-bit lanes according to the control in "imm8", and each SAD in each 64-bit lane uses the selected quadruplet at 8-bit offsets. FOR i := 0 to 3 tmp.m128[i].dword[0] := b.m128[i].dword[ imm8[1:0] ] tmp.m128[i].dword[1] := b.m128[i].dword[ imm8[3:2] ] tmp.m128[i].dword[2] := b.m128[i].dword[ imm8[5:4] ] tmp.m128[i].dword[3] := b.m128[i].dword[ imm8[7:6] ] ENDFOR FOR j := 0 to 7 i := j*64 tmp_dst[i+15:i] := ABS(a[i+7:i] - tmp[i+7:i]) + ABS(a[i+15:i+8] - tmp[i+15:i+8]) +\ ABS(a[i+23:i+16] - tmp[i+23:i+16]) + ABS(a[i+31:i+24] - tmp[i+31:i+24]) tmp_dst[i+31:i+16] := ABS(a[i+7:i] - tmp[i+15:i+8]) + ABS(a[i+15:i+8] - tmp[i+23:i+16]) +\ ABS(a[i+23:i+16] - tmp[i+31:i+24]) + ABS(a[i+31:i+24] - tmp[i+39:i+32]) tmp_dst[i+47:i+32] := ABS(a[i+39:i+32] - tmp[i+23:i+16]) + ABS(a[i+47:i+40] - tmp[i+31:i+24]) +\ ABS(a[i+55:i+48] - tmp[i+39:i+32]) + ABS(a[i+63:i+56] - tmp[i+47:i+40]) tmp_dst[i+63:i+48] := ABS(a[i+39:i+32] - tmp[i+31:i+24]) + ABS(a[i+47:i+40] - tmp[i+39:i+32]) +\ ABS(a[i+55:i+48] - tmp[i+47:i+40]) + ABS(a[i+63:i+56] - tmp[i+55:i+48]) ENDFOR FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Concatenate pairs of 16-byte blocks in "a" and "b" into a 32-byte temporary result, shift the result right by "imm8" bytes, and store the low 16 bytes in "dst". FOR j := 0 to 3 i := j*128 tmp[255:0] := ((a[i+127:i] << 128)[255:0] OR b[i+127:i]) >> (imm8*8) dst[i+127:i] := tmp[127:0] ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Concatenate pairs of 16-byte blocks in "a" and "b" into a 32-byte temporary result, shift the result right by "imm8" bytes, and store the low 16 bytes in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*128 tmp[255:0] := ((a[i+127:i] << 128)[255:0] OR b[i+127:i]) >> (imm8*8) tmp_dst[i+127:i] := tmp[127:0] ENDFOR FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Concatenate pairs of 16-byte blocks in "a" and "b" into a 32-byte temporary result, shift the result right by "imm8" bytes, and store the low 16 bytes in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*128 tmp[255:0] := ((a[i+127:i] << 128)[255:0] OR b[i+127:i]) >> (imm8*8) tmp_dst[i+127:i] := tmp[127:0] ENDFOR FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Blend packed 8-bit integers from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := b[i+7:i] ELSE dst[i+7:i] := a[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Blend packed 16-bit integers from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := b[i+15:i] ELSE dst[i+15:i] := a[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Broadcast the low packed 8-bit integer from "a" to all elements of "dst". FOR j := 0 to 63 i := j*8 dst[i+7:i] := a[7:0] ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Broadcast the low packed 8-bit integer from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := a[7:0] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Broadcast the low packed 8-bit integer from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := a[7:0] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Broadcast the low packed 16-bit integer from "a" to all elements of "dst". FOR j := 0 to 31 i := j*16 dst[i+15:i] := a[15:0] ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Broadcast the low packed 16-bit integer from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := a[15:0] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Broadcast the low packed 16-bit integer from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := a[15:0] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "idx" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] off := 16*idx[i+4:i] dst[i+15:i] := idx[i+5] ? b[off+15:off] : a[off+15:off] ELSE dst[i+15:i] := idx[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] off := 16*idx[i+4:i] dst[i+15:i] := idx[i+5] ? b[off+15:off] : a[off+15:off] ELSE dst[i+15:i] := a[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] off := 16*idx[i+4:i] dst[i+15:i] := idx[i+5] ? b[off+15:off] : a[off+15:off] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 31 i := j*16 off := 16*idx[i+4:i] dst[i+15:i] := idx[i+5] ? b[off+15:off] : a[off+15:off] ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 id := idx[i+4:i]*16 IF k[j] dst[i+15:i] := a[id+15:id] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 id := idx[i+4:i]*16 IF k[j] dst[i+15:i] := a[id+15:id] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Shuffle 16-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst". FOR j := 0 to 31 i := j*16 id := idx[i+4:i]*16 dst[i+15:i] := a[id+15:id] ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Set each bit of mask register "k" based on the most significant bit of the corresponding packed 8-bit integer in "a". FOR j := 0 to 63 i := j*8 IF a[i+7] k[j] := 1 ELSE k[j] := 0 FI ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Miscellaneous
Set each packed 8-bit integer in "dst" to all ones or all zeros based on the value of the corresponding bit in "k". FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := 0xFF ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Set each packed 16-bit integer in "dst" to all ones or all zeros based on the value of the corresponding bit in "k". FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := 0xFFFF ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Set each bit of mask register "k" based on the most significant bit of the corresponding packed 16-bit integer in "a". FOR j := 0 to 31 i := j*16 IF a[i+15] k[j] := 1 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Miscellaneous
Compute the absolute differences of packed unsigned 8-bit integers in "a" and "b", then horizontally sum each consecutive 8 differences to produce eight unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low 16 bits of 64-bit elements in "dst". FOR j := 0 to 63 i := j*8 tmp[i+7:i] := ABS(a[i+7:i] - b[i+7:i]) ENDFOR FOR j := 0 to 7 i := j*64 dst[i+15:i] := tmp[i+7:i] + tmp[i+15:i+8] + tmp[i+23:i+16] + tmp[i+31:i+24] + \ tmp[i+39:i+32] + tmp[i+47:i+40] + tmp[i+55:i+48] + tmp[i+63:i+56] dst[i+63:i+16] := 0 ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Shuffle 8-bit integers in "a" within 128-bit lanes using the control in the corresponding 8-bit element of "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] IF b[i+7] == 1 dst[i+7:i] := 0 ELSE index[5:0] := b[i+3:i] + (j & 0x30) dst[i+7:i] := a[index*8+7:index*8] FI ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Swizzle
Shuffle packed 8-bit integers in "a" according to shuffle control mask in the corresponding 8-bit element of "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] IF b[i+7] == 1 dst[i+7:i] := 0 ELSE index[5:0] := b[i+3:i] + (j & 0x30) dst[i+7:i] := a[index*8+7:index*8] FI ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Swizzle
Shuffle packed 8-bit integers in "a" according to shuffle control mask in the corresponding 8-bit element of "b", and store the results in "dst". FOR j := 0 to 63 i := j*8 IF b[i+7] == 1 dst[i+7:i] := 0 ELSE index[5:0] := b[i+3:i] + (j & 0x30) dst[i+7:i] := a[index*8+7:index*8] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Swizzle
Shuffle 16-bit integers in the high 64 bits of 128-bit lanes of "a" using the control in "imm8". Store the results in the high 64 bits of 128-bit lanes of "dst", with the low 64 bits of 128-bit lanes being copied from from "a" to "dst", using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[63:0] := a[63:0] tmp_dst[79:64] := (a >> (imm8[1:0] * 16))[79:64] tmp_dst[95:80] := (a >> (imm8[3:2] * 16))[79:64] tmp_dst[111:96] := (a >> (imm8[5:4] * 16))[79:64] tmp_dst[127:112] := (a >> (imm8[7:6] * 16))[79:64] tmp_dst[191:128] := a[191:128] tmp_dst[207:192] := (a >> (imm8[1:0] * 16))[207:192] tmp_dst[223:208] := (a >> (imm8[3:2] * 16))[207:192] tmp_dst[239:224] := (a >> (imm8[5:4] * 16))[207:192] tmp_dst[255:240] := (a >> (imm8[7:6] * 16))[207:192] tmp_dst[319:256] := a[319:256] tmp_dst[335:320] := (a >> (imm8[1:0] * 16))[335:320] tmp_dst[351:336] := (a >> (imm8[3:2] * 16))[335:320] tmp_dst[367:352] := (a >> (imm8[5:4] * 16))[335:320] tmp_dst[383:368] := (a >> (imm8[7:6] * 16))[335:320] tmp_dst[447:384] := a[447:384] tmp_dst[463:448] := (a >> (imm8[1:0] * 16))[463:448] tmp_dst[479:464] := (a >> (imm8[3:2] * 16))[463:448] tmp_dst[495:480] := (a >> (imm8[5:4] * 16))[463:448] tmp_dst[511:496] := (a >> (imm8[7:6] * 16))[463:448] FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Shuffle 16-bit integers in the high 64 bits of 128-bit lanes of "a" using the control in "imm8". Store the results in the high 64 bits of 128-bit lanes of "dst", with the low 64 bits of 128-bit lanes being copied from from "a" to "dst", using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[63:0] := a[63:0] tmp_dst[79:64] := (a >> (imm8[1:0] * 16))[79:64] tmp_dst[95:80] := (a >> (imm8[3:2] * 16))[79:64] tmp_dst[111:96] := (a >> (imm8[5:4] * 16))[79:64] tmp_dst[127:112] := (a >> (imm8[7:6] * 16))[79:64] tmp_dst[191:128] := a[191:128] tmp_dst[207:192] := (a >> (imm8[1:0] * 16))[207:192] tmp_dst[223:208] := (a >> (imm8[3:2] * 16))[207:192] tmp_dst[239:224] := (a >> (imm8[5:4] * 16))[207:192] tmp_dst[255:240] := (a >> (imm8[7:6] * 16))[207:192] tmp_dst[319:256] := a[319:256] tmp_dst[335:320] := (a >> (imm8[1:0] * 16))[335:320] tmp_dst[351:336] := (a >> (imm8[3:2] * 16))[335:320] tmp_dst[367:352] := (a >> (imm8[5:4] * 16))[335:320] tmp_dst[383:368] := (a >> (imm8[7:6] * 16))[335:320] tmp_dst[447:384] := a[447:384] tmp_dst[463:448] := (a >> (imm8[1:0] * 16))[463:448] tmp_dst[479:464] := (a >> (imm8[3:2] * 16))[463:448] tmp_dst[495:480] := (a >> (imm8[5:4] * 16))[463:448] tmp_dst[511:496] := (a >> (imm8[7:6] * 16))[463:448] FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Shuffle 16-bit integers in the high 64 bits of 128-bit lanes of "a" using the control in "imm8". Store the results in the high 64 bits of 128-bit lanes of "dst", with the low 64 bits of 128-bit lanes being copied from from "a" to "dst". dst[63:0] := a[63:0] dst[79:64] := (a >> (imm8[1:0] * 16))[79:64] dst[95:80] := (a >> (imm8[3:2] * 16))[79:64] dst[111:96] := (a >> (imm8[5:4] * 16))[79:64] dst[127:112] := (a >> (imm8[7:6] * 16))[79:64] dst[191:128] := a[191:128] dst[207:192] := (a >> (imm8[1:0] * 16))[207:192] dst[223:208] := (a >> (imm8[3:2] * 16))[207:192] dst[239:224] := (a >> (imm8[5:4] * 16))[207:192] dst[255:240] := (a >> (imm8[7:6] * 16))[207:192] dst[319:256] := a[319:256] dst[335:320] := (a >> (imm8[1:0] * 16))[335:320] dst[351:336] := (a >> (imm8[3:2] * 16))[335:320] dst[367:352] := (a >> (imm8[5:4] * 16))[335:320] dst[383:368] := (a >> (imm8[7:6] * 16))[335:320] dst[447:384] := a[447:384] dst[463:448] := (a >> (imm8[1:0] * 16))[463:448] dst[479:464] := (a >> (imm8[3:2] * 16))[463:448] dst[495:480] := (a >> (imm8[5:4] * 16))[463:448] dst[511:496] := (a >> (imm8[7:6] * 16))[463:448] dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Shuffle 16-bit integers in the low 64 bits of 128-bit lanes of "a" using the control in "imm8". Store the results in the low 64 bits of 128-bit lanes of "dst", with the high 64 bits of 128-bit lanes being copied from from "a" to "dst", using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[15:0] := (a >> (imm8[1:0] * 16))[15:0] tmp_dst[31:16] := (a >> (imm8[3:2] * 16))[15:0] tmp_dst[47:32] := (a >> (imm8[5:4] * 16))[15:0] tmp_dst[63:48] := (a >> (imm8[7:6] * 16))[15:0] tmp_dst[127:64] := a[127:64] tmp_dst[143:128] := (a >> (imm8[1:0] * 16))[143:128] tmp_dst[159:144] := (a >> (imm8[3:2] * 16))[143:128] tmp_dst[175:160] := (a >> (imm8[5:4] * 16))[143:128] tmp_dst[191:176] := (a >> (imm8[7:6] * 16))[143:128] tmp_dst[255:192] := a[255:192] tmp_dst[271:256] := (a >> (imm8[1:0] * 16))[271:256] tmp_dst[287:272] := (a >> (imm8[3:2] * 16))[271:256] tmp_dst[303:288] := (a >> (imm8[5:4] * 16))[271:256] tmp_dst[319:304] := (a >> (imm8[7:6] * 16))[271:256] tmp_dst[383:320] := a[383:320] tmp_dst[399:384] := (a >> (imm8[1:0] * 16))[399:384] tmp_dst[415:400] := (a >> (imm8[3:2] * 16))[399:384] tmp_dst[431:416] := (a >> (imm8[5:4] * 16))[399:384] tmp_dst[447:432] := (a >> (imm8[7:6] * 16))[399:384] tmp_dst[511:448] := a[511:448] FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Shuffle 16-bit integers in the low 64 bits of 128-bit lanes of "a" using the control in "imm8". Store the results in the low 64 bits of 128-bit lanes of "dst", with the high 64 bits of 128-bit lanes being copied from from "a" to "dst", using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[15:0] := (a >> (imm8[1:0] * 16))[15:0] tmp_dst[31:16] := (a >> (imm8[3:2] * 16))[15:0] tmp_dst[47:32] := (a >> (imm8[5:4] * 16))[15:0] tmp_dst[63:48] := (a >> (imm8[7:6] * 16))[15:0] tmp_dst[127:64] := a[127:64] tmp_dst[143:128] := (a >> (imm8[1:0] * 16))[143:128] tmp_dst[159:144] := (a >> (imm8[3:2] * 16))[143:128] tmp_dst[175:160] := (a >> (imm8[5:4] * 16))[143:128] tmp_dst[191:176] := (a >> (imm8[7:6] * 16))[143:128] tmp_dst[255:192] := a[255:192] tmp_dst[271:256] := (a >> (imm8[1:0] * 16))[271:256] tmp_dst[287:272] := (a >> (imm8[3:2] * 16))[271:256] tmp_dst[303:288] := (a >> (imm8[5:4] * 16))[271:256] tmp_dst[319:304] := (a >> (imm8[7:6] * 16))[271:256] tmp_dst[383:320] := a[383:320] tmp_dst[399:384] := (a >> (imm8[1:0] * 16))[399:384] tmp_dst[415:400] := (a >> (imm8[3:2] * 16))[399:384] tmp_dst[431:416] := (a >> (imm8[5:4] * 16))[399:384] tmp_dst[447:432] := (a >> (imm8[7:6] * 16))[399:384] tmp_dst[511:448] := a[511:448] FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Shuffle 16-bit integers in the low 64 bits of 128-bit lanes of "a" using the control in "imm8". Store the results in the low 64 bits of 128-bit lanes of "dst", with the high 64 bits of 128-bit lanes being copied from from "a" to "dst". dst[15:0] := (a >> (imm8[1:0] * 16))[15:0] dst[31:16] := (a >> (imm8[3:2] * 16))[15:0] dst[47:32] := (a >> (imm8[5:4] * 16))[15:0] dst[63:48] := (a >> (imm8[7:6] * 16))[15:0] dst[127:64] := a[127:64] dst[143:128] := (a >> (imm8[1:0] * 16))[143:128] dst[159:144] := (a >> (imm8[3:2] * 16))[143:128] dst[175:160] := (a >> (imm8[5:4] * 16))[143:128] dst[191:176] := (a >> (imm8[7:6] * 16))[143:128] dst[255:192] := a[255:192] dst[271:256] := (a >> (imm8[1:0] * 16))[271:256] dst[287:272] := (a >> (imm8[3:2] * 16))[271:256] dst[303:288] := (a >> (imm8[5:4] * 16))[271:256] dst[319:304] := (a >> (imm8[7:6] * 16))[271:256] dst[383:320] := a[383:320] dst[399:384] := (a >> (imm8[1:0] * 16))[399:384] dst[415:400] := (a >> (imm8[3:2] * 16))[399:384] dst[431:416] := (a >> (imm8[5:4] * 16))[399:384] dst[447:432] := (a >> (imm8[7:6] * 16))[399:384] dst[511:448] := a[511:448] dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Unpack and interleave 8-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_BYTES(src1[127:0], src2[127:0]) { dst[7:0] := src1[71:64] dst[15:8] := src2[71:64] dst[23:16] := src1[79:72] dst[31:24] := src2[79:72] dst[39:32] := src1[87:80] dst[47:40] := src2[87:80] dst[55:48] := src1[95:88] dst[63:56] := src2[95:88] dst[71:64] := src1[103:96] dst[79:72] := src2[103:96] dst[87:80] := src1[111:104] dst[95:88] := src2[111:104] dst[103:96] := src1[119:112] dst[111:104] := src2[119:112] dst[119:112] := src1[127:120] dst[127:120] := src2[127:120] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_BYTES(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_BYTES(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_HIGH_BYTES(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_HIGH_BYTES(a[511:384], b[511:384]) FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Unpack and interleave 8-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_BYTES(src1[127:0], src2[127:0]) { dst[7:0] := src1[71:64] dst[15:8] := src2[71:64] dst[23:16] := src1[79:72] dst[31:24] := src2[79:72] dst[39:32] := src1[87:80] dst[47:40] := src2[87:80] dst[55:48] := src1[95:88] dst[63:56] := src2[95:88] dst[71:64] := src1[103:96] dst[79:72] := src2[103:96] dst[87:80] := src1[111:104] dst[95:88] := src2[111:104] dst[103:96] := src1[119:112] dst[111:104] := src2[119:112] dst[119:112] := src1[127:120] dst[127:120] := src2[127:120] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_BYTES(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_BYTES(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_HIGH_BYTES(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_HIGH_BYTES(a[511:384], b[511:384]) FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Unpack and interleave 8-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_BYTES(src1[127:0], src2[127:0]) { dst[7:0] := src1[71:64] dst[15:8] := src2[71:64] dst[23:16] := src1[79:72] dst[31:24] := src2[79:72] dst[39:32] := src1[87:80] dst[47:40] := src2[87:80] dst[55:48] := src1[95:88] dst[63:56] := src2[95:88] dst[71:64] := src1[103:96] dst[79:72] := src2[103:96] dst[87:80] := src1[111:104] dst[95:88] := src2[111:104] dst[103:96] := src1[119:112] dst[111:104] := src2[119:112] dst[119:112] := src1[127:120] dst[127:120] := src2[127:120] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_HIGH_BYTES(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_HIGH_BYTES(a[255:128], b[255:128]) dst[383:256] := INTERLEAVE_HIGH_BYTES(a[383:256], b[383:256]) dst[511:384] := INTERLEAVE_HIGH_BYTES(a[511:384], b[511:384]) dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Unpack and interleave 16-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_WORDS(src1[127:0], src2[127:0]) { dst[15:0] := src1[79:64] dst[31:16] := src2[79:64] dst[47:32] := src1[95:80] dst[63:48] := src2[95:80] dst[79:64] := src1[111:96] dst[95:80] := src2[111:96] dst[111:96] := src1[127:112] dst[127:112] := src2[127:112] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_WORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_WORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_HIGH_WORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_HIGH_WORDS(a[511:384], b[511:384]) FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Unpack and interleave 16-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_WORDS(src1[127:0], src2[127:0]) { dst[15:0] := src1[79:64] dst[31:16] := src2[79:64] dst[47:32] := src1[95:80] dst[63:48] := src2[95:80] dst[79:64] := src1[111:96] dst[95:80] := src2[111:96] dst[111:96] := src1[127:112] dst[127:112] := src2[127:112] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_WORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_WORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_HIGH_WORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_HIGH_WORDS(a[511:384], b[511:384]) FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Unpack and interleave 16-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_WORDS(src1[127:0], src2[127:0]) { dst[15:0] := src1[79:64] dst[31:16] := src2[79:64] dst[47:32] := src1[95:80] dst[63:48] := src2[95:80] dst[79:64] := src1[111:96] dst[95:80] := src2[111:96] dst[111:96] := src1[127:112] dst[127:112] := src2[127:112] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_HIGH_WORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_HIGH_WORDS(a[255:128], b[255:128]) dst[383:256] := INTERLEAVE_HIGH_WORDS(a[383:256], b[383:256]) dst[511:384] := INTERLEAVE_HIGH_WORDS(a[511:384], b[511:384]) dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Unpack and interleave 8-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_BYTES(src1[127:0], src2[127:0]) { dst[7:0] := src1[7:0] dst[15:8] := src2[7:0] dst[23:16] := src1[15:8] dst[31:24] := src2[15:8] dst[39:32] := src1[23:16] dst[47:40] := src2[23:16] dst[55:48] := src1[31:24] dst[63:56] := src2[31:24] dst[71:64] := src1[39:32] dst[79:72] := src2[39:32] dst[87:80] := src1[47:40] dst[95:88] := src2[47:40] dst[103:96] := src1[55:48] dst[111:104] := src2[55:48] dst[119:112] := src1[63:56] dst[127:120] := src2[63:56] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_BYTES(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_BYTES(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_BYTES(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_BYTES(a[511:384], b[511:384]) FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Unpack and interleave 8-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_BYTES(src1[127:0], src2[127:0]) { dst[7:0] := src1[7:0] dst[15:8] := src2[7:0] dst[23:16] := src1[15:8] dst[31:24] := src2[15:8] dst[39:32] := src1[23:16] dst[47:40] := src2[23:16] dst[55:48] := src1[31:24] dst[63:56] := src2[31:24] dst[71:64] := src1[39:32] dst[79:72] := src2[39:32] dst[87:80] := src1[47:40] dst[95:88] := src2[47:40] dst[103:96] := src1[55:48] dst[111:104] := src2[55:48] dst[119:112] := src1[63:56] dst[127:120] := src2[63:56] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_BYTES(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_BYTES(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_BYTES(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_BYTES(a[511:384], b[511:384]) FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Unpack and interleave 8-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_BYTES(src1[127:0], src2[127:0]) { dst[7:0] := src1[7:0] dst[15:8] := src2[7:0] dst[23:16] := src1[15:8] dst[31:24] := src2[15:8] dst[39:32] := src1[23:16] dst[47:40] := src2[23:16] dst[55:48] := src1[31:24] dst[63:56] := src2[31:24] dst[71:64] := src1[39:32] dst[79:72] := src2[39:32] dst[87:80] := src1[47:40] dst[95:88] := src2[47:40] dst[103:96] := src1[55:48] dst[111:104] := src2[55:48] dst[119:112] := src1[63:56] dst[127:120] := src2[63:56] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_BYTES(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_BYTES(a[255:128], b[255:128]) dst[383:256] := INTERLEAVE_BYTES(a[383:256], b[383:256]) dst[511:384] := INTERLEAVE_BYTES(a[511:384], b[511:384]) dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Unpack and interleave 16-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_WORDS(src1[127:0], src2[127:0]) { dst[15:0] := src1[15:0] dst[31:16] := src2[15:0] dst[47:32] := src1[31:16] dst[63:48] := src2[31:16] dst[79:64] := src1[47:32] dst[95:80] := src2[47:32] dst[111:96] := src1[63:48] dst[127:112] := src2[63:48] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_WORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_WORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_WORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_WORDS(a[511:384], b[511:384]) FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Unpack and interleave 16-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_WORDS(src1[127:0], src2[127:0]) { dst[15:0] := src1[15:0] dst[31:16] := src2[15:0] dst[47:32] := src1[31:16] dst[63:48] := src2[31:16] dst[79:64] := src1[47:32] dst[95:80] := src2[47:32] dst[111:96] := src1[63:48] dst[127:112] := src2[63:48] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_WORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_WORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_WORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_WORDS(a[511:384], b[511:384]) FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Unpack and interleave 16-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_WORDS(src1[127:0], src2[127:0]) { dst[15:0] := src1[15:0] dst[31:16] := src2[15:0] dst[47:32] := src1[31:16] dst[63:48] := src2[31:16] dst[79:64] := src1[47:32] dst[95:80] := src2[47:32] dst[111:96] := src1[63:48] dst[127:112] := src2[63:48] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_WORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_WORDS(a[255:128], b[255:128]) dst[383:256] := INTERLEAVE_WORDS(a[383:256], b[383:256]) dst[511:384] := INTERLEAVE_WORDS(a[511:384], b[511:384]) dst[MAX:512] := 0 AVX512BW
immintrin.h
Miscellaneous
Load packed 16-bit integers from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := MEM[mem_addr+i+15:mem_addr+i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Load
Load packed 16-bit integers from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := MEM[mem_addr+i+15:mem_addr+i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Load
Load packed 8-bit integers from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := MEM[mem_addr+i+7:mem_addr+i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Load
Load packed 8-bit integers from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := MEM[mem_addr+i+7:mem_addr+i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Load
Load 512-bits (composed of 32 packed 16-bit integers) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[511:0] := MEM[mem_addr+511:mem_addr] dst[MAX:512] := 0 AVX512BW
immintrin.h
Load
Load 512-bits (composed of 64 packed 8-bit integers) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[511:0] := MEM[mem_addr+511:mem_addr] dst[MAX:512] := 0 AVX512BW
immintrin.h
Load
Load 32-bit mask from memory into "k". k[31:0] := MEM[mem_addr+31:mem_addr] AVX512BW
immintrin.h
Load
Load 64-bit mask from memory into "k". k[63:0] := MEM[mem_addr+63:mem_addr] AVX512BW
immintrin.h
Load
Move packed 16-bit integers from "a" into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := a[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Move
Move packed 16-bit integers from "a" into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := a[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Move
Move packed 8-bit integers from "a" into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := a[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Move
Move packed 8-bit integers from "a" into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := a[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Move
Store packed 16-bit integers from "a" into memory using writemask "k". "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 31 i := j*16 IF k[j] MEM[mem_addr+i+15:mem_addr+i] := a[i+15:i] FI ENDFOR AVX512BW
immintrin.h
Store
Store packed 8-bit integers from "a" into memory using writemask "k". "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 63 i := j*8 IF k[j] MEM[mem_addr+i+7:mem_addr+i] := a[i+7:i] FI ENDFOR AVX512BW
immintrin.h
Store
Store 512-bits (composed of 32 packed 16-bit integers) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+511:mem_addr] := a[511:0] AVX512BW
immintrin.h
Store
Store 512-bits (composed of 64 packed 8-bit integers) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+511:mem_addr] := a[511:0] AVX512BW
immintrin.h
Store
Store 32-bit mask from "a" into memory. MEM[mem_addr+31:mem_addr] := a[31:0] AVX512BW
immintrin.h
Store
Store 64-bit mask from "a" into memory. MEM[mem_addr+63:mem_addr] := a[63:0] AVX512BW
immintrin.h
Store
Compute the absolute value of packed signed 8-bit integers in "a", and store the unsigned results in "dst". FOR j := 0 to 63 i := j*8 dst[i+7:i] := ABS(a[i+7:i]) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compute the absolute value of packed signed 8-bit integers in "a", and store the unsigned results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := ABS(a[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compute the absolute value of packed signed 8-bit integers in "a", and store the unsigned results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := ABS(a[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compute the absolute value of packed signed 16-bit integers in "a", and store the unsigned results in "dst". FOR j := 0 to 31 i := j*16 dst[i+15:i] := ABS(a[i+15:i]) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compute the absolute value of packed signed 16-bit integers in "a", and store the unsigned results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := ABS(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compute the absolute value of packed signed 16-bit integers in "a", and store the unsigned results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := ABS(a[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Add packed 8-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 63 i := j*8 dst[i+7:i] := a[i+7:i] + b[i+7:i] ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Add packed 8-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := a[i+7:i] + b[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Add packed 8-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := a[i+7:i] + b[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Add packed signed 8-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 63 i := j*8 dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] ) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Add packed signed 8-bit integers in "a" and "b" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] ) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Add packed signed 8-bit integers in "a" and "b" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] ) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Add packed signed 16-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 31 i := j*16 dst[i+15:i] := Saturate16( a[i+15:i] + b[i+15:i] ) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Add packed signed 16-bit integers in "a" and "b" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := Saturate16( a[i+15:i] + b[i+15:i] ) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Add packed signed 16-bit integers in "a" and "b" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := Saturate16( a[i+15:i] + b[i+15:i] ) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Add packed unsigned 8-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 63 i := j*8 dst[i+7:i] := SaturateU8( a[i+7:i] + b[i+7:i] ) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Add packed unsigned 8-bit integers in "a" and "b" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := SaturateU8( a[i+7:i] + b[i+7:i] ) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Add packed unsigned 8-bit integers in "a" and "b" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := SaturateU8( a[i+7:i] + b[i+7:i] ) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Add packed unsigned 16-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 31 i := j*16 dst[i+15:i] := SaturateU16( a[i+15:i] + b[i+15:i] ) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Add packed unsigned 16-bit integers in "a" and "b" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := SaturateU16( a[i+15:i] + b[i+15:i] ) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Add packed unsigned 16-bit integers in "a" and "b" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := SaturateU16( a[i+15:i] + b[i+15:i] ) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Add packed 16-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 31 i := j*16 dst[i+15:i] := a[i+15:i] + b[i+15:i] ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Add packed 16-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := a[i+15:i] + b[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Add packed 16-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := a[i+15:i] + b[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Average packed unsigned 8-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 63 i := j*8 dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Average packed unsigned 8-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Average packed unsigned 8-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Average packed unsigned 16-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 31 i := j*16 dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Average packed unsigned 16-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Average packed unsigned 16-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Vertically multiply each unsigned 8-bit integer from "a" with the corresponding signed 8-bit integer from "b", producing intermediate signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit integers, and pack the saturated results in "dst". FOR j := 0 to 31 i := j*16 dst[i+15:i] := Saturate16( a[i+15:i+8]*b[i+15:i+8] + a[i+7:i]*b[i+7:i] ) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Multiply packed unsigned 8-bit integers in "a" by packed signed 8-bit integers in "b", producing intermediate signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit integers, and pack the saturated results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := Saturate16( a[i+15:i+8]*b[i+15:i+8] + a[i+7:i]*b[i+7:i] ) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Multiply packed unsigned 8-bit integers in "a" by packed signed 8-bit integers in "b", producing intermediate signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit integers, and pack the saturated results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := Saturate16( a[i+15:i+8]*b[i+15:i+8] + a[i+7:i]*b[i+7:i] ) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Horizontally add adjacent pairs of intermediate 32-bit integers, and pack the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := SignExtend32(a[i+31:i+16]*b[i+31:i+16]) + SignExtend32(a[i+15:i]*b[i+15:i]) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Horizontally add adjacent pairs of intermediate 32-bit integers, and pack the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := SignExtend32(a[i+31:i+16]*b[i+31:i+16]) + SignExtend32(a[i+15:i]*b[i+15:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Horizontally add adjacent pairs of intermediate 32-bit integers, and pack the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := SignExtend32(a[i+31:i+16]*b[i+31:i+16]) + SignExtend32(a[i+15:i]*b[i+15:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed signed 8-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed signed 8-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed signed 8-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 63 i := j*8 dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed signed 16-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed signed 16-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed signed 16-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 31 i := j*16 dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed unsigned 8-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed unsigned 8-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed unsigned 8-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 63 i := j*8 dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed unsigned 16-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed unsigned 16-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed unsigned 16-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 31 i := j*16 dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed signed 8-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed signed 8-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed signed 8-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 63 i := j*8 dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed signed 16-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed signed 16-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed signed 16-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 31 i := j*16 dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed unsigned 8-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed unsigned 8-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed unsigned 8-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 63 i := j*8 dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed unsigned 16-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed unsigned 16-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Compare packed unsigned 16-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 31 i := j*16 dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Truncate each intermediate integer to the 18 most significant bits, round by adding 1, and store bits [16:1] to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] tmp[31:0] := ((SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i])) >> 14) + 1 dst[i+15:i] := tmp[16:1] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Truncate each intermediate integer to the 18 most significant bits, round by adding 1, and store bits [16:1] to "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] tmp[31:0] := ((SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i])) >> 14) + 1 dst[i+15:i] := tmp[16:1] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Truncate each intermediate integer to the 18 most significant bits, round by adding 1, and store bits [16:1] to "dst". FOR j := 0 to 31 i := j*16 tmp[31:0] := ((SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i])) >> 14) + 1 dst[i+15:i] := tmp[16:1] ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Multiply the packed unsigned 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] tmp[31:0] := a[i+15:i] * b[i+15:i] dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Multiply the packed unsigned 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] tmp[31:0] := a[i+15:i] * b[i+15:i] dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Multiply the packed unsigned 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst". FOR j := 0 to 31 i := j*16 tmp[31:0] := a[i+15:i] * b[i+15:i] dst[i+15:i] := tmp[31:16] ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Multiply the packed signed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Multiply the packed signed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Multiply the packed signed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst". FOR j := 0 to 31 i := j*16 tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[31:16] ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Multiply the packed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the low 16 bits of the intermediate integers in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[15:0] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Multiply the packed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the low 16 bits of the intermediate integers in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[15:0] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Multiply the packed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the low 16 bits of the intermediate integers in "dst". FOR j := 0 to 31 i := j*16 tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[15:0] ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Subtract packed 8-bit integers in "b" from packed 8-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := a[i+7:i] - b[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Subtract packed 8-bit integers in "b" from packed 8-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := a[i+7:i] - b[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Subtract packed 8-bit integers in "b" from packed 8-bit integers in "a", and store the results in "dst". FOR j := 0 to 63 i := j*8 dst[i+7:i] := a[i+7:i] - b[i+7:i] ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Subtract packed signed 8-bit integers in "b" from packed 8-bit integers in "a" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := Saturate8(a[i+7:i] - b[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Subtract packed signed 8-bit integers in "b" from packed 8-bit integers in "a" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := Saturate8(a[i+7:i] - b[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Subtract packed signed 8-bit integers in "b" from packed 8-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 63 i := j*8 dst[i+7:i] := Saturate8(a[i+7:i] - b[i+7:i]) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Subtract packed signed 16-bit integers in "b" from packed 16-bit integers in "a" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := Saturate16(a[i+15:i] - b[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Subtract packed signed 16-bit integers in "b" from packed 16-bit integers in "a" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := Saturate16(a[i+15:i] - b[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Subtract packed signed 16-bit integers in "b" from packed 16-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 31 i := j*16 dst[i+15:i] := Saturate16(a[i+15:i] - b[i+15:i]) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Subtract packed unsigned 8-bit integers in "b" from packed unsigned 8-bit integers in "a" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := SaturateU8(a[i+7:i] - b[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Subtract packed unsigned 8-bit integers in "b" from packed unsigned 8-bit integers in "a" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := SaturateU8(a[i+7:i] - b[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Subtract packed unsigned 8-bit integers in "b" from packed unsigned 8-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 63 i := j*8 dst[i+7:i] := SaturateU8(a[i+7:i] - b[i+7:i]) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Subtract packed unsigned 16-bit integers in "b" from packed unsigned 16-bit integers in "a" using saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := SaturateU16(a[i+15:i] - b[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Subtract packed unsigned 16-bit integers in "b" from packed unsigned 16-bit integers in "a" using saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := SaturateU16(a[i+15:i] - b[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Subtract packed unsigned 16-bit integers in "b" from packed unsigned 16-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 31 i := j*16 dst[i+15:i] := SaturateU16(a[i+15:i] - b[i+15:i]) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Subtract packed 16-bit integers in "b" from packed 16-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := a[i+15:i] - b[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Subtract packed 16-bit integers in "b" from packed 16-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := a[i+15:i] - b[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Subtract packed 16-bit integers in "b" from packed 16-bit integers in "a", and store the results in "dst". FOR j := 0 to 31 i := j*16 dst[i+15:i] := a[i+15:i] - b[i+15:i] ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Arithmetic
Miscellaneous Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[15:0] := Saturate16(a[31:0]) tmp_dst[31:16] := Saturate16(a[63:32]) tmp_dst[47:32] := Saturate16(a[95:64]) tmp_dst[63:48] := Saturate16(a[127:96]) tmp_dst[79:64] := Saturate16(b[31:0]) tmp_dst[95:80] := Saturate16(b[63:32]) tmp_dst[111:96] := Saturate16(b[95:64]) tmp_dst[127:112] := Saturate16(b[127:96]) tmp_dst[143:128] := Saturate16(a[159:128]) tmp_dst[159:144] := Saturate16(a[191:160]) tmp_dst[175:160] := Saturate16(a[223:192]) tmp_dst[191:176] := Saturate16(a[255:224]) tmp_dst[207:192] := Saturate16(b[159:128]) tmp_dst[223:208] := Saturate16(b[191:160]) tmp_dst[239:224] := Saturate16(b[223:192]) tmp_dst[255:240] := Saturate16(b[255:224]) tmp_dst[271:256] := Saturate16(a[287:256]) tmp_dst[287:272] := Saturate16(a[319:288]) tmp_dst[303:288] := Saturate16(a[351:320]) tmp_dst[319:304] := Saturate16(a[383:352]) tmp_dst[335:320] := Saturate16(b[287:256]) tmp_dst[351:336] := Saturate16(b[319:288]) tmp_dst[367:352] := Saturate16(b[351:320]) tmp_dst[383:368] := Saturate16(b[383:352]) tmp_dst[399:384] := Saturate16(a[415:384]) tmp_dst[415:400] := Saturate16(a[447:416]) tmp_dst[431:416] := Saturate16(a[479:448]) tmp_dst[447:432] := Saturate16(a[511:480]) tmp_dst[463:448] := Saturate16(b[415:384]) tmp_dst[479:464] := Saturate16(b[447:416]) tmp_dst[495:480] := Saturate16(b[479:448]) tmp_dst[511:496] := Saturate16(b[511:480]) FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Convert
Miscellaneous Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[15:0] := Saturate16(a[31:0]) tmp_dst[31:16] := Saturate16(a[63:32]) tmp_dst[47:32] := Saturate16(a[95:64]) tmp_dst[63:48] := Saturate16(a[127:96]) tmp_dst[79:64] := Saturate16(b[31:0]) tmp_dst[95:80] := Saturate16(b[63:32]) tmp_dst[111:96] := Saturate16(b[95:64]) tmp_dst[127:112] := Saturate16(b[127:96]) tmp_dst[143:128] := Saturate16(a[159:128]) tmp_dst[159:144] := Saturate16(a[191:160]) tmp_dst[175:160] := Saturate16(a[223:192]) tmp_dst[191:176] := Saturate16(a[255:224]) tmp_dst[207:192] := Saturate16(b[159:128]) tmp_dst[223:208] := Saturate16(b[191:160]) tmp_dst[239:224] := Saturate16(b[223:192]) tmp_dst[255:240] := Saturate16(b[255:224]) tmp_dst[271:256] := Saturate16(a[287:256]) tmp_dst[287:272] := Saturate16(a[319:288]) tmp_dst[303:288] := Saturate16(a[351:320]) tmp_dst[319:304] := Saturate16(a[383:352]) tmp_dst[335:320] := Saturate16(b[287:256]) tmp_dst[351:336] := Saturate16(b[319:288]) tmp_dst[367:352] := Saturate16(b[351:320]) tmp_dst[383:368] := Saturate16(b[383:352]) tmp_dst[399:384] := Saturate16(a[415:384]) tmp_dst[415:400] := Saturate16(a[447:416]) tmp_dst[431:416] := Saturate16(a[479:448]) tmp_dst[447:432] := Saturate16(a[511:480]) tmp_dst[463:448] := Saturate16(b[415:384]) tmp_dst[479:464] := Saturate16(b[447:416]) tmp_dst[495:480] := Saturate16(b[479:448]) tmp_dst[511:496] := Saturate16(b[511:480]) FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Convert
Miscellaneous Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using signed saturation, and store the results in "dst". dst[15:0] := Saturate16(a[31:0]) dst[31:16] := Saturate16(a[63:32]) dst[47:32] := Saturate16(a[95:64]) dst[63:48] := Saturate16(a[127:96]) dst[79:64] := Saturate16(b[31:0]) dst[95:80] := Saturate16(b[63:32]) dst[111:96] := Saturate16(b[95:64]) dst[127:112] := Saturate16(b[127:96]) dst[143:128] := Saturate16(a[159:128]) dst[159:144] := Saturate16(a[191:160]) dst[175:160] := Saturate16(a[223:192]) dst[191:176] := Saturate16(a[255:224]) dst[207:192] := Saturate16(b[159:128]) dst[223:208] := Saturate16(b[191:160]) dst[239:224] := Saturate16(b[223:192]) dst[255:240] := Saturate16(b[255:224]) dst[271:256] := Saturate16(a[287:256]) dst[287:272] := Saturate16(a[319:288]) dst[303:288] := Saturate16(a[351:320]) dst[319:304] := Saturate16(a[383:352]) dst[335:320] := Saturate16(b[287:256]) dst[351:336] := Saturate16(b[319:288]) dst[367:352] := Saturate16(b[351:320]) dst[383:368] := Saturate16(b[383:352]) dst[399:384] := Saturate16(a[415:384]) dst[415:400] := Saturate16(a[447:416]) dst[431:416] := Saturate16(a[479:448]) dst[447:432] := Saturate16(a[511:480]) dst[463:448] := Saturate16(b[415:384]) dst[479:464] := Saturate16(b[447:416]) dst[495:480] := Saturate16(b[479:448]) dst[511:496] := Saturate16(b[511:480]) dst[MAX:512] := 0 AVX512BW
immintrin.h
Convert
Miscellaneous Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[7:0] := Saturate8(a[15:0]) tmp_dst[15:8] := Saturate8(a[31:16]) tmp_dst[23:16] := Saturate8(a[47:32]) tmp_dst[31:24] := Saturate8(a[63:48]) tmp_dst[39:32] := Saturate8(a[79:64]) tmp_dst[47:40] := Saturate8(a[95:80]) tmp_dst[55:48] := Saturate8(a[111:96]) tmp_dst[63:56] := Saturate8(a[127:112]) tmp_dst[71:64] := Saturate8(b[15:0]) tmp_dst[79:72] := Saturate8(b[31:16]) tmp_dst[87:80] := Saturate8(b[47:32]) tmp_dst[95:88] := Saturate8(b[63:48]) tmp_dst[103:96] := Saturate8(b[79:64]) tmp_dst[111:104] := Saturate8(b[95:80]) tmp_dst[119:112] := Saturate8(b[111:96]) tmp_dst[127:120] := Saturate8(b[127:112]) tmp_dst[135:128] := Saturate8(a[143:128]) tmp_dst[143:136] := Saturate8(a[159:144]) tmp_dst[151:144] := Saturate8(a[175:160]) tmp_dst[159:152] := Saturate8(a[191:176]) tmp_dst[167:160] := Saturate8(a[207:192]) tmp_dst[175:168] := Saturate8(a[223:208]) tmp_dst[183:176] := Saturate8(a[239:224]) tmp_dst[191:184] := Saturate8(a[255:240]) tmp_dst[199:192] := Saturate8(b[143:128]) tmp_dst[207:200] := Saturate8(b[159:144]) tmp_dst[215:208] := Saturate8(b[175:160]) tmp_dst[223:216] := Saturate8(b[191:176]) tmp_dst[231:224] := Saturate8(b[207:192]) tmp_dst[239:232] := Saturate8(b[223:208]) tmp_dst[247:240] := Saturate8(b[239:224]) tmp_dst[255:248] := Saturate8(b[255:240]) tmp_dst[263:256] := Saturate8(a[271:256]) tmp_dst[271:264] := Saturate8(a[287:272]) tmp_dst[279:272] := Saturate8(a[303:288]) tmp_dst[287:280] := Saturate8(a[319:304]) tmp_dst[295:288] := Saturate8(a[335:320]) tmp_dst[303:296] := Saturate8(a[351:336]) tmp_dst[311:304] := Saturate8(a[367:352]) tmp_dst[319:312] := Saturate8(a[383:368]) tmp_dst[327:320] := Saturate8(b[271:256]) tmp_dst[335:328] := Saturate8(b[287:272]) tmp_dst[343:336] := Saturate8(b[303:288]) tmp_dst[351:344] := Saturate8(b[319:304]) tmp_dst[359:352] := Saturate8(b[335:320]) tmp_dst[367:360] := Saturate8(b[351:336]) tmp_dst[375:368] := Saturate8(b[367:352]) tmp_dst[383:376] := Saturate8(b[383:368]) tmp_dst[391:384] := Saturate8(a[399:384]) tmp_dst[399:392] := Saturate8(a[415:400]) tmp_dst[407:400] := Saturate8(a[431:416]) tmp_dst[415:408] := Saturate8(a[447:432]) tmp_dst[423:416] := Saturate8(a[463:448]) tmp_dst[431:424] := Saturate8(a[479:464]) tmp_dst[439:432] := Saturate8(a[495:480]) tmp_dst[447:440] := Saturate8(a[511:496]) tmp_dst[455:448] := Saturate8(b[399:384]) tmp_dst[463:456] := Saturate8(b[415:400]) tmp_dst[471:464] := Saturate8(b[431:416]) tmp_dst[479:472] := Saturate8(b[447:432]) tmp_dst[487:480] := Saturate8(b[463:448]) tmp_dst[495:488] := Saturate8(b[479:464]) tmp_dst[503:496] := Saturate8(b[495:480]) tmp_dst[511:504] := Saturate8(b[511:496]) FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Convert
Miscellaneous Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[7:0] := Saturate8(a[15:0]) tmp_dst[15:8] := Saturate8(a[31:16]) tmp_dst[23:16] := Saturate8(a[47:32]) tmp_dst[31:24] := Saturate8(a[63:48]) tmp_dst[39:32] := Saturate8(a[79:64]) tmp_dst[47:40] := Saturate8(a[95:80]) tmp_dst[55:48] := Saturate8(a[111:96]) tmp_dst[63:56] := Saturate8(a[127:112]) tmp_dst[71:64] := Saturate8(b[15:0]) tmp_dst[79:72] := Saturate8(b[31:16]) tmp_dst[87:80] := Saturate8(b[47:32]) tmp_dst[95:88] := Saturate8(b[63:48]) tmp_dst[103:96] := Saturate8(b[79:64]) tmp_dst[111:104] := Saturate8(b[95:80]) tmp_dst[119:112] := Saturate8(b[111:96]) tmp_dst[127:120] := Saturate8(b[127:112]) tmp_dst[135:128] := Saturate8(a[143:128]) tmp_dst[143:136] := Saturate8(a[159:144]) tmp_dst[151:144] := Saturate8(a[175:160]) tmp_dst[159:152] := Saturate8(a[191:176]) tmp_dst[167:160] := Saturate8(a[207:192]) tmp_dst[175:168] := Saturate8(a[223:208]) tmp_dst[183:176] := Saturate8(a[239:224]) tmp_dst[191:184] := Saturate8(a[255:240]) tmp_dst[199:192] := Saturate8(b[143:128]) tmp_dst[207:200] := Saturate8(b[159:144]) tmp_dst[215:208] := Saturate8(b[175:160]) tmp_dst[223:216] := Saturate8(b[191:176]) tmp_dst[231:224] := Saturate8(b[207:192]) tmp_dst[239:232] := Saturate8(b[223:208]) tmp_dst[247:240] := Saturate8(b[239:224]) tmp_dst[255:248] := Saturate8(b[255:240]) tmp_dst[263:256] := Saturate8(a[271:256]) tmp_dst[271:264] := Saturate8(a[287:272]) tmp_dst[279:272] := Saturate8(a[303:288]) tmp_dst[287:280] := Saturate8(a[319:304]) tmp_dst[295:288] := Saturate8(a[335:320]) tmp_dst[303:296] := Saturate8(a[351:336]) tmp_dst[311:304] := Saturate8(a[367:352]) tmp_dst[319:312] := Saturate8(a[383:368]) tmp_dst[327:320] := Saturate8(b[271:256]) tmp_dst[335:328] := Saturate8(b[287:272]) tmp_dst[343:336] := Saturate8(b[303:288]) tmp_dst[351:344] := Saturate8(b[319:304]) tmp_dst[359:352] := Saturate8(b[335:320]) tmp_dst[367:360] := Saturate8(b[351:336]) tmp_dst[375:368] := Saturate8(b[367:352]) tmp_dst[383:376] := Saturate8(b[383:368]) tmp_dst[391:384] := Saturate8(a[399:384]) tmp_dst[399:392] := Saturate8(a[415:400]) tmp_dst[407:400] := Saturate8(a[431:416]) tmp_dst[415:408] := Saturate8(a[447:432]) tmp_dst[423:416] := Saturate8(a[463:448]) tmp_dst[431:424] := Saturate8(a[479:464]) tmp_dst[439:432] := Saturate8(a[495:480]) tmp_dst[447:440] := Saturate8(a[511:496]) tmp_dst[455:448] := Saturate8(b[399:384]) tmp_dst[463:456] := Saturate8(b[415:400]) tmp_dst[471:464] := Saturate8(b[431:416]) tmp_dst[479:472] := Saturate8(b[447:432]) tmp_dst[487:480] := Saturate8(b[463:448]) tmp_dst[495:488] := Saturate8(b[479:464]) tmp_dst[503:496] := Saturate8(b[495:480]) tmp_dst[511:504] := Saturate8(b[511:496]) FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Convert
Miscellaneous Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using signed saturation, and store the results in "dst". dst[7:0] := Saturate8(a[15:0]) dst[15:8] := Saturate8(a[31:16]) dst[23:16] := Saturate8(a[47:32]) dst[31:24] := Saturate8(a[63:48]) dst[39:32] := Saturate8(a[79:64]) dst[47:40] := Saturate8(a[95:80]) dst[55:48] := Saturate8(a[111:96]) dst[63:56] := Saturate8(a[127:112]) dst[71:64] := Saturate8(b[15:0]) dst[79:72] := Saturate8(b[31:16]) dst[87:80] := Saturate8(b[47:32]) dst[95:88] := Saturate8(b[63:48]) dst[103:96] := Saturate8(b[79:64]) dst[111:104] := Saturate8(b[95:80]) dst[119:112] := Saturate8(b[111:96]) dst[127:120] := Saturate8(b[127:112]) dst[135:128] := Saturate8(a[143:128]) dst[143:136] := Saturate8(a[159:144]) dst[151:144] := Saturate8(a[175:160]) dst[159:152] := Saturate8(a[191:176]) dst[167:160] := Saturate8(a[207:192]) dst[175:168] := Saturate8(a[223:208]) dst[183:176] := Saturate8(a[239:224]) dst[191:184] := Saturate8(a[255:240]) dst[199:192] := Saturate8(b[143:128]) dst[207:200] := Saturate8(b[159:144]) dst[215:208] := Saturate8(b[175:160]) dst[223:216] := Saturate8(b[191:176]) dst[231:224] := Saturate8(b[207:192]) dst[239:232] := Saturate8(b[223:208]) dst[247:240] := Saturate8(b[239:224]) dst[255:248] := Saturate8(b[255:240]) dst[263:256] := Saturate8(a[271:256]) dst[271:264] := Saturate8(a[287:272]) dst[279:272] := Saturate8(a[303:288]) dst[287:280] := Saturate8(a[319:304]) dst[295:288] := Saturate8(a[335:320]) dst[303:296] := Saturate8(a[351:336]) dst[311:304] := Saturate8(a[367:352]) dst[319:312] := Saturate8(a[383:368]) dst[327:320] := Saturate8(b[271:256]) dst[335:328] := Saturate8(b[287:272]) dst[343:336] := Saturate8(b[303:288]) dst[351:344] := Saturate8(b[319:304]) dst[359:352] := Saturate8(b[335:320]) dst[367:360] := Saturate8(b[351:336]) dst[375:368] := Saturate8(b[367:352]) dst[383:376] := Saturate8(b[383:368]) dst[391:384] := Saturate8(a[399:384]) dst[399:392] := Saturate8(a[415:400]) dst[407:400] := Saturate8(a[431:416]) dst[415:408] := Saturate8(a[447:432]) dst[423:416] := Saturate8(a[463:448]) dst[431:424] := Saturate8(a[479:464]) dst[439:432] := Saturate8(a[495:480]) dst[447:440] := Saturate8(a[511:496]) dst[455:448] := Saturate8(b[399:384]) dst[463:456] := Saturate8(b[415:400]) dst[471:464] := Saturate8(b[431:416]) dst[479:472] := Saturate8(b[447:432]) dst[487:480] := Saturate8(b[463:448]) dst[495:488] := Saturate8(b[479:464]) dst[503:496] := Saturate8(b[495:480]) dst[511:504] := Saturate8(b[511:496]) dst[MAX:512] := 0 AVX512BW
immintrin.h
Convert
Miscellaneous Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[15:0] := SaturateU16(a[31:0]) tmp_dst[31:16] := SaturateU16(a[63:32]) tmp_dst[47:32] := SaturateU16(a[95:64]) tmp_dst[63:48] := SaturateU16(a[127:96]) tmp_dst[79:64] := SaturateU16(b[31:0]) tmp_dst[95:80] := SaturateU16(b[63:32]) tmp_dst[111:96] := SaturateU16(b[95:64]) tmp_dst[127:112] := SaturateU16(b[127:96]) tmp_dst[143:128] := SaturateU16(a[159:128]) tmp_dst[159:144] := SaturateU16(a[191:160]) tmp_dst[175:160] := SaturateU16(a[223:192]) tmp_dst[191:176] := SaturateU16(a[255:224]) tmp_dst[207:192] := SaturateU16(b[159:128]) tmp_dst[223:208] := SaturateU16(b[191:160]) tmp_dst[239:224] := SaturateU16(b[223:192]) tmp_dst[255:240] := SaturateU16(b[255:224]) tmp_dst[271:256] := SaturateU16(a[287:256]) tmp_dst[287:272] := SaturateU16(a[319:288]) tmp_dst[303:288] := SaturateU16(a[351:320]) tmp_dst[319:304] := SaturateU16(a[383:352]) tmp_dst[335:320] := SaturateU16(b[287:256]) tmp_dst[351:336] := SaturateU16(b[319:288]) tmp_dst[367:352] := SaturateU16(b[351:320]) tmp_dst[383:368] := SaturateU16(b[383:352]) tmp_dst[399:384] := SaturateU16(a[415:384]) tmp_dst[415:400] := SaturateU16(a[447:416]) tmp_dst[431:416] := SaturateU16(a[479:448]) tmp_dst[447:432] := SaturateU16(a[511:480]) tmp_dst[463:448] := SaturateU16(b[415:384]) tmp_dst[479:464] := SaturateU16(b[447:416]) tmp_dst[495:480] := SaturateU16(b[479:448]) tmp_dst[511:496] := SaturateU16(b[511:480]) FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Convert
Miscellaneous Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[15:0] := SaturateU16(a[31:0]) tmp_dst[31:16] := SaturateU16(a[63:32]) tmp_dst[47:32] := SaturateU16(a[95:64]) tmp_dst[63:48] := SaturateU16(a[127:96]) tmp_dst[79:64] := SaturateU16(b[31:0]) tmp_dst[95:80] := SaturateU16(b[63:32]) tmp_dst[111:96] := SaturateU16(b[95:64]) tmp_dst[127:112] := SaturateU16(b[127:96]) tmp_dst[143:128] := SaturateU16(a[159:128]) tmp_dst[159:144] := SaturateU16(a[191:160]) tmp_dst[175:160] := SaturateU16(a[223:192]) tmp_dst[191:176] := SaturateU16(a[255:224]) tmp_dst[207:192] := SaturateU16(b[159:128]) tmp_dst[223:208] := SaturateU16(b[191:160]) tmp_dst[239:224] := SaturateU16(b[223:192]) tmp_dst[255:240] := SaturateU16(b[255:224]) tmp_dst[271:256] := SaturateU16(a[287:256]) tmp_dst[287:272] := SaturateU16(a[319:288]) tmp_dst[303:288] := SaturateU16(a[351:320]) tmp_dst[319:304] := SaturateU16(a[383:352]) tmp_dst[335:320] := SaturateU16(b[287:256]) tmp_dst[351:336] := SaturateU16(b[319:288]) tmp_dst[367:352] := SaturateU16(b[351:320]) tmp_dst[383:368] := SaturateU16(b[383:352]) tmp_dst[399:384] := SaturateU16(a[415:384]) tmp_dst[415:400] := SaturateU16(a[447:416]) tmp_dst[431:416] := SaturateU16(a[479:448]) tmp_dst[447:432] := SaturateU16(a[511:480]) tmp_dst[463:448] := SaturateU16(b[415:384]) tmp_dst[479:464] := SaturateU16(b[447:416]) tmp_dst[495:480] := SaturateU16(b[479:448]) tmp_dst[511:496] := SaturateU16(b[511:480]) FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := tmp_dst[i+15:i] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Convert
Miscellaneous Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using unsigned saturation, and store the results in "dst". dst[15:0] := SaturateU16(a[31:0]) dst[31:16] := SaturateU16(a[63:32]) dst[47:32] := SaturateU16(a[95:64]) dst[63:48] := SaturateU16(a[127:96]) dst[79:64] := SaturateU16(b[31:0]) dst[95:80] := SaturateU16(b[63:32]) dst[111:96] := SaturateU16(b[95:64]) dst[127:112] := SaturateU16(b[127:96]) dst[143:128] := SaturateU16(a[159:128]) dst[159:144] := SaturateU16(a[191:160]) dst[175:160] := SaturateU16(a[223:192]) dst[191:176] := SaturateU16(a[255:224]) dst[207:192] := SaturateU16(b[159:128]) dst[223:208] := SaturateU16(b[191:160]) dst[239:224] := SaturateU16(b[223:192]) dst[255:240] := SaturateU16(b[255:224]) dst[271:256] := SaturateU16(a[287:256]) dst[287:272] := SaturateU16(a[319:288]) dst[303:288] := SaturateU16(a[351:320]) dst[319:304] := SaturateU16(a[383:352]) dst[335:320] := SaturateU16(b[287:256]) dst[351:336] := SaturateU16(b[319:288]) dst[367:352] := SaturateU16(b[351:320]) dst[383:368] := SaturateU16(b[383:352]) dst[399:384] := SaturateU16(a[415:384]) dst[415:400] := SaturateU16(a[447:416]) dst[431:416] := SaturateU16(a[479:448]) dst[447:432] := SaturateU16(a[511:480]) dst[463:448] := SaturateU16(b[415:384]) dst[479:464] := SaturateU16(b[447:416]) dst[495:480] := SaturateU16(b[479:448]) dst[511:496] := SaturateU16(b[511:480]) dst[MAX:512] := 0 AVX512BW
immintrin.h
Convert
Miscellaneous Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[7:0] := SaturateU8(a[15:0]) tmp_dst[15:8] := SaturateU8(a[31:16]) tmp_dst[23:16] := SaturateU8(a[47:32]) tmp_dst[31:24] := SaturateU8(a[63:48]) tmp_dst[39:32] := SaturateU8(a[79:64]) tmp_dst[47:40] := SaturateU8(a[95:80]) tmp_dst[55:48] := SaturateU8(a[111:96]) tmp_dst[63:56] := SaturateU8(a[127:112]) tmp_dst[71:64] := SaturateU8(b[15:0]) tmp_dst[79:72] := SaturateU8(b[31:16]) tmp_dst[87:80] := SaturateU8(b[47:32]) tmp_dst[95:88] := SaturateU8(b[63:48]) tmp_dst[103:96] := SaturateU8(b[79:64]) tmp_dst[111:104] := SaturateU8(b[95:80]) tmp_dst[119:112] := SaturateU8(b[111:96]) tmp_dst[127:120] := SaturateU8(b[127:112]) tmp_dst[135:128] := SaturateU8(a[143:128]) tmp_dst[143:136] := SaturateU8(a[159:144]) tmp_dst[151:144] := SaturateU8(a[175:160]) tmp_dst[159:152] := SaturateU8(a[191:176]) tmp_dst[167:160] := SaturateU8(a[207:192]) tmp_dst[175:168] := SaturateU8(a[223:208]) tmp_dst[183:176] := SaturateU8(a[239:224]) tmp_dst[191:184] := SaturateU8(a[255:240]) tmp_dst[199:192] := SaturateU8(b[143:128]) tmp_dst[207:200] := SaturateU8(b[159:144]) tmp_dst[215:208] := SaturateU8(b[175:160]) tmp_dst[223:216] := SaturateU8(b[191:176]) tmp_dst[231:224] := SaturateU8(b[207:192]) tmp_dst[239:232] := SaturateU8(b[223:208]) tmp_dst[247:240] := SaturateU8(b[239:224]) tmp_dst[255:248] := SaturateU8(b[255:240]) tmp_dst[263:256] := SaturateU8(a[271:256]) tmp_dst[271:264] := SaturateU8(a[287:272]) tmp_dst[279:272] := SaturateU8(a[303:288]) tmp_dst[287:280] := SaturateU8(a[319:304]) tmp_dst[295:288] := SaturateU8(a[335:320]) tmp_dst[303:296] := SaturateU8(a[351:336]) tmp_dst[311:304] := SaturateU8(a[367:352]) tmp_dst[319:312] := SaturateU8(a[383:368]) tmp_dst[327:320] := SaturateU8(b[271:256]) tmp_dst[335:328] := SaturateU8(b[287:272]) tmp_dst[343:336] := SaturateU8(b[303:288]) tmp_dst[351:344] := SaturateU8(b[319:304]) tmp_dst[359:352] := SaturateU8(b[335:320]) tmp_dst[367:360] := SaturateU8(b[351:336]) tmp_dst[375:368] := SaturateU8(b[367:352]) tmp_dst[383:376] := SaturateU8(b[383:368]) tmp_dst[391:384] := SaturateU8(a[399:384]) tmp_dst[399:392] := SaturateU8(a[415:400]) tmp_dst[407:400] := SaturateU8(a[431:416]) tmp_dst[415:408] := SaturateU8(a[447:432]) tmp_dst[423:416] := SaturateU8(a[463:448]) tmp_dst[431:424] := SaturateU8(a[479:464]) tmp_dst[439:432] := SaturateU8(a[495:480]) tmp_dst[447:440] := SaturateU8(a[511:496]) tmp_dst[455:448] := SaturateU8(b[399:384]) tmp_dst[463:456] := SaturateU8(b[415:400]) tmp_dst[471:464] := SaturateU8(b[431:416]) tmp_dst[479:472] := SaturateU8(b[447:432]) tmp_dst[487:480] := SaturateU8(b[463:448]) tmp_dst[495:488] := SaturateU8(b[479:464]) tmp_dst[503:496] := SaturateU8(b[495:480]) tmp_dst[511:504] := SaturateU8(b[511:496]) FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Convert
Miscellaneous Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[7:0] := SaturateU8(a[15:0]) tmp_dst[15:8] := SaturateU8(a[31:16]) tmp_dst[23:16] := SaturateU8(a[47:32]) tmp_dst[31:24] := SaturateU8(a[63:48]) tmp_dst[39:32] := SaturateU8(a[79:64]) tmp_dst[47:40] := SaturateU8(a[95:80]) tmp_dst[55:48] := SaturateU8(a[111:96]) tmp_dst[63:56] := SaturateU8(a[127:112]) tmp_dst[71:64] := SaturateU8(b[15:0]) tmp_dst[79:72] := SaturateU8(b[31:16]) tmp_dst[87:80] := SaturateU8(b[47:32]) tmp_dst[95:88] := SaturateU8(b[63:48]) tmp_dst[103:96] := SaturateU8(b[79:64]) tmp_dst[111:104] := SaturateU8(b[95:80]) tmp_dst[119:112] := SaturateU8(b[111:96]) tmp_dst[127:120] := SaturateU8(b[127:112]) tmp_dst[135:128] := SaturateU8(a[143:128]) tmp_dst[143:136] := SaturateU8(a[159:144]) tmp_dst[151:144] := SaturateU8(a[175:160]) tmp_dst[159:152] := SaturateU8(a[191:176]) tmp_dst[167:160] := SaturateU8(a[207:192]) tmp_dst[175:168] := SaturateU8(a[223:208]) tmp_dst[183:176] := SaturateU8(a[239:224]) tmp_dst[191:184] := SaturateU8(a[255:240]) tmp_dst[199:192] := SaturateU8(b[143:128]) tmp_dst[207:200] := SaturateU8(b[159:144]) tmp_dst[215:208] := SaturateU8(b[175:160]) tmp_dst[223:216] := SaturateU8(b[191:176]) tmp_dst[231:224] := SaturateU8(b[207:192]) tmp_dst[239:232] := SaturateU8(b[223:208]) tmp_dst[247:240] := SaturateU8(b[239:224]) tmp_dst[255:248] := SaturateU8(b[255:240]) tmp_dst[263:256] := SaturateU8(a[271:256]) tmp_dst[271:264] := SaturateU8(a[287:272]) tmp_dst[279:272] := SaturateU8(a[303:288]) tmp_dst[287:280] := SaturateU8(a[319:304]) tmp_dst[295:288] := SaturateU8(a[335:320]) tmp_dst[303:296] := SaturateU8(a[351:336]) tmp_dst[311:304] := SaturateU8(a[367:352]) tmp_dst[319:312] := SaturateU8(a[383:368]) tmp_dst[327:320] := SaturateU8(b[271:256]) tmp_dst[335:328] := SaturateU8(b[287:272]) tmp_dst[343:336] := SaturateU8(b[303:288]) tmp_dst[351:344] := SaturateU8(b[319:304]) tmp_dst[359:352] := SaturateU8(b[335:320]) tmp_dst[367:360] := SaturateU8(b[351:336]) tmp_dst[375:368] := SaturateU8(b[367:352]) tmp_dst[383:376] := SaturateU8(b[383:368]) tmp_dst[391:384] := SaturateU8(a[399:384]) tmp_dst[399:392] := SaturateU8(a[415:400]) tmp_dst[407:400] := SaturateU8(a[431:416]) tmp_dst[415:408] := SaturateU8(a[447:432]) tmp_dst[423:416] := SaturateU8(a[463:448]) tmp_dst[431:424] := SaturateU8(a[479:464]) tmp_dst[439:432] := SaturateU8(a[495:480]) tmp_dst[447:440] := SaturateU8(a[511:496]) tmp_dst[455:448] := SaturateU8(b[399:384]) tmp_dst[463:456] := SaturateU8(b[415:400]) tmp_dst[471:464] := SaturateU8(b[431:416]) tmp_dst[479:472] := SaturateU8(b[447:432]) tmp_dst[487:480] := SaturateU8(b[463:448]) tmp_dst[495:488] := SaturateU8(b[479:464]) tmp_dst[503:496] := SaturateU8(b[495:480]) tmp_dst[511:504] := SaturateU8(b[511:496]) FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := tmp_dst[i+7:i] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Convert
Miscellaneous Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using unsigned saturation, and store the results in "dst". dst[7:0] := SaturateU8(a[15:0]) dst[15:8] := SaturateU8(a[31:16]) dst[23:16] := SaturateU8(a[47:32]) dst[31:24] := SaturateU8(a[63:48]) dst[39:32] := SaturateU8(a[79:64]) dst[47:40] := SaturateU8(a[95:80]) dst[55:48] := SaturateU8(a[111:96]) dst[63:56] := SaturateU8(a[127:112]) dst[71:64] := SaturateU8(b[15:0]) dst[79:72] := SaturateU8(b[31:16]) dst[87:80] := SaturateU8(b[47:32]) dst[95:88] := SaturateU8(b[63:48]) dst[103:96] := SaturateU8(b[79:64]) dst[111:104] := SaturateU8(b[95:80]) dst[119:112] := SaturateU8(b[111:96]) dst[127:120] := SaturateU8(b[127:112]) dst[135:128] := SaturateU8(a[143:128]) dst[143:136] := SaturateU8(a[159:144]) dst[151:144] := SaturateU8(a[175:160]) dst[159:152] := SaturateU8(a[191:176]) dst[167:160] := SaturateU8(a[207:192]) dst[175:168] := SaturateU8(a[223:208]) dst[183:176] := SaturateU8(a[239:224]) dst[191:184] := SaturateU8(a[255:240]) dst[199:192] := SaturateU8(b[143:128]) dst[207:200] := SaturateU8(b[159:144]) dst[215:208] := SaturateU8(b[175:160]) dst[223:216] := SaturateU8(b[191:176]) dst[231:224] := SaturateU8(b[207:192]) dst[239:232] := SaturateU8(b[223:208]) dst[247:240] := SaturateU8(b[239:224]) dst[255:248] := SaturateU8(b[255:240]) dst[263:256] := SaturateU8(a[271:256]) dst[271:264] := SaturateU8(a[287:272]) dst[279:272] := SaturateU8(a[303:288]) dst[287:280] := SaturateU8(a[319:304]) dst[295:288] := SaturateU8(a[335:320]) dst[303:296] := SaturateU8(a[351:336]) dst[311:304] := SaturateU8(a[367:352]) dst[319:312] := SaturateU8(a[383:368]) dst[327:320] := SaturateU8(b[271:256]) dst[335:328] := SaturateU8(b[287:272]) dst[343:336] := SaturateU8(b[303:288]) dst[351:344] := SaturateU8(b[319:304]) dst[359:352] := SaturateU8(b[335:320]) dst[367:360] := SaturateU8(b[351:336]) dst[375:368] := SaturateU8(b[367:352]) dst[383:376] := SaturateU8(b[383:368]) dst[391:384] := SaturateU8(a[399:384]) dst[399:392] := SaturateU8(a[415:400]) dst[407:400] := SaturateU8(a[431:416]) dst[415:408] := SaturateU8(a[447:432]) dst[423:416] := SaturateU8(a[463:448]) dst[431:424] := SaturateU8(a[479:464]) dst[439:432] := SaturateU8(a[495:480]) dst[447:440] := SaturateU8(a[511:496]) dst[455:448] := SaturateU8(b[399:384]) dst[463:456] := SaturateU8(b[415:400]) dst[471:464] := SaturateU8(b[431:416]) dst[479:472] := SaturateU8(b[447:432]) dst[487:480] := SaturateU8(b[463:448]) dst[495:488] := SaturateU8(b[479:464]) dst[503:496] := SaturateU8(b[495:480]) dst[511:504] := SaturateU8(b[511:496]) dst[MAX:512] := 0 AVX512BW
immintrin.h
Convert
Convert packed signed 16-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst". FOR j := 0 to 31 i := 16*j l := 8*j dst[l+7:l] := Saturate8(a[i+15:i]) ENDFOR dst[MAX:256] := 0 AVX512BW
immintrin.h
Convert
Convert packed signed 16-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := 16*j l := 8*j IF k[j] dst[l+7:l] := Saturate8(a[i+15:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:256] := 0 AVX512BW
immintrin.h
Convert
Store Convert packed signed 16-bit integers in "a" to packed 8-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 31 i := 16*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := Saturate8(a[i+15:i]) FI ENDFOR AVX512BW
immintrin.h
Convert
Convert packed signed 16-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := 16*j l := 8*j IF k[j] dst[l+7:l] := Saturate8(a[i+15:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW
immintrin.h
Convert
Sign extend packed 8-bit integers in "a" to packed 16-bit integers, and store the results in "dst". FOR j := 0 to 31 i := j*8 l := j*16 dst[l+15:l] := SignExtend16(a[i+7:i]) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Convert
Sign extend packed 8-bit integers in "a" to packed 16-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 l := j*16 IF k[j] dst[l+15:l] := SignExtend16(a[i+7:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Convert
Sign extend packed 8-bit integers in "a" to packed 16-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 l := j*16 IF k[j] dst[l+15:l] := SignExtend16(a[i+7:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst". FOR j := 0 to 31 i := 16*j l := 8*j dst[l+7:l] := SaturateU8(a[i+15:i]) ENDFOR dst[MAX:256] := 0 AVX512BW
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := 16*j l := 8*j IF k[j] dst[l+7:l] := SaturateU8(a[i+15:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:256] := 0 AVX512BW
immintrin.h
Convert
Store Convert packed unsigned 16-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 31 i := 16*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := SaturateU8(a[i+15:i]) FI ENDFOR AVX512BW
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := 16*j l := 8*j IF k[j] dst[l+7:l] := SaturateU8(a[i+15:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW
immintrin.h
Convert
Convert packed 16-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst". FOR j := 0 to 31 i := 16*j l := 8*j dst[l+7:l] := Truncate8(a[i+15:i]) ENDFOR dst[MAX:256] := 0 AVX512BW
immintrin.h
Convert
Convert packed 16-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := 16*j l := 8*j IF k[j] dst[l+7:l] := Truncate8(a[i+15:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:256] := 0 AVX512BW
immintrin.h
Convert
Store Convert packed 16-bit integers in "a" to packed 8-bit integers with truncation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 31 i := 16*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := Truncate8(a[i+15:i]) FI ENDFOR AVX512BW
immintrin.h
Convert
Convert packed 16-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := 16*j l := 8*j IF k[j] dst[l+7:l] := Truncate8(a[i+15:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512BW
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in "a" to packed 16-bit integers, and store the results in "dst". FOR j := 0 to 31 i := j*8 l := j*16 dst[l+15:l] := ZeroExtend16(a[i+7:i]) ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in "a" to packed 16-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 l := j*16 IF k[j] dst[l+15:l] := ZeroExtend16(a[i+7:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in "a" to packed 16-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 l := j*16 IF k[j] dst[l+15:l] := ZeroExtend16(a[i+7:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Convert
Broadcast 8-bit integer "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := a[7:0] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Set
Broadcast 8-bit integer "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := a[7:0] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Set
Broadcast 16-bit integer "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := a[15:0] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Set
Broadcast the low packed 16-bit integer from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := a[15:0] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Set
Compare packed signed 8-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 63 i := j*8 k[j] := ( a[i+7:i] OP b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 63 i := j*8 k[j] := ( a[i+7:i] == b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 63 i := j*8 k[j] := ( a[i+7:i] >= b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 63 i := j*8 k[j] := ( a[i+7:i] > b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 63 i := j*8 k[j] := ( a[i+7:i] <= b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 63 i := j*8 k[j] := ( a[i+7:i] < b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 63 i := j*8 k[j] := ( a[i+7:i] != b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 63 i := j*8 IF k1[j] k[j] := ( a[i+7:i] OP b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k1[j] k[j] := ( a[i+7:i] == b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k1[j] k[j] := ( a[i+7:i] >= b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k1[j] k[j] := ( a[i+7:i] > b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k1[j] k[j] := ( a[i+7:i] <= b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k1[j] k[j] := ( a[i+7:i] < b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k1[j] k[j] := ( a[i+7:i] != b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 63 i := j*8 k[j] := ( a[i+7:i] OP b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 63 i := j*8 k[j] := ( a[i+7:i] == b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 63 i := j*8 k[j] := ( a[i+7:i] >= b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 63 i := j*8 k[j] := ( a[i+7:i] > b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 63 i := j*8 k[j] := ( a[i+7:i] <= b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 63 i := j*8 k[j] := ( a[i+7:i] < b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 63 i := j*8 k[j] := ( a[i+7:i] != b[i+7:i] ) ? 1 : 0 ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 63 i := j*8 IF k1[j] k[j] := ( a[i+7:i] OP b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k1[j] k[j] := ( a[i+7:i] == b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k1[j] k[j] := ( a[i+7:i] >= b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k1[j] k[j] := ( a[i+7:i] > b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k1[j] k[j] := ( a[i+7:i] <= b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k1[j] k[j] := ( a[i+7:i] < b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 8-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k1[j] k[j] := ( a[i+7:i] != b[i+7:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 31 i := j*16 k[j] := ( a[i+15:i] OP b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 31 i := j*16 k[j] := ( a[i+15:i] == b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 31 i := j*16 k[j] := ( a[i+15:i] >= b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 31 i := j*16 k[j] := ( a[i+15:i] > b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 31 i := j*16 k[j] := ( a[i+15:i] <= b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 31 i := j*16 k[j] := ( a[i+15:i] < b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 31 i := j*16 k[j] := ( a[i+15:i] != b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 31 i := j*16 IF k1[j] k[j] := ( a[i+15:i] OP b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k1[j] k[j] := ( a[i+15:i] == b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k1[j] k[j] := ( a[i+15:i] >= b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k1[j] k[j] := ( a[i+15:i] > b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k1[j] k[j] := ( a[i+15:i] <= b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k1[j] k[j] := ( a[i+15:i] < b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed unsigned 16-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k1[j] k[j] := ( a[i+15:i] != b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 31 i := j*16 k[j] := ( a[i+15:i] OP b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 31 i := j*16 k[j] := ( a[i+15:i] == b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 31 i := j*16 k[j] := ( a[i+15:i] >= b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 31 i := j*16 k[j] := ( a[i+15:i] > b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 31 i := j*16 k[j] := ( a[i+15:i] <= b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 31 i := j*16 k[j] := ( a[i+15:i] < b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 31 i := j*16 k[j] := ( a[i+15:i] != b[i+15:i] ) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 31 i := j*16 IF k1[j] k[j] := ( a[i+15:i] OP b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k1[j] k[j] := ( a[i+15:i] == b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k1[j] k[j] := ( a[i+15:i] >= b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k1[j] k[j] := ( a[i+15:i] > b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k1[j] k[j] := ( a[i+15:i] <= b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k1[j] k[j] := ( a[i+15:i] < b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k1[j] k[j] := ( a[i+15:i] != b[i+15:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compute the bitwise AND of packed 8-bit integers in "a" and "b", producing intermediate 8-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is non-zero. FOR j := 0 to 63 i := j*8 IF k1[j] k[j] := ((a[i+7:i] AND b[i+7:i]) != 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compute the bitwise AND of packed 8-bit integers in "a" and "b", producing intermediate 8-bit values, and set the corresponding bit in result mask "k" if the intermediate value is non-zero. FOR j := 0 to 63 i := j*8 k[j] := ((a[i+7:i] AND b[i+7:i]) != 0) ? 1 : 0 ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compute the bitwise AND of packed 16-bit integers in "a" and "b", producing intermediate 16-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is non-zero. FOR j := 0 to 31 i := j*16 IF k1[j] k[j] := ((a[i+15:i] AND b[i+15:i]) != 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compute the bitwise AND of packed 16-bit integers in "a" and "b", producing intermediate 16-bit values, and set the corresponding bit in result mask "k" if the intermediate value is non-zero. FOR j := 0 to 31 i := j*16 k[j] := ((a[i+15:i] AND b[i+15:i]) != 0) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compute the bitwise NAND of packed 8-bit integers in "a" and "b", producing intermediate 8-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is zero. FOR j := 0 to 63 i := j*8 IF k1[j] k[j] := ((a[i+7:i] AND b[i+7:i]) == 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compute the bitwise NAND of packed 8-bit integers in "a" and "b", producing intermediate 8-bit values, and set the corresponding bit in result mask "k" if the intermediate value is zero. FOR j := 0 to 63 i := j*8 k[j] := ((a[i+7:i] AND b[i+7:i]) == 0) ? 1 : 0 ENDFOR k[MAX:64] := 0 AVX512BW
immintrin.h
Compare
Compute the bitwise NAND of packed 16-bit integers in "a" and "b", producing intermediate 16-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is zero. FOR j := 0 to 31 i := j*16 IF k1[j] k[j] := ((a[i+15:i] AND b[i+15:i]) == 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Compute the bitwise NAND of packed 16-bit integers in "a" and "b", producing intermediate 16-bit values, and set the corresponding bit in result mask "k" if the intermediate value is zero. FOR j := 0 to 31 i := j*16 k[j] := ((a[i+15:i] AND b[i+15:i]) == 0) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512BW
immintrin.h
Compare
Shift 128-bit lanes in "a" left by "imm8" bytes while shifting in zeros, and store the results in "dst". tmp := imm8[7:0] IF tmp > 15 tmp := 16 FI dst[127:0] := a[127:0] << (tmp*8) dst[255:128] := a[255:128] << (tmp*8) dst[383:256] := a[383:256] << (tmp*8) dst[511:384] := a[511:384] << (tmp*8) dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] IF count[i+15:i] < 16 dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[i+15:i]) ELSE dst[i+15:i] := 0 FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] IF count[i+15:i] < 16 dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[i+15:i]) ELSE dst[i+15:i] := 0 FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 31 i := j*16 IF count[i+15:i] < 16 dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[63:0]) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << imm8[7:0]) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[63:0]) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << imm8[7:0]) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 31 i := j*16 IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[63:0]) FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 31 i := j*16 IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << imm8[7:0]) FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] IF count[i+15:i] < 16 dst[i+15:i] := SignExtend16(a[i+15:i] >> count[i+15:i]) ELSE dst[i+15:i] := (a[i+15] ? 0xFFFF : 0) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] IF count[i+15:i] < 16 dst[i+15:i] := SignExtend16(a[i+15:i] >> count[i+15:i]) ELSE dst[i+15:i] := (a[i+15] ? 0xFFFF : 0) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 31 i := j*16 IF count[i+15:i] < 16 dst[i+15:i] := SignExtend16(a[i+15:i] >> count[i+15:i]) ELSE dst[i+15:i] := (a[i+15] ? 0xFFFF : 0) FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] IF count[63:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> count[63:0]) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] IF imm8[7:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> imm8[7:0]) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] IF count[63:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> count[63:0]) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] IF imm8[7:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> imm8[7:0]) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 31 i := j*16 IF count[63:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> count[63:0]) FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 31 i := j*16 IF imm8[7:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> imm8[7:0]) FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift 128-bit lanes in "a" right by "imm8" bytes while shifting in zeros, and store the results in "dst". tmp := imm8[7:0] IF tmp > 15 tmp := 16 FI dst[127:0] := a[127:0] >> (tmp*8) dst[255:128] := a[255:128] >> (tmp*8) dst[383:256] := a[383:256] >> (tmp*8) dst[511:384] := a[511:384] >> (tmp*8) dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] IF count[i+15:i] < 16 dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[i+15:i]) ELSE dst[i+15:i] := 0 FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] IF count[i+15:i] < 16 dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[i+15:i]) ELSE dst[i+15:i] := 0 FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 31 i := j*16 IF count[i+15:i] < 16 dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[63:0]) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0]) FI ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[63:0]) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0]) FI ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 31 i := j*16 IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[63:0]) FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 31 i := j*16 IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0]) FI ENDFOR dst[MAX:512] := 0 AVX512BW
immintrin.h
Shift
Add 32-bit masks in "a" and "b", and store the result in "k". k[31:0] := a[31:0] + b[31:0] k[MAX:32] := 0 AVX512BW
immintrin.h
Mask
Add 64-bit masks in "a" and "b", and store the result in "k". k[63:0] := a[63:0] + b[63:0] k[MAX:64] := 0 AVX512BW
immintrin.h
Mask
Compute the bitwise AND of 32-bit masks "a" and "b", and store the result in "k". k[31:0] := a[31:0] AND b[31:0] k[MAX:32] := 0 AVX512BW
immintrin.h
Mask
Compute the bitwise AND of 64-bit masks "a" and "b", and store the result in "k". k[63:0] := a[63:0] AND b[63:0] k[MAX:64] := 0 AVX512BW
immintrin.h
Mask
Compute the bitwise NOT of 32-bit masks "a" and then AND with "b", and store the result in "k". k[31:0] := (NOT a[31:0]) AND b[31:0] k[MAX:32] := 0 AVX512BW
immintrin.h
Mask
Compute the bitwise NOT of 64-bit masks "a" and then AND with "b", and store the result in "k". k[63:0] := (NOT a[63:0]) AND b[63:0] k[MAX:64] := 0 AVX512BW
immintrin.h
Mask
Compute the bitwise NOT of 32-bit mask "a", and store the result in "k". k[31:0] := NOT a[31:0] k[MAX:32] := 0 AVX512BW
immintrin.h
Mask
Compute the bitwise NOT of 64-bit mask "a", and store the result in "k". k[63:0] := NOT a[63:0] k[MAX:64] := 0 AVX512BW
immintrin.h
Mask
Compute the bitwise OR of 32-bit masks "a" and "b", and store the result in "k". k[31:0] := a[31:0] OR b[31:0] k[MAX:32] := 0 AVX512BW
immintrin.h
Mask
Compute the bitwise OR of 64-bit masks "a" and "b", and store the result in "k". k[63:0] := a[63:0] OR b[63:0] k[MAX:64] := 0 AVX512BW
immintrin.h
Mask
Compute the bitwise XNOR of 32-bit masks "a" and "b", and store the result in "k". k[31:0] := NOT (a[31:0] XOR b[31:0]) k[MAX:32] := 0 AVX512BW
immintrin.h
Mask
Compute the bitwise XNOR of 64-bit masks "a" and "b", and store the result in "k". k[63:0] := NOT (a[63:0] XOR b[63:0]) k[MAX:64] := 0 AVX512BW
immintrin.h
Mask
Compute the bitwise XOR of 32-bit masks "a" and "b", and store the result in "k". k[31:0] := a[31:0] XOR b[31:0] k[MAX:32] := 0 AVX512BW
immintrin.h
Mask
Compute the bitwise XOR of 64-bit masks "a" and "b", and store the result in "k". k[63:0] := a[63:0] XOR b[63:0] k[MAX:64] := 0 AVX512BW
immintrin.h
Mask
Shift the bits of 32-bit mask "a" left by "count" while shifting in zeros, and store the least significant 32 bits of the result in "k". k[MAX:0] := 0 IF count[7:0] <= 31 k[31:0] := a[31:0] << count[7:0] FI AVX512BW
immintrin.h
Mask
Shift the bits of 64-bit mask "a" left by "count" while shifting in zeros, and store the least significant 64 bits of the result in "k". k[MAX:0] := 0 IF count[7:0] <= 63 k[63:0] := a[63:0] << count[7:0] FI AVX512BW
immintrin.h
Mask
Shift the bits of 32-bit mask "a" right by "count" while shifting in zeros, and store the least significant 32 bits of the result in "k". k[MAX:0] := 0 IF count[7:0] <= 31 k[31:0] := a[31:0] >> count[7:0] FI AVX512BW
immintrin.h
Mask
Shift the bits of 64-bit mask "a" right by "count" while shifting in zeros, and store the least significant 64 bits of the result in "k". k[MAX:0] := 0 IF count[7:0] <= 63 k[63:0] := a[63:0] >> count[7:0] FI AVX512BW
immintrin.h
Mask
Compute the bitwise OR of 32-bit masks "a" and "b". If the result is all zeros, store 1 in "dst", otherwise store 0 in "dst". If the result is all ones, store 1 in "all_ones", otherwise store 0 in "all_ones". tmp[31:0] := a[31:0] OR b[31:0] IF tmp[31:0] == 0x0 dst := 1 ELSE dst := 0 FI IF tmp[31:0] == 0xFFFFFFFF MEM[all_ones+7:all_ones] := 1 ELSE MEM[all_ones+7:all_ones] := 0 FI AVX512BW
immintrin.h
Mask
Compute the bitwise OR of 32-bit masks "a" and "b". If the result is all zeroes, store 1 in "dst", otherwise store 0 in "dst". tmp[31:0] := a[31:0] OR b[31:0] IF tmp[31:0] == 0x0 dst := 1 ELSE dst := 0 FI AVX512BW
immintrin.h
Mask
Compute the bitwise OR of 32-bit masks "a" and "b". If the result is all ones, store 1 in "dst", otherwise store 0 in "dst". tmp[31:0] := a[31:0] OR b[31:0] IF tmp[31:0] == 0xFFFFFFFF dst := 1 ELSE dst := 0 FI AVX512BW
immintrin.h
Mask
Compute the bitwise OR of 64-bit masks "a" and "b". If the result is all zeros, store 1 in "dst", otherwise store 0 in "dst". If the result is all ones, store 1 in "all_ones", otherwise store 0 in "all_ones". tmp[63:0] := a[63:0] OR b[63:0] IF tmp[63:0] == 0x0 dst := 1 ELSE dst := 0 FI IF tmp[7:0] == 0xFFFFFFFFFFFFFFFF MEM[all_ones+7:all_ones] := 1 ELSE MEM[all_ones+7:all_ones] := 0 FI AVX512BW
immintrin.h
Mask
Compute the bitwise OR of 64-bit masks "a" and "b". If the result is all zeroes, store 1 in "dst", otherwise store 0 in "dst". tmp[63:0] := a[63:0] OR b[63:0] IF tmp[63:0] == 0x0 dst := 1 ELSE dst := 0 FI AVX512BW
immintrin.h
Mask
Compute the bitwise OR of 64-bit masks "a" and "b". If the result is all ones, store 1 in "dst", otherwise store 0 in "dst". tmp[63:0] := a[63:0] OR b[63:0] IF tmp[63:0] == 0xFFFFFFFFFFFFFFFF dst := 1 ELSE dst := 0 FI AVX512BW
immintrin.h
Mask
Compute the bitwise AND of 32-bit masks "a" and "b", and if the result is all zeros, store 1 in "dst", otherwise store 0 in "dst". Compute the bitwise NOT of "a" and then AND with "b", if the result is all zeros, store 1 in "and_not", otherwise store 0 in "and_not". tmp1[31:0] := a[31:0] AND b[31:0] IF tmp1[31:0] == 0x0 dst := 1 ELSE dst := 0 FI tmp2[31:0] := (NOT a[31:0]) AND b[31:0] IF tmp2[31:0] == 0x0 MEM[and_not+7:and_not] := 1 ELSE MEM[and_not+7:and_not] := 0 FI AVX512BW
immintrin.h
Mask
Compute the bitwise AND of 32-bit masks "a" and "b", and if the result is all zeros, store 1 in "dst", otherwise store 0 in "dst". tmp[31:0] := a[31:0] AND b[31:0] IF tmp[31:0] == 0x0 dst := 1 ELSE dst := 0 FI AVX512BW
immintrin.h
Mask
Compute the bitwise NOT of 32-bit mask "a" and then AND with "b", if the result is all zeroes, store 1 in "dst", otherwise store 0 in "dst". tmp[31:0] := (NOT a[31:0]) AND b[31:0] IF tmp[31:0] == 0x0 dst := 1 ELSE dst := 0 FI AVX512BW
immintrin.h
Mask
Compute the bitwise AND of 64-bit masks "a" and "b", and if the result is all zeros, store 1 in "dst", otherwise store 0 in "dst". Compute the bitwise NOT of "a" and then AND with "b", if the result is all zeros, store 1 in "and_not", otherwise store 0 in "and_not". tmp1[63:0] := a[63:0] AND b[63:0] IF tmp1[63:0] == 0x0 dst := 1 ELSE dst := 0 FI tmp2[63:0] := (NOT a[63:0]) AND b[63:0] IF tmp2[63:0] == 0x0 MEM[and_not+7:and_not] := 1 ELSE MEM[and_not+7:and_not] := 0 FI AVX512BW
immintrin.h
Mask
Compute the bitwise AND of 64-bit masks "a" and "b", and if the result is all zeros, store 1 in "dst", otherwise store 0 in "dst". tmp[63:0] := a[63:0] AND b[63:0] IF tmp[63:0] == 0x0 dst := 1 ELSE dst := 0 FI AVX512BW
immintrin.h
Mask
Compute the bitwise NOT of 64-bit mask "a" and then AND with "b", if the result is all zeroes, store 1 in "dst", otherwise store 0 in "dst". tmp[63:0] := (NOT a[63:0]) AND b[63:0] IF tmp[63:0] == 0x0 dst := 1 ELSE dst := 0 FI AVX512BW
immintrin.h
Mask
Convert 32-bit mask "a" into an integer value, and store the result in "dst". dst := ZeroExtend32(a[31:0]) AVX512BW
immintrin.h
Mask
Convert 64-bit mask "a" into an integer value, and store the result in "dst". dst := ZeroExtend64(a[63:0]) AVX512BW
immintrin.h
Mask
Convert integer value "a" into an 32-bit mask, and store the result in "k". k := ZeroExtend32(a[31:0]) AVX512BW
immintrin.h
Mask
Convert integer value "a" into an 64-bit mask, and store the result in "k". k := ZeroExtend64(a[63:0]) AVX512BW
immintrin.h
Mask
Broadcast the low 8-bits from input mask "k" to all 64-bit elements of "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := ZeroExtend64(k[7:0]) ENDFOR dst[MAX:256] := 0 AVX512CD AVX512VL
immintrin.h
Miscellaneous
Broadcast the low 8-bits from input mask "k" to all 64-bit elements of "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := ZeroExtend64(k[7:0]) ENDFOR dst[MAX:128] := 0 AVX512CD AVX512VL
immintrin.h
Miscellaneous
Broadcast the low 16-bits from input mask "k" to all 32-bit elements of "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := ZeroExtend32(k[15:0]) ENDFOR dst[MAX:256] := 0 AVX512CD AVX512VL
immintrin.h
Miscellaneous
Broadcast the low 16-bits from input mask "k" to all 32-bit elements of "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ZeroExtend32(k[15:0]) ENDFOR dst[MAX:128] := 0 AVX512CD AVX512VL
immintrin.h
Miscellaneous
Test each 32-bit element of "a" for equality with all other elements in "a" closer to the least significant bit. Each element's comparison forms a zero extended bit vector in "dst". FOR j := 0 to 7 i := j*32 FOR k := 0 to j-1 m := k*32 dst[i+k] := (a[i+31:i] == a[m+31:m]) ? 1 : 0 ENDFOR dst[i+31:i+j] := 0 ENDFOR dst[MAX:256] := 0 AVX512CD AVX512VL
immintrin.h
Compare
Test each 32-bit element of "a" for equality with all other elements in "a" closer to the least significant bit using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each element's comparison forms a zero extended bit vector in "dst". FOR j := 0 to 7 i := j*32 IF k[j] FOR l := 0 to j-1 m := l*32 dst[i+l] := (a[i+31:i] == a[m+31:m]) ? 1 : 0 ENDFOR dst[i+31:i+j] := 0 ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512CD AVX512VL
immintrin.h
Compare
Test each 32-bit element of "a" for equality with all other elements in "a" closer to the least significant bit using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each element's comparison forms a zero extended bit vector in "dst". FOR j := 0 to 7 i := j*32 IF k[j] FOR l := 0 to j-1 m := l*32 dst[i+l] := (a[i+31:i] == a[m+31:m]) ? 1 : 0 ENDFOR dst[i+31:i+j] := 0 ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512CD AVX512VL
immintrin.h
Compare
Test each 32-bit element of "a" for equality with all other elements in "a" closer to the least significant bit. Each element's comparison forms a zero extended bit vector in "dst". FOR j := 0 to 3 i := j*32 FOR k := 0 to j-1 m := k*32 dst[i+k] := (a[i+31:i] == a[m+31:m]) ? 1 : 0 ENDFOR dst[i+31:i+j] := 0 ENDFOR dst[MAX:128] := 0 AVX512CD AVX512VL
immintrin.h
Compare
Test each 32-bit element of "a" for equality with all other elements in "a" closer to the least significant bit using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each element's comparison forms a zero extended bit vector in "dst". FOR j := 0 to 3 i := j*32 IF k[j] FOR l := 0 to j-1 m := l*32 dst[i+l] := (a[i+31:i] == a[m+31:m]) ? 1 : 0 ENDFOR dst[i+31:i+j] := 0 ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512CD AVX512VL
immintrin.h
Compare
Test each 32-bit element of "a" for equality with all other elements in "a" closer to the least significant bit using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each element's comparison forms a zero extended bit vector in "dst". FOR j := 0 to 3 i := j*32 IF k[j] FOR l := 0 to j-1 m := l*32 dst[i+l] := (a[i+31:i] == a[m+31:m]) ? 1 : 0 ENDFOR dst[i+31:i+j] := 0 ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512CD AVX512VL
immintrin.h
Compare
Test each 64-bit element of "a" for equality with all other elements in "a" closer to the least significant bit. Each element's comparison forms a zero extended bit vector in "dst". FOR j := 0 to 3 i := j*64 FOR k := 0 to j-1 m := k*64 dst[i+k] := (a[i+63:i] == a[m+63:m]) ? 1 : 0 ENDFOR dst[i+63:i+j] := 0 ENDFOR dst[MAX:256] := 0 AVX512CD AVX512VL
immintrin.h
Compare
Test each 64-bit element of "a" for equality with all other elements in "a" closer to the least significant bit using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each element's comparison forms a zero extended bit vector in "dst". FOR j := 0 to 3 i := j*64 IF k[j] FOR l := 0 to j-1 m := l*64 dst[i+l] := (a[i+63:i] == a[m+63:m]) ? 1 : 0 ENDFOR dst[i+63:i+j] := 0 ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512CD AVX512VL
immintrin.h
Compare
Test each 64-bit element of "a" for equality with all other elements in "a" closer to the least significant bit using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each element's comparison forms a zero extended bit vector in "dst". FOR j := 0 to 3 i := j*64 IF k[j] FOR l := 0 to j-1 m := l*64 dst[i+l] := (a[i+63:i] == a[m+63:m]) ? 1 : 0 ENDFOR dst[i+63:i+j] := 0 ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512CD AVX512VL
immintrin.h
Compare
Test each 64-bit element of "a" for equality with all other elements in "a" closer to the least significant bit. Each element's comparison forms a zero extended bit vector in "dst". FOR j := 0 to 1 i := j*64 FOR k := 0 to j-1 m := k*64 dst[i+k] := (a[i+63:i] == a[m+63:m]) ? 1 : 0 ENDFOR dst[i+63:i+j] := 0 ENDFOR dst[MAX:128] := 0 AVX512CD AVX512VL
immintrin.h
Compare
Test each 64-bit element of "a" for equality with all other elements in "a" closer to the least significant bit using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each element's comparison forms a zero extended bit vector in "dst". FOR j := 0 to 1 i := j*64 IF k[j] FOR l := 0 to j-1 m := l*64 dst[i+l] := (a[i+63:i] == a[m+63:m]) ? 1 : 0 ENDFOR dst[i+63:i+j] := 0 ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512CD AVX512VL
immintrin.h
Compare
Test each 64-bit element of "a" for equality with all other elements in "a" closer to the least significant bit using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each element's comparison forms a zero extended bit vector in "dst". FOR j := 0 to 1 i := j*64 IF k[j] FOR l := 0 to j-1 m := l*64 dst[i+l] := (a[i+63:i] == a[m+63:m]) ? 1 : 0 ENDFOR dst[i+63:i+j] := 0 ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512CD AVX512VL
immintrin.h
Compare
Counts the number of leading zero bits in each packed 32-bit integer in "a", and store the results in "dst". FOR j := 0 to 7 i := j*32 tmp := 31 dst[i+31:i] := 0 DO WHILE (tmp >= 0 AND a[i+tmp] == 0) tmp := tmp - 1 dst[i+31:i] := dst[i+31:i] + 1 OD ENDFOR dst[MAX:256] := 0 AVX512CD AVX512VL
immintrin.h
Bit Manipulation
Counts the number of leading zero bits in each packed 32-bit integer in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] tmp := 31 dst[i+31:i] := 0 DO WHILE (tmp >= 0 AND a[i+tmp] == 0) tmp := tmp - 1 dst[i+31:i] := dst[i+31:i] + 1 OD ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512CD AVX512VL
immintrin.h
Bit Manipulation
Counts the number of leading zero bits in each packed 32-bit integer in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] tmp := 31 dst[i+31:i] := 0 DO WHILE (tmp >= 0 AND a[i+tmp] == 0) tmp := tmp - 1 dst[i+31:i] := dst[i+31:i] + 1 OD ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512CD AVX512VL
immintrin.h
Bit Manipulation
Counts the number of leading zero bits in each packed 32-bit integer in "a", and store the results in "dst". FOR j := 0 to 3 i := j*32 tmp := 31 dst[i+31:i] := 0 DO WHILE (tmp >= 0 AND a[i+tmp] == 0) tmp := tmp - 1 dst[i+31:i] := dst[i+31:i] + 1 OD ENDFOR dst[MAX:128] := 0 AVX512CD AVX512VL
immintrin.h
Bit Manipulation
Counts the number of leading zero bits in each packed 32-bit integer in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] tmp := 31 dst[i+31:i] := 0 DO WHILE (tmp >= 0 AND a[i+tmp] == 0) tmp := tmp - 1 dst[i+31:i] := dst[i+31:i] + 1 OD ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512CD AVX512VL
immintrin.h
Bit Manipulation
Counts the number of leading zero bits in each packed 32-bit integer in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] tmp := 31 dst[i+31:i] := 0 DO WHILE (tmp >= 0 AND a[i+tmp] == 0) tmp := tmp - 1 dst[i+31:i] := dst[i+31:i] + 1 OD ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512CD AVX512VL
immintrin.h
Bit Manipulation
Counts the number of leading zero bits in each packed 64-bit integer in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 tmp := 63 dst[i+63:i] := 0 DO WHILE (tmp >= 0 AND a[i+tmp] == 0) tmp := tmp - 1 dst[i+63:i] := dst[i+63:i] + 1 OD ENDFOR dst[MAX:256] := 0 AVX512CD AVX512VL
immintrin.h
Bit Manipulation
Counts the number of leading zero bits in each packed 64-bit integer in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] tmp := 63 dst[i+63:i] := 0 DO WHILE (tmp >= 0 AND a[i+tmp] == 0) tmp := tmp - 1 dst[i+63:i] := dst[i+63:i] + 1 OD ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512CD AVX512VL
immintrin.h
Bit Manipulation
Counts the number of leading zero bits in each packed 64-bit integer in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] tmp := 63 dst[i+63:i] := 0 DO WHILE (tmp >= 0 AND a[i+tmp] == 0) tmp := tmp - 1 dst[i+63:i] := dst[i+63:i] + 1 OD ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512CD AVX512VL
immintrin.h
Bit Manipulation
Counts the number of leading zero bits in each packed 64-bit integer in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 tmp := 63 dst[i+63:i] := 0 DO WHILE (tmp >= 0 AND a[i+tmp] == 0) tmp := tmp - 1 dst[i+63:i] := dst[i+63:i] + 1 OD ENDFOR dst[MAX:128] := 0 AVX512CD AVX512VL
immintrin.h
Bit Manipulation
Counts the number of leading zero bits in each packed 64-bit integer in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] tmp := 63 dst[i+63:i] := 0 DO WHILE (tmp >= 0 AND a[i+tmp] == 0) tmp := tmp - 1 dst[i+63:i] := dst[i+63:i] + 1 OD ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512CD AVX512VL
immintrin.h
Bit Manipulation
Counts the number of leading zero bits in each packed 64-bit integer in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] tmp := 63 dst[i+63:i] := 0 DO WHILE (tmp >= 0 AND a[i+tmp] == 0) tmp := tmp - 1 dst[i+63:i] := dst[i+63:i] + 1 OD ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512CD AVX512VL
immintrin.h
Bit Manipulation
Broadcast the low 8-bits from input mask "k" to all 64-bit elements of "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := ZeroExtend64(k[7:0]) ENDFOR dst[MAX:512] := 0 AVX512CD
immintrin.h
Swizzle
Broadcast the low 16-bits from input mask "k" to all 32-bit elements of "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := ZeroExtend32(k[15:0]) ENDFOR dst[MAX:512] := 0 AVX512CD
immintrin.h
Swizzle
Test each 32-bit element of "a" for equality with all other elements in "a" closer to the least significant bit. Each element's comparison forms a zero extended bit vector in "dst". FOR j := 0 to 15 i := j*32 FOR k := 0 to j-1 m := k*32 dst[i+k] := (a[i+31:i] == a[m+31:m]) ? 1 : 0 ENDFOR dst[i+31:i+j] := 0 ENDFOR dst[MAX:512] := 0 AVX512CD
immintrin.h
Compare
Test each 32-bit element of "a" for equality with all other elements in "a" closer to the least significant bit using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each element's comparison forms a zero extended bit vector in "dst". FOR j := 0 to 15 i := j*32 IF k[j] FOR l := 0 to j-1 m := l*32 dst[i+l] := (a[i+31:i] == a[m+31:m]) ? 1 : 0 ENDFOR dst[i+31:i+j] := 0 ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512CD
immintrin.h
Compare
Test each 32-bit element of "a" for equality with all other elements in "a" closer to the least significant bit using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each element's comparison forms a zero extended bit vector in "dst". FOR j := 0 to 15 i := j*32 IF k[j] FOR l := 0 to j-1 m := l*32 dst[i+l] := (a[i+31:i] == a[m+31:m]) ? 1 : 0 ENDFOR dst[i+31:i+j] := 0 ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512CD
immintrin.h
Compare
Test each 64-bit element of "a" for equality with all other elements in "a" closer to the least significant bit. Each element's comparison forms a zero extended bit vector in "dst". FOR j := 0 to 7 i := j*64 FOR k := 0 to j-1 m := k*64 dst[i+k] := (a[i+63:i] == a[m+63:m]) ? 1 : 0 ENDFOR dst[i+63:i+j] := 0 ENDFOR dst[MAX:512] := 0 AVX512CD
immintrin.h
Compare
Test each 64-bit element of "a" for equality with all other elements in "a" closer to the least significant bit using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each element's comparison forms a zero extended bit vector in "dst". FOR j := 0 to 7 i := j*64 IF k[j] FOR l := 0 to j-1 m := l*64 dst[i+l] := (a[i+63:i] == a[m+63:m]) ? 1 : 0 ENDFOR dst[i+63:i+j] := 0 ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512CD
immintrin.h
Compare
Test each 64-bit element of "a" for equality with all other elements in "a" closer to the least significant bit using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each element's comparison forms a zero extended bit vector in "dst". FOR j := 0 to 7 i := j*64 IF k[j] FOR l := 0 to j-1 m := l*64 dst[i+l] := (a[i+63:i] == a[m+63:m]) ? 1 : 0 ENDFOR dst[i+63:i+j] := 0 ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512CD
immintrin.h
Compare
Counts the number of leading zero bits in each packed 32-bit integer in "a", and store the results in "dst". FOR j := 0 to 15 i := j*32 tmp := 31 dst[i+31:i] := 0 DO WHILE (tmp >= 0 AND a[i+tmp] == 0) tmp := tmp - 1 dst[i+31:i] := dst[i+31:i] + 1 OD ENDFOR dst[MAX:512] := 0 AVX512CD
immintrin.h
Bit Manipulation
Counts the number of leading zero bits in each packed 32-bit integer in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] tmp := 31 dst[i+31:i] := 0 DO WHILE (tmp >= 0 AND a[i+tmp] == 0) tmp := tmp - 1 dst[i+31:i] := dst[i+31:i] + 1 OD ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512CD
immintrin.h
Bit Manipulation
Counts the number of leading zero bits in each packed 32-bit integer in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] tmp := 31 dst[i+31:i] := 0 DO WHILE (tmp >= 0 AND a[i+tmp] == 0) tmp := tmp - 1 dst[i+31:i] := dst[i+31:i] + 1 OD ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512CD
immintrin.h
Bit Manipulation
Counts the number of leading zero bits in each packed 64-bit integer in "a", and store the results in "dst". FOR j := 0 to 7 i := j*64 tmp := 63 dst[i+63:i] := 0 DO WHILE (tmp >= 0 AND a[i+tmp] == 0) tmp := tmp - 1 dst[i+63:i] := dst[i+63:i] + 1 OD ENDFOR dst[MAX:512] := 0 AVX512CD
immintrin.h
Bit Manipulation
Counts the number of leading zero bits in each packed 64-bit integer in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] tmp := 63 dst[i+63:i] := 0 DO WHILE (tmp >= 0 AND a[i+tmp] == 0) tmp := tmp - 1 dst[i+63:i] := dst[i+63:i] + 1 OD ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512CD
immintrin.h
Bit Manipulation
Counts the number of leading zero bits in each packed 64-bit integer in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] tmp := 63 dst[i+63:i] := 0 DO WHILE (tmp >= 0 AND a[i+tmp] == 0) tmp := tmp - 1 dst[i+63:i] := dst[i+63:i] + 1 OD ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512CD
immintrin.h
Bit Manipulation
Compute the bitwise NOT of packed double-precision (64-bit) floating-point elements in "a" and then AND with "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise NOT of packed double-precision (64-bit) floating-point elements in "a" and then AND with "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise NOT of packed double-precision (64-bit) floating-point elements in "a" and then AND with "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise NOT of packed double-precision (64-bit) floating-point elements in "a" and then AND with "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise NOT of packed single-precision (32-bit) floating-point elements in "a" and then AND with "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := ((NOT a[i+31:i]) AND b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise NOT of packed single-precision (32-bit) floating-point elements in "a" and then AND with "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := ((NOT a[i+31:i]) AND b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise NOT of packed single-precision (32-bit) floating-point elements in "a" and then AND with "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := ((NOT a[i+31:i]) AND b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise NOT of packed single-precision (32-bit) floating-point elements in "a" and then AND with "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := ((NOT a[i+31:i]) AND b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise AND of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] AND b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise AND of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] AND b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise AND of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] AND b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise AND of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] AND b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise AND of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] AND b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise AND of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] AND b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise AND of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] AND b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise AND of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] AND b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] OR b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] OR b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] OR b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] OR b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] OR b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] OR b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] OR b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] OR b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] XOR b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] XOR b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] XOR b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] XOR b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] XOR b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] XOR b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] XOR b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] XOR b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Logical
Broadcast the lower 2 packed single-precision (32-bit) floating-point elements from "a" to all elements of "dst". FOR j := 0 to 7 i := j*32 n := (j % 2)*32 dst[i+31:i] := a[n+31:n] ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Broadcast the lower 2 packed single-precision (32-bit) floating-point elements from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 n := (j % 2)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Broadcast the lower 2 packed single-precision (32-bit) floating-point elements from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 n := (j % 2)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Broadcast the 2 packed double-precision (64-bit) floating-point elements from "a" to all elements of "dst". FOR j := 0 to 3 i := j*64 n := (j % 2)*64 dst[i+63:i] := a[n+63:n] ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Broadcast the 2 packed double-precision (64-bit) floating-point elements from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 n := (j % 2)*64 IF k[j] dst[i+63:i] := a[n+63:n] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Broadcast the 2 packed double-precision (64-bit) floating-point elements from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 n := (j % 2)*64 IF k[j] dst[i+63:i] := a[n+63:n] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Broadcast the lower 2 packed 32-bit integers from "a" to all elements of "dst. FOR j := 0 to 7 i := j*32 n := (j % 2)*32 dst[i+31:i] := a[n+31:n] ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Broadcast the lower 2 packed 32-bit integers from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 n := (j % 2)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Broadcast the lower 2 packed 32-bit integers from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 n := (j % 2)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Broadcast the lower 2 packed 32-bit integers from "a" to all elements of "dst. FOR j := 0 to 3 i := j*32 n := (j % 2)*32 dst[i+31:i] := a[n+31:n] ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Broadcast the lower 2 packed 32-bit integers from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 n := (j % 2)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Broadcast the lower 2 packed 32-bit integers from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 n := (j % 2)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Broadcast the 2 packed 64-bit integers from "a" to all elements of "dst". FOR j := 0 to 3 i := j*64 n := (j % 2)*64 dst[i+63:i] := a[n+63:n] ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Broadcast the 2 packed 64-bit integers from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 n := (j % 2)*64 IF k[j] dst[i+63:i] := a[n+63:n] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Broadcast the 2 packed 64-bit integers from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 n := (j % 2)*64 IF k[j] dst[i+63:i] := a[n+63:n] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Extract 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from "a", selected with "imm8", and store the result in "dst". CASE imm8[0] OF 0: dst[127:0] := a[127:0] 1: dst[127:0] := a[255:128] ESAC dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Extract 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from "a", selected with "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). CASE imm8[0] OF 0: tmp[127:0] := a[127:0] 1: tmp[127:0] := a[255:128] ESAC FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Extract 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from "a", selected with "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). CASE imm8[0] OF 0: tmp[127:0] := a[127:0] 1: tmp[127:0] := a[255:128] ESAC FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Extract 128 bits (composed of 2 packed 64-bit integers) from "a", selected with "imm8", and store the result in "dst". CASE imm8[0] OF 0: dst[127:0] := a[127:0] 1: dst[127:0] := a[255:128] ESAC dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Extract 128 bits (composed of 2 packed 64-bit integers) from "a", selected with "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). CASE imm8[0] OF 0: tmp[127:0] := a[127:0] 1: tmp[127:0] := a[255:128] ESAC FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Extract 128 bits (composed of 2 packed 64-bit integers) from "a", selected with "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). CASE imm8[0] OF 0: tmp[127:0] := a[127:0] 1: tmp[127:0] := a[255:128] ESAC FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Test packed double-precision (64-bit) floating-point elements in "a" for special categories specified by "imm8", and store the results in mask vector "k". [fpclass_note] FOR j := 0 to 3 i := j*64 k[j] := CheckFPClass_FP64(a[i+63:i], imm8[7:0]) ENDFOR k[MAX:4] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Test packed double-precision (64-bit) floating-point elements in "a" for special categories specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). [fpclass_note] FOR j := 0 to 3 i := j*64 IF k1[j] k[j] := CheckFPClass_FP64(a[i+63:i], imm8[7:0]) ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Test packed double-precision (64-bit) floating-point elements in "a" for special categories specified by "imm8", and store the results in mask vector "k". [fpclass_note] FOR j := 0 to 1 i := j*64 k[j] := CheckFPClass_FP64(a[i+63:i], imm8[7:0]) ENDFOR k[MAX:2] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Test packed double-precision (64-bit) floating-point elements in "a" for special categories specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). [fpclass_note] FOR j := 0 to 1 i := j*64 IF k1[j] k[j] := CheckFPClass_FP64(a[i+63:i], imm8[7:0]) ELSE k[j] := 0 FI ENDFOR k[MAX:2] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Test packed single-precision (32-bit) floating-point elements in "a" for special categories specified by "imm8", and store the results in mask vector "k". [fpclass_note] FOR j := 0 to 7 i := j*32 k[j] := CheckFPClass_FP32(a[i+31:i], imm8[7:0]) ENDFOR k[MAX:8] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Test packed single-precision (32-bit) floating-point elements in "a" for special categories specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). [fpclass_note] FOR j := 0 to 7 i := j*32 IF k1[j] k[j] := CheckFPClass_FP32(a[i+31:i], imm8[7:0]) ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Test packed single-precision (32-bit) floating-point elements in "a" for special categories specified by "imm8", and store the results in mask vector "k". [fpclass_note] FOR j := 0 to 3 i := j*32 k[j] := CheckFPClass_FP32(a[i+31:i], imm8[7:0]) ENDFOR k[MAX:4] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Test packed single-precision (32-bit) floating-point elements in "a" for special categories specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). [fpclass_note] FOR j := 0 to 3 i := j*32 IF k1[j] k[j] := CheckFPClass_FP32(a[i+31:i], imm8[7:0]) ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Copy "a" to "dst", then insert 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from "b" into "dst" at the location specified by "imm8". dst[255:0] := a[255:0] CASE imm8[0] OF 0: dst[127:0] := b[127:0] 1: dst[255:128] := b[127:0] ESAC dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Copy "a" to "tmp", then insert 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[255:0] := a[255:0] CASE (imm8[0]) OF 0: tmp[127:0] := b[127:0] 1: tmp[255:128] := b[127:0] ESAC FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Copy "a" to "tmp", then insert 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[255:0] := a[255:0] CASE (imm8[0]) OF 0: tmp[127:0] := b[127:0] 1: tmp[255:128] := b[127:0] ESAC FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Copy "a" to "dst", then insert 128 bits (composed of 2 packed 64-bit integers) from "b" into "dst" at the location specified by "imm8". dst[255:0] := a[255:0] CASE imm8[0] OF 0: dst[127:0] := b[127:0] 1: dst[255:128] := b[127:0] ESAC dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Copy "a" to "tmp", then insert 128 bits (composed of 2 packed 64-bit integers) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[255:0] := a[255:0] CASE (imm8[0]) OF 0: tmp[127:0] := b[127:0] 1: tmp[255:128] := b[127:0] ESAC FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Copy "a" to "tmp", then insert 128 bits (composed of 2 packed 64-bit integers) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[255:0] := a[255:0] CASE (imm8[0]) OF 0: tmp[127:0] := b[127:0] 1: tmp[255:128] := b[127:0] ESAC FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Set each bit of mask register "k" based on the most significant bit of the corresponding packed 32-bit integer in "a". FOR j := 0 to 7 i := j*32 IF a[i+31] k[j] := 1 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Set each bit of mask register "k" based on the most significant bit of the corresponding packed 32-bit integer in "a". FOR j := 0 to 3 i := j*32 IF a[i+31] k[j] := 1 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Set each packed 32-bit integer in "dst" to all ones or all zeros based on the value of the corresponding bit in "k". FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := 0xFFFFFFFF ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Set each packed 32-bit integer in "dst" to all ones or all zeros based on the value of the corresponding bit in "k". FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := 0xFFFFFFFF ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Set each packed 64-bit integer in "dst" to all ones or all zeros based on the value of the corresponding bit in "k". FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := 0xFFFFFFFFFFFFFFFF ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Set each packed 64-bit integer in "dst" to all ones or all zeros based on the value of the corresponding bit in "k". FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := 0xFFFFFFFFFFFFFFFF ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Set each bit of mask register "k" based on the most significant bit of the corresponding packed 64-bit integer in "a". FOR j := 0 to 3 i := j*64 IF a[i+63] k[j] := 1 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Set each bit of mask register "k" based on the most significant bit of the corresponding packed 64-bit integer in "a". FOR j := 0 to 1 i := j*64 IF a[i+63] k[j] := 1 ELSE k[j] := 0 FI ENDFOR k[MAX:2] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[63:0], src2[63:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src1[63:0] : src2[63:0] 1: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src2[63:0] : src1[63:0] 2: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src1[63:0] : src2[63:0] 3: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src2[63:0] : src1[63:0] ESAC CASE signSelCtl[1:0] OF 0: dst[63:0] := (src1[63] << 63) OR (tmp[62:0]) 1: dst[63:0] := tmp[63:0] 2: dst[63:0] := (0 << 63) OR (tmp[62:0]) 3: dst[63:0] := (1 << 63) OR (tmp[62:0]) ESAC RETURN dst } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := RANGE(a[i+63:i], b[i+63:i], imm8[1:0], imm8[3:2]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[63:0], src2[63:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src1[63:0] : src2[63:0] 1: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src2[63:0] : src1[63:0] 2: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src1[63:0] : src2[63:0] 3: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src2[63:0] : src1[63:0] ESAC CASE signSelCtl[1:0] OF 0: dst[63:0] := (src1[63] << 63) OR (tmp[62:0]) 1: dst[63:0] := tmp[63:0] 2: dst[63:0] := (0 << 63) OR (tmp[62:0]) 3: dst[63:0] := (1 << 63) OR (tmp[62:0]) ESAC RETURN dst } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := RANGE(a[i+63:i], b[i+63:i], imm8[1:0], imm8[3:2]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[63:0], src2[63:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src1[63:0] : src2[63:0] 1: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src2[63:0] : src1[63:0] 2: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src1[63:0] : src2[63:0] 3: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src2[63:0] : src1[63:0] ESAC CASE signSelCtl[1:0] OF 0: dst[63:0] := (src1[63] << 63) OR (tmp[62:0]) 1: dst[63:0] := tmp[63:0] 2: dst[63:0] := (0 << 63) OR (tmp[62:0]) 3: dst[63:0] := (1 << 63) OR (tmp[62:0]) ESAC RETURN dst } FOR j := 0 to 3 i := j*64 dst[i+63:i] := RANGE(a[i+63:i], b[i+63:i], imm8[1:0], imm8[3:2]) ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[63:0], src2[63:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src1[63:0] : src2[63:0] 1: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src2[63:0] : src1[63:0] 2: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src1[63:0] : src2[63:0] 3: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src2[63:0] : src1[63:0] ESAC CASE signSelCtl[1:0] OF 0: dst[63:0] := (src1[63] << 63) OR (tmp[62:0]) 1: dst[63:0] := tmp[63:0] 2: dst[63:0] := (0 << 63) OR (tmp[62:0]) 3: dst[63:0] := (1 << 63) OR (tmp[62:0]) ESAC RETURN dst } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := RANGE(a[i+63:i], b[i+63:i], imm8[1:0], imm8[3:2]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[63:0], src2[63:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src1[63:0] : src2[63:0] 1: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src2[63:0] : src1[63:0] 2: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src1[63:0] : src2[63:0] 3: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src2[63:0] : src1[63:0] ESAC CASE signSelCtl[1:0] OF 0: dst[63:0] := (src1[63] << 63) OR (tmp[62:0]) 1: dst[63:0] := tmp[63:0] 2: dst[63:0] := (0 << 63) OR (tmp[62:0]) 3: dst[63:0] := (1 << 63) OR (tmp[62:0]) ESAC RETURN dst } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := RANGE(a[i+63:i], b[i+63:i], imm8[1:0], imm8[3:2]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[63:0], src2[63:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src1[63:0] : src2[63:0] 1: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src2[63:0] : src1[63:0] 2: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src1[63:0] : src2[63:0] 3: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src2[63:0] : src1[63:0] ESAC CASE signSelCtl[1:0] OF 0: dst[63:0] := (src1[63] << 63) OR (tmp[62:0]) 1: dst[63:0] := tmp[63:0] 2: dst[63:0] := (0 << 63) OR (tmp[62:0]) 3: dst[63:0] := (1 << 63) OR (tmp[62:0]) ESAC RETURN dst } FOR j := 0 to 1 i := j*64 dst[i+63:i] := RANGE(a[i+63:i], b[i+63:i], imm8[1:0], imm8[3:2]) ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[31:0], src2[31:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src1[31:0] : src2[31:0] 1: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src2[31:0] : src1[31:0] 2: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src1[31:0] : src2[31:0] 3: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src2[31:0] : src1[31:0] ESAC CASE signSelCtl[1:0] OF 0: dst[31:0] := (src1[31] << 31) OR (tmp[30:0]) 1: dst[31:0] := tmp[63:0] 2: dst[31:0] := (0 << 31) OR (tmp[30:0]) 3: dst[31:0] := (1 << 31) OR (tmp[30:0]) ESAC RETURN dst } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := RANGE(a[i+31:i], b[i+31:i], imm8[1:0], imm8[3:2]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[31:0], src2[31:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src1[31:0] : src2[31:0] 1: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src2[31:0] : src1[31:0] 2: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src1[31:0] : src2[31:0] 3: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src2[31:0] : src1[31:0] ESAC CASE signSelCtl[1:0] OF 0: dst[31:0] := (src1[31] << 31) OR (tmp[30:0]) 1: dst[31:0] := tmp[63:0] 2: dst[31:0] := (0 << 31) OR (tmp[30:0]) 3: dst[31:0] := (1 << 31) OR (tmp[30:0]) ESAC RETURN dst } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := RANGE(a[i+31:i], b[i+31:i], imm8[1:0], imm8[3:2]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[31:0], src2[31:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src1[31:0] : src2[31:0] 1: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src2[31:0] : src1[31:0] 2: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src1[31:0] : src2[31:0] 3: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src2[31:0] : src1[31:0] ESAC CASE signSelCtl[1:0] OF 0: dst[31:0] := (src1[31] << 31) OR (tmp[30:0]) 1: dst[31:0] := tmp[63:0] 2: dst[31:0] := (0 << 31) OR (tmp[30:0]) 3: dst[31:0] := (1 << 31) OR (tmp[30:0]) ESAC RETURN dst } FOR j := 0 to 7 i := j*32 dst[i+31:i] := RANGE(a[i+31:i], b[i+31:i], imm8[1:0], imm8[3:2]) ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[31:0], src2[31:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src1[31:0] : src2[31:0] 1: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src2[31:0] : src1[31:0] 2: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src1[31:0] : src2[31:0] 3: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src2[31:0] : src1[31:0] ESAC CASE signSelCtl[1:0] OF 0: dst[31:0] := (src1[31] << 31) OR (tmp[30:0]) 1: dst[31:0] := tmp[63:0] 2: dst[31:0] := (0 << 31) OR (tmp[30:0]) 3: dst[31:0] := (1 << 31) OR (tmp[30:0]) ESAC RETURN dst } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := RANGE(a[i+31:i], b[i+31:i], imm8[1:0], imm8[3:2]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[31:0], src2[31:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src1[31:0] : src2[31:0] 1: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src2[31:0] : src1[31:0] 2: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src1[31:0] : src2[31:0] 3: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src2[31:0] : src1[31:0] ESAC CASE signSelCtl[1:0] OF 0: dst[31:0] := (src1[31] << 31) OR (tmp[30:0]) 1: dst[31:0] := tmp[63:0] 2: dst[31:0] := (0 << 31) OR (tmp[30:0]) 3: dst[31:0] := (1 << 31) OR (tmp[30:0]) ESAC RETURN dst } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := RANGE(a[i+31:i], b[i+31:i], imm8[1:0], imm8[3:2]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[31:0], src2[31:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src1[31:0] : src2[31:0] 1: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src2[31:0] : src1[31:0] 2: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src1[31:0] : src2[31:0] 3: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src2[31:0] : src1[31:0] ESAC CASE signSelCtl[1:0] OF 0: dst[31:0] := (src1[31] << 31) OR (tmp[30:0]) 1: dst[31:0] := tmp[63:0] 2: dst[31:0] := (0 << 31) OR (tmp[30:0]) 3: dst[31:0] := (1 << 31) OR (tmp[30:0]) ESAC RETURN dst } FOR j := 0 to 3 i := j*32 dst[i+31:i] := RANGE(a[i+31:i], b[i+31:i], imm8[1:0], imm8[3:2]) ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Extract the reduced argument of packed double-precision (64-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] DEFINE ReduceArgumentPD(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) tmp[63:0] := src1[63:0] - tmp[63:0] IF IsInf(tmp[63:0]) tmp[63:0] := FP64(0.0) FI RETURN tmp[63:0] } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := ReduceArgumentPD(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Extract the reduced argument of packed double-precision (64-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] DEFINE ReduceArgumentPD(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) tmp[63:0] := src1[63:0] - tmp[63:0] IF IsInf(tmp[63:0]) tmp[63:0] := FP64(0.0) FI RETURN tmp[63:0] } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := ReduceArgumentPD(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Extract the reduced argument of packed double-precision (64-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst". [round_imm_note] DEFINE ReduceArgumentPD(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) tmp[63:0] := src1[63:0] - tmp[63:0] IF IsInf(tmp[63:0]) tmp[63:0] := FP64(0.0) FI RETURN tmp[63:0] } FOR j := 0 to 3 i := j*64 dst[i+63:i] := ReduceArgumentPD(a[i+63:i], imm8[7:0]) ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Extract the reduced argument of packed double-precision (64-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] DEFINE ReduceArgumentPD(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) tmp[63:0] := src1[63:0] - tmp[63:0] IF IsInf(tmp[63:0]) tmp[63:0] := FP64(0.0) FI RETURN tmp[63:0] } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := ReduceArgumentPD(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Extract the reduced argument of packed double-precision (64-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] DEFINE ReduceArgumentPD(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) tmp[63:0] := src1[63:0] - tmp[63:0] IF IsInf(tmp[63:0]) tmp[63:0] := FP64(0.0) FI RETURN tmp[63:0] } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := ReduceArgumentPD(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Extract the reduced argument of packed double-precision (64-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst". [round_imm_note] DEFINE ReduceArgumentPD(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) tmp[63:0] := src1[63:0] - tmp[63:0] IF IsInf(tmp[63:0]) tmp[63:0] := FP64(0.0) FI RETURN tmp[63:0] } FOR j := 0 to 1 i := j*64 dst[i+63:i] := ReduceArgumentPD(a[i+63:i], imm8[7:0]) ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Extract the reduced argument of packed single-precision (32-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] DEFINE ReduceArgumentPS(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) tmp[31:0] := src1[31:0] - tmp[31:0] IF IsInf(tmp[31:0]) tmp[31:0] := FP32(0.0) FI RETURN tmp[31:0] } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := ReduceArgumentPS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Extract the reduced argument of packed single-precision (32-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] DEFINE ReduceArgumentPS(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) tmp[31:0] := src1[31:0] - tmp[31:0] IF IsInf(tmp[31:0]) tmp[31:0] := FP32(0.0) FI RETURN tmp[31:0] } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := ReduceArgumentPS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Extract the reduced argument of packed single-precision (32-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst". [round_imm_note] DEFINE ReduceArgumentPS(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) tmp[31:0] := src1[31:0] - tmp[31:0] RETURN tmp[31:0] IF IsInf(tmp[31:0]) tmp[31:0] := FP32(0.0) FI } FOR j := 0 to 7 i := j*32 dst[i+31:i] := ReduceArgumentPS(a[i+31:i], imm8[7:0]) ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Extract the reduced argument of packed single-precision (32-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] DEFINE ReduceArgumentPS(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) tmp[31:0] := src1[31:0] - tmp[31:0] IF IsInf(tmp[31:0]) tmp[31:0] := FP32(0.0) FI RETURN tmp[31:0] } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := ReduceArgumentPS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Extract the reduced argument of packed single-precision (32-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] DEFINE ReduceArgumentPS(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) tmp[31:0] := src1[31:0] - tmp[31:0] IF IsInf(tmp[31:0]) tmp[31:0] := FP32(0.0) FI RETURN tmp[31:0] } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := ReduceArgumentPS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Extract the reduced argument of packed single-precision (32-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst". [round_imm_note] DEFINE ReduceArgumentPS(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) tmp[31:0] := src1[31:0] - tmp[31:0] IF IsInf(tmp[31:0]) tmp[31:0] := FP32(0.0) FI RETURN tmp[31:0] } FOR j := 0 to 3 i := j*32 dst[i+31:i] := ReduceArgumentPS(a[i+31:i], imm8[7:0]) ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Miscellaneous
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := Convert_FP64_To_Int64(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_Int64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_Int64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := Convert_FP64_To_Int64(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_Int64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_Int64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := Convert_FP64_To_UInt64(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_UInt64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_UInt64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := Convert_FP64_To_UInt64(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_UInt64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_UInt64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 3 i := j*64 l := j*32 dst[i+63:i] := Convert_FP32_To_Int64(a[l+31:l]) ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_Int64(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_Int64(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 1 i := j*64 l := j*32 dst[i+63:i] := Convert_FP32_To_Int64(a[l+31:l]) ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_Int64(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_Int64(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst". FOR j := 0 to 3 i := j*64 l := j*32 dst[i+63:i] := Convert_FP32_To_UInt64(a[l+31:l]) ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_UInt64(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_UInt64(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst". FOR j := 0 to 1 i := j*64 l := j*32 dst[i+63:i] := Convert_FP32_To_UInt64(a[l+31:l]) ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_UInt64(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_UInt64(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 i := j*64 l := j*32 dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 l := j*32 IF k[j] dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ELSE dst[l+31:l] := src[l+31:l] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 l := j*32 IF k[j] dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ELSE dst[l+31:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 1 i := j*64 l := j*32 dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ENDFOR dst[MAX:64] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 l := j*32 IF k[j] dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ELSE dst[l+31:l] := src[l+31:l] FI ENDFOR dst[MAX:64] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 l := j*32 IF k[j] dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ELSE dst[l+31:l] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := Convert_FP64_To_Int64_Truncate(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_Int64_Truncate(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_Int64_Truncate(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := Convert_FP64_To_Int64_Truncate(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_Int64_Truncate(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_Int64_Truncate(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := Convert_FP64_To_UInt64_Truncate(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_UInt64_Truncate(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_UInt64_Truncate(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := Convert_FP64_To_UInt64_Truncate(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_UInt64_Truncate(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_UInt64_Truncate(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst". FOR j := 0 to 3 i := j*64 l := j*32 dst[i+63:i] := Convert_FP32_To_Int64_Truncate(a[l+31:l]) ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_Int64_Truncate(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_Int64_Truncate(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst". FOR j := 0 to 1 i := j*64 l := j*32 dst[i+63:i] := Convert_FP32_To_Int64_Truncate(a[l+31:l]) ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_Int64_Truncate(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_Int64_Truncate(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst". FOR j := 0 to 3 i := j*64 l := j*32 dst[i+63:i] := Convert_FP32_To_UInt64_Truncate(a[l+31:l]) ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_UInt64_Truncate(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_UInt64_Truncate(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst". FOR j := 0 to 1 i := j*64 l := j*32 dst[i+63:i] := Convert_FP32_To_UInt64_Truncate(a[l+31:l]) ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_UInt64_Truncate(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_UInt64_Truncate(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 i := j*64 l := j*32 dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 l := j*32 IF k[j] dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ELSE dst[l+31:l] := src[l+31:l] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 l := j*32 IF k[j] dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ELSE dst[l+31:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 1 i := j*64 l := j*32 dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ENDFOR dst[MAX:64] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 l := j*32 IF k[j] dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ELSE dst[l+31:l] := src[l+31:l] FI ENDFOR dst[MAX:64] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 l := j*32 IF k[j] dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ELSE dst[l+31:l] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512DQ AVX512VL
immintrin.h
Convert
Multiply the packed 64-bit integers in "a" and "b", producing intermediate 128-bit integers, and store the low 64 bits of the intermediate integers in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] tmp[127:0] := a[i+63:i] * b[i+63:i] dst[i+63:i] := tmp[63:0] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Arithmetic
Multiply the packed 64-bit integers in "a" and "b", producing intermediate 128-bit integers, and store the low 64 bits of the intermediate integers in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] tmp[127:0] := a[i+63:i] * b[i+63:i] dst[i+63:i] := tmp[63:0] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Arithmetic
Multiply the packed 64-bit integers in "a" and "b", producing intermediate 128-bit integers, and store the low 64 bits of the intermediate integers in "dst". FOR j := 0 to 3 i := j*64 tmp[127:0] := a[i+63:i] * b[i+63:i] dst[i+63:i] := tmp[63:0] ENDFOR dst[MAX:256] := 0 AVX512DQ AVX512VL
immintrin.h
Arithmetic
Multiply the packed 64-bit integers in "a" and "b", producing intermediate 128-bit integers, and store the low 64 bits of the intermediate integers in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] tmp[127:0] := a[i+63:i] * b[i+63:i] dst[i+63:i] := tmp[63:0] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Arithmetic
Multiply the packed 64-bit integers in "a" and "b", producing intermediate 128-bit integers, and store the low 64 bits of the intermediate integers in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] tmp[127:0] := a[i+63:i] * b[i+63:i] dst[i+63:i] := tmp[63:0] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Arithmetic
Multiply the packed 64-bit integers in "a" and "b", producing intermediate 128-bit integers, and store the low 64 bits of the intermediate integers in "dst". FOR j := 0 to 1 i := j*64 tmp[127:0] := a[i+63:i] * b[i+63:i] dst[i+63:i] := tmp[63:0] ENDFOR dst[MAX:128] := 0 AVX512DQ AVX512VL
immintrin.h
Arithmetic
Compute the bitwise NOT of packed double-precision (64-bit) floating-point elements in "a" and then AND with "b", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise NOT of packed double-precision (64-bit) floating-point elements in "a" and then AND with "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise NOT of packed double-precision (64-bit) floating-point elements in "a" and then AND with "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise NOT of packed single-precision (32-bit) floating-point elements in "a" and then AND with "b", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := ((NOT a[i+31:i]) AND b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise NOT of packed single-precision (32-bit) floating-point elements in "a" and then AND with "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ((NOT a[i+31:i]) AND b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise NOT of packed single-precision (32-bit) floating-point elements in "a" and then AND with "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ((NOT a[i+31:i]) AND b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise AND of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := (a[i+63:i] AND b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise AND of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] AND b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise AND of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] AND b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise AND of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := (a[i+31:i] AND b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise AND of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] AND b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise AND of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] AND b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise OR of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] OR b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise OR of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] OR b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise OR of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := a[i+63:i] OR b[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise OR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] OR b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise OR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] OR b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise OR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := a[i+31:i] OR b[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise XOR of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] XOR b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise XOR of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] XOR b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise XOR of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := a[i+63:i] XOR b[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise XOR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] XOR b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise XOR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] XOR b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Compute the bitwise XOR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := a[i+31:i] XOR b[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Logical
Broadcast the lower 2 packed single-precision (32-bit) floating-point elements from "a" to all elements of "dst". FOR j := 0 to 15 i := j*32 n := (j % 2)*32 dst[i+31:i] := a[n+31:n] ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Broadcast the lower 2 packed single-precision (32-bit) floating-point elements from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 n := (j % 2)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Broadcast the lower 2 packed single-precision (32-bit) floating-point elements from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 n := (j % 2)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Broadcast the 8 packed single-precision (32-bit) floating-point elements from "a" to all elements of "dst". FOR j := 0 to 15 i := j*32 n := (j % 8)*32 dst[i+31:i] := a[n+31:n] ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Broadcast the 8 packed single-precision (32-bit) floating-point elements from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 n := (j % 8)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Broadcast the 8 packed single-precision (32-bit) floating-point elements from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 n := (j % 8)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Broadcast the 2 packed double-precision (64-bit) floating-point elements from "a" to all elements of "dst". FOR j := 0 to 7 i := j*64 n := (j % 2)*64 dst[i+63:i] := a[n+63:n] ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Broadcast the 2 packed double-precision (64-bit) floating-point elements from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 n := (j % 2)*64 IF k[j] dst[i+63:i] := a[n+63:n] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Broadcast the 2 packed double-precision (64-bit) floating-point elements from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 n := (j % 2)*64 IF k[j] dst[i+63:i] := a[n+63:n] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Broadcast the lower 2 packed 32-bit integers from "a" to all elements of "dst. FOR j := 0 to 15 i := j*32 n := (j % 2)*32 dst[i+31:i] := a[n+31:n] ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Broadcast the lower 2 packed 32-bit integers from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 n := (j % 2)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Broadcast the lower 2 packed 32-bit integers from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 n := (j % 2)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Broadcast the 8 packed 32-bit integers from "a" to all elements of "dst". FOR j := 0 to 15 i := j*32 n := (j % 8)*32 dst[i+31:i] := a[n+31:n] ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Broadcast the 8 packed 32-bit integers from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 n := (j % 8)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Broadcast the 8 packed 32-bit integers from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 n := (j % 8)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Broadcast the 2 packed 64-bit integers from "a" to all elements of "dst". FOR j := 0 to 7 i := j*64 n := (j % 2)*64 dst[i+63:i] := a[n+63:n] ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Broadcast the 2 packed 64-bit integers from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 n := (j % 2)*64 IF k[j] dst[i+63:i] := a[n+63:n] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Broadcast the 2 packed 64-bit integers from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 n := (j % 2)*64 IF k[j] dst[i+63:i] := a[n+63:n] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract 256 bits (composed of 8 packed single-precision (32-bit) floating-point elements) from "a", selected with "imm8", and store the result in "dst". CASE imm8[0] OF 0: dst[255:0] := a[255:0] 1: dst[255:0] := a[511:256] ESAC dst[MAX:256] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract 256 bits (composed of 8 packed single-precision (32-bit) floating-point elements) from "a", selected with "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). CASE imm8[0] OF 0: tmp[255:0] := a[255:0] 1: tmp[255:0] := a[511:256] ESAC FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract 256 bits (composed of 8 packed single-precision (32-bit) floating-point elements) from "a", selected with "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). CASE imm8[0] OF 0: tmp[255:0] := a[255:0] 1: tmp[255:0] := a[511:256] ESAC FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from "a", selected with "imm8", and store the result in "dst". CASE imm8[1:0] OF 0: dst[127:0] := a[127:0] 1: dst[127:0] := a[255:128] 2: dst[127:0] := a[383:256] 3: dst[127:0] := a[511:384] ESAC dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from "a", selected with "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). CASE imm8[1:0] OF 0: tmp[127:0] := a[127:0] 1: tmp[127:0] := a[255:128] 2: tmp[127:0] := a[383:256] 3: tmp[127:0] := a[511:384] ESAC FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from "a", selected with "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). CASE imm8[1:0] OF 0: tmp[127:0] := a[127:0] 1: tmp[127:0] := a[255:128] 2: tmp[127:0] := a[383:256] 3: tmp[127:0] := a[511:384] ESAC FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract 256 bits (composed of 8 packed 32-bit integers) from "a", selected with "imm8", and store the result in "dst". CASE imm8[0] OF 0: dst[255:0] := a[255:0] 1: dst[255:0] := a[511:256] ESAC dst[MAX:256] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract 256 bits (composed of 8 packed 32-bit integers) from "a", selected with "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). CASE imm8[0] OF 0: tmp[255:0] := a[255:0] 1: tmp[255:0] := a[511:256] ESAC FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract 256 bits (composed of 8 packed 32-bit integers) from "a", selected with "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). CASE imm8[0] OF 0: tmp[255:0] := a[255:0] 1: tmp[255:0] := a[511:256] ESAC FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract 128 bits (composed of 2 packed 64-bit integers) from "a", selected with "imm8", and store the result in "dst". CASE imm8[1:0] OF 0: dst[127:0] := a[127:0] 1: dst[127:0] := a[255:128] 2: dst[127:0] := a[383:256] 3: dst[127:0] := a[511:384] ESAC dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract 128 bits (composed of 2 packed 64-bit integers) from "a", selected with "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). CASE imm8[1:0] OF 0: tmp[127:0] := a[127:0] 1: tmp[127:0] := a[255:128] 2: tmp[127:0] := a[383:256] 3: tmp[127:0] := a[511:384] ESAC FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract 128 bits (composed of 2 packed 64-bit integers) from "a", selected with "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). CASE imm8[1:0] OF 0: tmp[127:0] := a[127:0] 1: tmp[127:0] := a[255:128] 2: tmp[127:0] := a[383:256] 3: tmp[127:0] := a[511:384] ESAC FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Test packed double-precision (64-bit) floating-point elements in "a" for special categories specified by "imm8", and store the results in mask vector "k". [fpclass_note] FOR j := 0 to 7 i := j*64 k[j] := CheckFPClass_FP64(a[i+63:i], imm8[7:0]) ENDFOR k[MAX:8] := 0 AVX512DQ
immintrin.h
Miscellaneous
Test packed double-precision (64-bit) floating-point elements in "a" for special categories specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). [fpclass_note] FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := CheckFPClass_FP64(a[i+63:i], imm8[7:0]) ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512DQ
immintrin.h
Miscellaneous
Test packed single-precision (32-bit) floating-point elements in "a" for special categories specified by "imm8", and store the results in mask vector "k". [fpclass_note] FOR j := 0 to 15 i := j*32 k[j] := CheckFPClass_FP32(a[i+31:i], imm8[7:0]) ENDFOR k[MAX:16] := 0 AVX512DQ
immintrin.h
Miscellaneous
Test packed single-precision (32-bit) floating-point elements in "a" for special categories specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). [fpclass_note] FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := CheckFPClass_FP32(a[i+31:i], imm8[7:0]) ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512DQ
immintrin.h
Miscellaneous
Test the lower double-precision (64-bit) floating-point element in "a" for special categories specified by "imm8", and store the result in mask vector "k". [fpclass_note] k[0] := CheckFPClass_FP64(a[63:0], imm8[7:0]) k[MAX:1] := 0 AVX512DQ
immintrin.h
Miscellaneous
Test the lower double-precision (64-bit) floating-point element in "a" for special categories specified by "imm8", and store the result in mask vector "k" using zeromask "k1" (the element is zeroed out when mask bit 0 is not set). [fpclass_note] IF k1[0] k[0] := CheckFPClass_FP64(a[63:0], imm8[7:0]) ELSE k[0] := 0 FI k[MAX:1] := 0 AVX512DQ
immintrin.h
Miscellaneous
Test the lower single-precision (32-bit) floating-point element in "a" for special categories specified by "imm8", and store the result in mask vector "k. [fpclass_note] k[0] := CheckFPClass_FP32(a[31:0], imm8[7:0]) k[MAX:1] := 0 AVX512DQ
immintrin.h
Miscellaneous
Test the lower single-precision (32-bit) floating-point element in "a" for special categories specified by "imm8", and store the result in mask vector "k" using zeromask "k1" (the element is zeroed out when mask bit 0 is not set). [fpclass_note] IF k1[0] k[0] := CheckFPClass_FP32(a[31:0], imm8[7:0]) ELSE k[0] := 0 FI k[MAX:1] := 0 AVX512DQ
immintrin.h
Miscellaneous
Copy "a" to "dst", then insert 256 bits (composed of 8 packed single-precision (32-bit) floating-point elements) from "b" into "dst" at the location specified by "imm8". dst[511:0] := a[511:0] CASE (imm8[0]) OF 0: dst[255:0] := b[255:0] 1: dst[511:256] := b[255:0] ESAC dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Copy "a" to "tmp", then insert 256 bits (composed of 8 packed single-precision (32-bit) floating-point elements) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[511:0] := a[511:0] CASE (imm8[0]) OF 0: tmp[255:0] := b[255:0] 1: tmp[511:256] := b[255:0] ESAC FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Copy "a" to "tmp", then insert 256 bits (composed of 8 packed single-precision (32-bit) floating-point elements) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[511:0] := a[511:0] CASE (imm8[0]) OF 0: tmp[255:0] := b[255:0] 1: tmp[511:256] := b[255:0] ESAC FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Copy "a" to "dst", then insert 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from "b" into "dst" at the location specified by "imm8". dst[511:0] := a[511:0] CASE imm8[1:0] OF 0: dst[127:0] := b[127:0] 1: dst[255:128] := b[127:0] 2: dst[383:256] := b[127:0] 3: dst[511:384] := b[127:0] ESAC dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Copy "a" to "tmp", then insert 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[511:0] := a[511:0] CASE (imm8[1:0]) OF 0: tmp[127:0] := b[127:0] 1: tmp[255:128] := b[127:0] 2: tmp[383:256] := b[127:0] 3: tmp[511:384] := b[127:0] ESAC FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Copy "a" to "tmp", then insert 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[511:0] := a[511:0] CASE (imm8[1:0]) OF 0: tmp[127:0] := b[127:0] 1: tmp[255:128] := b[127:0] 2: tmp[383:256] := b[127:0] 3: tmp[511:384] := b[127:0] ESAC FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Copy "a" to "dst", then insert 256 bits (composed of 8 packed 32-bit integers) from "b" into "dst" at the location specified by "imm8". dst[511:0] := a[511:0] CASE imm8[0] OF 0: dst[255:0] := b[255:0] 1: dst[511:256] := b[255:0] ESAC dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Copy "a" to "tmp", then insert 256 bits (composed of 8 packed 32-bit integers) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[511:0] := a[511:0] CASE (imm8[0]) OF 0: tmp[255:0] := b[255:0] 1: tmp[511:256] := b[255:0] ESAC FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Copy "a" to "tmp", then insert 256 bits (composed of 8 packed 32-bit integers) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[511:0] := a[511:0] CASE (imm8[0]) OF 0: tmp[255:0] := b[255:0] 1: tmp[511:256] := b[255:0] ESAC FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Copy "a" to "dst", then insert 128 bits (composed of 2 packed 64-bit integers) from "b" into "dst" at the location specified by "imm8". dst[511:0] := a[511:0] CASE imm8[1:0] OF 0: dst[127:0] := b[127:0] 1: dst[255:128] := b[127:0] 2: dst[383:256] := b[127:0] 3: dst[511:384] := b[127:0] ESAC dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Copy "a" to "tmp", then insert 128 bits (composed of 2 packed 64-bit integers) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[511:0] := a[511:0] CASE (imm8[1:0]) OF 0: tmp[127:0] := b[127:0] 1: tmp[255:128] := b[127:0] 2: tmp[383:256] := b[127:0] 3: tmp[511:384] := b[127:0] ESAC FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Copy "a" to "tmp", then insert 128 bits (composed of 2 packed 64-bit integers) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[511:0] := a[511:0] CASE (imm8[1:0]) OF 0: tmp[127:0] := b[127:0] 1: tmp[255:128] := b[127:0] 2: tmp[383:256] := b[127:0] 3: tmp[511:384] := b[127:0] ESAC FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Set each bit of mask register "k" based on the most significant bit of the corresponding packed 32-bit integer in "a". FOR j := 0 to 15 i := j*32 IF a[i+31] k[j] := 1 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512DQ
immintrin.h
Miscellaneous
Set each packed 32-bit integer in "dst" to all ones or all zeros based on the value of the corresponding bit in "k". FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := 0xFFFFFFFF ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Set each packed 64-bit integer in "dst" to all ones or all zeros based on the value of the corresponding bit in "k". FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := 0xFFFFFFFFFFFFFFFF ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Set each bit of mask register "k" based on the most significant bit of the corresponding packed 64-bit integer in "a". FOR j := 0 to 7 i := j*64 IF a[i+63] k[j] := 1 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[63:0], src2[63:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src1[63:0] : src2[63:0] 1: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src2[63:0] : src1[63:0] 2: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src1[63:0] : src2[63:0] 3: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src2[63:0] : src1[63:0] ESAC CASE signSelCtl[1:0] OF 0: dst[63:0] := (src1[63] << 63) OR (tmp[62:0]) 1: dst[63:0] := tmp[63:0] 2: dst[63:0] := (0 << 63) OR (tmp[62:0]) 3: dst[63:0] := (1 << 63) OR (tmp[62:0]) ESAC RETURN dst } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := RANGE(a[i+63:i], b[i+63:i], imm8[1:0], imm8[3:2]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. [sae_note] DEFINE RANGE(src1[63:0], src2[63:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src1[63:0] : src2[63:0] 1: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src2[63:0] : src1[63:0] 2: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src1[63:0] : src2[63:0] 3: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src2[63:0] : src1[63:0] ESAC CASE signSelCtl[1:0] OF 0: dst[63:0] := (src1[63] << 63) OR (tmp[62:0]) 1: dst[63:0] := tmp[63:0] 2: dst[63:0] := (0 << 63) OR (tmp[62:0]) 3: dst[63:0] := (1 << 63) OR (tmp[62:0]) ESAC RETURN dst } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := RANGE(a[i+63:i], b[i+63:i], imm8[1:0], imm8[3:2]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[63:0], src2[63:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src1[63:0] : src2[63:0] 1: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src2[63:0] : src1[63:0] 2: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src1[63:0] : src2[63:0] 3: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src2[63:0] : src1[63:0] ESAC CASE signSelCtl[1:0] OF 0: dst[63:0] := (src1[63] << 63) OR (tmp[62:0]) 1: dst[63:0] := tmp[63:0] 2: dst[63:0] := (0 << 63) OR (tmp[62:0]) 3: dst[63:0] := (1 << 63) OR (tmp[62:0]) ESAC RETURN dst } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := RANGE(a[i+63:i], b[i+63:i], imm8[1:0], imm8[3:2]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. [sae_note] DEFINE RANGE(src1[63:0], src2[63:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src1[63:0] : src2[63:0] 1: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src2[63:0] : src1[63:0] 2: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src1[63:0] : src2[63:0] 3: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src2[63:0] : src1[63:0] ESAC CASE signSelCtl[1:0] OF 0: dst[63:0] := (src1[63] << 63) OR (tmp[62:0]) 1: dst[63:0] := tmp[63:0] 2: dst[63:0] := (0 << 63) OR (tmp[62:0]) 3: dst[63:0] := (1 << 63) OR (tmp[62:0]) ESAC RETURN dst } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := RANGE(a[i+63:i], b[i+63:i], imm8[1:0], imm8[3:2]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[63:0], src2[63:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src1[63:0] : src2[63:0] 1: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src2[63:0] : src1[63:0] 2: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src1[63:0] : src2[63:0] 3: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src2[63:0] : src1[63:0] ESAC CASE signSelCtl[1:0] OF 0: dst[63:0] := (src1[63] << 63) OR (tmp[62:0]) 1: dst[63:0] := tmp[63:0] 2: dst[63:0] := (0 << 63) OR (tmp[62:0]) 3: dst[63:0] := (1 << 63) OR (tmp[62:0]) ESAC RETURN dst } FOR j := 0 to 7 i := j*64 dst[i+63:i] := RANGE(a[i+63:i], b[i+63:i], imm8[1:0], imm8[3:2]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. [sae_note] DEFINE RANGE(src1[63:0], src2[63:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src1[63:0] : src2[63:0] 1: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src2[63:0] : src1[63:0] 2: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src1[63:0] : src2[63:0] 3: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src2[63:0] : src1[63:0] ESAC CASE signSelCtl[1:0] OF 0: dst[63:0] := (src1[63] << 63) OR (tmp[62:0]) 1: dst[63:0] := tmp[63:0] 2: dst[63:0] := (0 << 63) OR (tmp[62:0]) 3: dst[63:0] := (1 << 63) OR (tmp[62:0]) ESAC RETURN dst } FOR j := 0 to 7 i := j*64 dst[i+63:i] := RANGE(a[i+63:i], b[i+63:i], imm8[1:0], imm8[3:2]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[31:0], src2[31:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src1[31:0] : src2[31:0] 1: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src2[31:0] : src1[31:0] 2: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src1[31:0] : src2[31:0] 3: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src2[31:0] : src1[31:0] ESAC CASE signSelCtl[1:0] OF 0: dst[31:0] := (src1[31] << 31) OR (tmp[30:0]) 1: dst[31:0] := tmp[63:0] 2: dst[31:0] := (0 << 31) OR (tmp[30:0]) 3: dst[31:0] := (1 << 31) OR (tmp[30:0]) ESAC RETURN dst } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := RANGE(a[i+31:i], b[i+31:i], imm8[1:0], imm8[3:2]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. [sae_note] DEFINE RANGE(src1[31:0], src2[31:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src1[31:0] : src2[31:0] 1: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src2[31:0] : src1[31:0] 2: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src1[31:0] : src2[31:0] 3: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src2[31:0] : src1[31:0] ESAC CASE signSelCtl[1:0] OF 0: dst[31:0] := (src1[31] << 31) OR (tmp[30:0]) 1: dst[31:0] := tmp[63:0] 2: dst[31:0] := (0 << 31) OR (tmp[30:0]) 3: dst[31:0] := (1 << 31) OR (tmp[30:0]) ESAC RETURN dst } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := RANGE(a[i+31:i], b[i+31:i], imm8[1:0], imm8[3:2]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[31:0], src2[31:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src1[31:0] : src2[31:0] 1: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src2[31:0] : src1[31:0] 2: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src1[31:0] : src2[31:0] 3: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src2[31:0] : src1[31:0] ESAC CASE signSelCtl[1:0] OF 0: dst[31:0] := (src1[31] << 31) OR (tmp[30:0]) 1: dst[31:0] := tmp[63:0] 2: dst[31:0] := (0 << 31) OR (tmp[30:0]) 3: dst[31:0] := (1 << 31) OR (tmp[30:0]) ESAC RETURN dst } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := RANGE(a[i+31:i], b[i+31:i], imm8[1:0], imm8[3:2]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. [sae_note] DEFINE RANGE(src1[31:0], src2[31:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src1[31:0] : src2[31:0] 1: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src2[31:0] : src1[31:0] 2: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src1[31:0] : src2[31:0] 3: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src2[31:0] : src1[31:0] ESAC CASE signSelCtl[1:0] OF 0: dst[31:0] := (src1[31] << 31) OR (tmp[30:0]) 1: dst[31:0] := tmp[63:0] 2: dst[31:0] := (0 << 31) OR (tmp[30:0]) 3: dst[31:0] := (1 << 31) OR (tmp[30:0]) ESAC RETURN dst } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := RANGE(a[i+31:i], b[i+31:i], imm8[1:0], imm8[3:2]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[31:0], src2[31:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src1[31:0] : src2[31:0] 1: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src2[31:0] : src1[31:0] 2: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src1[31:0] : src2[31:0] 3: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src2[31:0] : src1[31:0] ESAC CASE signSelCtl[1:0] OF 0: dst[31:0] := (src1[31] << 31) OR (tmp[30:0]) 1: dst[31:0] := tmp[63:0] 2: dst[31:0] := (0 << 31) OR (tmp[30:0]) 3: dst[31:0] := (1 << 31) OR (tmp[30:0]) ESAC RETURN dst } FOR j := 0 to 15 i := j*32 dst[i+31:i] := RANGE(a[i+31:i], b[i+31:i], imm8[1:0], imm8[3:2]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. [sae_note] DEFINE RANGE(src1[31:0], src2[31:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src1[31:0] : src2[31:0] 1: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src2[31:0] : src1[31:0] 2: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src1[31:0] : src2[31:0] 3: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src2[31:0] : src1[31:0] ESAC CASE signSelCtl[1:0] OF 0: dst[31:0] := (src1[31] << 31) OR (tmp[30:0]) 1: dst[31:0] := tmp[63:0] 2: dst[31:0] := (0 << 31) OR (tmp[30:0]) 3: dst[31:0] := (1 << 31) OR (tmp[30:0]) ESAC RETURN dst } FOR j := 0 to 15 i := j*32 dst[i+31:i] := RANGE(a[i+31:i], b[i+31:i], imm8[1:0], imm8[3:2]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for the lower double-precision (64-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. [sae_note] DEFINE RANGE(src1[63:0], src2[63:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src1[63:0] : src2[63:0] 1: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src2[63:0] : src1[63:0] 2: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src1[63:0] : src2[63:0] 3: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src2[63:0] : src1[63:0] ESAC CASE signSelCtl[1:0] OF 0: dst[63:0] := (src1[63] << 63) OR (tmp[62:0]) 1: dst[63:0] := tmp[63:0] 2: dst[63:0] := (0 << 63) OR (tmp[62:0]) 3: dst[63:0] := (1 << 63) OR (tmp[62:0]) ESAC RETURN dst } IF k[0] dst[63:0] := RANGE(a[63:0], b[63:0], imm8[1:0], imm8[3:2]) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for the lower double-precision (64-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[63:0], src2[63:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src1[63:0] : src2[63:0] 1: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src2[63:0] : src1[63:0] 2: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src1[63:0] : src2[63:0] 3: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src2[63:0] : src1[63:0] ESAC CASE signSelCtl[1:0] OF 0: dst[63:0] := (src1[63] << 63) OR (tmp[62:0]) 1: dst[63:0] := tmp[63:0] 2: dst[63:0] := (0 << 63) OR (tmp[62:0]) 3: dst[63:0] := (1 << 63) OR (tmp[62:0]) ESAC RETURN dst } IF k[0] dst[63:0] := RANGE(a[63:0], b[63:0], imm8[1:0], imm8[3:2]) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for the lower double-precision (64-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. [sae_note] DEFINE RANGE(src1[63:0], src2[63:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src1[63:0] : src2[63:0] 1: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src2[63:0] : src1[63:0] 2: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src1[63:0] : src2[63:0] 3: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src2[63:0] : src1[63:0] ESAC CASE signSelCtl[1:0] OF 0: dst[63:0] := (src1[63] << 63) OR (tmp[62:0]) 1: dst[63:0] := tmp[63:0] 2: dst[63:0] := (0 << 63) OR (tmp[62:0]) 3: dst[63:0] := (1 << 63) OR (tmp[62:0]) ESAC RETURN dst } IF k[0] dst[63:0] := RANGE(a[63:0], b[63:0], imm8[1:0], imm8[3:2]) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for the lower double-precision (64-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[63:0], src2[63:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src1[63:0] : src2[63:0] 1: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src2[63:0] : src1[63:0] 2: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src1[63:0] : src2[63:0] 3: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src2[63:0] : src1[63:0] ESAC CASE signSelCtl[1:0] OF 0: dst[63:0] := (src1[63] << 63) OR (tmp[62:0]) 1: dst[63:0] := tmp[63:0] 2: dst[63:0] := (0 << 63) OR (tmp[62:0]) 3: dst[63:0] := (1 << 63) OR (tmp[62:0]) ESAC RETURN dst } IF k[0] dst[63:0] := RANGE(a[63:0], b[63:0], imm8[1:0], imm8[3:2]) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for the lower double-precision (64-bit) floating-point element in "a" and "b", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. [sae_note] DEFINE RANGE(src1[63:0], src2[63:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src1[63:0] : src2[63:0] 1: tmp[63:0] := (src1[63:0] <= src2[63:0]) ? src2[63:0] : src1[63:0] 2: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src1[63:0] : src2[63:0] 3: tmp[63:0] := (ABS(src1[63:0]) <= ABS(src2[63:0])) ? src2[63:0] : src1[63:0] ESAC CASE signSelCtl[1:0] OF 0: dst[63:0] := (src1[63] << 63) OR (tmp[62:0]) 1: dst[63:0] := tmp[63:0] 2: dst[63:0] := (0 << 63) OR (tmp[62:0]) 3: dst[63:0] := (1 << 63) OR (tmp[62:0]) ESAC RETURN dst } dst[63:0] := RANGE(a[63:0], b[63:0], imm8[1:0], imm8[3:2]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for the lower single-precision (32-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. [sae_note] DEFINE RANGE(src1[31:0], src2[31:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src1[31:0] : src2[31:0] 1: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src2[31:0] : src1[31:0] 2: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src1[31:0] : src2[31:0] 3: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src2[31:0] : src1[31:0] ESAC CASE signSelCtl[1:0] OF 0: dst[31:0] := (src1[31] << 31) OR (tmp[30:0]) 1: dst[31:0] := tmp[31:0] 2: dst[31:0] := (0 << 31) OR (tmp[30:0]) 3: dst[31:0] := (1 << 31) OR (tmp[30:0]) ESAC RETURN dst } IF k[0] dst[31:0] := RANGE(a[31:0], b[31:0], imm8[1:0], imm8[3:2]) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for the lower single-precision (32-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[31:0], src2[31:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src1[31:0] : src2[31:0] 1: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src2[31:0] : src1[31:0] 2: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src1[31:0] : src2[31:0] 3: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src2[31:0] : src1[31:0] ESAC CASE signSelCtl[1:0] OF 0: dst[31:0] := (src1[31] << 31) OR (tmp[30:0]) 1: dst[31:0] := tmp[31:0] 2: dst[31:0] := (0 << 31) OR (tmp[30:0]) 3: dst[31:0] := (1 << 31) OR (tmp[30:0]) ESAC RETURN dst } IF k[0] dst[31:0] := RANGE(a[31:0], b[31:0], imm8[1:0], imm8[3:2]) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for the lower single-precision (32-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. [sae_note] DEFINE RANGE(src1[31:0], src2[31:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src1[31:0] : src2[31:0] 1: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src2[31:0] : src1[31:0] 2: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src1[31:0] : src2[31:0] 3: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src2[31:0] : src1[31:0] ESAC CASE signSelCtl[1:0] OF 0: dst[31:0] := (src1[31] << 31) OR (tmp[30:0]) 1: dst[31:0] := tmp[31:0] 2: dst[31:0] := (0 << 31) OR (tmp[30:0]) 3: dst[31:0] := (1 << 31) OR (tmp[30:0]) ESAC RETURN dst } IF k[0] dst[31:0] := RANGE(a[31:0], b[31:0], imm8[1:0], imm8[3:2]) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for the lower single-precision (32-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. DEFINE RANGE(src1[31:0], src2[31:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src1[31:0] : src2[31:0] 1: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src2[31:0] : src1[31:0] 2: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src1[31:0] : src2[31:0] 3: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src2[31:0] : src1[31:0] ESAC CASE signSelCtl[1:0] OF 0: dst[31:0] := (src1[31] << 31) OR (tmp[30:0]) 1: dst[31:0] := tmp[31:0] 2: dst[31:0] := (0 << 31) OR (tmp[30:0]) 3: dst[31:0] := (1 << 31) OR (tmp[30:0]) ESAC RETURN dst } IF k[0] dst[31:0] := RANGE(a[31:0], b[31:0], imm8[1:0], imm8[3:2]) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Calculate the max, min, absolute max, or absolute min (depending on control in "imm8") for the lower single-precision (32-bit) floating-point element in "a" and "b", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". imm8[1:0] specifies the operation control: 00 = min, 01 = max, 10 = absolute min, 11 = absolute max. imm8[3:2] specifies the sign control: 00 = sign from a, 01 = sign from compare result, 10 = clear sign bit, 11 = set sign bit. [sae_note] DEFINE RANGE(src1[31:0], src2[31:0], opCtl[1:0], signSelCtl[1:0]) { CASE opCtl[1:0] OF 0: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src1[31:0] : src2[31:0] 1: tmp[31:0] := (src1[31:0] <= src2[31:0]) ? src2[31:0] : src1[31:0] 2: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src1[31:0] : src2[31:0] 3: tmp[31:0] := (ABS(src1[31:0]) <= ABS(src2[31:0])) ? src2[31:0] : src1[31:0] ESAC CASE signSelCtl[1:0] OF 0: dst[31:0] := (src1[31] << 31) OR (tmp[30:0]) 1: dst[31:0] := tmp[31:0] 2: dst[31:0] := (0 << 31) OR (tmp[30:0]) 3: dst[31:0] := (1 << 31) OR (tmp[30:0]) ESAC RETURN dst } dst[31:0] := RANGE(a[31:0], b[31:0], imm8[1:0], imm8[3:2]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of packed double-precision (64-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] DEFINE ReduceArgumentPD(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) tmp[63:0] := src1[63:0] - tmp[63:0] IF IsInf(tmp[63:0]) tmp[63:0] := FP64(0.0) FI RETURN tmp[63:0] } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ReduceArgumentPD(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of packed double-precision (64-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note][sae_note] DEFINE ReduceArgumentPD(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) tmp[63:0] := src1[63:0] - tmp[63:0] IF IsInf(tmp[63:0]) tmp[63:0] := FP64(0.0) FI RETURN tmp[63:0] } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ReduceArgumentPD(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of packed double-precision (64-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] DEFINE ReduceArgumentPD(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) tmp[63:0] := src1[63:0] - tmp[63:0] IF IsInf(tmp[63:0]) tmp[63:0] := FP64(0.0) FI RETURN tmp[63:0] } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ReduceArgumentPD(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of packed double-precision (64-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note][sae_note] DEFINE ReduceArgumentPD(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) tmp[63:0] := src1[63:0] - tmp[63:0] IF IsInf(tmp[63:0]) tmp[63:0] := FP64(0.0) FI RETURN tmp[63:0] } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ReduceArgumentPD(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of packed double-precision (64-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst". [round_imm_note] DEFINE ReduceArgumentPD(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) tmp[63:0] := src1[63:0] - tmp[63:0] IF IsInf(tmp[63:0]) tmp[63:0] := FP64(0.0) FI RETURN tmp[63:0] } FOR j := 0 to 7 i := j*64 dst[i+63:i] := ReduceArgumentPD(a[i+63:i], imm8[7:0]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of packed double-precision (64-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst". [round_imm_note][sae_note] DEFINE ReduceArgumentPD(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) tmp[63:0] := src1[63:0] - tmp[63:0] IF IsInf(tmp[63:0]) tmp[63:0] := FP64(0.0) FI RETURN tmp[63:0] } FOR j := 0 to 7 i := j*64 dst[i+63:i] := ReduceArgumentPD(a[i+63:i], imm8[7:0]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of packed single-precision (32-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] DEFINE ReduceArgumentPS(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) tmp[31:0] := src1[31:0] - tmp[31:0] IF IsInf(tmp[31:0]) tmp[31:0] := FP32(0.0) FI RETURN tmp[31:0] } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ReduceArgumentPS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of packed single-precision (32-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note][sae_note] DEFINE ReduceArgumentPS(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) tmp[31:0] := src1[31:0] - tmp[31:0] IF IsInf(tmp[31:0]) tmp[31:0] := FP32(0.0) FI RETURN tmp[31:0] } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ReduceArgumentPS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of packed single-precision (32-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] DEFINE ReduceArgumentPS(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) tmp[31:0] := src1[31:0] - tmp[31:0] IF IsInf(tmp[31:0]) tmp[31:0] := FP32(0.0) FI RETURN tmp[31:0] } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ReduceArgumentPS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of packed single-precision (32-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note][sae_note] DEFINE ReduceArgumentPS(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) tmp[31:0] := src1[31:0] - tmp[31:0] IF IsInf(tmp[31:0]) tmp[31:0] := FP32(0.0) FI RETURN tmp[31:0] } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ReduceArgumentPS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of packed single-precision (32-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst". [round_imm_note] DEFINE ReduceArgumentPS(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) tmp[31:0] := src1[31:0] - tmp[31:0] IF IsInf(tmp[31:0]) tmp[31:0] := FP32(0.0) FI RETURN tmp[31:0] } FOR j := 0 to 15 i := j*32 dst[i+31:i] := ReduceArgumentPS(a[i+31:i], imm8[7:0]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of packed single-precision (32-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst". [round_imm_note][sae_note] DEFINE ReduceArgumentPS(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) tmp[31:0] := src1[31:0] - tmp[31:0] IF IsInf(tmp[31:0]) tmp[31:0] := FP32(0.0) FI RETURN tmp[31:0] } FOR j := 0 to 15 i := j*32 dst[i+31:i] := ReduceArgumentPS(a[i+31:i], imm8[7:0]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of the lower double-precision (64-bit) floating-point element in "b" by the number of bits specified by "imm8", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_imm_note] DEFINE ReduceArgumentPD(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) tmp[63:0] := src1[63:0] - tmp[63:0] IF IsInf(tmp[63:0]) tmp[63:0] := FP64(0.0) FI RETURN tmp[63:0] } IF k[0] dst[63:0] := ReduceArgumentPD(b[63:0], imm8[7:0]) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of the lower double-precision (64-bit) floating-point element in "b" by the number of bits specified by "imm8", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_imm_note][sae_note] DEFINE ReduceArgumentPD(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) tmp[63:0] := src1[63:0] - tmp[63:0] IF IsInf(tmp[63:0]) tmp[63:0] := FP64(0.0) FI RETURN tmp[63:0] } IF k[0] dst[63:0] := ReduceArgumentPD(b[63:0], imm8[7:0]) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of the lower double-precision (64-bit) floating-point element in "b" by the number of bits specified by "imm8", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_imm_note] DEFINE ReduceArgumentPD(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) tmp[63:0] := src1[63:0] - tmp[63:0] IF IsInf(tmp[63:0]) tmp[63:0] := FP64(0.0) FI RETURN tmp[63:0] } IF k[0] dst[63:0] := ReduceArgumentPD(b[63:0], imm8[7:0]) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of the lower double-precision (64-bit) floating-point element in "b" by the number of bits specified by "imm8", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_imm_note][sae_note] DEFINE ReduceArgumentPD(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) tmp[63:0] := src1[63:0] - tmp[63:0] IF IsInf(tmp[63:0]) tmp[63:0] := FP64(0.0) FI RETURN tmp[63:0] } IF k[0] dst[63:0] := ReduceArgumentPD(b[63:0], imm8[7:0]) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of the lower double-precision (64-bit) floating-point element in "b" by the number of bits specified by "imm8", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [round_imm_note] DEFINE ReduceArgumentPD(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) tmp[63:0] := src1[63:0] - tmp[63:0] IF IsInf(tmp[63:0]) tmp[63:0] := FP64(0.0) FI RETURN tmp[63:0] } dst[63:0] := ReduceArgumentPD(b[63:0], imm8[7:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of the lower double-precision (64-bit) floating-point element in "b" by the number of bits specified by "imm8", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [round_imm_note][sae_note] DEFINE ReduceArgumentPD(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) tmp[63:0] := src1[63:0] - tmp[63:0] IF IsInf(tmp[63:0]) tmp[63:0] := FP64(0.0) FI RETURN tmp[63:0] } dst[63:0] := ReduceArgumentPD(b[63:0], imm8[7:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of the lower single-precision (32-bit) floating-point element in "b" by the number of bits specified by "imm8", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_imm_note] DEFINE ReduceArgumentPS(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) tmp[31:0] := src1[31:0] - tmp[31:0] IF IsInf(tmp[31:0]) tmp[31:0] := FP32(0.0) FI RETURN tmp[31:0] } IF k[0] dst[31:0] := ReduceArgumentPS(b[31:0], imm8[7:0]) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of the lower single-precision (32-bit) floating-point element in "b" by the number of bits specified by "imm8", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_imm_note][sae_note] DEFINE ReduceArgumentPS(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) tmp[31:0] := src1[31:0] - tmp[31:0] IF IsInf(tmp[31:0]) tmp[31:0] := FP32(0.0) FI RETURN tmp[31:0] } IF k[0] dst[31:0] := ReduceArgumentPS(b[31:0], imm8[7:0]) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of the lower single-precision (32-bit) floating-point element in "b" by the number of bits specified by "imm8", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_imm_note] DEFINE ReduceArgumentPS(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) tmp[31:0] := src1[31:0] - tmp[31:0] IF IsInf(tmp[31:0]) tmp[31:0] := FP32(0.0) FI RETURN tmp[31:0] } IF k[0] dst[31:0] := ReduceArgumentPS(b[31:0], imm8[7:0]) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of the lower single-precision (32-bit) floating-point element in "b" by the number of bits specified by "imm8", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_imm_note][sae_note] DEFINE ReduceArgumentPS(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) tmp[31:0] := src1[31:0] - tmp[31:0] IF IsInf(tmp[31:0]) tmp[31:0] := FP32(0.0) FI RETURN tmp[31:0] } IF k[0] dst[31:0] := ReduceArgumentPS(b[31:0], imm8[7:0]) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of the lower single-precision (32-bit) floating-point element in "b" by the number of bits specified by "imm8", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_imm_note] DEFINE ReduceArgumentPS(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) tmp[31:0] := src1[31:0] - tmp[31:0] IF IsInf(tmp[31:0]) tmp[31:0] := FP32(0.0) FI RETURN tmp[31:0] } dst[31:0] := ReduceArgumentPS(b[31:0], imm8[7:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Extract the reduced argument of the lower single-precision (32-bit) floating-point element in "b" by the number of bits specified by "imm8", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_imm_note][sae_note] DEFINE ReduceArgumentPS(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) tmp[31:0] := src1[31:0] - tmp[31:0] IF IsInf(tmp[31:0]) tmp[31:0] := FP32(0.0) FI RETURN tmp[31:0] } dst[31:0] := ReduceArgumentPS(b[31:0], imm8[7:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512DQ
immintrin.h
Miscellaneous
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst". [round_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := Convert_FP64_To_Int64(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := Convert_FP64_To_Int64(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_Int64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_Int64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_Int64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_Int64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst". [round_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := Convert_FP64_To_UInt64(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := Convert_FP64_To_UInt64(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_UInt64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_UInt64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_UInt64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_UInt64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst". [round_note] FOR j := 0 to 7 i := j*64 l := j*32 dst[i+63:i] := Convert_FP32_To_Int64(a[l+31:l]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 7 i := j*64 l := j*32 dst[i+63:i] := Convert_FP32_To_Int64(a[l+31:l]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_Int64(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_Int64(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_Int64(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_Int64(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst". [round_note] FOR j := 0 to 7 i := j*64 l := j*32 dst[i+63:i] := Convert_FP32_To_UInt64(a[l+31:l]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst". FOR j := 0 to 7 i := j*64 l := j*32 dst[i+63:i] := Convert_FP32_To_UInt64(a[l+31:l]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_UInt64(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_UInt64(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_UInt64(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_UInt64(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". [round_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". [round_note] FOR j := 0 to 7 i := j*64 l := j*32 dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512DQ
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 i := j*64 l := j*32 dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512DQ
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ELSE dst[l+31:l] := src[l+31:l] FI ENDFOR dst[MAX:256] := 0 AVX512DQ
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ELSE dst[l+31:l] := src[l+31:l] FI ENDFOR dst[MAX:256] := 0 AVX512DQ
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ELSE dst[l+31:l] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ELSE dst[l+31:l] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst". [sae_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := Convert_FP64_To_Int64_Truncate(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := Convert_FP64_To_Int64_Truncate(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_Int64_Truncate(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_Int64_Truncate(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_Int64_Truncate(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_Int64_Truncate(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst". [sae_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := Convert_FP64_To_UInt64_Truncate(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := Convert_FP64_To_UInt64_Truncate(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_UInt64_Truncate(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_UInt64_Truncate(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_UInt64_Truncate(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_FP64_To_UInt64_Truncate(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst". [sae_note] FOR j := 0 to 7 i := j*64 l := j*32 dst[i+63:i] := Convert_FP32_To_Int64_Truncate(a[l+31:l]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst". FOR j := 0 to 7 i := j*64 l := j*32 dst[i+63:i] := Convert_FP32_To_Int64_Truncate(a[l+31:l]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_Int64_Truncate(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_Int64_Truncate(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_Int64_Truncate(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_Int64_Truncate(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst". [sae_note] FOR j := 0 to 7 i := j*64 l := j*32 dst[i+63:i] := Convert_FP32_To_UInt64_Truncate(a[l+31:l]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst". FOR j := 0 to 7 i := j*64 l := j*32 dst[i+63:i] := Convert_FP32_To_UInt64_Truncate(a[l+31:l]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_UInt64_Truncate(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_UInt64_Truncate(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_UInt64_Truncate(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_FP32_To_UInt64_Truncate(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". [round_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". [round_note] FOR j := 0 to 7 i := j*64 l := j*32 dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512DQ
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 i := j*64 l := j*32 dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512DQ
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ELSE dst[l+31:l] := src[l+31:l] FI ENDFOR dst[MAX:256] := 0 AVX512DQ
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ELSE dst[l+31:l] := src[l+31:l] FI ENDFOR dst[MAX:256] := 0 AVX512DQ
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ELSE dst[l+31:l] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[l+31:l] := Convert_Int64_To_FP32(a[i+63:i]) ELSE dst[l+31:l] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512DQ
immintrin.h
Convert
Multiply the packed 64-bit integers in "a" and "b", producing intermediate 128-bit integers, and store the low 64 bits of the intermediate integers in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] tmp[127:0] := a[i+63:i] * b[i+63:i] dst[i+63:i] := tmp[63:0] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Arithmetic
Multiply the packed 64-bit integers in "a" and "b", producing intermediate 128-bit integers, and store the low 64 bits of the intermediate integers in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] tmp[127:0] := a[i+63:i] * b[i+63:i] dst[i+63:i] := tmp[63:0] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Arithmetic
Multiply the packed 64-bit integers in "a" and "b", producing intermediate 128-bit integers, and store the low 64 bits of the intermediate integers in "dst". FOR j := 0 to 7 i := j*64 tmp[127:0] := a[i+63:i] * b[i+63:i] dst[i+63:i] := tmp[63:0] ENDFOR dst[MAX:512] := 0 AVX512DQ
immintrin.h
Arithmetic
Add 8-bit masks in "a" and "b", and store the result in "k". k[7:0] := a[7:0] + b[7:0] k[MAX:8] := 0 AVX512DQ
immintrin.h
Mask
Add 16-bit masks in "a" and "b", and store the result in "k". k[15:0] := a[15:0] + b[15:0] k[MAX:16] := 0 AVX512DQ
immintrin.h
Mask
Compute the bitwise AND of 8-bit masks "a" and "b", and store the result in "k". k[7:0] := a[7:0] AND b[7:0] k[MAX:8] := 0 AVX512DQ
immintrin.h
Mask
Compute the bitwise NOT of 8-bit masks "a" and then AND with "b", and store the result in "k". k[7:0] := (NOT a[7:0]) AND b[7:0] k[MAX:8] := 0 AVX512DQ
immintrin.h
Mask
Compute the bitwise NOT of 8-bit mask "a", and store the result in "k". k[7:0] := NOT a[7:0] k[MAX:8] := 0 AVX512DQ
immintrin.h
Mask
Compute the bitwise OR of 8-bit masks "a" and "b", and store the result in "k". k[7:0] := a[7:0] OR b[7:0] k[MAX:8] := 0 AVX512DQ
immintrin.h
Mask
Compute the bitwise XNOR of 8-bit masks "a" and "b", and store the result in "k". k[7:0] := NOT (a[7:0] XOR b[7:0]) k[MAX:8] := 0 AVX512DQ
immintrin.h
Mask
Compute the bitwise XOR of 8-bit masks "a" and "b", and store the result in "k". k[7:0] := a[7:0] XOR b[7:0] k[MAX:8] := 0 AVX512DQ
immintrin.h
Mask
Shift the bits of 8-bit mask "a" left by "count" while shifting in zeros, and store the least significant 8 bits of the result in "k". k[MAX:0] := 0 IF count[7:0] <= 7 k[7:0] := a[7:0] << count[7:0] FI AVX512DQ
immintrin.h
Mask
Shift the bits of 8-bit mask "a" right by "count" while shifting in zeros, and store the least significant 8 bits of the result in "k". k[MAX:0] := 0 IF count[7:0] <= 7 k[7:0] := a[7:0] >> count[7:0] FI AVX512DQ
immintrin.h
Mask
Compute the bitwise OR of 8-bit masks "a" and "b". If the result is all zeros, store 1 in "dst", otherwise store 0 in "dst". If the result is all ones, store 1 in "all_ones", otherwise store 0 in "all_ones". tmp[7:0] := a[7:0] OR b[7:0] IF tmp[7:0] == 0x0 dst := 1 ELSE dst := 0 FI IF tmp[7:0] == 0xFF MEM[all_ones+7:all_ones] := 1 ELSE MEM[all_ones+7:all_ones] := 0 FI AVX512DQ
immintrin.h
Mask
Compute the bitwise OR of 8-bit masks "a" and "b". If the result is all zeroes, store 1 in "dst", otherwise store 0 in "dst". tmp[7:0] := a[7:0] OR b[7:0] IF tmp[7:0] == 0x0 dst := 1 ELSE dst := 0 FI AVX512DQ
immintrin.h
Mask
Compute the bitwise OR of 8-bit masks "a" and "b". If the result is all ones, store 1 in "dst", otherwise store 0 in "dst". tmp[7:0] := a[7:0] OR b[7:0] IF tmp[7:0] == 0xFF dst := 1 ELSE dst := 0 FI AVX512DQ
immintrin.h
Mask
Compute the bitwise AND of 8-bit masks "a" and "b", and if the result is all zeros, store 1 in "dst", otherwise store 0 in "dst". Compute the bitwise NOT of "a" and then AND with "b", if the result is all zeros, store 1 in "and_not", otherwise store 0 in "and_not". tmp1[7:0] := a[7:0] AND b[7:0] IF tmp1[7:0] == 0x0 dst := 1 ELSE dst := 0 FI tmp2[7:0] := (NOT a[7:0]) AND b[7:0] IF tmp2[7:0] == 0x0 MEM[and_not+7:and_not] := 1 ELSE MEM[and_not+7:and_not] := 0 FI AVX512DQ
immintrin.h
Mask
Compute the bitwise AND of 8-bit masks "a" and "b", and if the result is all zeros, store 1 in "dst", otherwise store 0 in "dst". tmp[7:0] := a[7:0] AND b[7:0] IF tmp[7:0] == 0x0 dst := 1 ELSE dst := 0 FI AVX512DQ
immintrin.h
Mask
Compute the bitwise NOT of 8-bit mask "a" and then AND with "b", if the result is all zeroes, store 1 in "dst", otherwise store 0 in "dst". tmp[7:0] := (NOT a[7:0]) AND b[7:0] IF tmp[7:0] == 0x0 dst := 1 ELSE dst := 0 FI AVX512DQ
immintrin.h
Mask
Compute the bitwise AND of 16-bit masks "a" and "b", and if the result is all zeros, store 1 in "dst", otherwise store 0 in "dst". Compute the bitwise NOT of "a" and then AND with "b", if the result is all zeros, store 1 in "and_not", otherwise store 0 in "and_not". tmp1[15:0] := a[15:0] AND b[15:0] IF tmp1[15:0] == 0x0 dst := 1 ELSE dst := 0 FI tmp2[15:0] := (NOT a[15:0]) AND b[15:0] IF tmp2[15:0] == 0x0 MEM[and_not+7:and_not] := 1 ELSE MEM[and_not+7:and_not] := 0 FI AVX512DQ
immintrin.h
Mask
Compute the bitwise AND of 16-bit masks "a" and "b", and if the result is all zeros, store 1 in "dst", otherwise store 0 in "dst". tmp[15:0] := a[15:0] AND b[15:0] IF tmp[15:0] == 0x0 dst := 1 ELSE dst := 0 FI AVX512DQ
immintrin.h
Mask
Compute the bitwise NOT of 16-bit mask "a" and then AND with "b", if the result is all zeroes, store 1 in "dst", otherwise store 0 in "dst". tmp[15:0] := (NOT a[15:0]) AND b[15:0] IF tmp[15:0] == 0x0 dst := 1 ELSE dst := 0 FI AVX512DQ
immintrin.h
Mask
Convert 8-bit mask "a" into an integer value, and store the result in "dst". dst := ZeroExtend32(a[7:0]) AVX512DQ
immintrin.h
Mask
Convert integer value "a" into an 8-bit mask, and store the result in "k". k := a[7:0] AVX512DQ
immintrin.h
Mask
Load 8-bit mask from memory into "k". k[7:0] := MEM[mem_addr+7:mem_addr] AVX512DQ
immintrin.h
Load
Store 8-bit mask from "a" into memory. MEM[mem_addr+7:mem_addr] := a[7:0] AVX512DQ
immintrin.h
Store
Compute the inverse cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := ACOS(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ACOS(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := ACOS(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ACOS(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse hyperbolic cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := ACOSH(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse hyperbolic cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ACOSH(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse hyperbolic cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := ACOSH(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse hyperbolic cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ACOSH(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse sine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := ASIN(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse sine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ASIN(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse sine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := ASIN(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse sine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ASIN(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse hyperbolic sine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := ASINH(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse hyperbolic sine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ASINH(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse hyperbolic sine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := ASINH(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse hyperbolic sine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ASINH(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse tangent of packed double-precision (64-bit) floating-point elements in "a" divided by packed elements in "b", and store the results in "dst" expressed in radians. FOR j := 0 to 7 i := j*64 dst[i+63:i] := ATAN2(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse tangent of packed double-precision (64-bit) floating-point elements in "a" divided by packed elements in "b", and store the results in "dst" expressed in radians using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ATAN2(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse tangent of packed single-precision (32-bit) floating-point elements in "a" divided by packed elements in "b", and store the results in "dst" expressed in radians. FOR j := 0 to 15 i := j*32 dst[i+31:i] := ATAN2(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse tangent of packed single-precision (32-bit) floating-point elements in "a" divided by packed elements in "b", and store the results in "dst" expressed in radians using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ATAN2(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse tangent of packed double-precision (64-bit) floating-point elements in "a" and store the results in "dst" expressed in radians. FOR j := 0 to 7 i := j*64 dst[i+63:i] := ATAN(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse tangent of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" expressed in radians using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ATAN(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse tangent of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" expressed in radians. FOR j := 0 to 15 i := j*32 dst[i+31:i] := ATAN(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse tangent of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ATAN(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse hyperbolic tangent of packed double-precision (64-bit) floating-point elements in "a" and store the results in "dst" expressed in radians. FOR j := 0 to 7 i := j*64 dst[i+63:i] := ATANH(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse hyperbolic tangent of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" expressed in radians using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ATANH(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse hyperblic tangent of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" expressed in radians. FOR j := 0 to 15 i := j*32 dst[i+31:i] := ATANH(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the inverse hyperbolic tangent of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ATANH(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := COS(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := COS(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := COS(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := COS(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := COSD(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := COSD(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := COSD(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := COSD(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the hyperbolic cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := COSH(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the hyperbolic cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := COSH(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the hyperbolic cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := COSH(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the hyperbolic cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := COSH(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the sine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := SIN(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the sine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := SIN(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the sine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := SIN(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the sine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := SIN(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the hyperbolic sine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := SINH(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the hyperbolic sine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := SINH(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the hyperbolic sine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := SINH(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the hyperbolic sine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := SINH(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the sine of packed double-precision (64-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := SIND(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the sine of packed double-precision (64-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := SIND(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the sine of packed single-precision (32-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := SIND(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the sine of packed single-precision (32-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := SIND(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the tangent of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := TAN(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the tangent of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := TAN(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the tangent of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := TAN(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the tangent of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := TAN(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the tangent of packed double-precision (64-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := TAND(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the tangent of packed double-precision (64-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := TAND(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the tangent of packed single-precision (32-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := TAND(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the tangent of packed single-precision (32-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := TAND(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the hyperbolic tangent of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := TANH(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the hyperbolic tangent of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := TANH(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the hyperbolic tangent of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := TANH(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the hyperbolic tangent of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := TANH(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the sine and cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, store the sine in "dst", and store the cosine into memory at "mem_addr". FOR j := 0 to 7 i := j*64 dst[i+63:i] := SIN(a[i+63:i]) MEM[mem_addr+i+63:mem_addr+i] := COS(a[i+63:i]) ENDFOR dst[MAX:512] := 0 cos_res[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the sine and cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, store the sine in "dst", store the cosine into memory at "mem_addr". Elements are written to their respective locations using writemask "k" (elements are copied from "sin_src" or "cos_src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := SIN(a[i+63:i]) MEM[mem_addr+i+63:mem_addr+i] := COS(a[i+63:i]) ELSE dst[i+63:i] := sin_src[i+63:i] MEM[mem_addr+i+63:mem_addr+i] := cos_src[i+63:i] FI ENDFOR dst[MAX:512] := 0 cos_res[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the sine and cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, store the sine in "dst", and store the cosine into memory at "mem_addr". FOR j := 0 to 15 i := j*32 dst[i+31:i] := SIN(a[i+31:i]) MEM[mem_addr+i+31:mem_addr+i] := COS(a[i+31:i]) ENDFOR dst[MAX:512] := 0 cos_res[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the sine and cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, store the sine in "dst", store the cosine into memory at "mem_addr". Elements are written to their respective locations using writemask "k" (elements are copied from "sin_src" or "cos_src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := SIN(a[i+31:i]) MEM[mem_addr+i+31:mem_addr+i] := COS(a[i+31:i]) ELSE dst[i+31:i] := sin_src[i+31:i] MEM[mem_addr+i+31:mem_addr+i] := cos_src[i+31:i] FI ENDFOR dst[MAX:512] := 0 cos_res[MAX:512] := 0 AVX512F
immintrin.h
Trigonometry
Compute the cube root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := CubeRoot(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the cube root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := CubeRoot(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the cube root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := CubeRoot(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the cube root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := CubeRoot(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of 10 raised to the power of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := POW(10.0, a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of 10 raised to the power of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := POW(10.0, a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of 10 raised to the power of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := POW(FP32(10.0), a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of 10 raised to the power of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := POW(FP32(10.0), a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of 2 raised to the power of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := POW(2.0, a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of 2 raised to the power of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := POW(2.0, a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of 2 raised to the power of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := POW(FP32(2.0), a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of 2 raised to the power of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := POW(FP32(2.0), a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of "e" raised to the power of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := POW(e, a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of "e" raised to the power of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := POW(e, a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of "e" raised to the power of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := POW(FP32(e), a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of "e" raised to the power of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := POW(FP32(e), a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of "e" raised to the power of packed double-precision (64-bit) floating-point elements in "a", subtract one from each element, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := POW(e, a[i+63:i]) - 1.0 ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of "e" raised to the power of packed double-precision (64-bit) floating-point elements in "a", subtract one from each element, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := POW(e, a[i+63:i]) - 1.0 ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of "e" raised to the power of packed single-precision (32-bit) floating-point elements in "a", subtract one from each element, and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := POW(FP32(e), a[i+31:i]) - 1.0 ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of "e" raised to the power of packed single-precision (32-bit) floating-point elements in "a", subtract one from each element, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := POW(FP32(e), a[i+31:i]) - 1.0 ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the length of the hypotenous of a right triangle, with the lengths of the other two sides of the triangle stored as packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := SQRT(POW(a[i+63:i], 2.0) + POW(b[i+63:i], 2.0)) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the length of the hypotenous of a right triangle, with the lengths of the other two sides of the triangle stored as packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := SQRT(POW(a[i+63:i], 2.0) + POW(b[i+63:i], 2.0)) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the length of the hypotenous of a right triangle, with the lengths of the other two sides of the triangle stored as packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := SQRT(POW(a[i+31:i], 2.0) + POW(b[i+31:i], 2.0)) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the length of the hypotenous of a right triangle, with the lengths of the other two sides of the triangle stored as packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := SQRT(POW(a[i+31:i], 2.0) + POW(b[i+31:i], 2.0)) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the inverse square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := InvSQRT(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the inverse square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := InvSQRT(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the inverse square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := InvSQRT(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the inverse square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := InvSQRT(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the base-10 logarithm of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := LOG(a[i+63:i]) / LOG(10.0) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the base-10 logarithm of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := LOG(a[i+63:i]) / LOG(10.0) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the base-10 logarithm of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := LOG(a[i+31:i]) / LOG(10.0) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the base-10 logarithm of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := LOG(a[i+31:i]) / LOG(10.0) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the natural logarithm of one plus packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := LOG(1.0 + a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the natural logarithm of one plus packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := LOG(1.0 + a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the natural logarithm of one plus packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := LOG(1.0 + a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the natural logarithm of one plus packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := LOG(1.0 + a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the base-2 logarithm of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := LOG(a[i+63:i]) / LOG(2.0) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the base-2 logarithm of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := LOG(a[i+63:i]) / LOG(2.0) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the natural logarithm of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := LOG(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the natural logarithm of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := LOG(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the natural logarithm of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := LOG(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the natural logarithm of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := LOG(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Convert the exponent of each packed double-precision (64-bit) floating-point element in "a" to a double-precision floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 7 i := j*64 dst[i+63:i] := ConvertExpFP64(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Convert the exponent of each packed double-precision (64-bit) floating-point element in "a" to a double-precision floating-point number representing the integer exponent, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ConvertExpFP64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Convert the exponent of each packed single-precision (32-bit) floating-point element in "a" to a single-precision floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 15 i := j*32 dst[i+31:i] := ConvertExpFP32(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Convert the exponent of each packed single-precision (32-bit) floating-point element in "a" to a single-precision floating-point number representing the integer exponent, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ConvertExpFP32(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of packed double-precision (64-bit) floating-point elements in "a" raised by packed elements in "b", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := POW(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of packed double-precision (64-bit) floating-point elements in "a" raised by packed elements in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := POW(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of packed single-precision (32-bit) floating-point elements in "a" raised by packed elements in "b", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := POW(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the exponential value of packed single-precision (32-bit) floating-point elements in "a" raised by packed elements in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := POW(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Computes the reciprocal of packed double-precision (64-bit) floating-point elements in "a", storing the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := (1.0 / a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Computes the reciprocal of packed double-precision (64-bit) floating-point elements in "a", storing the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (1.0 / a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Computes the reciprocal of packed single-precision (32-bit) floating-point elements in "a", storing the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := (1.0 / a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Computes the reciprocal of packed single-precision (32-bit) floating-point elements in "a", storing the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (1.0 / a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the cumulative distribution function of packed double-precision (64-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := CDFNormal(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the cumulative distribution function of packed double-precision (64-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := CDFNormal(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the cumulative distribution function of packed single-precision (32-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := CDFNormal(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the cumulative distribution function of packed single-precision (32-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := CDFNormal(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the inverse cumulative distribution function of packed double-precision (64-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := InverseCDFNormal(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the inverse cumulative distribution function of packed double-precision (64-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := InverseCDFNormal(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the inverse cumulative distribution function of packed single-precision (32-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := InverseCDFNormal(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the inverse cumulative distribution function of packed single-precision (32-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := InverseCDFNormal(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the error function of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := ERF(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the error function of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ERF(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the complementary error function of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := 1.0 - ERF(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the complementary error function of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := 1.0 - ERF(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the error function of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := ERF(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the error function of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ERF(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the complementary error function of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+63:i] := 1.0 - ERF(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the complementary error function of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+63:i] := 1.0 - ERF(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the inverse error function of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := 1.0 / ERF(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the inverse error function of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := 1.0 / ERF(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the inverse error function of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+63:i] := 1.0 / ERF(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the inverse error function of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+63:i] := 1.0 / ERF(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the inverse complementary error function of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := 1.0 / (1.0 - ERF(a[i+63:i])) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the inverse complementary error function of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := 1.0 / (1.0 - ERF(a[i+63:i])) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the inverse complementary error function of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+63:i] := 1.0 / (1.0 - ERF(a[i+31:i])) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Compute the inverse complementary error function of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+63:i] := 1.0 / (1.0 - ERF(a[i+31:i])) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Probability/Statistics
Round the packed double-precision (64-bit) floating-point elements in "a" up to an integer value, and store the results as packed double-precision floating-point elements in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := CEIL(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Round the packed double-precision (64-bit) floating-point elements in "a" up to an integer value, and store the results as packed double-precision floating-point elements in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := CEIL(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Round the packed single-precision (32-bit) floating-point elements in "a" up to an integer value, and store the results as packed single-precision floating-point elements in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := CEIL(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Round the packed single-precision (32-bit) floating-point elements in "a" up to an integer value, and store the results as packed single-precision floating-point elements in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := CEIL(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Round the packed double-precision (64-bit) floating-point elements in "a" down to an integer value, and store the results as packed double-precision floating-point elements in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := FLOOR(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Round the packed double-precision (64-bit) floating-point elements in "a" down to an integer value, and store the results as packed double-precision floating-point elements in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := FLOOR(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Round the packed single-precision (32-bit) floating-point elements in "a" down to an integer value, and store the results as packed single-precision floating-point elements in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := FLOOR(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Round the packed single-precision (32-bit) floating-point elements in "a" down to an integer value, and store the results as packed single-precision floating-point elements in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := FLOOR(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Rounds each packed double-precision (64-bit) floating-point element in "a" to the nearest integer value and stores the results as packed double-precision floating-point elements in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := NearbyInt(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Rounds each packed double-precision (64-bit) floating-point element in "a" to the nearest integer value and stores the results as packed double-precision floating-point elements in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := NearbyInt(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Rounds each packed single-precision (32-bit) floating-point element in "a" to the nearest integer value and stores the results as packed single-precision floating-point elements in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := NearbyInt(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Rounds each packed single-precision (32-bit) floating-point element in "a" to the nearest integer value and stores the results as packed single-precision floating-point elements in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := NearbyInt(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Rounds the packed double-precision (64-bit) floating-point elements in "a" to the nearest even integer value and stores the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := RoundToNearestEven(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Rounds the packed double-precision (64-bit) floating-point elements in "a" to the nearest even integer value and stores the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := RoundToNearestEven(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Rounds the packed single-precision (32-bit) floating-point elements in "a" to the nearest even integer value and stores the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := RoundToNearestEven(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Rounds the packed single-precision (32-bit) floating-point elements in "a" to the nearest even integer value and stores the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := RoundToNearestEven(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Round the packed double-precision (64-bit) floating-point elements in "a" to the nearest integer value, and store the results as packed double-precision floating-point elements in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := ROUND(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Round the packed double-precision (64-bit) floating-point elements in "a" to the nearest integer value, and store the results as packed double-precision floating-point elements in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ROUND(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Truncate the packed double-precision (64-bit) floating-point elements in "a", and store the results as packed double-precision floating-point elements in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := TRUNCATE(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Truncate the packed double-precision (64-bit) floating-point elements in "a", and store the results as packed double-precision floating-point elements in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := TRUNCATE(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Truncate the packed single-precision (32-bit) floating-point elements in "a", and store the results as packed single-precision floating-point elements in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := TRUNCATE(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Truncate the packed single-precision (32-bit) floating-point elements in "a", and store the results as packed single-precision floating-point elements in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := TRUNCATE(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Divide packed signed 32-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 15 i := 32*j IF b[i+31:i] == 0 #DE FI dst[i+31:i] := Truncate32(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed signed 32-bit integers in "a" by packed elements in "b", and store the truncated results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j IF k[j] IF b[i+31:i] == 0 #DE FI dst[i+31:i] := Truncate32(a[i+31:i] / b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed signed 8-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 63 i := 8*j IF b[i+7:i] == 0 #DE FI dst[i+7:i] := Truncate8(a[i+7:i] / b[i+7:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed signed 16-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 31 i := 16*j IF b[i+15:i] == 0 #DE FI dst[i+15:i] := Truncate16(a[i+15:i] / b[i+15:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed signed 64-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 7 i := 64*j IF b[i+63:i] == 0 #DE FI dst[i+63:i] := Truncate64(a[i+63:i] / b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed 32-bit integers in "a" by packed elements in "b", and store the remainders as packed 32-bit integers in "dst". FOR j := 0 to 15 i := 32*j dst[i+31:i] := REMAINDER(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed 32-bit integers in "a" by packed elements in "b", and store the remainders as packed 32-bit integers in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := REMAINDER(a[i+31:i] / b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed 8-bit integers in "a" by packed elements in "b", and store the remainders as packed 32-bit integers in "dst". FOR j := 0 to 63 i := 8*j dst[i+7:i] := REMAINDER(a[i+7:i] / b[i+7:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed 16-bit integers in "a" by packed elements in "b", and store the remainders as packed 32-bit integers in "dst". FOR j := 0 to 31 i := 16*j dst[i+15:i] := REMAINDER(a[i+15:i] / b[i+15:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed 64-bit integers in "a" by packed elements in "b", and store the remainders as packed 32-bit integers in "dst". FOR j := 0 to 7 i := 64*j dst[i+63:i] := REMAINDER(a[i+63:i] / b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed unsigned 32-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 15 i := 32*j IF b[i+31:i] == 0 #DE FI dst[i+31:i] := Truncate32(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed unsigned 32-bit integers in "a" by packed elements in "b", and store the truncated results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j IF k[j] IF b[i+31:i] == 0 #DE FI dst[i+31:i] := Truncate32(a[i+31:i] / b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed unsigned 8-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 63 i := 8*j IF b[i+7:i] == 0 #DE FI dst[i+7:i] := Truncate8(a[i+7:i] / b[i+7:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed unsigned 16-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 31 i := 16*j IF b[i+15:i] == 0 #DE FI dst[i+15:i] := Truncate16(a[i+15:i] / b[i+15:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed unsigned 64-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 7 i := 64*j IF b[i+63:i] == 0 #DE FI dst[i+63:i] := Truncate64(a[i+63:i] / b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed unsigned 32-bit integers in "a" by packed elements in "b", and store the remainders as packed unsigned 32-bit integers in "dst". FOR j := 0 to 15 i := 32*j dst[i+31:i] := REMAINDER(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed unsigned 32-bit integers in "a" by packed elements in "b", and store the remainders as packed unsigned 32-bit integers in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := REMAINDER(a[i+31:i] / b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed unsigned 8-bit integers in "a" by packed elements in "b", and store the remainders as packed unsigned 32-bit integers in "dst". FOR j := 0 to 63 i := 8*j dst[i+7:i] := REMAINDER(a[i+7:i] / b[i+7:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed unsigned 16-bit integers in "a" by packed elements in "b", and store the remainders as packed unsigned 32-bit integers in "dst". FOR j := 0 to 31 i := 16*j dst[i+15:i] := REMAINDER(a[i+15:i] / b[i+15:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed unsigned 64-bit integers in "a" by packed elements in "b", and store the remainders as packed unsigned 32-bit integers in "dst". FOR j := 0 to 7 i := 64*j dst[i+63:i] := REMAINDER(a[i+63:i] / b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Compute the base-2 logarithm of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := LOG(a[i+31:i]) / LOG(2.0) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the base-2 logarithm of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := LOG(a[i+31:i]) / LOG(2.0) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Add packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] + b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Add packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] + b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Add packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] + b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Add packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] + b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Add packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] + b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Add packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] + b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Add packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] + b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Add packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] + b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Divide packed double-precision (64-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j IF k[j] dst[i+63:i] := a[i+63:i] / b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Divide packed double-precision (64-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j IF k[j] dst[i+63:i] := a[i+63:i] / b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Divide packed double-precision (64-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j IF k[j] dst[i+63:i] := a[i+63:i] / b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Divide packed double-precision (64-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j IF k[j] dst[i+63:i] := a[i+63:i] / b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Divide packed single-precision (32-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j IF k[j] dst[i+31:i] := a[i+31:i] / b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Divide packed single-precision (32-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j IF k[j] dst[i+31:i] := a[i+31:i] / b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Divide packed single-precision (32-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j IF k[j] dst[i+31:i] := a[i+31:i] / b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Divide packed single-precision (32-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j IF k[j] dst[i+31:i] := a[i+31:i] / b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] FI ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] FI ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] FI ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] FI ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] FI ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] FI ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] FI ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] FI ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] FI ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] FI ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] FI ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] FI ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] FI ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] FI ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] FI ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] FI ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [max_float_note] FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [max_float_note] FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [max_float_note] FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [max_float_note] FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [max_float_note] FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [max_float_note] FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [max_float_note] FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [max_float_note] FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [min_float_note] FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [min_float_note] FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [min_float_note] FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [min_float_note] FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [min_float_note] FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [min_float_note] FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [min_float_note] FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [min_float_note] FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] * b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] * b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] * b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] * b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). RM. FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] * b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] * b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] * b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] * b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the absolute value of packed signed 32-bit integers in "a", and store the unsigned results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := ABS(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the absolute value of packed signed 32-bit integers in "a", and store the unsigned results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := ABS(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the absolute value of packed signed 32-bit integers in "a", and store the unsigned results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := ABS(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the absolute value of packed signed 32-bit integers in "a", and store the unsigned results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := ABS(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the absolute value of packed signed 64-bit integers in "a", and store the unsigned results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := ABS(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the absolute value of packed signed 64-bit integers in "a", and store the unsigned results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := ABS(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the absolute value of packed signed 64-bit integers in "a", and store the unsigned results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := ABS(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the absolute value of packed signed 64-bit integers in "a", and store the unsigned results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := ABS(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the absolute value of packed signed 64-bit integers in "a", and store the unsigned results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := ABS(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the absolute value of packed signed 64-bit integers in "a", and store the unsigned results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := ABS(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Add packed 32-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] + b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Add packed 32-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] + b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Add packed 32-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] + b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Add packed 32-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] + b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Add packed 64-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] + b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Add packed 64-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] + b[i+63:i] ELSE dst[i+63:i] :=0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Add packed 64-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] + b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Add packed 64-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] + b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 32-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 32-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 32-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 32-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 64-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 64-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 64-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 64-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 64-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 64-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 32-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 32-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 32-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 32-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 64-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 64-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 64-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 64-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 64-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 64-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 32-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 32-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 32-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 32-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 64-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 64-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 64-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 64-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 64-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed signed 64-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 32-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 32-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 32-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 32-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 64-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 64-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 64-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 64-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 64-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compare packed unsigned 64-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply the low signed 32-bit integers from each packed 64-bit element in "a" and "b", and store the signed 64-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := SignExtend64(a[i+31:i]) * SignExtend64(b[i+31:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply the low signed 32-bit integers from each packed 64-bit element in "a" and "b", and store the signed 64-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := SignExtend64(a[i+31:i]) * SignExtend64(b[i+31:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply the low signed 32-bit integers from each packed 64-bit element in "a" and "b", and store the signed 64-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := SignExtend64(a[i+31:i]) * SignExtend64(b[i+31:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply the low signed 32-bit integers from each packed 64-bit element in "a" and "b", and store the signed 64-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := SignExtend64(a[i+31:i]) * SignExtend64(b[i+31:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply the packed 32-bit integers in "a" and "b", producing intermediate 64-bit integers, and store the low 32 bits of the intermediate integers in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] tmp[63:0] := a[i+31:i] * b[i+31:i] dst[i+31:i] := tmp[31:0] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply the packed 32-bit integers in "a" and "b", producing intermediate 64-bit integers, and store the low 32 bits of the intermediate integers in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] tmp[63:0] := a[i+31:i] * b[i+31:i] dst[i+31:i] := tmp[31:0] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply the packed 32-bit integers in "a" and "b", producing intermediate 64-bit integers, and store the low 32 bits of the intermediate integers in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] tmp[63:0] := a[i+31:i] * b[i+31:i] dst[i+31:i] := tmp[31:0] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply the packed 32-bit integers in "a" and "b", producing intermediate 64-bit integers, and store the low 32 bits of the intermediate integers in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] tmp[63:0] := a[i+31:i] * b[i+31:i] dst[i+31:i] := tmp[31:0] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply the low unsigned 32-bit integers from each packed 64-bit element in "a" and "b", and store the unsigned 64-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+31:i] * b[i+31:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply the low unsigned 32-bit integers from each packed 64-bit element in "a" and "b", and store the unsigned 64-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+31:i] * b[i+31:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply the low unsigned 32-bit integers from each packed 64-bit element in "a" and "b", and store the unsigned 64-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+31:i] * b[i+31:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Multiply the low unsigned 32-bit integers from each packed 64-bit element in "a" and "b", and store the unsigned 64-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+31:i] * b[i+31:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Subtract packed 32-bit integers in "b" from packed 32-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] - b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Subtract packed 32-bit integers in "b" from packed 32-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] - b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Subtract packed 32-bit integers in "b" from packed 32-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] - b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Subtract packed 32-bit integers in "b" from packed 32-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] - b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Subtract packed 64-bit integers in "b" from packed 64-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] - b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Subtract packed 64-bit integers in "b" from packed 64-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] - b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Subtract packed 64-bit integers in "b" from packed 64-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] - b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Subtract packed 64-bit integers in "b" from packed 64-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] - b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := (1.0 / a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := (1.0 / a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 3 i := j*64 dst[i+63:i] := (1.0 / a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := (1.0 / a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := (1.0 / a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 1 i := j*64 dst[i+63:i] := (1.0 / a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := (1.0 / a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := (1.0 / a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 7 i := j*32 dst[i+31:i] := (1.0 / a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := (1.0 / a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := (1.0 / a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 3 i := j*32 dst[i+31:i] := (1.0 / a[i+31:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 3 i := j*64 dst[i+63:i] := (1.0 / SQRT(a[i+63:i])) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := (1.0 / SQRT(a[i+63:i])) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := (1.0 / SQRT(a[i+63:i])) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 1 i := j*64 dst[i+63:i] := (1.0 / SQRT(a[i+63:i])) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := (1.0 / SQRT(a[i+63:i])) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := (1.0 / SQRT(a[i+63:i])) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 7 i := j*32 dst[i+31:i] := (1.0 / SQRT(a[i+31:i])) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := (1.0 / SQRT(a[i+31:i])) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := (1.0 / SQRT(a[i+31:i])) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 3 i := j*32 dst[i+31:i] := (1.0 / SQRT(a[i+31:i])) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := (1.0 / SQRT(a[i+31:i])) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := (1.0 / SQRT(a[i+31:i])) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Subtract packed double-precision (64-bit) floating-point elements in "b" from packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] - b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Subtract packed double-precision (64-bit) floating-point elements in "b" from packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] - b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Subtract packed double-precision (64-bit) floating-point elements in "b" from packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] - b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Subtract packed double-precision (64-bit) floating-point elements in "b" from packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] - b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Subtract packed single-precision (32-bit) floating-point elements in "b" from packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] - b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Subtract packed single-precision (32-bit) floating-point elements in "b" from packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] - b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Subtract packed single-precision (32-bit) floating-point elements in "b" from packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] - b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Subtract packed single-precision (32-bit) floating-point elements in "b" from packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] - b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Arithmetic
Concatenate "a" and "b" into a 64-byte immediate result, shift the result right by "imm8" 32-bit elements, and store the low 32 bytes (8 elements) in "dst". temp[511:256] := a[255:0] temp[255:0] := b[255:0] temp[511:0] := temp[511:0] >> (32*imm8[2:0]) dst[255:0] := temp[255:0] dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Concatenate "a" and "b" into a 64-byte immediate result, shift the result right by "imm8" 32-bit elements, and store the low 32 bytes (8 elements) in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). temp[511:256] := a[255:0] temp[255:0] := b[255:0] temp[511:0] := temp[511:0] >> (32*imm8[2:0]) FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := temp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Concatenate "a" and "b" into a 64-byte immediate result, shift the result right by "imm8" 32-bit elements, and store the low 32 bytes (8 elements) in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). temp[511:256] := a[255:0] temp[255:0] := b[255:0] temp[511:0] := temp[511:0] >> (32*imm8[2:0]) FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := temp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Concatenate "a" and "b" into a 32-byte immediate result, shift the result right by "imm8" 32-bit elements, and store the low 16 bytes (4 elements) in "dst". temp[255:128] := a[127:0] temp[127:0] := b[127:0] temp[255:0] := temp[255:0] >> (32*imm8[1:0]) dst[127:0] := temp[127:0] dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Concatenate "a" and "b" into a 32-byte immediate result, shift the result right by "imm8" 32-bit elements, and store the low 16 bytes (4 elements) in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). temp[255:128] := a[127:0] temp[127:0] := b[127:0] temp[255:0] := temp[255:0] >> (32*imm8[1:0]) FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := temp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Concatenate "a" and "b" into a 32-byte immediate result, shift the result right by "imm8" 32-bit elements, and store the low 16 bytes (4 elements) in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). temp[255:128] := a[127:0] temp[127:0] := b[127:0] temp[255:0] := temp[255:0] >> (32*imm8[1:0]) FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := temp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Concatenate "a" and "b" into a 64-byte immediate result, shift the result right by "imm8" 64-bit elements, and store the low 32 bytes (4 elements) in "dst". temp[511:256] := a[255:0] temp[255:0] := b[255:0] temp[511:0] := temp[511:0] >> (64*imm8[1:0]) dst[255:0] := temp[255:0] dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Concatenate "a" and "b" into a 64-byte immediate result, shift the result right by "imm8" 64-bit elements, and store the low 32 bytes (4 elements) in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). temp[511:256] := a[255:0] temp[255:0] := b[255:0] temp[511:0] := temp[511:0] >> (64*imm8[1:0]) FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := temp[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Concatenate "a" and "b" into a 64-byte immediate result, shift the result right by "imm8" 64-bit elements, and store the low 32 bytes (4 elements) in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). temp[511:256] := a[255:0] temp[255:0] := b[255:0] temp[511:0] := temp[511:0] >> (64*imm8[1:0]) FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := temp[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Concatenate "a" and "b" into a 32-byte immediate result, shift the result right by "imm8" 64-bit elements, and store the low 16 bytes (2 elements) in "dst". temp[255:128] := a[127:0] temp[127:0] := b[127:0] temp[255:0] := temp[255:0] >> (64*imm8[0]) dst[127:0] := temp[127:0] dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Concatenate "a" and "b" into a 32-byte immediate result, shift the result right by "imm8" 64-bit elements, and store the low 16 bytes (2 elements) in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). temp[255:128] := a[127:0] temp[127:0] := b[127:0] temp[255:0] := temp[255:0] >> (64*imm8[0]) FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := temp[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Concatenate "a" and "b" into a 32-byte immediate result, shift the result right by "imm8" 64-bit elements, and store the low 16 bytes (2 elements) in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). temp[255:128] := a[127:0] temp[127:0] := b[127:0] temp[255:0] := temp[255:0] >> (64*imm8[0]) FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := temp[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Blend packed double-precision (64-bit) floating-point elements from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := b[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Blend packed double-precision (64-bit) floating-point elements from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := b[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Blend packed single-precision (32-bit) floating-point elements from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := b[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Blend packed single-precision (32-bit) floating-point elements from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := b[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the 4 packed single-precision (32-bit) floating-point elements from "a" to all elements of "dst". FOR j := 0 to 7 i := j*32 n := (j % 4)*32 dst[i+31:i] := a[n+31:n] ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the 4 packed single-precision (32-bit) floating-point elements from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 n := (j % 4)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the 4 packed single-precision (32-bit) floating-point elements from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 n := (j % 4)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the 4 packed 32-bit integers from "a" to all elements of "dst". FOR j := 0 to 7 i := j*32 n := (j % 4)*32 dst[i+31:i] := a[n+31:n] ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the 4 packed 32-bit integers from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 n := (j % 4)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the 4 packed 32-bit integers from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 n := (j % 4)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the low double-precision (64-bit) floating-point element from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[63:0] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the low double-precision (64-bit) floating-point element from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[63:0] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the low single-precision (32-bit) floating-point element from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[31:0] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the low single-precision (32-bit) floating-point element from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[31:0] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the low single-precision (32-bit) floating-point element from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[31:0] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the low single-precision (32-bit) floating-point element from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[31:0] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Contiguously store the active double-precision (64-bit) floating-point elements in "a" (those with their respective bit set in writemask "k") to "dst", and pass through the remaining elements from "src". size := 64 m := 0 FOR j := 0 to 3 i := j*64 IF k[j] dst[m+size-1:m] := a[i+63:i] m := m + size FI ENDFOR dst[255:m] := src[255:m] dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Contiguously store the active double-precision (64-bit) floating-point elements in "a" (those with their respective bit set in zeromask "k") to "dst", and set the remaining elements to zero. size := 64 m := 0 FOR j := 0 to 3 i := j*64 IF k[j] dst[m+size-1:m] := a[i+63:i] m := m + size FI ENDFOR dst[255:m] := 0 dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Contiguously store the active double-precision (64-bit) floating-point elements in "a" (those with their respective bit set in writemask "k") to "dst", and pass through the remaining elements from "src". size := 64 m := 0 FOR j := 0 to 1 i := j*64 IF k[j] dst[m+size-1:m] := a[i+63:i] m := m + size FI ENDFOR dst[127:m] := src[127:m] dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Contiguously store the active double-precision (64-bit) floating-point elements in "a" (those with their respective bit set in zeromask "k") to "dst", and set the remaining elements to zero. size := 64 m := 0 FOR j := 0 to 1 i := j*64 IF k[j] dst[m+size-1:m] := a[i+63:i] m := m + size FI ENDFOR dst[127:m] := 0 dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Contiguously store the active single-precision (32-bit) floating-point elements in "a" (those with their respective bit set in writemask "k") to "dst", and pass through the remaining elements from "src". size := 32 m := 0 FOR j := 0 to 7 i := j*32 IF k[j] dst[m+size-1:m] := a[i+31:i] m := m + size FI ENDFOR dst[255:m] := src[255:m] dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Contiguously store the active single-precision (32-bit) floating-point elements in "a" (those with their respective bit set in zeromask "k") to "dst", and set the remaining elements to zero. size := 32 m := 0 FOR j := 0 to 7 i := j*32 IF k[j] dst[m+size-1:m] := a[i+31:i] m := m + size FI ENDFOR dst[255:m] := 0 dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Contiguously store the active single-precision (32-bit) floating-point elements in "a" (those with their respective bit set in writemask "k") to "dst", and pass through the remaining elements from "src". size := 32 m := 0 FOR j := 0 to 3 i := j*32 IF k[j] dst[m+size-1:m] := a[i+31:i] m := m + size FI ENDFOR dst[127:m] := src[127:m] dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Contiguously store the active single-precision (32-bit) floating-point elements in "a" (those with their respective bit set in zeromask "k") to "dst", and set the remaining elements to zero. size := 32 m := 0 FOR j := 0 to 3 i := j*32 IF k[j] dst[m+size-1:m] := a[i+31:i] m := m + size FI ENDFOR dst[127:m] := 0 dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Load contiguous active double-precision (64-bit) floating-point elements from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[m+63:m] m := m + 64 ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Load contiguous active double-precision (64-bit) floating-point elements from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[m+63:m] m := m + 64 ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Load contiguous active double-precision (64-bit) floating-point elements from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[m+63:m] m := m + 64 ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Load contiguous active double-precision (64-bit) floating-point elements from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[m+63:m] m := m + 64 ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Load contiguous active single-precision (32-bit) floating-point elements from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[m+31:m] m := m + 32 ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Load contiguous active single-precision (32-bit) floating-point elements from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[m+31:m] m := m + 32 ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Load contiguous active single-precision (32-bit) floating-point elements from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[m+31:m] m := m + 32 ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Load contiguous active single-precision (32-bit) floating-point elements from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[m+31:m] m := m + 32 ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from "a", selected with "imm8", and store the result in "dst". CASE imm8[0] OF 0: dst[127:0] := a[127:0] 1: dst[127:0] := a[255:128] ESAC dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from "a", selected with "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). CASE imm8[0] OF 0: tmp[127:0] := a[127:0] 1: tmp[127:0] := a[255:128] ESAC FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from "a", selected with "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). CASE imm8[0] OF 0: tmp[127:0] := a[127:0] 1: tmp[127:0] := a[255:128] ESAC FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Extract 128 bits (composed of 4 packed 32-bit integers) from "a", selected with "imm8", and store the result in "dst". CASE imm8[0] OF 0: dst[127:0] := a[127:0] 1: dst[127:0] := a[255:128] ESAC dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Extract 128 bits (composed of 4 packed 32-bit integers) from "a", selected with "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). CASE imm8[0] OF 0: tmp[127:0] := a[127:0] 1: tmp[127:0] := a[255:128] ESAC FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Extract 128 bits (composed of 4 packed 32-bit integers) from "a", selected with "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). CASE imm8[0] OF 0: tmp[127:0] := a[127:0] 1: tmp[127:0] := a[255:128] ESAC FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Fix up packed double-precision (64-bit) floating-point elements in "a" and "b" using packed 64-bit integers in "c", and store the results in "dst". "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[63:0], src2[63:0], src3[63:0], imm8[7:0]) { tsrc[63:0] := ((src2[62:52] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[63:0] CASE(tsrc[63:0]) OF QNAN_TOKEN: j := 0 SNAN_TOKEN: j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[63:0] := src1[63:0] 1 : dest[63:0] := tsrc[63:0] 2 : dest[63:0] := QNaN(tsrc[63:0]) 3 : dest[63:0] := QNAN_Indefinite 4 : dest[63:0] := -INF 5 : dest[63:0] := +INF 6 : dest[63:0] := tsrc.sign? -INF : +INF 7 : dest[63:0] := -0 8 : dest[63:0] := +0 9 : dest[63:0] := -1 10: dest[63:0] := +1 11: dest[63:0] := 1/2 12: dest[63:0] := 90.0 13: dest[63:0] := PI/2 14: dest[63:0] := MAX_FLOAT 15: dest[63:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[63:0] } FOR j := 0 to 3 i := j*64 dst[i+63:i] := FIXUPIMMPD(a[i+63:i], b[i+63:i], c[i+63:i], imm8[7:0]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Fix up packed double-precision (64-bit) floating-point elements in "a" and "b" using packed 64-bit integers in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[63:0], src2[63:0], src3[63:0], imm8[7:0]) { tsrc[63:0] := ((src2[62:52] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[63:0] CASE(tsrc[63:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[63:0] := src1[63:0] 1 : dest[63:0] := tsrc[63:0] 2 : dest[63:0] := QNaN(tsrc[63:0]) 3 : dest[63:0] := QNAN_Indefinite 4 : dest[63:0] := -INF 5 : dest[63:0] := +INF 6 : dest[63:0] := tsrc.sign? -INF : +INF 7 : dest[63:0] := -0 8 : dest[63:0] := +0 9 : dest[63:0] := -1 10: dest[63:0] := +1 11: dest[63:0] := 1/2 12: dest[63:0] := 90.0 13: dest[63:0] := PI/2 14: dest[63:0] := MAX_FLOAT 15: dest[63:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[63:0] } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := FIXUPIMMPD(a[i+63:i], b[i+63:i], c[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Fix up packed double-precision (64-bit) floating-point elements in "a" and "b" using packed 64-bit integers in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[63:0], src2[63:0], src3[63:0], imm8[7:0]) { tsrc[63:0] := ((src2[62:52] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[63:0] CASE(tsrc[63:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[63:0] := src1[63:0] 1 : dest[63:0] := tsrc[63:0] 2 : dest[63:0] := QNaN(tsrc[63:0]) 3 : dest[63:0] := QNAN_Indefinite 4 : dest[63:0] := -INF 5 : dest[63:0] := +INF 6 : dest[63:0] := tsrc.sign? -INF : +INF 7 : dest[63:0] := -0 8 : dest[63:0] := +0 9 : dest[63:0] := -1 10: dest[63:0] := +1 11: dest[63:0] := 1/2 12: dest[63:0] := 90.0 13: dest[63:0] := PI/2 14: dest[63:0] := MAX_FLOAT 15: dest[63:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[63:0] } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := FIXUPIMMPD(a[i+63:i], b[i+63:i], c[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Fix up packed double-precision (64-bit) floating-point elements in "a" and "b" using packed 64-bit integers in "c", and store the results in "dst". "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[63:0], src2[63:0], src3[63:0], imm8[7:0]) { tsrc[63:0] := ((src2[62:52] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[63:0] CASE(tsrc[63:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[63:0] := src1[63:0] 1 : dest[63:0] := tsrc[63:0] 2 : dest[63:0] := QNaN(tsrc[63:0]) 3 : dest[63:0] := QNAN_Indefinite 4 : dest[63:0] := -INF 5 : dest[63:0] := +INF 6 : dest[63:0] := tsrc.sign? -INF : +INF 7 : dest[63:0] := -0 8 : dest[63:0] := +0 9 : dest[63:0] := -1 10: dest[63:0] := +1 11: dest[63:0] := 1/2 12: dest[63:0] := 90.0 13: dest[63:0] := PI/2 14: dest[63:0] := MAX_FLOAT 15: dest[63:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[63:0] } FOR j := 0 to 1 i := j*64 dst[i+63:i] := FIXUPIMMPD(a[i+63:i], b[i+63:i], c[i+63:i], imm8[7:0]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Fix up packed double-precision (64-bit) floating-point elements in "a" and "b" using packed 64-bit integers in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[63:0], src2[63:0], src3[63:0], imm8[7:0]) { tsrc[63:0] := ((src2[62:52] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[63:0] CASE(tsrc[63:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[63:0] := src1[63:0] 1 : dest[63:0] := tsrc[63:0] 2 : dest[63:0] := QNaN(tsrc[63:0]) 3 : dest[63:0] := QNAN_Indefinite 4 : dest[63:0] := -INF 5 : dest[63:0] := +INF 6 : dest[63:0] := tsrc.sign? -INF : +INF 7 : dest[63:0] := -0 8 : dest[63:0] := +0 9 : dest[63:0] := -1 10: dest[63:0] := +1 11: dest[63:0] := 1/2 12: dest[63:0] := 90.0 13: dest[63:0] := PI/2 14: dest[63:0] := MAX_FLOAT 15: dest[63:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[63:0] } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := FIXUPIMMPD(a[i+63:i], b[i+63:i], c[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Fix up packed double-precision (64-bit) floating-point elements in "a" and "b" using packed 64-bit integers in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[63:0], src2[63:0], src3[63:0], imm8[7:0]) { tsrc[63:0] := ((src2[62:52] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[63:0] CASE(tsrc[63:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[63:0] := src1[63:0] 1 : dest[63:0] := tsrc[63:0] 2 : dest[63:0] := QNaN(tsrc[63:0]) 3 : dest[63:0] := QNAN_Indefinite 4 : dest[63:0] := -INF 5 : dest[63:0] := +INF 6 : dest[63:0] := tsrc.sign? -INF : +INF 7 : dest[63:0] := -0 8 : dest[63:0] := +0 9 : dest[63:0] := -1 10: dest[63:0] := +1 11: dest[63:0] := 1/2 12: dest[63:0] := 90.0 13: dest[63:0] := PI/2 14: dest[63:0] := MAX_FLOAT 15: dest[63:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[63:0] } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := FIXUPIMMPD(a[i+63:i], b[i+63:i], c[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Fix up packed single-precision (32-bit) floating-point elements in "a" and "b" using packed 32-bit integers in "c", and store the results in "dst". "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[31:0], src2[31:0], src3[31:0], imm8[7:0]) { tsrc[31:0] := ((src2[30:23] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[31:0] CASE(tsrc[31:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[31:0] := src1[31:0] 1 : dest[31:0] := tsrc[31:0] 2 : dest[31:0] := QNaN(tsrc[31:0]) 3 : dest[31:0] := QNAN_Indefinite 4 : dest[31:0] := -INF 5 : dest[31:0] := +INF 6 : dest[31:0] := tsrc.sign? -INF : +INF 7 : dest[31:0] := -0 8 : dest[31:0] := +0 9 : dest[31:0] := -1 10: dest[31:0] := +1 11: dest[31:0] := 1/2 12: dest[31:0] := 90.0 13: dest[31:0] := PI/2 14: dest[31:0] := MAX_FLOAT 15: dest[31:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[31:0] } FOR j := 0 to 7 i := j*32 dst[i+31:i] := FIXUPIMMPD(a[i+31:i], b[i+31:i], c[i+31:i], imm8[7:0]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Fix up packed single-precision (32-bit) floating-point elements in "a" and "b" using packed 32-bit integers in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[31:0], src2[31:0], src3[31:0], imm8[7:0]) { tsrc[31:0] := ((src2[30:23] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[31:0] CASE(tsrc[31:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[31:0] := src1[31:0] 1 : dest[31:0] := tsrc[31:0] 2 : dest[31:0] := QNaN(tsrc[31:0]) 3 : dest[31:0] := QNAN_Indefinite 4 : dest[31:0] := -INF 5 : dest[31:0] := +INF 6 : dest[31:0] := tsrc.sign? -INF : +INF 7 : dest[31:0] := -0 8 : dest[31:0] := +0 9 : dest[31:0] := -1 10: dest[31:0] := +1 11: dest[31:0] := 1/2 12: dest[31:0] := 90.0 13: dest[31:0] := PI/2 14: dest[31:0] := MAX_FLOAT 15: dest[31:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[31:0] } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := FIXUPIMMPD(a[i+31:i], b[i+31:i], c[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Fix up packed single-precision (32-bit) floating-point elements in "a" and "b" using packed 32-bit integers in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[31:0], src2[31:0], src3[31:0], imm8[7:0]) { tsrc[31:0] := ((src2[30:23] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[31:0] CASE(tsrc[31:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[31:0] := src1[31:0] 1 : dest[31:0] := tsrc[31:0] 2 : dest[31:0] := QNaN(tsrc[31:0]) 3 : dest[31:0] := QNAN_Indefinite 4 : dest[31:0] := -INF 5 : dest[31:0] := +INF 6 : dest[31:0] := tsrc.sign? -INF : +INF 7 : dest[31:0] := -0 8 : dest[31:0] := +0 9 : dest[31:0] := -1 10: dest[31:0] := +1 11: dest[31:0] := 1/2 12: dest[31:0] := 90.0 13: dest[31:0] := PI/2 14: dest[31:0] := MAX_FLOAT 15: dest[31:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[31:0] } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := FIXUPIMMPD(a[i+31:i], b[i+31:i], c[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Fix up packed single-precision (32-bit) floating-point elements in "a" and "b" using packed 32-bit integers in "c", and store the results in "dst". "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[31:0], src2[31:0], src3[31:0], imm8[7:0]) { tsrc[31:0] := ((src2[30:23] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[31:0] CASE(tsrc[31:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[31:0] := src1[31:0] 1 : dest[31:0] := tsrc[31:0] 2 : dest[31:0] := QNaN(tsrc[31:0]) 3 : dest[31:0] := QNAN_Indefinite 4 : dest[31:0] := -INF 5 : dest[31:0] := +INF 6 : dest[31:0] := tsrc.sign? -INF : +INF 7 : dest[31:0] := -0 8 : dest[31:0] := +0 9 : dest[31:0] := -1 10: dest[31:0] := +1 11: dest[31:0] := 1/2 12: dest[31:0] := 90.0 13: dest[31:0] := PI/2 14: dest[31:0] := MAX_FLOAT 15: dest[31:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[31:0] } FOR j := 0 to 3 i := j*32 dst[i+31:i] := FIXUPIMMPD(a[i+31:i], b[i+31:i], c[i+31:i], imm8[7:0]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Fix up packed single-precision (32-bit) floating-point elements in "a" and "b" using packed 32-bit integers in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[31:0], src2[31:0], src3[31:0], imm8[7:0]) { tsrc[31:0] := ((src2[30:23] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[31:0] CASE(tsrc[31:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[31:0] := src1[31:0] 1 : dest[31:0] := tsrc[31:0] 2 : dest[31:0] := QNaN(tsrc[31:0]) 3 : dest[31:0] := QNAN_Indefinite 4 : dest[31:0] := -INF 5 : dest[31:0] := +INF 6 : dest[31:0] := tsrc.sign? -INF : +INF 7 : dest[31:0] := -0 8 : dest[31:0] := +0 9 : dest[31:0] := -1 10: dest[31:0] := +1 11: dest[31:0] := 1/2 12: dest[31:0] := 90.0 13: dest[31:0] := PI/2 14: dest[31:0] := MAX_FLOAT 15: dest[31:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[31:0] } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := FIXUPIMMPD(a[i+31:i], b[i+31:i], c[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Fix up packed single-precision (32-bit) floating-point elements in "a" and "b" using packed 32-bit integers in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[31:0], src2[31:0], src3[31:0], imm8[7:0]) { tsrc[31:0] := ((src2[30:23] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[31:0] CASE(tsrc[31:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[31:0] := src1[31:0] 1 : dest[31:0] := tsrc[31:0] 2 : dest[31:0] := QNaN(tsrc[31:0]) 3 : dest[31:0] := QNAN_Indefinite 4 : dest[31:0] := -INF 5 : dest[31:0] := +INF 6 : dest[31:0] := tsrc.sign? -INF : +INF 7 : dest[31:0] := -0 8 : dest[31:0] := +0 9 : dest[31:0] := -1 10: dest[31:0] := +1 11: dest[31:0] := 1/2 12: dest[31:0] := 90.0 13: dest[31:0] := PI/2 14: dest[31:0] := MAX_FLOAT 15: dest[31:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[31:0] } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := FIXUPIMMPD(a[i+31:i], b[i+31:i], c[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Convert the exponent of each packed double-precision (64-bit) floating-point element in "a" to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 3 i := j*64 dst[i+63:i] := ConvertExpFP64(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Convert the exponent of each packed double-precision (64-bit) floating-point element in "a" to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := ConvertExpFP64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Convert the exponent of each packed double-precision (64-bit) floating-point element in "a" to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := ConvertExpFP64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Convert the exponent of each packed double-precision (64-bit) floating-point element in "a" to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 1 i := j*64 dst[i+63:i] := ConvertExpFP64(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Convert the exponent of each packed double-precision (64-bit) floating-point element in "a" to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := ConvertExpFP64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Convert the exponent of each packed double-precision (64-bit) floating-point element in "a" to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := ConvertExpFP64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Convert the exponent of each packed single-precision (32-bit) floating-point element in "a" to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 7 i := j*32 dst[i+31:i] := ConvertExpFP32(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Convert the exponent of each packed single-precision (32-bit) floating-point element in "a" to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := ConvertExpFP32(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Convert the exponent of each packed single-precision (32-bit) floating-point element in "a" to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := ConvertExpFP32(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Convert the exponent of each packed single-precision (32-bit) floating-point element in "a" to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 3 i := j*32 dst[i+31:i] := ConvertExpFP32(a[i+31:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Convert the exponent of each packed single-precision (32-bit) floating-point element in "a" to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := ConvertExpFP32(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Convert the exponent of each packed single-precision (32-bit) floating-point element in "a" to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := ConvertExpFP32(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] FOR j := 0 to 3 i := j*64 dst[i+63:i] := GetNormalizedMantissa(a[i+63:i], sc, interv) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := GetNormalizedMantissa(a[i+63:i], sc, interv) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := GetNormalizedMantissa(a[i+63:i], sc, interv) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] FOR j := 0 to 1 i := j*64 dst[i+63:i] := GetNormalizedMantissa(a[i+63:i], sc, interv) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := GetNormalizedMantissa(a[i+63:i], sc, interv) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := GetNormalizedMantissa(a[i+63:i], sc, interv) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] FOR j := 0 to 7 i := j*32 dst[i+31:i] := GetNormalizedMantissa(a[i+31:i], sc, interv) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := GetNormalizedMantissa(a[i+31:i], sc, interv) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := GetNormalizedMantissa(a[i+31:i], sc, interv) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] FOR j := 0 to 3 i := j*32 dst[i+31:i] := GetNormalizedMantissa(a[i+31:i], sc, interv) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := GetNormalizedMantissa(a[i+31:i], sc, interv) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := GetNormalizedMantissa(a[i+31:i], sc, interv) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Copy "a" to "dst", then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from "b" into "dst" at the location specified by "imm8". dst[255:0] := a[255:0] CASE (imm8[0]) OF 0: dst[127:0] := b[127:0] 1: dst[255:128] := b[127:0] ESAC dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Copy "a" to "tmp", then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[255:0] := a[255:0] CASE (imm8[0]) OF 0: tmp[127:0] := b[127:0] 1: tmp[255:128] := b[127:0] ESAC FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Copy "a" to "tmp", then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[255:0] := a[255:0] CASE (imm8[0]) OF 0: tmp[127:0] := b[127:0] 1: tmp[255:128] := b[127:0] ESAC FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Copy "a" to "dst", then insert 128 bits (composed of 4 packed 32-bit integers) from "b" into "dst" at the location specified by "imm8". dst[255:0] := a[255:0] CASE (imm8[0]) OF 0: dst[127:0] := b[127:0] 1: dst[255:128] := b[127:0] ESAC dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Copy "a" to "tmp", then insert 128 bits (composed of 4 packed 32-bit integers) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[255:0] := a[255:0] CASE (imm8[0]) OF 0: tmp[127:0] := b[127:0] 1: tmp[255:128] := b[127:0] ESAC FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Copy "a" to "tmp", then insert 128 bits (composed of 4 packed 32-bit integers) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[255:0] := a[255:0] CASE (imm8[0]) OF 0: tmp[127:0] := b[127:0] 1: tmp[255:128] := b[127:0] ESAC FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Blend packed 32-bit integers from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := b[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Blend packed 32-bit integers from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := b[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Blend packed 64-bit integers from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := b[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Blend packed 64-bit integers from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := b[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the low packed 32-bit integer from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[31:0] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the low packed 32-bit integer from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[31:0] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the low packed 32-bit integer from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[31:0] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the low packed 32-bit integer from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[31:0] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the low packed 64-bit integer from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[63:0] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the low packed 64-bit integer from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[63:0] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the low packed 64-bit integer from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[63:0] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Broadcast the low packed 64-bit integer from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[63:0] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Contiguously store the active 32-bit integers in "a" (those with their respective bit set in writemask "k") to "dst", and pass through the remaining elements from "src". size := 32 m := 0 FOR j := 0 to 7 i := j*32 IF k[j] dst[m+size-1:m] := a[i+31:i] m := m + size FI ENDFOR dst[255:m] := src[255:m] dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Contiguously store the active 32-bit integers in "a" (those with their respective bit set in zeromask "k") to "dst", and set the remaining elements to zero. size := 32 m := 0 FOR j := 0 to 7 i := j*32 IF k[j] dst[m+size-1:m] := a[i+31:i] m := m + size FI ENDFOR dst[255:m] := 0 dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Contiguously store the active 32-bit integers in "a" (those with their respective bit set in writemask "k") to "dst", and pass through the remaining elements from "src". size := 32 m := 0 FOR j := 0 to 3 i := j*32 IF k[j] dst[m+size-1:m] := a[i+31:i] m := m + size FI ENDFOR dst[127:m] := src[127:m] dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Contiguously store the active 32-bit integers in "a" (those with their respective bit set in zeromask "k") to "dst", and set the remaining elements to zero. size := 32 m := 0 FOR j := 0 to 3 i := j*32 IF k[j] dst[m+size-1:m] := a[i+31:i] m := m + size FI ENDFOR dst[127:m] := 0 dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Contiguously store the active 64-bit integers in "a" (those with their respective bit set in writemask "k") to "dst", and pass through the remaining elements from "src". size := 64 m := 0 FOR j := 0 to 3 i := j*64 IF k[j] dst[m+size-1:m] := a[i+63:i] m := m + size FI ENDFOR dst[255:m] := src[255:m] dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Contiguously store the active 64-bit integers in "a" (those with their respective bit set in zeromask "k") to "dst", and set the remaining elements to zero. size := 64 m := 0 FOR j := 0 to 3 i := j*64 IF k[j] dst[m+size-1:m] := a[i+63:i] m := m + size FI ENDFOR dst[255:m] := 0 dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Contiguously store the active 64-bit integers in "a" (those with their respective bit set in writemask "k") to "dst", and pass through the remaining elements from "src". size := 64 m := 0 FOR j := 0 to 1 i := j*64 IF k[j] dst[m+size-1:m] := a[i+63:i] m := m + size FI ENDFOR dst[127:m] := src[127:m] dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Contiguously store the active 64-bit integers in "a" (those with their respective bit set in zeromask "k") to "dst", and set the remaining elements to zero. size := 64 m := 0 FOR j := 0 to 1 i := j*64 IF k[j] dst[m+size-1:m] := a[i+63:i] m := m + size FI ENDFOR dst[127:m] := 0 dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 32-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 id := idx[i+2:i]*32 IF k[j] dst[i+31:i] := a[id+31:id] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 32-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 id := idx[i+2:i]*32 IF k[j] dst[i+31:i] := a[id+31:id] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 32-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst". FOR j := 0 to 7 i := j*32 id := idx[i+2:i]*32 dst[i+31:i] := a[id+31:id] ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 32-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "idx" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 off := idx[i+2:i]*32 IF k[j] dst[i+31:i] := idx[i+3] ? b[off+31:off] : a[off+31:off] ELSE dst[i+31:i] := idx[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 32-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 off := idx[i+2:i]*32 IF k[j] dst[i+31:i] := idx[i+3] ? b[off+31:off] : a[off+31:off] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 32-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 off := idx[i+2:i]*32 IF k[j] dst[i+31:i] := (idx[i+3]) ? b[off+31:off] : a[off+31:off] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 32-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 7 i := j*32 off := idx[i+2:i]*32 dst[i+31:i] := idx[i+3] ? b[off+31:off] : a[off+31:off] ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 32-bit integers in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "idx" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 off := idx[i+1:i]*32 IF k[j] dst[i+31:i] := idx[i+2] ? b[off+31:off] : a[off+31:off] ELSE dst[i+31:i] := idx[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 32-bit integers in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 off := idx[i+1:i]*32 IF k[j] dst[i+31:i] := idx[i+2] ? b[off+31:off] : a[off+31:off] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 32-bit integers in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 off := idx[i+1:i]*32 IF k[j] dst[i+31:i] := (idx[i+2]) ? b[off+31:off] : a[off+31:off] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 32-bit integers in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 3 i := j*32 off := idx[i+1:i]*32 dst[i+31:i] := idx[i+2] ? b[off+31:off] : a[off+31:off] ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "idx" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 off := idx[i+1:i]*64 IF k[j] dst[i+63:i] := idx[i+2] ? b[off+63:off] : a[off+63:off] ELSE dst[i+63:i] := idx[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 off := idx[i+1:i]*64 IF k[j] dst[i+63:i] := idx[i+2] ? b[off+63:off] : a[off+63:off] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 off := idx[i+1:i]*64 IF k[j] dst[i+63:i] := (idx[i+2]) ? b[off+63:off] : a[off+63:off] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 3 i := j*64 off := idx[i+1:i]*64 dst[i+63:i] := idx[i+2] ? b[off+63:off] : a[off+63:off] ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "idx" when the corresponding mask bit is not set) FOR j := 0 to 1 i := j*64 off := idx[i]*64 IF k[j] dst[i+63:i] := idx[i+1] ? b[off+63:off] : a[off+63:off] ELSE dst[i+63:i] := idx[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 off := idx[i]*64 IF k[j] dst[i+63:i] := idx[i+1] ? b[off+63:off] : a[off+63:off] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 off := idx[i]*64 IF k[j] dst[i+63:i] := (idx[i+1]) ? b[off+63:off] : a[off+63:off] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 1 i := j*64 off := idx[i]*64 dst[i+63:i] := idx[i+1] ? b[off+63:off] : a[off+63:off] ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "idx" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 off := idx[i+2:i]*32 IF k[j] dst[i+31:i] := idx[i+3] ? b[off+31:off] : a[off+31:off] ELSE dst[i+31:i] := idx[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 off := idx[i+2:i]*32 IF k[j] dst[i+31:i] := idx[i+3] ? b[off+31:off] : a[off+31:off] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 off := idx[i+2:i]*32 IF k[j] dst[i+31:i] := (idx[i+3]) ? b[off+31:off] : a[off+31:off] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 7 i := j*32 off := idx[i+2:i]*32 dst[i+31:i] := idx[i+3] ? b[off+31:off] : a[off+31:off] ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "idx" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 off := idx[i+1:i]*32 IF k[j] dst[i+31:i] := idx[i+2] ? b[off+31:off] : a[off+31:off] ELSE dst[i+31:i] := idx[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 off := idx[i+1:i]*32 IF k[j] dst[i+31:i] := idx[i+2] ? b[off+31:off] : a[off+31:off] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 off := idx[i+1:i]*32 IF k[j] dst[i+31:i] := (idx[i+2]) ? b[off+31:off] : a[off+31:off] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 3 i := j*32 off := idx[i+1:i]*32 dst[i+31:i] := idx[i+2] ? b[off+31:off] : a[off+31:off] ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 64-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "idx" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 off := idx[i+1:i]*64 IF k[j] dst[i+63:i] := idx[i+2] ? b[off+63:off] : a[off+63:off] ELSE dst[i+63:i] := idx[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 64-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 off := idx[i+1:i]*64 IF k[j] dst[i+63:i] := idx[i+2] ? b[off+63:off] : a[off+63:off] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 64-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 off := idx[i+1:i]*64 IF k[j] dst[i+63:i] := (idx[i+2]) ? b[off+63:off] : a[off+63:off] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 64-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 3 i := j*64 off := idx[i+1:i]*64 dst[i+63:i] := idx[i+2] ? b[off+63:off] : a[off+63:off] ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 64-bit integers in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "idx" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 off := idx[i]*64 IF k[j] dst[i+63:i] := idx[i+1] ? b[off+63:off] : a[off+63:off] ELSE dst[i+63:i] := idx[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 64-bit integers in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 off := idx[i]*64 IF k[j] dst[i+63:i] := idx[i+1] ? b[off+63:off] : a[off+63:off] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 64-bit integers in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 off := idx[i]*64 IF k[j] dst[i+63:i] := (idx[i+1]) ? b[off+63:off] : a[off+63:off] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 64-bit integers in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 1 i := j*64 off := idx[i]*64 dst[i+63:i] := idx[i+1] ? b[off+63:off] : a[off+63:off] ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). IF (imm8[0] == 0) tmp_dst[63:0] := a[63:0]; FI IF (imm8[0] == 1) tmp_dst[63:0] := a[127:64]; FI IF (imm8[1] == 0) tmp_dst[127:64] := a[63:0]; FI IF (imm8[1] == 1) tmp_dst[127:64] := a[127:64]; FI IF (imm8[2] == 0) tmp_dst[191:128] := a[191:128]; FI IF (imm8[2] == 1) tmp_dst[191:128] := a[255:192]; FI IF (imm8[3] == 0) tmp_dst[255:192] := a[191:128]; FI IF (imm8[3] == 1) tmp_dst[255:192] := a[255:192]; FI FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" within 128-bit lanes using the control in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). IF (b[1] == 0) tmp_dst[63:0] := a[63:0]; FI IF (b[1] == 1) tmp_dst[63:0] := a[127:64]; FI IF (b[65] == 0) tmp_dst[127:64] := a[63:0]; FI IF (b[65] == 1) tmp_dst[127:64] := a[127:64]; FI IF (b[129] == 0) tmp_dst[191:128] := a[191:128]; FI IF (b[129] == 1) tmp_dst[191:128] := a[255:192]; FI IF (b[193] == 0) tmp_dst[255:192] := a[191:128]; FI IF (b[193] == 1) tmp_dst[255:192] := a[255:192]; FI FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). IF (imm8[0] == 0) tmp_dst[63:0] := a[63:0]; FI IF (imm8[0] == 1) tmp_dst[63:0] := a[127:64]; FI IF (imm8[1] == 0) tmp_dst[127:64] := a[63:0]; FI IF (imm8[1] == 1) tmp_dst[127:64] := a[127:64]; FI IF (imm8[2] == 0) tmp_dst[191:128] := a[191:128]; FI IF (imm8[2] == 1) tmp_dst[191:128] := a[255:192]; FI IF (imm8[3] == 0) tmp_dst[255:192] := a[191:128]; FI IF (imm8[3] == 1) tmp_dst[255:192] := a[255:192]; FI FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" within 128-bit lanes using the control in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). IF (b[1] == 0) tmp_dst[63:0] := a[63:0]; FI IF (b[1] == 1) tmp_dst[63:0] := a[127:64]; FI IF (b[65] == 0) tmp_dst[127:64] := a[63:0]; FI IF (b[65] == 1) tmp_dst[127:64] := a[127:64]; FI IF (b[129] == 0) tmp_dst[191:128] := a[191:128]; FI IF (b[129] == 1) tmp_dst[191:128] := a[255:192]; FI IF (b[193] == 0) tmp_dst[255:192] := a[191:128]; FI IF (b[193] == 1) tmp_dst[255:192] := a[255:192]; FI FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" using the control in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). IF (imm8[0] == 0) tmp_dst[63:0] := a[63:0]; FI IF (imm8[0] == 1) tmp_dst[63:0] := a[127:64]; FI IF (imm8[1] == 0) tmp_dst[127:64] := a[63:0]; FI IF (imm8[1] == 1) tmp_dst[127:64] := a[127:64]; FI FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" using the control in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). IF (b[1] == 0) tmp_dst[63:0] := a[63:0]; FI IF (b[1] == 1) tmp_dst[63:0] := a[127:64]; FI IF (b[65] == 0) tmp_dst[127:64] := a[63:0]; FI IF (b[65] == 1) tmp_dst[127:64] := a[127:64]; FI FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" using the control in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). IF (imm8[0] == 0) tmp_dst[63:0] := a[63:0]; FI IF (imm8[0] == 1) tmp_dst[63:0] := a[127:64]; FI IF (imm8[1] == 0) tmp_dst[127:64] := a[63:0]; FI IF (imm8[1] == 1) tmp_dst[127:64] := a[127:64]; FI FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" using the control in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). IF (b[1] == 0) tmp_dst[63:0] := a[63:0]; FI IF (b[1] == 1) tmp_dst[63:0] := a[127:64]; FI IF (b[65] == 0) tmp_dst[127:64] := a[63:0]; FI IF (b[65] == 1) tmp_dst[127:64] := a[127:64]; FI FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], imm8[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], imm8[3:2]) tmp_dst[95:64] := SELECT4(a[127:0], imm8[5:4]) tmp_dst[127:96] := SELECT4(a[127:0], imm8[7:6]) tmp_dst[159:128] := SELECT4(a[255:128], imm8[1:0]) tmp_dst[191:160] := SELECT4(a[255:128], imm8[3:2]) tmp_dst[223:192] := SELECT4(a[255:128], imm8[5:4]) tmp_dst[255:224] := SELECT4(a[255:128], imm8[7:6]) FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" within 128-bit lanes using the control in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], b[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], b[33:32]) tmp_dst[95:64] := SELECT4(a[127:0], b[65:64]) tmp_dst[127:96] := SELECT4(a[127:0], b[97:96]) tmp_dst[159:128] := SELECT4(a[255:128], b[129:128]) tmp_dst[191:160] := SELECT4(a[255:128], b[161:160]) tmp_dst[223:192] := SELECT4(a[255:128], b[193:192]) tmp_dst[255:224] := SELECT4(a[255:128], b[225:224]) FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], imm8[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], imm8[3:2]) tmp_dst[95:64] := SELECT4(a[127:0], imm8[5:4]) tmp_dst[127:96] := SELECT4(a[127:0], imm8[7:6]) tmp_dst[159:128] := SELECT4(a[255:128], imm8[1:0]) tmp_dst[191:160] := SELECT4(a[255:128], imm8[3:2]) tmp_dst[223:192] := SELECT4(a[255:128], imm8[5:4]) tmp_dst[255:224] := SELECT4(a[255:128], imm8[7:6]) FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" within 128-bit lanes using the control in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], b[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], b[33:32]) tmp_dst[95:64] := SELECT4(a[127:0], b[65:64]) tmp_dst[127:96] := SELECT4(a[127:0], b[97:96]) tmp_dst[159:128] := SELECT4(a[255:128], b[129:128]) tmp_dst[191:160] := SELECT4(a[255:128], b[161:160]) tmp_dst[223:192] := SELECT4(a[255:128], b[193:192]) tmp_dst[255:224] := SELECT4(a[255:128], b[225:224]) FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" using the control in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], imm8[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], imm8[3:2]) tmp_dst[95:64] := SELECT4(a[127:0], imm8[5:4]) tmp_dst[127:96] := SELECT4(a[127:0], imm8[7:6]) FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" using the control in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], b[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], b[33:32]) tmp_dst[95:64] := SELECT4(a[127:0], b[65:64]) tmp_dst[127:96] := SELECT4(a[127:0], b[97:96]) FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" using the control in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], imm8[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], imm8[3:2]) tmp_dst[95:64] := SELECT4(a[127:0], imm8[5:4]) tmp_dst[127:96] := SELECT4(a[127:0], imm8[7:6]) FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" using the control in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], b[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], b[33:32]) tmp_dst[95:64] := SELECT4(a[127:0], b[65:64]) tmp_dst[127:96] := SELECT4(a[127:0], b[97:96]) FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" across lanes using the control in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[63:0] := src[63:0] 1: tmp[63:0] := src[127:64] 2: tmp[63:0] := src[191:128] 3: tmp[63:0] := src[255:192] ESAC RETURN tmp[63:0] } tmp_dst[63:0] := SELECT4(a[255:0], imm8[1:0]) tmp_dst[127:64] := SELECT4(a[255:0], imm8[3:2]) tmp_dst[191:128] := SELECT4(a[255:0], imm8[5:4]) tmp_dst[255:192] := SELECT4(a[255:0], imm8[7:6]) FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 id := idx[i+1:i]*64 IF k[j] dst[i+63:i] := a[id+63:id] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" across lanes using the control in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[63:0] := src[63:0] 1: tmp[63:0] := src[127:64] 2: tmp[63:0] := src[191:128] 3: tmp[63:0] := src[255:192] ESAC RETURN tmp[63:0] } tmp_dst[63:0] := SELECT4(a[255:0], imm8[1:0]) tmp_dst[127:64] := SELECT4(a[255:0], imm8[3:2]) tmp_dst[191:128] := SELECT4(a[255:0], imm8[5:4]) tmp_dst[255:192] := SELECT4(a[255:0], imm8[7:6]) FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 id := idx[i+1:i]*64 IF k[j] dst[i+63:i] := a[id+63:id] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" across lanes using the control in "imm8", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[63:0] := src[63:0] 1: tmp[63:0] := src[127:64] 2: tmp[63:0] := src[191:128] 3: tmp[63:0] := src[255:192] ESAC RETURN tmp[63:0] } dst[63:0] := SELECT4(a[255:0], imm8[1:0]) dst[127:64] := SELECT4(a[255:0], imm8[3:2]) dst[191:128] := SELECT4(a[255:0], imm8[5:4]) dst[255:192] := SELECT4(a[255:0], imm8[7:6]) dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements in "a" across lanes using the corresponding index in "idx", and store the results in "dst". FOR j := 0 to 3 i := j*64 id := idx[i+1:i]*64 dst[i+63:i] := a[id+63:id] ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 id := idx[i+2:i]*32 IF k[j] dst[i+31:i] := a[id+31:id] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 id := idx[i+2:i]*32 IF k[j] dst[i+31:i] := a[id+31:id] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" across lanes using the corresponding index in "idx". FOR j := 0 to 7 i := j*32 id := idx[i+2:i]*32 dst[i+31:i] := a[id+31:id] ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 64-bit integers in "a" across lanes lanes using the control in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[63:0] := src[63:0] 1: tmp[63:0] := src[127:64] 2: tmp[63:0] := src[191:128] 3: tmp[63:0] := src[255:192] ESAC RETURN tmp[63:0] } tmp_dst[63:0] := SELECT4(a[255:0], imm8[1:0]) tmp_dst[127:64] := SELECT4(a[255:0], imm8[3:2]) tmp_dst[191:128] := SELECT4(a[255:0], imm8[5:4]) tmp_dst[255:192] := SELECT4(a[255:0], imm8[7:6]) FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 64-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 id := idx[i+1:i]*64 IF k[j] dst[i+63:i] := a[id+63:id] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 64-bit integers in "a" across lanes using the control in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[63:0] := src[63:0] 1: tmp[63:0] := src[127:64] 2: tmp[63:0] := src[191:128] 3: tmp[63:0] := src[255:192] ESAC RETURN tmp[63:0] } tmp_dst[63:0] := SELECT4(a[255:0], imm8[1:0]) tmp_dst[127:64] := SELECT4(a[255:0], imm8[3:2]) tmp_dst[191:128] := SELECT4(a[255:0], imm8[5:4]) tmp_dst[255:192] := SELECT4(a[255:0], imm8[7:6]) FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 64-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 id := idx[i+1:i]*64 IF k[j] dst[i+63:i] := a[id+63:id] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 64-bit integers in "a" across lanes using the control in "imm8", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[63:0] := src[63:0] 1: tmp[63:0] := src[127:64] 2: tmp[63:0] := src[191:128] 3: tmp[63:0] := src[255:192] ESAC RETURN tmp[63:0] } dst[63:0] := SELECT4(a[255:0], imm8[1:0]) dst[127:64] := SELECT4(a[255:0], imm8[3:2]) dst[191:128] := SELECT4(a[255:0], imm8[5:4]) dst[255:192] := SELECT4(a[255:0], imm8[7:6]) dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 64-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst". FOR j := 0 to 3 i := j*64 id := idx[i+1:i]*64 dst[i+63:i] := a[id+63:id] ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Load contiguous active 32-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[m+31:m] m := m + 32 ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Load contiguous active 32-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[m+31:m] m := m + 32 ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Load contiguous active 32-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[m+31:m] m := m + 32 ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Load contiguous active 32-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[m+31:m] m := m + 32 ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Load contiguous active 64-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[m+63:m] m := m + 64 ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Load contiguous active 64-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[m+63:m] m := m + 64 ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Load contiguous active 64-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[m+63:m] m := m + 64 ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Load contiguous active 64-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[m+63:m] m := m + 64 ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 32-bit integers in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], imm8[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], imm8[3:2]) tmp_dst[95:64] := SELECT4(a[127:0], imm8[5:4]) tmp_dst[127:96] := SELECT4(a[127:0], imm8[7:6]) tmp_dst[159:128] := SELECT4(a[255:128], imm8[1:0]) tmp_dst[191:160] := SELECT4(a[255:128], imm8[3:2]) tmp_dst[223:192] := SELECT4(a[255:128], imm8[5:4]) tmp_dst[255:224] := SELECT4(a[255:128], imm8[7:6]) FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 32-bit integers in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], imm8[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], imm8[3:2]) tmp_dst[95:64] := SELECT4(a[127:0], imm8[5:4]) tmp_dst[127:96] := SELECT4(a[127:0], imm8[7:6]) tmp_dst[159:128] := SELECT4(a[255:128], imm8[1:0]) tmp_dst[191:160] := SELECT4(a[255:128], imm8[3:2]) tmp_dst[223:192] := SELECT4(a[255:128], imm8[5:4]) tmp_dst[255:224] := SELECT4(a[255:128], imm8[7:6]) FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 32-bit integers in "a" using the control in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], imm8[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], imm8[3:2]) tmp_dst[95:64] := SELECT4(a[127:0], imm8[5:4]) tmp_dst[127:96] := SELECT4(a[127:0], imm8[7:6]) FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 32-bit integers in "a" using the control in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], imm8[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], imm8[3:2]) tmp_dst[95:64] := SELECT4(a[127:0], imm8[5:4]) tmp_dst[127:96] := SELECT4(a[127:0], imm8[7:6]) FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 32-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[95:64] dst[63:32] := src2[95:64] dst[95:64] := src1[127:96] dst[127:96] := src2[127:96] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_DWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_DWORDS(a[255:128], b[255:128]) FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 32-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[95:64] dst[63:32] := src2[95:64] dst[95:64] := src1[127:96] dst[127:96] := src2[127:96] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_DWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_DWORDS(a[255:128], b[255:128]) FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 32-bit integers from the high half of "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[95:64] dst[63:32] := src2[95:64] dst[95:64] := src1[127:96] dst[127:96] := src2[127:96] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_DWORDS(a[127:0], b[127:0]) FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 32-bit integers from the high half of "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[95:64] dst[63:32] := src2[95:64] dst[95:64] := src1[127:96] dst[127:96] := src2[127:96] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_DWORDS(a[127:0], b[127:0]) FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 64-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[127:64] dst[127:64] := src2[127:64] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_QWORDS(a[255:128], b[255:128]) FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 64-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[127:64] dst[127:64] := src2[127:64] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_QWORDS(a[255:128], b[255:128]) FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 64-bit integers from the high half of "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[127:64] dst[127:64] := src2[127:64] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 64-bit integers from the high half of "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[127:64] dst[127:64] := src2[127:64] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 32-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[31:0] dst[63:32] := src2[31:0] dst[95:64] := src1[63:32] dst[127:96] := src2[63:32] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_DWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_DWORDS(a[255:128], b[255:128]) FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 32-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[31:0] dst[63:32] := src2[31:0] dst[95:64] := src1[63:32] dst[127:96] := src2[63:32] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_DWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_DWORDS(a[255:128], b[255:128]) FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 32-bit integers from the low half of "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[31:0] dst[63:32] := src2[31:0] dst[95:64] := src1[63:32] dst[127:96] := src2[63:32] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_DWORDS(a[127:0], b[127:0]) FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 32-bit integers from the low half of "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[31:0] dst[63:32] := src2[31:0] dst[95:64] := src1[63:32] dst[127:96] := src2[63:32] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_DWORDS(a[127:0], b[127:0]) FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 64-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[63:0] dst[127:64] := src2[63:0] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_QWORDS(a[255:128], b[255:128]) FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 64-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[63:0] dst[127:64] := src2[63:0] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_QWORDS(a[255:128], b[255:128]) FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 64-bit integers from the low half of "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[63:0] dst[127:64] := src2[63:0] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave 64-bit integers from the low half of "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[63:0] dst[127:64] := src2[63:0] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Round packed double-precision (64-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] DEFINE RoundScaleFP64(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) IF IsInf(tmp[63:0]) tmp[63:0] := src1[63:0] FI RETURN tmp[63:0] } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := RoundScaleFP64(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Round packed double-precision (64-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] DEFINE RoundScaleFP64(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) IF IsInf(tmp[63:0]) tmp[63:0] := src1[63:0] FI RETURN tmp[63:0] } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := RoundScaleFP64(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Round packed double-precision (64-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst". [round_imm_note] DEFINE RoundScaleFP64(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) IF IsInf(tmp[63:0]) tmp[63:0] := src1[63:0] FI RETURN tmp[63:0] } FOR j := 0 to 3 i := j*64 dst[i+63:i] := RoundScaleFP64(a[i+63:i], imm8[7:0]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Round packed double-precision (64-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] DEFINE RoundScaleFP64(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) IF IsInf(tmp[63:0]) tmp[63:0] := src1[63:0] FI RETURN tmp[63:0] } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := RoundScaleFP64(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Round packed double-precision (64-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] DEFINE RoundScaleFP64(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) IF IsInf(tmp[63:0]) tmp[63:0] := src1[63:0] FI RETURN tmp[63:0] } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := RoundScaleFP64(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Round packed double-precision (64-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst". [round_imm_note] DEFINE RoundScaleFP64(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) IF IsInf(tmp[63:0]) tmp[63:0] := src1[63:0] FI RETURN tmp[63:0] } FOR j := 0 to 1 i := j*64 dst[i+63:i] := RoundScaleFP64(a[i+63:i], imm8[7:0]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Round packed single-precision (32-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] DEFINE RoundScaleFP32(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) IF IsInf(tmp[31:0]) tmp[31:0] := src1[31:0] FI RETURN tmp[31:0] } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := RoundScaleFP32(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Round packed single-precision (32-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] DEFINE RoundScaleFP32(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) IF IsInf(tmp[31:0]) tmp[31:0] := src1[31:0] FI RETURN tmp[31:0] } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := RoundScaleFP32(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Round packed single-precision (32-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst". [round_imm_note] DEFINE RoundScaleFP32(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) IF IsInf(tmp[31:0]) tmp[31:0] := src1[31:0] FI RETURN tmp[31:0] } FOR j := 0 to 7 i := j*32 dst[i+31:i] := RoundScaleFP32(a[i+31:i], imm8[7:0]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Round packed single-precision (32-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] DEFINE RoundScaleFP32(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) IF IsInf(tmp[31:0]) tmp[31:0] := src1[31:0] FI RETURN tmp[31:0] } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := RoundScaleFP32(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Round packed single-precision (32-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] DEFINE RoundScaleFP32(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) IF IsInf(tmp[31:0]) tmp[31:0] := src1[31:0] FI RETURN tmp[31:0] } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := RoundScaleFP32(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Round packed single-precision (32-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst". [round_imm_note] DEFINE RoundScaleFP32(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) IF IsInf(tmp[31:0]) tmp[31:0] := src1[31:0] FI RETURN tmp[31:0] } FOR j := 0 to 3 i := j*32 dst[i+31:i] := RoundScaleFP32(a[i+31:i], imm8[7:0]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Scale the packed double-precision (64-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[63:0] := tmp_src1[63:0] * POW(2.0, FLOOR(tmp_src2[63:0])) RETURN dst[63:0] } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := SCALE(a[i+63:0], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Scale the packed double-precision (64-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[63:0] := tmp_src1[63:0] * POW(2.0, FLOOR(tmp_src2[63:0])) RETURN dst[63:0] } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := SCALE(a[i+63:0], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Scale the packed double-precision (64-bit) floating-point elements in "a" using values from "b", and store the results in "dst". DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[63:0] := tmp_src1[63:0] * POW(2.0, FLOOR(tmp_src2[63:0])) RETURN dst[63:0] } FOR j := 0 to 3 i := j*64 dst[i+63:i] := SCALE(a[i+63:0], b[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Scale the packed double-precision (64-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[63:0] := tmp_src1[63:0] * POW(2.0, FLOOR(tmp_src2[63:0])) RETURN dst[63:0] } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := SCALE(a[i+63:0], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Scale the packed double-precision (64-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[63:0] := tmp_src1[63:0] * POW(2.0, FLOOR(tmp_src2[63:0])) RETURN dst[63:0] } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := SCALE(a[i+63:0], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Scale the packed double-precision (64-bit) floating-point elements in "a" using values from "b", and store the results in "dst". DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[63:0] := tmp_src1[63:0] * POW(2.0, FLOOR(tmp_src2[63:0])) RETURN dst[63:0] } FOR j := 0 to 1 i := j*64 dst[i+63:i] := SCALE(a[i+63:0], b[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[31:0] := tmp_src1[31:0] * POW(2.0, FLOOR(tmp_src2[31:0])) RETURN dst[31:0] } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := SCALE(a[i+31:0], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[31:0] := tmp_src1[31:0] * POW(2.0, FLOOR(tmp_src2[31:0])) RETURN dst[31:0] } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := SCALE(a[i+31:0], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", and store the results in "dst". DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[31:0] := tmp_src1[31:0] * POW(2.0, FLOOR(tmp_src2[31:0])) RETURN dst[31:0] } FOR j := 0 to 7 i := j*32 dst[i+31:i] := SCALE(a[i+31:0], b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[31:0] := tmp_src1[31:0] * POW(2.0, FLOOR(tmp_src2[31:0])) RETURN dst[31:0] } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := SCALE(a[i+31:0], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[31:0] := tmp_src1[31:0] * POW(2.0, FLOOR(tmp_src2[31:0])) RETURN dst[31:0] } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := SCALE(a[i+31:0], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", and store the results in "dst". DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[31:0] := tmp_src1[31:0] * POW(2.0, FLOOR(tmp_src2[31:0])) RETURN dst[31:0] } FOR j := 0 to 3 i := j*32 dst[i+31:i] := SCALE(a[i+31:0], b[i+31:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 128-bits (composed of 4 single-precision (32-bit) floating-point elements) selected by "imm8" from "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst.m128[0] := a.m128[imm8[0]] tmp_dst.m128[1] := b.m128[imm8[1]] FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 128-bits (composed of 4 single-precision (32-bit) floating-point elements) selected by "imm8" from "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst.m128[0] := a.m128[imm8[0]] tmp_dst.m128[1] := b.m128[imm8[1]] FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 128-bits (composed of 4 single-precision (32-bit) floating-point elements) selected by "imm8" from "a" and "b", and store the results in "dst". dst.m128[0] := a.m128[imm8[0]] dst.m128[1] := b.m128[imm8[1]] dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 128-bits (composed of 2 double-precision (64-bit) floating-point elements) selected by "imm8" from "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst.m128[0] := a.m128[imm8[0]] tmp_dst.m128[1] := b.m128[imm8[1]] FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 128-bits (composed of 2 double-precision (64-bit) floating-point elements) selected by "imm8" from "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst.m128[0] := a.m128[imm8[0]] tmp_dst.m128[1] := b.m128[imm8[1]] FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 128-bits (composed of 2 double-precision (64-bit) floating-point elements) selected by "imm8" from "a" and "b", and store the results in "dst". dst.m128[0] := a.m128[imm8[0]] dst.m128[1] := b.m128[imm8[1]] dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 128-bits (composed of 4 32-bit integers) selected by "imm8" from "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst.m128[0] := a.m128[imm8[0]] tmp_dst.m128[1] := b.m128[imm8[1]] FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 128-bits (composed of 4 32-bit integers) selected by "imm8" from "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst.m128[0] := a.m128[imm8[0]] tmp_dst.m128[1] := b.m128[imm8[1]] FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 128-bits (composed of 4 32-bit integers) selected by "imm8" from "a" and "b", and store the results in "dst". dst.m128[0] := a.m128[imm8[0]] dst.m128[1] := b.m128[imm8[1]] dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 128-bits (composed of 2 64-bit integers) selected by "imm8" from "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst.m128[0] := a.m128[imm8[0]] tmp_dst.m128[1] := b.m128[imm8[1]] FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 128-bits (composed of 2 64-bit integers) selected by "imm8" from "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst.m128[0] := a.m128[imm8[0]] tmp_dst.m128[1] := b.m128[imm8[1]] FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle 128-bits (composed of 2 64-bit integers) selected by "imm8" from "a" and "b", and store the results in "dst". dst.m128[0] := a.m128[imm8[0]] dst.m128[1] := b.m128[imm8[1]] dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements within 128-bit lanes using the control in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64] tmp_dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64] tmp_dst[191:128] := (imm8[2] == 0) ? a[191:128] : a[255:192] tmp_dst[255:192] := (imm8[3] == 0) ? b[191:128] : b[255:192] FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements within 128-bit lanes using the control in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64] tmp_dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64] tmp_dst[191:128] := (imm8[2] == 0) ? a[191:128] : a[255:192] tmp_dst[255:192] := (imm8[3] == 0) ? b[191:128] : b[255:192] FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements using the control in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64] tmp_dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64] FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle double-precision (64-bit) floating-point elements using the control in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64] tmp_dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64] FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], imm8[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], imm8[3:2]) tmp_dst[95:64] := SELECT4(b[127:0], imm8[5:4]) tmp_dst[127:96] := SELECT4(b[127:0], imm8[7:6]) tmp_dst[159:128] := SELECT4(a[255:128], imm8[1:0]) tmp_dst[191:160] := SELECT4(a[255:128], imm8[3:2]) tmp_dst[223:192] := SELECT4(b[255:128], imm8[5:4]) tmp_dst[255:224] := SELECT4(b[255:128], imm8[7:6]) FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], imm8[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], imm8[3:2]) tmp_dst[95:64] := SELECT4(b[127:0], imm8[5:4]) tmp_dst[127:96] := SELECT4(b[127:0], imm8[7:6]) tmp_dst[159:128] := SELECT4(a[255:128], imm8[1:0]) tmp_dst[191:160] := SELECT4(a[255:128], imm8[3:2]) tmp_dst[223:192] := SELECT4(b[255:128], imm8[5:4]) tmp_dst[255:224] := SELECT4(b[255:128], imm8[7:6]) FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" using the control in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], imm8[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], imm8[3:2]) tmp_dst[95:64] := SELECT4(b[127:0], imm8[5:4]) tmp_dst[127:96] := SELECT4(b[127:0], imm8[7:6]) FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Shuffle single-precision (32-bit) floating-point elements in "a" using the control in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], imm8[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], imm8[3:2]) tmp_dst[95:64] := SELECT4(b[127:0], imm8[5:4]) tmp_dst[127:96] := SELECT4(b[127:0], imm8[7:6]) FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave double-precision (64-bit) floating-point elements from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[127:64] dst[127:64] := src2[127:64] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_QWORDS(a[255:128], b[255:128]) FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave double-precision (64-bit) floating-point elements from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[127:64] dst[127:64] := src2[127:64] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_QWORDS(a[255:128], b[255:128]) FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave double-precision (64-bit) floating-point elements from the high half of "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[127:64] dst[127:64] := src2[127:64] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave double-precision (64-bit) floating-point elements from the high half of "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[127:64] dst[127:64] := src2[127:64] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave single-precision (32-bit) floating-point elements from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[95:64] dst[63:32] := src2[95:64] dst[95:64] := src1[127:96] dst[127:96] := src2[127:96] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_DWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_DWORDS(a[255:128], b[255:128]) FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave single-precision (32-bit) floating-point elements from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[95:64] dst[63:32] := src2[95:64] dst[95:64] := src1[127:96] dst[127:96] := src2[127:96] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_DWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_DWORDS(a[255:128], b[255:128]) FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave single-precision (32-bit) floating-point elements from the high half of "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[95:64] dst[63:32] := src2[95:64] dst[95:64] := src1[127:96] dst[127:96] := src2[127:96] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_DWORDS(a[127:0], b[127:0]) FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave single-precision (32-bit) floating-point elements from the high half of "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[95:64] dst[63:32] := src2[95:64] dst[95:64] := src1[127:96] dst[127:96] := src2[127:96] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_DWORDS(a[127:0], b[127:0]) FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave double-precision (64-bit) floating-point elements from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[63:0] dst[127:64] := src2[63:0] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_QWORDS(a[255:128], b[255:128]) FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave double-precision (64-bit) floating-point elements from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[63:0] dst[127:64] := src2[63:0] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_QWORDS(a[255:128], b[255:128]) FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave double-precision (64-bit) floating-point elements from the low half of "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[63:0] dst[127:64] := src2[63:0] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave double-precision (64-bit) floating-point elements from the low half of "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[63:0] dst[127:64] := src2[63:0] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave single-precision (32-bit) floating-point elements from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[31:0] dst[63:32] := src2[31:0] dst[95:64] := src1[63:32] dst[127:96] := src2[63:32] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_DWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_DWORDS(a[255:128], b[255:128]) FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave single-precision (32-bit) floating-point elements from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[31:0] dst[63:32] := src2[31:0] dst[95:64] := src1[63:32] dst[127:96] := src2[63:32] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_DWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_DWORDS(a[255:128], b[255:128]) FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave single-precision (32-bit) floating-point elements from the low half of "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[31:0] dst[63:32] := src2[31:0] dst[95:64] := src1[63:32] dst[127:96] := src2[63:32] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_DWORDS(a[127:0], b[127:0]) FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Unpack and interleave single-precision (32-bit) floating-point elements from the low half of "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[31:0] dst[63:32] := src2[31:0] dst[95:64] := src1[63:32] dst[127:96] := src2[63:32] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_DWORDS(a[127:0], b[127:0]) FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Miscellaneous
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 3 i := j*64 k[j] := (a[i+63:i] OP b[i+63:i]) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 3 i := j*64 IF k1[j] k[j] := ( a[i+63:i] OP b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 1 i := j*64 k[j] := ( a[i+63:i] OP b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 1 i := j*64 IF k1[j] k[j] := ( a[i+63:i] OP b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 7 i := j*32 k[j] := (a[i+31:i] OP b[i+31:i]) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 7 i := j*32 IF k1[j] k[j] := ( a[i+31:i] OP b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 3 i := j*32 k[j] := ( a[i+31:i] OP b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 3 i := j*32 IF k1[j] k[j] := ( a[i+31:i] OP b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 7 i := j*32 k[j] := ( a[i+31:i] OP b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 7 i := j*32 k[j] := ( a[i+31:i] == b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*32 k[j] := ( a[i+31:i] >= b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 7 i := j*32 k[j] := ( a[i+31:i] > b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*32 k[j] := ( a[i+31:i] <= b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 7 i := j*32 k[j] := ( a[i+31:i] < b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*32 k[j] := ( a[i+31:i] != b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 7 i := j*32 IF k1[j] k[j] := ( a[i+31:i] OP b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k1[j] k[j] := ( a[i+31:i] == b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k1[j] k[j] := ( a[i+31:i] >= b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k1[j] k[j] := ( a[i+31:i] > b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k1[j] k[j] := ( a[i+31:i] <= b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k1[j] k[j] := ( a[i+31:i] < b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k1[j] k[j] := ( a[i+31:i] != b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 3 i := j*32 k[j] := ( a[i+31:i] OP b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 3 i := j*32 k[j] := ( a[i+31:i] == b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 3 i := j*32 k[j] := ( a[i+31:i] >= b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 3 i := j*32 k[j] := ( a[i+31:i] > b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 3 i := j*32 k[j] := ( a[i+31:i] <= b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 3 i := j*32 k[j] := ( a[i+31:i] < b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 3 i := j*32 k[j] := ( a[i+31:i] != b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 3 i := j*32 IF k1[j] k[j] := ( a[i+31:i] OP b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k1[j] k[j] := ( a[i+31:i] == b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k1[j] k[j] := ( a[i+31:i] >= b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k1[j] k[j] := ( a[i+31:i] > b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k1[j] k[j] := ( a[i+31:i] <= b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k1[j] k[j] := ( a[i+31:i] < b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k1[j] k[j] := ( a[i+31:i] != b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 3 i := j*64 k[j] := ( a[i+63:i] OP b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 3 i := j*64 k[j] := ( a[i+63:i] == b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 3 i := j*64 k[j] := ( a[i+63:i] >= b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 3 i := j*64 k[j] := ( a[i+63:i] > b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 3 i := j*64 k[j] := ( a[i+63:i] <= b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 3 i := j*64 k[j] := ( a[i+63:i] < b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 3 i := j*64 k[j] := ( a[i+63:i] != b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 3 i := j*64 IF k1[j] k[j] := ( a[i+63:i] OP b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k1[j] k[j] := ( a[i+63:i] == b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k1[j] k[j] := ( a[i+63:i] >= b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k1[j] k[j] := ( a[i+63:i] > b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k1[j] k[j] := ( a[i+63:i] <= b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k1[j] k[j] := ( a[i+63:i] < b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k1[j] k[j] := ( a[i+63:i] != b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 1 i := j*64 k[j] := ( a[i+63:i] OP b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 1 i := j*64 k[j] := ( a[i+63:i] == b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 1 i := j*64 k[j] := ( a[i+63:i] >= b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 1 i := j*64 k[j] := ( a[i+63:i] > b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 1 i := j*64 k[j] := ( a[i+63:i] <= b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 1 i := j*64 k[j] := ( a[i+63:i] < b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 1 i := j*64 k[j] := ( a[i+63:i] != b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 1 i := j*64 IF k1[j] k[j] := ( a[i+63:i] OP b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k1[j] k[j] := ( a[i+63:i] == b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k1[j] k[j] := ( a[i+63:i] >= b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k1[j] k[j] := ( a[i+63:i] > b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k1[j] k[j] := ( a[i+63:i] <= b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k1[j] k[j] := ( a[i+63:i] < b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k1[j] k[j] := ( a[i+63:i] != b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 7 i := j*32 k[j] := ( a[i+31:i] OP b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 7 i := j*32 k[j] := ( a[i+31:i] == b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*32 k[j] := ( a[i+31:i] >= b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 7 i := j*32 k[j] := ( a[i+31:i] > b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*32 k[j] := ( a[i+31:i] <= b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 7 i := j*32 k[j] := ( a[i+31:i] < b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*32 k[j] := ( a[i+31:i] != b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 7 i := j*32 IF k1[j] k[j] := ( a[i+31:i] OP b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k1[j] k[j] := ( a[i+31:i] == b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k1[j] k[j] := ( a[i+31:i] >= b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k1[j] k[j] := ( a[i+31:i] > b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k1[j] k[j] := ( a[i+31:i] <= b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k1[j] k[j] := ( a[i+31:i] < b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k1[j] k[j] := ( a[i+31:i] != b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 3 i := j*32 k[j] := ( a[i+31:i] OP b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 3 i := j*32 k[j] := ( a[i+31:i] == b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 3 i := j*32 k[j] := ( a[i+31:i] >= b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 3 i := j*32 k[j] := ( a[i+31:i] > b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 3 i := j*32 k[j] := ( a[i+31:i] <= b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 3 i := j*32 k[j] := ( a[i+31:i] < b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 3 i := j*32 k[j] := ( a[i+31:i] != b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 3 i := j*32 IF k1[j] k[j] := ( a[i+31:i] OP b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k1[j] k[j] := ( a[i+31:i] == b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k1[j] k[j] := ( a[i+31:i] >= b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k1[j] k[j] := ( a[i+31:i] > b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k1[j] k[j] := ( a[i+31:i] <= b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k1[j] k[j] := ( a[i+31:i] < b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k1[j] k[j] := ( a[i+31:i] != b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 3 i := j*64 k[j] := ( a[i+63:i] OP b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 3 i := j*64 k[j] := ( a[i+63:i] == b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 3 i := j*64 k[j] := ( a[i+63:i] >= b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 3 i := j*64 k[j] := ( a[i+63:i] > b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 3 i := j*64 k[j] := ( a[i+63:i] <= b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 3 i := j*64 k[j] := ( a[i+63:i] < b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 3 i := j*64 k[j] := ( a[i+63:i] != b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 3 i := j*64 IF k1[j] k[j] := ( a[i+63:i] OP b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k1[j] k[j] := ( a[i+63:i] == b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k1[j] k[j] := ( a[i+63:i] >= b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k1[j] k[j] := ( a[i+63:i] > b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k1[j] k[j] := ( a[i+63:i] <= b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k1[j] k[j] := ( a[i+63:i] < b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k1[j] k[j] := ( a[i+63:i] != b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 1 i := j*64 k[j] := ( a[i+63:i] OP b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 1 i := j*64 k[j] := ( a[i+63:i] == b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 1 i := j*64 k[j] := ( a[i+63:i] >= b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 1 i := j*64 k[j] := ( a[i+63:i] > b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 1 i := j*64 k[j] := ( a[i+63:i] <= b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 1 i := j*64 k[j] := ( a[i+63:i] < b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 1 i := j*64 k[j] := ( a[i+63:i] != b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 1 i := j*64 IF k1[j] k[j] := ( a[i+63:i] OP b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k1[j] k[j] := ( a[i+63:i] == b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k1[j] k[j] := ( a[i+63:i] >= b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k1[j] k[j] := ( a[i+63:i] > b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k1[j] k[j] := ( a[i+63:i] <= b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k1[j] k[j] := ( a[i+63:i] < b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k1[j] k[j] := ( a[i+63:i] != b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compute the bitwise AND of packed 32-bit integers in "a" and "b", producing intermediate 32-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is non-zero. FOR j := 0 to 7 i := j*32 IF k1[j] k[j] := ((a[i+31:i] AND b[i+31:i]) != 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compute the bitwise AND of packed 32-bit integers in "a" and "b", producing intermediate 32-bit values, and set the corresponding bit in result mask "k" if the intermediate value is non-zero. FOR j := 0 to 7 i := j*32 k[j] := ((a[i+31:i] AND b[i+31:i]) != 0) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compute the bitwise AND of packed 32-bit integers in "a" and "b", producing intermediate 32-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is non-zero. FOR j := 0 to 3 i := j*32 IF k1[j] k[j] := ((a[i+31:i] AND b[i+31:i]) != 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compute the bitwise AND of packed 32-bit integers in "a" and "b", producing intermediate 32-bit values, and set the corresponding bit in result mask "k" if the intermediate value is non-zero. FOR j := 0 to 3 i := j*32 k[j] := ((a[i+31:i] AND b[i+31:i]) != 0) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compute the bitwise AND of packed 64-bit integers in "a" and "b", producing intermediate 64-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is non-zero. FOR j := 0 to 3 i := j*64 IF k1[j] k[j] := ((a[i+63:i] AND b[i+63:i]) != 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compute the bitwise AND of packed 64-bit integers in "a" and "b", producing intermediate 64-bit values, and set the corresponding bit in result mask "k" if the intermediate value is non-zero. FOR j := 0 to 3 i := j*64 k[j] := ((a[i+63:i] AND b[i+63:i]) != 0) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compute the bitwise AND of packed 64-bit integers in "a" and "b", producing intermediate 64-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is non-zero. FOR j := 0 to 1 i := j*64 IF k1[j] k[j] := ((a[i+63:i] AND b[i+63:i]) != 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compute the bitwise AND of packed 64-bit integers in "a" and "b", producing intermediate 64-bit values, and set the corresponding bit in result mask "k" if the intermediate value is non-zero. FOR j := 0 to 1 i := j*64 k[j] := ((a[i+63:i] AND b[i+63:i]) != 0) ? 1 : 0 ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compute the bitwise NAND of packed 32-bit integers in "a" and "b", producing intermediate 32-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is zero. FOR j := 0 to 7 i := j*32 IF k1[j] k[j] := ((a[i+31:i] AND b[i+31:i]) == 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compute the bitwise NAND of packed 32-bit integers in "a" and "b", producing intermediate 32-bit values, and set the corresponding bit in result mask "k" if the intermediate value is zero. FOR j := 0 to 7 i := j*32 k[j] := ((a[i+31:i] AND b[i+31:i]) == 0) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compute the bitwise NAND of packed 32-bit integers in "a" and "b", producing intermediate 32-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is zero. FOR j := 0 to 3 i := j*32 IF k1[j] k[j] := ((a[i+31:i] AND b[i+31:i]) == 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compute the bitwise NAND of packed 32-bit integers in "a" and "b", producing intermediate 32-bit values, and set the corresponding bit in result mask "k" if the intermediate value is zero. FOR j := 0 to 3 i := j*32 k[j] := ((a[i+31:i] AND b[i+31:i]) == 0) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compute the bitwise NAND of packed 64-bit integers in "a" and "b", producing intermediate 64-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is zero. FOR j := 0 to 3 i := j*64 IF k1[j] k[j] := ((a[i+63:i] AND b[i+63:i]) == 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compute the bitwise NAND of packed 64-bit integers in "a" and "b", producing intermediate 64-bit values, and set the corresponding bit in result mask "k" if the intermediate value is zero. FOR j := 0 to 3 i := j*64 k[j] := ((a[i+63:i] AND b[i+63:i]) == 0) ? 1 : 0 ENDFOR k[MAX:4] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compute the bitwise NAND of packed 64-bit integers in "a" and "b", producing intermediate 64-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is zero. FOR j := 0 to 1 i := j*64 IF k1[j] k[j] := ((a[i+63:i] AND b[i+63:i]) == 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Compute the bitwise NAND of packed 64-bit integers in "a" and "b", producing intermediate 64-bit values, and set the corresponding bit in result mask "k" if the intermediate value is zero. FOR j := 0 to 1 i := j*64 k[j] := ((a[i+63:i] AND b[i+63:i]) == 0) ? 1 : 0 ENDFOR k[MAX:2] := 0 AVX512F AVX512VL
immintrin.h
Compare
Contiguously store the active double-precision (64-bit) floating-point elements in "a" (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". size := 64 m := base_addr FOR j := 0 to 3 i := j*64 IF k[j] MEM[m+size-1:m] := a[i+63:i] m := m + size FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Contiguously store the active double-precision (64-bit) floating-point elements in "a" (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". size := 64 m := base_addr FOR j := 0 to 1 i := j*64 IF k[j] MEM[m+size-1:m] := a[i+63:i] m := m + size FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Contiguously store the active single-precision (32-bit) floating-point elements in "a" (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". size := 32 m := base_addr FOR j := 0 to 7 i := j*32 IF k[j] MEM[m+size-1:m] := a[i+31:i] m := m + size FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Contiguously store the active single-precision (32-bit) floating-point elements in "a" (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". size := 32 m := base_addr FOR j := 0 to 3 i := j*32 IF k[j] MEM[m+size-1:m] := a[i+31:i] m := m + size FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Store packed double-precision (64-bit) floating-point elements from "a" into memory using writemask "k". "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. FOR j := 0 to 3 i := j*64 IF k[j] MEM[mem_addr+i+63:mem_addr+i] := a[i+63:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Store packed double-precision (64-bit) floating-point elements from "a" into memory using writemask "k". "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. FOR j := 0 to 1 i := j*64 IF k[j] MEM[mem_addr+i+63:mem_addr+i] := a[i+63:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Store packed single-precision (32-bit) floating-point elements from "a" into memory using writemask "k". "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. FOR j := 0 to 7 i := j*32 IF k[j] MEM[mem_addr+i+31:mem_addr+i] := a[i+31:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Store packed single-precision (32-bit) floating-point elements from "a" into memory using writemask "k". "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. FOR j := 0 to 3 i := j*32 IF k[j] MEM[mem_addr+i+31:mem_addr+i] := a[i+31:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Store packed 32-bit integers from "a" into memory using writemask "k". "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. FOR j := 0 to 7 i := j*32 IF k[j] MEM[mem_addr+i+31:mem_addr+i] := a[i+31:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Store packed 32-bit integers from "a" into memory using writemask "k". "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. FOR j := 0 to 3 i := j*32 IF k[j] MEM[mem_addr+i+31:mem_addr+i] := a[i+31:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Store packed 64-bit integers from "a" into memory using writemask "k". "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. FOR j := 0 to 3 i := j*64 IF k[j] MEM[mem_addr+i+63:mem_addr+i] := a[i+63:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Store packed 64-bit integers from "a" into memory using writemask "k". "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. FOR j := 0 to 1 i := j*64 IF k[j] MEM[mem_addr+i+63:mem_addr+i] := a[i+63:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Store packed 32-bit integers from "a" into memory using writemask "k". "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 7 i := j*32 IF k[j] MEM[mem_addr+i+31:mem_addr+i] := a[i+31:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Store packed 32-bit integers from "a" into memory using writemask "k". "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 3 i := j*32 IF k[j] MEM[mem_addr+i+31:mem_addr+i] := a[i+31:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Store packed 64-bit integers from "a" into memory using writemask "k". "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 3 i := j*64 IF k[j] MEM[mem_addr+i+63:mem_addr+i] := a[i+63:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Store packed 64-bit integers from "a" into memory using writemask "k". "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 1 i := j*64 IF k[j] MEM[mem_addr+i+63:mem_addr+i] := a[i+63:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Store packed double-precision (64-bit) floating-point elements from "a" into memory using writemask "k". "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 3 i := j*64 IF k[j] MEM[mem_addr+i+63:mem_addr+i] := a[i+63:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Store packed double-precision (64-bit) floating-point elements from "a" into memory using writemask "k". "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 1 i := j*64 IF k[j] MEM[mem_addr+i+63:mem_addr+i] := a[i+63:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Store packed single-precision (32-bit) floating-point elements from "a" into memory using writemask "k". "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 7 i := j*32 IF k[j] MEM[mem_addr+i+31:mem_addr+i] := a[i+31:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Store packed single-precision (32-bit) floating-point elements from "a" into memory using writemask "k". "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 3 i := j*32 IF k[j] MEM[mem_addr+i+31:mem_addr+i] := a[i+31:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Contiguously store the active 32-bit integers in "a" (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". size := 32 m := base_addr FOR j := 0 to 7 i := j*32 IF k[j] MEM[m+size-1:m] := a[i+31:i] m := m + size FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Contiguously store the active 32-bit integers in "a" (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". size := 32 m := base_addr FOR j := 0 to 3 i := j*32 IF k[j] MEM[m+size-1:m] := a[i+31:i] m := m + size FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Contiguously store the active 64-bit integers in "a" (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". size := 64 m := base_addr FOR j := 0 to 3 i := j*64 IF k[j] MEM[m+size-1:m] := a[i+63:i] m := m + size FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Contiguously store the active 64-bit integers in "a" (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". size := 64 m := base_addr FOR j := 0 to 1 i := j*64 IF k[j] MEM[m+size-1:m] := a[i+63:i] m := m + size FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter 32-bit integers from "a" into memory using 32-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*32 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter 32-bit integers from "a" into memory using 32-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*32 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter 32-bit integers from "a" into memory using 32-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter 32-bit integers from "a" into memory using 32-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter 64-bit integers from "a" into memory using 32-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter 64-bit integers from "a" into memory using 32-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter 64-bit integers from "a" into memory using 32-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter 64-bit integers from "a" into memory using 32-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter 32-bit integers from "a" into memory using 64-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter 32-bit integers from "a" into memory using 64-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter 32-bit integers from "a" into memory using 64-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*32 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter 32-bit integers from "a" into memory using 64-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*32 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter 64-bit integers from "a" into memory using 64-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter 64-bit integers from "a" into memory using 64-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter 64-bit integers from "a" into memory using 64-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter 64-bit integers from "a" into memory using 64-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter double-precision (64-bit) floating-point elements from "a" into memory using 32-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter double-precision (64-bit) floating-point elements from "a" into memory using 32-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter double-precision (64-bit) floating-point elements from "a" into memory using 32-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter double-precision (64-bit) floating-point elements from "a" into memory using 32-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter single-precision (32-bit) floating-point elements from "a" into memory using 32-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*32 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter single-precision (32-bit) floating-point elements from "a" into memory using 32-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*32 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter single-precision (32-bit) floating-point elements from "a" into memory using 32-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter single-precision (32-bit) floating-point elements from "a" into memory using 32-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter double-precision (64-bit) floating-point elements from "a" into memory using 64-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter double-precision (64-bit) floating-point elements from "a" into memory using 64-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter double-precision (64-bit) floating-point elements from "a" into memory using 64-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter double-precision (64-bit) floating-point elements from "a" into memory using 64-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter single-precision (32-bit) floating-point elements from "a" into memory using 64-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter single-precision (32-bit) floating-point elements from "a" into memory using 64-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter single-precision (32-bit) floating-point elements from "a" into memory using 64-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*32 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] ENDFOR AVX512F AVX512VL
immintrin.h
Store
Scatter single-precision (32-bit) floating-point elements from "a" into memory using 64-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*32 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] FI ENDFOR AVX512F AVX512VL
immintrin.h
Store
Store 256-bits (composed of 4 packed 64-bit integers) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+255:mem_addr] := a[255:0] AVX512F AVX512VL
immintrin.h
Store
Store 256-bits (composed of 8 packed 32-bit integers) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+255:mem_addr] := a[255:0] AVX512F AVX512VL
immintrin.h
Store
Store 128-bits (composed of 2 packed 64-bit integers) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+127:mem_addr] := a[127:0] AVX512F AVX512VL
immintrin.h
Store
Store 128-bits (composed of 4 packed 32-bit integers) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+127:mem_addr] := a[127:0] AVX512F AVX512VL
immintrin.h
Store
Store 256-bits (composed of 4 packed 64-bit integers) from "a" into memory. "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. MEM[mem_addr+255:mem_addr] := a[255:0] AVX512F AVX512VL
immintrin.h
Store
Store 256-bits (composed of 8 packed 32-bit integers) from "a" into memory. "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. MEM[mem_addr+255:mem_addr] := a[255:0] AVX512F AVX512VL
immintrin.h
Store
Store 128-bits (composed of 2 packed 64-bit integers) from "a" into memory. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. MEM[mem_addr+127:mem_addr] := a[127:0] AVX512F AVX512VL
immintrin.h
Store
Store 128-bits (composed of 4 packed 32-bit integers) from "a" into memory. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. MEM[mem_addr+127:mem_addr] := a[127:0] AVX512F AVX512VL
immintrin.h
Store
Convert packed signed 32-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 m := j*64 IF k[j] dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) ELSE dst[m+63:m] := src[m+63:m] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 m := j*64 IF k[j] dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) ELSE dst[m+63:m] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*32 m := j*64 IF k[j] dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) ELSE dst[m+63:m] := src[m+63:m] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*32 m := j*64 IF k[j] dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) ELSE dst[m+63:m] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := Convert_Int32_To_FP32(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j IF k[j] dst[i+31:i] := Convert_Int32_To_FP32(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := Convert_Int32_To_FP32(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j IF k[j] dst[i+31:i] := Convert_Int32_To_FP32(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 l := j*64 IF k[j] dst[i+31:i] := Convert_FP64_To_Int32(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_Int32(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*32 l := j*64 IF k[j] dst[i+31:i] := Convert_FP64_To_Int32(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_Int32(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_FP32(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 l := j*64 IF k[j] dst[i+31:i] := Convert_FP64_To_FP32(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_FP32(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*32 l := j*64 IF k[j] dst[i+31:i] := Convert_FP64_To_FP32(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst". FOR j := 0 to 3 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_UInt32(a[k+63:k]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 l := j*64 IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst". FOR j := 0 to 1 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_UInt32(a[k+63:k]) ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*32 l := j*64 IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 m := j*16 IF k[j] dst[i+31:i] := Convert_FP16_To_FP32(a[m+15:m]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 m := j*16 IF k[j] dst[i+31:i] := Convert_FP16_To_FP32(a[m+15:m]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 m := j*16 IF k[j] dst[i+31:i] := Convert_FP16_To_FP32(a[m+15:m]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 m := j*16 IF k[j] dst[i+31:i] := Convert_FP16_To_FP32(a[m+15:m]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] FOR j := 0 to 7 i := 16*j l := 32*j IF k[j] dst[i+15:i] := Convert_FP32_To_FP16(a[l+31:l]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] FOR j := 0 to 7 i := 16*j l := 32*j IF k[j] dst[i+15:i] := Convert_FP32_To_FP16(a[l+31:l]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] FOR j := 0 to 7 i := 16*j l := 32*j IF k[j] dst[i+15:i] := Convert_FP32_To_FP16(a[l+31:l]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] FOR j := 0 to 7 i := 16*j l := 32*j IF k[j] dst[i+15:i] := Convert_FP32_To_FP16(a[l+31:l]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] FOR j := 0 to 3 i := 16*j l := 32*j IF k[j] dst[i+15:i] := Convert_FP32_To_FP16(a[l+31:l]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] FOR j := 0 to 3 i := 16*j l := 32*j IF k[j] dst[i+15:i] := Convert_FP32_To_FP16(a[l+31:l]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] FOR j := 0 to 3 i := 16*j l := 32*j IF k[j] dst[i+15:i] := Convert_FP32_To_FP16(a[l+31:l]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] FOR j := 0 to 3 i := 16*j l := 32*j IF k[j] dst[i+15:i] := Convert_FP32_To_FP16(a[l+31:l]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst". FOR j := 0 to 7 i := 32*j dst[i+31:i] := Convert_FP32_To_UInt32(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_UInt32(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_UInt32(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst". FOR j := 0 to 3 i := 32*j dst[i+31:i] := Convert_FP32_To_UInt32(a[i+31:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_UInt32(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_UInt32(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_Int32_Truncate(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_Int32_Truncate(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_Int32_Truncate(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_Int32_Truncate(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst". FOR j := 0 to 3 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_UInt32_Truncate(a[k+63:k]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32_Truncate(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32_Truncate(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst". FOR j := 0 to 1 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_UInt32_Truncate(a[k+63:k]) ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32_Truncate(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32_Truncate(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst". FOR j := 0 to 7 i := 32*j dst[i+31:i] := Convert_FP32_To_UInt32_Truncate(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32_Truncate(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32_Truncate(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst". FOR j := 0 to 3 i := 32*j dst[i+31:i] := Convert_FP32_To_UInt32_Truncate(a[i+31:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32_Truncate(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed double-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32_Truncate(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 i := j*64 l := j*32 dst[i+63:i] := Convert_Int32_To_FP64(a[l+31:l]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_Int32_To_FP64(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 1 i := j*64 l := j*32 dst[i+63:i] := Convert_Int64_To_FP64(a[l+31:l]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 32-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst". FOR j := 0 to 7 i := 32*j k := 8*j dst[k+7:k] := Truncate8(a[i+31:i]) ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 32-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 8*j IF k[j] dst[l+7:l] := Truncate8(a[i+31:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed 32-bit integers in "a" to packed 8-bit integers with truncation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 7 i := 32*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := Truncate8(a[i+31:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed 32-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 8*j IF k[j] dst[l+7:l] := Truncate8(a[i+31:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 32-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst". FOR j := 0 to 3 i := 32*j k := 8*j dst[k+7:k] := Truncate8(a[i+31:i]) ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 32-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 8*j IF k[j] dst[l+7:l] := Truncate8(a[i+31:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed 32-bit integers in "a" to packed 8-bit integers with truncation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 3 i := 32*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := Truncate8(a[i+31:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed 32-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 8*j IF k[j] dst[l+7:l] := Truncate8(a[i+31:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 32-bit integers in "a" to packed 16-bit integers with truncation, and store the results in "dst". FOR j := 0 to 7 i := 32*j k := 16*j dst[k+15:k] := Truncate16(a[i+31:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 32-bit integers in "a" to packed 16-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 16*j IF k[j] dst[l+15:l] := Truncate16(a[i+31:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed 32-bit integers in "a" to packed 16-bit integers with truncation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 7 i := 32*j l := 16*j IF k[j] MEM[base_addr+l+15:base_addr+l] := Truncate16(a[i+31:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed 32-bit integers in "a" to packed 16-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 16*j IF k[j] dst[l+15:l] := Truncate16(a[i+31:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 32-bit integers in "a" to packed 16-bit integers with truncation, and store the results in "dst". FOR j := 0 to 3 i := 32*j k := 16*j dst[k+15:k] := Truncate16(a[i+31:i]) ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 32-bit integers in "a" to packed 16-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 16*j IF k[j] dst[l+15:l] := Truncate16(a[i+31:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed 32-bit integers in "a" to packed 16-bit integers with truncation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 3 i := 32*j l := 16*j IF k[j] MEM[base_addr+l+15:base_addr+l] := Truncate16(a[i+31:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed 32-bit integers in "a" to packed 16-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 16*j IF k[j] dst[l+15:l] := Truncate16(a[i+31:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst". FOR j := 0 to 3 i := 64*j k := 8*j dst[k+7:k] := Truncate8(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 8*j IF k[j] dst[l+7:l] := Truncate8(a[i+63:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed 64-bit integers in "a" to packed 8-bit integers with truncation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 3 i := 64*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := Truncate8(a[i+63:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 8*j IF k[j] dst[l+7:l] := Truncate8(a[i+63:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst". FOR j := 0 to 1 i := 64*j k := 8*j dst[k+7:k] := Truncate8(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 8*j IF k[j] dst[l+7:l] := Truncate8(a[i+63:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed 64-bit integers in "a" to packed 8-bit integers with truncation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 1 i := 64*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := Truncate8(a[i+63:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 8*j IF k[j] dst[l+7:l] := Truncate8(a[i+63:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 32-bit integers with truncation, and store the results in "dst". FOR j := 0 to 3 i := 64*j k := 32*j dst[k+31:k] := Truncate32(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 32*j IF k[j] dst[l+31:l] := Truncate32(a[i+63:i]) ELSE dst[l+31:l] := src[l+31:l] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed 64-bit integers in "a" to packed 32-bit integers with truncation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 3 i := 64*j l := 32*j IF k[j] MEM[base_addr+l+31:base_addr+l] := Truncate32(a[i+63:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 32*j IF k[j] dst[l+31:l] := Truncate32(a[i+63:i]) ELSE dst[l+31:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 32-bit integers with truncation, and store the results in "dst". FOR j := 0 to 1 i := 64*j k := 32*j dst[k+31:k] := Truncate32(a[i+63:i]) ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 32*j IF k[j] dst[l+31:l] := Truncate32(a[i+63:i]) ELSE dst[l+31:l] := src[l+31:l] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed 64-bit integers in "a" to packed 32-bit integers with truncation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 1 i := 64*j l := 32*j IF k[j] MEM[base_addr+l+31:base_addr+l] := Truncate32(a[i+63:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 32*j IF k[j] dst[l+31:l] := Truncate32(a[i+63:i]) ELSE dst[l+31:l] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 16-bit integers with truncation, and store the results in "dst". FOR j := 0 to 3 i := 64*j k := 16*j dst[k+15:k] := Truncate16(a[i+63:i]) ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 16-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 16*j IF k[j] dst[l+15:l] := Truncate16(a[i+63:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed 64-bit integers in "a" to packed 16-bit integers with truncation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 3 i := 64*j l := 16*j IF k[j] MEM[base_addr+l+15:base_addr+l] := Truncate16(a[i+63:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 16-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 16*j IF k[j] dst[l+15:l] := Truncate16(a[i+63:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 16-bit integers with truncation, and store the results in "dst". FOR j := 0 to 1 i := 64*j k := 16*j dst[k+15:k] := Truncate16(a[i+63:i]) ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 16-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 16*j IF k[j] dst[l+15:l] := Truncate16(a[i+63:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed 64-bit integers in "a" to packed 16-bit integers with truncation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 1 i := 64*j l := 16*j IF k[j] MEM[base_addr+l+15:base_addr+l] := Truncate16(a[i+63:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 16-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 16*j IF k[j] dst[l+15:l] := Truncate16(a[i+63:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst". FOR j := 0 to 7 i := 32*j k := 8*j dst[k+7:k] := Saturate8(a[i+31:i]) ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 8*j IF k[j] dst[l+7:l] := Saturate8(a[i+31:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed signed 32-bit integers in "a" to packed 8-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 7 i := 32*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := Saturate8(a[i+31:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 8*j IF k[j] dst[l+7:l] := Saturate8(a[i+31:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst". FOR j := 0 to 3 i := 32*j k := 8*j dst[k+7:k] := Saturate8(a[i+31:i]) ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 8*j IF k[j] dst[l+7:l] := Saturate8(a[i+31:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed signed 32-bit integers in "a" to packed 8-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 3 i := 32*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := Saturate8(a[i+31:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 8*j IF k[j] dst[l+7:l] := Saturate8(a[i+31:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed 16-bit integers with signed saturation, and store the results in "dst". FOR j := 0 to 7 i := 32*j k := 16*j dst[k+15:k] := Saturate16(a[i+31:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed 16-bit integers with signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 16*j IF k[j] dst[l+15:l] := Saturate16(a[i+31:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed signed 32-bit integers in "a" to packed 16-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 7 i := 32*j l := 16*j IF k[j] MEM[base_addr+l+15:base_addr+l] := Saturate16(a[i+31:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed 16-bit integers with signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 16*j IF k[j] dst[l+15:l] := Saturate16(a[i+31:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed 16-bit integers with signed saturation, and store the results in "dst". FOR j := 0 to 3 i := 32*j k := 16*j dst[k+15:k] := Saturate16(a[i+31:i]) ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed 16-bit integers with signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 16*j IF k[j] dst[l+15:l] := Saturate16(a[i+31:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed signed 32-bit integers in "a" to packed 16-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 3 i := 32*j l := 16*j IF k[j] MEM[base_addr+l+15:base_addr+l] := Saturate16(a[i+31:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed 16-bit integers with signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 16*j IF k[j] dst[l+15:l] := Saturate16(a[i+31:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst". FOR j := 0 to 3 i := 64*j k := 8*j dst[k+7:k] := Saturate8(a[i+63:i]) ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 8*j IF k[j] dst[l+7:l] := Saturate8(a[i+63:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed signed 64-bit integers in "a" to packed 8-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 3 i := 64*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := Saturate8(a[i+63:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 8*j IF k[j] dst[l+7:l] := Saturate8(a[i+63:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst". FOR j := 0 to 1 i := 64*j k := 8*j dst[k+7:k] := Saturate8(a[i+63:i]) ENDFOR dst[MAX:16] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 8*j IF k[j] dst[l+7:l] := Saturate8(a[i+63:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:16] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed signed 64-bit integers in "a" to packed 8-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 1 i := 64*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := Saturate8(a[i+63:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 8*j IF k[j] dst[l+7:l] := Saturate8(a[i+63:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:16] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 32-bit integers with signed saturation, and store the results in "dst". FOR j := 0 to 3 i := 64*j k := 32*j dst[k+31:k] := Saturate32(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 32-bit integers with signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 32*j IF k[j] dst[l+31:l] := Saturate32(a[i+63:i]) ELSE dst[l+31:l] := src[l+31:l] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed signed 64-bit integers in "a" to packed 32-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 3 i := 64*j l := 32*j IF k[j] MEM[base_addr+l+31:base_addr+l] := Saturate32(a[i+63:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 32-bit integers with signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 32*j IF k[j] dst[l+31:l] := Saturate32(a[i+63:i]) ELSE dst[l+31:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 32-bit integers with signed saturation, and store the results in "dst". FOR j := 0 to 1 i := 64*j k := 32*j dst[k+31:k] := Saturate32(a[i+63:i]) ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 32-bit integers with signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 32*j IF k[j] dst[l+31:l] := Saturate32(a[i+63:i]) ELSE dst[l+31:l] := src[l+31:l] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed signed 64-bit integers in "a" to packed 32-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 1 i := 64*j l := 32*j IF k[j] MEM[base_addr+l+31:base_addr+l] := Saturate32(a[i+63:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 32-bit integers with signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 32*j IF k[j] dst[l+31:l] := Saturate32(a[i+63:i]) ELSE dst[l+31:l] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 16-bit integers with signed saturation, and store the results in "dst". FOR j := 0 to 3 i := 64*j k := 16*j dst[k+15:k] := Saturate16(a[i+63:i]) ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 16-bit integers with signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 16*j IF k[j] dst[l+15:l] := Saturate16(a[i+63:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed signed 64-bit integers in "a" to packed 16-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 3 i := 64*j l := 16*j IF k[j] MEM[base_addr+l+15:base_addr+l] := Saturate16(a[i+63:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 16-bit integers with signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 16*j IF k[j] dst[l+15:l] := Saturate16(a[i+63:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 16-bit integers with signed saturation, and store the results in "dst". FOR j := 0 to 1 i := 64*j k := 16*j dst[k+15:k] := Saturate16(a[i+63:i]) ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 16-bit integers with signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 16*j IF k[j] dst[l+15:l] := Saturate16(a[i+63:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed signed 64-bit integers in "a" to packed 16-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 1 i := 64*j l := 16*j IF k[j] MEM[base_addr+l+15:base_addr+l] := Saturate16(a[i+63:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 16-bit integers with signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 16*j IF k[j] dst[l+15:l] := Saturate16(a[i+63:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 8-bit integers in the low 8 bytes of "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 8*j IF k[j] dst[i+31:i] := SignExtend32(a[l+7:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 8-bit integers in the low 8 bytes of "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 8*j IF k[j] dst[i+31:i] := SignExtend32(a[l+7:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 8-bit integers in the low 4 bytes of "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 8*j IF k[j] dst[i+31:i] := SignExtend32(a[l+7:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 8-bit integers in the low 4 bytes of "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 8*j IF k[j] dst[i+31:i] := SignExtend32(a[l+7:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 8-bit integers in the low 4 bytes of "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 8*j IF k[j] dst[i+63:i] := SignExtend64(a[l+7:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 8-bit integers in the low 4 bytes of "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 8*j IF k[j] dst[i+63:i] := SignExtend64(a[l+7:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 8-bit integers in the low 2 bytes of "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 8*j IF k[j] dst[i+63:i] := SignExtend64(a[l+7:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 8-bit integers in the low 2 bytes of "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 8*j IF k[j] dst[i+63:i] := SignExtend64(a[l+7:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 32-bit integers in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 32*j IF k[j] dst[i+63:i] := SignExtend64(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 32-bit integers in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 32*j IF k[j] dst[i+63:i] := SignExtend64(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 32-bit integers in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 32*j IF k[j] dst[i+63:i] := SignExtend64(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 32-bit integers in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 32*j IF k[j] dst[i+63:i] := SignExtend64(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 16-bit integers in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 l := j*16 IF k[j] dst[i+31:i] := SignExtend32(a[l+15:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 16-bit integers in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 16*j IF k[j] dst[i+31:i] := SignExtend32(a[l+15:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 16-bit integers in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 l := j*16 IF k[j] dst[i+31:i] := SignExtend32(a[l+15:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 16-bit integers in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 16*j IF k[j] dst[i+31:i] := SignExtend32(a[l+15:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 16-bit integers in the low 8 bytes of "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 16*j IF k[j] dst[i+63:i] := SignExtend64(a[l+15:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 16-bit integers in the low 8 bytes of "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 16*j IF k[j] dst[i+63:i] := SignExtend64(a[l+15:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 16-bit integers in the low 4 bytes of "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 16*j IF k[j] dst[i+63:i] := SignExtend64(a[l+15:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Sign extend packed 16-bit integers in the low 4 bytes of "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 16*j IF k[j] dst[i+63:i] := SignExtend64(a[l+15:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst". FOR j := 0 to 7 i := 32*j k := 8*j dst[k+7:k] := SaturateU8(a[i+31:i]) ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 8*j IF k[j] dst[l+7:l] := SaturateU8(a[i+31:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed unsigned 32-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 7 i := 32*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := SaturateU8(a[i+31:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 8*j IF k[j] dst[l+7:l] := SaturateU8(a[i+31:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst". FOR j := 0 to 3 i := 32*j k := 8*j dst[k+7:k] := SaturateU8(a[i+31:i]) ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 8*j IF k[j] dst[l+7:l] := SaturateU8(a[i+31:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed unsigned 32-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 3 i := 32*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := SaturateU8(a[i+31:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 8*j IF k[j] dst[l+7:l] := SaturateU8(a[i+31:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the results in "dst". FOR j := 0 to 7 i := 32*j k := 16*j dst[k+15:k] := SaturateU16(a[i+31:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 16*j IF k[j] dst[l+15:l] := SaturateU16(a[i+31:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed unsigned 32-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 7 i := 32*j l := 16*j IF k[j] MEM[base_addr+l+15:base_addr+l] := SaturateU16(a[i+31:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 16*j IF k[j] dst[l+15:l] := SaturateU16(a[i+31:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the results in "dst". FOR j := 0 to 3 i := 32*j k := 16*j dst[k+15:k] := SaturateU16(a[i+31:i]) ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 16*j IF k[j] dst[l+15:l] := SaturateU16(a[i+31:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed unsigned 32-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 3 i := 32*j l := 16*j IF k[j] MEM[base_addr+l+15:base_addr+l] := SaturateU16(a[i+31:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 16*j IF k[j] dst[l+15:l] := SaturateU16(a[i+31:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst". FOR j := 0 to 3 i := 64*j k := 8*j dst[k+7:k] := SaturateU8(a[i+63:i]) ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 8*j IF k[j] dst[l+7:l] := SaturateU8(a[i+63:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed unsigned 64-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 3 i := 64*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := SaturateU8(a[i+63:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 8*j IF k[j] dst[l+7:l] := SaturateU8(a[i+63:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst". FOR j := 0 to 1 i := 64*j k := 8*j dst[k+7:k] := SaturateU8(a[i+63:i]) ENDFOR dst[MAX:16] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 8*j IF k[j] dst[l+7:l] := SaturateU8(a[i+63:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:16] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed unsigned 64-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 1 i := 64*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := SaturateU8(a[i+63:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 8*j IF k[j] dst[l+7:l] := SaturateU8(a[i+63:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:16] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 32-bit integers with unsigned saturation, and store the results in "dst". FOR j := 0 to 3 i := 64*j k := 32*j dst[k+31:k] := SaturateU32(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 32-bit integers with unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 32*j IF k[j] dst[l+31:l] := SaturateU32(a[i+63:i]) ELSE dst[l+31:l] := src[l+31:l] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed unsigned 64-bit integers in "a" to packed unsigned 32-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 3 i := 64*j l := 32*j IF k[j] MEM[base_addr+l+31:base_addr+l] := SaturateU32(a[i+63:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 32-bit integers with unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 32*j IF k[j] dst[l+31:l] := SaturateU32(a[i+63:i]) ELSE dst[l+31:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 32-bit integers with unsigned saturation, and store the results in "dst". FOR j := 0 to 1 i := 64*j k := 32*j dst[k+31:k] := SaturateU32(a[i+63:i]) ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 32-bit integers with unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 32*j IF k[j] dst[l+31:l] := SaturateU32(a[i+63:i]) ELSE dst[l+31:l] := src[l+31:l] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed unsigned 64-bit integers in "a" to packed unsigned 32-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 1 i := 64*j l := 32*j IF k[j] MEM[base_addr+l+31:base_addr+l] := SaturateU32(a[i+63:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 32-bit integers with unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 32*j IF k[j] dst[l+31:l] := SaturateU32(a[i+63:i]) ELSE dst[l+31:l] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the results in "dst". FOR j := 0 to 3 i := 64*j k := 16*j dst[k+15:k] := SaturateU16(a[i+63:i]) ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 16*j IF k[j] dst[l+15:l] := SaturateU16(a[i+63:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed unsigned 64-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 3 i := 64*j l := 16*j IF k[j] MEM[base_addr+l+15:base_addr+l] := SaturateU16(a[i+63:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 16*j IF k[j] dst[l+15:l] := SaturateU16(a[i+63:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the results in "dst". FOR j := 0 to 1 i := 64*j k := 16*j dst[k+15:k] := SaturateU16(a[i+63:i]) ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 16*j IF k[j] dst[l+15:l] := SaturateU16(a[i+63:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Store Convert packed unsigned 64-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 1 i := 64*j l := 16*j IF k[j] MEM[base_addr+l+15:base_addr+l] := SaturateU16(a[i+63:i]) FI ENDFOR AVX512F AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 16*j IF k[j] dst[l+15:l] := SaturateU16(a[i+63:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:32] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in the low 8 bytes of "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 8*j IF k[j] dst[i+31:i] := ZeroExtend32(a[l+7:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in the low 8 bytes of "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 8*j IF k[j] dst[i+31:i] := ZeroExtend32(a[l+7:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in the low 4 bytes of "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 8*j IF k[j] dst[i+31:i] := ZeroExtend32(a[l+7:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in th elow 4 bytes of "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 8*j IF k[j] dst[i+31:i] := ZeroExtend32(a[l+7:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in the low 4 bytes of "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 8*j IF k[j] dst[i+63:i] := ZeroExtend64(a[l+7:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in the low 4 bytes of "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 8*j IF k[j] dst[i+63:i] := ZeroExtend64(a[l+7:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in the low 2 bytes of "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 8*j IF k[j] dst[i+63:i] := ZeroExtend64(a[l+7:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in the low 2 bytes of "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 8*j IF k[j] dst[i+63:i] := ZeroExtend64(a[l+7:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 32-bit integers in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 32*j IF k[j] dst[i+63:i] := ZeroExtend64(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 32-bit integers in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 32*j IF k[j] dst[i+63:i] := ZeroExtend64(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 32-bit integers in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 32*j IF k[j] dst[i+63:i] := ZeroExtend64(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 32-bit integers in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 32*j IF k[j] dst[i+63:i] := ZeroExtend64(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 16-bit integers in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 16*j IF k[j] dst[i+31:i] := ZeroExtend32(a[l+15:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 16-bit integers in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 16*j IF k[j] dst[i+31:i] := ZeroExtend32(a[l+15:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 16-bit integers in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 16*j IF k[j] dst[i+31:i] := ZeroExtend32(a[l+15:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 16-bit integers in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 32*j l := 16*j IF k[j] dst[i+31:i] := ZeroExtend32(a[l+15:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 16-bit integers in the low 8 bytes of "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 16*j IF k[j] dst[i+63:i] := ZeroExtend64(a[l+15:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 16-bit integers in the low 8 bytes of "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := 64*j l := 16*j IF k[j] dst[i+63:i] := ZeroExtend64(a[l+15:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 16-bit integers in the low 4 bytes of "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 16*j IF k[j] dst[i+63:i] := ZeroExtend64(a[l+15:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Zero extend packed unsigned 16-bit integers in the low 4 bytes of "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := 64*j l := 16*j IF k[j] dst[i+63:i] := ZeroExtend64(a[l+15:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Convert
Load contiguous active double-precision (64-bit) floating-point elements from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+m+63:mem_addr+m] m := m + 64 ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load contiguous active double-precision (64-bit) floating-point elements from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+m+63:mem_addr+m] m := m + 64 ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load contiguous active double-precision (64-bit) floating-point elements from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+m+63:mem_addr+m] m := m + 64 ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load contiguous active double-precision (64-bit) floating-point elements from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+m+63:mem_addr+m] m := m + 64 ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load contiguous active single-precision (32-bit) floating-point elements from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+m+31:mem_addr+m] m := m + 32 ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load contiguous active single-precision (32-bit) floating-point elements from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+m+31:mem_addr+m] m := m + 32 ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load contiguous active single-precision (32-bit) floating-point elements from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+m+31:mem_addr+m] m := m + 32 ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load contiguous active single-precision (32-bit) floating-point elements from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+m+31:mem_addr+m] m := m + 32 ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Gather double-precision (64-bit) floating-point elements from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Gather double-precision (64-bit) floating-point elements from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Gather single-precision (32-bit) floating-point elements from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*32 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Gather single-precision (32-bit) floating-point elements from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Gather double-precision (64-bit) floating-point elements from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Gather double-precision (64-bit) floating-point elements from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Gather single-precision (32-bit) floating-point elements from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Gather single-precision (32-bit) floating-point elements from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*32 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed double-precision (64-bit) floating-point elements from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed double-precision (64-bit) floating-point elements from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed double-precision (64-bit) floating-point elements from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed double-precision (64-bit) floating-point elements from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed single-precision (32-bit) floating-point elements from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed single-precision (32-bit) floating-point elements from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed single-precision (32-bit) floating-point elements from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed single-precision (32-bit) floating-point elements from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed 32-bit integers from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed 32-bit integers from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed 32-bit integers from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed 32-bit integers from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed 64-bit integers from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed 64-bit integers from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed 64-bit integers from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed 64-bit integers from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed 32-bit integers from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed 32-bit integers from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed 32-bit integers from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed 32-bit integers from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed 64-bit integers from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed 64-bit integers from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed 64-bit integers from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed 64-bit integers from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed double-precision (64-bit) floating-point elements from memoy into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed double-precision (64-bit) floating-point elements from memoy into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed double-precision (64-bit) floating-point elements from memoy into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed double-precision (64-bit) floating-point elements from memoy into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed single-precision (32-bit) floating-point elements from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed single-precision (32-bit) floating-point elements from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed single-precision (32-bit) floating-point elements from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load packed single-precision (32-bit) floating-point elements from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load contiguous active 32-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+m+31:mem_addr+m] m := m + 32 ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load contiguous active 32-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+m+31:mem_addr+m] m := m + 32 ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load contiguous active 32-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+m+31:mem_addr+m] m := m + 32 ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load contiguous active 32-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+m+31:mem_addr+m] m := m + 32 ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load contiguous active 64-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+m+63:mem_addr+m] m := m + 64 ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load contiguous active 64-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+m+63:mem_addr+m] m := m + 64 ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load contiguous active 64-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+m+63:mem_addr+m] m := m + 64 ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load contiguous active 64-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+m+63:mem_addr+m] m := m + 64 ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Gather 32-bit integers from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*32 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Gather 32-bit integers from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Gather 64-bit integers from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Gather 64-bit integers from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Gather 32-bit integers from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*32 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Gather 32-bit integers from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*32 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:64] := 0 AVX512F AVX512VL
immintrin.h
Load
Gather 64-bit integers from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 3 i := j*64 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Gather 64-bit integers from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 1 i := j*64 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load 256-bits (composed of 4 packed 64-bit integers) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[255:0] := MEM[mem_addr+255:mem_addr] dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load 256-bits (composed of 8 packed 32-bit integers) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[255:0] := MEM[mem_addr+255:mem_addr] dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load 128-bits (composed of 2 packed 64-bit integers) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[127:0] := MEM[mem_addr+127:mem_addr] dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load 128-bits (composed of 4 packed 32-bit integers) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[127:0] := MEM[mem_addr+127:mem_addr] dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load 256-bits (composed of 4 packed 64-bit integers) from memory into "dst". "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. dst[255:0] := MEM[mem_addr+255:mem_addr] dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load 256-bits (composed of 8 packed 32-bit integers) from memory into "dst". "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. dst[255:0] := MEM[mem_addr+255:mem_addr] dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Load
Load 128-bits (composed of 2 packed 64-bit integers) from memory into "dst". "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. dst[127:0] := MEM[mem_addr+127:mem_addr] dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Load 128-bits (composed of 4 packed 32-bit integers) from memory into "dst". "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. dst[127:0] := MEM[mem_addr+127:mem_addr] dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Load
Move packed double-precision (64-bit) floating-point elements from "a" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Move
Move packed double-precision (64-bit) floating-point elements from "a" into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Move
Move packed double-precision (64-bit) floating-point elements from "a" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Move
Move packed double-precision (64-bit) floating-point elements from "a" into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Move
Move packed single-precision (32-bit) floating-point elements from "a" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Move
Move packed single-precision (32-bit) floating-point elements from "a" into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Move
Move packed single-precision (32-bit) floating-point elements from "a" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Move
Move packed single-precision (32-bit) floating-point elements from "a" into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Move
Duplicate even-indexed double-precision (64-bit) floating-point elements from "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[63:0] := a[63:0] tmp[127:64] := a[63:0] tmp[191:128] := a[191:128] tmp[255:192] := a[191:128] FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Move
Duplicate even-indexed double-precision (64-bit) floating-point elements from "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[63:0] := a[63:0] tmp[127:64] := a[63:0] tmp[191:128] := a[191:128] tmp[255:192] := a[191:128] FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Move
Duplicate even-indexed double-precision (64-bit) floating-point elements from "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[63:0] := a[63:0] tmp[127:64] := a[63:0] FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Move
Duplicate even-indexed double-precision (64-bit) floating-point elements from "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[63:0] := a[63:0] tmp[127:64] := a[63:0] FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Move
Move packed 32-bit integers from "a" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Move
Move packed 32-bit integers from "a" into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Move
Move packed 32-bit integers from "a" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Move
Move packed 32-bit integers from "a" into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Move
Move packed 64-bit integers from "a" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Move
Move packed 64-bit integers from "a" into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Move
Move packed 64-bit integers from "a" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Move
Move packed 64-bit integers from "a" into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Move
Duplicate odd-indexed single-precision (32-bit) floating-point elements from "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[31:0] := a[63:32] tmp[63:32] := a[63:32] tmp[95:64] := a[127:96] tmp[127:96] := a[127:96] tmp[159:128] := a[191:160] tmp[191:160] := a[191:160] tmp[223:192] := a[255:224] tmp[255:224] := a[255:224] FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Move
Duplicate odd-indexed single-precision (32-bit) floating-point elements from "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[31:0] := a[63:32] tmp[63:32] := a[63:32] tmp[95:64] := a[127:96] tmp[127:96] := a[127:96] tmp[159:128] := a[191:160] tmp[191:160] := a[191:160] tmp[223:192] := a[255:224] tmp[255:224] := a[255:224] FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Move
Duplicate odd-indexed single-precision (32-bit) floating-point elements from "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[31:0] := a[63:32] tmp[63:32] := a[63:32] tmp[95:64] := a[127:96] tmp[127:96] := a[127:96] FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Move
Duplicate odd-indexed single-precision (32-bit) floating-point elements from "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[31:0] := a[63:32] tmp[63:32] := a[63:32] tmp[95:64] := a[127:96] tmp[127:96] := a[127:96] FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Move
Duplicate even-indexed single-precision (32-bit) floating-point elements from "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[31:0] := a[31:0] tmp[63:32] := a[31:0] tmp[95:64] := a[95:64] tmp[127:96] := a[95:64] tmp[159:128] := a[159:128] tmp[191:160] := a[159:128] tmp[223:192] := a[223:192] tmp[255:224] := a[223:192] FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Move
Duplicate even-indexed single-precision (32-bit) floating-point elements from "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[31:0] := a[31:0] tmp[63:32] := a[31:0] tmp[95:64] := a[95:64] tmp[127:96] := a[95:64] tmp[159:128] := a[159:128] tmp[191:160] := a[159:128] tmp[223:192] := a[223:192] tmp[255:224] := a[223:192] FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Move
Duplicate even-indexed single-precision (32-bit) floating-point elements from "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[31:0] := a[31:0] tmp[63:32] := a[31:0] tmp[95:64] := a[95:64] tmp[127:96] := a[95:64] FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Move
Duplicate even-indexed single-precision (32-bit) floating-point elements from "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[31:0] := a[31:0] tmp[63:32] := a[31:0] tmp[95:64] := a[95:64] tmp[127:96] := a[95:64] FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Move
Compute the bitwise AND of packed 32-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] AND b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise AND of packed 32-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] AND b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise AND of packed 32-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] AND b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise AND of packed 32-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] AND b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise NOT of packed 32-bit integers in "a" and then AND with "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := ((NOT a[i+31:i]) AND b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise NOT of packed 32-bit integers in "a" and then AND with "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := (NOT a[i+31:i]) AND b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise NOT of packed 32-bit integers in "a" and then AND with "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := ((NOT a[i+31:i]) AND b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise NOT of packed 32-bit integers in "a" and then AND with "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := (NOT a[i+31:i]) AND b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise NOT of packed 64-bit integers in "a" and then AND with "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise NOT of packed 64-bit integers in "a" and then AND with "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := (NOT a[i+63:i]) AND b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise NOT of packed 64-bit integers in "a" and then AND with "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise NOT of packed 64-bit integers in "a" and then AND with "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := (NOT a[i+63:i]) AND b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise AND of packed 64-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] AND b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise AND of packed 64-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] AND b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise AND of packed 64-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] AND b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise AND of packed 64-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] AND b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed 32-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] OR b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed 32-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] OR b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed 32-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] OR b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed 32-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] OR b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed 64-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] OR b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed 64-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] OR b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed 64-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] OR b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed 64-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] OR b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in "imm8". For each bit in each packed 32-bit integer, the corresponding bit from "a", "b", and "c" are used according to "imm8", and the result is written to the corresponding bit in "dst" using writemask "k" at 32-bit granularity (32-bit elements are copied from "a" when the corresponding mask bit is not set). DEFINE TernaryOP(imm8, a, b, c) { CASE imm8[7:0] OF 0: dst[0] := 0 // imm8[7:0] := 0 1: dst[0] := NOT (a OR b OR c) // imm8[7:0] := NOT (_MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C) // ... 254: dst[0] := a OR b OR c // imm8[7:0] := _MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C 255: dst[0] := 1 // imm8[7:0] := 1 ESAC } imm8[7:0] = LogicExp(_MM_TERNLOG_A, _MM_TERNLOG_B, _MM_TERNLOG_C) FOR j := 0 to 7 i := j*32 IF k[j] FOR h := 0 to 31 dst[i+h] := TernaryOP(imm8[7:0], a[i+h], b[i+h], c[i+h]) ENDFOR ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in "imm8". For each bit in each packed 32-bit integer, the corresponding bit from "a", "b", and "c" are used according to "imm8", and the result is written to the corresponding bit in "dst" using zeromask "k" at 32-bit granularity (32-bit elements are zeroed out when the corresponding mask bit is not set). DEFINE TernaryOP(imm8, a, b, c) { CASE imm8[7:0] OF 0: dst[0] := 0 // imm8[7:0] := 0 1: dst[0] := NOT (a OR b OR c) // imm8[7:0] := NOT (_MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C) // ... 254: dst[0] := a OR b OR c // imm8[7:0] := _MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C 255: dst[0] := 1 // imm8[7:0] := 1 ESAC } imm8[7:0] = LogicExp(_MM_TERNLOG_A, _MM_TERNLOG_B, _MM_TERNLOG_C) FOR j := 0 to 7 i := j*32 IF k[j] FOR h := 0 to 31 dst[i+h] := TernaryOP(imm8[7:0], a[i+h], b[i+h], c[i+h]) ENDFOR ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in "imm8". For each bit in each packed 32-bit integer, the corresponding bit from "a", "b", and "c" are used according to "imm8", and the result is written to the corresponding bit in "dst". DEFINE TernaryOP(imm8, a, b, c) { CASE imm8[7:0] OF 0: dst[0] := 0 // imm8[7:0] := 0 1: dst[0] := NOT (a OR b OR c) // imm8[7:0] := NOT (_MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C) // ... 254: dst[0] := a OR b OR c // imm8[7:0] := _MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C 255: dst[0] := 1 // imm8[7:0] := 1 ESAC } imm8[7:0] = LogicExp(_MM_TERNLOG_A, _MM_TERNLOG_B, _MM_TERNLOG_C) FOR j := 0 to 7 i := j*32 FOR h := 0 to 31 dst[i+h] := TernaryOP(imm8[7:0], a[i+h], b[i+h], c[i+h]) ENDFOR ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in "imm8". For each bit in each packed 32-bit integer, the corresponding bit from "a", "b", and "c" are used according to "imm8", and the result is written to the corresponding bit in "dst" using writemask "k" at 32-bit granularity (32-bit elements are copied from "a" when the corresponding mask bit is not set). DEFINE TernaryOP(imm8, a, b, c) { CASE imm8[7:0] OF 0: dst[0] := 0 // imm8[7:0] := 0 1: dst[0] := NOT (a OR b OR c) // imm8[7:0] := NOT (_MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C) // ... 254: dst[0] := a OR b OR c // imm8[7:0] := _MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C 255: dst[0] := 1 // imm8[7:0] := 1 ESAC } imm8[7:0] = LogicExp(_MM_TERNLOG_A, _MM_TERNLOG_B, _MM_TERNLOG_C) FOR j := 0 to 3 i := j*32 IF k[j] FOR h := 0 to 31 dst[i+h] := TernaryOP(imm8[7:0], a[i+h], b[i+h], c[i+h]) ENDFOR ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in "imm8". For each bit in each packed 32-bit integer, the corresponding bit from "a", "b", and "c" are used according to "imm8", and the result is written to the corresponding bit in "dst" using zeromask "k" at 32-bit granularity (32-bit elements are zeroed out when the corresponding mask bit is not set). DEFINE TernaryOP(imm8, a, b, c) { CASE imm8[7:0] OF 0: dst[0] := 0 // imm8[7:0] := 0 1: dst[0] := NOT (a OR b OR c) // imm8[7:0] := NOT (_MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C) // ... 254: dst[0] := a OR b OR c // imm8[7:0] := _MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C 255: dst[0] := 1 // imm8[7:0] := 1 ESAC } imm8[7:0] = LogicExp(_MM_TERNLOG_A, _MM_TERNLOG_B, _MM_TERNLOG_C) FOR j := 0 to 3 i := j*32 IF k[j] FOR h := 0 to 31 dst[i+h] := TernaryOP(imm8[7:0], a[i+h], b[i+h], c[i+h]) ENDFOR ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in "imm8". For each bit in each packed 32-bit integer, the corresponding bit from "a", "b", and "c" are used according to "imm8", and the result is written to the corresponding bit in "dst". DEFINE TernaryOP(imm8, a, b, c) { CASE imm8[7:0] OF 0: dst[0] := 0 // imm8[7:0] := 0 1: dst[0] := NOT (a OR b OR c) // imm8[7:0] := NOT (_MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C) // ... 254: dst[0] := a OR b OR c // imm8[7:0] := _MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C 255: dst[0] := 1 // imm8[7:0] := 1 ESAC } imm8[7:0] = LogicExp(_MM_TERNLOG_A, _MM_TERNLOG_B, _MM_TERNLOG_C) FOR j := 0 to 3 i := j*32 FOR h := 0 to 31 dst[i+h] := TernaryOP(imm8[7:0], a[i+h], b[i+h], c[i+h]) ENDFOR ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in "imm8". For each bit in each packed 64-bit integer, the corresponding bit from "a", "b", and "c" are used according to "imm8", and the result is written to the corresponding bit in "dst" using writemask "k" at 64-bit granularity (64-bit elements are copied from "a" when the corresponding mask bit is not set). DEFINE TernaryOP(imm8, a, b, c) { CASE imm8[7:0] OF 0: dst[0] := 0 // imm8[7:0] := 0 1: dst[0] := NOT (a OR b OR c) // imm8[7:0] := NOT (_MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C) // ... 254: dst[0] := a OR b OR c // imm8[7:0] := _MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C 255: dst[0] := 1 // imm8[7:0] := 1 ESAC } imm8[7:0] = LogicExp(_MM_TERNLOG_A, _MM_TERNLOG_B, _MM_TERNLOG_C) FOR j := 0 to 3 i := j*64 IF k[j] FOR h := 0 to 63 dst[i+h] := TernaryOP(imm8[7:0], a[i+h], b[i+h], c[i+h]) ENDFOR ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in "imm8". For each bit in each packed 64-bit integer, the corresponding bit from "a", "b", and "c" are used according to "imm8", and the result is written to the corresponding bit in "dst" using zeromask "k" at 64-bit granularity (64-bit elements are zeroed out when the corresponding mask bit is not set). DEFINE TernaryOP(imm8, a, b, c) { CASE imm8[7:0] OF 0: dst[0] := 0 // imm8[7:0] := 0 1: dst[0] := NOT (a OR b OR c) // imm8[7:0] := NOT (_MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C) // ... 254: dst[0] := a OR b OR c // imm8[7:0] := _MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C 255: dst[0] := 1 // imm8[7:0] := 1 ESAC } imm8[7:0] = LogicExp(_MM_TERNLOG_A, _MM_TERNLOG_B, _MM_TERNLOG_C) FOR j := 0 to 3 i := j*64 IF k[j] FOR h := 0 to 63 dst[i+h] := TernaryOP(imm8[7:0], a[i+h], b[i+h], c[i+h]) ENDFOR ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in "imm8". For each bit in each packed 64-bit integer, the corresponding bit from "a", "b", and "c" are used according to "imm8", and the result is written to the corresponding bit in "dst". DEFINE TernaryOP(imm8, a, b, c) { CASE imm8[7:0] OF 0: dst[0] := 0 // imm8[7:0] := 0 1: dst[0] := NOT (a OR b OR c) // imm8[7:0] := NOT (_MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C) // ... 254: dst[0] := a OR b OR c // imm8[7:0] := _MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C 255: dst[0] := 1 // imm8[7:0] := 1 ESAC } imm8[7:0] = LogicExp(_MM_TERNLOG_A, _MM_TERNLOG_B, _MM_TERNLOG_C) FOR j := 0 to 3 i := j*64 FOR h := 0 to 63 dst[i+h] := TernaryOP(imm8[7:0], a[i+h], b[i+h], c[i+h]) ENDFOR ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in "imm8". For each bit in each packed 64-bit integer, the corresponding bit from "a", "b", and "c" are used according to "imm8", and the result is written to the corresponding bit in "dst" using writemask "k" at 64-bit granularity (64-bit elements are copied from "a" when the corresponding mask bit is not set). DEFINE TernaryOP(imm8, a, b, c) { CASE imm8[7:0] OF 0: dst[0] := 0 // imm8[7:0] := 0 1: dst[0] := NOT (a OR b OR c) // imm8[7:0] := NOT (_MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C) // ... 254: dst[0] := a OR b OR c // imm8[7:0] := _MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C 255: dst[0] := 1 // imm8[7:0] := 1 ESAC } imm8[7:0] = LogicExp(_MM_TERNLOG_A, _MM_TERNLOG_B, _MM_TERNLOG_C) FOR j := 0 to 1 i := j*64 IF k[j] FOR h := 0 to 63 dst[i+h] := TernaryOP(imm8[7:0], a[i+h], b[i+h], c[i+h]) ENDFOR ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in "imm8". For each bit in each packed 64-bit integer, the corresponding bit from "a", "b", and "c" are used according to "imm8", and the result is written to the corresponding bit in "dst" using zeromask "k" at 64-bit granularity (64-bit elements are zeroed out when the corresponding mask bit is not set). DEFINE TernaryOP(imm8, a, b, c) { CASE imm8[7:0] OF 0: dst[0] := 0 // imm8[7:0] := 0 1: dst[0] := NOT (a OR b OR c) // imm8[7:0] := NOT (_MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C) // ... 254: dst[0] := a OR b OR c // imm8[7:0] := _MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C 255: dst[0] := 1 // imm8[7:0] := 1 ESAC } imm8[7:0] = LogicExp(_MM_TERNLOG_A, _MM_TERNLOG_B, _MM_TERNLOG_C) FOR j := 0 to 1 i := j*64 IF k[j] FOR h := 0 to 63 dst[i+h] := TernaryOP(imm8[7:0], a[i+h], b[i+h], c[i+h]) ENDFOR ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in "imm8". For each bit in each packed 64-bit integer, the corresponding bit from "a", "b", and "c" are used according to "imm8", and the result is written to the corresponding bit in "dst". DEFINE TernaryOP(imm8, a, b, c) { CASE imm8[7:0] OF 0: dst[0] := 0 // imm8[7:0] := 0 1: dst[0] := NOT (a OR b OR c) // imm8[7:0] := NOT (_MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C) // ... 254: dst[0] := a OR b OR c // imm8[7:0] := _MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C 255: dst[0] := 1 // imm8[7:0] := 1 ESAC } imm8[7:0] = LogicExp(_MM_TERNLOG_A, _MM_TERNLOG_B, _MM_TERNLOG_C) FOR j := 0 to 1 i := j*64 FOR h := 0 to 63 dst[i+h] := TernaryOP(imm8[7:0], a[i+h], b[i+h], c[i+h]) ENDFOR ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed 32-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] XOR b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed 32-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] XOR b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed 32-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] XOR b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed 32-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] XOR b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed 64-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] XOR b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed 64-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] XOR b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed 64-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] XOR b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed 64-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] XOR b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed 64-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := a[i+63:i] XOR b[i+63:i] ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed 32-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := a[i+31:i] XOR b[i+31:i] ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed 64-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := a[i+63:i] XOR b[i+63:i] ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise XOR of packed 32-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := a[i+31:i] XOR b[i+31:i] ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed 64-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := a[i+63:i] OR b[i+63:i] ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed 32-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := a[i+31:i] OR b[i+31:i] ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed 64-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := a[i+63:i] OR b[i+63:i] ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Compute the bitwise OR of packed 32-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := a[i+31:i] OR b[i+31:i] ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Logical
Broadcast 32-bit integer "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[31:0] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Set
Broadcast 32-bit integer "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[31:0] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Set
Broadcast 32-bit integer "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[31:0] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Set
Broadcast 32-bit integer "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[31:0] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Set
Broadcast 64-bit integer "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[63:0] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Set
Broadcast 64-bit integer "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := a[63:0] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Set
Broadcast 64-bit integer "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[63:0] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Set
Broadcast 64-bit integer "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := a[63:0] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Set
Rotate the bits in each packed 32-bit integer in "a" to the left by the number of bits specified in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src << count) OR (src >> (32 - count)) } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := LEFT_ROTATE_DWORDS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the left by the number of bits specified in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src << count) OR (src >> (32 - count)) } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := LEFT_ROTATE_DWORDS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the left by the number of bits specified in "imm8", and store the results in "dst". DEFINE LEFT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src << count) OR (src >> (32 - count)) } FOR j := 0 to 7 i := j*32 dst[i+31:i] := LEFT_ROTATE_DWORDS(a[i+31:i], imm8[7:0]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the left by the number of bits specified in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src << count) OR (src >> (32 - count)) } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := LEFT_ROTATE_DWORDS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the left by the number of bits specified in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src << count) OR (src >> (32 - count)) } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := LEFT_ROTATE_DWORDS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the left by the number of bits specified in "imm8", and store the results in "dst". DEFINE LEFT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src << count) OR (src >> (32 - count)) } FOR j := 0 to 3 i := j*32 dst[i+31:i] := LEFT_ROTATE_DWORDS(a[i+31:i], imm8[7:0]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the left by the number of bits specified in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src << count) OR (src >> (64 - count)) } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := LEFT_ROTATE_QWORDS(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the left by the number of bits specified in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src << count) OR (src >> (64 - count)) } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := LEFT_ROTATE_QWORDS(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the left by the number of bits specified in "imm8", and store the results in "dst". DEFINE LEFT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src << count) OR (src >> (64 - count)) } FOR j := 0 to 3 i := j*64 dst[i+63:i] := LEFT_ROTATE_QWORDS(a[i+63:i], imm8[7:0]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the left by the number of bits specified in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src << count) OR (src >> (64 - count)) } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := LEFT_ROTATE_QWORDS(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the left by the number of bits specified in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src << count) OR (src >> (64 - count)) } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := LEFT_ROTATE_QWORDS(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the left by the number of bits specified in "imm8", and store the results in "dst". DEFINE LEFT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src << count) OR (src >> (64 - count)) } FOR j := 0 to 1 i := j*64 dst[i+63:i] := LEFT_ROTATE_QWORDS(a[i+63:i], imm8[7:0]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the left by the number of bits specified in the corresponding element of "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src << count) OR (src >> (32 - count)) } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := LEFT_ROTATE_DWORDS(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the left by the number of bits specified in the corresponding element of "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src << count) OR (src >> (32 - count)) } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := LEFT_ROTATE_DWORDS(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the left by the number of bits specified in the corresponding element of "b", and store the results in "dst". DEFINE LEFT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src << count) OR (src >> (32 - count)) } FOR j := 0 to 7 i := j*32 dst[i+31:i] := LEFT_ROTATE_DWORDS(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the left by the number of bits specified in the corresponding element of "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src << count) OR (src >> (32 - count)) } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := LEFT_ROTATE_DWORDS(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the left by the number of bits specified in the corresponding element of "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src << count) OR (src >> (32 - count)) } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := LEFT_ROTATE_DWORDS(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the left by the number of bits specified in the corresponding element of "b", and store the results in "dst". DEFINE LEFT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src << count) OR (src >> (32 - count)) } FOR j := 0 to 3 i := j*32 dst[i+31:i] := LEFT_ROTATE_DWORDS(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the left by the number of bits specified in the corresponding element of "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src << count) OR (src >> (64 - count)) } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := LEFT_ROTATE_QWORDS(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the left by the number of bits specified in the corresponding element of "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src << count) OR (src >> (64 - count)) } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := LEFT_ROTATE_QWORDS(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the left by the number of bits specified in the corresponding element of "b", and store the results in "dst". DEFINE LEFT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src << count) OR (src >> (64 - count)) } FOR j := 0 to 3 i := j*64 dst[i+63:i] := LEFT_ROTATE_QWORDS(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the left by the number of bits specified in the corresponding element of "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src << count) OR (src >> (64 - count)) } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := LEFT_ROTATE_QWORDS(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the left by the number of bits specified in the corresponding element of "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src << count) OR (src >> (64 - count)) } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := LEFT_ROTATE_QWORDS(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the left by the number of bits specified in the corresponding element of "b", and store the results in "dst". DEFINE LEFT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src << count) OR (src >> (64 - count)) } FOR j := 0 to 1 i := j*64 dst[i+63:i] := LEFT_ROTATE_QWORDS(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the right by the number of bits specified in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src >>count) OR (src << (32 - count)) } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := RIGHT_ROTATE_DWORDS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the right by the number of bits specified in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src >>count) OR (src << (32 - count)) } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := RIGHT_ROTATE_DWORDS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the right by the number of bits specified in "imm8", and store the results in "dst". DEFINE RIGHT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src >>count) OR (src << (32 - count)) } FOR j := 0 to 7 i := j*32 dst[i+31:i] := RIGHT_ROTATE_DWORDS(a[i+31:i], imm8[7:0]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the right by the number of bits specified in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src >>count) OR (src << (32 - count)) } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := RIGHT_ROTATE_DWORDS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the right by the number of bits specified in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src >>count) OR (src << (32 - count)) } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := RIGHT_ROTATE_DWORDS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the right by the number of bits specified in "imm8", and store the results in "dst". DEFINE RIGHT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src >>count) OR (src << (32 - count)) } FOR j := 0 to 3 i := j*32 dst[i+31:i] := RIGHT_ROTATE_DWORDS(a[i+31:i], imm8[7:0]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the right by the number of bits specified in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src >> count) OR (src << (64 - count)) } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := RIGHT_ROTATE_QWORDS(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the right by the number of bits specified in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src >> count) OR (src << (64 - count)) } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := RIGHT_ROTATE_QWORDS(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the right by the number of bits specified in "imm8", and store the results in "dst". DEFINE RIGHT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src >> count) OR (src << (64 - count)) } FOR j := 0 to 3 i := j*64 dst[i+63:i] := RIGHT_ROTATE_QWORDS(a[i+63:i], imm8[7:0]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the right by the number of bits specified in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src >> count) OR (src << (64 - count)) } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := RIGHT_ROTATE_QWORDS(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the right by the number of bits specified in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src >> count) OR (src << (64 - count)) } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := RIGHT_ROTATE_QWORDS(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the right by the number of bits specified in "imm8", and store the results in "dst". DEFINE RIGHT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src >> count) OR (src << (64 - count)) } FOR j := 0 to 1 i := j*64 dst[i+63:i] := RIGHT_ROTATE_QWORDS(a[i+63:i], imm8[7:0]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the right by the number of bits specified in the corresponding element of "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src >>count) OR (src << (32 - count)) } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := RIGHT_ROTATE_DWORDS(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the right by the number of bits specified in the corresponding element of "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src >>count) OR (src << (32 - count)) } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := RIGHT_ROTATE_DWORDS(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the right by the number of bits specified in the corresponding element of "b", and store the results in "dst". DEFINE RIGHT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src >>count) OR (src << (32 - count)) } FOR j := 0 to 7 i := j*32 dst[i+31:i] := RIGHT_ROTATE_DWORDS(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the right by the number of bits specified in the corresponding element of "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src >>count) OR (src << (32 - count)) } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := RIGHT_ROTATE_DWORDS(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the right by the number of bits specified in the corresponding element of "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src >>count) OR (src << (32 - count)) } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := RIGHT_ROTATE_DWORDS(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the right by the number of bits specified in the corresponding element of "b", and store the results in "dst". DEFINE RIGHT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src >>count) OR (src << (32 - count)) } FOR j := 0 to 3 i := j*32 dst[i+31:i] := RIGHT_ROTATE_DWORDS(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the right by the number of bits specified in the corresponding element of "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src >> count) OR (src << (64 - count)) } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := RIGHT_ROTATE_QWORDS(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the right by the number of bits specified in the corresponding element of "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src >> count) OR (src << (64 - count)) } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := RIGHT_ROTATE_QWORDS(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the right by the number of bits specified in the corresponding element of "b", and store the results in "dst". DEFINE RIGHT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src >> count) OR (src << (64 - count)) } FOR j := 0 to 3 i := j*64 dst[i+63:i] := RIGHT_ROTATE_QWORDS(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the right by the number of bits specified in the corresponding element of "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src >> count) OR (src << (64 - count)) } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := RIGHT_ROTATE_QWORDS(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the right by the number of bits specified in the corresponding element of "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src >> count) OR (src << (64 - count)) } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := RIGHT_ROTATE_QWORDS(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the right by the number of bits specified in the corresponding element of "b", and store the results in "dst". DEFINE RIGHT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src >> count) OR (src << (64 - count)) } FOR j := 0 to 1 i := j*64 dst[i+63:i] := RIGHT_ROTATE_QWORDS(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[63:0]) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << imm8[7:0]) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[63:0]) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << imm8[7:0]) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[63:0]) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << imm8[7:0]) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[63:0]) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << imm8[7:0]) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF count[63:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[63:0]) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF imm8[7:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] << imm8[7:0]) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF count[63:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[63:0]) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF imm8[7:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] << imm8[7:0]) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF count[63:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[63:0]) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF imm8[7:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] << imm8[7:0]) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF count[63:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[63:0]) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF imm8[7:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] << imm8[7:0]) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF count[i+31:i] < 32 dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[i+31:i]) ELSE dst[i+31:i] := 0 FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF count[i+31:i] < 32 dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[i+31:i]) ELSE dst[i+31:i] := 0 FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF count[i+31:i] < 32 dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[i+31:i]) ELSE dst[i+31:i] := 0 FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF count[i+31:i] < 32 dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[i+31:i]) ELSE dst[i+31:i] := 0 FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF count[i+63:i] < 64 dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[i+63:i]) ELSE dst[i+63:i] := 0 FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF count[i+63:i] < 64 dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[i+63:i]) ELSE dst[i+63:i] := 0 FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF count[i+63:i] < 64 dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[i+63:i]) ELSE dst[i+63:i] := 0 FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF count[i+63:i] < 64 dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[i+63:i]) ELSE dst[i+63:i] := 0 FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF count[63:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> count[63:0]) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF imm8[7:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0]) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF count[63:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> count[63:0]) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF imm8[7:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0]) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF count[63:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> count[63:0]) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF imm8[7:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0]) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF count[63:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> count[63:0]) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF imm8[7:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0]) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF count[63:0] > 63 dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0x0) ELSE dst[i+63:i] := SignExtend64(a[i+63:i] >> count[63:0]) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF imm8[7:0] > 63 dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0x0) ELSE dst[i+63:i] := SignExtend64(a[i+63:i] >> imm8[7:0]) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF count[63:0] > 63 dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0x0) ELSE dst[i+63:i] := SignExtend64(a[i+63:i] >> count[63:0]) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF imm8[7:0] > 63 dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0x0) ELSE dst[i+63:i] := SignExtend64(a[i+63:i] >> imm8[7:0]) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 3 i := j*64 IF count[63:0] > 63 dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0x0) ELSE dst[i+63:i] := SignExtend64(a[i+63:i] >> count[63:0]) FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 3 i := j*64 IF imm8[7:0] > 63 dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0x0) ELSE dst[i+63:i] := SignExtend64(a[i+63:i] >> imm8[7:0]) FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF count[63:0] > 63 dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0x0) ELSE dst[i+63:i] := SignExtend64(a[i+63:i] >> count[63:0]) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF imm8[7:0] > 63 dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0x0) ELSE dst[i+63:i] := SignExtend64(a[i+63:i] >> imm8[7:0]) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF count[63:0] > 63 dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0x0) ELSE dst[i+63:i] := SignExtend64(a[i+63:i] >> count[63:0]) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF imm8[7:0] > 63 dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0x0) ELSE dst[i+63:i] := SignExtend64(a[i+63:i] >> imm8[7:0]) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 1 i := j*64 IF count[63:0] > 63 dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0x0) ELSE dst[i+63:i] := SignExtend64(a[i+63:i] >> count[63:0]) FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 1 i := j*64 IF imm8[7:0] > 63 dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0x0) ELSE dst[i+63:i] := SignExtend64(a[i+63:i] >> imm8[7:0]) FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF count[i+31:i] < 32 dst[i+31:i] := SignExtend32(a[i+31:i] >> count[i+31:i]) ELSE dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF count[i+31:i] < 32 dst[i+31:i] := SignExtend32(a[i+31:i] >> count[i+31:i]) ELSE dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF count[i+31:i] < 32 dst[i+31:i] := SignExtend32(a[i+31:i] >> count[i+31:i]) ELSE dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF count[i+31:i] < 32 dst[i+31:i] := SignExtend32(a[i+31:i] >> count[i+31:i]) ELSE dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF count[i+63:i] < 64 dst[i+63:i] := SignExtend64(a[i+63:i] >> count[i+63:i]) ELSE dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF count[i+63:i] < 64 dst[i+63:i] := SignExtend64(a[i+63:i] >> count[i+63:i]) ELSE dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 3 i := j*64 IF count[i+63:i] < 64 dst[i+63:i] := SignExtend64(a[i+63:i] >> count[i+63:i]) ELSE dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0) FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF count[i+63:i] < 64 dst[i+63:i] := SignExtend64(a[i+63:i] >> count[i+63:i]) ELSE dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF count[i+63:i] < 64 dst[i+63:i] := SignExtend64(a[i+63:i] >> count[i+63:i]) ELSE dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 1 i := j*64 IF count[i+63:i] < 64 dst[i+63:i] := SignExtend64(a[i+63:i] >> count[i+63:i]) ELSE dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0) FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[63:0]) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0]) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[63:0]) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0]) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[63:0]) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0]) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[63:0]) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0]) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF count[63:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[63:0]) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF imm8[7:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0]) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF count[63:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[63:0]) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF imm8[7:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0]) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF count[63:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[63:0]) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF imm8[7:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0]) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF count[63:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[63:0]) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF imm8[7:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0]) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF count[i+31:i] < 32 dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[i+31:i]) ELSE dst[i+31:i] := 0 FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] IF count[i+31:i] < 32 dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[i+31:i]) ELSE dst[i+31:i] := 0 FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF count[i+31:i] < 32 dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[i+31:i]) ELSE dst[i+31:i] := 0 FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] IF count[i+31:i] < 32 dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[i+31:i]) ELSE dst[i+31:i] := 0 FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF count[i+63:i] < 64 dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[i+63:i]) ELSE dst[i+63:i] := 0 FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] IF count[i+63:i] < 64 dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[i+63:i]) ELSE dst[i+63:i] := 0 FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF count[i+63:i] < 64 dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[i+63:i]) ELSE dst[i+63:i] := 0 FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] IF count[i+63:i] < 64 dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[i+63:i]) ELSE dst[i+63:i] := 0 FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Shift
Compute the square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := SQRT(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Elementary Math Functions
Compute the square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := SQRT(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Elementary Math Functions
Compute the square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := SQRT(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Elementary Math Functions
Compute the square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := SQRT(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Elementary Math Functions
Compute the square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := SQRT(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Elementary Math Functions
Compute the square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := SQRT(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F AVX512VL
immintrin.h
Elementary Math Functions
Compute the square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := SQRT(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Elementary Math Functions
Compute the square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := SQRT(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F AVX512VL
immintrin.h
Elementary Math Functions
Perform the last round of an AES encryption flow on data (state) in "a" using the round key in "RoundKey", and store the results in "dst"." FOR j := 0 to 3 i := j*128 a[i+127:i] := ShiftRows(a[i+127:i]) a[i+127:i] := SubBytes(a[i+127:i]) dst[i+127:i] := a[i+127:i] XOR RoundKey[i+127:i] ENDFOR dst[MAX:512] := 0 AVX512F VAES
immintrin.h
Cryptography
Perform one round of an AES encryption flow on data (state) in "a" using the round key in "RoundKey", and store the results in "dst"." FOR j := 0 to 3 i := j*128 a[i+127:i] := ShiftRows(a[i+127:i]) a[i+127:i] := SubBytes(a[i+127:i]) a[i+127:i] := MixColumns(a[i+127:i]) dst[i+127:i] := a[i+127:i] XOR RoundKey[i+127:i] ENDFOR dst[MAX:512] := 0 AVX512F VAES
immintrin.h
Cryptography
Perform the last round of an AES decryption flow on data (state) in "a" using the round key in "RoundKey", and store the results in "dst". FOR j := 0 to 3 i := j*128 a[i+127:i] := InvShiftRows(a[i+127:i]) a[i+127:i] := InvSubBytes(a[i+127:i]) dst[i+127:i] := a[i+127:i] XOR RoundKey[i+127:i] ENDFOR dst[MAX:512] := 0 AVX512F VAES
immintrin.h
Cryptography
Perform one round of an AES decryption flow on data (state) in "a" using the round key in "RoundKey", and store the results in "dst". FOR j := 0 to 3 i := j*128 a[i+127:i] := InvShiftRows(a[i+127:i]) a[i+127:i] := InvSubBytes(a[i+127:i]) a[i+127:i] := InvMixColumns(a[i+127:i]) dst[i+127:i] := a[i+127:i] XOR RoundKey[i+127:i] ENDFOR dst[MAX:512] := 0 AVX512F VAES
immintrin.h
Cryptography
Multiply the packed 32-bit integers in "a" and "b", producing intermediate 64-bit integers, and store the low 32 bits of the intermediate integers in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] tmp[63:0] := a[i+31:i] * b[i+31:i] dst[i+31:i] := tmp[31:0] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Add packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] + b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Add packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] + b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Add packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] + b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Add packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] + b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Add the lower double-precision (64-bit) floating-point element in "a" and "b", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [round_note] dst[63:0] := a[63:0] + b[63:0] dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Add the lower double-precision (64-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := a[63:0] + b[63:0] ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Add the lower double-precision (64-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := a[63:0] + b[63:0] ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Add the lower double-precision (64-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := a[63:0] + b[63:0] ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Add the lower double-precision (64-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := a[63:0] + b[63:0] ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Add the lower single-precision (32-bit) floating-point element in "a" and "b", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] dst[31:0] := a[31:0] + b[31:0] dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Add the lower single-precision (32-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := a[31:0] + b[31:0] ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Add the lower single-precision (32-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := a[31:0] + b[31:0] ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Add the lower single-precision (32-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := a[31:0] + b[31:0] ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Add the lower single-precision (32-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := a[31:0] + b[31:0] ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed double-precision (64-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst". FOR j := 0 to 7 i := 64*j dst[i+63:i] := a[i+63:i] / b[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed double-precision (64-bit) floating-point elements in "a" by packed elements in "b", =and store the results in "dst". [round_note] FOR j := 0 to 7 i := 64*j dst[i+63:i] := a[i+63:i] / b[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed double-precision (64-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j IF k[j] dst[i+63:i] := a[i+63:i] / b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed double-precision (64-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := 64*j IF k[j] dst[i+63:i] := a[i+63:i] / b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed double-precision (64-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j IF k[j] dst[i+63:i] := a[i+63:i] / b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed double-precision (64-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := 64*j IF k[j] dst[i+63:i] := a[i+63:i] / b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed single-precision (32-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst". FOR j := 0 to 15 i := 32*j dst[i+31:i] := a[i+31:i] / b[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed single-precision (32-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst". [round_note] FOR j := 0 to 15 i := 32*j dst[i+31:i] := a[i+31:i] / b[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed single-precision (32-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := a[i+31:i] / b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed single-precision (32-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := a[i+31:i] / b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed single-precision (32-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := a[i+31:i] / b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide packed single-precision (32-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := a[i+31:i] / b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Divide the lower double-precision (64-bit) floating-point element in "a" by the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [round_note] dst[63:0] := a[63:0] / b[63:0] dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Divide the lower double-precision (64-bit) floating-point element in "a" by the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := a[63:0] / b[63:0] ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Divide the lower double-precision (64-bit) floating-point element in "a" by the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := a[63:0] / b[63:0] ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Divide the lower double-precision (64-bit) floating-point element in "a" by the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := a[63:0] / b[63:0] ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Divide the lower double-precision (64-bit) floating-point element in "a" by the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := a[63:0] / b[63:0] ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Divide the lower single-precision (32-bit) floating-point element in "a" by the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] dst[31:0] := a[31:0] / b[31:0] dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Divide the lower single-precision (32-bit) floating-point element in "a" by the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := a[31:0] / b[31:0] ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Divide the lower single-precision (32-bit) floating-point element in "a" by the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := a[31:0] / b[31:0] ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Divide the lower single-precision (32-bit) floating-point element in "a" by the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := a[31:0] / b[31:0] ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Divide the lower single-precision (32-bit) floating-point element in "a" by the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := a[31:0] / b[31:0] ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "a" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [round_note] dst[63:0] := (a[63:0] * b[63:0]) + c[63:0] dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper element from "c" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := (a[63:0] * b[63:0]) + c[63:0] ELSE dst[63:0] := c[63:0] FI dst[127:64] := c[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper element from "c" to the upper element of "dst". IF k[0] dst[63:0] := (a[63:0] * b[63:0]) + c[63:0] ELSE dst[63:0] := c[63:0] FI dst[127:64] := c[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := (a[63:0] * b[63:0]) + c[63:0] ELSE dst[63:0] := a[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := (a[63:0] * b[63:0]) + c[63:0] ELSE dst[63:0] := a[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := (a[63:0] * b[63:0]) + c[63:0] ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := (a[63:0] * b[63:0]) + c[63:0] ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper 3 packed elements from "c" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := (a[31:0] * b[31:0]) + c[31:0] ELSE dst[31:0] := c[31:0] FI dst[127:32] := c[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper 3 packed elements from "c" to the upper elements of "dst". IF k[0] dst[31:0] := (a[31:0] * b[31:0]) + c[31:0] ELSE dst[31:0] := c[31:0] FI dst[127:32] := c[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] dst[31:0] := (a[31:0] * b[31:0]) + c[31:0] dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := (a[31:0] * b[31:0]) + c[31:0] ELSE dst[31:0] := a[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := (a[31:0] * b[31:0]) + c[31:0] ELSE dst[31:0] := a[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := (a[31:0] * b[31:0]) + c[31:0] ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := (a[31:0] * b[31:0]) + c[31:0] ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst". FOR j := 0 to 7 i := j*64 IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst". [round_note] FOR j := 0 to 7 i := j*64 IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] FI ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] FI ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] FI ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] FI ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst". FOR j := 0 to 15 i := j*32 IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst". [round_note] FOR j := 0 to 15 i := j*32 IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] FI ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] FI ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] FI ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] FI ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [round_note] dst[63:0] := (a[63:0] * b[63:0]) - c[63:0] dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper element from "c" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := (a[63:0] * b[63:0]) - c[63:0] ELSE dst[63:0] := c[63:0] FI dst[127:64] := c[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper element from "c" to the upper element of "dst". IF k[0] dst[63:0] := (a[63:0] * b[63:0]) - c[63:0] ELSE dst[63:0] := c[63:0] FI dst[127:64] := c[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := (a[63:0] * b[63:0]) - c[63:0] ELSE dst[63:0] := a[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := (a[63:0] * b[63:0]) - c[63:0] ELSE dst[63:0] := a[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := (a[63:0] * b[63:0]) - c[63:0] ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := (a[63:0] * b[63:0]) - c[63:0] ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] dst[31:0] := (a[31:0] * b[31:0]) - c[31:0] dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper 3 packed elements from "c" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := (a[31:0] * b[31:0]) - c[31:0] ELSE dst[31:0] := c[31:0] FI dst[127:32] := c[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper 3 packed elements from "c" to the upper elements of "dst". IF k[0] dst[31:0] := (a[31:0] * b[31:0]) - c[31:0] ELSE dst[31:0] := c[31:0] FI dst[127:32] := c[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := (a[31:0] * b[31:0]) - c[31:0] ELSE dst[31:0] := a[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := (a[31:0] * b[31:0]) - c[31:0] ELSE dst[31:0] := a[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := (a[31:0] * b[31:0]) - c[31:0] ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := (a[31:0] * b[31:0]) - c[31:0] ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst". FOR j := 0 to 7 i := j*64 IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst". [round_note] FOR j := 0 to 7 i := j*64 IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] FI ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] FI ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] FI ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] FI ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst". FOR j := 0 to 15 i := j*32 IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst". [round_note] FOR j := 0 to 15 i := j*32 IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] FI ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] FI ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] FI ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] FI ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [round_note] dst[63:0] := -(a[63:0] * b[63:0]) + c[63:0] dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper element from "c" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := -(a[63:0] * b[63:0]) + c[63:0] ELSE dst[63:0] := c[63:0] FI dst[127:64] := c[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper element from "c" to the upper element of "dst". IF k[0] dst[63:0] := -(a[63:0] * b[63:0]) + c[63:0] ELSE dst[63:0] := c[63:0] FI dst[127:64] := c[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := -(a[63:0] * b[63:0]) + c[63:0] ELSE dst[63:0] := a[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := -(a[63:0] * b[63:0]) + c[63:0] ELSE dst[63:0] := a[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := -(a[63:0] * b[63:0]) + c[63:0] ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := -(a[63:0] * b[63:0]) + c[63:0] ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] dst[31:0] := -(a[31:0] * b[31:0]) + c[31:0] dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper 3 packed elements from "c" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := -(a[31:0] * b[31:0]) + c[31:0] ELSE dst[31:0] := c[31:0] FI dst[127:32] := c[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper 3 packed elements from "c" to the upper elements of "dst". IF k[0] dst[31:0] := -(a[31:0] * b[31:0]) + c[31:0] ELSE dst[31:0] := c[31:0] FI dst[127:32] := c[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := -(a[31:0] * b[31:0]) + c[31:0] ELSE dst[31:0] := a[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := -(a[31:0] * b[31:0]) + c[31:0] ELSE dst[31:0] := a[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := -(a[31:0] * b[31:0]) + c[31:0] ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := -(a[31:0] * b[31:0]) + c[31:0] ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [round_note] dst[63:0] := -(a[63:0] * b[63:0]) - c[63:0] dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper element from "c" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := -(a[63:0] * b[63:0]) - c[63:0] ELSE dst[63:0] := c[63:0] FI dst[127:64] := c[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper element from "c" to the upper element of "dst". IF k[0] dst[63:0] := -(a[63:0] * b[63:0]) - c[63:0] ELSE dst[63:0] := c[63:0] FI dst[127:64] := c[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := -(a[63:0] * b[63:0]) - c[63:0] ELSE dst[63:0] := a[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := -(a[63:0] * b[63:0]) - c[63:0] ELSE dst[63:0] := a[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := -(a[63:0] * b[63:0]) - c[63:0] ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := -(a[63:0] * b[63:0]) - c[63:0] ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", subtract the lower element in "c" from the negated intermediate result, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] dst[31:0] := -(a[31:0] * b[31:0]) - c[31:0] dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper 3 packed elements from "c" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := -(a[31:0] * b[31:0]) - c[31:0] ELSE dst[31:0] := c[31:0] FI dst[127:32] := c[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper 3 packed elements from "c" to the upper elements of "dst". IF k[0] dst[31:0] := -(a[31:0] * b[31:0]) - c[31:0] ELSE dst[31:0] := c[31:0] FI dst[127:32] := c[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := -(a[31:0] * b[31:0]) - c[31:0] ELSE dst[31:0] := a[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := -(a[31:0] * b[31:0]) - c[31:0] ELSE dst[31:0] := a[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := -(a[31:0] * b[31:0]) - c[31:0] ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := -(a[31:0] * b[31:0]) - c[31:0] ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] * b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] * b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] * b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] * b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := a[63:0] * b[63:0] ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := a[63:0] * b[63:0] ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := a[63:0] * b[63:0] ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := a[63:0] * b[63:0] ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point element in "a" and "b", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [round_note] dst[63:0] := a[63:0] * b[63:0] dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := a[31:0] * b[31:0] ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := a[31:0] * b[31:0] ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := a[31:0] * b[31:0] ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := a[31:0] * b[31:0] ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point element in "a" and "b", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] dst[31:0] := a[31:0] * b[31:0] dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Add packed 32-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] + b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Add packed 64-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := a[i+63:i] + b[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Add packed 64-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] + b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Add packed 64-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] + b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the low signed 32-bit integers from each packed 64-bit element in "a" and "b", and store the signed 64-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := SignExtend64(a[i+31:i]) * SignExtend64(b[i+31:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the low signed 32-bit integers from each packed 64-bit element in "a" and "b", and store the signed 64-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := SignExtend64(a[i+31:i]) * SignExtend64(b[i+31:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the low signed 32-bit integers from each packed 64-bit element in "a" and "b", and store the signed 64-bit results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := SignExtend64(a[i+31:i]) * SignExtend64(b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the low unsigned 32-bit integers from each packed 64-bit element in "a" and "b", and store the unsigned 64-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+31:i] * b[i+31:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the low unsigned 32-bit integers from each packed 64-bit element in "a" and "b", and store the unsigned 64-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+31:i] * b[i+31:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the low unsigned 32-bit integers from each packed 64-bit element in "a" and "b", and store the unsigned 64-bit results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := a[i+31:i] * b[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Subtract packed 32-bit integers in "b" from packed 32-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] - b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Subtract packed 64-bit integers in "b" from packed 64-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] - b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Subtract packed 64-bit integers in "b" from packed 64-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] - b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Subtract packed 64-bit integers in "b" from packed 64-bit integers in "a", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := a[i+63:i] - b[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Subtract packed double-precision (64-bit) floating-point elements in "b" from packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] - b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Subtract packed double-precision (64-bit) floating-point elements in "b" from packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] - b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Subtract packed single-precision (32-bit) floating-point elements in "b" from packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] - b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Subtract packed single-precision (32-bit) floating-point elements in "b" from packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] - b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Subtract the lower double-precision (64-bit) floating-point element in "b" from the lower double-precision (64-bit) floating-point element in "a", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := a[63:0] - b[63:0] ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Subtract the lower double-precision (64-bit) floating-point element in "b" from the lower double-precision (64-bit) floating-point element in "a", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := a[63:0] - b[63:0] ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Subtract the lower double-precision (64-bit) floating-point element in "b" from the lower double-precision (64-bit) floating-point element in "a", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := a[63:0] - b[63:0] ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Subtract the lower double-precision (64-bit) floating-point element in "b" from the lower double-precision (64-bit) floating-point element in "a", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := a[63:0] - b[63:0] ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Subtract the lower double-precision (64-bit) floating-point element in "b" from the lower double-precision (64-bit) floating-point element in "a", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [round_note] dst[63:0] := a[63:0] - b[63:0] dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Subtract the lower single-precision (32-bit) floating-point element in "b" from the lower single-precision (32-bit) floating-point element in "a", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := a[31:0] - b[31:0] ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Subtract the lower single-precision (32-bit) floating-point element in "b" from the lower single-precision (32-bit) floating-point element in "a", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := a[31:0] - b[31:0] ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Subtract the lower single-precision (32-bit) floating-point element in "b" from the lower single-precision (32-bit) floating-point element in "a", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := a[31:0] - b[31:0] ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Subtract the lower single-precision (32-bit) floating-point element in "b" from the lower single-precision (32-bit) floating-point element in "a", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := a[31:0] - b[31:0] ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Subtract the lower single-precision (32-bit) floating-point element in "b" from the lower single-precision (32-bit) floating-point element in "a", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] dst[31:0] := a[31:0] - b[31:0] dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Arithmetic
Store 512-bits (composed of 8 packed 64-bit integers) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+511:mem_addr] := a[511:0] AVX512F
immintrin.h
Store
Store 512-bits (composed of 16 packed 32-bit integers) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+511:mem_addr] := a[511:0] AVX512F
immintrin.h
Store
Store 16-bit mask from "a" into memory. MEM[mem_addr+15:mem_addr] := a[15:0] AVX512F
immintrin.h
Store
Swizzle Contiguously store the active double-precision (64-bit) floating-point elements in "a" (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". size := 64 m := base_addr FOR j := 0 to 7 i := j*64 IF k[j] MEM[m+size-1:m] := a[i+63:i] m := m + size FI ENDFOR AVX512F
immintrin.h
Store
Swizzle Contiguously store the active single-precision (32-bit) floating-point elements in "a" (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". size := 32 m := base_addr FOR j := 0 to 15 i := j*32 IF k[j] MEM[m+size-1:m] := a[i+31:i] m := m + size FI ENDFOR AVX512F
immintrin.h
Store
Store packed 32-bit integers from "a" into memory using writemask "k". "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 15 i := j*32 IF k[j] MEM[mem_addr+i+31:mem_addr+i] := a[i+31:i] FI ENDFOR AVX512F
immintrin.h
Store
Store 512-bits of integer data from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+511:mem_addr] := a[511:0] AVX512F
immintrin.h
Store
Store packed 64-bit integers from "a" into memory using writemask "k". "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 7 i := j*64 IF k[j] MEM[mem_addr+i+63:mem_addr+i] := a[i+63:i] FI ENDFOR AVX512F
immintrin.h
Store
Store 512-bits of integer data from "a" into memory using a non-temporal memory hint. "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. MEM[mem_addr+511:mem_addr] := a[511:0] AVX512F
immintrin.h
Store
Store 512-bits (composed of 8 packed double-precision (64-bit) floating-point elements) from "a" into memory using a non-temporal memory hint. "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. MEM[mem_addr+511:mem_addr] := a[511:0] AVX512F
immintrin.h
Store
Store 512-bits (composed of 16 packed single-precision (32-bit) floating-point elements) from "a" into memory using a non-temporal memory hint. "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. MEM[mem_addr+511:mem_addr] := a[511:0] AVX512F
immintrin.h
Store
Store the lower double-precision (64-bit) floating-point element from "a" into memory using writemask "k". "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. IF k[0] MEM[mem_addr+63:mem_addr] := a[63:0] FI AVX512F
immintrin.h
Store
Store the lower single-precision (32-bit) floating-point element from "a" into memory using writemask "k". "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. IF k[0] MEM[mem_addr+31:mem_addr] := a[31:0] FI AVX512F
immintrin.h
Store
Store packed double-precision (64-bit) floating-point elements from "a" into memory using writemask "k". "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 7 i := j*64 IF k[j] MEM[mem_addr+i+63:mem_addr+i] := a[i+63:i] FI ENDFOR AVX512F
immintrin.h
Store
Store 512-bits (composed of 8 packed double-precision (64-bit) floating-point elements) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+511:mem_addr] := a[511:0] AVX512F
immintrin.h
Store
Store packed single-precision (32-bit) floating-point elements from "a" into memory using writemask "k". "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 15 i := j*32 IF k[j] MEM[mem_addr+i+31:mem_addr+i] := a[i+31:i] FI ENDFOR AVX512F
immintrin.h
Store
Store 512-bits (composed of 16 packed single-precision (32-bit) floating-point elements) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+511:mem_addr] := a[511:0] AVX512F
immintrin.h
Store
Swizzle Contiguously store the active 32-bit integers in "a" (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". size := 32 m := base_addr FOR j := 0 to 15 i := j*32 IF k[j] MEM[m+size-1:m] := a[i+31:i] m := m + size FI ENDFOR AVX512F
immintrin.h
Store
Swizzle Contiguously store the active 64-bit integers in "a" (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". size := 64 m := base_addr FOR j := 0 to 7 i := j*64 IF k[j] MEM[m+size-1:m] := a[i+63:i] m := m + size FI ENDFOR AVX512F
immintrin.h
Store
Scatter 64-bit integers from "a" into memory using 32-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*64 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] ENDFOR AVX512F
immintrin.h
Store
Scatter 64-bit integers from "a" into memory using 32-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*64 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] FI ENDFOR AVX512F
immintrin.h
Store
Scatter 32-bit integers from "a" into memory using 64-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*32 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] ENDFOR AVX512F
immintrin.h
Store
Scatter 32-bit integers from "a" into memory using 64-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*32 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] FI ENDFOR AVX512F
immintrin.h
Store
Scatter 64-bit integers from "a" into memory using 64-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*64 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] ENDFOR AVX512F
immintrin.h
Store
Scatter 64-bit integers from "a" into memory using 64-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*64 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] FI ENDFOR AVX512F
immintrin.h
Store
Scatter double-precision (64-bit) floating-point elements from "a" into memory using 32-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*64 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] ENDFOR AVX512F
immintrin.h
Store
Scatter double-precision (64-bit) floating-point elements from "a" into memory using 32-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*64 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] FI ENDFOR AVX512F
immintrin.h
Store
Scatter double-precision (64-bit) floating-point elements from "a" into memory using 64-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*64 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] ENDFOR AVX512F
immintrin.h
Store
Scatter double-precision (64-bit) floating-point elements from "a" into memory using 64-bit indices. 64-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*64 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] FI ENDFOR AVX512F
immintrin.h
Store
Scatter single-precision (32-bit) floating-point elements from "a" into memory using 64-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*32 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] ENDFOR AVX512F
immintrin.h
Store
Scatter single-precision (32-bit) floating-point elements from "a" into memory using 64-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*32 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] FI ENDFOR AVX512F
immintrin.h
Store
Multiplies elements in packed 64-bit integer vectors "a" and "b" together, storing the lower 64 bits of the result in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := a[i+63:i] * b[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Store
Multiplies elements in packed 64-bit integer vectors "a" and "b" together, storing the lower 64 bits of the result in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] * b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Store
Load 512-bits (composed of 8 packed 64-bit integers) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[511:0] := MEM[mem_addr+511:mem_addr] dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load 512-bits (composed of 16 packed 32-bit integers) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[511:0] := MEM[mem_addr+511:mem_addr] dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load 16-bit mask from memory into "k". k[15:0] := MEM[mem_addr+15:mem_addr] AVX512F
immintrin.h
Load
Swizzle Load contiguous active double-precision (64-bit) floating-point elements from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+m+63:mem_addr+m] m := m + 64 ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Swizzle Load contiguous active double-precision (64-bit) floating-point elements from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+m+63:mem_addr+m] m := m + 64 ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Swizzle Load contiguous active single-precision (32-bit) floating-point elements from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+m+31:mem_addr+m] m := m + 32 ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Swizzle Load contiguous active single-precision (32-bit) floating-point elements from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+m+31:mem_addr+m] m := m + 32 ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Gather double-precision (64-bit) floating-point elements from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*64 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Gather double-precision (64-bit) floating-point elements from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*64 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Gather double-precision (64-bit) floating-point elements from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*64 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Gather double-precision (64-bit) floating-point elements from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*64 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Gather single-precision (32-bit) floating-point elements from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*32 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Load
Gather single-precision (32-bit) floating-point elements from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*32 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Load
Load packed double-precision (64-bit) floating-point elements from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load packed single-precision (32-bit) floating-point elements from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load packed 32-bit integers from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load packed 64-bit integers from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load 512-bits of integer data from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[511:0] := MEM[mem_addr+511:mem_addr] dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load packed 32-bit integers from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load packed 32-bit integers from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load packed 64-bit integers from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load packed 64-bit integers from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load 512-bits of integer data from memory into "dst" using a non-temporal memory hint. "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. dst[511:0] := MEM[mem_addr+511:mem_addr] dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load a double-precision (64-bit) floating-point element from memory into the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and set the upper element of "dst" to zero. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. IF k[0] dst[63:0] := MEM[mem_addr+63:mem_addr] ELSE dst[63:0] := src[63:0] FI dst[MAX:64] := 0 AVX512F
immintrin.h
Load
Load a double-precision (64-bit) floating-point element from memory into the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and set the upper element of "dst" to zero. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. IF k[0] dst[63:0] := MEM[mem_addr+63:mem_addr] ELSE dst[63:0] := 0 FI dst[MAX:64] := 0 AVX512F
immintrin.h
Load
Load a single-precision (32-bit) floating-point element from memory into the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and set the upper elements of "dst" to zero. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. IF k[0] dst[31:0] := MEM[mem_addr+31:mem_addr] ELSE dst[31:0] := src[31:0] FI dst[MAX:32] := 0 AVX512F
immintrin.h
Load
Load a single-precision (32-bit) floating-point element from memory into the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and set the upper elements of "dst" to zero. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. IF k[0] dst[31:0] := MEM[mem_addr+31:mem_addr] ELSE dst[31:0] := 0 FI dst[MAX:32] := 0 AVX512F
immintrin.h
Load
Load 512-bits (composed of 8 packed double-precision (64-bit) floating-point elements) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[511:0] := MEM[mem_addr+511:mem_addr] dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load packed double-precision (64-bit) floating-point elements from memoy into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load packed double-precision (64-bit) floating-point elements from memoy into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load 512-bits (composed of 16 packed single-precision (32-bit) floating-point elements) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[511:0] := MEM[mem_addr+511:mem_addr] dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load packed single-precision (32-bit) floating-point elements from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load packed single-precision (32-bit) floating-point elements from memory into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Swizzle Load contiguous active 32-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+m+31:mem_addr+m] m := m + 32 ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Swizzle Load contiguous active 32-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+m+31:mem_addr+m] m := m + 32 ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Swizzle Load contiguous active 64-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+m+63:mem_addr+m] m := m + 64 ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Swizzle Load contiguous active 64-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+m+63:mem_addr+m] m := m + 64 ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Gather 64-bit integers from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*64 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Gather 64-bit integers from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*64 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Gather 32-bit integers from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*32 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Load
Gather 32-bit integers from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*32 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Load
Gather 64-bit integers from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*64 m := j*64 addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Gather 64-bit integers from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at "base_addr" and offset by each 64-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 7 i := j*64 m := j*64 IF k[j] addr := base_addr + vindex[m+63:m] * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Compute the bitwise AND of 16-bit masks "a" and "b", and store the result in "k". k[15:0] := a[15:0] AND b[15:0] k[MAX:16] := 0 AVX512F
immintrin.h
Mask
Compute the bitwise NOT of 16-bit masks "a" and then AND with "b", and store the result in "k". k[15:0] := (NOT a[15:0]) AND b[15:0] k[MAX:16] := 0 AVX512F
immintrin.h
Mask
Compute the bitwise NOT of 16-bit mask "a", and store the result in "k". k[15:0] := NOT a[15:0] k[MAX:16] := 0 AVX512F
immintrin.h
Mask
Compute the bitwise OR of 16-bit masks "a" and "b", and store the result in "k". k[15:0] := a[15:0] OR b[15:0] k[MAX:16] := 0 AVX512F
immintrin.h
Mask
Compute the bitwise XNOR of 16-bit masks "a" and "b", and store the result in "k". k[15:0] := NOT (a[15:0] XOR b[15:0]) k[MAX:16] := 0 AVX512F
immintrin.h
Mask
Compute the bitwise XOR of 16-bit masks "a" and "b", and store the result in "k". k[15:0] := a[15:0] XOR b[15:0] k[MAX:16] := 0 AVX512F
immintrin.h
Mask
Shift the bits of 16-bit mask "a" left by "count" while shifting in zeros, and store the least significant 16 bits of the result in "k". k[MAX:0] := 0 IF count[7:0] <= 15 k[15:0] := a[15:0] << count[7:0] FI AVX512F
immintrin.h
Mask
Shift the bits of 16-bit mask "a" right by "count" while shifting in zeros, and store the least significant 16 bits of the result in "k". k[MAX:0] := 0 IF count[7:0] <= 15 k[15:0] := a[15:0] >> count[7:0] FI AVX512F
immintrin.h
Mask
Compute the bitwise OR of 16-bit masks "a" and "b". If the result is all zeros, store 1 in "dst", otherwise store 0 in "dst". If the result is all ones, store 1 in "all_ones", otherwise store 0 in "all_ones". tmp[15:0] := a[15:0] OR b[15:0] IF tmp[15:0] == 0x0 dst := 1 ELSE dst := 0 FI IF tmp[15:0] == 0xFFFF MEM[all_ones+7:all_ones] := 1 ELSE MEM[all_ones+7:all_ones] := 0 FI AVX512F
immintrin.h
Mask
Compute the bitwise OR of 16-bit masks "a" and "b". If the result is all zeroes, store 1 in "dst", otherwise store 0 in "dst". tmp[15:0] := a[15:0] OR b[15:0] IF tmp[15:0] == 0x0 dst := 1 ELSE dst := 0 FI AVX512F
immintrin.h
Mask
Compute the bitwise OR of 16-bit masks "a" and "b". If the result is all ones, store 1 in "dst", otherwise store 0 in "dst". tmp[15:0] := a[15:0] OR b[15:0] IF tmp[15:0] == 0xFFFF dst := 1 ELSE dst := 0 FI AVX512F
immintrin.h
Mask
Convert 16-bit mask "a" into an integer value, and store the result in "dst". dst := ZeroExtend32(a[15:0]) AVX512F
immintrin.h
Mask
Convert integer value "a" into an 16-bit mask, and store the result in "k". k := ZeroExtend16(a[15:0]) AVX512F
immintrin.h
Mask
Compute the bitwise NOT of 16-bit masks "a" and then AND with "b", and store the result in "k". k[15:0] := (NOT a[15:0]) AND b[15:0] k[MAX:16] := 0 AVX512F
immintrin.h
Mask
Compute the bitwise AND of 16-bit masks "a" and "b", and store the result in "k". k[15:0] := a[15:0] AND b[15:0] k[MAX:16] := 0 AVX512F
immintrin.h
Mask
Copy 16-bit mask "a" to "k". k[15:0] := a[15:0] k[MAX:16] := 0 AVX512F
immintrin.h
Mask
Compute the bitwise NOT of 16-bit mask "a", and store the result in "k". k[15:0] := NOT a[15:0] k[MAX:16] := 0 AVX512F
immintrin.h
Mask
Compute the bitwise OR of 16-bit masks "a" and "b", and store the result in "k". k[15:0] := a[15:0] OR b[15:0] k[MAX:16] := 0 AVX512F
immintrin.h
Mask
Unpack and interleave 8 bits from masks "a" and "b", and store the 16-bit result in "k". k[7:0] := b[7:0] k[15:8] := a[7:0] k[MAX:16] := 0 AVX512F
immintrin.h
Mask
Compute the bitwise XNOR of 16-bit masks "a" and "b", and store the result in "k". k[15:0] := NOT (a[15:0] XOR b[15:0]) k[MAX:16] := 0 AVX512F
immintrin.h
Mask
Compute the bitwise XOR of 16-bit masks "a" and "b", and store the result in "k". k[15:0] := a[15:0] XOR b[15:0] k[MAX:16] := 0 AVX512F
immintrin.h
Mask
Performs bitwise OR between "k1" and "k2", storing the result in "dst". ZF flag is set if "dst" is 0. dst[15:0] := k1[15:0] | k2[15:0] IF dst == 0 SetZF() FI AVX512F
immintrin.h
Mask
Performs bitwise OR between "k1" and "k2", storing the result in "dst". CF flag is set if "dst" consists of all 1's. dst[15:0] := k1[15:0] | k2[15:0] IF PopCount(dst[15:0]) == 16 SetCF() FI AVX512F
immintrin.h
Mask
Converts bit mask "k1" into an integer value, storing the results in "dst". dst := ZeroExtend32(k1) AVX512F
immintrin.h
Mask
Converts integer "mask" into bitmask, storing the result in "dst". dst := mask[15:0] AVX512F
immintrin.h
Mask
Concatenate "a" and "b" into a 128-byte immediate result, shift the result right by "imm8" 32-bit elements, and stores the low 64 bytes (16 elements) in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). temp[1023:512] := a[511:0] temp[511:0] := b[511:0] temp[1023:0] := temp[1023:0] >> (32*imm8[3:0]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := temp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Concatenate "a" and "b" into a 128-byte immediate result, shift the result right by "imm8" 64-bit elements, and store the low 64 bytes (8 elements) in "dst". temp[1023:512] := a[511:0] temp[511:0] := b[511:0] temp[1023:0] := temp[1023:0] >> (64*imm8[2:0]) dst[511:0] := temp[511:0] dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Concatenate "a" and "b" into a 128-byte immediate result, shift the result right by "imm8" 64-bit elements, and store the low 64 bytes (8 elements) in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). temp[1023:512] := a[511:0] temp[511:0] := b[511:0] temp[1023:0] := temp[1023:0] >> (64*imm8[2:0]) FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := temp[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Concatenate "a" and "b" into a 128-byte immediate result, shift the result right by "imm8" 64-bit elements, and stores the low 64 bytes (8 elements) in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). temp[1023:512] := a[511:0] temp[511:0] := b[511:0] temp[1023:0] := temp[1023:0] >> (64*imm8[2:0]) FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := temp[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up packed double-precision (64-bit) floating-point elements in "a" and "b" using packed 64-bit integers in "c", and store the results in "dst". "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[63:0], src2[63:0], src3[63:0], imm8[7:0]) { tsrc[63:0] := ((src2[62:52] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[63:0] CASE(tsrc[63:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[63:0] := src1[63:0] 1 : dest[63:0] := tsrc[63:0] 2 : dest[63:0] := QNaN(tsrc[63:0]) 3 : dest[63:0] := QNAN_Indefinite 4 : dest[63:0] := -INF 5 : dest[63:0] := +INF 6 : dest[63:0] := tsrc.sign? -INF : +INF 7 : dest[63:0] := -0 8 : dest[63:0] := +0 9 : dest[63:0] := -1 10: dest[63:0] := +1 11: dest[63:0] := 1/2 12: dest[63:0] := 90.0 13: dest[63:0] := PI/2 14: dest[63:0] := MAX_FLOAT 15: dest[63:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[63:0] } FOR j := 0 to 7 i := j*64 dst[i+63:i] := FIXUPIMMPD(a[i+63:i], b[i+63:i], c[i+63:i], imm8[7:0]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up packed double-precision (64-bit) floating-point elements in "a" and "b" using packed 64-bit integers in "c", and store the results in "dst". "imm8" is used to set the required flags reporting. [sae_note] enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[63:0], src2[63:0], src3[63:0], imm8[7:0]) { tsrc[63:0] := ((src2[62:52] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[63:0] CASE(tsrc[63:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[63:0] := src1[63:0] 1 : dest[63:0] := tsrc[63:0] 2 : dest[63:0] := QNaN(tsrc[63:0]) 3 : dest[63:0] := QNAN_Indefinite 4 : dest[63:0] := -INF 5 : dest[63:0] := +INF 6 : dest[63:0] := tsrc.sign? -INF : +INF 7 : dest[63:0] := -0 8 : dest[63:0] := +0 9 : dest[63:0] := -1 10: dest[63:0] := +1 11: dest[63:0] := 1/2 12: dest[63:0] := 90.0 13: dest[63:0] := PI/2 14: dest[63:0] := MAX_FLOAT 15: dest[63:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[63:0] } FOR j := 0 to 7 i := j*64 dst[i+63:i] := FIXUPIMMPD(a[i+63:i], b[i+63:i], c[i+63:i], imm8[7:0]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up packed double-precision (64-bit) floating-point elements in "a" and "b" using packed 64-bit integers in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[63:0], src2[63:0], src3[63:0], imm8[7:0]) { tsrc[63:0] := ((src2[62:52] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[63:0] CASE(tsrc[63:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[63:0] := src1[63:0] 1 : dest[63:0] := tsrc[63:0] 2 : dest[63:0] := QNaN(tsrc[63:0]) 3 : dest[63:0] := QNAN_Indefinite 4 : dest[63:0] := -INF 5 : dest[63:0] := +INF 6 : dest[63:0] := tsrc.sign? -INF : +INF 7 : dest[63:0] := -0 8 : dest[63:0] := +0 9 : dest[63:0] := -1 10: dest[63:0] := +1 11: dest[63:0] := 1/2 12: dest[63:0] := 90.0 13: dest[63:0] := PI/2 14: dest[63:0] := MAX_FLOAT 15: dest[63:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[63:0] } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := FIXUPIMMPD(a[i+63:i], b[i+63:i], c[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up packed double-precision (64-bit) floating-point elements in "a" and "b" using packed 64-bit integers in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). "imm8" is used to set the required flags reporting. [sae_note] enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[63:0], src2[63:0], src3[63:0], imm8[7:0]) { tsrc[63:0] := ((src2[62:52] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[63:0] CASE(tsrc[63:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[63:0] := src1[63:0] 1 : dest[63:0] := tsrc[63:0] 2 : dest[63:0] := QNaN(tsrc[63:0]) 3 : dest[63:0] := QNAN_Indefinite 4 : dest[63:0] := -INF 5 : dest[63:0] := +INF 6 : dest[63:0] := tsrc.sign? -INF : +INF 7 : dest[63:0] := -0 8 : dest[63:0] := +0 9 : dest[63:0] := -1 10: dest[63:0] := +1 11: dest[63:0] := 1/2 12: dest[63:0] := 90.0 13: dest[63:0] := PI/2 14: dest[63:0] := MAX_FLOAT 15: dest[63:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[63:0] } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := FIXUPIMMPD(a[i+63:i], b[i+63:i], c[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up packed double-precision (64-bit) floating-point elements in "a" and "b" using packed 64-bit integers in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[63:0], src2[63:0], src3[63:0], imm8[7:0]) { tsrc[63:0] := ((src2[62:52] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[63:0] CASE(tsrc[63:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[63:0] := src1[63:0] 1 : dest[63:0] := tsrc[63:0] 2 : dest[63:0] := QNaN(tsrc[63:0]) 3 : dest[63:0] := QNAN_Indefinite 4 : dest[63:0] := -INF 5 : dest[63:0] := +INF 6 : dest[63:0] := tsrc.sign? -INF : +INF 7 : dest[63:0] := -0 8 : dest[63:0] := +0 9 : dest[63:0] := -1 10: dest[63:0] := +1 11: dest[63:0] := 1/2 12: dest[63:0] := 90.0 13: dest[63:0] := PI/2 14: dest[63:0] := MAX_FLOAT 15: dest[63:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[63:0] } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := FIXUPIMMPD(a[i+63:i], b[i+63:i], c[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up packed double-precision (64-bit) floating-point elements in "a" and "b" using packed 64-bit integers in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "imm8" is used to set the required flags reporting. [sae_note] enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[63:0], src2[63:0], src3[63:0], imm8[7:0]) { tsrc[63:0] := ((src2[62:52] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[63:0] CASE(tsrc[63:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[63:0] := src1[63:0] 1 : dest[63:0] := tsrc[63:0] 2 : dest[63:0] := QNaN(tsrc[63:0]) 3 : dest[63:0] := QNAN_Indefinite 4 : dest[63:0] := -INF 5 : dest[63:0] := +INF 6 : dest[63:0] := tsrc.sign? -INF : +INF 7 : dest[63:0] := -0 8 : dest[63:0] := +0 9 : dest[63:0] := -1 10: dest[63:0] := +1 11: dest[63:0] := 1/2 12: dest[63:0] := 90.0 13: dest[63:0] := PI/2 14: dest[63:0] := MAX_FLOAT 15: dest[63:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[63:0] } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := FIXUPIMMPD(a[i+63:i], b[i+63:i], c[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up packed single-precision (32-bit) floating-point elements in "a" and "b" using packed 32-bit integers in "c", and store the results in "dst". "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[31:0], src2[31:0], src3[31:0], imm8[7:0]) { tsrc[31:0] := ((src2[30:23] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[31:0] CASE(tsrc[31:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[31:0] := src1[31:0] 1 : dest[31:0] := tsrc[31:0] 2 : dest[31:0] := QNaN(tsrc[31:0]) 3 : dest[31:0] := QNAN_Indefinite 4 : dest[31:0] := -INF 5 : dest[31:0] := +INF 6 : dest[31:0] := tsrc.sign? -INF : +INF 7 : dest[31:0] := -0 8 : dest[31:0] := +0 9 : dest[31:0] := -1 10: dest[31:0] := +1 11: dest[31:0] := 1/2 12: dest[31:0] := 90.0 13: dest[31:0] := PI/2 14: dest[31:0] := MAX_FLOAT 15: dest[31:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[31:0] } FOR j := 0 to 15 i := j*32 dst[i+31:i] := FIXUPIMMPD(a[i+31:i], b[i+31:i], c[i+31:i], imm8[7:0]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up packed single-precision (32-bit) floating-point elements in "a" and "b" using packed 32-bit integers in "c", and store the results in "dst". "imm8" is used to set the required flags reporting. [sae_note] enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[31:0], src2[31:0], src3[31:0], imm8[7:0]) { tsrc[31:0] := ((src2[30:23] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[31:0] CASE(tsrc[31:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[31:0] := src1[31:0] 1 : dest[31:0] := tsrc[31:0] 2 : dest[31:0] := QNaN(tsrc[31:0]) 3 : dest[31:0] := QNAN_Indefinite 4 : dest[31:0] := -INF 5 : dest[31:0] := +INF 6 : dest[31:0] := tsrc.sign? -INF : +INF 7 : dest[31:0] := -0 8 : dest[31:0] := +0 9 : dest[31:0] := -1 10: dest[31:0] := +1 11: dest[31:0] := 1/2 12: dest[31:0] := 90.0 13: dest[31:0] := PI/2 14: dest[31:0] := MAX_FLOAT 15: dest[31:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[31:0] } FOR j := 0 to 15 i := j*32 dst[i+31:i] := FIXUPIMMPD(a[i+31:i], b[i+31:i], c[i+31:i], imm8[7:0]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up packed single-precision (32-bit) floating-point elements in "a" and "b" using packed 32-bit integers in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[31:0], src2[31:0], src3[31:0], imm8[7:0]) { tsrc[31:0] := ((src2[30:23] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[31:0] CASE(tsrc[31:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[31:0] := src1[31:0] 1 : dest[31:0] := tsrc[31:0] 2 : dest[31:0] := QNaN(tsrc[31:0]) 3 : dest[31:0] := QNAN_Indefinite 4 : dest[31:0] := -INF 5 : dest[31:0] := +INF 6 : dest[31:0] := tsrc.sign? -INF : +INF 7 : dest[31:0] := -0 8 : dest[31:0] := +0 9 : dest[31:0] := -1 10: dest[31:0] := +1 11: dest[31:0] := 1/2 12: dest[31:0] := 90.0 13: dest[31:0] := PI/2 14: dest[31:0] := MAX_FLOAT 15: dest[31:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[31:0] } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := FIXUPIMMPD(a[i+31:i], b[i+31:i], c[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up packed single-precision (32-bit) floating-point elements in "a" and "b" using packed 32-bit integers in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). "imm8" is used to set the required flags reporting. [sae_note] enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[31:0], src2[31:0], src3[31:0], imm8[7:0]) { tsrc[31:0] := ((src2[30:23] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[31:0] CASE(tsrc[31:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[31:0] := src1[31:0] 1 : dest[31:0] := tsrc[31:0] 2 : dest[31:0] := QNaN(tsrc[31:0]) 3 : dest[31:0] := QNAN_Indefinite 4 : dest[31:0] := -INF 5 : dest[31:0] := +INF 6 : dest[31:0] := tsrc.sign? -INF : +INF 7 : dest[31:0] := -0 8 : dest[31:0] := +0 9 : dest[31:0] := -1 10: dest[31:0] := +1 11: dest[31:0] := 1/2 12: dest[31:0] := 90.0 13: dest[31:0] := PI/2 14: dest[31:0] := MAX_FLOAT 15: dest[31:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[31:0] } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := FIXUPIMMPD(a[i+31:i], b[i+31:i], c[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up packed single-precision (32-bit) floating-point elements in "a" and "b" using packed 32-bit integers in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[31:0], src2[31:0], src3[31:0], imm8[7:0]) { tsrc[31:0] := ((src2[30:23] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[31:0] CASE(tsrc[31:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[31:0] := src1[31:0] 1 : dest[31:0] := tsrc[31:0] 2 : dest[31:0] := QNaN(tsrc[31:0]) 3 : dest[31:0] := QNAN_Indefinite 4 : dest[31:0] := -INF 5 : dest[31:0] := +INF 6 : dest[31:0] := tsrc.sign? -INF : +INF 7 : dest[31:0] := -0 8 : dest[31:0] := +0 9 : dest[31:0] := -1 10: dest[31:0] := +1 11: dest[31:0] := 1/2 12: dest[31:0] := 90.0 13: dest[31:0] := PI/2 14: dest[31:0] := MAX_FLOAT 15: dest[31:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[31:0] } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := FIXUPIMMPD(a[i+31:i], b[i+31:i], c[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up packed single-precision (32-bit) floating-point elements in "a" and "b" using packed 32-bit integers in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). "imm8" is used to set the required flags reporting. [sae_note] enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[31:0], src2[31:0], src3[31:0], imm8[7:0]) { tsrc[31:0] := ((src2[30:23] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[31:0] CASE(tsrc[31:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[31:0] := src1[31:0] 1 : dest[31:0] := tsrc[31:0] 2 : dest[31:0] := QNaN(tsrc[31:0]) 3 : dest[31:0] := QNAN_Indefinite 4 : dest[31:0] := -INF 5 : dest[31:0] := +INF 6 : dest[31:0] := tsrc.sign? -INF : +INF 7 : dest[31:0] := -0 8 : dest[31:0] := +0 9 : dest[31:0] := -1 10: dest[31:0] := +1 11: dest[31:0] := 1/2 12: dest[31:0] := 90.0 13: dest[31:0] := PI/2 14: dest[31:0] := MAX_FLOAT 15: dest[31:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[31:0] } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := FIXUPIMMPD(a[i+31:i], b[i+31:i], c[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up the lower double-precision (64-bit) floating-point elements in "a" and "b" using the lower 64-bit integer in "c", store the result in the lower element of "dst", and copy the upper element from "b" to the upper element of "dst". "imm8" is used to set the required flags reporting. [sae_note] enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[63:0], src2[63:0], src3[63:0], imm8[7:0]) { tsrc[63:0] := ((src2[62:52] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[63:0] CASE(tsrc[63:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[63:0] := src1[63:0] 1 : dest[63:0] := tsrc[63:0] 2 : dest[63:0] := QNaN(tsrc[63:0]) 3 : dest[63:0] := QNAN_Indefinite 4 : dest[63:0] := -INF 5 : dest[63:0] := +INF 6 : dest[63:0] := tsrc.sign? -INF : +INF 7 : dest[63:0] := -0 8 : dest[63:0] := +0 9 : dest[63:0] := -1 10: dest[63:0] := +1 11: dest[63:0] := 1/2 12: dest[63:0] := 90.0 13: dest[63:0] := PI/2 14: dest[63:0] := MAX_FLOAT 15: dest[63:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[63:0] } dst[63:0] := FIXUPIMMPD(a[63:0], b[63:0], c[63:0], imm8[7:0]) dst[127:64] := b[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up the lower double-precision (64-bit) floating-point elements in "a" and "b" using the lower 64-bit integer in "c", store the result in the lower element of "dst", and copy the upper element from "b" to the upper element of "dst". "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[63:0], src2[63:0], src3[63:0], imm8[7:0]) { tsrc[63:0] := ((src2[62:52] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[63:0] CASE(tsrc[63:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[63:0] := src1[63:0] 1 : dest[63:0] := tsrc[63:0] 2 : dest[63:0] := QNaN(tsrc[63:0]) 3 : dest[63:0] := QNAN_Indefinite 4 : dest[63:0] := -INF 5 : dest[63:0] := +INF 6 : dest[63:0] := tsrc.sign? -INF : +INF 7 : dest[63:0] := -0 8 : dest[63:0] := +0 9 : dest[63:0] := -1 10: dest[63:0] := +1 11: dest[63:0] := 1/2 12: dest[63:0] := 90.0 13: dest[63:0] := PI/2 14: dest[63:0] := MAX_FLOAT 15: dest[63:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[63:0] } dst[63:0] := FIXUPIMMPD(a[63:0], b[63:0], c[63:0], imm8[7:0]) dst[127:64] := b[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up the lower double-precision (64-bit) floating-point elements in "a" and "b" using the lower 64-bit integer in "c", store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper element from "b" to the upper element of "dst". "imm8" is used to set the required flags reporting. [sae_note] enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[63:0], src2[63:0], src3[63:0], imm8[7:0]) { tsrc[63:0] := ((src2[62:52] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[63:0] CASE(tsrc[63:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[63:0] := src1[63:0] 1 : dest[63:0] := tsrc[63:0] 2 : dest[63:0] := QNaN(tsrc[63:0]) 3 : dest[63:0] := QNAN_Indefinite 4 : dest[63:0] := -INF 5 : dest[63:0] := +INF 6 : dest[63:0] := tsrc.sign? -INF : +INF 7 : dest[63:0] := -0 8 : dest[63:0] := +0 9 : dest[63:0] := -1 10: dest[63:0] := +1 11: dest[63:0] := 1/2 12: dest[63:0] := 90.0 13: dest[63:0] := PI/2 14: dest[63:0] := MAX_FLOAT 15: dest[63:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[63:0] } IF k[0] dst[63:0] := FIXUPIMMPD(a[63:0], b[63:0], c[63:0], imm8[7:0]) ELSE dst[63:0] := a[63:0] FI dst[127:64] := b[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up the lower double-precision (64-bit) floating-point elements in "a" and "b" using the lower 64-bit integer in "c", store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper element from "b" to the upper element of "dst". "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[63:0], src2[63:0], src3[63:0], imm8[7:0]) { tsrc[63:0] := ((src2[62:52] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[63:0] CASE(tsrc[63:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[63:0] := src1[63:0] 1 : dest[63:0] := tsrc[63:0] 2 : dest[63:0] := QNaN(tsrc[63:0]) 3 : dest[63:0] := QNAN_Indefinite 4 : dest[63:0] := -INF 5 : dest[63:0] := +INF 6 : dest[63:0] := tsrc.sign? -INF : +INF 7 : dest[63:0] := -0 8 : dest[63:0] := +0 9 : dest[63:0] := -1 10: dest[63:0] := +1 11: dest[63:0] := 1/2 12: dest[63:0] := 90.0 13: dest[63:0] := PI/2 14: dest[63:0] := MAX_FLOAT 15: dest[63:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[63:0] } IF k[0] dst[63:0] := FIXUPIMMPD(a[63:0], b[63:0], c[63:0], imm8[7:0]) ELSE dst[63:0] := a[63:0] FI dst[127:64] := b[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up the lower double-precision (64-bit) floating-point elements in "a" and "b" using the lower 64-bit integer in "c", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "b" to the upper element of "dst". "imm8" is used to set the required flags reporting. [sae_note] enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[63:0], src2[63:0], src3[63:0], imm8[7:0]) { tsrc[63:0] := ((src2[62:52] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[63:0] CASE(tsrc[63:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[63:0] := src1[63:0] 1 : dest[63:0] := tsrc[63:0] 2 : dest[63:0] := QNaN(tsrc[63:0]) 3 : dest[63:0] := QNAN_Indefinite 4 : dest[63:0] := -INF 5 : dest[63:0] := +INF 6 : dest[63:0] := tsrc.sign? -INF : +INF 7 : dest[63:0] := -0 8 : dest[63:0] := +0 9 : dest[63:0] := -1 10: dest[63:0] := +1 11: dest[63:0] := 1/2 12: dest[63:0] := 90.0 13: dest[63:0] := PI/2 14: dest[63:0] := MAX_FLOAT 15: dest[63:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[63:0] } IF k[0] dst[63:0] := FIXUPIMMPD(a[63:0], b[63:0], c[63:0], imm8[7:0]) ELSE dst[63:0] := 0 FI dst[127:64] := b[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up the lower double-precision (64-bit) floating-point elements in "a" and "b" using the lower 64-bit integer in "c", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "b" to the upper element of "dst". "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[63:0], src2[63:0], src3[63:0], imm8[7:0]) { tsrc[63:0] := ((src2[62:52] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[63:0] CASE(tsrc[63:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[63:0] := src1[63:0] 1 : dest[63:0] := tsrc[63:0] 2 : dest[63:0] := QNaN(tsrc[63:0]) 3 : dest[63:0] := QNAN_Indefinite 4 : dest[63:0] := -INF 5 : dest[63:0] := +INF 6 : dest[63:0] := tsrc.sign? -INF : +INF 7 : dest[63:0] := -0 8 : dest[63:0] := +0 9 : dest[63:0] := -1 10: dest[63:0] := +1 11: dest[63:0] := 1/2 12: dest[63:0] := 90.0 13: dest[63:0] := PI/2 14: dest[63:0] := MAX_FLOAT 15: dest[63:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[63:0] } IF k[0] dst[63:0] := FIXUPIMMPD(a[63:0], b[63:0], c[63:0], imm8[7:0]) ELSE dst[63:0] := 0 FI dst[127:64] := b[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up the lower single-precision (32-bit) floating-point elements in "a" and "b" using the lower 32-bit integer in "c", store the result in the lower element of "dst", and copy the upper 3 packed elements from "b" to the upper elements of "dst". "imm8" is used to set the required flags reporting. [sae_note] enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[31:0], src2[31:0], src3[31:0], imm8[7:0]) { tsrc[31:0] := ((src2[30:23] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[31:0] CASE(tsrc[31:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[31:0] := src1[31:0] 1 : dest[31:0] := tsrc[31:0] 2 : dest[31:0] := QNaN(tsrc[31:0]) 3 : dest[31:0] := QNAN_Indefinite 4 : dest[31:0] := -INF 5 : dest[31:0] := +INF 6 : dest[31:0] := tsrc.sign? -INF : +INF 7 : dest[31:0] := -0 8 : dest[31:0] := +0 9 : dest[31:0] := -1 10: dest[31:0] := +1 11: dest[31:0] := 1/2 12: dest[31:0] := 90.0 13: dest[31:0] := PI/2 14: dest[31:0] := MAX_FLOAT 15: dest[31:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[31:0] } dst[31:0] := FIXUPIMMPD(a[31:0], b[31:0], c[31:0], imm8[7:0]) dst[127:32] := b[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up the lower single-precision (32-bit) floating-point elements in "a" and "b" using the lower 32-bit integer in "c", store the result in the lower element of "dst", and copy the upper 3 packed elements from "b" to the upper elements of "dst". "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[31:0], src2[31:0], src3[31:0], imm8[7:0]) { tsrc[31:0] := ((src2[30:23] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[31:0] CASE(tsrc[31:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[31:0] := src1[31:0] 1 : dest[31:0] := tsrc[31:0] 2 : dest[31:0] := QNaN(tsrc[31:0]) 3 : dest[31:0] := QNAN_Indefinite 4 : dest[31:0] := -INF 5 : dest[31:0] := +INF 6 : dest[31:0] := tsrc.sign? -INF : +INF 7 : dest[31:0] := -0 8 : dest[31:0] := +0 9 : dest[31:0] := -1 10: dest[31:0] := +1 11: dest[31:0] := 1/2 12: dest[31:0] := 90.0 13: dest[31:0] := PI/2 14: dest[31:0] := MAX_FLOAT 15: dest[31:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[31:0] } dst[31:0] := FIXUPIMMPD(a[31:0], b[31:0], c[31:0], imm8[7:0]) dst[127:32] := b[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up the lower single-precision (32-bit) floating-point elements in "a" and "b" using the lower 32-bit integer in "c", store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper 3 packed elements from "b" to the upper elements of "dst". "imm8" is used to set the required flags reporting. [sae_note] enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[31:0], src2[31:0], src3[31:0], imm8[7:0]) { tsrc[31:0] := ((src2[30:23] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[31:0] CASE(tsrc[31:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[31:0] := src1[31:0] 1 : dest[31:0] := tsrc[31:0] 2 : dest[31:0] := QNaN(tsrc[31:0]) 3 : dest[31:0] := QNAN_Indefinite 4 : dest[31:0] := -INF 5 : dest[31:0] := +INF 6 : dest[31:0] := tsrc.sign? -INF : +INF 7 : dest[31:0] := -0 8 : dest[31:0] := +0 9 : dest[31:0] := -1 10: dest[31:0] := +1 11: dest[31:0] := 1/2 12: dest[31:0] := 90.0 13: dest[31:0] := PI/2 14: dest[31:0] := MAX_FLOAT 15: dest[31:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[31:0] } IF k[0] dst[31:0] := FIXUPIMMPD(a[31:0], b[31:0], c[31:0], imm8[7:0]) ELSE dst[31:0] := a[31:0] FI dst[127:32] := b[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up the lower single-precision (32-bit) floating-point elements in "a" and "b" using the lower 32-bit integer in "c", store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper 3 packed elements from "b" to the upper elements of "dst". "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[31:0], src2[31:0], src3[31:0], imm8[7:0]) { tsrc[31:0] := ((src2[30:23] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[31:0] CASE(tsrc[31:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[31:0] := src1[31:0] 1 : dest[31:0] := tsrc[31:0] 2 : dest[31:0] := QNaN(tsrc[31:0]) 3 : dest[31:0] := QNAN_Indefinite 4 : dest[31:0] := -INF 5 : dest[31:0] := +INF 6 : dest[31:0] := tsrc.sign? -INF : +INF 7 : dest[31:0] := -0 8 : dest[31:0] := +0 9 : dest[31:0] := -1 10: dest[31:0] := +1 11: dest[31:0] := 1/2 12: dest[31:0] := 90.0 13: dest[31:0] := PI/2 14: dest[31:0] := MAX_FLOAT 15: dest[31:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[31:0] } IF k[0] dst[31:0] := FIXUPIMMPD(a[31:0], b[31:0], c[31:0], imm8[7:0]) ELSE dst[31:0] := a[31:0] FI dst[127:32] := b[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up the lower single-precision (32-bit) floating-point elements in "a" and "b" using the lower 32-bit integer in "c", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "b" to the upper elements of "dst". "imm8" is used to set the required flags reporting. [sae_note] enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[31:0], src2[31:0], src3[31:0], imm8[7:0]) { tsrc[31:0] := ((src2[30:23] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[31:0] CASE(tsrc[31:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[31:0] := src1[31:0] 1 : dest[31:0] := tsrc[31:0] 2 : dest[31:0] := QNaN(tsrc[31:0]) 3 : dest[31:0] := QNAN_Indefinite 4 : dest[31:0] := -INF 5 : dest[31:0] := +INF 6 : dest[31:0] := tsrc.sign? -INF : +INF 7 : dest[31:0] := -0 8 : dest[31:0] := +0 9 : dest[31:0] := -1 10: dest[31:0] := +1 11: dest[31:0] := 1/2 12: dest[31:0] := 90.0 13: dest[31:0] := PI/2 14: dest[31:0] := MAX_FLOAT 15: dest[31:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[31:0] } IF k[0] dst[31:0] := FIXUPIMMPD(a[31:0], b[31:0], c[31:0], imm8[7:0]) ELSE dst[31:0] := 0 FI dst[127:32] := b[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Fix up the lower single-precision (32-bit) floating-point elements in "a" and "b" using the lower 32-bit integer in "c", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "b" to the upper elements of "dst". "imm8" is used to set the required flags reporting. enum TOKEN_TYPE { QNAN_TOKEN := 0, \ SNAN_TOKEN := 1, \ ZERO_VALUE_TOKEN := 2, \ ONE_VALUE_TOKEN := 3, \ NEG_INF_TOKEN := 4, \ POS_INF_TOKEN := 5, \ NEG_VALUE_TOKEN := 6, \ POS_VALUE_TOKEN := 7 } DEFINE FIXUPIMMPD(src1[31:0], src2[31:0], src3[31:0], imm8[7:0]) { tsrc[31:0] := ((src2[30:23] == 0) AND (MXCSR.DAZ == 1)) ? 0.0 : src2[31:0] CASE(tsrc[31:0]) OF QNAN_TOKEN:j := 0 SNAN_TOKEN:j := 1 ZERO_VALUE_TOKEN: j := 2 ONE_VALUE_TOKEN: j := 3 NEG_INF_TOKEN: j := 4 POS_INF_TOKEN: j := 5 NEG_VALUE_TOKEN: j := 6 POS_VALUE_TOKEN: j := 7 ESAC token_response[3:0] := src3[3+4*j:4*j] CASE(token_response[3:0]) OF 0 : dest[31:0] := src1[31:0] 1 : dest[31:0] := tsrc[31:0] 2 : dest[31:0] := QNaN(tsrc[31:0]) 3 : dest[31:0] := QNAN_Indefinite 4 : dest[31:0] := -INF 5 : dest[31:0] := +INF 6 : dest[31:0] := tsrc.sign? -INF : +INF 7 : dest[31:0] := -0 8 : dest[31:0] := +0 9 : dest[31:0] := -1 10: dest[31:0] := +1 11: dest[31:0] := 1/2 12: dest[31:0] := 90.0 13: dest[31:0] := PI/2 14: dest[31:0] := MAX_FLOAT 15: dest[31:0] := -MAX_FLOAT ESAC CASE(tsrc[31:0]) OF ZERO_VALUE_TOKEN: IF (imm8[0]) #ZE; FI ZERO_VALUE_TOKEN: IF (imm8[1]) #IE; FI ONE_VALUE_TOKEN: IF (imm8[2]) #ZE; FI ONE_VALUE_TOKEN: IF (imm8[3]) #IE; FI SNAN_TOKEN: IF (imm8[4]) #IE; FI NEG_INF_TOKEN: IF (imm8[5]) #IE; FI NEG_VALUE_TOKEN: IF (imm8[6]) #IE; FI POS_INF_TOKEN: IF (imm8[7]) #IE; FI ESAC RETURN dest[31:0] } IF k[0] dst[31:0] := FIXUPIMMPD(a[31:0], b[31:0], c[31:0], imm8[7:0]) ELSE dst[31:0] := 0 FI dst[127:32] := b[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of each packed double-precision (64-bit) floating-point element in "a" to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ConvertExpFP64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of each packed double-precision (64-bit) floating-point element in "a" to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. [sae_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ConvertExpFP64(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of each packed single-precision (32-bit) floating-point element in "a" to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ConvertExpFP32(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of each packed single-precision (32-bit) floating-point element in "a" to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. [sae_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ConvertExpFP32(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of the lower double-precision (64-bit) floating-point element in "b" to a double-precision (64-bit) floating-point number representing the integer exponent, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". This intrinsic essentially calculates "floor(log2(x))" for the lower element. [sae_note] dst[63:0] := ConvertExpFP64(b[63:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of the lower double-precision (64-bit) floating-point element in "b" to a double-precision (64-bit) floating-point number representing the integer exponent, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". This intrinsic essentially calculates "floor(log2(x))" for the lower element. dst[63:0] := ConvertExpFP64(b[63:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of the lower double-precision (64-bit) floating-point element in "b" to a double-precision (64-bit) floating-point number representing the integer exponent, store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". This intrinsic essentially calculates "floor(log2(x))" for the lower element. [sae_note] IF k[0] dst[63:0] := ConvertExpFP64(b[63:0]) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of the lower double-precision (64-bit) floating-point element in "b" to a double-precision (64-bit) floating-point number representing the integer exponent, store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". This intrinsic essentially calculates "floor(log2(x))" for the lower element. IF k[0] dst[63:0] := ConvertExpFP64(b[63:0]) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of the lower double-precision (64-bit) floating-point element in "b" to a double-precision (64-bit) floating-point number representing the integer exponent, store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". This intrinsic essentially calculates "floor(log2(x))" for the lower element. [sae_note] IF k[0] dst[63:0] := ConvertExpFP64(b[63:0]) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of the lower double-precision (64-bit) floating-point element in "b" to a double-precision (64-bit) floating-point number representing the integer exponent, store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". This intrinsic essentially calculates "floor(log2(x))" for the lower element. IF k[0] dst[63:0] := ConvertExpFP64(b[63:0]) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of the lower single-precision (32-bit) floating-point element in "b" to a single-precision (32-bit) floating-point number representing the integer exponent, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "floor(log2(x))" for the lower element. [sae_note] dst[31:0] := ConvertExpFP32(b[31:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of the lower single-precision (32-bit) floating-point element in "b" to a single-precision (32-bit) floating-point number representing the integer exponent, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "floor(log2(x))" for the lower element. dst[31:0] := ConvertExpFP32(b[31:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of the lower single-precision (32-bit) floating-point element in "b" to a single-precision (32-bit) floating-point number representing the integer exponent, store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "floor(log2(x))" for the lower element. [sae_note] IF k[0] dst[31:0] := ConvertExpFP32(b[31:0]) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of the lower single-precision (32-bit) floating-point element in "b" to a single-precision (32-bit) floating-point number representing the integer exponent, store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "floor(log2(x))" for the lower element. IF k[0] dst[31:0] := ConvertExpFP32(b[31:0]) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of the lower single-precision (32-bit) floating-point element in "b" to a single-precision (32-bit) floating-point number representing the integer exponent, store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "floor(log2(x))" for the lower element. [sae_note] IF k[0] dst[31:0] := ConvertExpFP32(b[31:0]) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of the lower single-precision (32-bit) floating-point element in "b" to a single-precision (32-bit) floating-point number representing the integer exponent, store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "floor(log2(x))" for the lower element. IF k[0] dst[31:0] := ConvertExpFP32(b[31:0]) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := GetNormalizedMantissa(a[i+63:i], sc, interv) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note][sae_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := GetNormalizedMantissa(a[i+63:i], sc, interv) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := GetNormalizedMantissa(a[i+31:i], sc, interv) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note][sae_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := GetNormalizedMantissa(a[i+31:i], sc, interv) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note][sae_note] dst[63:0] := GetNormalizedMantissa(b[63:0], sc, interv) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] dst[63:0] := GetNormalizedMantissa(b[63:0], sc, interv) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note][sae_note] IF k[0] dst[63:0] := GetNormalizedMantissa(b[63:0], sc, interv) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] IF k[0] dst[63:0] := GetNormalizedMantissa(b[63:0], sc, interv) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note][sae_note] IF k[0] dst[63:0] := GetNormalizedMantissa(b[63:0], sc, interv) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] IF k[0] dst[63:0] := GetNormalizedMantissa(b[63:0], sc, interv) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note][sae_note] dst[31:0] := GetNormalizedMantissa(b[31:0], sc, interv) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] dst[31:0] := GetNormalizedMantissa(b[31:0], sc, interv) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note][sae_note] IF k[0] dst[31:0] := GetNormalizedMantissa(b[31:0], sc, interv) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] IF k[0] dst[31:0] := GetNormalizedMantissa(b[31:0], sc, interv) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note][sae_note] IF k[0] dst[31:0] := GetNormalizedMantissa(b[31:0], sc, interv) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] IF k[0] dst[31:0] := GetNormalizedMantissa(b[31:0], sc, interv) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Rotate the bits in each packed 32-bit integer in "a" to the right by the number of bits specified in the corresponding element of "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src >>count) OR (src << (32 - count)) } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := RIGHT_ROTATE_DWORDS(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Round packed double-precision (64-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] DEFINE RoundScaleFP64(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) IF IsInf(tmp[63:0]) tmp[63:0] := src1[63:0] FI RETURN tmp[63:0] } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := RoundScaleFP64(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Round packed double-precision (64-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note][sae_note] DEFINE RoundScaleFP64(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) IF IsInf(tmp[63:0]) tmp[63:0] := src1[63:0] FI RETURN tmp[63:0] } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := RoundScaleFP64(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Round packed double-precision (64-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] DEFINE RoundScaleFP64(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) IF IsInf(tmp[63:0]) tmp[63:0] := src1[63:0] FI RETURN tmp[63:0] } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := RoundScaleFP64(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Round packed double-precision (64-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note][sae_note] DEFINE RoundScaleFP64(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) IF IsInf(tmp[63:0]) tmp[63:0] := src1[63:0] FI RETURN tmp[63:0] } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := RoundScaleFP64(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Round packed double-precision (64-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst". [round_imm_note] DEFINE RoundScaleFP64(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) IF IsInf(tmp[63:0]) tmp[63:0] := src1[63:0] FI RETURN tmp[63:0] } FOR j := 0 to 7 i := j*64 dst[i+63:i] := RoundScaleFP64(a[i+63:i], imm8[7:0]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Round packed double-precision (64-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst". [round_imm_note][sae_note] DEFINE RoundScaleFP64(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) IF IsInf(tmp[63:0]) tmp[63:0] := src1[63:0] FI RETURN tmp[63:0] } FOR j := 0 to 7 i := j*64 dst[i+63:i] := RoundScaleFP64(a[i+63:i], imm8[7:0]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Round packed single-precision (32-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] DEFINE RoundScaleFP32(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) IF IsInf(tmp[31:0]) tmp[31:0] := src1[31:0] FI RETURN tmp[31:0] } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := RoundScaleFP32(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Round packed single-precision (32-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note][sae_note] DEFINE RoundScaleFP32(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) IF IsInf(tmp[31:0]) tmp[31:0] := src1[31:0] FI RETURN tmp[31:0] } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := RoundScaleFP32(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Round packed single-precision (32-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] DEFINE RoundScaleFP32(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) IF IsInf(tmp[31:0]) tmp[31:0] := src1[31:0] FI RETURN tmp[31:0] } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := RoundScaleFP32(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Round packed single-precision (32-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note][sae_note] DEFINE RoundScaleFP32(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) IF IsInf(tmp[31:0]) tmp[31:0] := src1[31:0] FI RETURN tmp[31:0] } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := RoundScaleFP32(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Round packed single-precision (32-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst". [round_imm_note] DEFINE RoundScaleFP32(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) IF IsInf(tmp[31:0]) tmp[31:0] := src1[31:0] FI RETURN tmp[31:0] } FOR j := 0 to 15 i := j*32 dst[i+31:i] := RoundScaleFP32(a[i+31:i], imm8[7:0]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Round packed single-precision (32-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst". [round_imm_note][sae_note] DEFINE RoundScaleFP32(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) IF IsInf(tmp[31:0]) tmp[31:0] := src1[31:0] FI RETURN tmp[31:0] } FOR j := 0 to 15 i := j*32 dst[i+31:i] := RoundScaleFP32(a[i+31:i], imm8[7:0]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Round the lower double-precision (64-bit) floating-point element in "b" to the number of fraction bits specified by "imm8", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_imm_note][sae_note] DEFINE RoundScaleFP64(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) IF IsInf(tmp[63:0]) tmp[63:0] := src1[63:0] FI RETURN tmp[63:0] } IF k[0] dst[63:0] := RoundScaleFP64(b[63:0], imm8[7:0]) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Round the lower double-precision (64-bit) floating-point element in "b" to the number of fraction bits specified by "imm8", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_imm_note] DEFINE RoundScaleFP64(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) IF IsInf(tmp[63:0]) tmp[63:0] := src1[63:0] FI RETURN tmp[63:0] } IF k[0] dst[63:0] := RoundScaleFP64(b[63:0], imm8[7:0]) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Round the lower double-precision (64-bit) floating-point element in "b" to the number of fraction bits specified by "imm8", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_imm_note][sae_note] DEFINE RoundScaleFP64(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) IF IsInf(tmp[63:0]) tmp[63:0] := src1[63:0] FI RETURN tmp[63:0] } IF k[0] dst[63:0] := RoundScaleFP64(b[63:0], imm8[7:0]) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Round the lower double-precision (64-bit) floating-point element in "b" to the number of fraction bits specified by "imm8", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_imm_note] DEFINE RoundScaleFP64(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) IF IsInf(tmp[63:0]) tmp[63:0] := src1[63:0] FI RETURN tmp[63:0] } IF k[0] dst[63:0] := RoundScaleFP64(b[63:0], imm8[7:0]) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Round the lower double-precision (64-bit) floating-point element in "b" to the number of fraction bits specified by "imm8", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [round_imm_note][sae_note] DEFINE RoundScaleFP64(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) IF IsInf(tmp[63:0]) tmp[63:0] := src1[63:0] FI RETURN tmp[63:0] } dst[63:0] := RoundScaleFP64(b[63:0], imm8[7:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Round the lower double-precision (64-bit) floating-point element in "b" to the number of fraction bits specified by "imm8", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [round_imm_note] DEFINE RoundScaleFP64(src1[63:0], imm8[7:0]) { m[63:0] := FP64(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[63:0] := POW(2.0, -m) * ROUND(POW(2.0, m) * src1[63:0], imm8[3:0]) IF IsInf(tmp[63:0]) tmp[63:0] := src1[63:0] FI RETURN tmp[63:0] } dst[63:0] := RoundScaleFP64(b[63:0], imm8[7:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Round the lower single-precision (32-bit) floating-point element in "b" to the number of fraction bits specified by "imm8", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_imm_note][sae_note] DEFINE RoundScaleFP32(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) IF IsInf(tmp[31:0]) tmp[31:0] := src1[31:0] FI RETURN tmp[31:0] } IF k[0] dst[31:0] := RoundScaleFP32(b[31:0], imm8[7:0]) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Round the lower single-precision (32-bit) floating-point element in "b" to the number of fraction bits specified by "imm8", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_imm_note] DEFINE RoundScaleFP32(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) IF IsInf(tmp[31:0]) tmp[31:0] := src1[31:0] FI RETURN tmp[31:0] } IF k[0] dst[31:0] := RoundScaleFP32(b[31:0], imm8[7:0]) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Round the lower single-precision (32-bit) floating-point element in "b" to the number of fraction bits specified by "imm8", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_imm_note][sae_note] DEFINE RoundScaleFP32(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) IF IsInf(tmp[31:0]) tmp[31:0] := src1[31:0] FI RETURN tmp[31:0] } IF k[0] dst[31:0] := RoundScaleFP32(b[31:0], imm8[7:0]) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Round the lower single-precision (32-bit) floating-point element in "b" to the number of fraction bits specified by "imm8", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_imm_note] DEFINE RoundScaleFP32(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) IF IsInf(tmp[31:0]) tmp[31:0] := src1[31:0] FI RETURN tmp[31:0] } IF k[0] dst[31:0] := RoundScaleFP32(b[31:0], imm8[7:0]) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Round the lower single-precision (32-bit) floating-point element in "b" to the number of fraction bits specified by "imm8", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_imm_note][sae_note] DEFINE RoundScaleFP32(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) IF IsInf(tmp[31:0]) tmp[31:0] := src1[31:0] FI RETURN tmp[31:0] } dst[31:0] := RoundScaleFP32(b[31:0], imm8[7:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Round the lower single-precision (32-bit) floating-point element in "b" to the number of fraction bits specified by "imm8", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_imm_note] DEFINE RoundScaleFP32(src1[31:0], imm8[7:0]) { m[31:0] := FP32(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[31:0] := POW(FP32(2.0), -m) * ROUND(POW(FP32(2.0), m) * src1[31:0], imm8[3:0]) IF IsInf(tmp[31:0]) tmp[31:0] := src1[31:0] FI RETURN tmp[31:0] } dst[31:0] := RoundScaleFP32(b[31:0], imm8[7:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed double-precision (64-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[63:0] := tmp_src1[63:0] * POW(2.0, FLOOR(tmp_src2[63:0])) RETURN dst[63:0] } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := SCALE(a[i+63:0], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed double-precision (64-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[63:0] := tmp_src1[63:0] * POW(2.0, FLOOR(tmp_src2[63:0])) RETURN dst[63:0] } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := SCALE(a[i+63:0], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed double-precision (64-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[63:0] := tmp_src1[63:0] * POW(2.0, FLOOR(tmp_src2[63:0])) RETURN dst[63:0] } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := SCALE(a[i+63:0], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed double-precision (64-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[63:0] := tmp_src1[63:0] * POW(2.0, FLOOR(tmp_src2[63:0])) RETURN dst[63:0] } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := SCALE(a[i+63:0], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed double-precision (64-bit) floating-point elements in "a" using values from "b", and store the results in "dst". DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[63:0] := tmp_src1[63:0] * POW(2.0, FLOOR(tmp_src2[63:0])) RETURN dst[63:0] } FOR j := 0 to 7 i := j*64 dst[i+63:i] := SCALE(a[i+63:0], b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed double-precision (64-bit) floating-point elements in "a" using values from "b", and store the results in "dst". [round_note] DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[63:0] := tmp_src1[63:0] * POW(2.0, FLOOR(tmp_src2[63:0])) RETURN dst[63:0] } FOR j := 0 to 7 i := j*64 dst[i+63:i] := SCALE(a[i+63:0], b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[31:0] := tmp_src1[31:0] * POW(2.0, FLOOR(tmp_src2[31:0])) RETURN dst[31:0] } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := SCALE(a[i+31:0], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[31:0] := tmp_src1[31:0] * POW(2.0, FLOOR(tmp_src2[31:0])) RETURN dst[31:0] } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := SCALE(a[i+31:0], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[31:0] := tmp_src1[31:0] * POW(2.0, FLOOR(tmp_src2[31:0])) RETURN dst[31:0] } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := SCALE(a[i+31:0], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[31:0] := tmp_src1[31:0] * POW(2.0, FLOOR(tmp_src2[31:0])) RETURN dst[31:0] } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := SCALE(a[i+31:0], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", and store the results in "dst". DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[31:0] := tmp_src1[31:0] * POW(2.0, FLOOR(tmp_src2[31:0])) RETURN dst[31:0] } FOR j := 0 to 15 i := j*32 dst[i+31:i] := SCALE(a[i+31:0], b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", and store the results in "dst". [round_note] DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[31:0] := tmp_src1[31:0] * POW(2.0, FLOOR(tmp_src2[31:0])) RETURN dst[31:0] } FOR j := 0 to 15 i := j*32 dst[i+31:i] := SCALE(a[i+31:0], b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed double-precision (64-bit) floating-point elements in "a" using values from "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[63:0] := tmp_src1[63:0] * POW(2.0, FLOOR(tmp_src2[63:0])) RETURN dst[63:0] } IF k[0] dst[63:0] := SCALE(a[63:0], b[63:0]) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed double-precision (64-bit) floating-point elements in "a" using values from "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[63:0] := tmp_src1[63:0] * POW(2.0, FLOOR(tmp_src2[63:0])) RETURN dst[63:0] } IF k[0] dst[63:0] := SCALE(a[63:0], b[63:0]) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed double-precision (64-bit) floating-point elements in "a" using values from "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[63:0] := tmp_src1[63:0] * POW(2.0, FLOOR(tmp_src2[63:0])) RETURN dst[63:0] } IF k[0] dst[63:0] := SCALE(a[63:0], b[63:0]) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed double-precision (64-bit) floating-point elements in "a" using values from "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[63:0] := tmp_src1[63:0] * POW(2.0, FLOOR(tmp_src2[63:0])) RETURN dst[63:0] } IF k[0] dst[63:0] := SCALE(a[63:0], b[63:0]) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed double-precision (64-bit) floating-point elements in "a" using values from "b", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [round_note] DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[63:0] := tmp_src1[63:0] * POW(2.0, FLOOR(tmp_src2[63:0])) RETURN dst[63:0] } dst[63:0] := SCALE(a[63:0], b[63:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed double-precision (64-bit) floating-point elements in "a" using values from "b", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[63:0] := tmp_src1[63:0] * POW(2.0, FLOOR(tmp_src2[63:0])) RETURN dst[63:0] } dst[63:0] := SCALE(a[63:0], b[63:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[31:0] := tmp_src1[31:0] * POW(2.0, FLOOR(tmp_src2[31:0])) RETURN dst[63:0] } IF k[0] dst[31:0] := SCALE(a[31:0], b[31:0]) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[31:0] := tmp_src1[31:0] * POW(2.0, FLOOR(tmp_src2[31:0])) RETURN dst[63:0] } IF k[0] dst[31:0] := SCALE(a[31:0], b[31:0]) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[31:0] := tmp_src1[31:0] * POW(2.0, FLOOR(tmp_src2[31:0])) RETURN dst[63:0] } IF k[0] dst[31:0] := SCALE(a[31:0], b[31:0]) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[31:0] := tmp_src1[31:0] * POW(2.0, FLOOR(tmp_src2[31:0])) RETURN dst[63:0] } IF k[0] dst[31:0] := SCALE(a[31:0], b[31:0]) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[31:0] := tmp_src1[31:0] * POW(2.0, FLOOR(tmp_src2[31:0])) RETURN dst[63:0] } dst[31:0] := SCALE(a[31:0], b[31:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". DEFINE SCALE(src1, src2) { IF (src2 == NaN) IF (src2 == SNaN) RETURN QNAN(src2) FI ELSE IF (src1 == NaN) IF (src1 == SNaN) RETURN QNAN(src1) FI IF (src2 != INF) RETURN QNAN(src1) FI ELSE tmp_src2 := src2 tmp_src1 := src1 IF (IS_DENORMAL(src2) AND MXCSR.DAZ) tmp_src2 := 0 FI IF (IS_DENORMAL(src1) AND MXCSR.DAZ) tmp_src1 := 0 FI FI dst[31:0] := tmp_src1[31:0] * POW(2.0, FLOOR(tmp_src2[31:0])) RETURN dst[63:0] } dst[31:0] := SCALE(a[31:0], b[31:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Miscellaneous
Broadcast the 4 packed single-precision (32-bit) floating-point elements from "a" to all elements of "dst". FOR j := 0 to 15 i := j*32 n := (j % 4)*32 dst[i+31:i] := a[n+31:n] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the 4 packed single-precision (32-bit) floating-point elements from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 n := (j % 4)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the 4 packed single-precision (32-bit) floating-point elements from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 n := (j % 4)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the 4 packed double-precision (64-bit) floating-point elements from "a" to all elements of "dst". FOR j := 0 to 7 i := j*64 n := (j % 4)*64 dst[i+63:i] := a[n+63:n] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the 4 packed double-precision (64-bit) floating-point elements from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 n := (j % 4)*64 IF k[j] dst[i+63:i] := a[n+63:n] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the 4 packed double-precision (64-bit) floating-point elements from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 n := (j % 4)*64 IF k[j] dst[i+63:i] := a[n+63:n] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the 4 packed 32-bit integers from "a" to all elements of "dst". FOR j := 0 to 15 i := j*32 n := (j % 4)*32 dst[i+31:i] := a[n+31:n] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the 4 packed 32-bit integers from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 n := (j % 4)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the 4 packed 32-bit integers from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 n := (j % 4)*32 IF k[j] dst[i+31:i] := a[n+31:n] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the 4 packed 64-bit integers from "a" to all elements of "dst". FOR j := 0 to 7 i := j*64 n := (j % 4)*64 dst[i+63:i] := a[n+63:n] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the 4 packed 64-bit integers from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 n := (j % 4)*64 IF k[j] dst[i+63:i] := a[n+63:n] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the 4 packed 64-bit integers from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 n := (j % 4)*64 IF k[j] dst[i+63:i] := a[n+63:n] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the low double-precision (64-bit) floating-point element from "a" to all elements of "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := a[63:0] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the low double-precision (64-bit) floating-point element from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[63:0] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the low double-precision (64-bit) floating-point element from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[63:0] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the low single-precision (32-bit) floating-point element from "a" to all elements of "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := a[31:0] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the low single-precision (32-bit) floating-point element from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[31:0] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the low single-precision (32-bit) floating-point element from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[31:0] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Contiguously store the active double-precision (64-bit) floating-point elements in "a" (those with their respective bit set in writemask "k") to "dst", and pass through the remaining elements from "src". size := 64 m := 0 FOR j := 0 to 7 i := j*64 IF k[j] dst[m+size-1:m] := a[i+63:i] m := m + size FI ENDFOR dst[511:m] := src[511:m] dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Contiguously store the active double-precision (64-bit) floating-point elements in "a" (those with their respective bit set in zeromask "k") to "dst", and set the remaining elements to zero. size := 64 m := 0 FOR j := 0 to 7 i := j*64 IF k[j] dst[m+size-1:m] := a[i+63:i] m := m + size FI ENDFOR dst[511:m] := 0 dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Contiguously store the active single-precision (32-bit) floating-point elements in "a" (those with their respective bit set in writemask "k") to "dst", and pass through the remaining elements from "src". size := 32 m := 0 FOR j := 0 to 15 i := j*32 IF k[j] dst[m+size-1:m] := a[i+31:i] m := m + size FI ENDFOR dst[511:m] := src[511:m] dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Contiguously store the active single-precision (32-bit) floating-point elements in "a" (those with their respective bit set in zeromask "k") to "dst", and set the remaining elements to zero. size := 32 m := 0 FOR j := 0 to 15 i := j*32 IF k[j] dst[m+size-1:m] := a[i+31:i] m := m + size FI ENDFOR dst[511:m] := 0 dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Load contiguous active double-precision (64-bit) floating-point elements from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[m+63:m] m := m + 64 ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Load contiguous active double-precision (64-bit) floating-point elements from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[m+63:m] m := m + 64 ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Load contiguous active single-precision (32-bit) floating-point elements from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[m+31:m] m := m + 32 ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Load contiguous active single-precision (32-bit) floating-point elements from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[m+31:m] m := m + 32 ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from "a", selected with "imm8", and store the result in "dst". CASE imm8[1:0] OF 0: dst[127:0] := a[127:0] 1: dst[127:0] := a[255:128] 2: dst[127:0] := a[383:256] 3: dst[127:0] := a[511:384] ESAC dst[MAX:128] := 0 AVX512F
immintrin.h
Swizzle
Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from "a", selected with "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). CASE imm8[1:0] OF 0: tmp[127:0] := a[127:0] 1: tmp[127:0] := a[255:128] 2: tmp[127:0] := a[383:256] 3: tmp[127:0] := a[511:384] ESAC FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Swizzle
Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from "a", selected with "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). CASE imm8[1:0] OF 0: tmp[127:0] := a[127:0] 1: tmp[127:0] := a[255:128] 2: tmp[127:0] := a[383:256] 3: tmp[127:0] := a[511:384] ESAC FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Swizzle
Extract 256 bits (composed of 4 packed double-precision (64-bit) floating-point elements) from "a", selected with "imm8", and store the result in "dst". CASE imm8[0] OF 0: dst[255:0] := a[255:0] 1: dst[255:0] := a[511:256] ESAC dst[MAX:256] := 0 AVX512F
immintrin.h
Swizzle
Extract 256 bits (composed of 4 packed double-precision (64-bit) floating-point elements) from "a", selected with "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). CASE imm8[0] OF 0: tmp[255:0] := a[255:0] 1: tmp[255:0] := a[511:256] ESAC FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Swizzle
Extract 256 bits (composed of 4 packed double-precision (64-bit) floating-point elements) from "a", selected with "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). CASE imm8[0] OF 0: tmp[255:0] := a[255:0] 1: tmp[255:0] := a[511:256] ESAC FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Swizzle
Extract 128 bits (composed of 4 packed 32-bit integers) from "a", selected with "imm8", and store the result in "dst". CASE imm8[1:0] OF 0: dst[127:0] := a[127:0] 1: dst[127:0] := a[255:128] 2: dst[127:0] := a[383:256] 3: dst[127:0] := a[511:384] ESAC dst[MAX:128] := 0 AVX512F
immintrin.h
Swizzle
Extract 128 bits (composed of 4 packed 32-bit integers) from "a", selected with "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). CASE imm8[1:0] OF 0: tmp[127:0] := a[127:0] 1: tmp[127:0] := a[255:128] 2: tmp[127:0] := a[383:256] 3: tmp[127:0] := a[511:384] ESAC FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Swizzle
Extract 128 bits (composed of 4 packed 32-bit integers) from "a", selected with "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). CASE imm8[1:0] OF 0: tmp[127:0] := a[127:0] 1: tmp[127:0] := a[255:128] 2: tmp[127:0] := a[383:256] 3: tmp[127:0] := a[511:384] ESAC FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Swizzle
Extract 256 bits (composed of 4 packed 64-bit integers) from "a", selected with "imm8", and store the result in "dst". CASE imm8[0] OF 0: dst[255:0] := a[255:0] 1: dst[255:0] := a[511:256] ESAC dst[MAX:256] := 0 AVX512F
immintrin.h
Swizzle
Extract 256 bits (composed of 4 packed 64-bit integers) from "a", selected with "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). CASE imm8[0] OF 0: tmp[255:0] := a[255:0] 1: tmp[255:0] := a[511:256] ESAC FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Swizzle
Extract 256 bits (composed of 4 packed 64-bit integers) from "a", selected with "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). CASE imm8[0] OF 0: tmp[255:0] := a[255:0] 1: tmp[255:0] := a[511:256] ESAC FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Swizzle
Copy "a" to "dst", then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from "b" into "dst" at the location specified by "imm8". dst[511:0] := a[511:0] CASE (imm8[1:0]) OF 0: dst[127:0] := b[127:0] 1: dst[255:128] := b[127:0] 2: dst[383:256] := b[127:0] 3: dst[511:384] := b[127:0] ESAC dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Copy "a" to "tmp", then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[511:0] := a[511:0] CASE (imm8[1:0]) OF 0: tmp[127:0] := b[127:0] 1: tmp[255:128] := b[127:0] 2: tmp[383:256] := b[127:0] 3: tmp[511:384] := b[127:0] ESAC FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Copy "a" to "tmp", then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[511:0] := a[511:0] CASE (imm8[1:0]) OF 0: tmp[127:0] := b[127:0] 1: tmp[255:128] := b[127:0] 2: tmp[383:256] := b[127:0] 3: tmp[511:384] := b[127:0] ESAC FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Copy "a" to "dst", then insert 256 bits (composed of 4 packed double-precision (64-bit) floating-point elements) from "b" into "dst" at the location specified by "imm8". dst[511:0] := a[511:0] CASE (imm8[0]) OF 0: dst[255:0] := b[255:0] 1: dst[511:256] := b[255:0] ESAC dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Copy "a" to "tmp", then insert 256 bits (composed of 4 packed double-precision (64-bit) floating-point elements) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[511:0] := a[511:0] CASE (imm8[0]) OF 0: tmp[255:0] := b[255:0] 1: tmp[511:256] := b[255:0] ESAC FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Copy "a" to "tmp", then insert 256 bits (composed of 4 packed double-precision (64-bit) floating-point elements) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[511:0] := a[511:0] CASE (imm8[0]) OF 0: tmp[255:0] := b[255:0] 1: tmp[511:256] := b[255:0] ESAC FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Copy "a" to "dst", then insert 128 bits (composed of 4 packed 32-bit integers) from "b" into "dst" at the location specified by "imm8". dst[511:0] := a[511:0] CASE (imm8[1:0]) OF 0: dst[127:0] := b[127:0] 1: dst[255:128] := b[127:0] 2: dst[383:256] := b[127:0] 3: dst[511:384] := b[127:0] ESAC dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Copy "a" to "tmp", then insert 128 bits (composed of 4 packed 32-bit integers) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[511:0] := a[511:0] CASE (imm8[1:0]) OF 0: tmp[127:0] := b[127:0] 1: tmp[255:128] := b[127:0] 2: tmp[383:256] := b[127:0] 3: tmp[511:384] := b[127:0] ESAC FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Copy "a" to "tmp", then insert 128 bits (composed of 4 packed 32-bit integers) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[511:0] := a[511:0] CASE (imm8[1:0]) OF 0: tmp[127:0] := b[127:0] 1: tmp[255:128] := b[127:0] 2: tmp[383:256] := b[127:0] 3: tmp[511:384] := b[127:0] ESAC FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Copy "a" to "dst", then insert 256 bits (composed of 4 packed 64-bit integers) from "b" into "dst" at the location specified by "imm8". dst[511:0] := a[511:0] CASE (imm8[0]) OF 0: dst[255:0] := b[255:0] 1: dst[511:256] := b[255:0] ESAC dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Copy "a" to "tmp", then insert 256 bits (composed of 4 packed 64-bit integers) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[511:0] := a[511:0] CASE (imm8[0]) OF 0: tmp[255:0] := b[255:0] 1: tmp[511:256] := b[255:0] ESAC FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Copy "a" to "tmp", then insert 256 bits (composed of 4 packed 64-bit integers) from "b" into "tmp" at the location specified by "imm8". Store "tmp" to "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[511:0] := a[511:0] CASE (imm8[0]) OF 0: tmp[255:0] := b[255:0] 1: tmp[511:256] := b[255:0] ESAC FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the low packed 32-bit integer from "a" to all elements of "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := a[31:0] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the low packed 32-bit integer from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[31:0] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the low packed 32-bit integer from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[31:0] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the low packed 64-bit integer from "a" to all elements of "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := a[63:0] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the low packed 64-bit integer from "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[63:0] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Broadcast the low packed 64-bit integer from "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[63:0] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Contiguously store the active 32-bit integers in "a" (those with their respective bit set in writemask "k") to "dst", and pass through the remaining elements from "src". size := 32 m := 0 FOR j := 0 to 15 i := j*32 IF k[j] dst[m+size-1:m] := a[i+31:i] m := m + size FI ENDFOR dst[511:m] := src[511:m] dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Contiguously store the active 32-bit integers in "a" (those with their respective bit set in zeromask "k") to "dst", and set the remaining elements to zero. size := 32 m := 0 FOR j := 0 to 15 i := j*32 IF k[j] dst[m+size-1:m] := a[i+31:i] m := m + size FI ENDFOR dst[511:m] := 0 dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Contiguously store the active 64-bit integers in "a" (those with their respective bit set in writemask "k") to "dst", and pass through the remaining elements from "src". size := 64 m := 0 FOR j := 0 to 7 i := j*64 IF k[j] dst[m+size-1:m] := a[i+63:i] m := m + size FI ENDFOR dst[511:m] := src[511:m] dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Contiguously store the active 64-bit integers in "a" (those with their respective bit set in zeromask "k") to "dst", and set the remaining elements to zero. size := 64 m := 0 FOR j := 0 to 7 i := j*64 IF k[j] dst[m+size-1:m] := a[i+63:i] m := m + size FI ENDFOR dst[511:m] := 0 dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 32-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 id := idx[i+3:i]*32 IF k[j] dst[i+31:i] := a[id+31:id] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 32-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 id := idx[i+3:i]*32 IF k[j] dst[i+31:i] := a[id+31:id] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 32-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst". FOR j := 0 to 15 i := j*32 id := idx[i+3:i]*32 dst[i+31:i] := a[id+31:id] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 32-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "idx" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 off := idx[i+3:i]*32 IF k[j] dst[i+31:i] := idx[i+4] ? b[off+31:off] : a[off+31:off] ELSE dst[i+31:i] := idx[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 32-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 off := idx[i+3:i]*32 IF k[j] dst[i+31:i] := idx[i+4] ? b[off+31:off] : a[off+31:off] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 32-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 off := idx[i+3:i]*32 IF k[j] dst[i+31:i] := (idx[i+4]) ? b[off+31:off] : a[off+31:off] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 32-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 15 i := j*32 off := idx[i+3:i]*32 dst[i+31:i] := idx[i+4] ? b[off+31:off] : a[off+31:off] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "idx" when the corresponding mask bit is not set) FOR j := 0 to 7 i := j*64 off := idx[i+2:i]*64 IF k[j] dst[i+63:i] := idx[i+3] ? b[off+63:off] : a[off+63:off] ELSE dst[i+63:i] := idx[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 off := idx[i+2:i]*64 IF k[j] dst[i+63:i] := idx[i+3] ? b[off+63:off] : a[off+63:off] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 off := idx[i+2:i]*64 IF k[j] dst[i+63:i] := (idx[i+3]) ? b[off+63:off] : a[off+63:off] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 7 i := j*64 off := idx[i+2:i]*64 dst[i+63:i] := idx[i+3] ? b[off+63:off] : a[off+63:off] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "idx" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 off := idx[i+3:i]*32 IF k[j] dst[i+31:i] := idx[i+4] ? b[off+31:off] : a[off+31:off] ELSE dst[i+31:i] := idx[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 off := idx[i+3:i]*32 IF k[j] dst[i+31:i] := idx[i+4] ? b[off+31:off] : a[off+31:off] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 off := idx[i+3:i]*32 IF k[j] dst[i+31:i] := (idx[i+4]) ? b[off+31:off] : a[off+31:off] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 15 i := j*32 off := idx[i+3:i]*32 dst[i+31:i] := idx[i+4] ? b[off+31:off] : a[off+31:off] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 64-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "idx" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 off := idx[i+2:i]*64 IF k[j] dst[i+63:i] := idx[i+3] ? b[off+63:off] : a[off+63:off] ELSE dst[i+63:i] := idx[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 64-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 off := idx[i+2:i]*64 IF k[j] dst[i+63:i] := idx[i+3] ? b[off+63:off] : a[off+63:off] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 64-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 off := idx[i+2:i]*64 IF k[j] dst[i+63:i] := (idx[i+3]) ? b[off+63:off] : a[off+63:off] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 64-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 7 i := j*64 off := idx[i+2:i]*64 dst[i+63:i] := idx[i+3] ? b[off+63:off] : a[off+63:off] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). IF (imm8[0] == 0) tmp_dst[63:0] := a[63:0]; FI IF (imm8[0] == 1) tmp_dst[63:0] := a[127:64]; FI IF (imm8[1] == 0) tmp_dst[127:64] := a[63:0]; FI IF (imm8[1] == 1) tmp_dst[127:64] := a[127:64]; FI IF (imm8[2] == 0) tmp_dst[191:128] := a[191:128]; FI IF (imm8[2] == 1) tmp_dst[191:128] := a[255:192]; FI IF (imm8[3] == 0) tmp_dst[255:192] := a[191:128]; FI IF (imm8[3] == 1) tmp_dst[255:192] := a[255:192]; FI IF (imm8[4] == 0) tmp_dst[319:256] := a[319:256]; FI IF (imm8[4] == 1) tmp_dst[319:256] := a[383:320]; FI IF (imm8[5] == 0) tmp_dst[383:320] := a[319:256]; FI IF (imm8[5] == 1) tmp_dst[383:320] := a[383:320]; FI IF (imm8[6] == 0) tmp_dst[447:384] := a[447:384]; FI IF (imm8[6] == 1) tmp_dst[447:384] := a[511:448]; FI IF (imm8[7] == 0) tmp_dst[511:448] := a[447:384]; FI IF (imm8[7] == 1) tmp_dst[511:448] := a[511:448]; FI FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" within 128-bit lanes using the control in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). IF (b[1] == 0) tmp_dst[63:0] := a[63:0]; FI IF (b[1] == 1) tmp_dst[63:0] := a[127:64]; FI IF (b[65] == 0) tmp_dst[127:64] := a[63:0]; FI IF (b[65] == 1) tmp_dst[127:64] := a[127:64]; FI IF (b[129] == 0) tmp_dst[191:128] := a[191:128]; FI IF (b[129] == 1) tmp_dst[191:128] := a[255:192]; FI IF (b[193] == 0) tmp_dst[255:192] := a[191:128]; FI IF (b[193] == 1) tmp_dst[255:192] := a[255:192]; FI IF (b[257] == 0) tmp_dst[319:256] := a[319:256]; FI IF (b[257] == 1) tmp_dst[319:256] := a[383:320]; FI IF (b[321] == 0) tmp_dst[383:320] := a[319:256]; FI IF (b[321] == 1) tmp_dst[383:320] := a[383:320]; FI IF (b[385] == 0) tmp_dst[447:384] := a[447:384]; FI IF (b[385] == 1) tmp_dst[447:384] := a[511:448]; FI IF (b[449] == 0) tmp_dst[511:448] := a[447:384]; FI IF (b[449] == 1) tmp_dst[511:448] := a[511:448]; FI FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). IF (imm8[0] == 0) tmp_dst[63:0] := a[63:0]; FI IF (imm8[0] == 1) tmp_dst[63:0] := a[127:64]; FI IF (imm8[1] == 0) tmp_dst[127:64] := a[63:0]; FI IF (imm8[1] == 1) tmp_dst[127:64] := a[127:64]; FI IF (imm8[2] == 0) tmp_dst[191:128] := a[191:128]; FI IF (imm8[2] == 1) tmp_dst[191:128] := a[255:192]; FI IF (imm8[3] == 0) tmp_dst[255:192] := a[191:128]; FI IF (imm8[3] == 1) tmp_dst[255:192] := a[255:192]; FI IF (imm8[4] == 0) tmp_dst[319:256] := a[319:256]; FI IF (imm8[4] == 1) tmp_dst[319:256] := a[383:320]; FI IF (imm8[5] == 0) tmp_dst[383:320] := a[319:256]; FI IF (imm8[5] == 1) tmp_dst[383:320] := a[383:320]; FI IF (imm8[6] == 0) tmp_dst[447:384] := a[447:384]; FI IF (imm8[6] == 1) tmp_dst[447:384] := a[511:448]; FI IF (imm8[7] == 0) tmp_dst[511:448] := a[447:384]; FI IF (imm8[7] == 1) tmp_dst[511:448] := a[511:448]; FI FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" within 128-bit lanes using the control in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). IF (b[1] == 0) tmp_dst[63:0] := a[63:0]; FI IF (b[1] == 1) tmp_dst[63:0] := a[127:64]; FI IF (b[65] == 0) tmp_dst[127:64] := a[63:0]; FI IF (b[65] == 1) tmp_dst[127:64] := a[127:64]; FI IF (b[129] == 0) tmp_dst[191:128] := a[191:128]; FI IF (b[129] == 1) tmp_dst[191:128] := a[255:192]; FI IF (b[193] == 0) tmp_dst[255:192] := a[191:128]; FI IF (b[193] == 1) tmp_dst[255:192] := a[255:192]; FI IF (b[257] == 0) tmp_dst[319:256] := a[319:256]; FI IF (b[257] == 1) tmp_dst[319:256] := a[383:320]; FI IF (b[321] == 0) tmp_dst[383:320] := a[319:256]; FI IF (b[321] == 1) tmp_dst[383:320] := a[383:320]; FI IF (b[385] == 0) tmp_dst[447:384] := a[447:384]; FI IF (b[385] == 1) tmp_dst[447:384] := a[511:448]; FI IF (b[449] == 0) tmp_dst[511:448] := a[447:384]; FI IF (b[449] == 1) tmp_dst[511:448] := a[511:448]; FI FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst". IF (imm8[0] == 0) dst[63:0] := a[63:0]; FI IF (imm8[0] == 1) dst[63:0] := a[127:64]; FI IF (imm8[1] == 0) dst[127:64] := a[63:0]; FI IF (imm8[1] == 1) dst[127:64] := a[127:64]; FI IF (imm8[2] == 0) dst[191:128] := a[191:128]; FI IF (imm8[2] == 1) dst[191:128] := a[255:192]; FI IF (imm8[3] == 0) dst[255:192] := a[191:128]; FI IF (imm8[3] == 1) dst[255:192] := a[255:192]; FI IF (imm8[4] == 0) dst[319:256] := a[319:256]; FI IF (imm8[4] == 1) dst[319:256] := a[383:320]; FI IF (imm8[5] == 0) dst[383:320] := a[319:256]; FI IF (imm8[5] == 1) dst[383:320] := a[383:320]; FI IF (imm8[6] == 0) dst[447:384] := a[447:384]; FI IF (imm8[6] == 1) dst[447:384] := a[511:448]; FI IF (imm8[7] == 0) dst[511:448] := a[447:384]; FI IF (imm8[7] == 1) dst[511:448] := a[511:448]; FI dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" within 128-bit lanes using the control in "b", and store the results in "dst". IF (b[1] == 0) dst[63:0] := a[63:0]; FI IF (b[1] == 1) dst[63:0] := a[127:64]; FI IF (b[65] == 0) dst[127:64] := a[63:0]; FI IF (b[65] == 1) dst[127:64] := a[127:64]; FI IF (b[129] == 0) dst[191:128] := a[191:128]; FI IF (b[129] == 1) dst[191:128] := a[255:192]; FI IF (b[193] == 0) dst[255:192] := a[191:128]; FI IF (b[193] == 1) dst[255:192] := a[255:192]; FI IF (b[257] == 0) dst[319:256] := a[319:256]; FI IF (b[257] == 1) dst[319:256] := a[383:320]; FI IF (b[321] == 0) dst[383:320] := a[319:256]; FI IF (b[321] == 1) dst[383:320] := a[383:320]; FI IF (b[385] == 0) dst[447:384] := a[447:384]; FI IF (b[385] == 1) dst[447:384] := a[511:448]; FI IF (b[449] == 0) dst[511:448] := a[447:384]; FI IF (b[449] == 1) dst[511:448] := a[511:448]; FI dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], imm8[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], imm8[3:2]) tmp_dst[95:64] := SELECT4(a[127:0], imm8[5:4]) tmp_dst[127:96] := SELECT4(a[127:0], imm8[7:6]) tmp_dst[159:128] := SELECT4(a[255:128], imm8[1:0]) tmp_dst[191:160] := SELECT4(a[255:128], imm8[3:2]) tmp_dst[223:192] := SELECT4(a[255:128], imm8[5:4]) tmp_dst[255:224] := SELECT4(a[255:128], imm8[7:6]) tmp_dst[287:256] := SELECT4(a[383:256], imm8[1:0]) tmp_dst[319:288] := SELECT4(a[383:256], imm8[3:2]) tmp_dst[351:320] := SELECT4(a[383:256], imm8[5:4]) tmp_dst[383:352] := SELECT4(a[383:256], imm8[7:6]) tmp_dst[415:384] := SELECT4(a[511:384], imm8[1:0]) tmp_dst[447:416] := SELECT4(a[511:384], imm8[3:2]) tmp_dst[479:448] := SELECT4(a[511:384], imm8[5:4]) tmp_dst[511:480] := SELECT4(a[511:384], imm8[7:6]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" within 128-bit lanes using the control in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], b[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], b[33:32]) tmp_dst[95:64] := SELECT4(a[127:0], b[65:64]) tmp_dst[127:96] := SELECT4(a[127:0], b[97:96]) tmp_dst[159:128] := SELECT4(a[255:128], b[129:128]) tmp_dst[191:160] := SELECT4(a[255:128], b[161:160]) tmp_dst[223:192] := SELECT4(a[255:128], b[193:192]) tmp_dst[255:224] := SELECT4(a[255:128], b[225:224]) tmp_dst[287:256] := SELECT4(a[383:256], b[257:256]) tmp_dst[319:288] := SELECT4(a[383:256], b[289:288]) tmp_dst[351:320] := SELECT4(a[383:256], b[321:320]) tmp_dst[383:352] := SELECT4(a[383:256], b[353:352]) tmp_dst[415:384] := SELECT4(a[511:384], b[385:384]) tmp_dst[447:416] := SELECT4(a[511:384], b[417:416]) tmp_dst[479:448] := SELECT4(a[511:384], b[449:448]) tmp_dst[511:480] := SELECT4(a[511:384], b[481:480]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], imm8[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], imm8[3:2]) tmp_dst[95:64] := SELECT4(a[127:0], imm8[5:4]) tmp_dst[127:96] := SELECT4(a[127:0], imm8[7:6]) tmp_dst[159:128] := SELECT4(a[255:128], imm8[1:0]) tmp_dst[191:160] := SELECT4(a[255:128], imm8[3:2]) tmp_dst[223:192] := SELECT4(a[255:128], imm8[5:4]) tmp_dst[255:224] := SELECT4(a[255:128], imm8[7:6]) tmp_dst[287:256] := SELECT4(a[383:256], imm8[1:0]) tmp_dst[319:288] := SELECT4(a[383:256], imm8[3:2]) tmp_dst[351:320] := SELECT4(a[383:256], imm8[5:4]) tmp_dst[383:352] := SELECT4(a[383:256], imm8[7:6]) tmp_dst[415:384] := SELECT4(a[511:384], imm8[1:0]) tmp_dst[447:416] := SELECT4(a[511:384], imm8[3:2]) tmp_dst[479:448] := SELECT4(a[511:384], imm8[5:4]) tmp_dst[511:480] := SELECT4(a[511:384], imm8[7:6]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" within 128-bit lanes using the control in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], b[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], b[33:32]) tmp_dst[95:64] := SELECT4(a[127:0], b[65:64]) tmp_dst[127:96] := SELECT4(a[127:0], b[97:96]) tmp_dst[159:128] := SELECT4(a[255:128], b[129:128]) tmp_dst[191:160] := SELECT4(a[255:128], b[161:160]) tmp_dst[223:192] := SELECT4(a[255:128], b[193:192]) tmp_dst[255:224] := SELECT4(a[255:128], b[225:224]) tmp_dst[287:256] := SELECT4(a[383:256], b[257:256]) tmp_dst[319:288] := SELECT4(a[383:256], b[289:288]) tmp_dst[351:320] := SELECT4(a[383:256], b[321:320]) tmp_dst[383:352] := SELECT4(a[383:256], b[353:352]) tmp_dst[415:384] := SELECT4(a[511:384], b[385:384]) tmp_dst[447:416] := SELECT4(a[511:384], b[417:416]) tmp_dst[479:448] := SELECT4(a[511:384], b[449:448]) tmp_dst[511:480] := SELECT4(a[511:384], b[481:480]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } dst[31:0] := SELECT4(a[127:0], imm8[1:0]) dst[63:32] := SELECT4(a[127:0], imm8[3:2]) dst[95:64] := SELECT4(a[127:0], imm8[5:4]) dst[127:96] := SELECT4(a[127:0], imm8[7:6]) dst[159:128] := SELECT4(a[255:128], imm8[1:0]) dst[191:160] := SELECT4(a[255:128], imm8[3:2]) dst[223:192] := SELECT4(a[255:128], imm8[5:4]) dst[255:224] := SELECT4(a[255:128], imm8[7:6]) dst[287:256] := SELECT4(a[383:256], imm8[1:0]) dst[319:288] := SELECT4(a[383:256], imm8[3:2]) dst[351:320] := SELECT4(a[383:256], imm8[5:4]) dst[383:352] := SELECT4(a[383:256], imm8[7:6]) dst[415:384] := SELECT4(a[511:384], imm8[1:0]) dst[447:416] := SELECT4(a[511:384], imm8[3:2]) dst[479:448] := SELECT4(a[511:384], imm8[5:4]) dst[511:480] := SELECT4(a[511:384], imm8[7:6]) dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" within 128-bit lanes using the control in "b", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } dst[31:0] := SELECT4(a[127:0], b[1:0]) dst[63:32] := SELECT4(a[127:0], b[33:32]) dst[95:64] := SELECT4(a[127:0], b[65:64]) dst[127:96] := SELECT4(a[127:0], b[97:96]) dst[159:128] := SELECT4(a[255:128], b[129:128]) dst[191:160] := SELECT4(a[255:128], b[161:160]) dst[223:192] := SELECT4(a[255:128], b[193:192]) dst[255:224] := SELECT4(a[255:128], b[225:224]) dst[287:256] := SELECT4(a[383:256], b[257:256]) dst[319:288] := SELECT4(a[383:256], b[289:288]) dst[351:320] := SELECT4(a[383:256], b[321:320]) dst[383:352] := SELECT4(a[383:256], b[353:352]) dst[415:384] := SELECT4(a[511:384], b[385:384]) dst[447:416] := SELECT4(a[511:384], b[417:416]) dst[479:448] := SELECT4(a[511:384], b[449:448]) dst[511:480] := SELECT4(a[511:384], b[481:480]) dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" within 256-bit lanes using the control in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[63:0] := src[63:0] 1: tmp[63:0] := src[127:64] 2: tmp[63:0] := src[191:128] 3: tmp[63:0] := src[255:192] ESAC RETURN tmp[63:0] } tmp_dst[63:0] := SELECT4(a[255:0], imm8[1:0]) tmp_dst[127:64] := SELECT4(a[255:0], imm8[3:2]) tmp_dst[191:128] := SELECT4(a[255:0], imm8[5:4]) tmp_dst[255:192] := SELECT4(a[255:0], imm8[7:6]) tmp_dst[319:256] := SELECT4(a[511:256], imm8[1:0]) tmp_dst[383:320] := SELECT4(a[511:256], imm8[3:2]) tmp_dst[447:384] := SELECT4(a[511:256], imm8[5:4]) tmp_dst[511:448] := SELECT4(a[511:256], imm8[7:6]) FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 id := idx[i+2:i]*64 IF k[j] dst[i+63:i] := a[id+63:id] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" within 256-bit lanes using the control in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[63:0] := src[63:0] 1: tmp[63:0] := src[127:64] 2: tmp[63:0] := src[191:128] 3: tmp[63:0] := src[255:192] ESAC RETURN tmp[63:0] } tmp_dst[63:0] := SELECT4(a[255:0], imm8[1:0]) tmp_dst[127:64] := SELECT4(a[255:0], imm8[3:2]) tmp_dst[191:128] := SELECT4(a[255:0], imm8[5:4]) tmp_dst[255:192] := SELECT4(a[255:0], imm8[7:6]) tmp_dst[319:256] := SELECT4(a[511:256], imm8[1:0]) tmp_dst[383:320] := SELECT4(a[511:256], imm8[3:2]) tmp_dst[447:384] := SELECT4(a[511:256], imm8[5:4]) tmp_dst[511:448] := SELECT4(a[511:256], imm8[7:6]) FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 id := idx[i+2:i]*64 IF k[j] dst[i+63:i] := a[id+63:id] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" within 256-bit lanes using the control in "imm8", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[63:0] := src[63:0] 1: tmp[63:0] := src[127:64] 2: tmp[63:0] := src[191:128] 3: tmp[63:0] := src[255:192] ESAC RETURN tmp[63:0] } dst[63:0] := SELECT4(a[255:0], imm8[1:0]) dst[127:64] := SELECT4(a[255:0], imm8[3:2]) dst[191:128] := SELECT4(a[255:0], imm8[5:4]) dst[255:192] := SELECT4(a[255:0], imm8[7:6]) dst[319:256] := SELECT4(a[511:256], imm8[1:0]) dst[383:320] := SELECT4(a[511:256], imm8[3:2]) dst[447:384] := SELECT4(a[511:256], imm8[5:4]) dst[511:448] := SELECT4(a[511:256], imm8[7:6]) dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements in "a" across lanes using the corresponding index in "idx", and store the results in "dst". FOR j := 0 to 7 i := j*64 id := idx[i+2:i]*64 dst[i+63:i] := a[id+63:id] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 id := idx[i+3:i]*32 IF k[j] dst[i+31:i] := a[id+31:id] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 id := idx[i+3:i]*32 IF k[j] dst[i+31:i] := a[id+31:id] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" across lanes using the corresponding index in "idx". FOR j := 0 to 15 i := j*32 id := idx[i+3:i]*32 dst[i+31:i] := a[id+31:id] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 64-bit integers in "a" within 256-bit lanes using the control in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[63:0] := src[63:0] 1: tmp[63:0] := src[127:64] 2: tmp[63:0] := src[191:128] 3: tmp[63:0] := src[255:192] ESAC RETURN tmp[63:0] } tmp_dst[63:0] := SELECT4(a[255:0], imm8[1:0]) tmp_dst[127:64] := SELECT4(a[255:0], imm8[3:2]) tmp_dst[191:128] := SELECT4(a[255:0], imm8[5:4]) tmp_dst[255:192] := SELECT4(a[255:0], imm8[7:6]) tmp_dst[319:256] := SELECT4(a[511:256], imm8[1:0]) tmp_dst[383:320] := SELECT4(a[511:256], imm8[3:2]) tmp_dst[447:384] := SELECT4(a[511:256], imm8[5:4]) tmp_dst[511:448] := SELECT4(a[511:256], imm8[7:6]) FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 64-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 id := idx[i+2:i]*64 IF k[j] dst[i+63:i] := a[id+63:id] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 64-bit integers in "a" within 256-bit lanes using the control in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[63:0] := src[63:0] 1: tmp[63:0] := src[127:64] 2: tmp[63:0] := src[191:128] 3: tmp[63:0] := src[255:192] ESAC RETURN tmp[63:0] } tmp_dst[63:0] := SELECT4(a[255:0], imm8[1:0]) tmp_dst[127:64] := SELECT4(a[255:0], imm8[3:2]) tmp_dst[191:128] := SELECT4(a[255:0], imm8[5:4]) tmp_dst[255:192] := SELECT4(a[255:0], imm8[7:6]) tmp_dst[319:256] := SELECT4(a[511:256], imm8[1:0]) tmp_dst[383:320] := SELECT4(a[511:256], imm8[3:2]) tmp_dst[447:384] := SELECT4(a[511:256], imm8[5:4]) tmp_dst[511:448] := SELECT4(a[511:256], imm8[7:6]) FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 64-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 id := idx[i+2:i]*64 IF k[j] dst[i+63:i] := a[id+63:id] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 64-bit integers in "a" within 256-bit lanes using the control in "imm8", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[63:0] := src[63:0] 1: tmp[63:0] := src[127:64] 2: tmp[63:0] := src[191:128] 3: tmp[63:0] := src[255:192] ESAC RETURN tmp[63:0] } dst[63:0] := SELECT4(a[255:0], imm8[1:0]) dst[127:64] := SELECT4(a[255:0], imm8[3:2]) dst[191:128] := SELECT4(a[255:0], imm8[5:4]) dst[255:192] := SELECT4(a[255:0], imm8[7:6]) dst[319:256] := SELECT4(a[511:256], imm8[1:0]) dst[383:320] := SELECT4(a[511:256], imm8[3:2]) dst[447:384] := SELECT4(a[511:256], imm8[5:4]) dst[511:448] := SELECT4(a[511:256], imm8[7:6]) dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 64-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst". FOR j := 0 to 7 i := j*64 id := idx[i+2:i]*64 dst[i+63:i] := a[id+63:id] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Load contiguous active 32-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[m+31:m] m := m + 32 ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Load contiguous active 32-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[m+31:m] m := m + 32 ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Load contiguous active 64-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[m+63:m] m := m + 64 ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Load contiguous active 64-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[m+63:m] m := m + 64 ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 32-bit integers in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], imm8[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], imm8[3:2]) tmp_dst[95:64] := SELECT4(a[127:0], imm8[5:4]) tmp_dst[127:96] := SELECT4(a[127:0], imm8[7:6]) tmp_dst[159:128] := SELECT4(a[255:128], imm8[1:0]) tmp_dst[191:160] := SELECT4(a[255:128], imm8[3:2]) tmp_dst[223:192] := SELECT4(a[255:128], imm8[5:4]) tmp_dst[255:224] := SELECT4(a[255:128], imm8[7:6]) tmp_dst[287:256] := SELECT4(a[383:256], imm8[1:0]) tmp_dst[319:288] := SELECT4(a[383:256], imm8[3:2]) tmp_dst[351:320] := SELECT4(a[383:256], imm8[5:4]) tmp_dst[383:352] := SELECT4(a[383:256], imm8[7:6]) tmp_dst[415:384] := SELECT4(a[511:384], imm8[1:0]) tmp_dst[447:416] := SELECT4(a[511:384], imm8[3:2]) tmp_dst[479:448] := SELECT4(a[511:384], imm8[5:4]) tmp_dst[511:480] := SELECT4(a[511:384], imm8[7:6]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave 32-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[95:64] dst[63:32] := src2[95:64] dst[95:64] := src1[127:96] dst[127:96] := src2[127:96] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_DWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_DWORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_HIGH_DWORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_HIGH_DWORDS(a[511:384], b[511:384]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave 32-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[95:64] dst[63:32] := src2[95:64] dst[95:64] := src1[127:96] dst[127:96] := src2[127:96] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_DWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_DWORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_HIGH_DWORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_HIGH_DWORDS(a[511:384], b[511:384]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave 32-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[95:64] dst[63:32] := src2[95:64] dst[95:64] := src1[127:96] dst[127:96] := src2[127:96] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_HIGH_DWORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_HIGH_DWORDS(a[255:128], b[255:128]) dst[383:256] := INTERLEAVE_HIGH_DWORDS(a[383:256], b[383:256]) dst[511:384] := INTERLEAVE_HIGH_DWORDS(a[511:384], b[511:384]) dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave 64-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[127:64] dst[127:64] := src2[127:64] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_QWORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_HIGH_QWORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_HIGH_QWORDS(a[511:384], b[511:384]) FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave 64-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[127:64] dst[127:64] := src2[127:64] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_QWORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_HIGH_QWORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_HIGH_QWORDS(a[511:384], b[511:384]) FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave 64-bit integers from the high half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[127:64] dst[127:64] := src2[127:64] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_HIGH_QWORDS(a[255:128], b[255:128]) dst[383:256] := INTERLEAVE_HIGH_QWORDS(a[383:256], b[383:256]) dst[511:384] := INTERLEAVE_HIGH_QWORDS(a[511:384], b[511:384]) dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave 32-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[31:0] dst[63:32] := src2[31:0] dst[95:64] := src1[63:32] dst[127:96] := src2[63:32] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_DWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_DWORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_DWORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_DWORDS(a[511:384], b[511:384]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave 32-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[31:0] dst[63:32] := src2[31:0] dst[95:64] := src1[63:32] dst[127:96] := src2[63:32] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_DWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_DWORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_DWORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_DWORDS(a[511:384], b[511:384]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave 32-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[31:0] dst[63:32] := src2[31:0] dst[95:64] := src1[63:32] dst[127:96] := src2[63:32] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_DWORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_DWORDS(a[255:128], b[255:128]) dst[383:256] := INTERLEAVE_DWORDS(a[383:256], b[383:256]) dst[511:384] := INTERLEAVE_DWORDS(a[511:384], b[511:384]) dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave 64-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[63:0] dst[127:64] := src2[63:0] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_QWORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_QWORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_QWORDS(a[511:384], b[511:384]) FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave 64-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[63:0] dst[127:64] := src2[63:0] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_QWORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_QWORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_QWORDS(a[511:384], b[511:384]) FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave 64-bit integers from the low half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[63:0] dst[127:64] := src2[63:0] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_QWORDS(a[255:128], b[255:128]) dst[383:256] := INTERLEAVE_QWORDS(a[383:256], b[383:256]) dst[511:384] := INTERLEAVE_QWORDS(a[511:384], b[511:384]) dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 128-bits (composed of 4 single-precision (32-bit) floating-point elements) selected by "imm8" from "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[127:0] := src[127:0] 1: tmp[127:0] := src[255:128] 2: tmp[127:0] := src[383:256] 3: tmp[127:0] := src[511:384] ESAC RETURN tmp[127:0] } tmp_dst[127:0] := SELECT4(a[511:0], imm8[1:0]) tmp_dst[255:128] := SELECT4(a[511:0], imm8[3:2]) tmp_dst[383:256] := SELECT4(b[511:0], imm8[5:4]) tmp_dst[511:384] := SELECT4(b[511:0], imm8[7:6]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 128-bits (composed of 4 single-precision (32-bit) floating-point elements) selected by "imm8" from "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[127:0] := src[127:0] 1: tmp[127:0] := src[255:128] 2: tmp[127:0] := src[383:256] 3: tmp[127:0] := src[511:384] ESAC RETURN tmp[127:0] } tmp_dst[127:0] := SELECT4(a[511:0], imm8[1:0]) tmp_dst[255:128] := SELECT4(a[511:0], imm8[3:2]) tmp_dst[383:256] := SELECT4(b[511:0], imm8[5:4]) tmp_dst[511:384] := SELECT4(b[511:0], imm8[7:6]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 128-bits (composed of 4 single-precision (32-bit) floating-point elements) selected by "imm8" from "a" and "b", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[127:0] := src[127:0] 1: tmp[127:0] := src[255:128] 2: tmp[127:0] := src[383:256] 3: tmp[127:0] := src[511:384] ESAC RETURN tmp[127:0] } dst[127:0] := SELECT4(a[511:0], imm8[1:0]) dst[255:128] := SELECT4(a[511:0], imm8[3:2]) dst[383:256] := SELECT4(b[511:0], imm8[5:4]) dst[511:384] := SELECT4(b[511:0], imm8[7:6]) dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 128-bits (composed of 2 double-precision (64-bit) floating-point elements) selected by "imm8" from "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[127:0] := src[127:0] 1: tmp[127:0] := src[255:128] 2: tmp[127:0] := src[383:256] 3: tmp[127:0] := src[511:384] ESAC RETURN tmp[127:0] } tmp_dst[127:0] := SELECT4(a[511:0], imm8[1:0]) tmp_dst[255:128] := SELECT4(a[511:0], imm8[3:2]) tmp_dst[383:256] := SELECT4(b[511:0], imm8[5:4]) tmp_dst[511:384] := SELECT4(b[511:0], imm8[7:6]) FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 128-bits (composed of 2 double-precision (64-bit) floating-point elements) selected by "imm8" from "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[127:0] := src[127:0] 1: tmp[127:0] := src[255:128] 2: tmp[127:0] := src[383:256] 3: tmp[127:0] := src[511:384] ESAC RETURN tmp[127:0] } tmp_dst[127:0] := SELECT4(a[511:0], imm8[1:0]) tmp_dst[255:128] := SELECT4(a[511:0], imm8[3:2]) tmp_dst[383:256] := SELECT4(b[511:0], imm8[5:4]) tmp_dst[511:384] := SELECT4(b[511:0], imm8[7:6]) FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 128-bits (composed of 2 double-precision (64-bit) floating-point elements) selected by "imm8" from "a" and "b", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[127:0] := src[127:0] 1: tmp[127:0] := src[255:128] 2: tmp[127:0] := src[383:256] 3: tmp[127:0] := src[511:384] ESAC RETURN tmp[127:0] } dst[127:0] := SELECT4(a[511:0], imm8[1:0]) dst[255:128] := SELECT4(a[511:0], imm8[3:2]) dst[383:256] := SELECT4(b[511:0], imm8[5:4]) dst[511:384] := SELECT4(b[511:0], imm8[7:6]) dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 128-bits (composed of 4 32-bit integers) selected by "imm8" from "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[127:0] := src[127:0] 1: tmp[127:0] := src[255:128] 2: tmp[127:0] := src[383:256] 3: tmp[127:0] := src[511:384] ESAC RETURN tmp[127:0] } tmp_dst[127:0] := SELECT4(a[511:0], imm8[1:0]) tmp_dst[255:128] := SELECT4(a[511:0], imm8[3:2]) tmp_dst[383:256] := SELECT4(b[511:0], imm8[5:4]) tmp_dst[511:384] := SELECT4(b[511:0], imm8[7:6]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 128-bits (composed of 4 32-bit integers) selected by "imm8" from "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[127:0] := src[127:0] 1: tmp[127:0] := src[255:128] 2: tmp[127:0] := src[383:256] 3: tmp[127:0] := src[511:384] ESAC RETURN tmp[127:0] } tmp_dst[127:0] := SELECT4(a[511:0], imm8[1:0]) tmp_dst[255:128] := SELECT4(a[511:0], imm8[3:2]) tmp_dst[383:256] := SELECT4(b[511:0], imm8[5:4]) tmp_dst[511:384] := SELECT4(b[511:0], imm8[7:6]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 128-bits (composed of 4 32-bit integers) selected by "imm8" from "a" and "b", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[127:0] := src[127:0] 1: tmp[127:0] := src[255:128] 2: tmp[127:0] := src[383:256] 3: tmp[127:0] := src[511:384] ESAC RETURN tmp[127:0] } dst[127:0] := SELECT4(a[511:0], imm8[1:0]) dst[255:128] := SELECT4(a[511:0], imm8[3:2]) dst[383:256] := SELECT4(b[511:0], imm8[5:4]) dst[511:384] := SELECT4(b[511:0], imm8[7:6]) dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 128-bits (composed of 2 64-bit integers) selected by "imm8" from "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[127:0] := src[127:0] 1: tmp[127:0] := src[255:128] 2: tmp[127:0] := src[383:256] 3: tmp[127:0] := src[511:384] ESAC RETURN tmp[127:0] } tmp_dst[127:0] := SELECT4(a[511:0], imm8[1:0]) tmp_dst[255:128] := SELECT4(a[511:0], imm8[3:2]) tmp_dst[383:256] := SELECT4(b[511:0], imm8[5:4]) tmp_dst[511:384] := SELECT4(b[511:0], imm8[7:6]) FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 128-bits (composed of 2 64-bit integers) selected by "imm8" from "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[127:0] := src[127:0] 1: tmp[127:0] := src[255:128] 2: tmp[127:0] := src[383:256] 3: tmp[127:0] := src[511:384] ESAC RETURN tmp[127:0] } tmp_dst[127:0] := SELECT4(a[511:0], imm8[1:0]) tmp_dst[255:128] := SELECT4(a[511:0], imm8[3:2]) tmp_dst[383:256] := SELECT4(b[511:0], imm8[5:4]) tmp_dst[511:384] := SELECT4(b[511:0], imm8[7:6]) FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 128-bits (composed of 2 64-bit integers) selected by "imm8" from "a" and "b", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[127:0] := src[127:0] 1: tmp[127:0] := src[255:128] 2: tmp[127:0] := src[383:256] 3: tmp[127:0] := src[511:384] ESAC RETURN tmp[127:0] } dst[127:0] := SELECT4(a[511:0], imm8[1:0]) dst[255:128] := SELECT4(a[511:0], imm8[3:2]) dst[383:256] := SELECT4(b[511:0], imm8[5:4]) dst[511:384] := SELECT4(b[511:0], imm8[7:6]) dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements within 128-bit lanes using the control in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp_dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64] tmp_dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64] tmp_dst[191:128] := (imm8[2] == 0) ? a[191:128] : a[255:192] tmp_dst[255:192] := (imm8[3] == 0) ? b[191:128] : b[255:192] tmp_dst[319:256] := (imm8[4] == 0) ? a[319:256] : a[383:320] tmp_dst[383:320] := (imm8[5] == 0) ? b[319:256] : b[383:320] tmp_dst[447:384] := (imm8[6] == 0) ? a[447:384] : a[511:448] tmp_dst[511:448] := (imm8[7] == 0) ? b[447:384] : b[511:448] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements within 128-bit lanes using the control in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp_dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64] tmp_dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64] tmp_dst[191:128] := (imm8[2] == 0) ? a[191:128] : a[255:192] tmp_dst[255:192] := (imm8[3] == 0) ? b[191:128] : b[255:192] tmp_dst[319:256] := (imm8[4] == 0) ? a[319:256] : a[383:320] tmp_dst[383:320] := (imm8[5] == 0) ? b[319:256] : b[383:320] tmp_dst[447:384] := (imm8[6] == 0) ? a[447:384] : a[511:448] tmp_dst[511:448] := (imm8[7] == 0) ? b[447:384] : b[511:448] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements within 128-bit lanes using the control in "imm8", and store the results in "dst". dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64] dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64] dst[191:128] := (imm8[2] == 0) ? a[191:128] : a[255:192] dst[255:192] := (imm8[3] == 0) ? b[191:128] : b[255:192] dst[319:256] := (imm8[4] == 0) ? a[319:256] : a[383:320] dst[383:320] := (imm8[5] == 0) ? b[319:256] : b[383:320] dst[447:384] := (imm8[6] == 0) ? a[447:384] : a[511:448] dst[511:448] := (imm8[7] == 0) ? b[447:384] : b[511:448] dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], imm8[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], imm8[3:2]) tmp_dst[95:64] := SELECT4(b[127:0], imm8[5:4]) tmp_dst[127:96] := SELECT4(b[127:0], imm8[7:6]) tmp_dst[159:128] := SELECT4(a[255:128], imm8[1:0]) tmp_dst[191:160] := SELECT4(a[255:128], imm8[3:2]) tmp_dst[223:192] := SELECT4(b[255:128], imm8[5:4]) tmp_dst[255:224] := SELECT4(b[255:128], imm8[7:6]) tmp_dst[287:256] := SELECT4(a[383:256], imm8[1:0]) tmp_dst[319:288] := SELECT4(a[383:256], imm8[3:2]) tmp_dst[351:320] := SELECT4(b[383:256], imm8[5:4]) tmp_dst[383:352] := SELECT4(b[383:256], imm8[7:6]) tmp_dst[415:384] := SELECT4(a[511:384], imm8[1:0]) tmp_dst[447:416] := SELECT4(a[511:384], imm8[3:2]) tmp_dst[479:448] := SELECT4(b[511:384], imm8[5:4]) tmp_dst[511:480] := SELECT4(b[511:384], imm8[7:6]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], imm8[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], imm8[3:2]) tmp_dst[95:64] := SELECT4(b[127:0], imm8[5:4]) tmp_dst[127:96] := SELECT4(b[127:0], imm8[7:6]) tmp_dst[159:128] := SELECT4(a[255:128], imm8[1:0]) tmp_dst[191:160] := SELECT4(a[255:128], imm8[3:2]) tmp_dst[223:192] := SELECT4(b[255:128], imm8[5:4]) tmp_dst[255:224] := SELECT4(b[255:128], imm8[7:6]) tmp_dst[287:256] := SELECT4(a[383:256], imm8[1:0]) tmp_dst[319:288] := SELECT4(a[383:256], imm8[3:2]) tmp_dst[351:320] := SELECT4(b[383:256], imm8[5:4]) tmp_dst[383:352] := SELECT4(b[383:256], imm8[7:6]) tmp_dst[415:384] := SELECT4(a[511:384], imm8[1:0]) tmp_dst[447:416] := SELECT4(a[511:384], imm8[3:2]) tmp_dst[479:448] := SELECT4(b[511:384], imm8[5:4]) tmp_dst[511:480] := SELECT4(b[511:384], imm8[7:6]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } dst[31:0] := SELECT4(a[127:0], imm8[1:0]) dst[63:32] := SELECT4(a[127:0], imm8[3:2]) dst[95:64] := SELECT4(b[127:0], imm8[5:4]) dst[127:96] := SELECT4(b[127:0], imm8[7:6]) dst[159:128] := SELECT4(a[255:128], imm8[1:0]) dst[191:160] := SELECT4(a[255:128], imm8[3:2]) dst[223:192] := SELECT4(b[255:128], imm8[5:4]) dst[255:224] := SELECT4(b[255:128], imm8[7:6]) dst[287:256] := SELECT4(a[383:256], imm8[1:0]) dst[319:288] := SELECT4(a[383:256], imm8[3:2]) dst[351:320] := SELECT4(b[383:256], imm8[5:4]) dst[383:352] := SELECT4(b[383:256], imm8[7:6]) dst[415:384] := SELECT4(a[511:384], imm8[1:0]) dst[447:416] := SELECT4(a[511:384], imm8[3:2]) dst[479:448] := SELECT4(b[511:384], imm8[5:4]) dst[511:480] := SELECT4(b[511:384], imm8[7:6]) dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave double-precision (64-bit) floating-point elements from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[127:64] dst[127:64] := src2[127:64] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_QWORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_HIGH_QWORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_HIGH_QWORDS(a[511:384], b[511:384]) FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave double-precision (64-bit) floating-point elements from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[127:64] dst[127:64] := src2[127:64] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_QWORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_HIGH_QWORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_HIGH_QWORDS(a[511:384], b[511:384]) FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave double-precision (64-bit) floating-point elements from the high half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[127:64] dst[127:64] := src2[127:64] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_HIGH_QWORDS(a[255:128], b[255:128]) dst[383:256] := INTERLEAVE_HIGH_QWORDS(a[383:256], b[383:256]) dst[511:384] := INTERLEAVE_HIGH_QWORDS(a[511:384], b[511:384]) dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave single-precision (32-bit) floating-point elements from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[95:64] dst[63:32] := src2[95:64] dst[95:64] := src1[127:96] dst[127:96] := src2[127:96] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_DWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_DWORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_HIGH_DWORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_HIGH_DWORDS(a[511:384], b[511:384]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave single-precision (32-bit) floating-point elements from the high half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_HIGH_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[95:64] dst[63:32] := src2[95:64] dst[95:64] := src1[127:96] dst[127:96] := src2[127:96] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_HIGH_DWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_HIGH_DWORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_HIGH_DWORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_HIGH_DWORDS(a[511:384], b[511:384]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave single-precision (32-bit) floating-point elements from the high half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[95:64] dst[63:32] := src2[95:64] dst[95:64] := src1[127:96] dst[127:96] := src2[127:96] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_HIGH_DWORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_HIGH_DWORDS(a[255:128], b[255:128]) dst[383:256] := INTERLEAVE_HIGH_DWORDS(a[383:256], b[383:256]) dst[511:384] := INTERLEAVE_HIGH_DWORDS(a[511:384], b[511:384]) dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave double-precision (64-bit) floating-point elements from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[63:0] dst[127:64] := src2[63:0] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_QWORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_QWORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_QWORDS(a[511:384], b[511:384]) FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave double-precision (64-bit) floating-point elements from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[63:0] dst[127:64] := src2[63:0] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_QWORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_QWORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_QWORDS(a[511:384], b[511:384]) FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp_dst[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave double-precision (64-bit) floating-point elements from the low half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[63:0] dst[127:64] := src2[63:0] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_QWORDS(a[255:128], b[255:128]) dst[383:256] := INTERLEAVE_QWORDS(a[383:256], b[383:256]) dst[511:384] := INTERLEAVE_QWORDS(a[511:384], b[511:384]) dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave single-precision (32-bit) floating-point elements from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE INTERLEAVE_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[31:0] dst[63:32] := src2[31:0] dst[95:64] := src1[63:32] dst[127:96] := src2[63:32] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_DWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_DWORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_DWORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_DWORDS(a[511:384], b[511:384]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave single-precision (32-bit) floating-point elements from the low half of each 128-bit lane in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE INTERLEAVE_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[31:0] dst[63:32] := src2[31:0] dst[95:64] := src1[63:32] dst[127:96] := src2[63:32] RETURN dst[127:0] } tmp_dst[127:0] := INTERLEAVE_DWORDS(a[127:0], b[127:0]) tmp_dst[255:128] := INTERLEAVE_DWORDS(a[255:128], b[255:128]) tmp_dst[383:256] := INTERLEAVE_DWORDS(a[383:256], b[383:256]) tmp_dst[511:384] := INTERLEAVE_DWORDS(a[511:384], b[511:384]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Unpack and interleave single-precision (32-bit) floating-point elements from the low half of each 128-bit lane in "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[31:0] dst[63:32] := src2[31:0] dst[95:64] := src1[63:32] dst[127:96] := src2[63:32] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_DWORDS(a[127:0], b[127:0]) dst[255:128] := INTERLEAVE_DWORDS(a[255:128], b[255:128]) dst[383:256] := INTERLEAVE_DWORDS(a[383:256], b[383:256]) dst[511:384] := INTERLEAVE_DWORDS(a[511:384], b[511:384]) dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Compare the lower double-precision (64-bit) floating-point element in "a" and "b" based on the comparison operand specified by "imm8", and store the result in mask vector "k". [sae_note] CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC k[0] := ( a[63:0] OP b[63:0] ) ? 1 : 0 k[MAX:1] := 0 AVX512F
immintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point element in "a" and "b" based on the comparison operand specified by "imm8", and store the result in mask vector "k". CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC k[0] := ( a[63:0] OP b[63:0] ) ? 1 : 0 k[MAX:1] := 0 AVX512F
immintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point element in "a" and "b" based on the comparison operand specified by "imm8", and store the result in mask vector "k" using zeromask "k1" (the element is zeroed out when mask bit 0 is not set). [sae_note] CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC IF k1[0] k[0] := ( a[63:0] OP b[63:0] ) ? 1 : 0 ELSE k[0] := 0 FI k[MAX:1] := 0 AVX512F
immintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point element in "a" and "b" based on the comparison operand specified by "imm8", and store the result in mask vector "k" using zeromask "k1" (the element is zeroed out when mask bit 0 is not set). CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC IF k1[0] k[0] := ( a[63:0] OP b[63:0] ) ? 1 : 0 ELSE k[0] := 0 FI k[MAX:1] := 0 AVX512F
immintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point element in "a" and "b" based on the comparison operand specified by "imm8", and store the result in mask vector "k". [sae_note] CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC k[0] := ( a[31:0] OP b[31:0] ) ? 1 : 0 k[MAX:1] := 0 AVX512F
immintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point element in "a" and "b" based on the comparison operand specified by "imm8", and store the result in mask vector "k". CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC k[0] := ( a[31:0] OP b[31:0] ) ? 1 : 0 k[MAX:1] := 0 AVX512F
immintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point element in "a" and "b" based on the comparison operand specified by "imm8", and store the result in mask vector "k" using zeromask "k1" (the element is zeroed out when mask bit 0 is not set). [sae_note] CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC IF k1[0] k[0] := ( a[31:0] OP b[31:0] ) ? 1 : 0 ELSE k[0] := 0 FI k[MAX:1] := 0 AVX512F
immintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point element in "a" and "b" based on the comparison operand specified by "imm8", and store the result in mask vector "k" using zeromask "k1" (the element is zeroed out when mask bit 0 is not set). CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC IF k1[0] k[0] := ( a[31:0] OP b[31:0] ) ? 1 : 0 ELSE k[0] := 0 FI k[MAX:1] := 0 AVX512F
immintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point element in "a" and "b" based on the comparison operand specified by "imm8", and return the boolean result (0 or 1). [sae_note] CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC RETURN ( a[63:0] OP b[63:0] ) ? 1 : 0 AVX512F
immintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point element in "a" and "b" based on the comparison operand specified by "imm8", and return the boolean result (0 or 1). [sae_note] CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC RETURN ( a[31:0] OP b[31:0] ) ? 1 : 0 AVX512F
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := ( a[i+31:i] < b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ( a[i+31:i] < b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 7 i := j*64 k[j] := ( a[i+63:i] OP b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed 64-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := ( a[i+63:i] == b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := ( a[i+63:i] >= b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := ( a[i+63:i] > b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := ( a[i+63:i] <= b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := ( a[i+63:i] < b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := ( a[i+63:i] != b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := ( a[i+63:i] OP b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed 64-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := ( a[i+63:i] == b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := ( a[i+63:i] >= b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := ( a[i+63:i] > b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := ( a[i+63:i] <= b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := ( a[i+63:i] < b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 64-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := ( a[i+63:i] != b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 7 i := j*64 k[j] := ( a[i+63:i] OP b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := ( a[i+63:i] == b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := ( a[i+63:i] >= b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := ( a[i+63:i] > b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := ( a[i+63:i] <= b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := ( a[i+63:i] < b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := ( a[i+63:i] != b[i+63:i] ) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := ( a[i+63:i] OP b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := ( a[i+63:i] == b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := ( a[i+63:i] >= b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := ( a[i+63:i] > b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := ( a[i+63:i] <= b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := ( a[i+63:i] < b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 64-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := ( a[i+63:i] != b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Convert packed signed 32-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 i := j*32 m := j*64 dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 m := j*64 IF k[j] dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) ELSE dst[m+63:m] := src[m+63:m] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 m := j*64 IF k[j] dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) ELSE dst[m+63:m] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". [round_note] FOR j := 0 to 15 i := 32*j dst[i+31:i] := Convert_Int32_To_FP32(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 15 i := 32*j dst[i+31:i] := Convert_Int32_To_FP32(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := Convert_Int32_To_FP32(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := Convert_Int32_To_FP32(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := Convert_Int32_To_FP32(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := Convert_Int32_To_FP32(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst". [round_note] FOR j := 0 to 7 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k]) ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 7 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k]) ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*32 l := j*64 IF k[j] dst[i+31:i] := Convert_FP64_To_Int32(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 l := j*64 IF k[j] dst[i+31:i] := Convert_FP64_To_Int32(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_Int32(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_Int32(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". [round_note] FOR j := 0 to 7 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_FP32(a[k+63:k]) ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_FP32(a[k+63:k]) ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*32 l := j*64 IF k[j] dst[i+31:i] := Convert_FP64_To_FP32(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_FP32(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*32 l := j*64 IF k[j] dst[i+31:i] := Convert_FP64_To_FP32(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 l := j*64 IF k[j] dst[i+31:i] := Convert_FP64_To_FP32(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst". [round_note] FOR j := 0 to 7 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_UInt32(a[k+63:k]) ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst". FOR j := 0 to 7 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_UInt32(a[k+63:k]) ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*32 l := j*64 IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 l := j*64 IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". [sae_note] FOR j := 0 to 15 i := j*32 m := j*16 dst[i+31:i] := Convert_FP16_To_FP32(a[m+15:m]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 15 i := j*32 m := j*16 dst[i+31:i] := Convert_FP16_To_FP32(a[m+15:m]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 15 i := j*32 m := j*16 IF k[j] dst[i+31:i] := Convert_FP16_To_FP32(a[m+15:m]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 m := j*16 IF k[j] dst[i+31:i] := Convert_FP16_To_FP32(a[m+15:m]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 15 i := j*32 m := j*16 IF k[j] dst[i+31:i] := Convert_FP16_To_FP32(a[m+15:m]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 m := j*16 IF k[j] dst[i+31:i] := Convert_FP16_To_FP32(a[m+15:m]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst". [round_note] FOR j := 0 to 15 i := 32*j dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 15 i := 32*j dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". [sae_note] FOR j := 0 to 7 i := 64*j k := 32*j dst[i+63:i] := Convert_FP32_To_FP64(a[k+31:k]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 i := 64*j k := 32*j dst[i+63:i] := Convert_FP32_To_FP64(a[k+31:k]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 7 i := 64*j l := 32*j IF k[j] dst[i+63:i] := Convert_FP32_To_FP64(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 32*j IF k[j] dst[i+63:i] := Convert_FP32_To_FP64(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 7 i := 64*j l := 32*j IF k[j] dst[i+63:i] := Convert_FP32_To_FP64(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 32*j IF k[j] dst[i+63:i] := Convert_FP32_To_FP64(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". [round2_note] FOR j := 0 to 15 i := 16*j l := 32*j dst[i+15:i] := Convert_FP32_To_FP16(a[l+31:l]) ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". [round2_note] FOR j := 0 to 15 i := 16*j l := 32*j dst[i+15:i] := Convert_FP32_To_FP16(a[l+31:l]) ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round2_note] FOR j := 0 to 15 i := 16*j l := 32*j IF k[j] dst[i+15:i] := Convert_FP32_To_FP16(a[l+31:l]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round2_note] FOR j := 0 to 15 i := 16*j l := 32*j IF k[j] dst[i+15:i] := Convert_FP32_To_FP16(a[l+31:l]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round2_note] FOR j := 0 to 15 i := 16*j l := 32*j IF k[j] dst[i+15:i] := Convert_FP32_To_FP16(a[l+31:l]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round2_note] FOR j := 0 to 15 i := 16*j l := 32*j IF k[j] dst[i+15:i] := Convert_FP32_To_FP16(a[l+31:l]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst". [round_note] FOR j := 0 to 15 i := 32*j dst[i+31:i] := Convert_FP32_To_UInt32(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst". FOR j := 0 to 15 i := 32*j dst[i+31:i] := Convert_FP32_To_UInt32(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := Convert_FP32_To_UInt32(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_UInt32(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_UInt32(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_UInt32(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to a 32-bit integer, and store the result in "dst". [round_note] dst[31:0] := Convert_FP64_To_Int32(a[63:0]) AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to a 64-bit integer, and store the result in "dst". [round_note] dst[63:0] := Convert_FP64_To_Int64(a[63:0]) AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to a 32-bit integer, and store the result in "dst". [round_note] dst[31:0] := Convert_FP64_To_Int32(a[63:0]) AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to a 64-bit integer, and store the result in "dst". [round_note] dst[63:0] := Convert_FP64_To_Int64(a[63:0]) AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to a 32-bit integer, and store the result in "dst". dst[31:0] := Convert_FP64_To_Int32(a[63:0]) AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to a 64-bit integer, and store the result in "dst". dst[63:0] := Convert_FP64_To_Int64(a[63:0]) AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] dst[31:0] := Convert_FP64_To_FP32(b[63:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := Convert_FP64_To_FP32(b[63:0]) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := Convert_FP64_To_FP32(b[63:0]) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := Convert_FP64_To_FP32(b[63:0]) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := Convert_FP64_To_FP32(b[63:0]) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to an unsigned 32-bit integer, and store the result in "dst". [round_note] dst[31:0] := Convert_FP64_To_UInt32(a[63:0]) AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to an unsigned 64-bit integer, and store the result in "dst". [round_note] dst[63:0] := Convert_FP64_To_UInt64(a[63:0]) AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to an unsigned 32-bit integer, and store the result in "dst". dst[31:0] := Convert_FP64_To_UInt32(a[63:0]) AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to an unsigned 64-bit integer, and store the result in "dst". dst[63:0] := Convert_FP64_To_UInt64(a[63:0]) AVX512F
immintrin.h
Convert
Convert the signed 64-bit integer "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [round_note] dst[63:0] := Convert_Int64_To_FP64(b[63:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the signed 64-bit integer "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [round_note] dst[63:0] := Convert_Int64_To_FP64(b[63:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the signed 32-bit integer "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := Convert_Int32_To_FP64(b[31:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the signed 64-bit integer "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := Convert_Int64_To_FP64(b[63:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the signed 32-bit integer "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] dst[31:0] := Convert_Int32_To_FP32(b[31:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the signed 64-bit integer "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] dst[31:0] := Convert_Int64_To_FP32(b[63:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the signed 32-bit integer "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] dst[31:0] := Convert_Int32_To_FP32(b[31:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the signed 64-bit integer "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] dst[31:0] := Convert_Int64_To_FP32(b[63:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the signed 32-bit integer "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := Convert_Int32_To_FP32(b[31:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the signed 64-bit integer "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := Convert_Int64_To_FP32(b[63:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [sae_note] dst[63:0] := Convert_FP32_To_FP64(b[31:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [sae_note] IF k[0] dst[63:0] := Convert_FP32_To_FP64(b[31:0]) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := Convert_FP32_To_FP64(b[31:0]) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [sae_note] IF k[0] dst[63:0] := Convert_FP32_To_FP64(b[31:0]) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := Convert_FP32_To_FP64(b[31:0]) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to a 32-bit integer, and store the result in "dst". [round_note] dst[31:0] := Convert_FP32_To_Int32(a[31:0]) AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to a 64-bit integer, and store the result in "dst". [round_note] dst[63:0] := Convert_FP32_To_Int64(a[31:0]) AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to a 32-bit integer, and store the result in "dst". [round_note] dst[31:0] := Convert_FP32_To_Int32(a[31:0]) AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to a 64-bit integer, and store the result in "dst". [round_note] dst[63:0] := Convert_FP32_To_Int64(a[31:0]) AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to a 32-bit integer, and store the result in "dst". dst[31:0] := Convert_FP32_To_Int32(a[31:0]) AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to a 64-bit integer, and store the result in "dst". dst[63:0] := Convert_FP32_To_Int64(a[31:0]) AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to an unsigned 32-bit integer, and store the result in "dst". [round_note] dst[31:0] := Convert_FP32_To_UInt32(a[31:0]) AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to an unsigned 64-bit integer, and store the result in "dst". [round_note] dst[63:0] := Convert_FP32_To_UInt64(a[31:0]) AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to an unsigned 32-bit integer, and store the result in "dst". dst[31:0] := Convert_FP32_To_UInt32(a[31:0]) AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to an unsigned 64-bit integer, and store the result in "dst". dst[63:0] := Convert_FP32_To_UInt64(a[31:0]) AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst". [sae_note] FOR j := 0 to 7 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_Int32_Truncate(a[k+63:k]) ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst". FOR j := 0 to 7 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_Int32_Truncate(a[k+63:k]) ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 7 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_Int32_Truncate(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_Int32_Truncate(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 7 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_Int32_Truncate(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_Int32_Truncate(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst". [sae_note] FOR j := 0 to 7 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_UInt32_Truncate(a[k+63:k]) ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst". FOR j := 0 to 7 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_UInt32_Truncate(a[k+63:k]) ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 7 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32_Truncate(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32_Truncate(a[l+63:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 7 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32_Truncate(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 32*j l := 64*j IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32_Truncate(a[l+63:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst". [sae_note] FOR j := 0 to 15 i := 32*j dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst". FOR j := 0 to 15 i := 32*j dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst". [sae_note] FOR j := 0 to 15 i := 32*j dst[i+31:i] := Convert_FP32_To_UInt32_Truncate(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst". FOR j := 0 to 15 i := 32*j dst[i+31:i] := Convert_FP32_To_UInt32_Truncate(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_UInt32_Truncate(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32_Truncate(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := Convert_FP32_To_UInt32_Truncate(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed double-precision (32-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := Convert_FP64_To_UInt32_Truncate(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to a 32-bit integer with truncation, and store the result in "dst". [sae_note] dst[31:0] := Convert_FP64_To_Int32_Truncate(a[63:0]) AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to a 64-bit integer with truncation, and store the result in "dst". [sae_note] dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0]) AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to a 32-bit integer with truncation, and store the result in "dst". [sae_note] dst[31:0] := Convert_FP64_To_Int32_Truncate(a[63:0]) AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to a 64-bit integer with truncation, and store the result in "dst". [sae_note] dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0]) AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to a 32-bit integer with truncation, and store the result in "dst". dst[31:0] := Convert_FP64_To_Int32_Truncate(a[63:0]) AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to a 64-bit integer with truncation, and store the result in "dst". dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0]) AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to an unsigned 32-bit integer with truncation, and store the result in "dst". [sae_note] dst[31:0] := Convert_FP64_To_UInt32_Truncate(a[63:0]) AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to an unsigned 64-bit integer with truncation, and store the result in "dst". [sae_note] dst[63:0] := Convert_FP64_To_UInt64_Truncate(a[63:0]) AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to an unsigned 32-bit integer with truncation, and store the result in "dst". dst[31:0] := Convert_FP64_To_UInt32_Truncate(a[63:0]) AVX512F
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to an unsigned 64-bit integer with truncation, and store the result in "dst". dst[63:0] := Convert_FP64_To_UInt64_Truncate(a[63:0]) AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to a 32-bit integer with truncation, and store the result in "dst". [sae_note] dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0]) AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to a 64-bit integer with truncation, and store the result in "dst". [sae_note] dst[63:0] := Convert_FP32_To_Int64_Truncate(a[31:0]) AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to a 32-bit integer with truncation, and store the result in "dst". [sae_note] dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0]) AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to a 64-bit integer with truncation, and store the result in "dst". [sae_note] dst[63:0] := Convert_FP32_To_Int64_Truncate(a[31:0]) AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to a 32-bit integer with truncation, and store the result in "dst". dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0]) AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to a 64-bit integer with truncation, and store the result in "dst". dst[63:0] := Convert_FP32_To_Int64_Truncate(a[31:0]) AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to an unsigned 32-bit integer with truncation, and store the result in "dst". [sae_note] dst[31:0] := Convert_FP32_To_UInt32_Truncate(a[31:0]) AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to an unsigned 64-bit integer with truncation, and store the result in "dst". [sae_note] dst[63:0] := Convert_FP32_To_UInt64_Truncate(a[31:0]) AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to an unsigned 32-bit integer with truncation, and store the result in "dst". dst[31:0] := Convert_FP32_To_UInt32_Truncate(a[31:0]) AVX512F
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to an unsigned 64-bit integer with truncation, and store the result in "dst". dst[63:0] := Convert_FP32_To_UInt64_Truncate(a[31:0]) AVX512F
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 i := j*64 l := j*32 dst[i+63:i] := Convert_Int64_To_FP64(a[l+31:l]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[i+63:i] := Convert_Int64_To_FP64(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". [round_note] FOR j := 0 to 15 i := 32*j dst[i+31:i] := Convert_Int32_To_FP32(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 15 i := 32*j dst[i+31:i] := Convert_Int32_To_FP32(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := Convert_Int32_To_FP32(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := Convert_Int32_To_FP32(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := Convert_Int32_To_FP32(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j IF k[j] dst[i+31:i] := Convert_Int32_To_FP32(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert the unsigned 64-bit integer "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [round_note] dst[63:0] := Convert_Int64_To_FP64(b[63:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the unsigned 32-bit integer "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := Convert_Int32_To_FP64(b[31:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the unsigned 64-bit integer "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := Convert_Int64_To_FP64(b[63:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the unsigned 32-bit integer "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] dst[31:0] := Convert_Int32_To_FP32(b[31:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the unsigned 64-bit integer "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] dst[31:0] := Convert_Int64_To_FP32(b[63:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the unsigned 32-bit integer "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := Convert_Int32_To_FP32(b[31:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert the unsigned 64-bit integer "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := Convert_Int64_To_FP32(b[63:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert packed 32-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst". FOR j := 0 to 15 i := 32*j k := 8*j dst[k+7:k] := Truncate8(a[i+31:i]) ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert packed 32-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j l := 8*j IF k[j] dst[l+7:l] := Truncate8(a[i+31:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Store Convert packed 32-bit integers in "a" to packed 8-bit integers with truncation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 15 i := 32*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := Truncate8(a[i+31:i]) FI ENDFOR AVX512F
immintrin.h
Convert
Convert packed 32-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j l := 8*j IF k[j] dst[l+7:l] := Truncate8(a[i+31:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert packed 32-bit integers in "a" to packed 16-bit integers with truncation, and store the results in "dst". FOR j := 0 to 15 i := 32*j k := 16*j dst[k+15:k] := Truncate16(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed 32-bit integers in "a" to packed 16-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j l := 16*j IF k[j] dst[l+15:l] := Truncate16(a[i+31:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Store Convert packed 32-bit integers in "a" to packed 16-bit integers with truncation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 15 i := 32*j l := 16*j IF k[j] MEM[base_addr+l+15:base_addr+l] := Truncate16(a[i+31:i]) FI ENDFOR AVX512F
immintrin.h
Convert
Convert packed 32-bit integers in "a" to packed 16-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j l := 16*j IF k[j] dst[l+15:l] := Truncate16(a[i+31:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst". FOR j := 0 to 7 i := 64*j k := 8*j dst[k+7:k] := Truncate8(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 8*j IF k[j] dst[l+7:l] := Truncate8(a[i+63:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Store Convert packed 64-bit integers in "a" to packed 8-bit integers with truncation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 7 i := 64*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := Truncate8(a[i+63:i]) FI ENDFOR AVX512F
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 8-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 8*j IF k[j] dst[l+7:l] := Truncate8(a[i+63:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 32-bit integers with truncation, and store the results in "dst". FOR j := 0 to 7 i := 64*j k := 32*j dst[k+31:k] := Truncate32(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 32*j IF k[j] dst[l+31:l] := Truncate32(a[i+63:i]) ELSE dst[l+31:l] := src[l+31:l] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Store Convert packed 64-bit integers in "a" to packed 32-bit integers with truncation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 7 i := 64*j l := 32*j IF k[j] MEM[base_addr+l+31:base_addr+l] := Truncate32(a[i+63:i]) FI ENDFOR AVX512F
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 32*j IF k[j] dst[l+31:l] := Truncate32(a[i+63:i]) ELSE dst[l+31:l] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 16-bit integers with truncation, and store the results in "dst". FOR j := 0 to 7 i := 64*j k := 16*j dst[k+15:k] := Truncate16(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 16-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 16*j IF k[j] dst[l+15:l] := Truncate16(a[i+63:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Store Convert packed 64-bit integers in "a" to packed 16-bit integers with truncation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 7 i := 64*j l := 16*j IF k[j] MEM[base_addr+l+15:base_addr+l] := Truncate16(a[i+63:i]) FI ENDFOR AVX512F
immintrin.h
Convert
Convert packed 64-bit integers in "a" to packed 16-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 16*j IF k[j] dst[l+15:l] := Truncate16(a[i+63:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst". FOR j := 0 to 15 i := 32*j k := 8*j dst[k+7:k] := Saturate8(a[i+31:i]) ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j l := 8*j IF k[j] dst[l+7:l] := Saturate8(a[i+31:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Store Convert packed signed 32-bit integers in "a" to packed 8-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 15 i := 32*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := Saturate8(a[i+31:i]) FI ENDFOR AVX512F
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j l := 8*j IF k[j] dst[l+7:l] := Saturate8(a[i+31:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed 16-bit integers with signed saturation, and store the results in "dst". FOR j := 0 to 15 i := 32*j k := 16*j dst[k+15:k] := Saturate16(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed 16-bit integers with signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j l := 16*j IF k[j] dst[l+15:l] := Saturate16(a[i+31:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Store Convert packed signed 32-bit integers in "a" to packed 16-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 15 i := 32*j l := 16*j IF k[j] MEM[base_addr+l+15:base_addr+l] := Saturate16(a[i+31:i]) FI ENDFOR AVX512F
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed 16-bit integers with signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j l := 16*j IF k[j] dst[l+15:l] := Saturate16(a[i+31:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst". FOR j := 0 to 7 i := 64*j k := 8*j dst[k+7:k] := Saturate8(a[i+63:i]) ENDFOR dst[MAX:64] := 0 AVX512F
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 8*j IF k[j] dst[l+7:l] := Saturate8(a[i+63:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:64] := 0 AVX512F
immintrin.h
Convert
Store Convert packed signed 64-bit integers in "a" to packed 8-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 7 i := 64*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := Saturate8(a[i+63:i]) FI ENDFOR AVX512F
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 8-bit integers with signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 8*j IF k[j] dst[l+7:l] := Saturate8(a[i+63:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 32-bit integers with signed saturation, and store the results in "dst". FOR j := 0 to 7 i := 64*j k := 32*j dst[k+31:k] := Saturate32(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 32-bit integers with signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 32*j IF k[j] dst[l+31:l] := Saturate32(a[i+63:i]) ELSE dst[l+31:l] := src[l+31:l] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Store Convert packed signed 64-bit integers in "a" to packed 32-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 7 i := 64*j l := 32*j IF k[j] MEM[base_addr+l+31:base_addr+l] := Saturate32(a[i+63:i]) FI ENDFOR AVX512F
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 32-bit integers with signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 32*j IF k[j] dst[l+31:l] := Saturate32(a[i+63:i]) ELSE dst[l+31:l] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 16-bit integers with signed saturation, and store the results in "dst". FOR j := 0 to 7 i := 64*j k := 16*j dst[k+15:k] := Saturate16(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 16-bit integers with signed saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 16*j IF k[j] dst[l+15:l] := Saturate16(a[i+63:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Store Convert packed signed 64-bit integers in "a" to packed 16-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 7 i := 64*j l := 16*j IF k[j] MEM[base_addr+l+15:base_addr+l] := Saturate16(a[i+63:i]) FI ENDFOR AVX512F
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed 16-bit integers with signed saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 16*j IF k[j] dst[l+15:l] := Saturate16(a[i+63:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Sign extend packed 8-bit integers in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 15 i := 32*j k := 8*j dst[i+31:i] := SignExtend32(a[k+7:k]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Sign extend packed 8-bit integers in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j l := 8*j IF k[j] dst[i+31:i] := SignExtend32(a[l+7:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Sign extend packed 8-bit integers in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j l := 8*j IF k[j] dst[i+31:i] := SignExtend32(a[l+7:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Sign extend packed 8-bit integers in the low 8 bytes of "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 7 i := 64*j k := 8*j dst[i+63:i] := SignExtend64(a[k+7:k]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Sign extend packed 8-bit integers in the low 8 bytes of "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 8*j IF k[j] dst[i+63:i] := SignExtend64(a[l+7:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Sign extend packed 8-bit integers in the low 8 bytes of "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 8*j IF k[j] dst[i+63:i] := SignExtend64(a[l+7:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Sign extend packed 32-bit integers in "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 7 i := 64*j k := 32*j dst[i+63:i] := SignExtend64(a[k+31:k]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Sign extend packed 32-bit integers in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 32*j IF k[j] dst[i+63:i] := SignExtend64(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Sign extend packed 32-bit integers in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 32*j IF k[j] dst[i+63:i] := SignExtend64(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Sign extend packed 16-bit integers in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 15 i := 32*j k := 16*j dst[i+31:i] := SignExtend32(a[k+15:k]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Sign extend packed 16-bit integers in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 l := j*16 IF k[j] dst[i+31:i] := SignExtend32(a[l+15:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Sign extend packed 16-bit integers in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j l := 16*j IF k[j] dst[i+31:i] := SignExtend32(a[l+15:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Sign extend packed 16-bit integers in "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 7 i := 64*j k := 16*j dst[i+63:i] := SignExtend64(a[k+15:k]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Sign extend packed 16-bit integers in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 16*j IF k[j] dst[i+63:i] := SignExtend64(a[l+15:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Sign extend packed 16-bit integers in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 16*j IF k[j] dst[i+63:i] := SignExtend64(a[l+15:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst". FOR j := 0 to 15 i := 32*j k := 8*j dst[k+7:k] := SaturateU8(a[i+31:i]) ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j l := 8*j IF k[j] dst[l+7:l] := SaturateU8(a[i+31:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Store Convert packed unsigned 32-bit integers in "a" to packed 8-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 15 i := 32*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := SaturateU8(a[i+31:i]) FI ENDFOR AVX512F
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j l := 8*j IF k[j] dst[l+7:l] := SaturateU8(a[i+31:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the results in "dst". FOR j := 0 to 15 i := 32*j k := 16*j dst[k+15:k] := SaturateU16(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j l := 16*j IF k[j] dst[l+15:l] := SaturateU16(a[i+31:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Store Convert packed unsigned 32-bit integers in "a" to packed 16-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 15 i := 32*j l := 16*j IF k[j] MEM[base_addr+l+15:base_addr+l] := SaturateU16(a[i+31:i]) FI ENDFOR AVX512F
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j l := 16*j IF k[j] dst[l+15:l] := SaturateU16(a[i+31:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst". FOR j := 0 to 7 i := 64*j k := 8*j dst[k+7:k] := SaturateU8(a[i+63:i]) ENDFOR dst[MAX:64] := 0 AVX512F
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 8*j IF k[j] dst[l+7:l] := SaturateU8(a[i+63:i]) ELSE dst[l+7:l] := src[l+7:l] FI ENDFOR dst[MAX:64] := 0 AVX512F
immintrin.h
Convert
Store Convert packed unsigned 64-bit integers in "a" to packed 8-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 7 i := 64*j l := 8*j IF k[j] MEM[base_addr+l+7:base_addr+l] := SaturateU8(a[i+63:i]) FI ENDFOR AVX512F
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 8-bit integers with unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 8*j IF k[j] dst[l+7:l] := SaturateU8(a[i+63:i]) ELSE dst[l+7:l] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512F
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 32-bit integers with unsigned saturation, and store the results in "dst". FOR j := 0 to 7 i := 64*j k := 32*j dst[k+31:k] := SaturateU32(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 32-bit integers with unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 32*j IF k[j] dst[l+31:l] := SaturateU32(a[i+63:i]) ELSE dst[l+31:l] := src[l+31:l] FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Store Convert packed unsigned 64-bit integers in "a" to packed 32-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 7 i := 64*j l := 32*j IF k[j] MEM[base_addr+l+31:base_addr+l] := SaturateU32(a[i+63:i]) FI ENDFOR AVX512F
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 32-bit integers with unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 32*j IF k[j] dst[l+31:l] := SaturateU32(a[i+63:i]) ELSE dst[l+31:l] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512F
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the results in "dst". FOR j := 0 to 7 i := 64*j k := 16*j dst[k+15:k] := SaturateU16(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 16*j IF k[j] dst[l+15:l] := SaturateU16(a[i+63:i]) ELSE dst[l+15:l] := src[l+15:l] FI ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Store Convert packed unsigned 64-bit integers in "a" to packed 16-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". FOR j := 0 to 7 i := 64*j l := 16*j IF k[j] MEM[base_addr+l+15:base_addr+l] := SaturateU16(a[i+63:i]) FI ENDFOR AVX512F
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed unsigned 16-bit integers with unsigned saturation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 16*j IF k[j] dst[l+15:l] := SaturateU16(a[i+63:i]) ELSE dst[l+15:l] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512F
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 15 i := 32*j k := 8*j dst[i+31:i] := ZeroExtend32(a[k+7:k]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j l := 8*j IF k[j] dst[i+31:i] := ZeroExtend32(a[l+7:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j l := 8*j IF k[j] dst[i+31:i] := ZeroExtend32(a[l+7:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in the low 8 byte sof "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 7 i := 64*j k := 8*j dst[i+63:i] := ZeroExtend64(a[k+7:k]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in the low 8 bytes of "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 8*j IF k[j] dst[i+63:i] := ZeroExtend64(a[l+7:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Zero extend packed unsigned 8-bit integers in the low 8 bytes of "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 8*j IF k[j] dst[i+63:i] := ZeroExtend64(a[l+7:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Zero extend packed unsigned 32-bit integers in "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 7 i := 64*j k := 32*j dst[i+63:i] := ZeroExtend64(a[k+31:k]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Zero extend packed unsigned 32-bit integers in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 32*j IF k[j] dst[i+63:i] := ZeroExtend64(a[l+31:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Zero extend packed unsigned 32-bit integers in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 32*j IF k[j] dst[i+63:i] := ZeroExtend64(a[l+31:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Zero extend packed unsigned 16-bit integers in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 15 i := 32*j k := 16*j dst[i+31:i] := ZeroExtend32(a[k+15:k]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Zero extend packed unsigned 16-bit integers in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j l := 16*j IF k[j] dst[i+31:i] := ZeroExtend32(a[l+15:l]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Zero extend packed unsigned 16-bit integers in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := 32*j l := 16*j IF k[j] dst[i+31:i] := ZeroExtend32(a[l+15:l]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Zero extend packed unsigned 16-bit integers in "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 7 i := 64*j k := 16*j dst[i+63:i] := ZeroExtend64(a[k+15:k]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Zero extend packed unsigned 16-bit integers in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 16*j IF k[j] dst[i+63:i] := ZeroExtend64(a[l+15:l]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Zero extend packed unsigned 16-bit integers in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := 64*j l := 16*j IF k[j] dst[i+63:i] := ZeroExtend64(a[l+15:l]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Copy the lower single-precision (32-bit) floating-point element of "a" to "dst". dst[31:0] := a[31:0] AVX512F
immintrin.h
Convert
Copy the lower double-precision (64-bit) floating-point element of "a" to "dst". dst[63:0] := a[63:0] AVX512F
immintrin.h
Convert
Copy the lower 32-bit integer in "a" to "dst". dst[31:0] := a[31:0] AVX512F
immintrin.h
Convert
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [max_float_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note][max_float_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [max_float_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note][max_float_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst". [max_float_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst". [sae_note][max_float_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [max_float_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note][max_float_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [max_float_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note][max_float_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst". [max_float_note] FOR j := 0 to 15 i := j*32 dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst". [sae_note][max_float_note] FOR j := 0 to 15 i := j*32 dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b", store the maximum value in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [sae_note][max_float_note] IF k[0] dst[63:0] := MAX(a[63:0], b[63:0]) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b", store the maximum value in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := MAX(a[63:0], b[63:0]) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b", store the maximum value in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [sae_note][max_float_note] IF k[0] dst[63:0] := MAX(a[63:0], b[63:0]) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b", store the maximum value in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := MAX(a[63:0], b[63:0]) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b", store the maximum value in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [sae_note][max_float_note] dst[63:0] := MAX(a[63:0], b[63:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b", store the maximum value in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [sae_note][max_float_note] IF k[0] dst[31:0] := MAX(a[31:0], b[31:0]) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b", store the maximum value in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := MAX(a[31:0], b[31:0]) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b", store the maximum value in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [sae_note][max_float_note] IF k[0] dst[31:0] := MAX(a[31:0], b[31:0]) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b", store the maximum value in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := MAX(a[31:0], b[31:0]) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b", store the maximum value in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [sae_note][max_float_note] dst[31:0] := MAX(a[31:0], b[31:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [min_float_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note][min_float_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [min_float_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note][min_float_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst". [min_float_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst". [sae_note][min_float_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [min_float_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note][min_float_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [min_float_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note][min_float_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst". [min_float_note] FOR j := 0 to 15 i := j*32 dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst". [sae_note][min_float_note] FOR j := 0 to 15 i := j*32 dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b", store the minimum value in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [sae_note][min_float_note] IF k[0] dst[63:0] := MIN(a[63:0], b[63:0]) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b", store the minimum value in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := MIN(a[63:0], b[63:0]) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b", store the minimum value in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [sae_note][min_float_note] IF k[0] dst[63:0] := MIN(a[63:0], b[63:0]) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b", store the minimum value in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := MIN(a[63:0], b[63:0]) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b", store the minimum value in the lower element of "dst" , and copy the upper element from "a" to the upper element of "dst". [sae_note][min_float_note] dst[63:0] := MIN(a[63:0], b[63:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b", store the minimum value in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [sae_note][min_float_note] IF k[0] dst[31:0] := MIN(a[31:0], b[31:0]) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b", store the minimum value in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := MIN(a[31:0], b[31:0]) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b", store the minimum value in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [sae_note][min_float_note] IF k[0] dst[31:0] := MIN(a[31:0], b[31:0]) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b", store the minimum value in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := MIN(a[31:0], b[31:0]) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b", store the minimum value in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [sae_note][min_float_note] dst[31:0] := MIN(a[31:0], b[31:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Special Math Functions
Compute the absolute value of packed signed 32-bit integers in "a", and store the unsigned results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := ABS(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compute the absolute value of packed signed 32-bit integers in "a", and store the unsigned results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ABS(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compute the absolute value of packed signed 32-bit integers in "a", and store the unsigned results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ABS(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compute the absolute value of packed signed 64-bit integers in "a", and store the unsigned results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := ABS(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compute the absolute value of packed signed 64-bit integers in "a", and store the unsigned results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ABS(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compute the absolute value of packed signed 64-bit integers in "a", and store the unsigned results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ABS(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed signed 32-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed signed 64-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed signed 64-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed signed 64-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed unsigned 32-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed unsigned 64-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed unsigned 64-bit integers in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed unsigned 64-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed signed 32-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed signed 64-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed signed 64-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed signed 64-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed unsigned 32-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed unsigned 64-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed unsigned 64-bit integers in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed unsigned 64-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Move packed double-precision (64-bit) floating-point elements from "a" into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Move
Move packed single-precision (32-bit) floating-point elements from "a" into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Move
Duplicate even-indexed double-precision (64-bit) floating-point elements from "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[63:0] := a[63:0] tmp[127:64] := a[63:0] tmp[191:128] := a[191:128] tmp[255:192] := a[191:128] tmp[319:256] := a[319:256] tmp[383:320] := a[319:256] tmp[447:384] := a[447:384] tmp[511:448] := a[447:384] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Move
Duplicate even-indexed double-precision (64-bit) floating-point elements from "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[63:0] := a[63:0] tmp[127:64] := a[63:0] tmp[191:128] := a[191:128] tmp[255:192] := a[191:128] tmp[319:256] := a[319:256] tmp[383:320] := a[319:256] tmp[447:384] := a[447:384] tmp[511:448] := a[447:384] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := tmp[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Move
Duplicate even-indexed double-precision (64-bit) floating-point elements from "a", and store the results in "dst". dst[63:0] := a[63:0] dst[127:64] := a[63:0] dst[191:128] := a[191:128] dst[255:192] := a[191:128] dst[319:256] := a[319:256] dst[383:320] := a[319:256] dst[447:384] := a[447:384] dst[511:448] := a[447:384] dst[MAX:512] := 0 AVX512F
immintrin.h
Move
Move packed 32-bit integers from "a" into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Move
Move packed 64-bit integers from "a" into "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Move
Move the lower double-precision (64-bit) floating-point element from "b" to the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := b[63:0] ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Move
Move the lower double-precision (64-bit) floating-point element from "b" to the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := b[63:0] ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Move
Duplicate odd-indexed single-precision (32-bit) floating-point elements from "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[31:0] := a[63:32] tmp[63:32] := a[63:32] tmp[95:64] := a[127:96] tmp[127:96] := a[127:96] tmp[159:128] := a[191:160] tmp[191:160] := a[191:160] tmp[223:192] := a[255:224] tmp[255:224] := a[255:224] tmp[287:256] := a[319:288] tmp[319:288] := a[319:288] tmp[351:320] := a[383:352] tmp[383:352] := a[383:352] tmp[415:384] := a[447:416] tmp[447:416] := a[447:416] tmp[479:448] := a[511:480] tmp[511:480] := a[511:480] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Move
Duplicate odd-indexed single-precision (32-bit) floating-point elements from "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[31:0] := a[63:32] tmp[63:32] := a[63:32] tmp[95:64] := a[127:96] tmp[127:96] := a[127:96] tmp[159:128] := a[191:160] tmp[191:160] := a[191:160] tmp[223:192] := a[255:224] tmp[255:224] := a[255:224] tmp[287:256] := a[319:288] tmp[319:288] := a[319:288] tmp[351:320] := a[383:352] tmp[383:352] := a[383:352] tmp[415:384] := a[447:416] tmp[447:416] := a[447:416] tmp[479:448] := a[511:480] tmp[511:480] := a[511:480] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Move
Duplicate odd-indexed single-precision (32-bit) floating-point elements from "a", and store the results in "dst". dst[31:0] := a[63:32] dst[63:32] := a[63:32] dst[95:64] := a[127:96] dst[127:96] := a[127:96] dst[159:128] := a[191:160] dst[191:160] := a[191:160] dst[223:192] := a[255:224] dst[255:224] := a[255:224] dst[287:256] := a[319:288] dst[319:288] := a[319:288] dst[351:320] := a[383:352] dst[383:352] := a[383:352] dst[415:384] := a[447:416] dst[447:416] := a[447:416] dst[479:448] := a[511:480] dst[511:480] := a[511:480] dst[MAX:512] := 0 AVX512F
immintrin.h
Move
Duplicate even-indexed single-precision (32-bit) floating-point elements from "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). tmp[31:0] := a[31:0] tmp[63:32] := a[31:0] tmp[95:64] := a[95:64] tmp[127:96] := a[95:64] tmp[159:128] := a[159:128] tmp[191:160] := a[159:128] tmp[223:192] := a[223:192] tmp[255:224] := a[223:192] tmp[287:256] := a[287:256] tmp[319:288] := a[287:256] tmp[351:320] := a[351:320] tmp[383:352] := a[351:320] tmp[415:384] := a[415:384] tmp[447:416] := a[415:384] tmp[479:448] := a[479:448] tmp[511:480] := a[479:448] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Move
Duplicate even-indexed single-precision (32-bit) floating-point elements from "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). tmp[31:0] := a[31:0] tmp[63:32] := a[31:0] tmp[95:64] := a[95:64] tmp[127:96] := a[95:64] tmp[159:128] := a[159:128] tmp[191:160] := a[159:128] tmp[223:192] := a[223:192] tmp[255:224] := a[223:192] tmp[287:256] := a[287:256] tmp[319:288] := a[287:256] tmp[351:320] := a[351:320] tmp[383:352] := a[351:320] tmp[415:384] := a[415:384] tmp[447:416] := a[415:384] tmp[479:448] := a[479:448] tmp[511:480] := a[479:448] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Move
Duplicate even-indexed single-precision (32-bit) floating-point elements from "a", and store the results in "dst". dst[31:0] := a[31:0] dst[63:32] := a[31:0] dst[95:64] := a[95:64] dst[127:96] := a[95:64] dst[159:128] := a[159:128] dst[191:160] := a[159:128] dst[223:192] := a[223:192] dst[255:224] := a[223:192] dst[287:256] := a[287:256] dst[319:288] := a[287:256] dst[351:320] := a[351:320] dst[383:352] := a[351:320] dst[415:384] := a[415:384] dst[447:416] := a[415:384] dst[479:448] := a[479:448] dst[511:480] := a[479:448] dst[MAX:512] := 0 AVX512F
immintrin.h
Move
Move the lower single-precision (32-bit) floating-point element from "b" to the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := b[31:0] ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Move
Move the lower single-precision (32-bit) floating-point element from "b" to the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := b[31:0] ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Move
Compute the bitwise AND of packed 32-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] AND b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise NOT of packed 32-bit integers in "a" and then AND with "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (NOT a[i+31:i]) AND b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise NOT of packed 64-bit integers in "a" and then AND with "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (NOT a[i+63:i]) AND b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise AND of packed 64-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] AND b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise OR of packed 32-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] OR b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise OR of packed 64-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] OR b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in "imm8". For each bit in each packed 32-bit integer, the corresponding bit from "a", "b", and "c" are used according to "imm8", and the result is written to the corresponding bit in "dst" using writemask "k" at 32-bit granularity (32-bit elements are copied from "a" when the corresponding mask bit is not set). DEFINE TernaryOP(imm8, a, b, c) { CASE imm8[7:0] OF 0: dst[0] := 0 // imm8[7:0] := 0 1: dst[0] := NOT (a OR b OR c) // imm8[7:0] := NOT (_MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C) // ... 254: dst[0] := a OR b OR c // imm8[7:0] := _MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C 255: dst[0] := 1 // imm8[7:0] := 1 ESAC } imm8[7:0] = LogicExp(_MM_TERNLOG_A, _MM_TERNLOG_B, _MM_TERNLOG_C) FOR j := 0 to 15 i := j*32 IF k[j] FOR h := 0 to 31 dst[i+h] := TernaryOP(imm8[7:0], a[i+h], b[i+h], c[i+h]) ENDFOR ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in "imm8". For each bit in each packed 32-bit integer, the corresponding bit from "a", "b", and "c" are used according to "imm8", and the result is written to the corresponding bit in "dst" using zeromask "k" at 32-bit granularity (32-bit elements are zeroed out when the corresponding mask bit is not set). DEFINE TernaryOP(imm8, a, b, c) { CASE imm8[7:0] OF 0: dst[0] := 0 // imm8[7:0] := 0 1: dst[0] := NOT (a OR b OR c) // imm8[7:0] := NOT (_MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C) // ... 254: dst[0] := a OR b OR c // imm8[7:0] := _MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C 255: dst[0] := 1 // imm8[7:0] := 1 ESAC } imm8[7:0] = LogicExp(_MM_TERNLOG_A, _MM_TERNLOG_B, _MM_TERNLOG_C) FOR j := 0 to 15 i := j*32 IF k[j] FOR h := 0 to 31 dst[i+h] := TernaryOP(imm8[7:0], a[i+h], b[i+h], c[i+h]) ENDFOR ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in "imm8". For each bit in each packed 32-bit integer, the corresponding bit from "a", "b", and "c" are used according to "imm8", and the result is written to the corresponding bit in "dst". DEFINE TernaryOP(imm8, a, b, c) { CASE imm8[7:0] OF 0: dst[0] := 0 // imm8[7:0] := 0 1: dst[0] := NOT (a OR b OR c) // imm8[7:0] := NOT (_MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C) // ... 254: dst[0] := a OR b OR c // imm8[7:0] := _MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C 255: dst[0] := 1 // imm8[7:0] := 1 ESAC } imm8[7:0] = LogicExp(_MM_TERNLOG_A, _MM_TERNLOG_B, _MM_TERNLOG_C) FOR j := 0 to 15 i := j*32 FOR h := 0 to 31 dst[i+h] := TernaryOP(imm8[7:0], a[i+h], b[i+h], c[i+h]) ENDFOR ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in "imm8". For each bit in each packed 64-bit integer, the corresponding bit from "a", "b", and "c" are used according to "imm8", and the result is written to the corresponding bit in "dst" using writemask "k" at 64-bit granularity (64-bit elements are copied from "a" when the corresponding mask bit is not set). DEFINE TernaryOP(imm8, a, b, c) { CASE imm8[7:0] OF 0: dst[0] := 0 // imm8[7:0] := 0 1: dst[0] := NOT (a OR b OR c) // imm8[7:0] := NOT (_MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C) // ... 254: dst[0] := a OR b OR c // imm8[7:0] := _MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C 255: dst[0] := 1 // imm8[7:0] := 1 ESAC } imm8[7:0] = LogicExp(_MM_TERNLOG_A, _MM_TERNLOG_B, _MM_TERNLOG_C) FOR j := 0 to 7 i := j*64 IF k[j] FOR h := 0 to 63 dst[i+h] := TernaryOP(imm8[7:0], a[i+h], b[i+h], c[i+h]) ENDFOR ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in "imm8". For each bit in each packed 64-bit integer, the corresponding bit from "a", "b", and "c" are used according to "imm8", and the result is written to the corresponding bit in "dst" using zeromask "k" at 64-bit granularity (64-bit elements are zeroed out when the corresponding mask bit is not set). DEFINE TernaryOP(imm8, a, b, c) { CASE imm8[7:0] OF 0: dst[0] := 0 // imm8[7:0] := 0 1: dst[0] := NOT (a OR b OR c) // imm8[7:0] := NOT (_MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C) // ... 254: dst[0] := a OR b OR c // imm8[7:0] := _MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C 255: dst[0] := 1 // imm8[7:0] := 1 ESAC } imm8[7:0] = LogicExp(_MM_TERNLOG_A, _MM_TERNLOG_B, _MM_TERNLOG_C) FOR j := 0 to 7 i := j*64 IF k[j] FOR h := 0 to 63 dst[i+h] := TernaryOP(imm8[7:0], a[i+h], b[i+h], c[i+h]) ENDFOR ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in "imm8". For each bit in each packed 64-bit integer, the corresponding bit from "a", "b", and "c" are used according to "imm8", and the result is written to the corresponding bit in "dst". DEFINE TernaryOP(imm8, a, b, c) { CASE imm8[7:0] OF 0: dst[0] := 0 // imm8[7:0] := 0 1: dst[0] := NOT (a OR b OR c) // imm8[7:0] := NOT (_MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C) // ... 254: dst[0] := a OR b OR c // imm8[7:0] := _MM_TERNLOG_A OR _MM_TERNLOG_B OR _MM_TERNLOG_C 255: dst[0] := 1 // imm8[7:0] := 1 ESAC } imm8[7:0] = LogicExp(_MM_TERNLOG_A, _MM_TERNLOG_B, _MM_TERNLOG_C) FOR j := 0 to 7 i := j*64 FOR h := 0 to 63 dst[i+h] := TernaryOP(imm8[7:0], a[i+h], b[i+h], c[i+h]) ENDFOR ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise AND of packed 64-bit integers in "a" and "b", producing intermediate 64-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is non-zero. FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := ((a[i+63:i] AND b[i+63:i]) != 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise AND of packed 64-bit integers in "a" and "b", producing intermediate 64-bit values, and set the corresponding bit in result mask "k" if the intermediate value is non-zero. FOR j := 0 to 7 i := j*64 k[j] := ((a[i+63:i] AND b[i+63:i]) != 0) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise NAND of packed 32-bit integers in "a" and "b", producing intermediate 32-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is zero. FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ((a[i+31:i] AND b[i+31:i]) == 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise NAND of packed 32-bit integers in "a" and "b", producing intermediate 32-bit values, and set the corresponding bit in result mask "k" if the intermediate value is zero. FOR j := 0 to 15 i := j*32 k[j] := ((a[i+31:i] AND b[i+31:i]) == 0) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise NAND of packed 64-bit integers in "a" and "b", producing intermediate 64-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is zero. FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := ((a[i+63:i] AND b[i+63:i]) == 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise NAND of packed 64-bit integers in "a" and "b", producing intermediate 64-bit values, and set the corresponding bit in result mask "k" if the intermediate value is zero. FOR j := 0 to 7 i := j*64 k[j] := ((a[i+63:i] AND b[i+63:i]) == 0) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise XOR of packed 32-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] XOR b[i+31:i] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise XOR of packed 64-bit integers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] XOR b[i+63:i] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Broadcast 8-bit integer "a" to all elements of "dst". FOR j := 0 to 63 i := j*8 dst[i+7:i] := a[7:0] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Broadcast 32-bit integer "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[31:0] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Broadcast 32-bit integer "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[31:0] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Broadcast 32-bit integer "a" to all elements of "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := a[31:0] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Broadcast 64-bit integer "a" to all elements of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[63:0] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Broadcast 64-bit integer "a" to all elements of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[63:0] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Broadcast 64-bit integer "a" to all elements of "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := a[63:0] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Broadcast the low packed 16-bit integer from "a" to all all elements of "dst". FOR j := 0 to 31 i := j*16 dst[i+15:i] := a[15:0] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Broadcast double-precision (64-bit) floating-point value "a" to all elements of "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := a[63:0] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Broadcast single-precision (32-bit) floating-point value "a" to all elements of "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := a[31:0] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Set packed 32-bit integers in "dst" with the repeated 4 element sequence. dst[31:0] := a dst[63:32] := b dst[95:64] := c dst[127:96] := d dst[159:128] := a dst[191:160] := b dst[223:192] := c dst[255:224] := d dst[287:256] := a dst[319:288] := b dst[351:320] := c dst[383:352] := d dst[415:384] := a dst[447:416] := b dst[479:448] := c dst[511:480] := d dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Set packed 64-bit integers in "dst" with the repeated 4 element sequence. dst[63:0] := a dst[127:64] := b dst[191:128] := c dst[255:192] := d dst[319:256] := a dst[383:320] := b dst[447:384] := c dst[511:448] := d dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Set packed double-precision (64-bit) floating-point elements in "dst" with the repeated 4 element sequence. dst[63:0] := a dst[127:64] := b dst[191:128] := c dst[255:192] := d dst[319:256] := a dst[383:320] := b dst[447:384] := c dst[511:448] := d dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Set packed single-precision (32-bit) floating-point elements in "dst" with the repeated 4 element sequence. dst[31:0] := a dst[63:32] := b dst[95:64] := c dst[127:96] := d dst[159:128] := a dst[191:160] := b dst[223:192] := c dst[255:224] := d dst[287:256] := a dst[319:288] := b dst[351:320] := c dst[383:352] := d dst[415:384] := a dst[447:416] := b dst[479:448] := c dst[511:480] := d dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Set packed 8-bit integers in "dst" with the supplied values. dst[7:0] := e0 dst[15:8] := e1 dst[23:16] := e2 dst[31:24] := e3 dst[39:32] := e4 dst[47:40] := e5 dst[55:48] := e6 dst[63:56] := e7 dst[71:64] := e8 dst[79:72] := e9 dst[87:80] := e10 dst[95:88] := e11 dst[103:96] := e12 dst[111:104] := e13 dst[119:112] := e14 dst[127:120] := e15 dst[135:128] := e16 dst[143:136] := e17 dst[151:144] := e18 dst[159:152] := e19 dst[167:160] := e20 dst[175:168] := e21 dst[183:176] := e22 dst[191:184] := e23 dst[199:192] := e24 dst[207:200] := e25 dst[215:208] := e26 dst[223:216] := e27 dst[231:224] := e28 dst[239:232] := e29 dst[247:240] := e30 dst[255:248] := e31 dst[263:256] := e32 dst[271:264] := e33 dst[279:272] := e34 dst[287:280] := e35 dst[295:288] := e36 dst[303:296] := e37 dst[311:304] := e38 dst[319:312] := e39 dst[327:320] := e40 dst[335:328] := e41 dst[343:336] := e42 dst[351:344] := e43 dst[359:352] := e44 dst[367:360] := e45 dst[375:368] := e46 dst[383:376] := e47 dst[391:384] := e48 dst[399:392] := e49 dst[407:400] := e50 dst[415:408] := e51 dst[423:416] := e52 dst[431:424] := e53 dst[439:432] := e54 dst[447:440] := e55 dst[455:448] := e56 dst[463:456] := e57 dst[471:464] := e58 dst[479:472] := e59 dst[487:480] := e60 dst[495:488] := e61 dst[503:496] := e62 dst[511:504] := e63 dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Set packed 16-bit integers in "dst" with the supplied values. dst[15:0] := e0 dst[31:16] := e1 dst[47:32] := e2 dst[63:48] := e3 dst[79:64] := e4 dst[95:80] := e5 dst[111:96] := e6 dst[127:112] := e7 dst[143:128] := e8 dst[159:144] := e9 dst[175:160] := e10 dst[191:176] := e11 dst[207:192] := e12 dst[223:208] := e13 dst[239:224] := e14 dst[255:240] := e15 dst[271:256] := e16 dst[287:272] := e17 dst[303:288] := e18 dst[319:304] := e19 dst[335:320] := e20 dst[351:336] := e21 dst[367:352] := e22 dst[383:368] := e23 dst[399:384] := e24 dst[415:400] := e25 dst[431:416] := e26 dst[447:432] := e27 dst[463:448] := e28 dst[479:464] := e29 dst[495:480] := e30 dst[511:496] := e31 dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Set packed 32-bit integers in "dst" with the supplied values. dst[31:0] := e0 dst[63:32] := e1 dst[95:64] := e2 dst[127:96] := e3 dst[159:128] := e4 dst[191:160] := e5 dst[223:192] := e6 dst[255:224] := e7 dst[287:256] := e8 dst[319:288] := e9 dst[351:320] := e10 dst[383:352] := e11 dst[415:384] := e12 dst[447:416] := e13 dst[479:448] := e14 dst[511:480] := e15 dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Set packed 64-bit integers in "dst" with the supplied values. dst[63:0] := e0 dst[127:64] := e1 dst[191:128] := e2 dst[255:192] := e3 dst[319:256] := e4 dst[383:320] := e5 dst[447:384] := e6 dst[511:448] := e7 dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Set packed double-precision (64-bit) floating-point elements in "dst" with the supplied values. dst[63:0] := e0 dst[127:64] := e1 dst[191:128] := e2 dst[255:192] := e3 dst[319:256] := e4 dst[383:320] := e5 dst[447:384] := e6 dst[511:448] := e7 dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Set packed single-precision (32-bit) floating-point elements in "dst" with the supplied values. dst[31:0] := e0 dst[63:32] := e1 dst[95:64] := e2 dst[127:96] := e3 dst[159:128] := e4 dst[191:160] := e5 dst[223:192] := e6 dst[255:224] := e7 dst[287:256] := e8 dst[319:288] := e9 dst[351:320] := e10 dst[383:352] := e11 dst[415:384] := e12 dst[447:416] := e13 dst[479:448] := e14 dst[511:480] := e15 dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Set packed 32-bit integers in "dst" with the repeated 4 element sequence in reverse order. dst[31:0] := d dst[63:32] := c dst[95:64] := b dst[127:96] := a dst[159:128] := d dst[191:160] := c dst[223:192] := b dst[255:224] := a dst[287:256] := d dst[319:288] := c dst[351:320] := b dst[383:352] := a dst[415:384] := d dst[447:416] := c dst[479:448] := b dst[511:480] := a dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Set packed 64-bit integers in "dst" with the repeated 4 element sequence in reverse order. dst[63:0] := d dst[127:64] := c dst[191:128] := b dst[255:192] := a dst[319:256] := d dst[383:320] := c dst[447:384] := b dst[511:448] := a dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Set packed double-precision (64-bit) floating-point elements in "dst" with the repeated 4 element sequence in reverse order. dst[63:0] := d dst[127:64] := c dst[191:128] := b dst[255:192] := a dst[319:256] := d dst[383:320] := c dst[447:384] := b dst[511:448] := a dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Set packed single-precision (32-bit) floating-point elements in "dst" with the repeated 4 element sequence in reverse order. dst[31:0] := d dst[63:32] := c dst[95:64] := b dst[127:96] := a dst[159:128] := d dst[191:160] := c dst[223:192] := b dst[255:224] := a dst[287:256] := d dst[319:288] := c dst[351:320] := b dst[383:352] := a dst[415:384] := d dst[447:416] := c dst[479:448] := b dst[511:480] := a dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Set packed 32-bit integers in "dst" with the supplied values in reverse order. dst[31:0] := e15 dst[63:32] := e14 dst[95:64] := e13 dst[127:96] := e12 dst[159:128] := e11 dst[191:160] := e10 dst[223:192] := e9 dst[255:224] := e8 dst[287:256] := e7 dst[319:288] := e6 dst[351:320] := e5 dst[383:352] := e4 dst[415:384] := e3 dst[447:416] := e2 dst[479:448] := e1 dst[511:480] := e0 dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Set packed 64-bit integers in "dst" with the supplied values in reverse order. dst[63:0] := e7 dst[127:64] := e6 dst[191:128] := e5 dst[255:192] := e4 dst[319:256] := e3 dst[383:320] := e2 dst[447:384] := e1 dst[511:448] := e0 dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Set packed double-precision (64-bit) floating-point elements in "dst" with the supplied values in reverse order. dst[63:0] := e7 dst[127:64] := e6 dst[191:128] := e5 dst[255:192] := e4 dst[319:256] := e3 dst[383:320] := e2 dst[447:384] := e1 dst[511:448] := e0 dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Set packed single-precision (32-bit) floating-point elements in "dst" with the supplied values in reverse order. dst[31:0] := e15 dst[63:32] := e14 dst[95:64] := e13 dst[127:96] := e12 dst[159:128] := e11 dst[191:160] := e10 dst[223:192] := e9 dst[255:224] := e8 dst[287:256] := e7 dst[319:288] := e6 dst[351:320] := e5 dst[383:352] := e4 dst[415:384] := e3 dst[447:416] := e2 dst[479:448] := e1 dst[511:480] := e0 dst[MAX:512] := 0 AVX512F
immintrin.h
Set
Return vector of type __m512 with all elements set to zero. dst[MAX:0] := 0 AVX512F
immintrin.h
Set
Return vector of type __m512i with all elements set to zero. dst[MAX:0] := 0 AVX512F
immintrin.h
Set
Return vector of type __m512d with all elements set to zero. dst[MAX:0] := 0 AVX512F
immintrin.h
Set
Return vector of type __m512 with all elements set to zero. dst[MAX:0] := 0 AVX512F
immintrin.h
Set
Return vector of type __m512i with all elements set to zero. dst[MAX:0] := 0 AVX512F
immintrin.h
Set
Rotate the bits in each packed 32-bit integer in "a" to the left by the number of bits specified in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src << count) OR (src >> (32 - count)) } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := LEFT_ROTATE_DWORDS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the left by the number of bits specified in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src << count) OR (src >> (32 - count)) } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := LEFT_ROTATE_DWORDS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the left by the number of bits specified in "imm8", and store the results in "dst". DEFINE LEFT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src << count) OR (src >> (32 - count)) } FOR j := 0 to 15 i := j*32 dst[i+31:i] := LEFT_ROTATE_DWORDS(a[i+31:i], imm8[7:0]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the left by the number of bits specified in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src << count) OR (src >> (64 - count)) } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := LEFT_ROTATE_QWORDS(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the left by the number of bits specified in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src << count) OR (src >> (64 - count)) } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := LEFT_ROTATE_QWORDS(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the left by the number of bits specified in "imm8", and store the results in "dst". DEFINE LEFT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src << count) OR (src >> (64 - count)) } FOR j := 0 to 7 i := j*64 dst[i+63:i] := LEFT_ROTATE_QWORDS(a[i+63:i], imm8[7:0]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the left by the number of bits specified in the corresponding element of "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src << count) OR (src >> (32 - count)) } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := LEFT_ROTATE_DWORDS(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the left by the number of bits specified in the corresponding element of "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src << count) OR (src >> (32 - count)) } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := LEFT_ROTATE_DWORDS(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the left by the number of bits specified in the corresponding element of "b", and store the results in "dst". DEFINE LEFT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src << count) OR (src >> (32 - count)) } FOR j := 0 to 15 i := j*32 dst[i+31:i] := LEFT_ROTATE_DWORDS(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the left by the number of bits specified in the corresponding element of "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src << count) OR (src >> (64 - count)) } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := LEFT_ROTATE_QWORDS(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the left by the number of bits specified in the corresponding element of "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE LEFT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src << count) OR (src >> (64 - count)) } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := LEFT_ROTATE_QWORDS(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the left by the number of bits specified in the corresponding element of "b", and store the results in "dst". DEFINE LEFT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src << count) OR (src >> (64 - count)) } FOR j := 0 to 7 i := j*64 dst[i+63:i] := LEFT_ROTATE_QWORDS(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the right by the number of bits specified in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src >>count) OR (src << (32 - count)) } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := RIGHT_ROTATE_DWORDS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the right by the number of bits specified in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src >>count) OR (src << (32 - count)) } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := RIGHT_ROTATE_DWORDS(a[i+31:i], imm8[7:0]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the right by the number of bits specified in "imm8", and store the results in "dst". DEFINE RIGHT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src >>count) OR (src << (32 - count)) } FOR j := 0 to 15 i := j*32 dst[i+31:i] := RIGHT_ROTATE_DWORDS(a[i+31:i], imm8[7:0]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the right by the number of bits specified in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src >> count) OR (src << (64 - count)) } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := RIGHT_ROTATE_QWORDS(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the right by the number of bits specified in "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src >> count) OR (src << (64 - count)) } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := RIGHT_ROTATE_QWORDS(a[i+63:i], imm8[7:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the right by the number of bits specified in "imm8", and store the results in "dst". DEFINE RIGHT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src >> count) OR (src << (64 - count)) } FOR j := 0 to 7 i := j*64 dst[i+63:i] := RIGHT_ROTATE_QWORDS(a[i+63:i], imm8[7:0]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the right by the number of bits specified in the corresponding element of "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src >>count) OR (src << (32 - count)) } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := RIGHT_ROTATE_DWORDS(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 32-bit integer in "a" to the right by the number of bits specified in the corresponding element of "b", and store the results in "dst". DEFINE RIGHT_ROTATE_DWORDS(src, count_src) { count := count_src % 32 RETURN (src >>count) OR (src << (32 - count)) } FOR j := 0 to 15 i := j*32 dst[i+31:i] := RIGHT_ROTATE_DWORDS(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the right by the number of bits specified in the corresponding element of "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src >> count) OR (src << (64 - count)) } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := RIGHT_ROTATE_QWORDS(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the right by the number of bits specified in the corresponding element of "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE RIGHT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src >> count) OR (src << (64 - count)) } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := RIGHT_ROTATE_QWORDS(a[i+63:i], b[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Rotate the bits in each packed 64-bit integer in "a" to the right by the number of bits specified in the corresponding element of "b", and store the results in "dst". DEFINE RIGHT_ROTATE_QWORDS(src, count_src) { count := count_src % 64 RETURN (src >> count) OR (src << (64 - count)) } FOR j := 0 to 7 i := j*64 dst[i+63:i] := RIGHT_ROTATE_QWORDS(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[63:0]) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[63:0]) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << imm8[7:0]) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 15 i := j*32 IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[63:0]) FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF count[63:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[63:0]) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF imm8[7:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] << imm8[7:0]) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF count[63:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[63:0]) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF imm8[7:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] << imm8[7:0]) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 7 i := j*64 IF count[63:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[63:0]) FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 7 i := j*64 IF imm8[7:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] << imm8[7:0]) FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF count[i+31:i] < 32 dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[i+31:i]) ELSE dst[i+31:i] := 0 FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF count[i+63:i] < 64 dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[i+63:i]) ELSE dst[i+63:i] := 0 FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF count[i+63:i] < 64 dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[i+63:i]) ELSE dst[i+63:i] := 0 FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 7 i := j*64 IF count[i+63:i] < 64 dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF count[63:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> count[63:0]) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF count[63:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> count[63:0]) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF imm8[7:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0]) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 15 i := j*32 IF count[63:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> count[63:0]) FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF count[63:0] > 63 dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0x0) ELSE dst[i+63:i] := SignExtend64(a[i+63:i] >> count[63:0]) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF imm8[7:0] > 63 dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0x0) ELSE dst[i+63:i] := SignExtend64(a[i+63:i] >> imm8[7:0]) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF count[63:0] > 63 dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0x0) ELSE dst[i+63:i] := SignExtend64(a[i+63:i] >> count[63:0]) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF imm8[7:0] > 63 dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0x0) ELSE dst[i+63:i] := SignExtend64(a[i+63:i] >> imm8[7:0]) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 7 i := j*64 IF count[63:0] > 63 dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0x0) ELSE dst[i+63:i] := SignExtend64(a[i+63:i] >> count[63:0]) FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 7 i := j*64 IF imm8[7:0] > 63 dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0x0) ELSE dst[i+63:i] := SignExtend64(a[i+63:i] >> imm8[7:0]) FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF count[i+31:i] < 32 dst[i+31:i] := SignExtend32(a[i+31:i] >> count[i+31:i]) ELSE dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF count[i+63:i] < 64 dst[i+63:i] := SignExtend64(a[i+63:i] >> count[i+63:i]) ELSE dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF count[i+63:i] < 64 dst[i+63:i] := SignExtend64(a[i+63:i] >> count[i+63:i]) ELSE dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 7 i := j*64 IF count[i+63:i] < 64 dst[i+63:i] := SignExtend64(a[i+63:i] >> count[i+63:i]) ELSE dst[i+63:i] := (a[i+63] ? 0xFFFFFFFFFFFFFFFF : 0) FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[63:0]) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[63:0]) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0]) FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 15 i := j*32 IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[63:0]) FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF count[63:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[63:0]) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF imm8[7:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0]) FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF count[63:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[63:0]) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF imm8[7:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0]) FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 7 i := j*64 IF count[63:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[63:0]) FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 7 i := j*64 IF imm8[7:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0]) FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF count[i+31:i] < 32 dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[i+31:i]) ELSE dst[i+31:i] := 0 FI ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF count[i+63:i] < 64 dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[i+63:i]) ELSE dst[i+63:i] := 0 FI ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] IF count[i+63:i] < 64 dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[i+63:i]) ELSE dst[i+63:i] := 0 FI ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 64-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 7 i := j*64 IF count[i+63:i] < 64 dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (1.0 / a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (1.0 / a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 7 i := j*64 dst[i+63:i] := (1.0 / a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (1.0 / a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (1.0 / a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 15 i := j*32 dst[i+31:i] := (1.0 / a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". The maximum relative error for this approximation is less than 2^-14. IF k[0] dst[63:0] := (1.0 / b[63:0]) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". The maximum relative error for this approximation is less than 2^-14. IF k[0] dst[63:0] := (1.0 / b[63:0]) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". The maximum relative error for this approximation is less than 2^-14. dst[63:0] := (1.0 / b[63:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". The maximum relative error for this approximation is less than 2^-14. IF k[0] dst[31:0] := (1.0 / b[31:0]) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". The maximum relative error for this approximation is less than 2^-14. IF k[0] dst[31:0] := (1.0 / b[31:0]) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". The maximum relative error for this approximation is less than 2^-14. dst[31:0] := (1.0 / b[31:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (1.0 / SQRT(a[i+63:i])) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (1.0 / SQRT(a[i+63:i])) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 7 i := j*64 dst[i+63:i] := (1.0 / SQRT(a[i+63:i])) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (1.0 / SQRT(a[i+31:i])) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (1.0 / SQRT(a[i+31:i])) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 2^-14. FOR j := 0 to 15 i := j*32 dst[i+31:i] := (1.0 / SQRT(a[i+31:i])) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". The maximum relative error for this approximation is less than 2^-14. IF k[0] dst[63:0] := (1.0 / SQRT(b[63:0])) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". The maximum relative error for this approximation is less than 2^-14. IF k[0] dst[63:0] := (1.0 / SQRT(b[63:0])) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". The maximum relative error for this approximation is less than 2^-14. dst[63:0] := (1.0 / SQRT(b[63:0])) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". The maximum relative error for this approximation is less than 2^-14. IF k[0] dst[31:0] := (1.0 / SQRT(b[31:0])) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". The maximum relative error for this approximation is less than 2^-14. IF k[0] dst[31:0] := (1.0 / SQRT(b[31:0])) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". The maximum relative error for this approximation is less than 2^-14. dst[31:0] := (1.0 / SQRT(b[31:0])) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := SQRT(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := SQRT(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := SQRT(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note]. FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := SQRT(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := SQRT(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". [round_note]. FOR j := 0 to 7 i := j*64 dst[i+63:i] := SQRT(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := SQRT(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := SQRT(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := SQRT(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := SQRT(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := SQRT(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". [round_note]. FOR j := 0 to 15 i := j*32 dst[i+31:i] := SQRT(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := SQRT(b[63:0]) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := SQRT(b[63:0]) ELSE dst[63:0] := src[63:0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [round_note] IF k[0] dst[63:0] := SQRT(b[63:0]) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst[63:0] := SQRT(b[63:0]) ELSE dst[63:0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [round_note] dst[63:0] := SQRT(b[63:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := SQRT(b[31:0]) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := SQRT(b[31:0]) ELSE dst[31:0] := src[31:0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst[31:0] := SQRT(b[31:0]) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst[31:0] := SQRT(b[31:0]) ELSE dst[31:0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Compute the square root of the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] dst[31:0] := SQRT(b[31:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512F
immintrin.h
Elementary Math Functions
Cast vector of type __m128d to type __m512d; the upper 384 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m256d to type __m512d; the upper 256 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m512d to type __m128d. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m512 to type __m128. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m512d to type __m256d. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m128 to type __m512; the upper 384 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m256 to type __m512; the upper 256 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m512 to type __m256. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m128i to type __m512i; the upper 384 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m256i to type __m512i; the upper 256 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m512i to type __m128i. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m512i to type __m256i. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m128d to type __m512d; the upper 384 bits of the result are zeroed. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m128 to type __m512; the upper 384 bits of the result are zeroed. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m128i to type __m512i; the upper 384 bits of the result are zeroed. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m256d to type __m512d; the upper 256 bits of the result are zeroed. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m256 to type __m512; the upper 256 bits of the result are zeroed. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m256i to type __m512i; the upper 256 bits of the result are zeroed. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Return vector of type __m512 with undefined elements. AVX512F
immintrin.h
General Support
Return vector of type __m512i with undefined elements. AVX512F
immintrin.h
General Support
Return vector of type __m512d with undefined elements. AVX512F
immintrin.h
General Support
Return vector of type __m512 with undefined elements. AVX512F
immintrin.h
General Support
Add packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := a[i+63:i] + b[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Add packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". [round_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := a[i+63:i] + b[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Add packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] + b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Add packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] + b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Add packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := a[i+31:i] + b[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Add packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". [round_note] FOR j := 0 to 15 i := j*32 dst[i+31:i] := a[i+31:i] + b[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Add packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] + b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Add packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] + b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst". [round_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst". [round_note] FOR j := 0 to 15 i := j*32 dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst". [round_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst". [round_note] FOR j := 0 to 15 i := j*32 dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) + c[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst". [round_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) + c[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) + c[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst". [round_note] FOR j := 0 to 15 i := j*32 dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) + c[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) - c[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst". [round_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) - c[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := c[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) - c[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst". [round_note] FOR j := 0 to 15 i := j*32 dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) - c[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := c[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). RM. FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] * b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] * b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := a[i+63:i] * b[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". [round_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := a[i+63:i] * b[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). RM. FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] * b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] * b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := a[i+31:i] * b[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". [round_note] FOR j := 0 to 15 i := j*32 dst[i+31:i] := a[i+31:i] * b[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Add packed 32-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := a[i+31:i] + b[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Add packed 32-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] + b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the packed 32-bit integers in "a" and "b", producing intermediate 64-bit integers, and store the low 32 bits of the intermediate integers in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] tmp[63:0] := a[i+31:i] * b[i+31:i] dst[i+31:i] := tmp[31:0] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Multiply the packed 32-bit integers in "a" and "b", producing intermediate 64-bit integers, and store the low 32 bits of the intermediate integers in "dst". FOR j := 0 to 15 i := j*32 tmp[63:0] := a[i+31:i] * b[i+31:i] dst[i+31:i] := tmp[31:0] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Subtract packed 32-bit integers in "b" from packed 32-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] - b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Subtract packed 32-bit integers in "b" from packed 32-bit integers in "a", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := a[i+31:i] - b[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Subtract packed double-precision (64-bit) floating-point elements in "b" from packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] - b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Subtract packed double-precision (64-bit) floating-point elements in "b" from packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] - b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Subtract packed double-precision (64-bit) floating-point elements in "b" from packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := a[i+63:i] - b[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Subtract packed double-precision (64-bit) floating-point elements in "b" from packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". [round_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := a[i+63:i] - b[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Subtract packed single-precision (32-bit) floating-point elements in "b" from packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] - b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Subtract packed single-precision (32-bit) floating-point elements in "b" from packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] - b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Subtract packed single-precision (32-bit) floating-point elements in "b" from packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := a[i+31:i] - b[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Subtract packed single-precision (32-bit) floating-point elements in "b" from packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". [round_note] FOR j := 0 to 15 i := j*32 dst[i+31:i] := a[i+31:i] - b[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Reduce the packed 32-bit integers in "a" by addition using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_ADD(src, len) { IF len == 2 RETURN src[31:0] + src[63:32] FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := src[i+31:i] + src[i+32*len+31:i+32*len] ENDFOR RETURN REDUCE_ADD(src[32*len-1:0], len) } tmp := a FOR j := 0 to 15 i := j*32 IF k[j] tmp[i+31:i] := a[i+31:i] ELSE tmp[i+31:i] := 0 FI ENDFOR dst[31:0] := REDUCE_ADD(tmp, 16) AVX512F
immintrin.h
Arithmetic
Reduce the packed 64-bit integers in "a" by addition using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_ADD(src, len) { IF len == 2 RETURN src[63:0] + src[127:64] FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := src[i+63:i] + src[i+64*len+63:i+64*len] ENDFOR RETURN REDUCE_ADD(src[64*len-1:0], len) } tmp := a FOR j := 0 to 8 i := j*64 IF k[j] tmp[i+63:i] := a[i+63:i] ELSE tmp[i+63:i] := 0 FI ENDFOR dst[63:0] := REDUCE_ADD(tmp, 8) AVX512F
immintrin.h
Arithmetic
Reduce the packed double-precision (64-bit) floating-point elements in "a" by addition using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_ADD(src, len) { IF len == 2 RETURN src[63:0] + src[127:64] FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := src[i+63:i] + src[i+64*len+63:i+64*len] ENDFOR RETURN REDUCE_ADD(src[64*len-1:0], len) } tmp := a FOR j := 0 to 8 i := j*64 IF k[j] tmp[i+63:i] := a[i+63:i] ELSE tmp[i+63:i] := 0 FI ENDFOR dst[63:0] := REDUCE_ADD(tmp, 8) AVX512F
immintrin.h
Arithmetic
Reduce the packed single-precision (32-bit) floating-point elements in "a" by addition using mask "k". Returns the sum of all active elements in "a". DEFINE REDUCE_ADD(src, len) { IF len == 2 RETURN src[31:0] + src[63:32] FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := src[i+31:i] + src[i+32*len+31:i+32*len] ENDFOR RETURN REDUCE_ADD(src[32*len-1:0], len) } tmp := a FOR j := 0 to 16 i := j*32 IF k[j] tmp[i+31:i] := a[i+31:i] ELSE tmp[i+31:i] := 0 FI ENDFOR dst[31:0] := REDUCE_ADD(tmp, 16) AVX512F
immintrin.h
Arithmetic
Reduce the packed 32-bit integers in "a" by multiplication using mask "k". Returns the product of all active elements in "a". DEFINE REDUCE_MUL(src, len) { IF len == 2 RETURN src[31:0] * src[63:32] FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := src[i+31:i] * src[i+32*len+31:i+32*len] ENDFOR RETURN REDUCE_MUL(src[32*len-1:0], len) } tmp := a FOR j := 0 to 16 i := j*32 IF k[j] tmp[i+31:i] := a[i+31:i] ELSE tmp[i+31:i] := 1 FI ENDFOR dst[31:0] := REDUCE_MUL(tmp, 16) AVX512F
immintrin.h
Arithmetic
Reduce the packed 64-bit integers in "a" by multiplication using mask "k". Returns the product of all active elements in "a". DEFINE REDUCE_MUL(src, len) { IF len == 2 RETURN src[63:0] * src[127:64] FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := src[i+63:i] * src[i+64*len+63:i+64*len] ENDFOR RETURN REDUCE_MUL(src[64*len-1:0], len) } tmp := a FOR j := 0 to 8 i := j*64 IF k[j] tmp[i+63:i] := a[i+63:i] ELSE tmp[i+63:i] := 1 FI ENDFOR dst[63:0] := REDUCE_MUL(tmp, 8) AVX512F
immintrin.h
Arithmetic
Reduce the packed double-precision (64-bit) floating-point elements in "a" by multiplication using mask "k". Returns the product of all active elements in "a". DEFINE REDUCE_MUL(src, len) { IF len == 2 RETURN src[63:0] * src[127:64] FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := src[i+63:i] * src[i+64*len+63:i+64*len] ENDFOR RETURN REDUCE_MUL(src[64*len-1:0], len) } tmp := a FOR j := 0 to 8 i := j*64 IF k[j] tmp[i+63:i] := a[i+63:i] ELSE tmp[i+63:i] := 1.0 FI ENDFOR dst[63:0] := REDUCE_MUL(tmp, 8) AVX512F
immintrin.h
Arithmetic
Reduce the packed single-precision (32-bit) floating-point elements in "a" by multiplication using mask "k". Returns the product of all active elements in "a". DEFINE REDUCE_MUL(src, len) { IF len == 2 RETURN src[31:0] * src[63:32] FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := src[i+31:i] * src[i+32*len+31:i+32*len] ENDFOR RETURN REDUCE_MUL(src[32*len-1:0], len) } tmp := a FOR j := 0 to 16 i := j*32 IF k[j] tmp[i+31:i] := a[i+31:i] ELSE tmp[i+31:i] := FP32(1.0) FI ENDFOR dst[31:0] := REDUCE_MUL(tmp, 16) AVX512F
immintrin.h
Arithmetic
Reduce the packed 32-bit integers in "a" by addition. Returns the sum of all elements in "a". DEFINE REDUCE_ADD(src, len) { IF len == 2 RETURN src[31:0] + src[63:32] FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := src[i+31:i] + src[i+32*len+31:i+32*len] ENDFOR RETURN REDUCE_ADD(src[32*len-1:0], len) } dst[31:0] := REDUCE_ADD(a, 16) AVX512F
immintrin.h
Arithmetic
Reduce the packed 64-bit integers in "a" by addition. Returns the sum of all elements in "a". DEFINE REDUCE_ADD(src, len) { IF len == 2 RETURN src[63:0] + src[127:64] FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := src[i+63:i] + src[i+64*len+63:i+64*len] ENDFOR RETURN REDUCE_ADD(src[64*len-1:0], len) } dst[63:0] := REDUCE_ADD(a, 8) AVX512F
immintrin.h
Arithmetic
Reduce the packed double-precision (64-bit) floating-point elements in "a" by addition. Returns the sum of all elements in "a". DEFINE REDUCE_ADD(src, len) { IF len == 2 RETURN src[63:0] + src[127:64] FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := src[i+63:i] + src[i+64*len+63:i+64*len] ENDFOR RETURN REDUCE_ADD(src[64*len-1:0], len) } dst[63:0] := REDUCE_ADD(a, 8) AVX512F
immintrin.h
Arithmetic
Reduce the packed single-precision (32-bit) floating-point elements in "a" by addition. Returns the sum of all elements in "a". DEFINE REDUCE_ADD(src, len) { IF len == 2 RETURN src[31:0] + src[63:32] FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := src[i+31:i] + src[i+32*len+31:i+32*len] ENDFOR RETURN REDUCE_ADD(src[32*len-1:0], len) } dst[31:0] := REDUCE_ADD(a, 16) AVX512F
immintrin.h
Arithmetic
Reduce the packed 32-bit integers in "a" by multiplication. Returns the product of all elements in "a". DEFINE REDUCE_MUL(src, len) { IF len == 2 RETURN src[31:0] * src[63:32] FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := src[i+31:i] * src[i+32*len+31:i+32*len] ENDFOR RETURN REDUCE_MUL(src[32*len-1:0], len) } dst[31:0] := REDUCE_MUL(a, 16) AVX512F
immintrin.h
Arithmetic
Reduce the packed 64-bit integers in "a" by multiplication. Returns the product of all elements in "a". DEFINE REDUCE_MUL(src, len) { IF len == 2 RETURN src[63:0] * src[127:64] FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := src[i+63:i] * src[i+64*len+63:i+64*len] ENDFOR RETURN REDUCE_MUL(src[64*len-1:0], len) } dst[63:0] := REDUCE_MUL(a, 8) AVX512F
immintrin.h
Arithmetic
Reduce the packed double-precision (64-bit) floating-point elements in "a" by multiplication. Returns the product of all elements in "a". DEFINE REDUCE_MUL(src, len) { IF len == 2 RETURN src[63:0] * src[127:64] FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := src[i+63:i] * src[i+64*len+63:i+64*len] ENDFOR RETURN REDUCE_MUL(src[64*len-1:0], len) } dst[63:0] := REDUCE_MUL(a, 8) AVX512F
immintrin.h
Arithmetic
Reduce the packed single-precision (32-bit) floating-point elements in "a" by multiplication. Returns the product of all elements in "a". DEFINE REDUCE_MUL(src, len) { IF len == 2 RETURN src[31:0] * src[63:32] FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := src[i+31:i] * src[i+32*len+31:i+32*len] ENDFOR RETURN REDUCE_MUL(src[32*len-1:0], len) } dst[31:0] := REDUCE_MUL(a, 16) AVX512F
immintrin.h
Arithmetic
Finds the absolute value of each packed single-precision (32-bit) floating-point element in "v2", storing the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := ABS(v2[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Finds the absolute value of each packed single-precision (32-bit) floating-point element in "v2", storing the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ABS(v2[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Finds the absolute value of each packed double-precision (64-bit) floating-point element in "v2", storing the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := ABS(v2[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Finds the absolute value of each packed double-precision (64-bit) floating-point element in "v2", storing the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ABS(v2[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Arithmetic
Concatenate "a" and "b" into a 128-byte immediate result, shift the result right by "imm8" 32-bit elements, and store the low 64 bytes (16 elements) in "dst". temp[1023:512] := a[511:0] temp[511:0] := b[511:0] temp[1023:0] := temp[1023:0] >> (32*imm8[3:0]) dst[511:0] := temp[511:0] dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Concatenate "a" and "b" into a 128-byte immediate result, shift the result right by "imm8" 32-bit elements, and store the low 64 bytes (16 elements) in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). temp[1023:512] := a[511:0] temp[511:0] := b[511:0] temp[1023:0] := temp[1023:0] >> (32*imm8[3:0]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := temp[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of each packed double-precision (64-bit) floating-point element in "a" to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 7 i := j*64 dst[i+63:i] := ConvertExpFP64(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of each packed double-precision (64-bit) floating-point element in "a" to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. [sae_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := ConvertExpFP64(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of each packed double-precision (64-bit) floating-point element in "a" to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ConvertExpFP64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of each packed double-precision (64-bit) floating-point element in "a" to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. [sae_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ConvertExpFP64(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of each packed single-precision (32-bit) floating-point element in "a" to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 15 i := j*32 dst[i+31:i] := ConvertExpFP32(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of each packed single-precision (32-bit) floating-point element in "a" to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. [sae_note] FOR j := 0 to 15 i := j*32 dst[i+31:i] := ConvertExpFP32(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of each packed single-precision (32-bit) floating-point element in "a" to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ConvertExpFP32(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Convert the exponent of each packed single-precision (32-bit) floating-point element in "a" to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. [sae_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ConvertExpFP32(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := GetNormalizedMantissa(a[i+63:i], sc, interv) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note][sae_note] FOR j := 0 to 7 i := j*64 dst[i+63:i] := GetNormalizedMantissa(a[i+63:i], sc, interv) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := GetNormalizedMantissa(a[i+63:i], sc, interv) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note][sae_note] FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := GetNormalizedMantissa(a[i+63:i], sc, interv) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] FOR j := 0 to 15 i := j*32 dst[i+31:i] := GetNormalizedMantissa(a[i+31:i], sc, interv) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note][sae_note] FOR j := 0 to 15 i := j*32 dst[i+31:i] := GetNormalizedMantissa(a[i+31:i], sc, interv) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := GetNormalizedMantissa(a[i+31:i], sc, interv) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "interv" and the sign depends on "sc" and the source sign. [getmant_note][sae_note] FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := GetNormalizedMantissa(a[i+31:i], sc, interv) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Miscellaneous
Blend packed double-precision (64-bit) floating-point elements from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := b[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Blend packed single-precision (32-bit) floating-point elements from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := b[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Blend packed 32-bit integers from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := b[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Blend packed 64-bit integers from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := b[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 32-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Note that this intrinsic shuffles across 128-bit lanes, unlike past intrinsics that use the "permutevar" name. This intrinsic is identical to "_mm512_mask_permutexvar_epi32", and it is recommended that you use that intrinsic name. FOR j := 0 to 15 i := j*32 id := idx[i+3:i]*32 IF k[j] dst[i+31:i] := a[id+31:id] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 32-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst". Note that this intrinsic shuffles across 128-bit lanes, unlike past intrinsics that use the "permutevar" name. This intrinsic is identical to "_mm512_permutexvar_epi32", and it is recommended that you use that intrinsic name. FOR j := 0 to 15 i := j*32 id := idx[i+3:i]*32 dst[i+31:i] := a[id+31:id] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 32-bit integers in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } tmp_dst[31:0] := SELECT4(a[127:0], imm8[1:0]) tmp_dst[63:32] := SELECT4(a[127:0], imm8[3:2]) tmp_dst[95:64] := SELECT4(a[127:0], imm8[5:4]) tmp_dst[127:96] := SELECT4(a[127:0], imm8[7:6]) tmp_dst[159:128] := SELECT4(a[255:128], imm8[1:0]) tmp_dst[191:160] := SELECT4(a[255:128], imm8[3:2]) tmp_dst[223:192] := SELECT4(a[255:128], imm8[5:4]) tmp_dst[255:224] := SELECT4(a[255:128], imm8[7:6]) tmp_dst[287:256] := SELECT4(a[383:256], imm8[1:0]) tmp_dst[319:288] := SELECT4(a[383:256], imm8[3:2]) tmp_dst[351:320] := SELECT4(a[383:256], imm8[5:4]) tmp_dst[383:352] := SELECT4(a[383:256], imm8[7:6]) tmp_dst[415:384] := SELECT4(a[511:384], imm8[1:0]) tmp_dst[447:416] := SELECT4(a[511:384], imm8[3:2]) tmp_dst[479:448] := SELECT4(a[511:384], imm8[5:4]) tmp_dst[511:480] := SELECT4(a[511:384], imm8[7:6]) FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := tmp_dst[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Shuffle 32-bit integers in "a" within 128-bit lanes using the control in "imm8", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } dst[31:0] := SELECT4(a[127:0], imm8[1:0]) dst[63:32] := SELECT4(a[127:0], imm8[3:2]) dst[95:64] := SELECT4(a[127:0], imm8[5:4]) dst[127:96] := SELECT4(a[127:0], imm8[7:6]) dst[159:128] := SELECT4(a[255:128], imm8[1:0]) dst[191:160] := SELECT4(a[255:128], imm8[3:2]) dst[223:192] := SELECT4(a[255:128], imm8[5:4]) dst[255:224] := SELECT4(a[255:128], imm8[7:6]) dst[287:256] := SELECT4(a[383:256], imm8[1:0]) dst[319:288] := SELECT4(a[383:256], imm8[3:2]) dst[351:320] := SELECT4(a[383:256], imm8[5:4]) dst[383:352] := SELECT4(a[383:256], imm8[7:6]) dst[415:384] := SELECT4(a[511:384], imm8[1:0]) dst[447:416] := SELECT4(a[511:384], imm8[3:2]) dst[479:448] := SELECT4(a[511:384], imm8[5:4]) dst[511:480] := SELECT4(a[511:384], imm8[7:6]) dst[MAX:512] := 0 AVX512F
immintrin.h
Swizzle
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 7 i := j*64 k[j] := (a[i+63:i] OP b[i+63:i]) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". [sae_note] CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 7 i := j*64 k[j] := (a[i+63:i] OP b[i+63:i]) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := (a[i+63:i] == b[i+63:i]) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := (a[i+63:i] <= b[i+63:i]) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := (a[i+63:i] < b[i+63:i]) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := (a[i+63:i] != b[i+63:i]) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for not-less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := (!(a[i+63:i] <= b[i+63:i])) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for not-less-than, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := (!(a[i+63:i] < b[i+63:i])) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" to see if neither is NaN, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := (a[i+63:i] != NaN AND b[i+63:i] != NaN) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" to see if either is NaN, and store the results in mask vector "k". FOR j := 0 to 7 i := j*64 k[j] := (a[i+63:i] == NaN OR b[i+63:i] == NaN) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := ( a[i+63:i] OP b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := ( a[i+63:i] OP b[i+63:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := (a[i+63:i] == b[i+63:i]) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := (a[i+63:i] <= b[i+63:i]) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := (a[i+63:i] < b[i+63:i]) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := (a[i+63:i] != b[i+63:i]) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for not-less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := (!(a[i+63:i] <= b[i+63:i])) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for not-less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := (!(a[i+63:i] < b[i+63:i])) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" to see if neither is NaN, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := (a[i+63:i] != NaN AND b[i+63:i] != NaN) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" to see if either is NaN, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k1[j] k[j] := (a[i+63:i] == NaN OR b[i+63:i] == NaN) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 15 i := j*32 k[j] := (a[i+31:i] OP b[i+31:i]) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". [sae_note] CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 15 i := j*32 k[j] := (a[i+31:i] OP b[i+31:i]) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := (a[i+31:i] == b[i+31:i]) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := (a[i+31:i] <= b[i+31:i]) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := (a[i+31:i] < b[i+31:i]) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := (a[i+31:i] != b[i+31:i]) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for not-less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := (!(a[i+31:i] <= b[i+31:i])) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for not-less-than, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := (!(a[i+31:i] < b[i+31:i])) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" to see if neither is NaN, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := ((a[i+31:i] != NaN) AND (b[i+31:i] != NaN)) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" to see if either is NaN, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := ((a[i+31:i] == NaN) OR (b[i+31:i] == NaN)) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ( a[i+31:i] OP b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ( a[i+31:i] OP b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := (a[i+31:i] == b[i+31:i]) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := (a[i+31:i] <= b[i+31:i]) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := (a[i+31:i] < b[i+31:i]) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := (a[i+31:i] != b[i+31:i]) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for not-less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := (!(a[i+31:i] <= b[i+31:i])) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for not-less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := (!(a[i+31:i] < b[i+31:i])) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" to see if neither is NaN, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ((a[i+31:i] != NaN) AND (b[i+31:i] != NaN)) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" to see if either is NaN, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ((a[i+31:i] == NaN) OR (b[i+31:i] == NaN)) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 15 i := j*32 k[j] := ( a[i+31:i] OP b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed 32-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := ( a[i+31:i] == b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := ( a[i+31:i] >= b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := ( a[i+31:i] > b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := ( a[i+31:i] <= b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed 32-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := ( a[i+31:i] != b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ( a[i+31:i] OP b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed 32-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ( a[i+31:i] == b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ( a[i+31:i] >= b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ( a[i+31:i] > b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ( a[i+31:i] <= b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed 32-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ( a[i+31:i] != b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 15 i := j*32 k[j] := ( a[i+31:i] OP b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for equality, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := ( a[i+31:i] == b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := ( a[i+31:i] >= b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := ( a[i+31:i] > b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := ( a[i+31:i] <= b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for less-than, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := ( a[i+31:i] < b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k". FOR j := 0 to 15 i := j*32 k[j] := ( a[i+31:i] != b[i+31:i] ) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[2:0]) OF 0: OP := _MM_CMPINT_EQ 1: OP := _MM_CMPINT_LT 2: OP := _MM_CMPINT_LE 3: OP := _MM_CMPINT_FALSE 4: OP := _MM_CMPINT_NE 5: OP := _MM_CMPINT_NLT 6: OP := _MM_CMPINT_NLE 7: OP := _MM_CMPINT_TRUE ESAC FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ( a[i+31:i] OP b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for equality, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ( a[i+31:i] == b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for greater-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ( a[i+31:i] >= b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for greater-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ( a[i+31:i] > b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for less-than, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ( a[i+31:i] <= b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for less-than-or-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ( a[i+31:i] < b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Compare packed unsigned 32-bit integers in "a" and "b" for not-equal, and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ( a[i+31:i] != b[i+31:i] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Compare
Gather single-precision (32-bit) floating-point elements from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 15 i := j*32 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Gather single-precision (32-bit) floating-point elements from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 15 i := j*32 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load 512-bits (composed of 8 packed double-precision (64-bit) floating-point elements) from memory into "dst". "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. dst[511:0] := MEM[mem_addr+511:mem_addr] dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load packed double-precision (64-bit) floating-point elements from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load 512-bits (composed of 16 packed single-precision (32-bit) floating-point elements) from memory into "dst". "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. dst[511:0] := MEM[mem_addr+511:mem_addr] dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load packed single-precision (32-bit) floating-point elements from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load 512-bits (composed of 16 packed 32-bit integers) from memory into "dst". "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. dst[511:0] := MEM[mem_addr+511:mem_addr] dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load 512-bits of integer data from memory into "dst". "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. dst[511:0] := MEM[mem_addr+511:mem_addr] dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load packed 32-bit integers from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load 512-bits (composed of 8 packed 64-bit integers) from memory into "dst". "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. dst[511:0] := MEM[mem_addr+511:mem_addr] dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Load packed 64-bit integers from memory into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := MEM[mem_addr+i+63:mem_addr+i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Gather 32-bit integers from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst". "scale" should be 1, 2, 4 or 8. FOR j := 0 to 15 i := j*32 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Gather 32-bit integers from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). Gathered elements are merged into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 15 i := j*32 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+31:i] := MEM[addr+31:addr] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Loads 8 64-bit integer elements from memory starting at location "base_addr" at packed 32-bit integer indices stored in the lower half of "vindex" scaled by "scale" and stores them in "dst". FOR j := 0 to 7 i := j*64 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Loads 8 64-bit integer elements from memory starting at location "base_addr" at packed 32-bit integer indices stored in the lower half of "vindex" scaled by "scale" and stores them in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Loads 8 double-precision (64-bit) floating-point elements stored at memory locations starting at location "base_addr" at packed 32-bit integer indices stored in the lower half of "vindex" scaled by "scale" them in "dst". FOR j := 0 to 7 i := j*64 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Loads 8 double-precision (64-bit) floating-point elements from memory starting at location "base_addr" at packed 32-bit integer indices stored in the lower half of "vindex" scaled by "scale" into "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 dst[i+63:i] := MEM[addr+63:addr] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Load
Move packed double-precision (64-bit) floating-point elements from "a" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Move
Move packed single-precision (32-bit) floating-point elements from "a" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Move
Move packed 32-bit integers from "a" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Move
Move packed 64-bit integers from "a" to "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Move
Store packed double-precision (64-bit) floating-point elements from "a" into memory using writemask "k". "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. FOR j := 0 to 7 i := j*64 IF k[j] MEM[mem_addr+i+63:mem_addr+i] := a[i+63:i] FI ENDFOR AVX512F
immintrin.h
Store
Store 512-bits (composed of 8 packed double-precision (64-bit) floating-point elements) from "a" into memory. "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. MEM[mem_addr+511:mem_addr] := a[511:0] AVX512F
immintrin.h
Store
Store packed single-precision (32-bit) floating-point elements from "a" into memory using writemask "k". "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. FOR j := 0 to 15 i := j*32 IF k[j] MEM[mem_addr+i+31:mem_addr+i] := a[i+31:i] FI ENDFOR AVX512F
immintrin.h
Store
Store 512-bits (composed of 16 packed single-precision (32-bit) floating-point elements) from "a" into memory. "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. MEM[mem_addr+511:mem_addr] := a[511:0] AVX512F
immintrin.h
Store
Store packed 32-bit integers from "a" into memory using writemask "k". "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. FOR j := 0 to 15 i := j*32 IF k[j] MEM[mem_addr+i+31:mem_addr+i] := a[i+31:i] FI ENDFOR AVX512F
immintrin.h
Store
Store 512-bits (composed of 16 packed 32-bit integers) from "a" into memory. "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. MEM[mem_addr+511:mem_addr] := a[511:0] AVX512F
immintrin.h
Store
Store 512-bits of integer data from "a" into memory. "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. MEM[mem_addr+511:mem_addr] := a[511:0] AVX512F
immintrin.h
Store
Store packed 64-bit integers from "a" into memory using writemask "k". "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. FOR j := 0 to 7 i := j*64 IF k[j] MEM[mem_addr+i+63:mem_addr+i] := a[i+63:i] FI ENDFOR AVX512F
immintrin.h
Store
Store 512-bits (composed of 8 packed 64-bit integers) from "a" into memory. "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. MEM[mem_addr+511:mem_addr] := a[511:0] AVX512F
immintrin.h
Store
Scatter 32-bit integers from "a" into memory using 32-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 15 i := j*32 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] ENDFOR AVX512F
immintrin.h
Store
Scatter 32-bit integers from "a" into memory using 32-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 15 i := j*32 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] FI ENDFOR AVX512F
immintrin.h
Store
Scatter single-precision (32-bit) floating-point elements from "a" into memory using 32-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale"). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 15 i := j*32 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] ENDFOR AVX512F
immintrin.h
Store
Scatter single-precision (32-bit) floating-point elements from "a" into memory using 32-bit indices. 32-bit elements are stored at addresses starting at "base_addr" and offset by each 32-bit element in "vindex" (each index is scaled by the factor in "scale") subject to mask "k" (elements are not stored when the corresponding mask bit is not set). "scale" should be 1, 2, 4 or 8. FOR j := 0 to 15 i := j*32 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+31:addr] := a[i+31:i] FI ENDFOR AVX512F
immintrin.h
Store
Stores 8 packed double-precision (64-bit) floating-point elements in "a" and to memory locations starting at location "base_addr" at packed 32-bit integer indices stored in "vindex" scaled by "scale". FOR j := 0 to 7 i := j*64 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] ENDFOR AVX512F
immintrin.h
Store
Stores 8 packed double-precision (64-bit) floating-point elements in "a" to memory locations starting at location "base_addr" at packed 32-bit integer indices stored in "vindex" scaled by "scale". Only those elements whose corresponding mask bit is set in writemask "k" are written to memory. FOR j := 0 to 7 i := j*64 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] FI ENDFOR AVX512F
immintrin.h
Store
Compute the bitwise AND of packed 32-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := a[i+31:i] AND b[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise AND of 512 bits (representing integer data) in "a" and "b", and store the result in "dst". dst[511:0] := (a[511:0] AND b[511:0]) dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise NOT of packed 32-bit integers in "a" and then AND with "b", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := (NOT a[i+31:i]) AND b[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise NOT of 512 bits (representing integer data) in "a" and then AND with "b", and store the result in "dst". dst[511:0] := ((NOT a[511:0]) AND b[511:0]) dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise NOT of packed 32-bit integers in "a" and then AND with "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ((NOT a[i+31:i]) AND b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise NOT of 512 bits (composed of packed 64-bit integers) in "a" and then AND with "b", and store the results in "dst". dst[511:0] := ((NOT a[511:0]) AND b[511:0]) dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise NOT of packed 64-bit integers in "a" and then AND with "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise AND of 512 bits (composed of packed 64-bit integers) in "a" and "b", and store the results in "dst". dst[511:0] := (a[511:0] AND b[511:0]) dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise AND of packed 64-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] AND b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise OR of packed 32-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] OR b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise OR of packed 32-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := a[i+31:i] OR b[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise OR of 512 bits (representing integer data) in "a" and "b", and store the result in "dst". dst[511:0] := (a[511:0] OR b[511:0]) dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise OR of packed 64-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] OR b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise OR of packed 64-bit integers in "a" and "b", and store the resut in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := a[i+63:i] OR b[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise AND of packed 32-bit integers in "a" and "b", producing intermediate 32-bit values, and set the corresponding bit in result mask "k" (subject to writemask "k") if the intermediate value is non-zero. FOR j := 0 to 15 i := j*32 IF k1[j] k[j] := ((a[i+31:i] AND b[i+31:i]) != 0) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise AND of packed 32-bit integers in "a" and "b", producing intermediate 32-bit values, and set the corresponding bit in result mask "k" if the intermediate value is non-zero. FOR j := 0 to 15 i := j*32 k[j] := ((a[i+31:i] AND b[i+31:i]) != 0) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise XOR of packed 32-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] XOR b[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise XOR of packed 32-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := a[i+31:i] XOR b[i+31:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise XOR of 512 bits (representing integer data) in "a" and "b", and store the result in "dst". dst[511:0] := (a[511:0] XOR b[511:0]) dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise XOR of packed 64-bit integers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := a[i+63:i] XOR b[i+63:i] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compute the bitwise XOR of packed 64-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := a[i+63:i] XOR b[i+63:i] ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Reduce the packed 32-bit integers in "a" by bitwise AND using mask "k". Returns the bitwise AND of all active elements in "a". DEFINE REDUCE_AND(src, len) { IF len == 2 RETURN src[31:0] AND src[63:32] FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := src[i+31:i] AND src[i+32*len+31:i+32*len] ENDFOR RETURN REDUCE_AND(src[32*len-1:0], len) } tmp := a FOR j := 0 to 16 i := j*32 IF k[j] tmp[i+31:i] := a[i+31:i] ELSE tmp[i+31:i] := 0xFFFFFFFF FI ENDFOR dst[31:0] := REDUCE_AND(tmp, 16) AVX512F
immintrin.h
Logical
Reduce the packed 64-bit integers in "a" by bitwise AND using mask "k". Returns the bitwise AND of all active elements in "a". DEFINE REDUCE_AND(src, len) { IF len == 2 RETURN src[63:0] AND src[127:64] FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := src[i+63:i] AND src[i+64*len+63:i+64*len] ENDFOR RETURN REDUCE_AND(src[64*len-1:0], len) } tmp := a FOR j := 0 to 8 i := j*64 IF k[j] tmp[i+63:i] := a[i+63:i] ELSE tmp[i+63:i] := 0xFFFFFFFFFFFFFFFF FI ENDFOR dst[63:0] := REDUCE_AND(tmp, 8) AVX512F
immintrin.h
Logical
Reduce the packed 32-bit integers in "a" by bitwise OR using mask "k". Returns the bitwise OR of all active elements in "a". DEFINE REDUCE_OR(src, len) { IF len == 2 RETURN src[31:0] OR src[63:32] FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := src[i+31:i] OR src[i+32*len+31:i+32*len] ENDFOR RETURN REDUCE_OR(src[32*len-1:0], len) } tmp := a FOR j := 0 to 16 i := j*32 IF k[j] tmp[i+31:i] := a[i+31:i] ELSE tmp[i+31:i] := 0 FI ENDFOR dst[31:0] := REDUCE_OR(tmp, 16) AVX512F
immintrin.h
Logical
Reduce the packed 64-bit integers in "a" by bitwise OR using mask "k". Returns the bitwise OR of all active elements in "a". DEFINE REDUCE_OR(src, len) { IF len == 2 RETURN src[63:0] OR src[127:64] FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := src[i+63:i] OR src[i+64*len+63:i+64*len] ENDFOR RETURN REDUCE_OR(src[64*len-1:0], len) } tmp := a FOR j := 0 to 8 i := j*64 IF k[j] tmp[i+63:i] := a[i+63:i] ELSE tmp[i+63:i] := 0 FI ENDFOR dst[63:0] := REDUCE_OR(tmp, 8) AVX512F
immintrin.h
Logical
Reduce the packed 32-bit integers in "a" by bitwise AND. Returns the bitwise AND of all elements in "a". DEFINE REDUCE_AND(src, len) { IF len == 2 RETURN src[31:0] AND src[63:32] FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := src[i+31:i] AND src[i+32*len+31:i+32*len] ENDFOR RETURN REDUCE_AND(src[32*len-1:0], len) } dst[31:0] := REDUCE_AND(a, 16) AVX512F
immintrin.h
Logical
Reduce the packed 64-bit integers in "a" by bitwise AND. Returns the bitwise AND of all elements in "a". DEFINE REDUCE_AND(src, len) { IF len == 2 RETURN src[63:0] AND src[127:64] FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := src[i+63:i] AND src[i+64*len+63:i+64*len] ENDFOR RETURN REDUCE_AND(src[64*len-1:0], len) } dst[63:0] := REDUCE_AND(a, 8) AVX512F
immintrin.h
Logical
Reduce the packed 32-bit integers in "a" by bitwise OR. Returns the bitwise OR of all elements in "a". DEFINE REDUCE_OR(src, len) { IF len == 2 RETURN src[31:0] OR src[63:32] FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := src[i+31:i] OR src[i+32*len+31:i+32*len] ENDFOR RETURN REDUCE_OR(src[32*len-1:0], len) } dst[31:0] := REDUCE_OR(a, 16) AVX512F
immintrin.h
Logical
Reduce the packed 64-bit integers in "a" by bitwise OR. Returns the bitwise OR of all elements in "a". DEFINE REDUCE_OR(src, len) { IF len == 2 RETURN src[63:0] OR src[127:64] FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := src[i+63:i] OR src[i+64*len+63:i+64*len] ENDFOR RETURN REDUCE_OR(src[64*len-1:0], len) } dst[63:0] := REDUCE_OR(a, 8) AVX512F
immintrin.h
Logical
Performs element-by-element bitwise AND between packed 32-bit integer elements of "v2" and "v3", storing the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := v2[i+31:i] & v3[i+31:i] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Logical
Compare packed signed 32-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed signed 32-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed unsigned 32-bit integers in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed unsigned 32-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed signed 32-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed signed 32-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed unsigned 32-bit integers in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Compare packed unsigned 32-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Special Math Functions
Reduce the packed signed 32-bit integers in "a" by maximum using mask "k". Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[31:0] > src[63:32] ? src[31:0] : src[63:32]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := (src[i+31:i] > src[i+32*len+31:i+32*len] ? src[i+31:i] : src[i+32*len+31:i+32*len]) ENDFOR RETURN REDUCE_MAX(src[32*len-1:0], len) } tmp := a FOR j := 0 to 16 i := j*32 IF k[j] tmp[i+31:i] := a[i+31:i] ELSE tmp[i+31:i] := Int32(-0x80000000) FI ENDFOR dst[31:0] := REDUCE_MAX(tmp, 16) AVX512F
immintrin.h
Special Math Functions
Reduce the packed signed 64-bit integers in "a" by maximum using mask "k". Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[63:0] > src[127:64] ? src[63:0] : src[127:64]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := (src[i+63:i] > src[i+64*len+63:i+64*len] ? src[i+63:i] : src[i+64*len+63:i+64*len]) ENDFOR RETURN REDUCE_MAX(src[64*len-1:0], len) } tmp := a FOR j := 0 to 8 i := j*64 IF k[j] tmp[i+63:i] := a[i+63:i] ELSE tmp[i+63:i] := Int64(-0x8000000000000000) FI ENDFOR dst[63:0] := REDUCE_MAX(tmp, 8) AVX512F
immintrin.h
Special Math Functions
Reduce the packed unsigned 32-bit integers in "a" by maximum using mask "k". Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[31:0] > src[63:32] ? src[31:0] : src[63:32]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := (src[i+31:i] > src[i+32*len+31:i+32*len] ? src[i+31:i] : src[i+32*len+31:i+32*len]) ENDFOR RETURN REDUCE_MAX(src[32*len-1:0], len) } tmp := a FOR j := 0 to 16 i := j*32 IF k[j] tmp[i+31:i] := a[i+31:i] ELSE tmp[i+31:i] := 0 FI ENDFOR dst[31:0] := REDUCE_MAX(tmp, 16) AVX512F
immintrin.h
Special Math Functions
Reduce the packed unsigned 64-bit integers in "a" by maximum using mask "k". Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[63:0] > src[127:64] ? src[63:0] : src[127:64]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := (src[i+63:i] > src[i+64*len+63:i+64*len] ? src[i+63:i] : src[i+64*len+63:i+64*len]) ENDFOR RETURN REDUCE_MAX(src[64*len-1:0], len) } tmp := a FOR j := 0 to 8 i := j*64 IF k[j] tmp[i+63:i] := a[i+63:i] ELSE tmp[i+63:i] := 0 FI ENDFOR dst[63:0] := REDUCE_MAX(tmp, 8) AVX512F
immintrin.h
Special Math Functions
Reduce the packed double-precision (64-bit) floating-point elements in "a" by maximum using mask "k". Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[63:0] > src[127:64] ? src[63:0] : src[127:64]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := (src[i+63:i] > src[i+64*len+63:i+64*len] ? src[i+63:i] : src[i+64*len+63:i+64*len]) ENDFOR RETURN REDUCE_MAX(src[64*len-1:0], len) } tmp := a FOR j := 0 to 8 i := j*64 IF k[j] tmp[i+63:i] := a[i+63:i] ELSE tmp[i+63:i] := Cast_FP64(0xFFEFFFFFFFFFFFFF) FI ENDFOR dst[63:0] := REDUCE_MAX(tmp, 8) AVX512F
immintrin.h
Special Math Functions
Reduce the packed single-precision (32-bit) floating-point elements in "a" by maximum using mask "k". Returns the maximum of all active elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[31:0] > src[63:32] ? src[31:0] : src[63:32]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := (src[i+31:i] > src[i+32*len+31:i+32*len] ? src[i+31:i] : src[i+32*len+31:i+32*len]) ENDFOR RETURN REDUCE_MAX(src[32*len-1:0], len) } tmp := a FOR j := 0 to 16 i := j*32 IF k[j] tmp[i+31:i] := a[i+31:i] ELSE tmp[i+31:i] := Cast_FP32(0xFF7FFFFF) FI ENDFOR dst[31:0] := REDUCE_MAX(tmp, 16) AVX512F
immintrin.h
Special Math Functions
Reduce the packed signed 32-bit integers in "a" by maximum using mask "k". Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[31:0] < src[63:32] ? src[31:0] : src[63:32]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := (src[i+31:i] < src[i+32*len+31:i+32*len] ? src[i+31:i] : src[i+32*len+31:i+32*len]) ENDFOR RETURN REDUCE_MIN(src[32*len-1:0], len) } tmp := a FOR j := 0 to 16 i := j*32 IF k[j] tmp[i+31:i] := a[i+31:i] ELSE tmp[i+31:i] := Int32(0x7FFFFFFF) FI ENDFOR dst[31:0] := REDUCE_MIN(tmp, 16) AVX512F
immintrin.h
Special Math Functions
Reduce the packed signed 64-bit integers in "a" by maximum using mask "k". Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[63:0] < src[127:64] ? src[63:0] : src[127:64]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := (src[i+63:i] < src[i+64*len+63:i+64*len] ? src[i+63:i] : src[i+64*len+63:i+64*len]) ENDFOR RETURN REDUCE_MIN(src[64*len-1:0], len) } tmp := a FOR j := 0 to 8 i := j*64 IF k[j] tmp[i+63:i] := a[i+63:i] ELSE tmp[i+63:i] := Int64(0x7FFFFFFFFFFFFFFF) FI ENDFOR dst[63:0] := REDUCE_MIN(tmp, 8) AVX512F
immintrin.h
Special Math Functions
Reduce the packed unsigned 32-bit integers in "a" by maximum using mask "k". Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[31:0] < src[63:32] ? src[31:0] : src[63:32]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := (src[i+31:i] < src[i+32*len+31:i+32*len] ? src[i+31:i] : src[i+32*len+31:i+32*len]) ENDFOR RETURN REDUCE_MIN(src[32*len-1:0], len) } tmp := a FOR j := 0 to 16 i := j*32 IF k[j] tmp[i+31:i] := a[i+31:i] ELSE tmp[i+31:i] := 0xFFFFFFFF FI ENDFOR dst[31:0] := REDUCE_MIN(tmp, 16) AVX512F
immintrin.h
Special Math Functions
Reduce the packed unsigned 64-bit integers in "a" by minimum using mask "k". Returns the minimum of all active elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[63:0] < src[127:64] ? src[63:0] : src[127:64]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := (src[i+63:i] < src[i+64*len+63:i+64*len] ? src[i+63:i] : src[i+64*len+63:i+64*len]) ENDFOR RETURN REDUCE_MIN(src[64*len-1:0], len) } tmp := a FOR j := 0 to 8 i := j*64 IF k[j] tmp[i+63:i] := a[i+63:i] ELSE tmp[i+63:i] := 0xFFFFFFFFFFFFFFFF FI ENDFOR dst[63:0] := REDUCE_MIN(tmp, 8) AVX512F
immintrin.h
Special Math Functions
Reduce the packed double-precision (64-bit) floating-point elements in "a" by maximum using mask "k". Returns the minimum of all active elements in "a". [min_float_note] DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[63:0] < src[127:64] ? src[63:0] : src[127:64]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := (src[i+63:i] < src[i+64*len+63:i+64*len] ? src[i+63:i] : src[i+64*len+63:i+64*len]) ENDFOR RETURN REDUCE_MIN(src[64*len-1:0], len) } tmp := a FOR j := 0 to 8 i := j*64 IF k[j] tmp[i+63:i] := a[i+63:i] ELSE tmp[i+63:i] := Cast_FP64(0x7FEFFFFFFFFFFFFF) FI ENDFOR dst[63:0] := REDUCE_MIN(tmp, 8) AVX512F
immintrin.h
Special Math Functions
Reduce the packed single-precision (32-bit) floating-point elements in "a" by maximum using mask "k". Returns the minimum of all active elements in "a". [min_float_note] DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[31:0] < src[63:32] ? src[31:0] : src[63:32]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := (src[i+31:i] < src[i+32*len+31:i+32*len] ? src[i+31:i] : src[i+32*len+31:i+32*len]) ENDFOR RETURN REDUCE_MIN(src[32*len-1:0], len) } tmp := a FOR j := 0 to 16 i := j*32 IF k[j] tmp[i+31:i] := a[i+31:i] ELSE tmp[i+31:i] := Cast_FP32(0x7F7FFFFF) FI ENDFOR dst[31:0] := REDUCE_MIN(tmp, 16) AVX512F
immintrin.h
Special Math Functions
Reduce the packed signed 32-bit integers in "a" by maximum. Returns the maximum of all elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[31:0] > src[63:32] ? src[31:0] : src[63:32]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := (src[i+31:i] > src[i+32*len+31:i+32*len] ? src[i+31:i] : src[i+32*len+31:i+32*len]) ENDFOR RETURN REDUCE_MAX(src[32*len-1:0], len) } dst[31:0] := REDUCE_MAX(a, 16) AVX512F
immintrin.h
Special Math Functions
Reduce the packed signed 64-bit integers in "a" by maximum. Returns the maximum of all elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[63:0] > src[127:64] ? src[63:0] : src[127:64]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := (src[i+63:i] > src[i+64*len+63:i+64*len] ? src[i+63:i] : src[i+64*len+63:i+64*len]) ENDFOR RETURN REDUCE_MAX(src[64*len-1:0], len) } dst[63:0] := REDUCE_MAX(a, 8) AVX512F
immintrin.h
Special Math Functions
Reduce the packed unsigned 32-bit integers in "a" by maximum. Returns the maximum of all elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[31:0] > src[63:32] ? src[31:0] : src[63:32]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := (src[i+31:i] > src[i+32*len+31:i+32*len] ? src[i+31:i] : src[i+32*len+31:i+32*len]) ENDFOR RETURN REDUCE_MAX(src[32*len-1:0], len) } dst[31:0] := REDUCE_MAX(a, 16) AVX512F
immintrin.h
Special Math Functions
Reduce the packed unsigned 64-bit integers in "a" by maximum. Returns the maximum of all elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[63:0] > src[127:64] ? src[63:0] : src[127:64]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := (src[i+63:i] > src[i+64*len+63:i+64*len] ? src[i+63:i] : src[i+64*len+63:i+64*len]) ENDFOR RETURN REDUCE_MAX(src[64*len-1:0], len) } dst[63:0] := REDUCE_MAX(a, 8) AVX512F
immintrin.h
Special Math Functions
Reduce the packed double-precision (64-bit) floating-point elements in "a" by maximum. Returns the maximum of all elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[63:0] > src[127:64] ? src[63:0] : src[127:64]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := (src[i+63:i] > src[i+64*len+63:i+64*len] ? src[i+63:i] : src[i+64*len+63:i+64*len]) ENDFOR RETURN REDUCE_MAX(src[64*len-1:0], len) } dst[63:0] := REDUCE_MAX(a, 8) AVX512F
immintrin.h
Special Math Functions
Reduce the packed single-precision (32-bit) floating-point elements in "a" by maximum. Returns the maximum of all elements in "a". DEFINE REDUCE_MAX(src, len) { IF len == 2 RETURN (src[31:0] > src[63:32] ? src[31:0] : src[63:32]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := (src[i+31:i] > src[i+32*len+31:i+32*len] ? src[i+31:i] : src[i+32*len+31:i+32*len]) ENDFOR RETURN REDUCE_MAX(src[32*len-1:0], len) } dst[31:0] := REDUCE_MAX(a, 16) AVX512F
immintrin.h
Special Math Functions
Reduce the packed signed 32-bit integers in "a" by minimum. Returns the minimum of all elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[31:0] < src[63:32] ? src[31:0] : src[63:32]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := (src[i+31:i] < src[i+32*len+31:i+32*len] ? src[i+31:i] : src[i+32*len+31:i+32*len]) ENDFOR RETURN REDUCE_MIN(src[32*len-1:0], len) } dst[31:0] := REDUCE_MIN(a, 16) AVX512F
immintrin.h
Special Math Functions
Reduce the packed signed 64-bit integers in "a" by minimum. Returns the minimum of all elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[63:0] < src[127:64] ? src[63:0] : src[127:64]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := (src[i+63:i] < src[i+64*len+63:i+64*len] ? src[i+63:i] : src[i+64*len+63:i+64*len]) ENDFOR RETURN REDUCE_MIN(src[64*len-1:0], len) } dst[63:0] := REDUCE_MIN(a, 8) AVX512F
immintrin.h
Special Math Functions
Reduce the packed unsigned 32-bit integers in "a" by minimum. Returns the minimum of all elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[31:0] < src[63:32] ? src[31:0] : src[63:32]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := (src[i+31:i] < src[i+32*len+31:i+32*len] ? src[i+31:i] : src[i+32*len+31:i+32*len]) ENDFOR RETURN REDUCE_MIN(src[32*len-1:0], len) } dst[31:0] := REDUCE_MIN(a, 16) AVX512F
immintrin.h
Special Math Functions
Reduce the packed unsigned 64-bit integers in "a" by minimum. Returns the minimum of all elements in "a". DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[63:0] < src[127:64] ? src[63:0] : src[127:64]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := (src[i+63:i] < src[i+64*len+63:i+64*len] ? src[i+63:i] : src[i+64*len+63:i+64*len]) ENDFOR RETURN REDUCE_MIN(src[64*len-1:0], len) } dst[63:0] := REDUCE_MIN(a, 8) AVX512F
immintrin.h
Special Math Functions
Reduce the packed double-precision (64-bit) floating-point elements in "a" by minimum. Returns the minimum of all elements in "a". [min_float_note] DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[63:0] < src[127:64] ? src[63:0] : src[127:64]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*64 src[i+63:i] := (src[i+63:i] < src[i+64*len+63:i+64*len] ? src[i+63:i] : src[i+64*len+63:i+64*len]) ENDFOR RETURN REDUCE_MIN(src[64*len-1:0], len) } dst[63:0] := REDUCE_MIN(a, 8) AVX512F
immintrin.h
Special Math Functions
Reduce the packed single-precision (32-bit) floating-point elements in "a" by minimum. Returns the minimum of all elements in "a". [min_float_note] DEFINE REDUCE_MIN(src, len) { IF len == 2 RETURN (src[31:0] < src[63:32] ? src[31:0] : src[63:32]) FI len := len / 2 FOR j:= 0 to (len-1) i := j*32 src[i+31:i] := (src[i+31:i] < src[i+32*len+31:i+32*len] ? src[i+31:i] : src[i+32*len+31:i+32*len]) ENDFOR RETURN REDUCE_MIN(src[32*len-1:0], len) } dst[31:0] := REDUCE_MIN(a, 16) AVX512F
immintrin.h
Special Math Functions
Shift packed 32-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << imm8[7:0]) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 15 i := j*32 IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << imm8[7:0]) FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF count[i+31:i] < 32 dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[i+31:i]) ELSE dst[i+31:i] := 0 FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" left by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 15 i := j*32 IF count[i+31:i] < 32 dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF imm8[7:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0]) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 15 i := j*32 IF imm8[7:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0]) FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF count[i+31:i] < 32 dst[i+31:i] := SignExtend32(a[i+31:i] >> count[i+31:i]) ELSE dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 15 i := j*32 IF count[i+31:i] < 32 dst[i+31:i] := SignExtend32(a[i+31:i] >> count[i+31:i]) ELSE dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0) FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0]) FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 15 i := j*32 IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0]) FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] IF count[i+31:i] < 32 dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[i+31:i]) ELSE dst[i+31:i] := 0 FI ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Shift packed 32-bit integers in "a" right by the amount specified by the corresponding element in "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 15 i := j*32 IF count[i+31:i] < 32 dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Shift
Cast vector of type __m512d to type __m512. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m512d to type __m512i. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m512 to type __m512d. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m512 to type __m512i. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m512i to type __m512d. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Cast vector of type __m512i to type __m512. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512F
immintrin.h
Cast
Performs element-by-element conversion of the lower half of packed single-precision (32-bit) floating-point elements in "v2" to packed double-precision (64-bit) floating-point elements, storing the results in "dst". FOR j := 0 to 7 i := j*32 n := j*64 dst[n+63:n] := Convert_FP32_To_FP64(v2[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Performs element-by-element conversion of the lower half of packed single-precision (32-bit) floating-point elements in "v2" to packed double-precision (64-bit) floating-point elements, storing the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 l := j*64 IF k[j] dst[l+63:l] := Convert_FP32_To_FP64(v2[i+31:i]) ELSE dst[l+63:l] := src[l+63:l] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Performs element-by-element conversion of the lower half of packed 32-bit integer elements in "v2" to packed double-precision (64-bit) floating-point elements, storing the results in "dst". FOR j := 0 to 7 i := j*32 l := j*64 dst[l+63:l] := Convert_Int32_To_FP64(v2[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Performs element-by-element conversion of the lower half of packed 32-bit integer elements in "v2" to packed double-precision (64-bit) floating-point elements, storing the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 n := j*64 IF k[j] dst[n+63:n] := Convert_Int32_To_FP64(v2[i+31:i]) ELSE dst[n+63:n] := src[n+63:n] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Performs element-by-element conversion of the lower half of packed 32-bit unsigned integer elements in "v2" to packed double-precision (64-bit) floating-point elements, storing the results in "dst". FOR j := 0 to 7 i := j*32 n := j*64 dst[n+63:n] := Convert_Int32_To_FP64(v2[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Performs element-by-element conversion of the lower half of 32-bit unsigned integer elements in "v2" to packed double-precision (64-bit) floating-point elements, storing the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 l := j*64 IF k[j] dst[l+63:l] := Convert_Int32_To_FP64(v2[i+31:i]) ELSE dst[l+63:l] := src[l+63:l] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Performs an element-by-element conversion of packed double-precision (64-bit) floating-point elements in "v2" to single-precision (32-bit) floating-point elements and stores them in "dst". The elements are stored in the lower half of the results vector, while the remaining upper half locations are set to 0. FOR j := 0 to 7 i := j*64 k := j*32 dst[k+31:k] := Convert_FP64_To_FP32(v2[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Performs an element-by-element conversion of packed double-precision (64-bit) floating-point elements in "v2" to single-precision (32-bit) floating-point elements and stores them in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The elements are stored in the lower half of the results vector, while the remaining upper half locations are set to 0. FOR j := 0 to 7 i := j*64 l := j*32 IF k[j] dst[l+31:l] := Convert_FP64_To_FP32(v2[i+63:i]) ELSE dst[l+31:l] := src[l+31:l] FI ENDFOR dst[MAX:512] := 0 AVX512F
immintrin.h
Convert
Stores 8 packed 64-bit integer elements located in "a" and stores them in memory locations starting at location "base_addr" at packed 32-bit integer indices stored in "vindex" scaled by "scale". FOR j := 0 to 7 i := j*64 m := j*32 addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] ENDFOR AVX512F
immintrin.h
Store
Stores 8 packed 64-bit integer elements located in "a" and stores them in memory locations starting at location "base_addr" at packed 32-bit integer indices stored in "vindex" scaled by "scale" using writemask "k" (elements whose corresponding mask bit is not set are not written to memory). FOR j := 0 to 7 i := j*64 m := j*32 IF k[j] addr := base_addr + SignExtend64(vindex[m+31:m]) * ZeroExtend64(scale) * 8 MEM[addr+63:addr] := a[i+63:i] FI ENDFOR AVX512F
immintrin.h
Store
Multiply packed unsigned 52-bit integers in each 64-bit element of "b" and "c" to form a 104-bit intermediate result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 tmp[127:0] := ZeroExtend64(b[i+51:i]) * ZeroExtend64(c[i+51:i]) dst[i+63:i] := a[i+63:i] + ZeroExtend64(tmp[51:0]) ENDFOR dst[MAX:256] := 0 AVX512IFMA52 AVX512VL
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "b" and "c" to form a 104-bit intermediate result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "a", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] tmp[127:0] := ZeroExtend64(b[i+51:i]) * ZeroExtend64(c[i+51:i]) dst[i+63:i] := a[i+63:i] + ZeroExtend64(tmp[51:0]) ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512IFMA52 AVX512VL
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "b" and "c" to form a 104-bit intermediate result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] tmp[127:0] := ZeroExtend64(b[i+51:i]) * ZeroExtend64(c[i+51:i]) dst[i+63:i] := a[i+63:i] + ZeroExtend64(tmp[51:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512IFMA52 AVX512VL
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "b" and "c" to form a 104-bit intermediate result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 tmp[127:0] := ZeroExtend64(b[i+51:i]) * ZeroExtend64(c[i+51:i]) dst[i+63:i] := a[i+63:i] + ZeroExtend64(tmp[51:0]) ENDFOR dst[MAX:128] := 0 AVX512IFMA52 AVX512VL
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "b" and "c" to form a 104-bit intermediate result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "a", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] tmp[127:0] := ZeroExtend64(b[i+51:i]) * ZeroExtend64(c[i+51:i]) dst[i+63:i] := a[i+63:i] + ZeroExtend64(tmp[51:0]) ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512IFMA52 AVX512VL
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "b" and "c" to form a 104-bit intermediate result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] tmp[127:0] := ZeroExtend64(b[i+51:i]) * ZeroExtend64(c[i+51:i]) dst[i+63:i] := a[i+63:i] + ZeroExtend64(tmp[51:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512IFMA52 AVX512VL
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "b" and "c" to form a 104-bit intermediate result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "a", and store the results in "dst". FOR j := 0 to 3 i := j*64 tmp[127:0] := ZeroExtend64(b[i+51:i]) * ZeroExtend64(c[i+51:i]) dst[i+63:i] := a[i+63:i] + ZeroExtend64(tmp[103:52]) ENDFOR dst[MAX:256] := 0 AVX512IFMA52 AVX512VL
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "b" and "c" to form a 104-bit intermediate result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "a", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] tmp[127:0] := ZeroExtend64(b[i+51:i]) * ZeroExtend64(c[i+51:i]) dst[i+63:i] := a[i+63:i] + ZeroExtend64(tmp[103:52]) ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512IFMA52 AVX512VL
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "b" and "c" to form a 104-bit intermediate result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] tmp[127:0] := ZeroExtend64(b[i+51:i]) * ZeroExtend64(c[i+51:i]) dst[i+63:i] := a[i+63:i] + ZeroExtend64(tmp[103:52]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512IFMA52 AVX512VL
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "b" and "c" to form a 104-bit intermediate result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 tmp[127:0] := ZeroExtend64(b[i+51:i]) * ZeroExtend64(c[i+51:i]) dst[i+63:i] := a[i+63:i] + ZeroExtend64(tmp[103:52]) ENDFOR dst[MAX:128] := 0 AVX512IFMA52 AVX512VL
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "b" and "c" to form a 104-bit intermediate result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "a", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] tmp[127:0] := ZeroExtend64(b[i+51:i]) * ZeroExtend64(c[i+51:i]) dst[i+63:i] := a[i+63:i] + ZeroExtend64(tmp[103:52]) ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512IFMA52 AVX512VL
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "b" and "c" to form a 104-bit intermediate result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] tmp[127:0] := ZeroExtend64(b[i+51:i]) * ZeroExtend64(c[i+51:i]) dst[i+63:i] := a[i+63:i] + ZeroExtend64(tmp[103:52]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512IFMA52 AVX512VL
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "b" and "c" to form a 104-bit intermediate result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "a", and store the results in "dst". FOR j := 0 to 7 i := j*64 tmp[127:0] := ZeroExtend64(b[i+51:i]) * ZeroExtend64(c[i+51:i]) dst[i+63:i] := a[i+63:i] + ZeroExtend64(tmp[51:0]) ENDFOR dst[MAX:512] := 0 AVX512IFMA52
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "b" and "c" to form a 104-bit intermediate result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "a", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] tmp[127:0] := ZeroExtend64(b[i+51:i]) * ZeroExtend64(c[i+51:i]) dst[i+63:i] := a[i+63:i] + ZeroExtend64(tmp[51:0]) ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512IFMA52
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "b" and "c" to form a 104-bit intermediate result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] tmp[127:0] := ZeroExtend64(b[i+51:i]) * ZeroExtend64(c[i+51:i]) dst[i+63:i] := a[i+63:i] + ZeroExtend64(tmp[51:0]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512IFMA52
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "b" and "c" to form a 104-bit intermediate result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "a", and store the results in "dst". FOR j := 0 to 7 i := j*64 tmp[127:0] := ZeroExtend64(b[i+51:i]) * ZeroExtend64(c[i+51:i]) dst[i+63:i] := a[i+63:i] + ZeroExtend64(tmp[103:52]) ENDFOR dst[MAX:512] := 0 AVX512IFMA52
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "b" and "c" to form a 104-bit intermediate result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "a", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] tmp[127:0] := ZeroExtend64(b[i+51:i]) * ZeroExtend64(c[i+51:i]) dst[i+63:i] := a[i+63:i] + ZeroExtend64(tmp[103:52]) ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512IFMA52
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "b" and "c" to form a 104-bit intermediate result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] tmp[127:0] := ZeroExtend64(b[i+51:i]) * ZeroExtend64(c[i+51:i]) dst[i+63:i] := a[i+63:i] + ZeroExtend64(tmp[103:52]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512IFMA52
immintrin.h
Arithmetic
Count the number of logical 1 bits in packed 64-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := POPCNT(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512VPOPCNTDQ AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 64-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := POPCNT(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512VPOPCNTDQ AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 64-bit integers in "a", and store the results in "dst". DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 3 i := j*64 dst[i+63:i] := POPCNT(a[i+63:i]) ENDFOR dst[MAX:256] := 0 AVX512VPOPCNTDQ AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 64-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := POPCNT(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512VPOPCNTDQ AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 64-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := POPCNT(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512VPOPCNTDQ AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 64-bit integers in "a", and store the results in "dst". DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 1 i := j*64 dst[i+63:i] := POPCNT(a[i+63:i]) ENDFOR dst[MAX:128] := 0 AVX512VPOPCNTDQ AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 32-bit integers in "a", and store the results in "dst". DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 7 i := j*32 dst[i+31:i] := POPCNT(a[i+31:i]) ENDFOR dst[MAX:256] := 0 AVX512VPOPCNTDQ AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 32-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := POPCNT(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512VPOPCNTDQ AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 32-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := POPCNT(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512VPOPCNTDQ AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 32-bit integers in "a", and store the results in "dst". DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 3 i := j*32 dst[i+31:i] := POPCNT(a[i+31:i]) ENDFOR dst[MAX:128] := 0 AVX512VPOPCNTDQ AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 32-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := POPCNT(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512VPOPCNTDQ AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 32-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := POPCNT(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512VPOPCNTDQ AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 32-bit integers in "a", and store the results in "dst". DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 15 i := j*32 dst[i+31:i] := POPCNT(a[i+31:i]) ENDFOR dst[MAX:512] := 0 AVX512VPOPCNTDQ
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 32-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := POPCNT(a[i+31:i]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512VPOPCNTDQ
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 32-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := POPCNT(a[i+31:i]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512VPOPCNTDQ
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 64-bit integers in "a", and store the results in "dst". DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 7 i := j*64 dst[i+63:i] := POPCNT(a[i+63:i]) ENDFOR dst[MAX:512] := 0 AVX512VPOPCNTDQ
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 64-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := POPCNT(a[i+63:i]) ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512VPOPCNTDQ
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 64-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := POPCNT(a[i+63:i]) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512VPOPCNTDQ
immintrin.h
Bit Manipulation
Convert packed BF16 (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". This intrinsic neither raises any floating point exceptions nor turns sNAN into qNAN. FOR j := 0 to 15 i := j*32 m := j*16 dst[i+31:i] := Convert_BF16_To_FP32(a[m+15:m]) ENDFOR dst[MAX:512] := 0 AVX512_BF16 AVX512F
immintrin.h
Convert
Convert packed BF16 (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic neither raises any floating point exceptions nor turns sNAN into qNAN. FOR j := 0 to 15 i := j*32 m := j*16 IF k[j] dst[i+31:i] := Convert_BF16_To_FP32(a[m+15:m]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_BF16 AVX512F
immintrin.h
Convert
Convert packed BF16 (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic neither raises any floating point exceptions nor turns sNAN into qNAN. FOR j := 0 to 15 i := j*32 m := j*16 IF k[j] dst[i+31:i] := Convert_BF16_To_FP32(a[m+15:m]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512_BF16 AVX512F
immintrin.h
Convert
Convert the BF16 (16-bit) floating-point element in "a" to a floating-point element, and store the result in "dst". This intrinsic neither raises any floating point exceptions nor turns sNAN into qNAN. dst[31:0] := Convert_BF16_To_FP32(a[15:0]) AVX512_BF16 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in two vectors "a" and "b" to packed BF16 (16-bit) floating-point elements, and store the results in single vector "dst". FOR j := 0 to 31 IF j < 16 t := b.fp32[j] ELSE t := a.fp32[j-16] FI dst.word[j] := Convert_FP32_To_BF16(t) ENDFOR dst[MAX:512] := 0 AVX512_BF16 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in two vectors "a" and "b" to packed BF16 (16-bit) floating-point elements, and store the results in single vector "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] IF j < 16 t := b.fp32[j] ELSE t := a.fp32[j-16] FI dst.word[j] := Convert_FP32_To_BF16(t) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:512] := 0 AVX512_BF16 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in two vectors "a" and "b" to packed BF16 (16-bit) floating-point elements, and store the results in single vector "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] IF j < 16 t := b.fp32[j] ELSE t := a.fp32[j-16] FI dst.word[j] := Convert_FP32_To_BF16(t) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_BF16 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed BF16 (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 15 dst.word[j] := Convert_FP32_To_BF16(a.fp32[j]) ENDFOR dst[MAX:256] := 0 AVX512_BF16 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed BF16 (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.word[j] := Convert_FP32_To_BF16(a.fp32[j]) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:256] := 0 AVX512_BF16 AVX512F
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed BF16 (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.word[j] := Convert_FP32_To_BF16(a.fp32[j]) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_BF16 AVX512F
immintrin.h
Convert
Compute dot-product of BF16 (16-bit) floating-point pairs in "a" and "b", accumulating the intermediate single-precision (32-bit) floating-point elements with elements in "src", and store the results in "dst". DEFINE make_fp32(x[15:0]) { y.fp32 := 0.0 y[31:16] := x[15:0] RETURN y } dst := src FOR j := 0 to 15 dst.fp32[j] += make_fp32(a.bf16[2*j+1]) * make_fp32(b.bf16[2*j+1]) dst.fp32[j] += make_fp32(a.bf16[2*j+0]) * make_fp32(b.bf16[2*j+0]) ENDFOR dst[MAX:512] := 0 AVX512_BF16 AVX512F
immintrin.h
Arithmetic
Compute dot-product of BF16 (16-bit) floating-point pairs in "a" and "b", accumulating the intermediate single-precision (32-bit) floating-point elements with elements in "src", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE make_fp32(x[15:0]) { y.fp32 := 0.0 y[31:16] := x[15:0] RETURN y } dst := src FOR j := 0 to 15 IF k[j] dst.fp32[j] += make_fp32(a.bf16[2*j+1]) * make_fp32(b.bf16[2*j+1]) dst.fp32[j] += make_fp32(a.bf16[2*j+0]) * make_fp32(b.bf16[2*j+0]) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_BF16 AVX512F
immintrin.h
Arithmetic
Compute dot-product of BF16 (16-bit) floating-point pairs in "a" and "b", accumulating the intermediate single-precision (32-bit) floating-point elements with elements in "src", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE make_fp32(x[15:0]) { y.fp32 := 0.0 y[31:16] := x[15:0] RETURN y } dst := src FOR j := 0 to 15 IF k[j] dst.fp32[j] += make_fp32(a.bf16[2*j+1]) * make_fp32(b.bf16[2*j+1]) dst.fp32[j] += make_fp32(a.bf16[2*j+0]) * make_fp32(b.bf16[2*j+0]) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_BF16 AVX512F
immintrin.h
Arithmetic
Convert packed BF16 (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". This intrinsic neither raises any floating point exceptions nor turns sNAN into qNAN. FOR j := 0 to 3 i := j*32 m := j*16 dst[i+31:i] := Convert_BF16_To_FP32(a[m+15:m]) ENDFOR dst[MAX:128] := 0 AVX512_BF16 AVX512VL
immintrin.h
Convert
Convert packed BF16 (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic neither raises any floating point exceptions nor turns sNAN into qNAN. FOR j := 0 to 3 i := j*32 m := j*16 IF k[j] dst[i+31:i] := Convert_BF16_To_FP32(a[m+15:m]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_BF16 AVX512VL
immintrin.h
Convert
Convert packed BF16 (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic neither raises any floating point exceptions nor turns sNAN into qNAN. FOR j := 0 to 3 i := j*32 m := j*16 IF k[j] dst[i+31:i] := Convert_BF16_To_FP32(a[m+15:m]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512_BF16 AVX512VL
immintrin.h
Convert
Convert packed BF16 (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". This intrinsic neither raises any floating point exceptions nor turns sNAN into qNAN. FOR j := 0 to 7 i := j*32 m := j*16 dst[i+31:i] := Convert_BF16_To_FP32(a[m+15:m]) ENDFOR dst[MAX:256] := 0 AVX512_BF16 AVX512VL
immintrin.h
Convert
Convert packed BF16 (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic neither raises any floating point exceptions nor turns sNAN into qNAN. FOR j := 0 to 7 i := j*32 m := j*16 IF k[j] dst[i+31:i] := Convert_BF16_To_FP32(a[m+15:m]) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_BF16 AVX512VL
immintrin.h
Convert
Convert packed BF16 (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic neither raises any floating point exceptions nor turns sNAN into qNAN. FOR j := 0 to 7 i := j*32 m := j*16 IF k[j] dst[i+31:i] := Convert_BF16_To_FP32(a[m+15:m]) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512_BF16 AVX512VL
immintrin.h
Convert
Convert the single-precision (32-bit) floating-point element in "a" to a BF16 (16-bit) floating-point element, and store the result in "dst". dst[15:0] := Convert_FP32_To_BF16(a[31:0]) AVX512_BF16 AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in two vectors "a" and "b" to packed BF16 (16-bit) floating-point elements, and store the results in single vector "dst". FOR j := 0 to 7 IF j < 4 t := b.fp32[j] ELSE t := a.fp32[j-4] FI dst.word[j] := Convert_FP32_To_BF16(t) ENDFOR dst[MAX:128] := 0 AVX512_BF16 AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in two vectors "a" and "b" to packed BF16 (16-bit) floating-point elements, and store the results in single vector "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] IF j < 4 t := b.fp32[j] ELSE t := a.fp32[j-4] FI dst.word[j] := Convert_FP32_To_BF16(t) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:128] := 0 AVX512_BF16 AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in two vectors "a" and "b" to packed BF16 (16-bit) floating-point elements, and store the results in single vector "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] IF j < 4 t := b.fp32[j] ELSE t := a.fp32[j-4] FI dst.word[j] := Convert_FP32_To_BF16(t) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_BF16 AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in two vectors "a" and "b" to packed BF16 (16-bit) floating-point elements, and store the results in single vector "dst". FOR j := 0 to 15 IF j < 8 t := b.fp32[j] ELSE t := a.fp32[j-8] FI dst.word[j] := Convert_FP32_To_BF16(t) ENDFOR dst[MAX:256] := 0 AVX512_BF16 AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in two vectors "a" and "b" to packed BF16 (16-bit) floating-point elements, and store the results in single vector "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] IF j < 8 t := b.fp32[j] ELSE t := a.fp32[j-8] FI dst.word[j] := Convert_FP32_To_BF16(t) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:256] := 0 AVX512_BF16 AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in two vectors "a" and "b" to packed BF16 (16-bit) floating-point elements, and store the results in single vector "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] IF j < 8 t := b.fp32[j] ELSE t := a.fp32[j-8] FI dst.word[j] := Convert_FP32_To_BF16(t) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_BF16 AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed BF16 (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 dst.word[j] := Convert_FP32_To_BF16(a.fp32[j]) ENDFOR dst[MAX:128] := 0 AVX512_BF16 AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed BF16 (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 IF k[j] dst.word[j] := Convert_FP32_To_BF16(a.fp32[j]) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:128] := 0 AVX512_BF16 AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed BF16 (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 IF k[j] dst.word[j] := Convert_FP32_To_BF16(a.fp32[j]) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_BF16 AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed BF16 (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 dst.word[j] := Convert_FP32_To_BF16(a.fp32[j]) ENDFOR dst[MAX:128] := 0 AVX512_BF16 AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed BF16 (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.word[j] := Convert_FP32_To_BF16(a.fp32[j]) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:128] := 0 AVX512_BF16 AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed BF16 (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.word[j] := Convert_FP32_To_BF16(a.fp32[j]) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_BF16 AVX512VL
immintrin.h
Convert
Compute dot-product of BF16 (16-bit) floating-point pairs in "a" and "b", accumulating the intermediate single-precision (32-bit) floating-point elements with elements in "src", and store the results in "dst". DEFINE make_fp32(x[15:0]) { y.fp32 := 0.0 y[31:16] := x[15:0] RETURN y } dst := src FOR j := 0 to 3 dst.fp32[j] += make_fp32(a.bf16[2*j+1]) * make_fp32(b.bf16[2*j+1]) dst.fp32[j] += make_fp32(a.bf16[2*j+0]) * make_fp32(b.bf16[2*j+0]) ENDFOR dst[MAX:128] := 0 AVX512_BF16 AVX512VL
immintrin.h
Arithmetic
Compute dot-product of BF16 (16-bit) floating-point pairs in "a" and "b", accumulating the intermediate single-precision (32-bit) floating-point elements with elements in "src", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE make_fp32(x[15:0]) { y.fp32 := 0.0 y[31:16] := x[15:0] RETURN y } dst := src FOR j := 0 to 3 IF k[j] dst.fp32[j] += make_fp32(a.bf16[2*j+1]) * make_fp32(b.bf16[2*j+1]) dst.fp32[j] += make_fp32(a.bf16[2*j+0]) * make_fp32(b.bf16[2*j+0]) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:128] := 0 AVX512_BF16 AVX512VL
immintrin.h
Arithmetic
Compute dot-product of BF16 (16-bit) floating-point pairs in "a" and "b", accumulating the intermediate single-precision (32-bit) floating-point elements with elements in "src", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE make_fp32(x[15:0]) { y.fp32 := 0.0 y[31:16] := x[15:0] RETURN y } dst := src FOR j := 0 to 3 IF k[j] dst.fp32[j] += make_fp32(a.bf16[2*j+1]) * make_fp32(b.bf16[2*j+1]) dst.fp32[j] += make_fp32(a.bf16[2*j+0]) * make_fp32(b.bf16[2*j+0]) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_BF16 AVX512VL
immintrin.h
Arithmetic
Compute dot-product of BF16 (16-bit) floating-point pairs in "a" and "b", accumulating the intermediate single-precision (32-bit) floating-point elements with elements in "src", and store the results in "dst". DEFINE make_fp32(x[15:0]) { y.fp32 := 0.0 y[31:16] := x[15:0] RETURN y } dst := src FOR j := 0 to 7 dst.fp32[j] += make_fp32(a.bf16[2*j+1]) * make_fp32(b.bf16[2*j+1]) dst.fp32[j] += make_fp32(a.bf16[2*j+0]) * make_fp32(b.bf16[2*j+0]) ENDFOR dst[MAX:256] := 0 AVX512_BF16 AVX512VL
immintrin.h
Arithmetic
Compute dot-product of BF16 (16-bit) floating-point pairs in "a" and "b", accumulating the intermediate single-precision (32-bit) floating-point elements with elements in "src", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE make_fp32(x[15:0]) { y.fp32 := 0.0 y[31:16] := x[15:0] RETURN y } dst := src FOR j := 0 to 7 IF k[j] dst.fp32[j] += make_fp32(a.bf16[2*j+1]) * make_fp32(b.bf16[2*j+1]) dst.fp32[j] += make_fp32(a.bf16[2*j+0]) * make_fp32(b.bf16[2*j+0]) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:256] := 0 AVX512_BF16 AVX512VL
immintrin.h
Arithmetic
Compute dot-product of BF16 (16-bit) floating-point pairs in "a" and "b", accumulating the intermediate single-precision (32-bit) floating-point elements with elements in "src", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE make_fp32(x[15:0]) { y.fp32 := 0.0 y[31:16] := x[15:0] RETURN y } dst := src FOR j := 0 to 7 IF k[j] dst.fp32[j] += make_fp32(a.bf16[2*j+1]) * make_fp32(b.bf16[2*j+1]) dst.fp32[j] += make_fp32(a.bf16[2*j+0]) * make_fp32(b.bf16[2*j+0]) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_BF16 AVX512VL
immintrin.h
Arithmetic
Gather 64 bits from "b" using selection bits in "c". For each 64-bit element in "b", gather 8 bits from the 64-bit element in "b" at 8 bit position controlled by the 8 corresponding 8-bit elements of "c", and store the result in the corresponding 8-bit element of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR i := 0 to 3 //Qword FOR j := 0 to 7 // Byte IF k[i*8+j] m := c.qword[i].byte[j] & 0x3F dst[i*8+j] := b.qword[i].bit[m] ELSE dst[i*8+j] := 0 FI ENDFOR ENDFOR dst[MAX:32] := 0 AVX512_BITALG AVX512VL
immintrin.h
Bit Manipulation
Gather 64 bits from "b" using selection bits in "c". For each 64-bit element in "b", gather 8 bits from the 64-bit element in "b" at 8 bit position controlled by the 8 corresponding 8-bit elements of "c", and store the result in the corresponding 8-bit element of "dst". FOR i := 0 to 3 //Qword FOR j := 0 to 7 // Byte m := c.qword[i].byte[j] & 0x3F dst[i*8+j] := b.qword[i].bit[m] ENDFOR ENDFOR dst[MAX:32] := 0 AVX512_BITALG AVX512VL
immintrin.h
Bit Manipulation
Gather 64 bits from "b" using selection bits in "c". For each 64-bit element in "b", gather 8 bits from the 64-bit element in "b" at 8 bit position controlled by the 8 corresponding 8-bit elements of "c", and store the result in the corresponding 8-bit element of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR i := 0 to 1 //Qword FOR j := 0 to 7 // Byte IF k[i*8+j] m := c.qword[i].byte[j] & 0x3F dst[i*8+j] := b.qword[i].bit[m] ELSE dst[i*8+j] := 0 FI ENDFOR ENDFOR dst[MAX:16] := 0 AVX512_BITALG AVX512VL
immintrin.h
Bit Manipulation
Gather 64 bits from "b" using selection bits in "c". For each 64-bit element in "b", gather 8 bits from the 64-bit element in "b" at 8 bit position controlled by the 8 corresponding 8-bit elements of "c", and store the result in the corresponding 8-bit element of "dst". FOR i := 0 to 1 //Qword FOR j := 0 to 7 // Byte m := c.qword[i].byte[j] & 0x3F dst[i*8+j] := b.qword[i].bit[m] ENDFOR ENDFOR dst[MAX:16] := 0 AVX512_BITALG AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 16-bit integers in "a", and store the results in "dst". DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 15 i := j*16 dst[i+15:i] := POPCNT(a[i+15:i]) ENDFOR dst[MAX:256] := 0 AVX512_BITALG AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 16-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := POPCNT(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512_BITALG AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 16-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := POPCNT(a[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_BITALG AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 16-bit integers in "a", and store the results in "dst". DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 7 i := j*16 dst[i+15:i] := POPCNT(a[i+15:i]) ENDFOR dst[MAX:128] := 0 AVX512_BITALG AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 16-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := POPCNT(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512_BITALG AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 16-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := POPCNT(a[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_BITALG AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 8-bit integers in "a", and store the results in "dst". DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 31 i := j*8 dst[i+7:i] := POPCNT(a[i+7:i]) ENDFOR dst[MAX:256] := 0 AVX512_BITALG AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 8-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := POPCNT(a[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512_BITALG AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 8-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := POPCNT(a[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_BITALG AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 8-bit integers in "a", and store the results in "dst". DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 15 i := j*8 dst[i+7:i] := POPCNT(a[i+7:i]) ENDFOR dst[MAX:128] := 0 AVX512_BITALG AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 8-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := POPCNT(a[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512_BITALG AVX512VL
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 8-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := POPCNT(a[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_BITALG AVX512VL
immintrin.h
Bit Manipulation
Gather 64 bits from "b" using selection bits in "c". For each 64-bit element in "b", gather 8 bits from the 64-bit element in "b" at 8 bit position controlled by the 8 corresponding 8-bit elements of "c", and store the result in the corresponding 8-bit element of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR i := 0 to 7 //Qword FOR j := 0 to 7 // Byte IF k[i*8+j] m := c.qword[i].byte[j] & 0x3F dst[i*8+j] := b.qword[i].bit[m] ELSE dst[i*8+j] := 0 FI ENDFOR ENDFOR dst[MAX:64] := 0 AVX512_BITALG
immintrin.h
Bit Manipulation
Gather 64 bits from "b" using selection bits in "c". For each 64-bit element in "b", gather 8 bits from the 64-bit element in "b" at 8 bit position controlled by the 8 corresponding 8-bit elements of "c", and store the result in the corresponding 8-bit element of "dst". FOR i := 0 to 7 //Qword FOR j := 0 to 7 // Byte m := c.qword[i].byte[j] & 0x3F dst[i*8+j] := b.qword[i].bit[m] ENDFOR ENDFOR dst[MAX:64] := 0 AVX512_BITALG
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 16-bit integers in "a", and store the results in "dst". DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 31 i := j*16 dst[i+15:i] := POPCNT(a[i+15:i]) ENDFOR dst[MAX:512] := 0 AVX512_BITALG
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 16-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := POPCNT(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512_BITALG
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 16-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := POPCNT(a[i+15:i]) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_BITALG
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 8-bit integers in "a", and store the results in "dst". DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 63 i := j*8 dst[i+7:i] := POPCNT(a[i+7:i]) ENDFOR dst[MAX:512] := 0 AVX512_BITALG
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 8-bit integers in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := POPCNT(a[i+7:i]) ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512_BITALG
immintrin.h
Bit Manipulation
Count the number of logical 1 bits in packed 8-bit integers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE POPCNT(a) { count := 0 DO WHILE a > 0 count += a[0] a >>= 1 OD RETURN count } FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := POPCNT(a[i+7:i]) ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_BITALG
immintrin.h
Bit Manipulation
Compute the inverse cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 15 i := j*16 dst[i+15:i] := ACOS(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the inverse hyperbolic cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 15 i := j*16 dst[i+15:i] := ACOSH(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the inverse sine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 15 i := j*16 dst[i+15:i] := ASIN(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the inverse hyperbolic sine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 15 i := j*16 dst[i+15:i] := ASINH(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the inverse tangent of packed half-precision (16-bit) floating-point elements in "a" divided by packed elements in "b", and store the results in "dst" expressed in radians. Trigonometry FOR j := 0 to 15 i := j*16 dst[i+15:i] := ATAN2(a[i+15:i], b[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the inverse tangent of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 15 i := j*16 dst[i+15:i] := ATAN(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the inverse hyperbolic tangent of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 15 i := j*16 dst[i+15:i] := ATANH(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the cube root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math FunctionsFOR j := 0 to 15 i := j*16 dst[i+15:i] := CubeRoot(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the cumulative distribution function of packed half-precision (16-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst". Probability/StatisticsFOR j := 0 to 15 i := j*16 dst[i+15:i] := CDFNormal(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the inverse cumulative distribution function of packed half-precision (16-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst". Probability/StatisticsFOR j := 0 to 15 i := j*16 dst[i+15:i] := InverseCDFNormal(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 15 i := j*16 dst[i+15:i] := COS(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". TrigonometryFOR j := 0 to 15 i := j*16 dst[i+15:i] := COSD(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the hyperbolic cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 15 i := j*16 dst[i+15:i] := COSH(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the error function of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Probability/StatisticsFOR j := 0 to 15 i := j*16 dst[i+15:i] := ERF(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the complementary error function of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Probability/StatisticsFOR j := 0 to 15 i := j*16 dst[i+15:i] := 1.0 - ERF(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the inverse complementary error function of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Probability/StatisticsFOR j := 0 to 15 i := j*16 dst[i+15:i] := 1.0 / (1.0 - ERF(a[i+15:i])) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the inverse error function of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Probability/StatisticsFOR j := 0 to 15 i := j*16 dst[i+15:i] := 1.0 / ERF(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the exponential value of 10 raised to the power of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 15 i := j*16 dst[i+15:i] := POW(FP16(10.0), a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the exponential value of 2 raised to the power of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 15 i := j*16 dst[i+15:i] := POW(FP16(2.0), a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the exponential value of "e" raised to the power of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 15 i := j*16 dst[i+15:i] := POW(FP16(e), a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the exponential value of "e" raised to the power of packed half-precision (16-bit) floating-point elements in "a", subtract one from each element, and store the results in "dst". Elementary Math Functions FOR j := 0 to 15 i := j*16 dst[i+15:i] := POW(FP16(e), a[i+15:i]) - 1.0 ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the length of the hypotenous of a right triangle, with the lengths of the other two sides of the triangle stored as packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst". Elementary Math Functions FOR j := 0 to 15 i := j*16 dst[i+15:i] := SQRT(POW(a[i+15:i], 2.0) + POW(b[i+15:i], 2.0)) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the inverse cube root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math FunctionsFOR j := 0 to 15 i := j*16 dst[i+15:i] := InvCubeRoot(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the inverse square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math FunctionsFOR j := 0 to 15 i := j*16 dst[i+15:i] := InvSQRT(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the base-10 logarithm of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 15 i := j*16 dst[i+15:i] := LOG(a[i+15:i]) / LOG(10.0) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the natural logarithm of one plus packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 15 i := j*16 dst[i+15:i] := LOG(1.0 + a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the base-2 logarithm of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 15 i := j*16 dst[i+15:i] := LOG(a[i+15:i]) / LOG(2.0) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the natural logarithm of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 15 i := j*16 dst[i+15:i] := LOG(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Convert the exponent of each packed half-precision (16-bit) floating-point element in "a" to a half-precision floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. Elementary Math FunctionsFOR j := 0 to 15 i := j*16 dst[i+15:i] := ConvertExpFP16(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the exponential value of packed half-precision (16-bit) floating-point elements in "a" raised by packed elements in "b", and store the results in "dst". Elementary Math Functions FOR j := 0 to 15 i := j*16 dst[i+15:i] := POW(a[i+15:i], b[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the sine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 15 i := j*16 dst[i+15:i] := SIN(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the sine and cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, store the sine in "dst", and store the cosine into memory at "mem_addr". Trigonometry FOR j := 0 to 15 i := j*16 dst[i+15:i] := SIN(a[i+15:i]) MEM[mem_addr+i+15:mem_addr+i] := COS(a[i+15:i]) ENDFOR dst[MAX:256] := 0 cos_res[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the sine of packed half-precision (16-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". TrigonometryFOR j := 0 to 15 i := j*16 dst[i+15:i] := SIND(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the hyperbolic sine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 15 i := j*16 dst[i+15:i] := SINH(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Round the packed half-precision (16-bit) floating-point elements in "a" up to an integer value, and store the results as packed half-precision floating-point elements in "dst". Special Math Functions FOR j := 0 to 15 i := j*16 dst[i+15:i] := CEIL(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Round the packed half-precision (16-bit) floating-point elements in "a" down to an integer value, and store the results as packed half-precision floating-point elements in "dst". Special Math Functions FOR j := 0 to 15 i := j*16 dst[i+15:i] := FLOOR(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Round the packed half-precision (16-bit) floating-point elements in "a" to the nearest integer value, and store the results as packed half-precision floating-point elements in "dst". Special Math Functions FOR j := 0 to 15 i := j*16 dst[i+15:i] := ROUND(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Note that this intrinsic is less efficient than "_mm_sqrt_ps". Elementary Math Functions FOR j := 0 to 15 i := j*16 dst[i+15:i] := SQRT(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the tangent of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 15 i := j*16 dst[i+15:i] := TAN(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the tangent of packed half-precision (16-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". TrigonometryFOR j := 0 to 15 i := j*16 dst[i+15:i] := TAND(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the hyperbolic tangent of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 15 i := j*16 dst[i+15:i] := TANH(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Truncate the packed half-precision (16-bit) floating-point elements in "a", and store the results as packed half-precision floating-point elements in "dst" Special Math FunctionsFOR j := 0 to 15 i := j*16 dst[i+15:i] := TRUNCATE(a[i+15:i]) ENDFOR dst[MAX:256] := 0
immintrin.h
AVX512_FP16
Compute the inverse cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 31 i := j*16 dst[i+15:i] := ACOS(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse hyperbolic cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 31 i := j*16 dst[i+15:i] := ACOSH(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse sine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 31 i := j*16 dst[i+15:i] := ASIN(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse hyperbolic sine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 31 i := j*16 dst[i+15:i] := ASINH(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse tangent of packed half-precision (16-bit) floating-point elements in "a" divided by packed elements in "b", and store the results in "dst" expressed in radians. Trigonometry FOR j := 0 to 31 i := j*16 dst[i+15:i] := ATAN2(a[i+15:i], b[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse tangent of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" expressed in radians. Trigonometry FOR j := 0 to 31 i := j*16 dst[i+15:i] := ATAN(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse hyperblic tangent of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" expressed in radians. Trigonometry FOR j := 0 to 31 i := j*16 dst[i+15:i] := ATANH(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the cube root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math FunctionsFOR j := 0 to 31 i := j*16 dst[i+15:i] := CubeRoot(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the cumulative distribution function of packed half-precision (16-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst". Probability/StatisticsFOR j := 0 to 31 i := j*16 dst[i+15:i] := CDFNormal(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse cumulative distribution function of packed half-precision (16-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst". Probability/StatisticsFOR j := 0 to 31 i := j*16 dst[i+15:i] := InverseCDFNormal(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Round the packed half-precision (16-bit) floating-point elements in "a" up to an integer value, and store the results as packed half-precision floating-point elements in "dst". Special Math Functions FOR j := 0 to 31 i := j*16 dst[i+15:i] := CEIL(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 31 i := j*16 dst[i+15:i] := COS(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". TrigonometryFOR j := 0 to 31 i := j*16 dst[i+15:i] := COSD(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the hyperbolic cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 31 i := j*16 dst[i+15:i] := COSH(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the error function of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Probability/StatisticsFOR j := 0 to 31 i := j*16 dst[i+15:i] := ERF(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the complementary error function of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Probability/StatisticsFOR j := 0 to 31 i := j*16 dst[i+15:i] := 1.0 - ERF(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse complementary error function of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Probability/StatisticsFOR j := 0 to 31 i := j*16 dst[i+15:i] := 1.0 / (1.0 - ERF(a[i+15:i])) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse error function of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Probability/StatisticsFOR j := 0 to 31 i := j*16 dst[i+15:i] := 1.0 / ERF(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the exponential value of 10 raised to the power of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 31 i := j*16 dst[i+15:i] := POW(FP16(10.0), a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the exponential value of 2 raised to the power of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 31 i := j*16 dst[i+15:i] := POW(FP16(2.0), a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the exponential value of "e" raised to the power of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 31 i := j*16 dst[i+15:i] := POW(FP16(e), a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the exponential value of "e" raised to the power of packed half-precision (16-bit) floating-point elements in "a", subtract one from each element, and store the results in "dst". Elementary Math Functions FOR j := 0 to 31 i := j*16 dst[i+15:i] := POW(FP16(e), a[i+15:i]) - 1.0 ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Round the packed half-precision (16-bit) floating-point elements in "a" down to an integer value, and store the results as packed half-precision floating-point elements in "dst". Special Math Functions FOR j := 0 to 31 i := j*16 dst[i+15:i] := FLOOR(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the length of the hypotenous of a right triangle, with the lengths of the other two sides of the triangle stored as packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst". Elementary Math Functions FOR j := 0 to 31 i := j*16 dst[i+15:i] := SQRT(POW(a[i+15:i], 2.0) + POW(b[i+15:i], 2.0)) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math FunctionsFOR j := 0 to 31 i := j*16 dst[i+15:i] := InvSQRT(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the base-10 logarithm of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 31 i := j*16 dst[i+15:i] := LOG(a[i+15:i]) / LOG(10.0) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the natural logarithm of one plus packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 31 i := j*16 dst[i+15:i] := LOG(1.0 + a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the base-2 logarithm of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 31 i := j*16 dst[i+15:i] := LOG(a[i+15:i]) / LOG(2.0) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the natural logarithm of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 31 i := j*16 dst[i+15:i] := LOG(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Convert the exponent of each packed half-precision (16-bit) floating-point element in "a" to a half-precision floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. Elementary Math FunctionsFOR j := 0 to 31 i := j*16 dst[i+15:i] := ConvertExpFP16(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Trigonometry FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := ACOS(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse hyperbolic cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Trigonometry FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := ACOSH(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse sine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Trigonometry FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := ASIN(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse hyperbolic sine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Trigonometry FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := ASINH(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse tangent of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Trigonometry FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := ATAN(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse hyperbolic tangent of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Trigonometry FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := ATANH(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the cube root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Elementary Math FunctionsFOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := CubeRoot(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the cumulative distribution function of packed half-precision (16-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Probability/StatisticsFOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := CDFNormal(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse cumulative distribution function of packed half-precision (16-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Probability/StatisticsFOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := InverseCDFNormal(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Round the packed half-precision (16-bit) floating-point elements in "a" up to an integer value, and store the results as packed half-precision floating-point elements in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Special Math Functions FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := CEIL(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Trigonometry FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := COS(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). TrigonometryFOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := COSD(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the hyperbolic cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Trigonometry FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := COSH(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the error function of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Probability/StatisticsFOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := ERF(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the complementary error function of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Probability/StatisticsFOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := 1.0 - ERF(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse complementary error function of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Probability/StatisticsFOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := 1.0 / (1.0 - ERF(a[i+15:i])) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse error function of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Probability/StatisticsFOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := 1.0 / ERF(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the exponential value of 10 raised to the power of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Elementary Math Functions FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := POW(FP16(10.0), a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the exponential value of 2 raised to the power of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Elementary Math Functions FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := POW(FP16(2.0), a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the exponential value of "e" raised to the power of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Elementary Math Functions FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := POW(FP16(e), a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the exponential value of "e" raised to the power of packed half-precision (16-bit) floating-point elements in "a", subtract one from each element, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Elementary Math Functions FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := POW(FP16(e), a[i+15:i]) - 1.0 ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Round the packed half-precision (16-bit) floating-point elements in "a" down to an integer value, and store the results as packed half-precision floating-point elements in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Special Math Functions FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := FLOOR(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Elementary Math FunctionsFOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := InvSQRT(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the base-10 logarithm of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Elementary Math Functions FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := LOG(a[i+15:i]) / LOG(10.0) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the natural logarithm of one plus packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Elementary Math Functions FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := LOG(1.0 + a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the base-2 logarithm of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Elementary Math Functions FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := LOG(a[i+15:i]) / LOG(2.0) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the natural logarithm of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Elementary Math Functions FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := LOG(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Convert the exponent of each packed half-precision (16-bit) floating-point element in "a" to a half-precision floating-point number representing the integer exponent, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. Elementary Math FunctionsFOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := ConvertExpFP16(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Rounds each packed half-precision (16-bit) floating-point element in "a" to the nearest integer value and stores the results as packed half-precision floating-point elements in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Special Math FunctionsFOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := NearbyInt(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Computes the reciprocal of packed half-precision (16-bit) floating-point elements in "a", storing the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Elementary Math Functions FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := (1.0 / a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Rounds the packed half-precision (16-bit) floating-point elements in "a" to the nearest even integer value and stores the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Special Math FunctionsFOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := RoundToNearestEven(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the sine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Trigonometry FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := SIN(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the sine and cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, store the sine in "dst", store the cosine into memory at "mem_addr". Elements are written to their respective locations using writemask "k" (elements are copied from "sin_src" or "cos_src" when the corresponding mask bit is not set). Trigonometry FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := SIN(a[i+15:i]) MEM[mem_addr+i+15:mem_addr+i] := COS(a[i+15:i]) ELSE dst[i+15:i] := sin_src[i+15:i] MEM[mem_addr+i+15:mem_addr+i] := cos_src[i+15:i] FI ENDFOR dst[MAX:512] := 0 cos_res[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the sine of packed half-precision (16-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). TrigonometryFOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := SIND(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the hyperbolic sine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Trigonometry FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := SINH(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Round the packed half-precision (16-bit) floating-point elements in "a" to the nearest integer value, and store the results as packed half-precision floating-point elements in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Special Math Functions FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := ROUND(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the tangent of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Trigonometry FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := TAN(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the tangent of packed half-precision (16-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). TrigonometryFOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := TAND(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the hyperbolic tangent of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Trigonometry FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := TANH(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Truncate the packed half-precision (16-bit) floating-point elements in "a", and store the results as packed half-precision floating-point elements in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Special Math FunctionsFOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := TRUNCATE(a[i+15:i]) ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Rounds each packed half-precision (16-bit) floating-point element in "a" to the nearest integer value and stores the results as packed half-precision floating-point elements in "dst". Special Math FunctionsFOR j := 0 to 31 i := j*16 dst[i+15:i] := NearbyInt(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the exponential value of packed half-precision (16-bit) floating-point elements in "a" raised by packed elements in "b", and store the results in "dst". Elementary Math Functions FOR j := 0 to 31 i := j*16 dst[i+15:i] := POW(a[i+15:i], b[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Computes the reciprocal of packed half-precision (16-bit) floating-point elements in "a", storing the results in "dst". Elementary Math Functions FOR j := 0 to 31 i := j*16 dst[i+15:i] := (1.0 / a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Rounds the packed half-precision (16-bit) floating-point elements in "a" to the nearest even integer value and stores the results in "dst". Special Math FunctionsFOR j := 0 to 31 i := j*16 dst[i+15:i] := RoundToNearestEven(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the sine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 31 i := j*16 dst[i+15:i] := SIN(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the sine and cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, store the sine in "dst", and store the cosine into memory at "mem_addr". Trigonometry FOR j := 0 to 31 i := j*16 dst[i+15:i] := SIN(a[i+15:i]) MEM[mem_addr+i+15:mem_addr+i] := COS(a[i+15:i]) ENDFOR dst[MAX:512] := 0 cos_res[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the sine of packed half-precision (16-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". TrigonometryFOR j := 0 to 31 i := j*16 dst[i+15:i] := SIND(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the hyperbolic sine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 31 i := j*16 dst[i+15:i] := SINH(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Round the packed half-precision (16-bit) floating-point elements in "a" to the nearest integer value, and store the results as packed half-precision floating-point elements in "dst". Special Math Functions FOR j := 0 to 31 i := j*16 dst[i+15:i] := ROUND(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the tangent of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 31 i := j*16 dst[i+15:i] := TAN(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the tangent of packed half-precision (16-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". TrigonometryFOR j := 0 to 31 i := j*16 dst[i+15:i] := TAND(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the hyperbolic tangent of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 31 i := j*16 dst[i+15:i] := TANH(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Truncate the packed half-precision (16-bit) floating-point elements in "a", and store the results as packed half-precision floating-point elements in "dst". Special Math FunctionsFOR j := 0 to 31 i := j*16 dst[i+15:i] := TRUNCATE(a[i+15:i]) ENDFOR dst[MAX:512] := 0
immintrin.h
AVX512_FP16
Compute the inverse cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 7 i := j*16 dst[i+15:i] := ACOS(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the inverse hyperbolic cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 7 i := j*16 dst[i+15:i] := ACOSH(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the inverse sine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 7 i := j*16 dst[i+15:i] := ASIN(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the inverse hyperbolic sine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 7 i := j*16 dst[i+15:i] := ASINH(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the inverse tangent of packed half-precision (16-bit) floating-point elements in "a" divided by packed elements in "b", and store the results in "dst" expressed in radians. Trigonometry FOR j := 0 to 7 i := j*16 dst[i+15:i] := ATAN2(a[i+15:i], b[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the inverse tangent of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 7 i := j*16 dst[i+15:i] := ATAN(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the inverse hyperbolic tangent of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 7 i := j*16 dst[i+15:i] := ATANH(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the cube root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math FunctionsFOR j := 0 to 7 i := j*16 dst[i+15:i] := CubeRoot(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the cumulative distribution function of packed half-precision (16-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst". Probability/StatisticsFOR j := 0 to 7 i := j*16 dst[i+15:i] := CDFNormal(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the inverse cumulative distribution function of packed half-precision (16-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst". Probability/StatisticsFOR j := 0 to 7 i := j*16 dst[i+15:i] := InverseCDFNormal(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 7 i := j*16 dst[i+15:i] := COS(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". TrigonometryFOR j := 0 to 7 i := j*16 dst[i+15:i] := COSD(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the hyperbolic cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 7 i := j*16 dst[i+15:i] := COSH(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the error function of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Probability/StatisticsFOR j := 0 to 7 i := j*16 dst[i+15:i] := ERF(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the complementary error function of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Probability/StatisticsFOR j := 0 to 7 i := j*16 dst[i+15:i] := 1.0 - ERF(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the inverse complementary error function of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Probability/StatisticsFOR j := 0 to 7 i := j*16 dst[i+15:i] := 1.0 / (1.0 - ERF(a[i+15:i])) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the inverse error function of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Probability/StatisticsFOR j := 0 to 7 i := j*16 dst[i+15:i] := 1.0 / ERF(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the exponential value of 10 raised to the power of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 7 i := j*16 dst[i+15:i] := POW(FP16(10.0), a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the exponential value of 2 raised to the power of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 7 i := j*16 dst[i+15:i] := POW(FP16(2.0), a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the exponential value of "e" raised to the power of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 7 i := j*16 dst[i+15:i] := POW(FP16(e), a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the exponential value of "e" raised to the power of packed half-precision (16-bit) floating-point elements in "a", subtract one from each element, and store the results in "dst". Elementary Math Functions FOR j := 0 to 7 i := j*16 dst[i+15:i] := POW(FP16(e), a[i+15:i]) - 1.0 ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the length of the hypotenous of a right triangle, with the lengths of the other two sides of the triangle stored as packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst". Elementary Math Functions FOR j := 0 to 7 i := j*16 dst[i+15:i] := SQRT(POW(a[i+15:i], 2.0) + POW(b[i+15:i], 2.0)) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the inverse cube root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math FunctionsFOR j := 0 to 7 i := j*16 dst[i+15:i] := InvCubeRoot(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the inverse square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math FunctionsFOR j := 0 to 7 i := j*16 dst[i+15:i] := InvSQRT(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the base-10 logarithm of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 7 i := j*16 dst[i+15:i] := LOG(a[i+15:i]) / LOG(10.0) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the natural logarithm of one plus packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 7 i := j*16 dst[i+15:i] := LOG(1.0 + a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the base-2 logarithm of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 7 i := j*16 dst[i+15:i] := LOG(a[i+15:i]) / LOG(2.0) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the natural logarithm of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Elementary Math Functions FOR j := 0 to 7 i := j*16 dst[i+15:i] := LOG(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Convert the exponent of each packed half-precision (16-bit) floating-point element in "a" to a half-precision floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. Elementary Math FunctionsFOR j := 0 to 7 i := j*16 dst[i+15:i] := ConvertExpFP16(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the exponential value of packed half-precision (16-bit) floating-point elements in "a" raised by packed elements in "b", and store the results in "dst". Elementary Math Functions FOR j := 0 to 7 i := j*16 dst[i+15:i] := POW(a[i+15:i], b[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the sine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 7 i := j*16 dst[i+15:i] := SIN(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the sine and cosine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, store the sine in "dst", and store the cosine into memory at "mem_addr". Trigonometry FOR j := 0 to 7 i := j*16 dst[i+15:i] := SIN(a[i+15:i]) MEM[mem_addr+i+15:mem_addr+i] := COS(a[i+15:i]) ENDFOR dst[MAX:128] := 0 cos_res[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the sine of packed half-precision (16-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". TrigonometryFOR j := 0 to 7 i := j*16 dst[i+15:i] := SIND(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the hyperbolic sine of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 7 i := j*16 dst[i+15:i] := SINH(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Round the packed half-precision (16-bit) floating-point elements in "a" up to an integer value, and store the results as packed half-precision floating-point elements in "dst". Special Math Functions FOR j := 0 to 7 i := j*16 dst[i+15:i] := CEIL(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Round the packed half-precision (16-bit) floating-point elements in "a" down to an integer value, and store the results as packed half-precision floating-point elements in "dst". Special Math Functions FOR j := 0 to 7 i := j*16 dst[i+15:i] := FLOOR(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Round the packed half-precision (16-bit) floating-point elements in "a" to the nearest integer value, and store the results as packed half-precision floating-point elements in "dst". Special Math Functions FOR j := 0 to 7 i := j*16 dst[i+15:i] := ROUND(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". Note that this intrinsic is less efficient than "_mm_sqrt_ps". Elementary Math Functions FOR j := 0 to 7 i := j*16 dst[i+15:i] := SQRT(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the tangent of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 7 i := j*16 dst[i+15:i] := TAN(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the tangent of packed half-precision (16-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". TrigonometryFOR j := 0 to 7 i := j*16 dst[i+15:i] := TAND(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Compute the hyperbolic tangent of packed half-precision (16-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". Trigonometry FOR j := 0 to 7 i := j*16 dst[i+15:i] := TANH(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Truncate the packed half-precision (16-bit) floating-point elements in "a", and store the results as packed half-precision floating-point elements in "dst". Special Math FunctionsFOR j := 0 to 7 i := j*16 dst[i+15:i] := TRUNCATE(a[i+15:i]) ENDFOR dst[MAX:128] := 0
immintrin.h
AVX512_FP16
Add packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 TO 7 dst.fp16[j] := a.fp16[j] + b.fp16[j] ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Add packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.fp16[j] := a.fp16[j] + b.fp16[j] ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Add packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.fp16[j] := a.fp16[j] + b.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Add packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 TO 15 dst.fp16[j] := a.fp16[j] + b.fp16[j] ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Add packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.fp16[j] := a.fp16[j] + b.fp16[j] ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Add packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.fp16[j] := a.fp16[j] + b.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Divide packed half-precision (16-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst". FOR j := 0 to 7 dst.fp16[j] := a.fp16[j] / b.fp16[j] ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Divide packed half-precision (16-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp16[j] := a.fp16[j] / b.fp16[j] ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Divide packed half-precision (16-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp16[j] := a.fp16[j] / b.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Divide packed half-precision (16-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst". FOR j := 0 to 15 dst.fp16[j] := a.fp16[j] / b.fp16[j] ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Divide packed half-precision (16-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.fp16[j] := a.fp16[j] / b.fp16[j] ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Divide packed half-precision (16-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.fp16[j] := a.fp16[j] / b.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst". FOR j := 0 to 7 dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst". FOR j := 0 to 15 dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst". FOR j := 0 to 7 dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) + c.fp16[j] ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst". FOR j := 0 to 15 dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) + c.fp16[j] ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst". FOR j := 0 to 7 dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst". FOR j := 0 to 15 dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst". FOR j := 0 to 7 dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) - c.fp16[j] ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst". FOR j := 0 to 15 dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) - c.fp16[j] ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst". FOR j := 0 to 7 IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] FI ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] FI ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] FI ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst". FOR j := 0 to 15 IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] FI ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] FI ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] FI ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" to/from the intermediate result, and store the results in "dst". FOR j := 0 to 7 IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] FI ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] FI ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" to/from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] FI ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" to/from the intermediate result, and store the results in "dst". FOR j := 0 to 15 IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] FI ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] FI ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" to/from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] FI ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Subtract packed half-precision (16-bit) floating-point elements in "b" from packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 TO 7 dst.fp16[j] := a.fp16[j] - b.fp16[j] ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Subtract packed half-precision (16-bit) floating-point elements in "b" from packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.fp16[j] := a.fp16[j] - b.fp16[j] ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Subtract packed half-precision (16-bit) floating-point elements in "b" from packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.fp16[j] := a.fp16[j] - b.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Subtract packed half-precision (16-bit) floating-point elements in "b" from packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 TO 15 dst.fp16[j] := a.fp16[j] - b.fp16[j] ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Subtract packed half-precision (16-bit) floating-point elements in "b" from packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.fp16[j] := a.fp16[j] - b.fp16[j] ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Subtract packed half-precision (16-bit) floating-point elements in "b" from packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.fp16[j] := a.fp16[j] - b.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR i := 0 TO 7 dst.fp16[i] := a.fp16[i] * b.fp16[i] ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR i := 0 TO 7 IF k[i] dst.fp16[i] := a.fp16[i] * b.fp16[i] ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR i := 0 TO 7 IF k[i] dst.fp16[i] := a.fp16[i] * b.fp16[i] ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR i := 0 TO 15 dst.fp16[i] := a.fp16[i] * b.fp16[i] ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR i := 0 TO 15 IF k[i] dst.fp16[i] := a.fp16[i] * b.fp16[i] ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR i := 0 TO 15 IF k[i] dst.fp16[i] := a.fp16[i] * b.fp16[i] ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 3 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 3 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 3 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := src.fp16[2*i+0] dst.fp16[2*i+1] := src.fp16[2*i+1] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 3 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := src.fp16[2*i+0] dst.fp16[2*i+1] := src.fp16[2*i+1] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 3 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 3 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 7 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 7 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 7 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := src.fp16[2*i+0] dst.fp16[2*i+1] := src.fp16[2*i+1] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 7 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := src.fp16[2*i+0] dst.fp16[2*i+1] := src.fp16[2*i+1] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 7 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 7 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 3 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 3 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 3 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := src.fp16[2*i+0] dst.fp16[2*i+1] := src.fp16[2*i+1] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 3 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := src.fp16[2*i+0] dst.fp16[2*i+1] := src.fp16[2*i+1] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 3 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 3 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 7 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 7 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 7 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := src.fp16[2*i+0] dst.fp16[2*i+1] := src.fp16[2*i+1] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 7 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := src.fp16[2*i+0] dst.fp16[2*i+1] := src.fp16[2*i+1] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 7 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 7 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 3 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 3 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := a.fp16[2*i+0] dst.fp16[2*i+1] := a.fp16[2*i+1] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 3 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := c.fp16[2*i+0] dst.fp16[2*i+1] := c.fp16[2*i+1] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 3 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 7 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 7 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := a.fp16[2*i+0] dst.fp16[2*i+1] := a.fp16[2*i+1] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 7 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := c.fp16[2*i+0] dst.fp16[2*i+1] := c.fp16[2*i+1] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 7 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 3 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 3 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := a.fp16[2*i+0] dst.fp16[2*i+1] := a.fp16[2*i+1] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 3 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := c.fp16[2*i+0] dst.fp16[2*i+1] := c.fp16[2*i+1] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 3 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 7 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 7 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := a.fp16[2*i+0] dst.fp16[2*i+1] := a.fp16[2*i+1] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 7 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := c.fp16[2*i+0] dst.fp16[2*i+1] := c.fp16[2*i+1] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 7 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Reduce the packed half-precision (16-bit) floating-point elements in "a" by addition. Returns the sum of all elements in "a". tmp := a FOR i := 0 to 7 tmp.fp16[i] := tmp.fp16[i] + tmp.fp16[i+8] ENDFOR FOR i := 0 to 3 tmp.fp16[i] := tmp.fp16[i] + tmp.fp16[i+4] ENDFOR FOR i := 0 to 1 tmp.fp16[i] := tmp.fp16[i] + tmp.fp16[i+2] ENDFOR dst.fp16[0] := tmp.fp16[0] + tmp.fp16[1] AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Reduce the packed half-precision (316-bit) floating-point elements in "a" by multiplication. Returns the product of all elements in "a". tmp := a FOR i := 0 to 7 tmp.fp16[i] := tmp.fp16[i] * tmp.fp16[i+8] ENDFOR FOR i := 0 to 3 tmp.fp16[i] := tmp.fp16[i] * tmp.fp16[i+4] ENDFOR FOR i := 0 to 1 tmp.fp16[i] := tmp.fp16[i] * tmp.fp16[i+2] ENDFOR dst.fp16[0] := tmp.fp16[0] * tmp.fp16[1] AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Reduce the packed half-precision (16-bit) floating-point elements in "a" by maximum. Returns the maximum of all elements in "a". tmp := a FOR i := 0 to 7 tmp.fp16[i] := (tmp.fp16[i] > tmp.fp16[i+8] ? tmp.fp16[i] : tmp.fp16[i+8]) ENDFOR FOR i := 0 to 3 tmp.fp16[i] := (tmp.fp16[i] > tmp.fp16[i+4] ? tmp.fp16[i] : tmp.fp16[i+4]) ENDFOR FOR i := 0 to 1 tmp.fp16[i] := (tmp.fp16[i] > tmp.fp16[i+2] ? tmp.fp16[i] : tmp.fp16[i+2]) ENDFOR dst.fp16[0] := (tmp.fp16[0] > tmp.fp16[1] ? tmp.fp16[0] : tmp.fp16[1]) AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Reduce the packed half-precision (16-bit) floating-point elements in "a" by minimum. Returns the minimum of all elements in "a". tmp := a FOR i := 0 to 7 tmp.fp16[i] := (tmp.fp16[i] < tmp.fp16[i+8] ? tmp.fp16[i] : tmp.fp16[i+8]) ENDFOR FOR i := 0 to 3 tmp.fp16[i] := (tmp.fp16[i] < tmp.fp16[i+4] ? tmp.fp16[i] : tmp.fp16[i+4]) ENDFOR FOR i := 0 to 1 tmp.fp16[i] := (tmp.fp16[i] < tmp.fp16[i+2] ? tmp.fp16[i] : tmp.fp16[i+2]) ENDFOR dst.fp16[0] := (tmp.fp16[0] < tmp.fp16[1] ? tmp.fp16[0] : tmp.fp16[1]) AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Reduce the packed half-precision (16-bit) floating-point elements in "a" by addition. Returns the sum of all elements in "a". tmp := a FOR i := 0 to 3 tmp.fp16[i] := tmp.fp16[i] + tmp.fp16[i+4] ENDFOR FOR i := 0 to 1 tmp.fp16[i] := tmp.fp16[i] + tmp.fp16[i+2] ENDFOR dst.fp16[0] := tmp.fp16[0] + tmp.fp16[1] AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Reduce the packed half-precision (16-bit) floating-point elements in "a" by multiplication. Returns the product of all elements in "a". tmp := a FOR i := 0 to 3 tmp.fp16[i] := tmp.fp16[i] * tmp.fp16[i+4] ENDFOR FOR i := 0 to 1 tmp.fp16[i] := tmp.fp16[i] * tmp.fp16[i+2] ENDFOR dst.fp16[0] := tmp.fp16[0] * tmp.fp16[1] AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Reduce the packed half-precision (16-bit) floating-point elements in "a" by maximum. Returns the maximum of all elements in "a". tmp := a FOR i := 0 to 3 tmp.fp16[i] := (tmp.fp16[i] > tmp.fp16[i+4] ? tmp.fp16[i] : tmp.fp16[i+4]) ENDFOR FOR i := 0 to 1 tmp.fp16[i] := (tmp.fp16[i] > tmp.fp16[i+2] ? tmp.fp16[i] : tmp.fp16[i+2]) ENDFOR dst.fp16[0] := (tmp.fp16[0] > tmp.fp16[1] ? tmp.fp16[0] : tmp.fp16[1]) AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Reduce the packed half-precision (16-bit) floating-point elements in "a" by minimum. Returns the minimum of all elements in "a". tmp := a FOR i := 0 to 3 tmp.fp16[i] := (tmp.fp16[i] < tmp.fp16[i+4] ? tmp.fp16[i] : tmp.fp16[i+4]) ENDFOR FOR i := 0 to 1 tmp.fp16[i] := (tmp.fp16[i] < tmp.fp16[i+2] ? tmp.fp16[i] : tmp.fp16[i+2]) ENDFOR dst.fp16[0] := (tmp.fp16[0] < tmp.fp16[1] ? tmp.fp16[0] : tmp.fp16[1]) AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Finds the absolute value of each packed half-precision (16-bit) floating-point element in "v2", storing the results in "dst". FOR j := 0 to 15 dst.fp16[j] := ABS(v2.fp16[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Finds the absolute value of each packed half-precision (16-bit) floating-point element in "v2", storing the results in "dst". FOR j := 0 to 7 dst.fp16[j] := ABS(v2.fp16[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Compute the complex conjugates of complex numbers in "a", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR j := 0 to 7 i := j*32 dst[i+31:i] := a[i+31:i] XOR FP32(-0.0) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Compute the complex conjugates of complex numbers in "a", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR j := 0 to 3 i := j*32 dst[i+31:i] := a[i+31:i] XOR FP32(-0.0) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Compute the complex conjugates of complex numbers in "a", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] XOR FP32(-0.0) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Compute the complex conjugates of complex numbers in "a", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] XOR FP32(-0.0) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Compute the complex conjugates of complex numbers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] XOR FP32(-0.0) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Compute the complex conjugates of complex numbers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] XOR FP32(-0.0) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Arithmetic
Compare packed half-precision (16-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 7 k[j] := (a.fp16[j] OP b.fp16[j]) ? 1 : 0 ENDFOR k[MAX:8] := 0 AVX512_FP16 AVX512VL
immintrin.h
Compare
Compare packed half-precision (16-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 7 IF k1[j] k[j] := ( a.fp16[j] OP b.fp16[j] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:8] := 0 AVX512_FP16 AVX512VL
immintrin.h
Compare
Compare packed half-precision (16-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 15 k[j] := (a.fp16[j] OP b.fp16[j]) ? 1 : 0 ENDFOR k[MAX:16] := 0 AVX512_FP16 AVX512VL
immintrin.h
Compare
Compare packed half-precision (16-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 15 IF k1[j] k[j] := ( a.fp16[j] OP b.fp16[j] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:16] := 0 AVX512_FP16 AVX512VL
immintrin.h
Compare
Convert packed signed 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 TO 7 dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed signed 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed signed 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed signed 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 TO 15 dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed signed 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed signed 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 TO 7 dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 TO 15 dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". The upper 64 bits of "dst" are zeroed out. FOR j := 0 TO 3 dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ENDFOR dst[MAX:64] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The upper 64 bits of "dst" are zeroed out. FOR j := 0 TO 3 IF k[j] dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:64] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The upper 64 bits of "dst" are zeroed out. FOR j := 0 TO 3 IF k[j] dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 TO 7 dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". The upper 64 bits of "dst" are zeroed out. FOR j := 0 TO 3 dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ENDFOR dst[MAX:64] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The upper 64 bits of "dst" are zeroed out. FOR j := 0 TO 3 IF k[j] dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:64] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The upper 64 bits of "dst" are zeroed out. FOR j := 0 TO 3 IF k[j] dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 TO 7 dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". The upper 96 bits of "dst" are zeroed out. FOR j := 0 TO 1 dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ENDFOR dst[MAX:32] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The upper 96 bits of "dst" are zeroed out. FOR j := 0 TO 1 IF k[j] dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:32] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The upper 96 bits of "dst" are zeroed out. FOR j := 0 TO 1 IF k[j] dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:32] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". The upper 64 bits of "dst" are zeroed out. FOR j := 0 TO 3 dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ENDFOR dst[MAX:64] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The upper 64 bits of "dst" are zeroed out. FOR j := 0 TO 3 IF k[j] dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:64] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The upper 64 bits of "dst" are zeroed out. FOR j := 0 TO 3 IF k[j] dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". The upper 96 bits of "dst" are zeroed out. FOR j := 0 TO 1 dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ENDFOR dst[MAX:32] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The upper 96 bits of "dst" are zeroed out. FOR j := 0 TO 1 IF k[j] dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:32] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The upper 96 bits of "dst" are zeroed out. FOR j := 0 TO 1 IF k[j] dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:32] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". The upper 64 bits of "dst" are zeroed out. FOR j := 0 TO 3 dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ENDFOR dst[MAX:64] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The upper 64 bits of "dst" are zeroed out. FOR j := 0 TO 3 IF k[j] dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:64] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The upper 64 bits of "dst" are zeroed out. FOR j := 0 TO 3 IF k[j] dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". The upper 96 bits of "dst" are zeroed out. FOR j := 0 TO 1 dst.fp16[j] := Convert_FP64_To_FP16(a.fp64[j]) ENDFOR dst[MAX:32] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The upper 96 bits of "dst" are zeroed out. FOR j := 0 TO 1 IF k[j] dst.fp16[j] := Convert_FP64_To_FP16(a.fp64[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:32] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The upper 96 bits of "dst" are zeroed out. FOR j := 0 TO 1 IF k[j] dst.fp16[j] := Convert_FP64_To_FP16(a.fp64[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:32] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". The upper 64 bits of "dst" are zeroed out. FOR j := 0 TO 3 dst.fp16[j] := Convert_FP64_To_FP16(a.fp64[j]) ENDFOR dst[MAX:64] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The upper 64 bits of "dst" are zeroed out. FOR j := 0 TO 3 IF k[j] dst.fp16[j] := Convert_FP64_To_FP16(a.fp64[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:64] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The upper 64 bits of "dst" are zeroed out. FOR j := 0 TO 3 IF k[j] dst.fp16[j] := Convert_FP64_To_FP16(a.fp64[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". The upper 64 bits of "dst" are zeroed out. FOR j := 0 to 3 dst.fp16[j] := Convert_FP32_To_FP16(a.fp32[j]) ENDFOR dst[MAX:64] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The upper 64 bits of "dst" are zeroed out. FOR j := 0 to 3 IF k[j] dst.fp16[j] := Convert_FP32_To_FP16(a.fp32[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:64] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The upper 64 bits of "dst" are zeroed out. FOR j := 0 to 3 IF k[j] dst.fp16[j] := Convert_FP32_To_FP16(a.fp32[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:64] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 dst.fp16[j] := Convert_FP32_To_FP16(a.fp32[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp16[j] := Convert_FP32_To_FP16(a.fp32[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp16[j] := Convert_FP32_To_FP16(a.fp32[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 TO 3 dst.dword[j] := Convert_FP16_To_Int32(a.fp16[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 3 IF k[j] dst.dword[j] := Convert_FP16_To_Int32(a.fp16[j]) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 3 IF k[j] dst.dword[j] := Convert_FP16_To_Int32(a.fp16[j]) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 TO 7 dst.dword[j] := Convert_FP16_To_Int32(a.fp16[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.dword[j] := Convert_FP16_To_Int32(a.fp16[j]) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.dword[j] := Convert_FP16_To_Int32(a.fp16[j]) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst". FOR j := 0 TO 3 dst.dword[j] := Convert_FP16_To_Int32_Truncate(a.fp16[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 3 IF k[j] dst.dword[j] := Convert_FP16_To_Int32_Truncate(a.fp16[j]) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 3 IF k[j] dst.dword[j] := Convert_FP16_To_Int32_Truncate(a.fp16[j]) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst". FOR j := 0 TO 7 dst.dword[j] := Convert_FP16_To_Int32_Truncate(a.fp16[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.dword[j] := Convert_FP16_To_Int32_Truncate(a.fp16[j]) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.dword[j] := Convert_FP16_To_Int32_Truncate(a.fp16[j]) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst". FOR j := 0 TO 3 dst.dword[j] := Convert_FP16_To_UInt32(a.fp16[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 3 IF k[j] dst.dword[j] := Convert_FP16_To_UInt32(a.fp16[j]) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 3 IF k[j] dst.dword[j] := Convert_FP16_To_UInt32(a.fp16[j]) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst". FOR j := 0 TO 7 dst.dword[j] := Convert_FP16_To_UInt32(a.fp16[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.dword[j] := Convert_FP16_To_UInt32(a.fp16[j]) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.dword[j] := Convert_FP16_To_UInt32(a.fp16[j]) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst". FOR j := 0 TO 3 dst.dword[j] := Convert_FP16_To_UInt32_Truncate(a.fp16[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 3 IF k[j] dst.dword[j] := Convert_FP16_To_UInt32_Truncate(a.fp16[j]) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 3 IF k[j] dst.dword[j] := Convert_FP16_To_UInt32_Truncate(a.fp16[j]) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst". FOR j := 0 TO 7 dst.dword[j] := Convert_FP16_To_UInt32_Truncate(a.fp16[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.dword[j] := Convert_FP16_To_UInt32_Truncate(a.fp16[j]) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.dword[j] := Convert_FP16_To_UInt32_Truncate(a.fp16[j]) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 TO 1 dst.qword[j] := Convert_FP16_To_Int64(a.fp16[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 1 IF k[j] dst.qword[j] := Convert_FP16_To_Int64(a.fp16[j]) ELSE dst.qword[j] := src.qword[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 1 IF k[j] dst.qword[j] := Convert_FP16_To_Int64(a.fp16[j]) ELSE dst.qword[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 TO 3 dst.qword[j] := Convert_FP16_To_Int64(a.fp16[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 3 IF k[j] dst.qword[j] := Convert_FP16_To_Int64(a.fp16[j]) ELSE dst.qword[j] := src.qword[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 3 IF k[j] dst.qword[j] := Convert_FP16_To_Int64(a.fp16[j]) ELSE dst.qword[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst". FOR j := 0 TO 1 dst.qword[j] := Convert_FP16_To_Int64_Truncate(a.fp16[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 1 IF k[j] dst.qword[j] := Convert_FP16_To_Int64_Truncate(a.fp16[j]) ELSE dst.qword[j] := src.qword[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 1 IF k[j] dst.qword[j] := Convert_FP16_To_Int64_Truncate(a.fp16[j]) ELSE dst.qword[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst". FOR j := 0 TO 3 dst.qword[j] := Convert_FP16_To_Int64_Truncate(a.fp16[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 3 IF k[j] dst.qword[j] := Convert_FP16_To_Int64_Truncate(a.fp16[j]) ELSE dst.qword[j] := src.qword[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 3 IF k[j] dst.qword[j] := Convert_FP16_To_Int64_Truncate(a.fp16[j]) ELSE dst.qword[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst". FOR j := 0 TO 1 dst.qword[j] := Convert_FP16_To_UInt64(a.fp16[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 1 IF k[j] dst.qword[j] := Convert_FP16_To_UInt64(a.fp16[j]) ELSE dst.qword[j] := src.qword[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 1 IF k[j] dst.qword[j] := Convert_FP16_To_UInt64(a.fp16[j]) ELSE dst.qword[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst". FOR j := 0 TO 3 dst.qword[j] := Convert_FP16_To_UInt64(a.fp16[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 3 IF k[j] dst.qword[j] := Convert_FP16_To_UInt64(a.fp16[j]) ELSE dst.qword[j] := src.qword[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 3 IF k[j] dst.qword[j] := Convert_FP16_To_UInt64(a.fp16[j]) ELSE dst.qword[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst". FOR j := 0 TO 1 dst.qword[j] := Convert_FP16_To_UInt64_Truncate(a.fp16[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 1 IF k[j] dst.qword[j] := Convert_FP16_To_UInt64_Truncate(a.fp16[j]) ELSE dst.qword[j] := src.qword[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 1 IF k[j] dst.qword[j] := Convert_FP16_To_UInt64_Truncate(a.fp16[j]) ELSE dst.qword[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst". FOR j := 0 TO 3 dst.qword[j] := Convert_FP16_To_UInt64_Truncate(a.fp16[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 3 IF k[j] dst.qword[j] := Convert_FP16_To_UInt64_Truncate(a.fp16[j]) ELSE dst.qword[j] := src.qword[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 3 IF k[j] dst.qword[j] := Convert_FP16_To_UInt64_Truncate(a.fp16[j]) ELSE dst.qword[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers, and store the results in "dst". FOR j := 0 TO 7 dst.word[j] := Convert_FP16_To_Int16(a.fp16[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.word[j] := Convert_FP16_To_Int16(a.fp16[j]) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.word[j] := Convert_FP16_To_Int16(a.fp16[j]) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers, and store the results in "dst". FOR j := 0 TO 15 dst.word[j] := Convert_FP16_To_Int16(a.fp16[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.word[j] := Convert_FP16_To_Int16(a.fp16[j]) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.word[j] := Convert_FP16_To_Int16(a.fp16[j]) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers with truncation, and store the results in "dst". FOR j := 0 TO 7 dst.word[j] := Convert_FP16_To_Int16_Truncate(a.fp16[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.word[j] := Convert_FP16_To_Int16_Truncate(a.fp16[j]) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.word[j] := Convert_FP16_To_Int16_Truncate(a.fp16[j]) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers with truncation, and store the results in "dst". FOR j := 0 TO 15 dst.word[j] := Convert_FP16_To_Int16_Truncate(a.fp16[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.word[j] := Convert_FP16_To_Int16_Truncate(a.fp16[j]) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.word[j] := Convert_FP16_To_Int16_Truncate(a.fp16[j]) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers, and store the results in "dst". FOR j := 0 TO 7 dst.word[j] := Convert_FP16_To_UInt16(a.fp16[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.word[j] := Convert_FP16_To_UInt16(a.fp16[j]) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.word[j] := Convert_FP16_To_UInt16(a.fp16[j]) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers, and store the results in "dst". FOR j := 0 TO 15 dst.word[j] := Convert_FP16_To_UInt16(a.fp16[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.word[j] := Convert_FP16_To_UInt16(a.fp16[j]) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.word[j] := Convert_FP16_To_UInt16(a.fp16[j]) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers with truncation, and store the results in "dst". FOR j := 0 TO 7 dst.word[j] := Convert_FP16_To_UInt16_Truncate(a.fp16[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.word[j] := Convert_FP16_To_UInt16_Truncate(a.fp16[j]) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.word[j] := Convert_FP16_To_UInt16_Truncate(a.fp16[j]) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers with truncation, and store the results in "dst". FOR j := 0 TO 15 dst.word[j] := Convert_FP16_To_UInt16_Truncate(a.fp16[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.word[j] := Convert_FP16_To_UInt16_Truncate(a.fp16[j]) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.word[j] := Convert_FP16_To_UInt16_Truncate(a.fp16[j]) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 1 dst.fp64[j] := Convert_FP16_To_FP64(a.fp16[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 IF k[j] dst.fp64[j] := Convert_FP16_To_FP64(a.fp16[j]) ELSE dst.fp64[j] := src.fp64[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 IF k[j] dst.fp64[j] := Convert_FP16_To_FP64(a.fp16[j]) ELSE dst.fp64[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 dst.fp64[j] := Convert_FP16_To_FP64(a.fp16[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 IF k[j] dst.fp64[j] := Convert_FP16_To_FP64(a.fp16[j]) ELSE dst.fp64[j] := src.fp64[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 IF k[j] dst.fp64[j] := Convert_FP16_To_FP64(a.fp16[j]) ELSE dst.fp64[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 dst.fp32[j] := Convert_FP16_To_FP32(a.fp16[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 IF k[j] dst.fp32[j] := Convert_FP16_To_FP32(a.fp16[j]) ELSE dst.fp32[j] := src.fp32[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 IF k[j] dst.fp32[j] := Convert_FP16_To_FP32(a.fp16[j]) ELSE dst.fp32[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 dst.fp32[j] := Convert_FP16_To_FP32(a.fp16[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp32[j] := Convert_FP16_To_FP32(a.fp16[j]) ELSE dst.fp32[j] := src.fp32[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp32[j] := Convert_FP16_To_FP32(a.fp16[j]) ELSE dst.fp32[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Convert
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst". [max_float_note] FOR j := 0 to 7 dst.fp16[j] := (a.fp16[j] > b.fp16[j] ? a.fp16[j] : b.fp16[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [max_float_note] FOR j := 0 to 7 IF k[j] dst.fp16[j] := (a.fp16[j] > b.fp16[j] ? a.fp16[j] : b.fp16[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [max_float_note] FOR j := 0 to 7 IF k[j] dst.fp16[j] := (a.fp16[j] > b.fp16[j] ? a.fp16[j] : b.fp16[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst". [max_float_note] FOR j := 0 to 15 dst.fp16[j] := (a.fp16[j] > b.fp16[j] ? a.fp16[j] : b.fp16[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [max_float_note] FOR j := 0 to 15 IF k[j] dst.fp16[j] := (a.fp16[j] > b.fp16[j] ? a.fp16[j] : b.fp16[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [max_float_note] FOR j := 0 to 15 IF k[j] dst.fp16[j] := (a.fp16[j] > b.fp16[j] ? a.fp16[j] : b.fp16[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b", store the maximum value in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [max_float_note] dst.fp16[0] := (a.fp16[0] > b.fp16[0] ? a.fp16[0] : b.fp16[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b", store the maximum value in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := (a.fp16[0] > b.fp16[0] ? a.fp16[0] : b.fp16[0]) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b", store the maximum value in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := (a.fp16[0] > b.fp16[0] ? a.fp16[0] : b.fp16[0]) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b", store the maximum value in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [sae_note][max_float_note] dst.fp16[0] := (a.fp16[0] > b.fp16[0] ? a.fp16[0] : b.fp16[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b", store the maximum value in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [sae_note][max_float_note] IF k[0] dst.fp16[0] := (a.fp16[0] > b.fp16[0] ? a.fp16[0] : b.fp16[0]) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b", store the maximum value in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [sae_note][max_float_note] IF k[0] dst.fp16[0] := (a.fp16[0] > b.fp16[0] ? a.fp16[0] : b.fp16[0]) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst". [min_float_note] FOR j := 0 to 7 dst.fp16[j] := (a.fp16[j] < b.fp16[j] ? a.fp16[j] : b.fp16[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [min_float_note] FOR j := 0 to 7 IF k[j] dst.fp16[j] := (a.fp16[j] < b.fp16[j] ? a.fp16[j] : b.fp16[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [min_float_note] FOR j := 0 to 7 IF k[j] dst.fp16[j] := (a.fp16[j] < b.fp16[j] ? a.fp16[j] : b.fp16[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst". [min_float_note] FOR j := 0 to 15 dst.fp16[j] := (a.fp16[j] < b.fp16[j] ? a.fp16[j] : b.fp16[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [min_float_note] FOR j := 0 to 15 IF k[j] dst.fp16[j] := (a.fp16[j] < b.fp16[j] ? a.fp16[j] : b.fp16[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [min_float_note] FOR j := 0 to 15 IF k[j] dst.fp16[j] := (a.fp16[j] < b.fp16[j] ? a.fp16[j] : b.fp16[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b", store the minimum value in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [min_float_note] dst.fp16[0] := (a.fp16[0] < b.fp16[0] ? a.fp16[0] : b.fp16[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b", store the minimum value in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := (a.fp16[0] < b.fp16[0] ? a.fp16[0] : b.fp16[0]) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b", store the minimum value in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := (a.fp16[0] < b.fp16[0] ? a.fp16[0] : b.fp16[0]) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b", store the minimum value in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [sae_note][min_float_note] dst.fp16[0] := (a.fp16[0] < b.fp16[0] ? a.fp16[0] : b.fp16[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b", store the minimum value in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [sae_note][min_float_note] IF k[0] dst.fp16[0] := (a.fp16[0] < b.fp16[0] ? a.fp16[0] : b.fp16[0]) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b", store the minimum value in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [sae_note][min_float_note] IF k[0] dst.fp16[0] := (a.fp16[0] < b.fp16[0] ? a.fp16[0] : b.fp16[0]) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Special Math Functions
Round packed half-precision (16-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst". [round_imm_note] DEFINE RoundScaleFP16(src.fp16, imm8[7:0]) { m.fp16 := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp.fp16 := POW(FP16(2.0), -m) * ROUND(POW(FP16(2.0), m) * src.fp16, imm8[3:0]) RETURN tmp.fp16 } FOR i := 0 to 7 dst.fp16[i] := RoundScaleFP16(a.fp16[i], imm8) ENDFOR dest[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Round packed half-precision (16-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] DEFINE RoundScaleFP16(src.fp16, imm8[7:0]) { m.fp16 := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp.fp16 := POW(FP16(2.0), -m) * ROUND(POW(FP16(2.0), m) * src.fp16, imm8[3:0]) RETURN tmp.fp16 } FOR i := 0 to 7 IF k[i] dst.fp16[i] := RoundScaleFP16(a.fp16[i], imm8) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dest[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Round packed half-precision (16-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] DEFINE RoundScaleFP16(src.fp16, imm8[7:0]) { m.fp16 := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp.fp16 := POW(FP16(2.0), -m) * ROUND(POW(FP16(2.0), m) * src.fp16, imm8[3:0]) RETURN tmp.fp16 } FOR i := 0 to 7 IF k[i] dst.fp16[i] := RoundScaleFP16(a.fp16[i], imm8) ELSE dst.fp16[i] := 0 FI ENDFOR dest[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Round packed half-precision (16-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst". [round_imm_note] DEFINE RoundScaleFP16(src.fp16, imm8[7:0]) { m.fp16 := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp.fp16 := POW(FP16(2.0), -m) * ROUND(POW(FP16(2.0), m) * src.fp16, imm8[3:0]) RETURN tmp.fp16 } FOR i := 0 to 15 dst.fp16[i] := RoundScaleFP16(a.fp16[i], imm8) ENDFOR dest[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Round packed half-precision (16-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] DEFINE RoundScaleFP16(src.fp16, imm8[7:0]) { m.fp16 := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp.fp16 := POW(FP16(2.0), -m) * ROUND(POW(FP16(2.0), m) * src.fp16, imm8[3:0]) RETURN tmp.fp16 } FOR i := 0 to 15 IF k[i] dst.fp16[i] := RoundScaleFP16(a.fp16[i], imm8) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dest[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Round packed half-precision (16-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] DEFINE RoundScaleFP16(src.fp16, imm8[7:0]) { m.fp16 := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp.fp16 := POW(FP16(2.0), -m) * ROUND(POW(FP16(2.0), m) * src.fp16, imm8[3:0]) RETURN tmp.fp16 } FOR i := 0 to 15 IF k[i] dst.fp16[i] := RoundScaleFP16(a.fp16[i], imm8) ELSE dst.fp16[i] := 0 FI ENDFOR dest[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Convert the exponent of each packed half-precision (16-bit) floating-point element in "a" to a half-precision (16-bit) floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. FOR i := 0 to 7 dst.fp16[i] := ConvertExpFP16(a.fp16[i]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Convert the exponent of each packed half-precision (16-bit) floating-point element in "a" to a half-precision (16-bit) floating-point number representing the integer exponent, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR i := 0 to 7 IF k[i] dst.fp16[i] := ConvertExpFP16(a.fp16[i]) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Convert the exponent of each packed half-precision (16-bit) floating-point element in "a" to a half-precision (16-bit) floating-point number representing the integer exponent, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR i := 0 to 7 IF k[i] dst.fp16[i] := ConvertExpFP16(a.fp16[i]) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Convert the exponent of each packed half-precision (16-bit) floating-point element in "a" to a half-precision (16-bit) floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. FOR i := 0 to 15 dst.fp16[i] := ConvertExpFP16(a.fp16[i]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Convert the exponent of each packed half-precision (16-bit) floating-point element in "a" to a half-precision (16-bit) floating-point number representing the integer exponent, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR i := 0 to 15 IF k[i] dst.fp16[i] := ConvertExpFP16(a.fp16[i]) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Convert the exponent of each packed half-precision (16-bit) floating-point element in "a" to a half-precision (16-bit) floating-point number representing the integer exponent, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR i := 0 to 15 IF k[i] dst.fp16[i] := ConvertExpFP16(a.fp16[i]) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Normalize the mantissas of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "norm" and the sign depends on "sign" and the source sign. [getmant_note] FOR i := 0 TO 7 dst.fp16[i] := GetNormalizedMantissaFP16(a.fp16[i], norm, sign) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Normalize the mantissas of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "norm" and the sign depends on "sign" and the source sign. [getmant_note] FOR i := 0 TO 7 IF k[i] dst.fp16[i] := GetNormalizedMantissaFP16(a.fp16[i], norm, sign) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Normalize the mantissas of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "norm" and the sign depends on "sign" and the source sign. [getmant_note] FOR i := 0 TO 7 IF k[i] dst.fp16[i] := GetNormalizedMantissaFP16(a.fp16[i], norm, sign) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Normalize the mantissas of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "norm" and the sign depends on "sign" and the source sign. [getmant_note] FOR i := 0 TO 15 dst.fp16[i] := GetNormalizedMantissaFP16(a.fp16[i], norm, sign) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Normalize the mantissas of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "norm" and the sign depends on "sign" and the source sign. [getmant_note] FOR i := 0 TO 15 IF k[i] dst.fp16[i] := GetNormalizedMantissaFP16(a.fp16[i], norm, sign) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Normalize the mantissas of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "norm" and the sign depends on "sign" and the source sign. [getmant_note] FOR i := 0 TO 15 IF k[i] dst.fp16[i] := GetNormalizedMantissaFP16(a.fp16[i], norm, sign) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Extract the reduced argument of packed half-precision (16-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst". [round_imm_note] DEFINE ReduceArgumentFP16(src[15:0], imm8[7:0]) { m[15:0] := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[15:0] := POW(2.0, FP16(-m)) * ROUND(POW(2.0, FP16(m)) * src[15:0], imm8[3:0]) tmp[15:0] := src[15:0] - tmp[15:0] IF IsInf(tmp[15:0]) tmp[15:0] := FP16(0.0) FI RETURN tmp[15:0] } FOR i := 0 to 7 dst.fp16[i] := ReduceArgumentFP16(a.fp16[i], imm8) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Extract the reduced argument of packed half-precision (16-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] DEFINE ReduceArgumentFP16(src[15:0], imm8[7:0]) { m[15:0] := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[15:0] := POW(2.0, FP16(-m)) * ROUND(POW(2.0, FP16(m)) * src[15:0], imm8[3:0]) tmp[15:0] := src[15:0] - tmp[15:0] IF IsInf(tmp[15:0]) tmp[15:0] := FP16(0.0) FI RETURN tmp[15:0] } FOR i := 0 to 7 IF k[i] dst.fp16[i] := ReduceArgumentFP16(a.fp16[i], imm8) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Extract the reduced argument of packed half-precision (16-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] DEFINE ReduceArgumentFP16(src[15:0], imm8[7:0]) { m[15:0] := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[15:0] := POW(2.0, FP16(-m)) * ROUND(POW(2.0, FP16(m)) * src[15:0], imm8[3:0]) tmp[15:0] := src[15:0] - tmp[15:0] IF IsInf(tmp[15:0]) tmp[15:0] := FP16(0.0) FI RETURN tmp[15:0] } FOR i := 0 to 7 IF k[i] dst.fp16[i] := ReduceArgumentFP16(a.fp16[i], imm8) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Extract the reduced argument of packed half-precision (16-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst". [round_imm_note] DEFINE ReduceArgumentFP16(src[15:0], imm8[7:0]) { m[15:0] := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[15:0] := POW(2.0, FP16(-m)) * ROUND(POW(2.0, FP16(m)) * src[15:0], imm8[3:0]) tmp[15:0] := src[15:0] - tmp[15:0] IF IsInf(tmp[15:0]) tmp[15:0] := FP16(0.0) FI RETURN tmp[15:0] } FOR i := 0 to 15 dst.fp16[i] := ReduceArgumentFP16(a.fp16[i], imm8) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Extract the reduced argument of packed half-precision (16-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] DEFINE ReduceArgumentFP16(src[15:0], imm8[7:0]) { m[15:0] := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[15:0] := POW(2.0, FP16(-m)) * ROUND(POW(2.0, FP16(m)) * src[15:0], imm8[3:0]) tmp[15:0] := src[15:0] - tmp[15:0] IF IsInf(tmp[15:0]) tmp[15:0] := FP16(0.0) FI RETURN tmp[15:0] } FOR i := 0 to 15 IF k[i] dst.fp16[i] := ReduceArgumentFP16(a.fp16[i], imm8) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Extract the reduced argument of packed half-precision (16-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] DEFINE ReduceArgumentFP16(src[15:0], imm8[7:0]) { m[15:0] := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[15:0] := POW(2.0, FP16(-m)) * ROUND(POW(2.0, FP16(m)) * src[15:0], imm8[3:0]) tmp[15:0] := src[15:0] - tmp[15:0] IF IsInf(tmp[15:0]) tmp[15:0] := FP16(0.0) FI RETURN tmp[15:0] } FOR i := 0 to 15 IF k[i] dst.fp16[i] := ReduceArgumentFP16(a.fp16[i], imm8) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Scale the packed half-precision (16-bit) floating-point elements in "a" using values from "b", and store the results in "dst". DEFINE ScaleFP16(src1, src2) { denormal1 := (a.exp == 0) and (a.fraction != 0) denormal2 := (b.exp == 0) and (b.fraction != 0) tmp1 := src1 tmp2 := src2 IF MXCSR.DAZ IF denormal1 tmp1 := 0 FI IF denormal2 tmp2 := 0 FI FI RETURN tmp1 * POW(2.0, FLOOR(tmp2)) } FOR i := 0 to 7 dst.fp16[i] := ScaleFP16(a.fp16[i], b.fp16[i]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Scale the packed half-precision (16-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE ScaleFP16(src1, src2) { denormal1 := (a.exp == 0) and (a.fraction != 0) denormal2 := (b.exp == 0) and (b.fraction != 0) tmp1 := src1 tmp2 := src2 IF MXCSR.DAZ IF denormal1 tmp1 := 0 FI IF denormal2 tmp2 := 0 FI FI RETURN tmp1 * POW(2.0, FLOOR(tmp2)) } FOR i := 0 to 7 IF k[i] dst.fp16[i] := ScaleFP16(a.fp16[i], b.fp16[i]) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Scale the packed half-precision (16-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE ScaleFP16(src1, src2) { denormal1 := (a.exp == 0) and (a.fraction != 0) denormal2 := (b.exp == 0) and (b.fraction != 0) tmp1 := src1 tmp2 := src2 IF MXCSR.DAZ IF denormal1 tmp1 := 0 FI IF denormal2 tmp2 := 0 FI FI RETURN tmp1 * POW(2.0, FLOOR(tmp2)) } FOR i := 0 to 7 IF k[i] dst.fp16[i] := ScaleFP16(a.fp16[i], b.fp16[i]) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Scale the packed half-precision (16-bit) floating-point elements in "a" using values from "b", and store the results in "dst". DEFINE ScaleFP16(src1, src2) { denormal1 := (a.exp == 0) and (a.fraction != 0) denormal2 := (b.exp == 0) and (b.fraction != 0) tmp1 := src1 tmp2 := src2 IF MXCSR.DAZ IF denormal1 tmp1 := 0 FI IF denormal2 tmp2 := 0 FI FI RETURN tmp1 * POW(2.0, FLOOR(tmp2)) } FOR i := 0 to 15 dst.fp16[i] := ScaleFP16(a.fp16[i], b.fp16[i]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Scale the packed half-precision (16-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE ScaleFP16(src1, src2) { denormal1 := (a.exp == 0) and (a.fraction != 0) denormal2 := (b.exp == 0) and (b.fraction != 0) tmp1 := src1 tmp2 := src2 IF MXCSR.DAZ IF denormal1 tmp1 := 0 FI IF denormal2 tmp2 := 0 FI FI RETURN tmp1 * POW(2.0, FLOOR(tmp2)) } FOR i := 0 to 15 IF k[i] dst.fp16[i] := ScaleFP16(a.fp16[i], b.fp16[i]) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Scale the packed half-precision (16-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE ScaleFP16(src1, src2) { denormal1 := (a.exp == 0) and (a.fraction != 0) denormal2 := (b.exp == 0) and (b.fraction != 0) tmp1 := src1 tmp2 := src2 IF MXCSR.DAZ IF denormal1 tmp1 := 0 FI IF denormal2 tmp2 := 0 FI FI RETURN tmp1 * POW(2.0, FLOOR(tmp2)) } FOR i := 0 to 15 IF k[i] dst.fp16[i] := ScaleFP16(a.fp16[i], b.fp16[i]) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Test packed half-precision (16-bit) floating-point elements in "a" for special categories specified by "imm8", and store the results in mask vector "k". [fpclass_note] FOR i := 0 to 7 k[i] := CheckFPClass_FP16(a.fp16[i], imm8[7:0]) ENDFOR k[MAX:8] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Test packed half-precision (16-bit) floating-point elements in "a" for special categories specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). [fpclass_note] FOR i := 0 to 7 IF k1[i] k[i] := CheckFPClass_FP16(a.fp16[i], imm8[7:0]) ELSE k[i] := 0 FI ENDFOR k[MAX:8] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Test packed half-precision (16-bit) floating-point elements in "a" for special categories specified by "imm8", and store the results in mask vector "k". [fpclass_note] FOR i := 0 to 15 k[i] := CheckFPClass_FP16(a.fp16[i], imm8[7:0]) ENDFOR k[MAX:16] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Test packed half-precision (16-bit) floating-point elements in "a" for special categories specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). [fpclass_note] FOR i := 0 to 15 IF k1[i] k[i] := CheckFPClass_FP16(a.fp16[i], imm8[7:0]) ELSE k[i] := 0 FI ENDFOR k[MAX:16] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Shuffle half-precision (16-bit) floating-point elements in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 7 i := j*16 off := idx[i+2:i] dst.fp16[j] := idx[i+3] ? b.fp16[off] : a.fp16[off] ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Shuffle half-precision (16-bit) floating-point elements in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 15 i := j*16 off := idx[i+3:i] dst.fp16[j] := idx[i+4] ? b.fp16[off] : a.fp16[off] ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Blend packed half-precision (16-bit) floating-point elements from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 15 IF k[j] dst.fp16[j] := b.fp16[j] ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Blend packed half-precision (16-bit) floating-point elements from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 7 IF k[j] dst.fp16[j] := b.fp16[j] ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Shuffle half-precision (16-bit) floating-point elements in "a" across lanes using the corresponding index in "idx", and store the results in "dst". FOR j := 0 to 15 i := j*16 id := idx[i+3:i] dst.fp16[j] := a.fp16[id] ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Shuffle half-precision (16-bit) floating-point elements in "a" using the corresponding index in "idx", and store the results in "dst". FOR j := 0 to 7 i := j*16 id := idx[i+2:i] dst.fp16[j] := a.fp16[id] ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Miscellaneous
Compute the approximate reciprocal square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 1.5*2^-12. FOR i := 0 to 7 dst.fp16[i] := (1.0 / SQRT(a.fp16[i])) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 1.5*2^-12. FOR i := 0 to 7 IF k[i] dst.fp16[i] := (1.0 / SQRT(a.fp16[i])) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 1.5*2^-12. FOR i := 0 to 7 IF k[i] dst.fp16[i] := (1.0 / SQRT(a.fp16[i])) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 1.5*2^-12. FOR i := 0 to 15 dst.fp16[i] := (1.0 / SQRT(a.fp16[i])) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 1.5*2^-12. FOR i := 0 to 15 IF k[i] dst.fp16[i] := (1.0 / SQRT(a.fp16[i])) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 1.5*2^-12. FOR i := 0 to 15 IF k[i] dst.fp16[i] := (1.0 / SQRT(a.fp16[i])) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Elementary Math Functions
Compute the square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". FOR i := 0 to 7 dst.fp16[i] := SQRT(a.fp16[i]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Elementary Math Functions
Compute the square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR i := 0 to 7 IF k[i] dst.fp16[i] := SQRT(a.fp16[i]) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Elementary Math Functions
Compute the square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR i := 0 to 7 IF k[i] dst.fp16[i] := SQRT(a.fp16[i]) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Elementary Math Functions
Compute the square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". FOR i := 0 to 15 dst.fp16[i] := SQRT(a.fp16[i]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Elementary Math Functions
Compute the square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR i := 0 to 15 IF k[i] dst.fp16[i] := SQRT(a.fp16[i]) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Elementary Math Functions
Compute the square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR i := 0 to 15 IF k[i] dst.fp16[i] := SQRT(a.fp16[i]) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 1.5*2^-12. FOR i := 0 to 7 dst.fp16[i] := (1.0 / a.fp16[i]) ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 1.5*2^-12. FOR i := 0 to 7 IF k[i] dst.fp16[i] := (1.0 / a.fp16[i]) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 1.5*2^-12. FOR i := 0 to 7 IF k[i] dst.fp16[i] := (1.0 / a.fp16[i]) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 1.5*2^-12. FOR i := 0 to 15 dst.fp16[i] := (1.0 / a.fp16[i]) ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 1.5*2^-12. FOR i := 0 to 15 IF k[i] dst.fp16[i] := (1.0 / a.fp16[i]) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 1.5*2^-12. FOR i := 0 to 15 IF k[i] dst.fp16[i] := (1.0 / a.fp16[i]) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Elementary Math Functions
Load 256-bits (composed of 16 packed half-precision (16-bit) floating-point elements) from memory into "dst". "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. dst[255:0] := MEM[mem_addr+255:mem_addr] dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Load
Load 128-bits (composed of 8 packed half-precision (16-bit) floating-point elements) from memory into "dst". "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. dst[127:0] := MEM[mem_addr+127:mem_addr] dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Load
Load 256-bits (composed of 16 packed half-precision (16-bit) floating-point elements) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[255:0] := MEM[mem_addr+255:mem_addr] dst[MAX:256] := 0 AVX512_FP16 AVX512VL
immintrin.h
Load
Load 128-bits (composed of 8 packed half-precision (16-bit) floating-point elements) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[127:0] := MEM[mem_addr+127:mem_addr] dst[MAX:128] := 0 AVX512_FP16 AVX512VL
immintrin.h
Load
Store 256-bits (composed of 16 packed half-precision (16-bit) floating-point elements) from "a" into memory. "mem_addr" must be aligned on a 32-byte boundary or a general-protection exception may be generated. MEM[mem_addr+255:mem_addr] := a[255:0] AVX512_FP16 AVX512VL
immintrin.h
Store
Store 128-bits (composed of 8 packed half-precision (16-bit) floating-point elements) from "a" into memory. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. MEM[mem_addr+127:mem_addr] := a[127:0] AVX512_FP16 AVX512VL
immintrin.h
Store
Store 256-bits (composed of 16 packed half-precision (16-bit) floating-point elements) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+255:mem_addr] := a[255:0] AVX512_FP16 AVX512VL
immintrin.h
Store
Store 128-bits (composed of 8 packed half-precision (16-bit) floating-point elements) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+127:mem_addr] := a[127:0] AVX512_FP16 AVX512VL
immintrin.h
Store
Return vector of type __m256h with undefined elements. AVX512_FP16 AVX512VL
immintrin.h
General Support
Return vector of type __m128h with undefined elements. AVX512_FP16 AVX512VL
immintrin.h
General Support
Return vector of type __m256h with all elements set to zero. dst[MAX:0] := 0 AVX512_FP16 AVX512VL
immintrin.h
Set
Return vector of type __m128h with all elements set to zero. dst[MAX:0] := 0 AVX512_FP16 AVX512VL
immintrin.h
Set
Add packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 TO 31 dst.fp16[j] := a.fp16[j] + b.fp16[j] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Add packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 31 IF k[j] dst.fp16[j] := a.fp16[j] + b.fp16[j] ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Add packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 31 IF k[j] dst.fp16[j] := a.fp16[j] + b.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Add packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst". [round_note] FOR j := 0 TO 31 dst.fp16[j] := a.fp16[j] + b.fp16[j] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Add packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 31 IF k[j] dst.fp16[j] := a.fp16[j] + b.fp16[j] ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Add packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 31 IF k[j] dst.fp16[j] := a.fp16[j] + b.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Add the lower half-precision (16-bit) floating-point elements in "a" and "b", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". dst.fp16[0] := a.fp16[0] + b.fp16[0] dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Add the lower half-precision (16-bit) floating-point elements in "a" and "b", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] dst.fp16[0] := a.fp16[0] + b.fp16[0] dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Add the lower half-precision (16-bit) floating-point elements in "a" and "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := a.fp16[0] + b.fp16[0] ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Add the lower half-precision (16-bit) floating-point elements in "a" and "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := a.fp16[0] + b.fp16[0] ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Add the lower half-precision (16-bit) floating-point elements in "a" and "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := a.fp16[0] + b.fp16[0] ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Add the lower half-precision (16-bit) floating-point elements in "a" and "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := a.fp16[0] + b.fp16[0] ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Divide packed half-precision (16-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst". FOR j := 0 to 31 dst.fp16[j] := a.fp16[j] / b.fp16[j] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Divide packed half-precision (16-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] dst.fp16[j] := a.fp16[j] / b.fp16[j] ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Divide packed half-precision (16-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] dst.fp16[j] := a.fp16[j] / b.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Divide packed half-precision (16-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst". [round_note] FOR j := 0 to 31 dst.fp16[j] := a.fp16[j] / b.fp16[j] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Divide packed half-precision (16-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := a.fp16[j] / b.fp16[j] ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Divide packed half-precision (16-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := a.fp16[j] / b.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Divide the lower half-precision (16-bit) floating-point element in "a" by the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". dst.fp16[0] := a.fp16[0] / b.fp16[0] dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Divide the lower half-precision (16-bit) floating-point element in "a" by the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := a.fp16[0] / b.fp16[0] ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Divide the lower half-precision (16-bit) floating-point element in "a" by the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := a.fp16[0] / b.fp16[0] ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Divide the lower half-precision (16-bit) floating-point element in "a" by the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] dst.fp16[0] := a.fp16[0] / b.fp16[0] dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Divide the lower half-precision (16-bit) floating-point element in "a" by the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := a.fp16[0] / b.fp16[0] ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Divide the lower half-precision (16-bit) floating-point element in "a" by the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := a.fp16[0] / b.fp16[0] ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst". FOR j := 0 to 31 dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst". [round_note] FOR j := 0 to 31 dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + c.fp16[0] dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + c.fp16[0] ELSE dst.fp16[0] := a.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper 7 packed elements from "c" to the upper elements of "dst". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + c.fp16[0] ELSE dst.fp16[0] := c.fp16[0] FI dst[127:16] := c[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + c.fp16[0] ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + c.fp16[0] dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + c.fp16[0] ELSE dst.fp16[0] := a.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper 7 packed elements from "c" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + c.fp16[0] ELSE dst.fp16[0] := c.fp16[0] FI dst[127:16] := c[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + c.fp16[0] ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst". FOR j := 0 to 31 dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) + c.fp16[j] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst". [round_note] FOR j := 0 to 31 dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) + c.fp16[j] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". dst.fp16[0] := -(a.fp16[0] * b.fp16[0]) + c.fp16[0] dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := -(a.fp16[0] * b.fp16[0]) + c.fp16[0] ELSE dst.fp16[0] := a.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper 7 packed elements from "c" to the upper elements of "dst". IF k[0] dst.fp16[0] := -(a.fp16[0] * b.fp16[0]) + c.fp16[0] ELSE dst.fp16[0] := c.fp16[0] FI dst[127:16] := c[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := -(a.fp16[0] * b.fp16[0]) + c.fp16[0] ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] dst.fp16[0] := -(a.fp16[0] * b.fp16[0]) + c.fp16[0] dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := -(a.fp16[0] * b.fp16[0]) + c.fp16[0] ELSE dst.fp16[0] := a.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper 7 packed elements from "c" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := -(a.fp16[0] * b.fp16[0]) + c.fp16[0] ELSE dst.fp16[0] := c.fp16[0] FI dst[127:16] := c[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := -(a.fp16[0] * b.fp16[0]) + c.fp16[0] ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst". FOR j := 0 to 31 dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst". [round_note] FOR j := 0 to 31 dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - c.fp16[0] dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - c.fp16[0] ELSE dst.fp16[0] := a.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper 7 packed elements from "c" to the upper elements of "dst". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - c.fp16[0] ELSE dst.fp16[0] := c.fp16[0] FI dst[127:16] := c[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - c.fp16[0] ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - c.fp16[0] dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - c.fp16[0] ELSE dst.fp16[0] := a.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper 7 packed elements from "c" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - c.fp16[0] ELSE dst.fp16[0] := c.fp16[0] FI dst[127:16] := c[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - c.fp16[0] ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst". FOR j := 0 to 31 dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) - c.fp16[j] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst". [round_note] FOR j := 0 to 31 dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) - c.fp16[j] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := -(a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". dst.fp16[0] := -(a.fp16[0] * b.fp16[0]) - c.fp16[0] dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := -(a.fp16[0] * b.fp16[0]) - c.fp16[0] ELSE dst.fp16[0] := a.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper 7 packed elements from "c" to the upper elements of "dst". IF k[0] dst.fp16[0] := -(a.fp16[0] * b.fp16[0]) - c.fp16[0] ELSE dst.fp16[0] := c.fp16[0] FI dst[127:16] := c[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := -(a.fp16[0] * b.fp16[0]) - c.fp16[0] ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] dst.fp16[0] := -(a.fp16[0] * b.fp16[0]) - c.fp16[0] dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "a" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := -(a.fp16[0] * b.fp16[0]) - c.fp16[0] ELSE dst.fp16[0] := a.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst" using writemask "k" (the element is copied from "c" when mask bit 0 is not set), and copy the upper 7 packed elements from "c" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := -(a.fp16[0] * b.fp16[0]) - c.fp16[0] ELSE dst.fp16[0] := c.fp16[0] FI dst[127:16] := c[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := -(a.fp16[0] * b.fp16[0]) - c.fp16[0] ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst". FOR j := 0 to 31 IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] FI ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] FI ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] FI ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst". [round_note] FOR j := 0 to 31 IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] FI ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] FI ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] FI ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" to/from the intermediate result, and store the results in "dst". FOR j := 0 to 31 IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] FI ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] FI ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" to/from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] FI ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" to/from the intermediate result, and store the results in "dst". [round_note] FOR j := 0 to 31 IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] FI ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" to/from the intermediate result, and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] FI ELSE dst.fp16[j] := c.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" to/from the intermediate result, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 31 IF k[j] IF ((j & 1) == 0) dst.fp16[j] := (a.fp16[j] * b.fp16[j]) + c.fp16[j] ELSE dst.fp16[j] := (a.fp16[j] * b.fp16[j]) - c.fp16[j] FI ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Subtract packed half-precision (16-bit) floating-point elements in "b" from packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 TO 31 dst.fp16[j] := a.fp16[j] - b.fp16[j] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Subtract packed half-precision (16-bit) floating-point elements in "b" from packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". [round_note] FOR j := 0 TO 31 dst.fp16[j] := a.fp16[j] - b.fp16[j] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Subtract packed half-precision (16-bit) floating-point elements in "b" from packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 31 IF k[j] dst.fp16[j] := a.fp16[j] - b.fp16[j] ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Subtract packed half-precision (16-bit) floating-point elements in "b" from packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 31 IF k[j] dst.fp16[j] := a.fp16[j] - b.fp16[j] ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Subtract packed half-precision (16-bit) floating-point elements in "b" from packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 31 IF k[j] dst.fp16[j] := a.fp16[j] - b.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Subtract packed half-precision (16-bit) floating-point elements in "b" from packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 31 IF k[j] dst.fp16[j] := a.fp16[j] - b.fp16[j] ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Subtract the lower half-precision (16-bit) floating-point element in "b" from the lower half-precision (16-bit) floating-point element in "a", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". dst.fp16[0] := a.fp16[0] - b.fp16[0] dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Subtract the lower half-precision (16-bit) floating-point element in "b" from the lower half-precision (16-bit) floating-point element in "a", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] dst.fp16[0] := a.fp16[0] - b.fp16[0] dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Subtract the lower half-precision (16-bit) floating-point element in "b" from the lower half-precision (16-bit) floating-point element in "a", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := a.fp16[0] - b.fp16[0] ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Subtract the lower half-precision (16-bit) floating-point element in "b" from the lower half-precision (16-bit) floating-point element in "a", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := a.fp16[0] - b.fp16[0] ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Subtract the lower half-precision (16-bit) floating-point element in "b" from the lower half-precision (16-bit) floating-point element in "a", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := a.fp16[0] - b.fp16[0] ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Subtract the lower half-precision (16-bit) floating-point element in "b" from the lower half-precision (16-bit) floating-point element in "a", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := a.fp16[0] - b.fp16[0] ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR i := 0 TO 31 dst.fp16[i] := a.fp16[i] * b.fp16[i] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst". [round_note] FOR i := 0 TO 31 dst.fp16[i] := a.fp16[i] * b.fp16[i] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR i := 0 TO 31 IF k[i] dst.fp16[i] := a.fp16[i] * b.fp16[i] ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR i := 0 TO 31 IF k[i] dst.fp16[i] := a.fp16[i] * b.fp16[i] ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR i := 0 TO 31 IF k[i] dst.fp16[i] := a.fp16[i] * b.fp16[i] ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed half-precision (16-bit) floating-point elements in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR i := 0 TO 31 IF k[i] dst.fp16[i] := a.fp16[i] * b.fp16[i] ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point element in "a" and "b", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". dst.fp16[0] := a.fp16[0] * b.fp16[0] dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point element in "a" and "b", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] dst.fp16[0] := a.fp16[0] * b.fp16[0] dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := a.fp16[0] * b.fp16[0] ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := a.fp16[0] * b.fp16[0] ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := a.fp16[0] * b.fp16[0] ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower half-precision (16-bit) floating-point element in "a" and "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := a.fp16[0] * b.fp16[0] ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 15 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 15 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := src.fp16[2*i+0] dst.fp16[2*i+1] := src.fp16[2*i+1] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := src.fp16[2*i+0] dst.fp16[2*i+1] := src.fp16[2*i+1] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] FOR i := 0 to 15 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] FOR i := 0 to 15 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := src.fp16[2*i+0] dst.fp16[2*i+1] := src.fp16[2*i+1] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := src.fp16[2*i+0] dst.fp16[2*i+1] := src.fp16[2*i+1] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex numbers in "a" and "b", and store the result in the lower elements of "dst", and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex numbers in "a" and "b", and store the result in the lower elements of "dst", and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex numbers in "a" and "b", and store the result in the lower elements of "dst" using writemask "k" (elements are copied from "src" when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) ELSE dst.fp16[0] := src.fp16[0] dst.fp16[1] := src.fp16[1] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex numbers in "a" and "b", and store the result in the lower elements of "dst" using writemask "k" (elements are copied from "src" when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) ELSE dst.fp16[0] := src.fp16[0] dst.fp16[1] := src.fp16[1] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex numbers in "a" and "b", and store the result in the lower elements of "dst" using zeromask "k" (elements are zeroed out when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) ELSE dst.fp16[0] := 0 dst.fp16[1] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex numbers in "a" and "b", and store the result in the lower elements of "dst" using zeromask "k" (elements are zeroed out when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) ELSE dst.fp16[0] := 0 dst.fp16[1] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex numbers in "a" and "b", and store the result in the lower elements of "dst", and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex numbers in "a" and "b", and store the result in the lower elements of "dst", and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex numbers in "a" and "b", and store the result in the lower elements of "dst" using writemask "k" (elements are copied from "src" when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) ELSE dst.fp16[0] := src.fp16[0] dst.fp16[1] := src.fp16[1] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex numbers in "a" and "b", and store the result in the lower elements of "dst" using writemask "k" (elements are copied from "src" when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) ELSE dst.fp16[0] := src.fp16[0] dst.fp16[1] := src.fp16[1] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex numbers in "a" and "b", and store the result in the lower elements of "dst" using zeromask "k" (elements are zeroed out when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) ELSE dst.fp16[0] := 0 dst.fp16[1] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex numbers in "a" and "b", and store the result in the lower elements of "dst" using zeromask "k" (elements are zeroed out when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) ELSE dst.fp16[0] := 0 dst.fp16[1] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 15 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 15 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := src.fp16[2*i+0] dst.fp16[2*i+1] := src.fp16[2*i+1] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := src.fp16[2*i+0] dst.fp16[2*i+1] := src.fp16[2*i+1] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] FOR i := 0 to 15 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] FOR i := 0 to 15 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := src.fp16[2*i+0] dst.fp16[2*i+1] := src.fp16[2*i+1] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := src.fp16[2*i+0] dst.fp16[2*i+1] := src.fp16[2*i+1] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", and store the result in the lower elements of "dst", and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", and store the result in the lower elements of "dst", and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", and store the result in the lower elements of "dst" using writemask "k" (elements are copied from "src" when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) ELSE dst.fp16[0] := src.fp16[0] dst.fp16[1] := src.fp16[1] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", and store the result in the lower elements of "dst" using writemask "k" (elements are copied from "src" when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) ELSE dst.fp16[0] := src.fp16[0] dst.fp16[1] := src.fp16[1] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", and store the result in the lower elements of "dst" using zeromask "k" (elements are zeroed out when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) ELSE dst.fp16[0] := 0 dst.fp16[1] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", and store the result in the lower elements of "dst" using zeromask "k" (elements are zeroed out when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) ELSE dst.fp16[0] := 0 dst.fp16[1] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", and store the result in the lower elements of "dst", and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", and store the result in the lower elements of "dst", and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", and store the result in the lower elements of "dst" using writemask "k" (elements are copied from "src" when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) ELSE dst.fp16[0] := src.fp16[0] dst.fp16[1] := src.fp16[1] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", and store the result in the lower elements of "dst" using writemask "k" (elements are copied from "src" when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) ELSE dst.fp16[0] := src.fp16[0] dst.fp16[1] := src.fp16[1] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", and store the result in the lower elements of "dst" using zeromask "k" (elements are zeroed out when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) ELSE dst.fp16[0] := 0 dst.fp16[1] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", and store the result in the lower elements of "dst" using zeromask "k" (elements are zeroed out when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) ELSE dst.fp16[0] := 0 dst.fp16[1] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 15 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", accumulate to the corresponding complex numbers in "src", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := a.fp16[2*i+0] dst.fp16[2*i+1] := a.fp16[2*i+1] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", accumulate to the corresponding complex numbers in "src", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := c.fp16[2*i+0] dst.fp16[2*i+1] := c.fp16[2*i+1] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] FOR i := 0 to 15 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := a.fp16[2*i+0] dst.fp16[2*i+1] := a.fp16[2*i+1] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := c.fp16[2*i+0] dst.fp16[2*i+1] := c.fp16[2*i+1] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" and "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) - (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) + (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex numbers in "a" and "b", accumulate to the lower complex number in "c", and store the result in the lower elements of "dst", and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) + c.fp16[0] dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) + c.fp16[1] dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex numbers in "a" and "b", accumulate to the lower complex number in "c", and store the result in the lower elements of "dst" using writemask "k" (elements are copied from "a" when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) + c.fp16[0] dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) + c.fp16[1] ELSE dst.fp16[0] := a.fp16[0] dst.fp16[1] := a.fp16[1] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" and "b", accumulate to the lower complex number in "c", and store the result in the lower elements of "dst" using writemask "k" (elements are copied from "c" when mask bit 0 is not set), and copy the upper 6 packed elements from "c" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) + c.fp16[0] dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) + c.fp16[1] ELSE dst.fp16[0] := c.fp16[0] dst.fp16[1] := c.fp16[1] FI dst[127:32] := c[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex numbers in "a" and "b", accumulate to the lower complex number in "c", and store the result in the lower elements of "dst" using zeromask "k" (elements are zeroed out when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) + c.fp16[0] dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) + c.fp16[1] ELSE dst.fp16[0] := 0 dst.fp16[1] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex numbers in "a" and "b", accumulate to the lower complex number in "c", and store the result in the lower elements of "dst", and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) + c.fp16[0] dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) + c.fp16[1] dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex numbers in "a" and "b", accumulate to the lower complex number in "c", and store the result in the lower elements of "dst" using writemask "k" (elements are copied from "a" when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) + c.fp16[0] dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) + c.fp16[1] ELSE dst.fp16[0] := a.fp16[0] dst.fp16[1] := a.fp16[1] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex numbers in "a" and "b", accumulate to the lower complex number in "c", and store the result in the lower elements of "dst" using writemask "k" (elements are copied from "c" when mask bit 0 is not set), and copy the upper 6 packed elements from "c" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) + c.fp16[0] dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) + c.fp16[1] ELSE dst.fp16[0] := c.fp16[0] dst.fp16[1] := c.fp16[1] FI dst[127:32] := c[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex numbers in "a" and "b", accumulate to the lower complex number in "c", and store the result in the lower elements of "dst" using zeromask "k" (elements are zeroed out when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) - (a.fp16[1] * b.fp16[1]) + c.fp16[0] dst.fp16[1] := (a.fp16[1] * b.fp16[0]) + (a.fp16[0] * b.fp16[1]) + c.fp16[1] ELSE dst.fp16[0] := 0 dst.fp16[1] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 15 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := a.fp16[2*i+0] dst.fp16[2*i+1] := a.fp16[2*i+1] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := c.fp16[2*i+0] dst.fp16[2*i+1] := c.fp16[2*i+1] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] FOR i := 0 to 15 dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := a.fp16[2*i+0] dst.fp16[2*i+1] := a.fp16[2*i+1] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using writemask "k" (elements are copied from "c" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := c.fp16[2*i+0] dst.fp16[2*i+1] := c.fp16[2*i+1] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply packed complex numbers in "a" by the complex conjugates of packed complex numbers in "b", accumulate to the corresponding complex numbers in "c", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] FOR i := 0 to 15 IF k[i] dst.fp16[2*i+0] := (a.fp16[2*i+0] * b.fp16[2*i+0]) + (a.fp16[2*i+1] * b.fp16[2*i+1]) + c.fp16[2*i+0] dst.fp16[2*i+1] := (a.fp16[2*i+1] * b.fp16[2*i+0]) - (a.fp16[2*i+0] * b.fp16[2*i+1]) + c.fp16[2*i+1] ELSE dst.fp16[2*i+0] := 0 dst.fp16[2*i+1] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", accumulate to the lower complex number in "c", and store the result in the lower elements of "dst", and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) + c.fp16[0] dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) + c.fp16[1] dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", accumulate to the lower complex number in "c", and store the result in the lower elements of "dst" using writemask "k" (elements are copied from "a" when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) + c.fp16[0] dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) + c.fp16[1] ELSE dst.fp16[0] := a.fp16[0] dst.fp16[1] := a.fp16[1] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", accumulate to the lower complex number in "c", and store the result in the lower elements of "dst" using writemask "k" (elements are copied from "c" when mask bit 0 is not set), and copy the upper 6 packed elements from "c" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) + c.fp16[0] dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) + c.fp16[1] ELSE dst.fp16[0] := c.fp16[0] dst.fp16[1] := c.fp16[1] FI dst[127:32] := c[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", accumulate to the lower complex number in "c", and store the result in the lower elements of "dst" using zeromask "k" (elements are zeroed out when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) + c.fp16[0] dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) + c.fp16[1] ELSE dst.fp16[0] := 0 dst.fp16[1] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", accumulate to the lower complex number in "c", and store the result in the lower elements of "dst", and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) + c.fp16[0] dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) + c.fp16[1] dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", accumulate to the lower complex number in "c", and store the result in the lower elements of "dst" using writemask "k" (elements are copied from "a" when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) + c.fp16[0] dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) + c.fp16[1] ELSE dst.fp16[0] := a.fp16[0] dst.fp16[1] := a.fp16[1] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", accumulate to the lower complex number in "c", and store the result in the lower elements of "dst" using writemask "k" (elements are copied from "c" when mask bit 0 is not set), and copy the upper 6 packed elements from "c" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) + c.fp16[0] dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) + c.fp16[1] ELSE dst.fp16[0] := c.fp16[0] dst.fp16[1] := c.fp16[1] FI dst[127:32] := c[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Multiply the lower complex number in "a" by the complex conjugate of the lower complex number in "b", accumulate to the lower complex number in "c", and store the result in the lower elements of "dst" using zeromask "k" (elements are zeroed out when mask bit 0 is not set), and copy the upper 6 packed elements from "a" to the upper elements of "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". [round_note] IF k[0] dst.fp16[0] := (a.fp16[0] * b.fp16[0]) + (a.fp16[1] * b.fp16[1]) + c.fp16[0] dst.fp16[1] := (a.fp16[1] * b.fp16[0]) - (a.fp16[0] * b.fp16[1]) + c.fp16[1] ELSE dst.fp16[0] := 0 dst.fp16[1] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Arithmetic
Reduce the packed half-precision (16-bit) floating-point elements in "a" by addition. Returns the sum of all elements in "a". tmp := a FOR i := 0 to 15 tmp.fp16[i] := tmp.fp16[i] + a.fp16[i+16] ENDFOR FOR i := 0 to 7 tmp.fp16[i] := tmp.fp16[i] + tmp.fp16[i+8] ENDFOR FOR i := 0 to 3 tmp.fp16[i] := tmp.fp16[i] + tmp.fp16[i+4] ENDFOR FOR i := 0 to 1 tmp.fp16[i] := tmp.fp16[i] + tmp.fp16[i+2] ENDFOR dst.fp16[0] := tmp.fp16[0] + tmp.fp16[1] AVX512_FP16
immintrin.h
Arithmetic
Reduce the packed half-precision (16-bit) floating-point elements in "a" by multiplication. Returns the product of all elements in "a". tmp := a FOR i := 0 to 15 tmp.fp16[i] := tmp.fp16[i] * a.fp16[i+16] ENDFOR FOR i := 0 to 7 tmp.fp16[i] := tmp.fp16[i] * tmp.fp16[i+8] ENDFOR FOR i := 0 to 3 tmp.fp16[i] := tmp.fp16[i] * tmp.fp16[i+4] ENDFOR FOR i := 0 to 1 tmp.fp16[i] := tmp.fp16[i] * tmp.fp16[i+2] ENDFOR dst.fp16[0] := tmp.fp16[0] * tmp.fp16[1] AVX512_FP16
immintrin.h
Arithmetic
Reduce the packed half-precision (16-bit) floating-point elements in "a" by maximum. Returns the maximum of all elements in "a". [max_float_note] tmp := a FOR i := 0 to 15 tmp.fp16[i] := (a.fp16[i] > a.fp16[i+16] ? a.fp16[i] : a.fp16[i+16]) ENDFOR FOR i := 0 to 7 tmp.fp16[i] := (tmp.fp16[i] > tmp.fp16[i+8] ? tmp.fp16[i] : tmp.fp16[i+8]) ENDFOR FOR i := 0 to 3 tmp.fp16[i] := (tmp.fp16[i] > tmp.fp16[i+4] ? tmp.fp16[i] : tmp.fp16[i+4]) ENDFOR FOR i := 0 to 1 tmp.fp16[i] := (tmp.fp16[i] > tmp.fp16[i+2] ? tmp.fp16[i] : tmp.fp16[i+2]) ENDFOR dst.fp16[0] := (tmp.fp16[0] > tmp.fp16[1] ? tmp.fp16[0] : tmp.fp16[1]) AVX512_FP16
immintrin.h
Arithmetic
Reduce the packed half-precision (16-bit) floating-point elements in "a" by minimum. Returns the minimum of all elements in "a". [min_float_note] tmp := a FOR i := 0 to 15 tmp.fp16[i] := (a.fp16[i] < a.fp16[i+16] ? tmp.fp16[i] : a.fp16[i+16]) ENDFOR FOR i := 0 to 7 tmp.fp16[i] := (tmp.fp16[i] < tmp.fp16[i+8] ? tmp.fp16[i] : tmp.fp16[i+8]) ENDFOR FOR i := 0 to 3 tmp.fp16[i] := (tmp.fp16[i] < tmp.fp16[i+4] ? tmp.fp16[i] : tmp.fp16[i+4]) ENDFOR FOR i := 0 to 1 tmp.fp16[i] := (tmp.fp16[i] < tmp.fp16[i+2] ? tmp.fp16[i] : tmp.fp16[i+2]) ENDFOR dst.fp16[0] := (tmp.fp16[0] < tmp.fp16[1] ? tmp.fp16[0] : tmp.fp16[1]) AVX512_FP16
immintrin.h
Arithmetic
Finds the absolute value of each packed half-precision (16-bit) floating-point element in "v2", storing the results in "dst". FOR j := 0 to 31 dst.fp16[j] := ABS(v2.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Compute the complex conjugates of complex numbers in "a", and store the results in "dst". Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR j := 0 to 15 i := j*32 dst[i+31:i] := a[i+31:i] XOR FP32(-0.0) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Compute the complex conjugates of complex numbers in "a", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] XOR FP32(-0.0) ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Compute the complex conjugates of complex numbers in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number "complex = vec.fp16[0] + i * vec.fp16[1]", or the complex conjugate "conjugate = vec.fp16[0] - i * vec.fp16[1]". FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := a[i+31:i] XOR FP32(-0.0) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Arithmetic
Compare packed half-precision (16-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 31 k[j] := (a.fp16[j] OP b.fp16[j]) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512_FP16
immintrin.h
Compare
Compare packed half-precision (16-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 31 IF k1[j] k[j] := ( a.fp16[j] OP b.fp16[j] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512_FP16
immintrin.h
Compare
Compare packed half-precision (16-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". [sae_note] CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 31 k[j] := (a.fp16[j] OP b.fp16[j]) ? 1 : 0 ENDFOR k[MAX:32] := 0 AVX512_FP16
immintrin.h
Compare
Compare packed half-precision (16-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] CASE (imm8[3:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC FOR j := 0 to 31 IF k1[j] k[j] := ( a.fp16[j] OP b.fp16[j] ) ? 1 : 0 ELSE k[j] := 0 FI ENDFOR k[MAX:32] := 0 AVX512_FP16
immintrin.h
Compare
Compare packed half-precision (16-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC k[0] := (a.fp16[0] OP b.fp16[0]) ? 1 : 0 k[MAX:1] := 0 AVX512_FP16
immintrin.h
Compare
Compare packed half-precision (16-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k". [sae_note] CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC k[0] := (a.fp16[0] OP b.fp16[0]) ? 1 : 0 k[MAX:1] := 0 AVX512_FP16
immintrin.h
Compare
Compare packed half-precision (16-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (the element is zeroed out when mask bit 0 is not set). CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC IF k1[0] k[0] := ( a.fp16[0] OP b.fp16[0] ) ? 1 : 0 ELSE k[0] := 0 FI k[MAX:1] := 0 AVX512_FP16
immintrin.h
Compare
Compare packed half-precision (16-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (the element is zeroed out when mask bit 0 is not set). [sae_note] CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC IF k1[0] k[0] := ( a.fp16[0] OP b.fp16[0] ) ? 1 : 0 ELSE k[0] := 0 FI k[MAX:1] := 0 AVX512_FP16
immintrin.h
Compare
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and return the boolean result (0 or 1). CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC RETURN ( a.fp16[0] OP b.fp16[0] ) ? 1 : 0 AVX512_FP16
immintrin.h
Compare
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b" based on the comparison operand specified by "imm8", and return the boolean result (0 or 1). [sae_note] CASE (imm8[4:0]) OF 0: OP := _CMP_EQ_OQ 1: OP := _CMP_LT_OS 2: OP := _CMP_LE_OS 3: OP := _CMP_UNORD_Q 4: OP := _CMP_NEQ_UQ 5: OP := _CMP_NLT_US 6: OP := _CMP_NLE_US 7: OP := _CMP_ORD_Q 8: OP := _CMP_EQ_UQ 9: OP := _CMP_NGE_US 10: OP := _CMP_NGT_US 11: OP := _CMP_FALSE_OQ 12: OP := _CMP_NEQ_OQ 13: OP := _CMP_GE_OS 14: OP := _CMP_GT_OS 15: OP := _CMP_TRUE_UQ 16: OP := _CMP_EQ_OS 17: OP := _CMP_LT_OQ 18: OP := _CMP_LE_OQ 19: OP := _CMP_UNORD_S 20: OP := _CMP_NEQ_US 21: OP := _CMP_NLT_UQ 22: OP := _CMP_NLE_UQ 23: OP := _CMP_ORD_S 24: OP := _CMP_EQ_US 25: OP := _CMP_NGE_UQ 26: OP := _CMP_NGT_UQ 27: OP := _CMP_FALSE_OS 28: OP := _CMP_NEQ_OS 29: OP := _CMP_GE_OQ 30: OP := _CMP_GT_OQ 31: OP := _CMP_TRUE_US ESAC RETURN ( a.fp16[0] OP b.fp16[0] ) ? 1 : 0 AVX512_FP16
immintrin.h
Compare
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b" for equality, and return the boolean result (0 or 1). RETURN ( a.fp16[0] !=NaN AND b.fp16[0] !=NaN AND a.fp16[0] == b.fp16[0] ) ? 1 : 0 AVX512_FP16
immintrin.h
Compare
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b" for less-than, and return the boolean result (0 or 1). RETURN ( a.fp16[0] !=NaN AND b.fp16[0] !=NaN AND a.fp16[0] < b.fp16[0] ) ? 1 : 0 AVX512_FP16
immintrin.h
Compare
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b" for less-than-or-equal, and return the boolean result (0 or 1). RETURN ( a.fp16[0] !=NaN AND b.fp16[0] !=NaN AND a.fp16[0] <= b.fp16[0] ) ? 1 : 0 AVX512_FP16
immintrin.h
Compare
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b" for greater-than, and return the boolean result (0 or 1). RETURN ( a.fp16[0] !=NaN AND b.fp16[0] !=NaN AND a.fp16[0] > b.fp16[0] ) ? 1 : 0 AVX512_FP16
immintrin.h
Compare
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b" for greater-than-or-equal, and return the boolean result (0 or 1). RETURN ( a.fp16[0] !=NaN AND b.fp16[0] !=NaN AND a.fp16[0] >= b.fp16[0] ) ? 1 : 0 AVX512_FP16
immintrin.h
Compare
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b" for not-equal, and return the boolean result (0 or 1). RETURN ( a.fp16[0] ==NaN OR b.fp16[0] ==NaN OR a.fp16[0] != b.fp16[0] ) ? 1 : 0 AVX512_FP16
immintrin.h
Compare
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b" for equality, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. RETURN ( a.fp16[0] !=NaN AND b.fp16[0] !=NaN AND a.fp16[0] == b.fp16[0] ) ? 1 : 0 AVX512_FP16
immintrin.h
Compare
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b" for less-than, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. RETURN ( a.fp16[0] !=NaN AND b.fp16[0] !=NaN AND a.fp16[0] < b.fp16[0] ) ? 1 : 0 AVX512_FP16
immintrin.h
Compare
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b" for less-than-or-equal, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. RETURN ( a.fp16[0] !=NaN AND b.fp16[0] !=NaN AND a.fp16[0] <= b.fp16[0] ) ? 1 : 0 AVX512_FP16
immintrin.h
Compare
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b" for greater-than, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. RETURN ( a.fp16[0] !=NaN AND b.fp16[0] !=NaN AND a.fp16[0] > b.fp16[0] ) ? 1 : 0 AVX512_FP16
immintrin.h
Compare
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b" for greater-than-or-equal, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. RETURN ( a.fp16[0] !=NaN AND b.fp16[0] !=NaN AND a.fp16[0] >= b.fp16[0] ) ? 1 : 0 AVX512_FP16
immintrin.h
Compare
Compare the lower half-precision (16-bit) floating-point elements in "a" and "b" for not-equal, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. RETURN ( a.fp16[0] ==NaN OR b.fp16[0] ==NaN OR a.fp16[0] != b.fp16[0] ) ? 1 : 0 AVX512_FP16
immintrin.h
Compare
Convert packed signed 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 TO 31 dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed signed 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". [round_note] FOR j := 0 TO 31 dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed signed 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 31 IF k[j] dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed signed 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 31 IF k[j] dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed signed 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 31 IF k[j] dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed signed 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 31 IF k[j] dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 TO 31 dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". [round_note] FOR j := 0 TO 31 dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 31 IF k[j] dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 31 IF k[j] dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 31 IF k[j] dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 31 IF k[j] dst.fp16[j] := Convert_Int16_To_FP16(a.word[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 TO 15 dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". [round_note] FOR j := 0 TO 15 dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 15 IF k[j] dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 15 IF k[j] dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 TO 15 dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". [round_note] FOR j := 0 TO 15 dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 15 IF k[j] dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed unsigned 32-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 15 IF k[j] dst.fp16[j] := Convert_Int32_To_FP16(a.dword[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 TO 7 dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". [round_note] FOR j := 0 TO 7 dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed signed 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 TO 7 dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". [round_note] FOR j := 0 TO 7 dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed unsigned 64-bit integers in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_Int64_To_FP16(a.qword[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 TO 7 dst.fp16[j] := Convert_FP64_To_FP16(a.fp64[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". [round_note] FOR j := 0 TO 7 dst.fp16[j] := Convert_FP64_To_FP16(a.fp64[j]) ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_FP64_To_FP16(a.fp64[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_FP64_To_FP16(a.fp64[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_FP64_To_FP16(a.fp64[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 7 IF k[j] dst.fp16[j] := Convert_FP64_To_FP16(a.fp64[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "b" to a half-precision (16-bit) floating-point elements, store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper element of "dst". dst.fp16[0] := Convert_FP64_To_FP16(b.fp64[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "b" to a half-precision (16-bit) floating-point elements, store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper element of "dst". [round_note] dst.fp16[0] := Convert_FP64_To_FP16(b.fp64[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "b" to a half-precision (16-bit) floating-point elements, store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper element of "dst". IF k[0] dst.fp16[0] := Convert_FP64_To_FP16(b.fp64[0]) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "b" to a half-precision (16-bit) floating-point elements, store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper element of "dst". [round_note] IF k[0] dst.fp16[0] := Convert_FP64_To_FP16(b.fp64[0]) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "b" to a half-precision (16-bit) floating-point elements, store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper element of "dst". IF k[0] dst.fp16[0] := Convert_FP64_To_FP16(b.fp64[0]) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "b" to a half-precision (16-bit) floating-point elements, store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper element of "dst". [round_note] IF k[0] dst.fp16[0] := Convert_FP64_To_FP16(b.fp64[0]) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 15 dst.fp16[j] := Convert_FP32_To_FP16(a.fp32[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". [round_note] FOR j := 0 to 15 dst.fp16[j] := Convert_FP32_To_FP16(a.fp32[j]) ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.fp16[j] := Convert_FP32_To_FP16(a.fp32[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 IF k[j] dst.fp16[j] := Convert_FP32_To_FP16(a.fp32[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.fp16[j] := Convert_FP32_To_FP16(a.fp32[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 to 15 IF k[j] dst.fp16[j] := Convert_FP32_To_FP16(a.fp32[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "b" to a half-precision (16-bit) floating-point elements, store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". dst.fp16[0] := Convert_FP32_To_FP16(b.fp32[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "b" to a half-precision (16-bit) floating-point elements, store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] dst.fp16[0] := Convert_FP32_To_FP16(b.fp32[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "b" to a half-precision (16-bit) floating-point elements, store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := Convert_FP32_To_FP16(b.fp32[0]) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "b" to a half-precision (16-bit) floating-point elements, store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := Convert_FP32_To_FP16(b.fp32[0]) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "b" to a half-precision (16-bit) floating-point elements, store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := Convert_FP32_To_FP16(b.fp32[0]) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "b" to a half-precision (16-bit) floating-point elements, store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := Convert_FP32_To_FP16(b.fp32[0]) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 TO 15 dst.dword[j] := Convert_FP16_To_Int32(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst". [round_note] FOR j := 0 TO 15 dst.dword[j] := Convert_FP16_To_Int32(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.dword[j] := Convert_FP16_To_Int32(a.fp16[j]) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 15 IF k[j] dst.dword[j] := Convert_FP16_To_Int32(a.fp16[j]) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.dword[j] := Convert_FP16_To_Int32(a.fp16[j]) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 15 IF k[j] dst.dword[j] := Convert_FP16_To_Int32(a.fp16[j]) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst". FOR j := 0 TO 15 dst.dword[j] := Convert_FP16_To_Int32_Truncate(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst". [sae_note] FOR j := 0 TO 15 dst.dword[j] := Convert_FP16_To_Int32_Truncate(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.dword[j] := Convert_FP16_To_Int32_Truncate(a.fp16[j]) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note] FOR j := 0 TO 15 IF k[j] dst.dword[j] := Convert_FP16_To_Int32_Truncate(a.fp16[j]) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.dword[j] := Convert_FP16_To_Int32_Truncate(a.fp16[j]) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] FOR j := 0 TO 15 IF k[j] dst.dword[j] := Convert_FP16_To_Int32_Truncate(a.fp16[j]) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst". FOR j := 0 TO 15 dst.dword[j] := Convert_FP16_To_UInt32(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst". [round_note] FOR j := 0 TO 15 dst.dword[j] := Convert_FP16_To_UInt32(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.dword[j] := Convert_FP16_To_UInt32(a.fp16[j]) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 15 IF k[j] dst.dword[j] := Convert_FP16_To_UInt32(a.fp16[j]) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.dword[j] := Convert_FP16_To_UInt32(a.fp16[j]) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 15 IF k[j] dst.dword[j] := Convert_FP16_To_UInt32(a.fp16[j]) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst". FOR j := 0 TO 15 dst.dword[j] := Convert_FP16_To_UInt32_Truncate(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst". [sae_note] FOR j := 0 TO 15 dst.dword[j] := Convert_FP16_To_UInt32_Truncate(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.dword[j] := Convert_FP16_To_UInt32_Truncate(a.fp16[j]) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note] FOR j := 0 TO 15 IF k[j] dst.dword[j] := Convert_FP16_To_UInt32_Truncate(a.fp16[j]) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 15 IF k[j] dst.dword[j] := Convert_FP16_To_UInt32_Truncate(a.fp16[j]) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 32-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] FOR j := 0 TO 15 IF k[j] dst.dword[j] := Convert_FP16_To_UInt32_Truncate(a.fp16[j]) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 TO 7 dst.qword[j] := Convert_FP16_To_Int64(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst". [round_note] FOR j := 0 TO 7 dst.qword[j] := Convert_FP16_To_Int64(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.qword[j] := Convert_FP16_To_Int64(a.fp16[j]) ELSE dst.qword[j] := src.qword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 7 IF k[j] dst.qword[j] := Convert_FP16_To_Int64(a.fp16[j]) ELSE dst.qword[j] := src.qword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.qword[j] := Convert_FP16_To_Int64(a.fp16[j]) ELSE dst.qword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 7 IF k[j] dst.qword[j] := Convert_FP16_To_Int64(a.fp16[j]) ELSE dst.qword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst". FOR j := 0 TO 7 dst.qword[j] := Convert_FP16_To_Int64_Truncate(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst". [sae_note] FOR j := 0 TO 7 dst.qword[j] := Convert_FP16_To_Int64_Truncate(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.qword[j] := Convert_FP16_To_Int64_Truncate(a.fp16[j]) ELSE dst.qword[j] := src.qword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note] FOR j := 0 TO 7 IF k[j] dst.qword[j] := Convert_FP16_To_Int64_Truncate(a.fp16[j]) ELSE dst.qword[j] := src.qword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.qword[j] := Convert_FP16_To_Int64_Truncate(a.fp16[j]) ELSE dst.qword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] FOR j := 0 TO 7 IF k[j] dst.qword[j] := Convert_FP16_To_Int64_Truncate(a.fp16[j]) ELSE dst.qword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst". FOR j := 0 TO 7 dst.qword[j] := Convert_FP16_To_UInt64(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst". [round_note] FOR j := 0 TO 7 dst.qword[j] := Convert_FP16_To_UInt64(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.qword[j] := Convert_FP16_To_UInt64(a.fp16[j]) ELSE dst.qword[j] := src.qword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 7 IF k[j] dst.qword[j] := Convert_FP16_To_UInt64(a.fp16[j]) ELSE dst.qword[j] := src.qword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.qword[j] := Convert_FP16_To_UInt64(a.fp16[j]) ELSE dst.qword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 7 IF k[j] dst.qword[j] := Convert_FP16_To_UInt64(a.fp16[j]) ELSE dst.qword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst". FOR j := 0 TO 7 dst.qword[j] := Convert_FP16_To_UInt64_Truncate(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst". [sae_note] FOR j := 0 TO 7 dst.qword[j] := Convert_FP16_To_UInt64_Truncate(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.qword[j] := Convert_FP16_To_UInt64_Truncate(a.fp16[j]) ELSE dst.qword[j] := src.qword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note] FOR j := 0 TO 7 IF k[j] dst.qword[j] := Convert_FP16_To_UInt64_Truncate(a.fp16[j]) ELSE dst.qword[j] := src.qword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 7 IF k[j] dst.qword[j] := Convert_FP16_To_UInt64_Truncate(a.fp16[j]) ELSE dst.qword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 64-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] FOR j := 0 TO 7 IF k[j] dst.qword[j] := Convert_FP16_To_UInt64_Truncate(a.fp16[j]) ELSE dst.qword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers, and store the results in "dst". FOR j := 0 TO 31 dst.word[j] := Convert_FP16_To_Int16(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers, and store the results in "dst". [round_note] FOR j := 0 TO 31 dst.word[j] := Convert_FP16_To_Int16(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 31 IF k[j] dst.word[j] := Convert_FP16_To_Int16(a.fp16[j]) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 31 IF k[j] dst.word[j] := Convert_FP16_To_Int16(a.fp16[j]) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 31 IF k[j] dst.word[j] := Convert_FP16_To_Int16(a.fp16[j]) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR j := 0 TO 31 IF k[j] dst.word[j] := Convert_FP16_To_Int16(a.fp16[j]) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers with truncation, and store the results in "dst". FOR j := 0 TO 31 dst.word[j] := Convert_FP16_To_Int16_Truncate(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers with truncation, and store the results in "dst". [sae_note] FOR j := 0 TO 31 dst.word[j] := Convert_FP16_To_Int16_Truncate(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 31 IF k[j] dst.word[j] := Convert_FP16_To_Int16_Truncate(a.fp16[j]) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note] FOR j := 0 TO 31 IF k[j] dst.word[j] := Convert_FP16_To_Int16_Truncate(a.fp16[j]) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 31 IF k[j] dst.word[j] := Convert_FP16_To_Int16_Truncate(a.fp16[j]) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed 16-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] FOR j := 0 TO 31 IF k[j] dst.word[j] := Convert_FP16_To_Int16_Truncate(a.fp16[j]) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers, and store the results in "dst". FOR j := 0 TO 31 dst.word[j] := Convert_FP16_To_UInt16(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers, and store the results in "dst". [sae_note] FOR j := 0 TO 31 dst.word[j] := Convert_FP16_To_UInt16(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 31 IF k[j] dst.word[j] := Convert_FP16_To_UInt16(a.fp16[j]) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note] FOR j := 0 TO 31 IF k[j] dst.word[j] := Convert_FP16_To_UInt16(a.fp16[j]) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 31 IF k[j] dst.word[j] := Convert_FP16_To_UInt16(a.fp16[j]) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] FOR j := 0 TO 31 IF k[j] dst.word[j] := Convert_FP16_To_UInt16(a.fp16[j]) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers with truncation, and store the results in "dst". FOR j := 0 TO 31 dst.word[j] := Convert_FP16_To_UInt16_Truncate(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers with truncation, and store the results in "dst". [sae_note] FOR j := 0 TO 31 dst.word[j] := Convert_FP16_To_UInt16_Truncate(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 TO 31 IF k[j] dst.word[j] := Convert_FP16_To_UInt16_Truncate(a.fp16[j]) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers with truncation, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note] FOR j := 0 TO 31 IF k[j] dst.word[j] := Convert_FP16_To_UInt16_Truncate(a.fp16[j]) ELSE dst.word[j] := src.word[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 TO 31 IF k[j] dst.word[j] := Convert_FP16_To_UInt16_Truncate(a.fp16[j]) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed unsigned 16-bit integers with truncation, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] FOR j := 0 TO 31 IF k[j] dst.word[j] := Convert_FP16_To_UInt16_Truncate(a.fp16[j]) ELSE dst.word[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 dst.fp64[j] := Convert_FP16_To_FP64(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". [sae_note] FOR j := 0 to 7 dst.fp64[j] := Convert_FP16_To_FP64(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp64[j] := Convert_FP16_To_FP64(a.fp16[j]) ELSE dst.fp64[j] := src.fp64[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 7 IF k[j] dst.fp64[j] := Convert_FP16_To_FP64(a.fp16[j]) ELSE dst.fp64[j] := src.fp64[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] dst.fp64[j] := Convert_FP16_To_FP64(a.fp16[j]) ELSE dst.fp64[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 7 IF k[j] dst.fp64[j] := Convert_FP16_To_FP64(a.fp16[j]) ELSE dst.fp64[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 15 dst.fp32[j] := Convert_FP16_To_FP32(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". [sae_note] FOR j := 0 to 15 dst.fp32[j] := Convert_FP16_To_FP32(a.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.fp32[j] := Convert_FP16_To_FP32(a.fp16[j]) ELSE dst.fp32[j] := src.fp32[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 15 IF k[j] dst.fp32[j] := Convert_FP16_To_FP32(a.fp16[j]) ELSE dst.fp32[j] := src.fp32[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] dst.fp32[j] := Convert_FP16_To_FP32(a.fp16[j]) ELSE dst.fp32[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note] FOR j := 0 to 15 IF k[j] dst.fp32[j] := Convert_FP16_To_FP32(a.fp16[j]) ELSE dst.fp32[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst.fp64[0] := Convert_FP16_To_FP64(b.fp16[0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [sae_note] dst.fp64[0] := Convert_FP16_To_FP64(b.fp16[0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst.fp64[0] := Convert_FP16_To_FP64(b.fp16[0]) ELSE dst.fp64[0] := src.fp64[0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [sae_note] IF k[0] dst.fp64[0] := Convert_FP16_To_FP64(b.fp16[0]) ELSE dst.fp64[0] := src.fp64[0] FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". IF k[0] dst.fp64[0] := Convert_FP16_To_FP64(b.fp16[0]) ELSE dst.fp64[0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper element from "a" to the upper element of "dst". [sae_note] IF k[0] dst.fp64[0] := Convert_FP16_To_FP64(b.fp16[0]) ELSE dst.fp64[0] := 0 FI dst[127:64] := a[127:64] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst.fp32[0] := Convert_FP16_To_FP32(b.fp16[0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [sae_note] dst.fp32[0] := Convert_FP16_To_FP32(b.fp16[0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp32[0] := Convert_FP16_To_FP32(b.fp16[0]) ELSE dst.fp32[0] := src.fp32[0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [sae_note] IF k[0] dst.fp32[0] := Convert_FP16_To_FP32(b.fp16[0]) ELSE dst.fp32[0] := src.fp32[0] FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp32[0] := Convert_FP16_To_FP32(b.fp16[0]) ELSE dst.fp32[0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from "a" to the upper elements of "dst". [sae_note] IF k[0] dst.fp32[0] := Convert_FP16_To_FP32(b.fp16[0]) ELSE dst.fp32[0] := 0 FI dst[127:32] := a[127:32] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "a" to a 32-bit integer, and store the result in "dst". dst.dword := Convert_FP16_To_Int32(a.fp16[0]) AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "a" to a 32-bit integer, and store the result in "dst". [round_note] dst.dword := Convert_FP16_To_Int32(a.fp16[0]) AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "a" to a 64-bit integer, and store the result in "dst". dst.qword := Convert_FP16_To_Int64(a.fp16[0]) AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "a" to a 64-bit integer, and store the result in "dst". [round_note] dst.qword := Convert_FP16_To_Int64(a.fp16[0]) AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "a" to a 32-bit integer with truncation, and store the result in "dst". dst.dword := Convert_FP16_To_Int32_Truncate(a.fp16[0]) AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "a" to a 32-bit integer with truncation, and store the result in "dst". [sae_note] dst.dword := Convert_FP16_To_Int32_Truncate(a.fp16[0]) AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "a" to a 64-bit integer with truncation, and store the result in "dst". dst.qword := Convert_FP16_To_Int64_Truncate(a.fp16[0]) AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "a" to a 64-bit integer with truncation, and store the result in "dst". [sae_note] dst.qword := Convert_FP16_To_Int64_Truncate(a.fp16[0]) AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "a" to an unsigned 32-bit integer, and store the result in "dst". dst.dword := Convert_FP16_To_UInt32(a.fp16[0]) AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "a" to an unsigned 32-bit integer, and store the result in "dst". [sae_note] dst.dword := Convert_FP16_To_UInt32(a.fp16[0]) AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "a" to an unsigned 64-bit integer, and store the result in "dst". dst.qword := Convert_FP16_To_UInt64(a.fp16[0]) AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "a" to an unsigned 64-bit integer, and store the result in "dst". [round_note] dst.qword := Convert_FP16_To_UInt64(a.fp16[0]) AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "a" to an unsigned 32-bit integer with truncation, and store the result in "dst". dst.dword := Convert_FP16_To_UInt32_Truncate(a.fp16[0]) AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "a" to an unsigned 32-bit integer with truncation, and store the result in "dst". [sae_note] dst.dword := Convert_FP16_To_UInt32_Truncate(a.fp16[0]) AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "a" to an unsigned 64-bit integer with truncation, and store the result in "dst". dst.qword := Convert_FP16_To_UInt64_Truncate(a.fp16[0]) AVX512_FP16
immintrin.h
Convert
Convert the lower half-precision (16-bit) floating-point element in "a" to an unsigned 64-bit integer with truncation, and store the result in "dst". [sae_note] dst.qword := Convert_FP16_To_UInt64_Truncate(a.fp16[0]) AVX512_FP16
immintrin.h
Convert
Convert the signed 32-bit integer "b" to a half-precision (16-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". dst.fp16[0] := Convert_Int32_To_FP16(b.fp32[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the signed 32-bit integer "b" to a half-precision (16-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] dst.fp16[0] := Convert_Int32_To_FP16(b.fp32[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the unsigned 32-bit integer "b" to a half-precision (16-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". dst.fp16[0] := Convert_Int32_To_FP16(b.fp32[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the unsigned 32-bit integer "b" to a half-precision (16-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] dst.fp16[0] := Convert_Int32_To_FP16(b.fp32[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the signed 64-bit integer "b" to a half-precision (16-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". dst.fp16[0] := Convert_Int64_To_FP16(b.fp64[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the signed 64-bit integer "b" to a half-precision (16-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] dst.fp16[0] := Convert_Int64_To_FP16(b.fp64[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the unsigned 64-bit integer "b" to a half-precision (16-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". dst.fp16[0] := Convert_Int64_To_FP16(b.fp64[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Convert the unsigned 64-bit integer "b" to a half-precision (16-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] dst.fp16[0] := Convert_Int64_To_FP16(b.fp64[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Convert
Copy 16-bit integer "a" to the lower elements of "dst", and zero the upper elements of "dst". dst.fp16[0] := a.fp16[0] dst[MAX:16] := 0 AVX512_FP16
immintrin.h
Convert
Copy the lower 16-bit integer in "a" to "dst". dst.fp16[0] := a.fp16[0] dst[MAX:16] := 0 AVX512_FP16
immintrin.h
Convert
Copy the lower half-precision (16-bit) floating-point element of "a" to "dst". dst[15:0] := a.fp16[0] AVX512_FP16
immintrin.h
Convert
Copy the lower half-precision (16-bit) floating-point element of "a" to "dst". dst[15:0] := a.fp16[0] AVX512_FP16
immintrin.h
Convert
Copy the lower half-precision (16-bit) floating-point element of "a" to "dst". dst[15:0] := a.fp16[0] AVX512_FP16
immintrin.h
Convert
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst". [max_float_note] FOR j := 0 to 31 dst.fp16[j] := (a.fp16[j] > b.fp16[j] ? a.fp16[j] : b.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [max_float_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] > b.fp16[j] ? a.fp16[j] : b.fp16[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [max_float_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] > b.fp16[j] ? a.fp16[j] : b.fp16[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst". [sae_note][max_float_note] FOR j := 0 to 31 dst.fp16[j] := (a.fp16[j] > b.fp16[j] ? a.fp16[j] : b.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note][max_float_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] > b.fp16[j] ? a.fp16[j] : b.fp16[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note][max_float_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] > b.fp16[j] ? a.fp16[j] : b.fp16[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst". [min_float_note] FOR j := 0 to 31 dst.fp16[j] := (a.fp16[j] < b.fp16[j] ? a.fp16[j] : b.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [min_float_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] < b.fp16[j] ? a.fp16[j] : b.fp16[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [min_float_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] < b.fp16[j] ? a.fp16[j] : b.fp16[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst". [sae_note] [min_float_note] FOR j := 0 to 31 dst.fp16[j] := (a.fp16[j] < b.fp16[j] ? a.fp16[j] : b.fp16[j]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [sae_note][min_float_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] < b.fp16[j] ? a.fp16[j] : b.fp16[j]) ELSE dst.fp16[j] := src.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Special Math Functions
Compare packed half-precision (16-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [sae_note][min_float_note] FOR j := 0 to 31 IF k[j] dst.fp16[j] := (a.fp16[j] < b.fp16[j] ? a.fp16[j] : b.fp16[j]) ELSE dst.fp16[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Special Math Functions
Extract the reduced argument of the lower half-precision (16-bit) floating-point element in "b" by the number of bits specified by "imm8", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_imm_note] DEFINE ReduceArgumentFP16(src[15:0], imm8[7:0]) { m[15:0] := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[15:0] := POW(2.0, FP16(-m)) * ROUND(POW(2.0, FP16(m)) * src[15:0], imm8[3:0]) tmp[15:0] := src[15:0] - tmp[15:0] IF IsInf(tmp[15:0]) tmp[15:0] := FP16(0.0) FI RETURN tmp[15:0] } dst.fp16[0] := ReduceArgumentFP16(b.fp16[0], imm8) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Special Math Functions
Extract the reduced argument of the lower half-precision (16-bit) floating-point element in "b" by the number of bits specified by "imm8", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_imm_note][sae_note] DEFINE ReduceArgumentFP16(src[15:0], imm8[7:0]) { m[15:0] := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[15:0] := POW(2.0, FP16(-m)) * ROUND(POW(2.0, FP16(m)) * src[15:0], imm8[3:0]) tmp[15:0] := src[15:0] - tmp[15:0] IF IsInf(tmp[15:0]) tmp[15:0] := FP16(0.0) FI RETURN tmp[15:0] } dst.fp16[0] := ReduceArgumentFP16(b.fp16[0], imm8) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Special Math Functions
Extract the reduced argument of the lower half-precision (16-bit) floating-point element in "b" by the number of bits specified by "imm8", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_imm_note] DEFINE ReduceArgumentFP16(src[15:0], imm8[7:0]) { m[15:0] := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[15:0] := POW(2.0, FP16(-m)) * ROUND(POW(2.0, FP16(m)) * src[15:0], imm8[3:0]) tmp[15:0] := src[15:0] - tmp[15:0] IF IsInf(tmp[15:0]) tmp[15:0] := FP16(0.0) FI RETURN tmp[15:0] } IF k[0] dst.fp16[0] := ReduceArgumentFP16(b.fp16[0], imm8) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Special Math Functions
Extract the reduced argument of the lower half-precision (16-bit) floating-point element in "b" by the number of bits specified by "imm8", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_imm_note][sae_note] DEFINE ReduceArgumentFP16(src[15:0], imm8[7:0]) { m[15:0] := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[15:0] := POW(2.0, FP16(-m)) * ROUND(POW(2.0, FP16(m)) * src[15:0], imm8[3:0]) tmp[15:0] := src[15:0] - tmp[15:0] IF IsInf(tmp[15:0]) tmp[15:0] := FP16(0.0) FI RETURN tmp[15:0] } IF k[0] dst.fp16[0] := ReduceArgumentFP16(b.fp16[0], imm8) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Special Math Functions
Extract the reduced argument of the lower half-precision (16-bit) floating-point element in "b" by the number of bits specified by "imm8", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_imm_note] DEFINE ReduceArgumentFP16(src[15:0], imm8[7:0]) { m[15:0] := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[15:0] := POW(2.0, FP16(-m)) * ROUND(POW(2.0, FP16(m)) * src[15:0], imm8[3:0]) tmp[15:0] := src[15:0] - tmp[15:0] IF IsInf(tmp[15:0]) tmp[15:0] := FP16(0.0) FI RETURN tmp[15:0] } IF k[0] dst.fp16[0] := ReduceArgumentFP16(b.fp16[0], imm8) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Special Math Functions
Extract the reduced argument of the lower half-precision (16-bit) floating-point element in "b" by the number of bits specified by "imm8", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_imm_note][sae_note] DEFINE ReduceArgumentFP16(src[15:0], imm8[7:0]) { m[15:0] := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[15:0] := POW(2.0, FP16(-m)) * ROUND(POW(2.0, FP16(m)) * src[15:0], imm8[3:0]) tmp[15:0] := src[15:0] - tmp[15:0] IF IsInf(tmp[15:0]) tmp[15:0] := FP16(0.0) FI RETURN tmp[15:0] } IF k[0] dst.fp16[0] := ReduceArgumentFP16(b.fp16[0], imm8) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Special Math Functions
Load a half-precision (16-bit) floating-point element from memory into the lower element of "dst", and zero the upper elements. dst.fp16[0] := MEM[mem_addr].fp16[0] dst[MAX:16] := 0 AVX512_FP16
immintrin.h
Load
Load a half-precision (16-bit) floating-point element from memory into the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and set the upper elements of "dst" to zero. IF k[0] dst.fp16[0] := MEM[mem_addr].fp16[0] ELSE dst.fp16[0] := src.fp16[0] FI dst[MAX:16] := 0 AVX512_FP16
immintrin.h
Load
Load a half-precision (16-bit) floating-point element from memory into the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and set the upper elements of "dst" to zero. IF k[0] dst.fp16[0] := MEM[mem_addr].fp16[0] ELSE dst.fp16[0] := 0 FI dst[MAX:16] := 0 AVX512_FP16
immintrin.h
Load
Load 512-bits (composed of 32 packed half-precision (16-bit) floating-point elements) from memory into "dst". "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. dst[511:0] := MEM[mem_addr+511:mem_addr] dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Load
Load 512-bits (composed of 32 packed half-precision (16-bit) floating-point elements) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[511:0] := MEM[mem_addr+511:mem_addr] dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Load
Store the lower half-precision (16-bit) floating-point element from "a" into memory. MEM[mem_addr].fp16[0] := a.fp16[0] AVX512_FP16
immintrin.h
Store
Store the lower half-precision (16-bit) floating-point element from "a" into memory using writemask "k". IF k[0] MEM[mem_addr].fp16[0] := a.fp16[0] FI AVX512_FP16
immintrin.h
Store
Store 512-bits (composed of 32 packed half-precision (16-bit) floating-point elements) from "a" into memory. "mem_addr" must be aligned on a 64-byte boundary or a general-protection exception may be generated. MEM[mem_addr+511:mem_addr] := a[511:0] AVX512_FP16
immintrin.h
Store
Store 512-bits (composed of 32 packed half-precision (16-bit) floating-point elements) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+511:mem_addr] := a[511:0] AVX512_FP16
immintrin.h
Store
Move the lower half-precision (16-bit) floating-point element from "b" to the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". dst.fp16[0] := b.fp16[0] dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Move
Move the lower half-precision (16-bit) floating-point element from "b" to the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := b.fp16[0] ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Move
Move the lower half-precision (16-bit) floating-point element from "b" to the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := b.fp16[0] ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Move
Round packed half-precision (16-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst". [round_imm_note] DEFINE RoundScaleFP16(src.fp16, imm8[7:0]) { m.fp16 := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp.fp16 := POW(FP16(2.0), -m) * ROUND(POW(FP16(2.0), m) * src.fp16, imm8[3:0]) RETURN tmp.fp16 } FOR i := 0 to 31 dst.fp16[i] := RoundScaleFP16(a.fp16[i], imm8) ENDFOR dest[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Round packed half-precision (16-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst". [round_imm_note][sae_note] DEFINE RoundScaleFP16(src.fp16, imm8[7:0]) { m.fp16 := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp.fp16 := POW(FP16(2.0), -m) * ROUND(POW(FP16(2.0), m) * src.fp16, imm8[3:0]) RETURN tmp.fp16 } FOR i := 0 to 31 dst.fp16[i] := RoundScaleFP16(a.fp16[i], imm8) ENDFOR dest[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Round packed half-precision (16-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] DEFINE RoundScaleFP16(src.fp16, imm8[7:0]) { m.fp16 := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp.fp16 := POW(FP16(2.0), -m) * ROUND(POW(FP16(2.0), m) * src.fp16, imm8[3:0]) RETURN tmp.fp16 } FOR i := 0 to 31 IF k[i] dst.fp16[i] := RoundScaleFP16(a.fp16[i], imm8) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dest[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Round packed half-precision (16-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note][sae_note] DEFINE RoundScaleFP16(src.fp16, imm8[7:0]) { m.fp16 := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp.fp16 := POW(FP16(2.0), -m) * ROUND(POW(FP16(2.0), m) * src.fp16, imm8[3:0]) RETURN tmp.fp16 } FOR i := 0 to 31 IF k[i] dst.fp16[i] := RoundScaleFP16(a.fp16[i], imm8) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dest[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Round packed half-precision (16-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] DEFINE RoundScaleFP16(src.fp16, imm8[7:0]) { m.fp16 := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp.fp16 := POW(FP16(2.0), -m) * ROUND(POW(FP16(2.0), m) * src.fp16, imm8[3:0]) RETURN tmp.fp16 } FOR i := 0 to 31 IF k[i] dst.fp16[i] := RoundScaleFP16(a.fp16[i], imm8) ELSE dst.fp16[i] := 0 FI ENDFOR dest[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Round packed half-precision (16-bit) floating-point elements in "a" to the number of fraction bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note][sae_note] DEFINE RoundScaleFP16(src.fp16, imm8[7:0]) { m.fp16 := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp.fp16 := POW(FP16(2.0), -m) * ROUND(POW(FP16(2.0), m) * src.fp16, imm8[3:0]) RETURN tmp.fp16 } FOR i := 0 to 31 IF k[i] dst.fp16[i] := RoundScaleFP16(a.fp16[i], imm8) ELSE dst.fp16[i] := 0 FI ENDFOR dest[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Round the lower half-precision (16-bit) floating-point element in "b" to the number of fraction bits specified by "imm8", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_imm_note] DEFINE RoundScaleFP16(src.fp16, imm8[7:0]) { m.fp16 := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp.fp16 := POW(FP16(2.0), -m) * ROUND(POW(FP16(2.0), m) * src.fp16, imm8[3:0]) RETURN tmp.fp16 } dst.fp16[0] := RoundScaleFP16(b.fp16[0], imm8) dst[127:16] := a[127:16] dest[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Round the lower half-precision (16-bit) floating-point element in "b" to the number of fraction bits specified by "imm8", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_imm_note][sae_note] DEFINE RoundScaleFP16(src.fp16, imm8[7:0]) { m.fp16 := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp.fp16 := POW(FP16(2.0), -m) * ROUND(POW(FP16(2.0), m) * src.fp16, imm8[3:0]) RETURN tmp.fp16 } dst.fp16[0] := RoundScaleFP16(b.fp16[0], imm8) dst[127:16] := a[127:16] dest[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Round the lower half-precision (16-bit) floating-point element in "b" to the number of fraction bits specified by "imm8", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_imm_note] DEFINE RoundScaleFP16(src.fp16, imm8[7:0]) { m.fp16 := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp.fp16 := POW(FP16(2.0), -m) * ROUND(POW(FP16(2.0), m) * src.fp16, imm8[3:0]) RETURN tmp.fp16 } IF k[0] dst.fp16[0] := RoundScaleFP16(b.fp16[0], imm8) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dest[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Round the lower half-precision (16-bit) floating-point element in "b" to the number of fraction bits specified by "imm8", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_imm_note][sae_note] DEFINE RoundScaleFP16(src.fp16, imm8[7:0]) { m.fp16 := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp.fp16 := POW(FP16(2.0), -m) * ROUND(POW(FP16(2.0), m) * src.fp16, imm8[3:0]) RETURN tmp.fp16 } IF k[0] dst.fp16[0] := RoundScaleFP16(b.fp16[0], imm8) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dest[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Round the lower half-precision (16-bit) floating-point element in "b" to the number of fraction bits specified by "imm8", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_imm_note] DEFINE RoundScaleFP16(src.fp16, imm8[7:0]) { m.fp16 := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp.fp16 := POW(FP16(2.0), -m) * ROUND(POW(FP16(2.0), m) * src.fp16, imm8[3:0]) RETURN tmp.fp16 } IF k[0] dst.fp16[0] := RoundScaleFP16(b.fp16[0], imm8) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dest[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Round the lower half-precision (16-bit) floating-point element in "b" to the number of fraction bits specified by "imm8", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_imm_note][sae_note] DEFINE RoundScaleFP16(src.fp16, imm8[7:0]) { m.fp16 := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp.fp16 := POW(FP16(2.0), -m) * ROUND(POW(FP16(2.0), m) * src.fp16, imm8[3:0]) RETURN tmp.fp16 } IF k[0] dst.fp16[0] := RoundScaleFP16(b.fp16[0], imm8) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dest[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Convert the exponent of each packed half-precision (16-bit) floating-point element in "a" to a half-precision (16-bit) floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. FOR i := 0 to 31 dst.fp16[i] := ConvertExpFP16(a.fp16[i]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Convert the exponent of each packed half-precision (16-bit) floating-point element in "a" to a half-precision (16-bit) floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. [sae_note] FOR i := 0 to 31 dst.fp16[i] := ConvertExpFP16(a.fp16[i]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Convert the exponent of each packed half-precision (16-bit) floating-point element in "a" to a half-precision (16-bit) floating-point number representing the integer exponent, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR i := 0 to 31 IF k[i] dst.fp16[i] := ConvertExpFP16(a.fp16[i]) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Convert the exponent of each packed half-precision (16-bit) floating-point element in "a" to a half-precision (16-bit) floating-point number representing the integer exponent, and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. [sae_note] FOR i := 0 to 31 IF k[i] dst.fp16[i] := ConvertExpFP16(a.fp16[i]) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Convert the exponent of each packed half-precision (16-bit) floating-point element in "a" to a half-precision (16-bit) floating-point number representing the integer exponent, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. FOR i := 0 to 31 IF k[i] dst.fp16[i] := ConvertExpFP16(a.fp16[i]) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Convert the exponent of each packed half-precision (16-bit) floating-point element in "a" to a half-precision (16-bit) floating-point number representing the integer exponent, and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "floor(log2(x))" for each element. [sae_note] FOR i := 0 to 31 IF k[i] dst.fp16[i] := ConvertExpFP16(a.fp16[i]) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Convert the exponent of the lower half-precision (16-bit) floating-point element in "b" to a half-precision (16-bit) floating-point number representing the integer exponent, store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "floor(log2(x))" for the lower element. dst.fp16[0] := ConvertExpFP16(b.fp16[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Convert the exponent of the lower half-precision (16-bit) floating-point element in "b" to a half-precision (16-bit) floating-point number representing the integer exponent, store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "floor(log2(x))" for the lower element. [sae_note] dst.fp16[0] := ConvertExpFP16(b.fp16[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Convert the exponent of the lower half-precision (16-bit) floating-point element in "b" to a half-precision (16-bit) floating-point number representing the integer exponent, store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "floor(log2(x))" for the lower element. IF k[0] dst.fp16[0] := ConvertExpFP16(b.fp16[0]) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Convert the exponent of the lower half-precision (16-bit) floating-point element in "b" to a half-precision (16-bit) floating-point number representing the integer exponent, store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "floor(log2(x))" for the lower element. [sae_note] IF k[0] dst.fp16[0] := ConvertExpFP16(b.fp16[0]) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Convert the exponent of the lower half-precision (16-bit) floating-point element in "b" to a half-precision (16-bit) floating-point number representing the integer exponent, store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "floor(log2(x))" for the lower element. IF k[0] dst.fp16[0] := ConvertExpFP16(b.fp16[0]) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Convert the exponent of the lower half-precision (16-bit) floating-point element in "b" to a half-precision (16-bit) floating-point number representing the integer exponent, store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "floor(log2(x))" for the lower element. [sae_note] IF k[0] dst.fp16[0] := ConvertExpFP16(b.fp16[0]) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Normalize the mantissas of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "norm" and the sign depends on "sign" and the source sign. [getmant_note] FOR i := 0 TO 31 dst.fp16[i] := GetNormalizedMantissaFP16(a.fp16[i], norm, sign) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Normalize the mantissas of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "norm" and the sign depends on "sign" and the source sign. [getmant_note][sae_note] FOR i := 0 TO 31 dst.fp16[i] := GetNormalizedMantissaFP16(a.fp16[i], norm, sign) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Normalize the mantissas of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "norm" and the sign depends on "sign" and the source sign. [getmant_note] FOR i := 0 TO 31 IF k[i] dst.fp16[i] := GetNormalizedMantissaFP16(a.fp16[i], norm, sign) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Normalize the mantissas of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "norm" and the sign depends on "sign" and the source sign. [getmant_note][sae_note] FOR i := 0 TO 31 IF k[i] dst.fp16[i] := GetNormalizedMantissaFP16(a.fp16[i], norm, sign) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Normalize the mantissas of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "norm" and the sign depends on "sign" and the source sign. [getmant_note] FOR i := 0 TO 31 IF k[i] dst.fp16[i] := GetNormalizedMantissaFP16(a.fp16[i], norm, sign) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Normalize the mantissas of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "norm" and the sign depends on "sign" and the source sign. [getmant_note][sae_note] FOR i := 0 TO 31 IF k[i] dst.fp16[i] := GetNormalizedMantissaFP16(a.fp16[i], norm, sign) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Normalize the mantissas of the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "norm" and the sign depends on "sign" and the source sign. [getmant_note] dst.fp16[0] := GetNormalizedMantissaFP16(b.fp16[0], norm, sign) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Normalize the mantissas of the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "norm" and the sign depends on "sign" and the source sign. [getmant_note][sae_note] dst.fp16[0] := GetNormalizedMantissaFP16(b.fp16[0], norm, sign) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Normalize the mantissas of the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "norm" and the sign depends on "sign" and the source sign. [getmant_note] IF k[0] dst.fp16[0] := GetNormalizedMantissaFP16(b.fp16[0], norm, sign) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Normalize the mantissas of the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "norm" and the sign depends on "sign" and the source sign. [getmant_note][sae_note] IF k[0] dst.fp16[0] := GetNormalizedMantissaFP16(b.fp16[0], norm, sign) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Normalize the mantissas of the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "norm" and the sign depends on "sign" and the source sign. [getmant_note] IF k[0] dst.fp16[0] := GetNormalizedMantissaFP16(b.fp16[0], norm, sign) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Normalize the mantissas of the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". This intrinsic essentially calculates "±(2^k)*|x.significand|", where "k" depends on the interval range defined by "norm" and the sign depends on "sign" and the source sign. [getmant_note][sae_note] IF k[0] dst.fp16[0] := GetNormalizedMantissaFP16(b.fp16[0], norm, sign) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Extract the reduced argument of packed half-precision (16-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst". [round_imm_note] DEFINE ReduceArgumentFP16(src[15:0], imm8[7:0]) { m[15:0] := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[15:0] := POW(2.0, FP16(-m)) * ROUND(POW(2.0, FP16(m)) * src[15:0], imm8[3:0]) tmp[15:0] := src[15:0] - tmp[15:0] IF IsInf(tmp[15:0]) tmp[15:0] := FP16(0.0) FI RETURN tmp[15:0] } FOR i := 0 to 31 dst.fp16[i] := ReduceArgumentFP16(a.fp16[i], imm8) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Extract the reduced argument of packed half-precision (16-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst". [round_imm_note][sae_note] DEFINE ReduceArgumentFP16(src[15:0], imm8[7:0]) { m[15:0] := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[15:0] := POW(2.0, FP16(-m)) * ROUND(POW(2.0, FP16(m)) * src[15:0], imm8[3:0]) tmp[15:0] := src[15:0] - tmp[15:0] IF IsInf(tmp[15:0]) tmp[15:0] := FP16(0.0) FI RETURN tmp[15:0] } FOR i := 0 to 31 dst.fp16[i] := ReduceArgumentFP16(a.fp16[i], imm8) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Extract the reduced argument of packed half-precision (16-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note] DEFINE ReduceArgumentFP16(src[15:0], imm8[7:0]) { m[15:0] := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[15:0] := POW(2.0, FP16(-m)) * ROUND(POW(2.0, FP16(m)) * src[15:0], imm8[3:0]) tmp[15:0] := src[15:0] - tmp[15:0] IF IsInf(tmp[15:0]) tmp[15:0] := FP16(0.0) FI RETURN tmp[15:0] } FOR i := 0 to 31 IF k[i] dst.fp16[i] := ReduceArgumentFP16(a.fp16[i], imm8) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Extract the reduced argument of packed half-precision (16-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_imm_note][sae_note] DEFINE ReduceArgumentFP16(src[15:0], imm8[7:0]) { m[15:0] := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[15:0] := POW(2.0, FP16(-m)) * ROUND(POW(2.0, FP16(m)) * src[15:0], imm8[3:0]) tmp[15:0] := src[15:0] - tmp[15:0] IF IsInf(tmp[15:0]) tmp[15:0] := FP16(0.0) FI RETURN tmp[15:0] } FOR i := 0 to 31 IF k[i] dst.fp16[i] := ReduceArgumentFP16(a.fp16[i], imm8) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Extract the reduced argument of packed half-precision (16-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note] DEFINE ReduceArgumentFP16(src[15:0], imm8[7:0]) { m[15:0] := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[15:0] := POW(2.0, FP16(-m)) * ROUND(POW(2.0, FP16(m)) * src[15:0], imm8[3:0]) tmp[15:0] := src[15:0] - tmp[15:0] IF IsInf(tmp[15:0]) tmp[15:0] := FP16(0.0) FI RETURN tmp[15:0] } FOR i := 0 to 31 IF k[i] dst.fp16[i] := ReduceArgumentFP16(a.fp16[i], imm8) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Extract the reduced argument of packed half-precision (16-bit) floating-point elements in "a" by the number of bits specified by "imm8", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_imm_note][sae_note] DEFINE ReduceArgumentFP16(src[15:0], imm8[7:0]) { m[15:0] := FP16(imm8[7:4]) // number of fraction bits after the binary point to be preserved tmp[15:0] := POW(2.0, FP16(-m)) * ROUND(POW(2.0, FP16(m)) * src[15:0], imm8[3:0]) tmp[15:0] := src[15:0] - tmp[15:0] IF IsInf(tmp[15:0]) tmp[15:0] := FP16(0.0) FI RETURN tmp[15:0] } FOR i := 0 to 31 IF k[i] dst.fp16[i] := ReduceArgumentFP16(a.fp16[i], imm8) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Scale the packed half-precision (16-bit) floating-point elements in "a" using values from "b", and store the results in "dst". DEFINE ScaleFP16(src1, src2) { denormal1 := (a.exp == 0) and (a.fraction != 0) denormal2 := (b.exp == 0) and (b.fraction != 0) tmp1 := src1 tmp2 := src2 IF MXCSR.DAZ IF denormal1 tmp1 := 0 FI IF denormal2 tmp2 := 0 FI FI RETURN tmp1 * POW(2.0, FLOOR(tmp2)) } FOR i := 0 to 15 dst.fp16[i] := ScaleFP16(a.fp16[i], b.fp16[i]) ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Scale the packed half-precision (16-bit) floating-point elements in "a" using values from "b", and store the results in "dst". [round_note] DEFINE ScaleFP16(src1, src2) { denormal1 := (a.exp == 0) and (a.fraction != 0) denormal2 := (b.exp == 0) and (b.fraction != 0) tmp1 := src1 tmp2 := src2 IF MXCSR.DAZ IF denormal1 tmp1 := 0 FI IF denormal2 tmp2 := 0 FI FI RETURN tmp1 * POW(2.0, FLOOR(tmp2)) } FOR i := 0 to 15 dst.fp16[i] := ScaleFP16(a.fp16[i], b.fp16[i]) ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Scale the packed half-precision (16-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE ScaleFP16(src1, src2) { denormal1 := (a.exp == 0) and (a.fraction != 0) denormal2 := (b.exp == 0) and (b.fraction != 0) tmp1 := src1 tmp2 := src2 IF MXCSR.DAZ IF denormal1 tmp1 := 0 FI IF denormal2 tmp2 := 0 FI FI RETURN tmp1 * POW(2.0, FLOOR(tmp2)) } FOR i := 0 to 15 IF k[i] dst.fp16[i] := ScaleFP16(a.fp16[i], b.fp16[i]) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Scale the packed half-precision (16-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] DEFINE ScaleFP16(src1, src2) { denormal1 := (a.exp == 0) and (a.fraction != 0) denormal2 := (b.exp == 0) and (b.fraction != 0) tmp1 := src1 tmp2 := src2 IF MXCSR.DAZ IF denormal1 tmp1 := 0 FI IF denormal2 tmp2 := 0 FI FI RETURN tmp1 * POW(2.0, FLOOR(tmp2)) } FOR i := 0 to 15 IF k[i] dst.fp16[i] := ScaleFP16(a.fp16[i], b.fp16[i]) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Scale the packed half-precision (16-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE ScaleFP16(src1, src2) { denormal1 := (a.exp == 0) and (a.fraction != 0) denormal2 := (b.exp == 0) and (b.fraction != 0) tmp1 := src1 tmp2 := src2 IF MXCSR.DAZ IF denormal1 tmp1 := 0 FI IF denormal2 tmp2 := 0 FI FI RETURN tmp1 * POW(2.0, FLOOR(tmp2)) } FOR i := 0 to 15 IF k[i] dst.fp16[i] := ScaleFP16(a.fp16[i], b.fp16[i]) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Scale the packed half-precision (16-bit) floating-point elements in "a" using values from "b", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] DEFINE ScaleFP16(src1, src2) { denormal1 := (a.exp == 0) and (a.fraction != 0) denormal2 := (b.exp == 0) and (b.fraction != 0) tmp1 := src1 tmp2 := src2 IF MXCSR.DAZ IF denormal1 tmp1 := 0 FI IF denormal2 tmp2 := 0 FI FI RETURN tmp1 * POW(2.0, FLOOR(tmp2)) } FOR i := 0 to 15 IF k[i] dst.fp16[i] := ScaleFP16(a.fp16[i], b.fp16[i]) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". DEFINE ScaleFP16(src1, src2) { denormal1 := (a.exp == 0) and (a.fraction != 0) denormal2 := (b.exp == 0) and (b.fraction != 0) tmp1 := src1 tmp2 := src2 IF MXCSR.DAZ IF denormal1 tmp1 := 0 FI IF denormal2 tmp2 := 0 FI FI RETURN tmp1 * POW(2.0, FLOOR(tmp2)) } dst.fp16[0] := ScaleFP16(a.fp16[0], b.fp16[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] DEFINE ScaleFP16(src1, src2) { denormal1 := (a.exp == 0) and (a.fraction != 0) denormal2 := (b.exp == 0) and (b.fraction != 0) tmp1 := src1 tmp2 := src2 IF MXCSR.DAZ IF denormal1 tmp1 := 0 FI IF denormal2 tmp2 := 0 FI FI RETURN tmp1 * POW(2.0, FLOOR(tmp2)) } dst.fp16[0] := ScaleFP16(a.fp16[0], b.fp16[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". DEFINE ScaleFP16(src1, src2) { denormal1 := (a.exp == 0) and (a.fraction != 0) denormal2 := (b.exp == 0) and (b.fraction != 0) tmp1 := src1 tmp2 := src2 IF MXCSR.DAZ IF denormal1 tmp1 := 0 FI IF denormal2 tmp2 := 0 FI FI RETURN tmp1 * POW(2.0, FLOOR(tmp2)) } IF k[0] dst.fp16[0] := ScaleFP16(a.fp16[0], b.fp16[0]) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] DEFINE ScaleFP16(src1, src2) { denormal1 := (a.exp == 0) and (a.fraction != 0) denormal2 := (b.exp == 0) and (b.fraction != 0) tmp1 := src1 tmp2 := src2 IF MXCSR.DAZ IF denormal1 tmp1 := 0 FI IF denormal2 tmp2 := 0 FI FI RETURN tmp1 * POW(2.0, FLOOR(tmp2)) } IF k[0] dst.fp16[0] := ScaleFP16(a.fp16[0], b.fp16[0]) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". DEFINE ScaleFP16(src1, src2) { denormal1 := (a.exp == 0) and (a.fraction != 0) denormal2 := (b.exp == 0) and (b.fraction != 0) tmp1 := src1 tmp2 := src2 IF MXCSR.DAZ IF denormal1 tmp1 := 0 FI IF denormal2 tmp2 := 0 FI FI RETURN tmp1 * POW(2.0, FLOOR(tmp2)) } IF k[0] dst.fp16[0] := ScaleFP16(a.fp16[0], b.fp16[0]) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Scale the packed single-precision (32-bit) floating-point elements in "a" using values from "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] DEFINE ScaleFP16(src1, src2) { denormal1 := (a.exp == 0) and (a.fraction != 0) denormal2 := (b.exp == 0) and (b.fraction != 0) tmp1 := src1 tmp2 := src2 IF MXCSR.DAZ IF denormal1 tmp1 := 0 FI IF denormal2 tmp2 := 0 FI FI RETURN tmp1 * POW(2.0, FLOOR(tmp2)) } IF k[0] dst.fp16[0] := ScaleFP16(a.fp16[0], b.fp16[0]) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Test packed half-precision (16-bit) floating-point elements in "a" for special categories specified by "imm8", and store the results in mask vector "k". [fpclass_note] FOR i := 0 to 31 k[i] := CheckFPClass_FP16(a.fp16[i], imm8[7:0]) ENDFOR k[MAX:32] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Test packed half-precision (16-bit) floating-point elements in "a" for special categories specified by "imm8", and store the results in mask vector "k" using zeromask "k1" (elements are zeroed out when the corresponding mask bit is not set). [fpclass_note] FOR i := 0 to 31 IF k1[i] k[i] := CheckFPClass_FP16(a.fp16[i], imm8[7:0]) ELSE k[i] := 0 FI ENDFOR k[MAX:32] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Test the lower half-precision (16-bit) floating-point element in "a" for special categories specified by "imm8", and store the result in mask vector "k". [fpclass_note] k[0] := CheckFPClass_FP16(a.fp16[0], imm8[7:0]) k[MAX:1] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Test the lower half-precision (16-bit) floating-point element in "a" for special categories specified by "imm8", and store the result in mask vector "k" using zeromask "k1" (the element is zeroed out when mask bit 0 is not set). [fpclass_note] IF k1[0] k[0] := CheckFPClass_FP16(a.fp16[0], imm8[7:0]) ELSE k[0] := 0 FI k[MAX:1] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Shuffle half-precision (16-bit) floating-point elements in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 31 i := j*16 off := idx[i+4:i] dst.fp16[j] := idx[i+5] ? b.fp16[off] : a.fp16[off] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Blend packed half-precision (16-bit) floating-point elements from "a" and "b" using control mask "k", and store the results in "dst". FOR j := 0 to 31 IF k[j] dst.fp16[j] := b.fp16[j] ELSE dst.fp16[j] := a.fp16[j] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Shuffle half-precision (16-bit) floating-point elements in "a" across lanes using the corresponding index in "idx", and store the results in "dst". FOR j := 0 to 31 i := j*16 id := idx[i+4:i] dst.fp16[j] := a.fp16[id] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Miscellaneous
Compute the approximate reciprocal square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 1.5*2^-12. FOR i := 0 to 31 dst.fp16[i] := (1.0 / SQRT(a.fp16[i])) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 1.5*2^-12. FOR i := 0 to 31 IF k[i] dst.fp16[i] := (1.0 / SQRT(a.fp16[i])) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 1.5*2^-12. FOR i := 0 to 31 IF k[i] dst.fp16[i] := (1.0 / SQRT(a.fp16[i])) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". The maximum relative error for this approximation is less than 1.5*2^-12. dst.fp16[0] := (1.0 / SQRT(b.fp16[0])) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". The maximum relative error for this approximation is less than 1.5*2^-12. IF k[0] dst.fp16[0] := (1.0 / SQRT(b.fp16[0])) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". The maximum relative error for this approximation is less than 1.5*2^-12. IF k[0] dst.fp16[0] := (1.0 / SQRT(b.fp16[0])) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". FOR i := 0 to 31 dst.fp16[i] := SQRT(a.fp16[i]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". [round_note] FOR i := 0 to 31 dst.fp16[i] := SQRT(a.fp16[i]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR i := 0 to 31 IF k[i] dst.fp16[i] := SQRT(a.fp16[i]) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). [round_note] FOR i := 0 to 31 IF k[i] dst.fp16[i] := SQRT(a.fp16[i]) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR i := 0 to 31 IF k[i] dst.fp16[i] := SQRT(a.fp16[i]) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the square root of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). [round_note] FOR i := 0 to 31 IF k[i] dst.fp16[i] := SQRT(a.fp16[i]) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the square root of the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". dst.fp16[0] := SQRT(b.fp16[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the square root of the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] dst.fp16[0] := SQRT(b.fp16[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the square root of the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := SQRT(b.fp16[0]) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the square root of the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := SQRT(b.fp16[0]) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the square root of the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". IF k[0] dst.fp16[0] := SQRT(b.fp16[0]) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the square root of the lower half-precision (16-bit) floating-point element in "b", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". [round_note] IF k[0] dst.fp16[0] := SQRT(b.fp16[0]) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 1.5*2^-12. FOR i := 0 to 31 dst.fp16[i] := (1.0 / a.fp16[i]) ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 1.5*2^-12. FOR i := 0 to 31 IF k[i] dst.fp16[i] := (1.0 / a.fp16[i]) ELSE dst.fp16[i] := src.fp16[i] FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of packed half-precision (16-bit) floating-point elements in "a", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 1.5*2^-12. FOR i := 0 to 31 IF k[i] dst.fp16[i] := (1.0 / a.fp16[i]) ELSE dst.fp16[i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of the lower half-precision (16-bit) floating-point element in "a", store the result in the lower element of "dst", and copy the upper 7 packed elements from "a" to the upper elements of "dst". The maximum relative error for this approximation is less than 1.5*2^-12. dst.fp16[0] := (1.0 / b.fp16[0]) dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of the lower half-precision (16-bit) floating-point element in "a", store the result in the lower element of "dst" using writemask "k" (the element is copied from "src" when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". The maximum relative error for this approximation is less than 1.5*2^-12. IF k[0] dst.fp16[0] := (1.0 / b.fp16[0]) ELSE dst.fp16[0] := src.fp16[0] FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Compute the approximate reciprocal of the lower half-precision (16-bit) floating-point element in "a", store the result in the lower element of "dst" using zeromask "k" (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from "a" to the upper elements of "dst". The maximum relative error for this approximation is less than 1.5*2^-12. IF k[0] dst.fp16[0] := (1.0 / b.fp16[0]) ELSE dst.fp16[0] := 0 FI dst[127:16] := a[127:16] dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Elementary Math Functions
Set packed half-precision (16-bit) floating-point elements in "dst" with the supplied values. dst.fp16[0] := e0 dst.fp16[1] := e1 dst.fp16[2] := e2 dst.fp16[3] := e3 dst.fp16[4] := e4 dst.fp16[5] := e5 dst.fp16[6] := e6 dst.fp16[7] := e7 AVX512_FP16
immintrin.h
Set
Set packed half-precision (16-bit) floating-point elements in "dst" with the supplied values. dst.fp16[0] := e0 dst.fp16[1] := e1 dst.fp16[2] := e2 dst.fp16[3] := e3 dst.fp16[4] := e4 dst.fp16[5] := e5 dst.fp16[6] := e6 dst.fp16[7] := e7 dst.fp16[8] := e8 dst.fp16[9] := e9 dst.fp16[10] := e10 dst.fp16[11] := e11 dst.fp16[12] := e12 dst.fp16[13] := e13 dst.fp16[14] := e14 dst.fp16[15] := e15 AVX512_FP16
immintrin.h
Set
Set packed half-precision (16-bit) floating-point elements in "dst" with the supplied values. dst.fp16[0] := e0 dst.fp16[1] := e1 dst.fp16[2] := e2 dst.fp16[3] := e3 dst.fp16[4] := e4 dst.fp16[5] := e5 dst.fp16[6] := e6 dst.fp16[7] := e7 dst.fp16[8] := e8 dst.fp16[9] := e9 dst.fp16[10] := e10 dst.fp16[11] := e11 dst.fp16[12] := e12 dst.fp16[13] := e13 dst.fp16[14] := e14 dst.fp16[15] := e15 dst.fp16[16] := e16 dst.fp16[17] := e17 dst.fp16[18] := e18 dst.fp16[19] := e19 dst.fp16[20] := e20 dst.fp16[21] := e21 dst.fp16[22] := e22 dst.fp16[23] := e23 dst.fp16[24] := e24 dst.fp16[25] := e25 dst.fp16[26] := e26 dst.fp16[27] := e27 dst.fp16[28] := e28 dst.fp16[29] := e29 dst.fp16[30] := e30 dst.fp16[31] := e31 AVX512_FP16
immintrin.h
Set
Set packed half-precision (16-bit) floating-point elements in "dst" with the supplied values in reverse order. dst.fp16[0] := e7 dst.fp16[1] := e6 dst.fp16[2] := e5 dst.fp16[3] := e4 dst.fp16[4] := e3 dst.fp16[5] := e2 dst.fp16[6] := e1 dst.fp16[7] := e0 AVX512_FP16
immintrin.h
Set
Set packed half-precision (16-bit) floating-point elements in "dst" with the supplied values in reverse order. dst.fp16[0] := e15 dst.fp16[1] := e14 dst.fp16[2] := e13 dst.fp16[3] := e12 dst.fp16[4] := e11 dst.fp16[5] := e10 dst.fp16[6] := e9 dst.fp16[7] := e8 dst.fp16[8] := e7 dst.fp16[9] := e6 dst.fp16[10] := e5 dst.fp16[11] := e4 dst.fp16[12] := e3 dst.fp16[13] := e2 dst.fp16[14] := e1 dst.fp16[15] := e0 AVX512_FP16
immintrin.h
Set
Set packed half-precision (16-bit) floating-point elements in "dst" with the supplied values in reverse order. dst.fp16[0] := e31 dst.fp16[1] := e30 dst.fp16[2] := e29 dst.fp16[3] := e28 dst.fp16[4] := e27 dst.fp16[5] := e26 dst.fp16[6] := e25 dst.fp16[7] := e24 dst.fp16[8] := e23 dst.fp16[9] := e22 dst.fp16[10] := e21 dst.fp16[11] := e20 dst.fp16[12] := e19 dst.fp16[13] := e18 dst.fp16[14] := e17 dst.fp16[15] := e16 dst.fp16[16] := e15 dst.fp16[17] := e14 dst.fp16[18] := e13 dst.fp16[19] := e12 dst.fp16[20] := e11 dst.fp16[21] := e10 dst.fp16[22] := e9 dst.fp16[23] := e8 dst.fp16[24] := e7 dst.fp16[25] := e6 dst.fp16[26] := e5 dst.fp16[27] := e4 dst.fp16[28] := e3 dst.fp16[29] := e2 dst.fp16[30] := e1 dst.fp16[31] := e0 AVX512_FP16
immintrin.h
Set
Broadcast half-precision (16-bit) floating-point value "a" to all elements of "dst". FOR i := 0 to 7 dst.fp16[i] := a[15:0] ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Set
Broadcast half-precision (16-bit) floating-point value "a" to all elements of "dst". FOR i := 0 to 15 dst.fp16[i] := a[15:0] ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Set
Broadcast half-precision (16-bit) floating-point value "a" to all elements of "dst". FOR i := 0 to 31 dst.fp16[i] := a[15:0] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Set
Broadcast half-precision (16-bit) complex floating-point value "a" to all elements of "dst". FOR i := 0 to 3 dst.fp16[2*i+0] := a[15:0] dst.fp16[2*i+1] := a[31:16] ENDFOR dst[MAX:128] := 0 AVX512_FP16
immintrin.h
Set
Broadcast half-precision (16-bit) complex floating-point value "a" to all elements of "dst". FOR i := 0 to 7 dst.fp16[2*i+0] := a[15:0] dst.fp16[2*i+1] := a[31:16] ENDFOR dst[MAX:256] := 0 AVX512_FP16
immintrin.h
Set
Broadcast half-precision (16-bit) complex floating-point value "a" to all elements of "dst". FOR i := 0 to 15 dst.fp16[2*i+0] := a[15:0] dst.fp16[2*i+1] := a[31:16] ENDFOR dst[MAX:512] := 0 AVX512_FP16
immintrin.h
Set
Copy half-precision (16-bit) floating-point element "a" to the lower element of "dst", and zero the upper 7 elements. dst.fp16[0] := a[15:0] dst[127:16] := 0 AVX512_FP16
immintrin.h
Set
Return vector of type __m512h with all elements set to zero. dst[MAX:0] := 0 AVX512_FP16
immintrin.h
Set
Cast vector of type "__m128h" to type "__m128". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m256h" to type "__m256". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m512h" to type "__m512". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m128h" to type "__m128d". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m256h" to type "__m256d". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m512h" to type "__m512d". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m128h" to type "__m128i". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m256h" to type "__m256i". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m512h" to type "__m512i". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m128" to type "__m128h". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m256" to type "__m256h". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m512" to type "__m512h". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m128d" to type "__m128h". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m256d" to type "__m256h". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m512d" to type "__m512h". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m128i" to type "__m128h". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m256i" to type "__m256h". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m512i" to type "__m512h". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m256h" to type "__m128h". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m512h" to type "__m128h". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m512h" to type "__m256h". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m128h" to type "__m256h". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m128h" to type "__m512h". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m256h" to type "__m512h". This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m128h" to type "__m256h"; the upper 128 bits of the result are zeroed. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m128h" to type "__m512h"; the upper 128 bits of the result are zeroed. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Cast vector of type "__m256h" to type "__m512h"; the upper 128 bits of the result are zeroed. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. AVX512_FP16
immintrin.h
Cast
Return vector of type __m512h with undefined elements. AVX512_FP16
immintrin.h
General Support
For each 64-bit element in "b", select 8 unaligned bytes using a byte-granular shift control within the corresponding 64-bit element of "a", and store the 8 assembled bytes to the corresponding 64-bit element of "dst". FOR i := 0 to 3 q := i * 64 FOR j := 0 to 7 tmp8 := 0 ctrl := a[q+j*8+7:q+j*8] & 63 FOR l := 0 to 7 tmp8[l] := b[q+((ctrl+l) & 63)] ENDFOR dst[q+j*8+7:q+j*8] := tmp8[7:0] ENDFOR ENDFOR dst[MAX:256] := 0 AVX512_VBMI AVX512VL
immintrin.h
Bit Manipulation
For each 64-bit element in "b", select 8 unaligned bytes using a byte-granular shift control within the corresponding 64-bit element of "a", and store the 8 assembled bytes to the corresponding 64-bit element of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR i := 0 to 3 q := i * 64 FOR j := 0 to 7 tmp8 := 0 ctrl := a[q+j*8+7:q+j*8] & 63 FOR l := 0 to 7 tmp8[l] := b[q+((ctrl+l) & 63)] ENDFOR IF k[i*8+j] dst[q+j*8+7:q+j*8] := tmp8[7:0] ELSE dst[q+j*8+7:q+j*8] := src[q+j*8+7:q+j*8] FI ENDFOR ENDFOR dst[MAX:256] := 0 AVX512_VBMI AVX512VL
immintrin.h
Bit Manipulation
For each 64-bit element in "b", select 8 unaligned bytes using a byte-granular shift control within the corresponding 64-bit element of "a", and store the 8 assembled bytes to the corresponding 64-bit element of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR i := 0 to 3 q := i * 64 FOR j := 0 to 7 tmp8 := 0 ctrl := a[q+j*8+7:q+j*8] & 63 FOR l := 0 to 7 tmp8[l] := b[q+((ctrl+l) & 63)] ENDFOR IF k[i*8+j] dst[q+j*8+7:q+j*8] := tmp8[7:0] ELSE dst[q+j*8+7:q+j*8] := 0 FI ENDFOR ENDFOR dst[MAX:256] := 0 AVX512_VBMI AVX512VL
immintrin.h
Bit Manipulation
For each 64-bit element in "b", select 8 unaligned bytes using a byte-granular shift control within the corresponding 64-bit element of "a", and store the 8 assembled bytes to the corresponding 64-bit element of "dst". FOR i := 0 to 1 q := i * 64 FOR j := 0 to 7 tmp8 := 0 ctrl := a[q+j*8+7:q+j*8] & 63 FOR l := 0 to 7 tmp8[l] := b[q+((ctrl+l) & 63)] ENDFOR dst[q+j*8+7:q+j*8] := tmp8[7:0] ENDFOR ENDFOR dst[MAX:128] := 0 AVX512_VBMI AVX512VL
immintrin.h
Bit Manipulation
For each 64-bit element in "b", select 8 unaligned bytes using a byte-granular shift control within the corresponding 64-bit element of "a", and store the 8 assembled bytes to the corresponding 64-bit element of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR i := 0 to 1 q := i * 64 FOR j := 0 to 7 tmp8 := 0 ctrl := a[q+j*8+7:q+j*8] & 63 FOR l := 0 to 7 tmp8[l] := b[q+((ctrl+l) & 63)] ENDFOR IF k[i*8+j] dst[q+j*8+7:q+j*8] := tmp8[7:0] ELSE dst[q+j*8+7:q+j*8] := src[q+j*8+7:q+j*8] FI ENDFOR ENDFOR dst[MAX:128] := 0 AVX512_VBMI AVX512VL
immintrin.h
Bit Manipulation
For each 64-bit element in "b", select 8 unaligned bytes using a byte-granular shift control within the corresponding 64-bit element of "a", and store the 8 assembled bytes to the corresponding 64-bit element of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR i := 0 to 1 q := i * 64 FOR j := 0 to 7 tmp8 := 0 ctrl := a[q+j*8+7:q+j*8] & 63 FOR l := 0 to 7 tmp8[l] := b[q+((ctrl+l) & 63)] ENDFOR IF k[i*8+j] dst[q+j*8+7:q+j*8] := tmp8[7:0] ELSE dst[q+j*8+7:q+j*8] := 0 FI ENDFOR ENDFOR dst[MAX:128] := 0 AVX512_VBMI AVX512VL
immintrin.h
Bit Manipulation
Shuffle 8-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst". FOR j := 0 to 31 i := j*8 id := idx[i+4:i]*8 dst[i+7:i] := a[id+7:id] ENDFOR dst[MAX:256] := 0 AVX512_VBMI AVX512VL
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 id := idx[i+4:i]*8 IF k[j] dst[i+7:i] := a[id+7:id] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI AVX512VL
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 id := idx[i+4:i]*8 IF k[j] dst[i+7:i] := a[id+7:id] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI AVX512VL
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" using the corresponding index in "idx", and store the results in "dst". FOR j := 0 to 15 i := j*8 id := idx[i+3:i]*8 dst[i+7:i] := a[id+7:id] ENDFOR dst[MAX:128] := 0 AVX512_VBMI AVX512VL
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" using the corresponding index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 id := idx[i+3:i]*8 IF k[j] dst[i+7:i] := a[id+7:id] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI AVX512VL
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" using the corresponding index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 id := idx[i+3:i]*8 IF k[j] dst[i+7:i] := a[id+7:id] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI AVX512VL
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 31 i := j*8 off := 8*idx[i+4:i] dst[i+7:i] := idx[i+5] ? b[off+7:off] : a[off+7:off] ENDFOR dst[MAX:256] := 0 AVX512_VBMI AVX512VL
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] off := 8*idx[i+4:i] dst[i+7:i] := idx[i+5] ? b[off+7:off] : a[off+7:off] ELSE dst[i+7:i] := a[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI AVX512VL
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] off := 8*idx[i+4:i] dst[i+7:i] := idx[i+5] ? b[off+7:off] : a[off+7:off] ELSE dst[i+7:i] := idx[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI AVX512VL
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*8 IF k[j] off := 8*idx[i+4:i] dst[i+7:i] := idx[i+5] ? b[off+7:off] : a[off+7:off] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI AVX512VL
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 15 i := j*8 off := 8*idx[i+3:i] dst[i+7:i] := idx[i+4] ? b[off+7:off] : a[off+7:off] ENDFOR dst[MAX:128] := 0 AVX512_VBMI AVX512VL
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] off := 8*idx[i+3:i] dst[i+7:i] := idx[i+4] ? b[off+7:off] : a[off+7:off] ELSE dst[i+7:i] := a[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI AVX512VL
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] off := 8*idx[i+3:i] dst[i+7:i] := idx[i+4] ? b[off+7:off] : a[off+7:off] ELSE dst[i+7:i] := idx[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI AVX512VL
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" and "b" using the corresponding selector and index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*8 IF k[j] off := 8*idx[i+3:i] dst[i+7:i] := idx[i+4] ? b[off+7:off] : a[off+7:off] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI AVX512VL
immintrin.h
Swizzle
For each 64-bit element in "b", select 8 unaligned bytes using a byte-granular shift control within the corresponding 64-bit element of "a", and store the 8 assembled bytes to the corresponding 64-bit element of "dst". FOR i := 0 to 7 q := i * 64 FOR j := 0 to 7 tmp8 := 0 ctrl := a[q+j*8+7:q+j*8] & 63 FOR l := 0 to 7 tmp8[l] := b[q+((ctrl+l) & 63)] ENDFOR dst[q+j*8+7:q+j*8] := tmp8[7:0] ENDFOR ENDFOR dst[MAX:512] := 0 AVX512_VBMI
immintrin.h
Bit Manipulation
For each 64-bit element in "b", select 8 unaligned bytes using a byte-granular shift control within the corresponding 64-bit element of "a", and store the 8 assembled bytes to the corresponding 64-bit element of "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR i := 0 to 7 q := i * 64 FOR j := 0 to 7 tmp8 := 0 ctrl := a[q+j*8+7:q+j*8] & 63 FOR l := 0 to 7 tmp8[l] := b[q+((ctrl+l) & 63)] ENDFOR IF k[i*8+j] dst[q+j*8+7:q+j*8] := tmp8[7:0] ELSE dst[q+j*8+7:q+j*8] := src[q+j*8+7:q+j*8] FI ENDFOR ENDFOR dst[MAX:512] := 0 AVX512_VBMI
immintrin.h
Bit Manipulation
For each 64-bit element in "b", select 8 unaligned bytes using a byte-granular shift control within the corresponding 64-bit element of "a", and store the 8 assembled bytes to the corresponding 64-bit element of "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR i := 0 to 7 q := i * 64 FOR j := 0 to 7 tmp8 := 0 ctrl := a[q+j*8+7:q+j*8] & 63 FOR l := 0 to 7 tmp8[l] := b[q+((ctrl+l) & 63)] ENDFOR IF k[i*8+j] dst[q+j*8+7:q+j*8] := tmp8[7:0] ELSE dst[q+j*8+7:q+j*8] := 0 FI ENDFOR ENDFOR dst[MAX:512] := 0 AVX512_VBMI
immintrin.h
Bit Manipulation
Shuffle 8-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst". FOR j := 0 to 63 i := j*8 id := idx[i+5:i]*8 dst[i+7:i] := a[id+7:id] ENDFOR dst[MAX:512] := 0 AVX512_VBMI
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 id := idx[i+5:i]*8 IF k[j] dst[i+7:i] := a[id+7:id] ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" across lanes using the corresponding index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 id := idx[i+5:i]*8 IF k[j] dst[i+7:i] := a[id+7:id] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst". FOR j := 0 to 63 i := j*8 off := 8*idx[i+5:i] dst[i+7:i] := idx[i+6] ? b[off+7:off] : a[off+7:off] ENDFOR dst[MAX:512] := 0 AVX512_VBMI
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] off := 8*idx[i+5:i] dst[i+7:i] := idx[i+6] ? b[off+7:off] : a[off+7:off] ELSE dst[i+7:i] := a[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] off := 8*idx[i+5:i] dst[i+7:i] := idx[i+6] ? b[off+7:off] : a[off+7:off] ELSE dst[i+7:i] := idx[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI
immintrin.h
Swizzle
Shuffle 8-bit integers in "a" and "b" across lanes using the corresponding selector and index in "idx", and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 63 i := j*8 IF k[j] off := 8*idx[i+5:i] dst[i+7:i] := idx[i+6] ? b[off+7:off] : a[off+7:off] ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI
immintrin.h
Swizzle
Concatenate packed 64-bit integers in "b" and "a" producing an intermediate 128-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 64-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := ((b[i+63:i] << 64)[127:0] | a[i+63:i]) >> (c[i+63:i] & 63) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "b" and "a" producing an intermediate 128-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 64-bits in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := ((b[i+63:i] << 64)[127:0] | a[i+63:i]) >> (c[i+63:i] & 63) ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "b" and "a" producing an intermediate 128-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 64-bits in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := ((b[i+63:i] << 64)[127:0] | a[i+63:i]) >> (c[i+63:i] & 63) ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "b" and "a" producing an intermediate 128-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 64-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := ((b[i+63:i] << 64)[127:0] | a[i+63:i]) >> (c[i+63:i] & 63) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "b" and "a" producing an intermediate 128-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 64-bits in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := ((b[i+63:i] << 64)[127:0] | a[i+63:i]) >> (c[i+63:i] & 63) ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "b" and "a" producing an intermediate 128-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 64-bits in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := ((b[i+63:i] << 64)[127:0] | a[i+63:i]) >> (c[i+63:i] & 63) ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "b" and "a" producing an intermediate 64-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 32-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := ((b[i+31:i] << 32)[63:0] | a[i+31:i]) >> (c[i+31:i] & 31) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "b" and "a" producing an intermediate 64-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 32-bits in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := ((b[i+31:i] << 32)[63:0] | a[i+31:i]) >> (c[i+31:i] & 31) ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "b" and "a" producing an intermediate 64-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 32-bits in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := ((b[i+31:i] << 32)[63:0] | a[i+31:i]) >> (c[i+31:i] & 31) ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "b" and "a" producing an intermediate 64-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 32-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := ((b[i+31:i] << 32)[63:0] | a[i+31:i]) >> (c[i+31:i] & 31) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "b" and "a" producing an intermediate 64-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 32-bits in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := ((b[i+31:i] << 32)[63:0] | a[i+31:i]) >> (c[i+31:i] & 31) ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "b" and "a" producing an intermediate 64-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 32-bits in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ((b[i+31:i] << 32)[63:0] | a[i+31:i]) >> (c[i+31:i] & 31) ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "b" and "a" producing an intermediate 32-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 16-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := ((b[i+15:i] << 16)[31:0] | a[i+15:i]) >> (c[i+15:i] & 15) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "b" and "a" producing an intermediate 32-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 16-bits in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := ((b[i+15:i] << 16)[31:0] | a[i+15:i]) >> (c[i+15:i] & 15) ELSE dst[i+15:i] := a[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "b" and "a" producing an intermediate 32-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 16-bits in "dst". FOR j := 0 to 15 i := j*16 dst[i+15:i] := ((b[i+15:i] << 16)[31:0] | a[i+15:i]) >> (c[i+15:i] & 15) ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "b" and "a" producing an intermediate 32-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 16-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := ((b[i+15:i] << 16)[31:0] | a[i+15:i]) >> (c[i+15:i] & 15) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "b" and "a" producing an intermediate 32-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 16-bits in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := ((b[i+15:i] << 16)[31:0] | a[i+15:i]) >> (c[i+15:i] & 15) ELSE dst[i+15:i] := a[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "b" and "a" producing an intermediate 32-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 16-bits in "dst". FOR j := 0 to 7 i := j*16 dst[i+15:i] := ((b[i+15:i] << 16)[31:0] | a[i+15:i]) >> (c[i+15:i] & 15) ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "b" and "a" producing an intermediate 128-bit result. Shift the result right by "imm8" bits, and store the lower 64-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := ((b[i+63:i] << 64)[127:0] | a[i+63:i]) >> imm8[5:0] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "b" and "a" producing an intermediate 128-bit result. Shift the result right by "imm8" bits, and store the lower 64-bits in "dst" using writemask "k" (elements are copied from "src"" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] dst[i+63:i] := ((b[i+63:i] << 64)[127:0] | a[i+63:i]) >> imm8[5:0] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "b" and "a" producing an intermediate 128-bit result. Shift the result right by "imm8" bits, and store the lower 64-bits in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := ((b[i+63:i] << 64)[127:0] | a[i+63:i]) >> imm8[5:0] ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "b" and "a" producing an intermediate 128-bit result. Shift the result right by "imm8" bits, and store the lower 64-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := ((b[i+63:i] << 64)[127:0] | a[i+63:i]) >> imm8[5:0] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "b" and "a" producing an intermediate 128-bit result. Shift the result right by "imm8" bits, and store the lower 64-bits in "dst" using writemask "k" (elements are copied from "src"" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] dst[i+63:i] := ((b[i+63:i] << 64)[127:0] | a[i+63:i]) >> imm8[5:0] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "b" and "a" producing an intermediate 128-bit result. Shift the result right by "imm8" bits, and store the lower 64-bits in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := ((b[i+63:i] << 64)[127:0] | a[i+63:i]) >> imm8[5:0] ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "b" and "a" producing an intermediate 64-bit result. Shift the result right by "imm8" bits, and store the lower 32-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := ((b[i+31:i] << 32)[63:0] | a[i+31:i]) >> imm8[4:0] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "b" and "a" producing an intermediate 64-bit result. Shift the result right by "imm8" bits, and store the lower 32-bits in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] dst[i+31:i] := ((b[i+31:i] << 32)[63:0] | a[i+31:i]) >> imm8[4:0] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "b" and "a" producing an intermediate 64-bit result. Shift the result right by "imm8" bits, and store the lower 32-bits in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := ((b[i+31:i] << 32)[63:0] | a[i+31:i]) >> imm8[4:0] ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "b" and "a" producing an intermediate 64-bit result. Shift the result right by "imm8" bits, and store the lower 32-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := ((b[i+31:i] << 32)[63:0] | a[i+31:i]) >> imm8[4:0] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "b" and "a" producing an intermediate 64-bit result. Shift the result right by "imm8" bits, and store the lower 32-bits in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] dst[i+31:i] := ((b[i+31:i] << 32)[63:0] | a[i+31:i]) >> imm8[4:0] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "b" and "a" producing an intermediate 64-bit result. Shift the result right by "imm8" bits, and store the lower 32-bits in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ((b[i+31:i] << 32)[63:0] | a[i+31:i]) >> imm8[4:0] ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "b" and "a" producing an intermediate 32-bit result. Shift the result right by "imm8" bits, and store the lower 16-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := ((b[i+15:i] << 16)[31:0] | a[i+15:i]) >> imm8[3:0] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "b" and "a" producing an intermediate 32-bit result. Shift the result right by "imm8" bits, and store the lower 16-bits in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := ((b[i+15:i] << 16)[31:0] | a[i+15:i]) >> imm8[3:0] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "b" and "a" producing an intermediate 32-bit result. Shift the result right by "imm8" bits, and store the lower 16-bits in "dst". FOR j := 0 to 15 i := j*16 dst[i+15:i] := ((b[i+15:i] << 16)[31:0] | a[i+15:i]) >> imm8[3:0] ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "b" and "a" producing an intermediate 32-bit result. Shift the result right by "imm8" bits, and store the lower 16-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := ((b[i+15:i] << 16)[31:0] | a[i+15:i]) >> imm8[3:0] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "b" and "a" producing an intermediate 32-bit result. Shift the result right by "imm8" bits, and store the lower 16-bits in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := ((b[i+15:i] << 16)[31:0] | a[i+15:i]) >> imm8[3:0] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "b" and "a" producing an intermediate 32-bit result. Shift the result right by "imm8" bits, and store the lower 16-bits in "dst". FOR j := 0 to 7 i := j*16 dst[i+15:i] := ((b[i+15:i] << 16)[31:0] | a[i+15:i]) >> imm8[3:0] ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "a" and "b" producing an intermediate 128-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 64-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] tmp[127:0] := ((a[i+63:i] << 64)[127:0] | b[i+63:i]) << (c[i+63:i] & 63) dst[i+63:i] := tmp[127:64] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "a" and "b" producing an intermediate 128-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 64-bits in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] tmp[127:0] := ((a[i+63:i] << 64)[127:0] | b[i+63:i]) << (c[i+63:i] & 63) dst[i+63:i] := tmp[127:64] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "a" and "b" producing an intermediate 128-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 64-bits in "dst". FOR j := 0 to 3 i := j*64 tmp[127:0] := ((a[i+63:i] << 64)[127:0] | b[i+63:i]) << (c[i+63:i] & 63) dst[i+63:i] := tmp[127:64] ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "a" and "b" producing an intermediate 128-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 64-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] tmp[127:0] := ((a[i+63:i] << 64)[127:0] | b[i+63:i]) << (c[i+63:i] & 63) dst[i+63:i] := tmp[127:64] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "a" and "b" producing an intermediate 128-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 64-bits in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] tmp[127:0] := ((a[i+63:i] << 64)[127:0] | b[i+63:i]) << (c[i+63:i] & 63) dst[i+63:i] := tmp[127:64] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "a" and "b" producing an intermediate 128-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 64-bits in "dst". FOR j := 0 to 1 i := j*64 tmp[127:0] := ((a[i+63:i] << 64)[127:0] | b[i+63:i]) << (c[i+63:i] & 63) dst[i+63:i] := tmp[127:64] ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "a" and "b" producing an intermediate 64-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 32-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] tmp[63:0] := ((a[i+31:i] << 32)[63:0] | b[i+31:i]) << (c[i+31:i] & 31) dst[i+31:i] := tmp[63:32] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "a" and "b" producing an intermediate 64-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 32-bits in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] tmp[63:0] := ((a[i+31:i] << 32)[63:0] | b[i+31:i]) << (c[i+31:i] & 31) dst[i+31:i] := tmp[63:32] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "a" and "b" producing an intermediate 64-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 32-bits in "dst". FOR j := 0 to 7 i := j*32 tmp[63:0] := ((a[i+31:i] << 32)[63:0] | b[i+31:i]) << (c[i+31:i] & 31) dst[i+31:i] := tmp[63:32] ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "a" and "b" producing an intermediate 64-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 32-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] tmp[63:0] := ((a[i+31:i] << 32)[63:0] | b[i+31:i]) << (c[i+31:i] & 31) dst[i+31:i] := tmp[63:32] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "a" and "b" producing an intermediate 64-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 32-bits in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] tmp[63:0] := ((a[i+31:i] << 32)[63:0] | b[i+31:i]) << (c[i+31:i] & 31) dst[i+31:i] := tmp[63:32] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "a" and "b" producing an intermediate 64-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 32-bits in "dst". FOR j := 0 to 3 i := j*32 tmp[63:0] := ((a[i+31:i] << 32)[63:0] | b[i+31:i]) << (c[i+31:i] & 31) dst[i+31:i] := tmp[63:32] ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "a" and "b" producing an intermediate 32-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 16-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] tmp[31:0] := ((a[i+15:i] << 16)[31:0] | b[i+15:i]) << (c[i+15:i] & 15) dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "a" and "b" producing an intermediate 32-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 16-bits in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] tmp[31:0] := ((a[i+15:i] << 16)[31:0] | b[i+15:i]) << (c[i+15:i] & 15) dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := a[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "a" and "b" producing an intermediate 32-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 16-bits in "dst". FOR j := 0 to 15 i := j*16 tmp[31:0] := ((a[i+15:i] << 16)[31:0] | b[i+15:i]) << (c[i+15:i] & 15) dst[i+15:i] := tmp[31:16] ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "a" and "b" producing an intermediate 32-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 16-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] tmp[31:0] := ((a[i+15:i] << 16)[31:0] | b[i+15:i]) << (c[i+15:i] & 15) dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "a" and "b" producing an intermediate 32-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 16-bits in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] tmp[31:0] := ((a[i+15:i] << 16)[31:0] | b[i+15:i]) << (c[i+15:i] & 15) dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := a[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "a" and "b" producing an intermediate 32-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 16-bits in "dst". FOR j := 0 to 7 i := j*16 tmp[31:0] := ((a[i+15:i] << 16)[31:0] | b[i+15:i]) << (c[i+15:i] & 15) dst[i+15:i] := tmp[31:16] ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "a" and "b" producing an intermediate 128-bit result. Shift the result left by "imm8" bits, and store the upper 64-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] tmp[127:0] := ((a[i+63:i] << 64)[127:0] | b[i+63:i]) << imm8[5:0] dst[i+63:i] := tmp[127:64] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "a" and "b" producing an intermediate 128-bit result. Shift the result left by "imm8" bits, and store the upper 64-bits in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*64 IF k[j] tmp[127:0] := ((a[i+63:i] << 64)[127:0] | b[i+63:i]) << imm8[5:0] dst[i+63:i] := tmp[127:64] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "a" and "b" producing an intermediate 128-bit result. Shift the result left by "imm8" bits, and store the upper 64-bits in "dst"). FOR j := 0 to 3 i := j*64 tmp[127:0] := ((a[i+63:i] << 64)[127:0] | b[i+63:i]) << imm8[5:0] dst[i+63:i] := tmp[127:64] ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "a" and "b" producing an intermediate 128-bit result. Shift the result left by "imm8" bits, and store the upper 64-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] tmp[127:0] := ((a[i+63:i] << 64)[127:0] | b[i+63:i]) << imm8[5:0] dst[i+63:i] := tmp[127:64] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "a" and "b" producing an intermediate 128-bit result. Shift the result left by "imm8" bits, and store the upper 64-bits in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 1 i := j*64 IF k[j] tmp[127:0] := ((a[i+63:i] << 64)[127:0] | b[i+63:i]) << imm8[5:0] dst[i+63:i] := tmp[127:64] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 64-bit integers in "a" and "b" producing an intermediate 128-bit result. Shift the result left by "imm8" bits, and store the upper 64-bits in "dst"). FOR j := 0 to 1 i := j*64 tmp[127:0] := ((a[i+63:i] << 64)[127:0] | b[i+63:i]) << imm8[5:0] dst[i+63:i] := tmp[127:64] ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "a" and "b" producing an intermediate 64-bit result. Shift the result left by "imm8" bits, and store the upper 32-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] tmp[63:0] := ((a[i+31:i] << 32)[63:0] | b[i+31:i]) << imm8[4:0] dst[i+31:i] := tmp[63:32] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "a" and "b" producing an intermediate 64-bit result. Shift the result left by "imm8" bits, and store the upper 32-bits in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*32 IF k[j] tmp[63:0] := ((a[i+31:i] << 32)[63:0] | b[i+31:i]) << imm8[4:0] dst[i+31:i] := tmp[63:32] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "a" and "b" producing an intermediate 64-bit result. Shift the result left by "imm8" bits, and store the upper 32-bits in "dst". FOR j := 0 to 7 i := j*32 tmp[63:0] := ((a[i+31:i] << 32)[63:0] | b[i+31:i]) << imm8[4:0] dst[i+31:i] := tmp[63:32] ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "a" and "b" producing an intermediate 64-bit result. Shift the result left by "imm8" bits, and store the upper 32-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] tmp[63:0] := ((a[i+31:i] << 32)[63:0] | b[i+31:i]) << imm8[4:0] dst[i+31:i] := tmp[63:32] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "a" and "b" producing an intermediate 64-bit result. Shift the result left by "imm8" bits, and store the upper 32-bits in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 i := j*32 IF k[j] tmp[63:0] := ((a[i+31:i] << 32)[63:0] | b[i+31:i]) << imm8[4:0] dst[i+31:i] := tmp[63:32] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 32-bit integers in "a" and "b" producing an intermediate 64-bit result. Shift the result left by "imm8" bits, and store the upper 32-bits in "dst". FOR j := 0 to 3 i := j*32 tmp[63:0] := ((a[i+31:i] << 32)[63:0] | b[i+31:i]) << imm8[4:0] dst[i+31:i] := tmp[63:32] ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "a" and "b" producing an intermediate 32-bit result. Shift the result left by "imm8" bits, and store the upper 16-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] tmp[31:0] := ((a[i+15:i] << 16)[31:0] | b[i+15:i]) << imm8[3:0] dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "a" and "b" producing an intermediate 32-bit result. Shift the result left by "imm8" bits, and store the upper 16-bits in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*16 IF k[j] tmp[31:0] := ((a[i+15:i] << 16)[31:0] | b[i+15:i]) << imm8[3:0] dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "a" and "b" producing an intermediate 32-bit result. Shift the result left by "imm8" bits, and store the upper 16-bits in "dst"). FOR j := 0 to 15 i := j*16 tmp[31:0] := ((a[i+15:i] << 16)[31:0] | b[i+15:i]) << imm8[3:0] dst[i+15:i] := tmp[31:16] ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "a" and "b" producing an intermediate 32-bit result. Shift the result left by "imm8" bits, and store the upper 16-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] tmp[31:0] := ((a[i+15:i] << 16)[31:0] | b[i+15:i]) << imm8[3:0] dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "a" and "b" producing an intermediate 32-bit result. Shift the result left by "imm8" bits, and store the upper 16-bits in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*16 IF k[j] tmp[31:0] := ((a[i+15:i] << 16)[31:0] | b[i+15:i]) << imm8[3:0] dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Concatenate packed 16-bit integers in "a" and "b" producing an intermediate 32-bit result. Shift the result left by "imm8" bits, and store the upper 16-bits in "dst"). FOR j := 0 to 7 i := j*16 tmp[31:0] := ((a[i+15:i] << 16)[31:0] | b[i+15:i]) << imm8[3:0] dst[i+15:i] := tmp[31:16] ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Shift
Swizzle Load contiguous active 16-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := MEM[mem_addr+m+15:mem_addr+m] m := m + 16 ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Load
Swizzle Load contiguous active 16-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := MEM[mem_addr+m+15:mem_addr+m] m := m + 16 ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Load
Swizzle Load contiguous active 16-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := MEM[mem_addr+m+15:mem_addr+m] m := m + 16 ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Load
Swizzle Load contiguous active 16-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := MEM[mem_addr+m+15:mem_addr+m] m := m + 16 ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Load
Swizzle Load contiguous active 8-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := MEM[mem_addr+m+7:mem_addr+m] m := m + 8 ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Load
Swizzle Load contiguous active 8-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := MEM[mem_addr+m+7:mem_addr+m] m := m + 8 ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Load
Swizzle Load contiguous active 8-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := MEM[mem_addr+m+7:mem_addr+m] m := m + 8 ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Load
Swizzle Load contiguous active 8-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := MEM[mem_addr+m+7:mem_addr+m] m := m + 8 ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Load
Load contiguous active 16-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := a[m+15:m] m := m + 16 ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Swizzle
Load contiguous active 16-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 15 i := j*16 IF k[j] dst[i+15:i] := a[m+15:m] m := m + 16 ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Swizzle
Load contiguous active 16-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := a[m+15:m] m := m + 16 ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Swizzle
Load contiguous active 16-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 7 i := j*16 IF k[j] dst[i+15:i] := a[m+15:m] m := m + 16 ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Swizzle
Load contiguous active 8-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := a[m+7:m] m := m + 8 ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Swizzle
Load contiguous active 8-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 31 i := j*8 IF k[j] dst[i+7:i] := a[m+7:m] m := m + 8 ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Swizzle
Load contiguous active 8-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := a[m+7:m] m := m + 8 ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Swizzle
Load contiguous active 8-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 15 i := j*8 IF k[j] dst[i+7:i] := a[m+7:m] m := m + 8 ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Swizzle
Contiguously store the active 16-bit integers in "a" (those with their respective bit set in zeromask "k") to "dst", and set the remaining elements to zero. size := 16 m := 0 FOR j := 0 to 15 i := j*16 IF k[j] dst[m+size-1:m] := a[i+15:i] m := m + size FI ENDFOR dst[255:m] := 0 dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Swizzle
Contiguously store the active 16-bit integers in "a" (those with their respective bit set in writemask "k") to "dst", and pass through the remaining elements from "src". size := 16 m := 0 FOR j := 0 to 15 i := j*16 IF k[j] dst[m+size-1:m] := a[i+15:i] m := m + size FI ENDFOR dst[255:m] := src[255:m] dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Swizzle
Contiguously store the active 16-bit integers in "a" (those with their respective bit set in zeromask "k") to "dst", and set the remaining elements to zero. size := 16 m := 0 FOR j := 0 to 7 i := j*16 IF k[j] dst[m+size-1:m] := a[i+15:i] m := m + size FI ENDFOR dst[127:m] := 0 dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Swizzle
Contiguously store the active 16-bit integers in "a" (those with their respective bit set in writemask "k") to "dst", and pass through the remaining elements from "src". size := 16 m := 0 FOR j := 0 to 7 i := j*16 IF k[j] dst[m+size-1:m] := a[i+15:i] m := m + size FI ENDFOR dst[127:m] := src[127:m] dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Swizzle
Contiguously store the active 8-bit integers in "a" (those with their respective bit set in zeromask "k") to "dst", and set the remaining elements to zero. size := 8 m := 0 FOR j := 0 to 31 i := j*8 IF k[j] dst[m+size-1:m] := a[i+7:i] m := m + size FI ENDFOR dst[255:m] := 0 dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Swizzle
Contiguously store the active 8-bit integers in "a" (those with their respective bit set in writemask "k") to "dst", and pass through the remaining elements from "src". size := 8 m := 0 FOR j := 0 to 31 i := j*8 IF k[j] dst[m+size-1:m] := a[i+7:i] m := m + size FI ENDFOR dst[255:m] := src[255:m] dst[MAX:256] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Swizzle
Contiguously store the active 8-bit integers in "a" (those with their respective bit set in zeromask "k") to "dst", and set the remaining elements to zero. size := 8 m := 0 FOR j := 0 to 15 i := j*8 IF k[j] dst[m+size-1:m] := a[i+7:i] m := m + size FI ENDFOR dst[127:m] := 0 dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Swizzle
Contiguously store the active 8-bit integers in "a" (those with their respective bit set in writemask "k") to "dst", and pass through the remaining elements from "src". size := 8 m := 0 FOR j := 0 to 15 i := j*8 IF k[j] dst[m+size-1:m] := a[i+7:i] m := m + size FI ENDFOR dst[127:m] := src[127:m] dst[MAX:128] := 0 AVX512_VBMI2 AVX512VL
immintrin.h
Swizzle
Swizzle Contiguously store the active 16-bit integers in "a" (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". size := 16 m := base_addr FOR j := 0 to 15 i := j*16 IF k[j] MEM[m+size-1:m] := a[i+15:i] m := m + size FI ENDFOR AVX512_VBMI2 AVX512VL
immintrin.h
Store
Swizzle Contiguously store the active 16-bit integers in "a" (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". size := 16 m := base_addr FOR j := 0 to 7 i := j*16 IF k[j] MEM[m+size-1:m] := a[i+15:i] m := m + size FI ENDFOR AVX512_VBMI2 AVX512VL
immintrin.h
Store
Swizzle Contiguously store the active 8-bit integers in "a" (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". size := 8 m := base_addr FOR j := 0 to 31 i := j*8 IF k[j] MEM[m+size-1:m] := a[i+7:i] m := m + size FI ENDFOR AVX512_VBMI2 AVX512VL
immintrin.h
Store
Swizzle Contiguously store the active 8-bit integers in "a" (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". size := 8 m := base_addr FOR j := 0 to 15 i := j*8 IF k[j] MEM[m+size-1:m] := a[i+7:i] m := m + size FI ENDFOR AVX512_VBMI2 AVX512VL
immintrin.h
Store
Concatenate packed 64-bit integers in "b" and "a" producing an intermediate 128-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 64-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ((b[i+63:i] << 64)[127:0] | a[i+63:i]) >> (c[i+63:i] & 63) ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 64-bit integers in "b" and "a" producing an intermediate 128-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 64-bits in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ((b[i+63:i] << 64)[127:0] | a[i+63:i]) >> (c[i+63:i] & 63) ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 64-bit integers in "b" and "a" producing an intermediate 128-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 64-bits in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := ((b[i+63:i] << 64)[127:0] | a[i+63:i]) >> (c[i+63:i] & 63) ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 32-bit integers in "b" and "a" producing an intermediate 64-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 32-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ((b[i+31:i] << 32)[63:0] | a[i+31:i]) >> (c[i+31:i] & 31) ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 32-bit integers in "b" and "a" producing an intermediate 64-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 32-bits in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ((b[i+31:i] << 32)[63:0] | a[i+31:i]) >> (c[i+31:i] & 31) ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 32-bit integers in "b" and "a" producing an intermediate 64-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 32-bits in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := ((b[i+31:i] << 32)[63:0] | a[i+31:i]) >> (c[i+31:i] & 31) ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 16-bit integers in "b" and "a" producing an intermediate 32-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 16-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := ((b[i+15:i] << 16)[31:0] | a[i+15:i]) >> (c[i+15:i] & 15) ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 16-bit integers in "b" and "a" producing an intermediate 32-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 16-bits in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := ((b[i+15:i] << 16)[31:0] | a[i+15:i]) >> (c[i+15:i] & 15) ELSE dst[i+15:i] := a[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 16-bit integers in "b" and "a" producing an intermediate 32-bit result. Shift the result right by the amount specified in the corresponding element of "c", and store the lower 16-bits in "dst". FOR j := 0 to 31 i := j*16 dst[i+15:i] := ((b[i+15:i] << 16)[31:0] | a[i+15:i]) >> (c[i+15:i] & 15) ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 64-bit integers in "b" and "a" producing an intermediate 128-bit result. Shift the result right by "imm8" bits, and store the lower 64-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ((b[i+63:i] << 64)[127:0] | a[i+63:i]) >> imm8[5:0] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 64-bit integers in "b" and "a" producing an intermediate 128-bit result. Shift the result right by "imm8" bits, and store the lower 64-bits in "dst" using writemask "k" (elements are copied from "src"" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] dst[i+63:i] := ((b[i+63:i] << 64)[127:0] | a[i+63:i]) >> imm8[5:0] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 64-bit integers in "b" and "a" producing an intermediate 128-bit result. Shift the result right by "imm8" bits, and store the lower 64-bits in "dst". FOR j := 0 to 7 i := j*64 dst[i+63:i] := ((b[i+63:i] << 64)[127:0] | a[i+63:i]) >> imm8[5:0] ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 32-bit integers in "b" and "a" producing an intermediate 64-bit result. Shift the result right by "imm8" bits, and store the lower 32-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ((b[i+31:i] << 32)[63:0] | a[i+31:i]) >> imm8[4:0] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 32-bit integers in "b" and "a" producing an intermediate 64-bit result. Shift the result right by "imm8" bits, and store the lower 32-bits in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] dst[i+31:i] := ((b[i+31:i] << 32)[63:0] | a[i+31:i]) >> imm8[4:0] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 32-bit integers in "b" and "a" producing an intermediate 64-bit result. Shift the result right by "imm8" bits, and store the lower 32-bits in "dst". FOR j := 0 to 15 i := j*32 dst[i+31:i] := ((b[i+31:i] << 32)[63:0] | a[i+31:i]) >> imm8[4:0] ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 16-bit integers in "b" and "a" producing an intermediate 32-bit result. Shift the result right by "imm8" bits, and store the lower 16-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := ((b[i+15:i] << 16)[31:0] | a[i+15:i]) >> imm8[3:0] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 16-bit integers in "b" and "a" producing an intermediate 32-bit result. Shift the result right by "imm8" bits, and store the lower 16-bits in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := ((b[i+15:i] << 16)[31:0] | a[i+15:i]) >> imm8[3:0] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 16-bit integers in "b" and "a" producing an intermediate 32-bit result. Shift the result right by "imm8" bits, and store the lower 16-bits in "dst". FOR j := 0 to 31 i := j*16 dst[i+15:i] := ((b[i+15:i] << 16)[31:0] | a[i+15:i]) >> imm8[3:0] ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 64-bit integers in "a" and "b" producing an intermediate 128-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 64-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] tmp[127:0] := ((a[i+63:i] << 64)[127:0] | b[i+63:i]) << (c[i+63:i] & 63) dst[i+63:i] := tmp[127:64] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 64-bit integers in "a" and "b" producing an intermediate 128-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 64-bits in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] tmp[127:0] := ((a[i+63:i] << 64)[127:0] | b[i+63:i]) << (c[i+63:i] & 63) dst[i+63:i] := tmp[127:64] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 64-bit integers in "a" and "b" producing an intermediate 128-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 64-bits in "dst". FOR j := 0 to 7 i := j*64 tmp[127:0] := ((a[i+63:i] << 64)[127:0] | b[i+63:i]) << (c[i+63:i] & 63) dst[i+63:i] := tmp[127:64] ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 32-bit integers in "a" and "b" producing an intermediate 64-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 32-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] tmp[63:0] := ((a[i+31:i] << 32)[63:0] | b[i+31:i]) << (c[i+31:i] & 31) dst[i+31:i] := tmp[63:32] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 32-bit integers in "a" and "b" producing an intermediate 64-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 32-bits in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] tmp[63:0] := ((a[i+31:i] << 32)[63:0] | b[i+31:i]) << (c[i+31:i] & 31) dst[i+31:i] := tmp[63:32] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 32-bit integers in "a" and "b" producing an intermediate 64-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 32-bits in "dst". FOR j := 0 to 15 i := j*32 tmp[63:0] := ((a[i+31:i] << 32)[63:0] | b[i+31:i]) << (c[i+31:i] & 31) dst[i+31:i] := tmp[63:32] ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 16-bit integers in "a" and "b" producing an intermediate 32-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 16-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] tmp[31:0] := ((a[i+15:i] << 16)[31:0] | b[i+15:i]) << (c[i+15:i] & 15) dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 16-bit integers in "a" and "b" producing an intermediate 32-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 16-bits in "dst" using writemask "k" (elements are copied from "a" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] tmp[31:0] := ((a[i+15:i] << 16)[31:0] | b[i+15:i]) << (c[i+15:i] & 15) dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := a[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 16-bit integers in "a" and "b" producing an intermediate 32-bit result. Shift the result left by the amount specified in the corresponding element of "c", and store the upper 16-bits in "dst". FOR j := 0 to 31 i := j*16 tmp[31:0] := ((a[i+15:i] << 16)[31:0] | b[i+15:i]) << (c[i+15:i] & 15) dst[i+15:i] := tmp[31:16] ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 64-bit integers in "a" and "b" producing an intermediate 128-bit result. Shift the result left by "imm8" bits, and store the upper 64-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] tmp[127:0] := ((a[i+63:i] << 64)[127:0] | b[i+63:i]) << imm8[5:0] dst[i+63:i] := tmp[127:64] ELSE dst[i+63:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 64-bit integers in "a" and "b" producing an intermediate 128-bit result. Shift the result left by "imm8" bits, and store the upper 64-bits in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 i := j*64 IF k[j] tmp[127:0] := ((a[i+63:i] << 64)[127:0] | b[i+63:i]) << imm8[5:0] dst[i+63:i] := tmp[127:64] ELSE dst[i+63:i] := src[i+63:i] FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 64-bit integers in "a" and "b" producing an intermediate 128-bit result. Shift the result left by "imm8" bits, and store the upper 64-bits in "dst"). FOR j := 0 to 7 i := j*64 tmp[127:0] := ((a[i+63:i] << 64)[127:0] | b[i+63:i]) << imm8[5:0] dst[i+63:i] := tmp[127:64] ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 32-bit integers in "a" and "b" producing an intermediate 64-bit result. Shift the result left by "imm8" bits, and store the upper 32-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] tmp[63:0] := ((a[i+31:i] << 32)[63:0] | b[i+31:i]) << imm8[4:0] dst[i+31:i] := tmp[63:32] ELSE dst[i+31:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 32-bit integers in "a" and "b" producing an intermediate 64-bit result. Shift the result left by "imm8" bits, and store the upper 32-bits in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 i := j*32 IF k[j] tmp[63:0] := ((a[i+31:i] << 32)[63:0] | b[i+31:i]) << imm8[4:0] dst[i+31:i] := tmp[63:32] ELSE dst[i+31:i] := src[i+31:i] FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 32-bit integers in "a" and "b" producing an intermediate 64-bit result. Shift the result left by "imm8" bits, and store the upper 32-bits in "dst". FOR j := 0 to 15 i := j*32 tmp[63:0] := ((a[i+31:i] << 32)[63:0] | b[i+31:i]) << imm8[4:0] dst[i+31:i] := tmp[63:32] ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 16-bit integers in "a" and "b" producing an intermediate 32-bit result. Shift the result left by "imm8" bits, and store the upper 16-bits in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] tmp[31:0] := ((a[i+15:i] << 16)[31:0] | b[i+15:i]) << imm8[3:0] dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 16-bit integers in "a" and "b" producing an intermediate 32-bit result. Shift the result left by "imm8" bits, and store the upper 16-bits in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 31 i := j*16 IF k[j] tmp[31:0] := ((a[i+15:i] << 16)[31:0] | b[i+15:i]) << imm8[3:0] dst[i+15:i] := tmp[31:16] ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Concatenate packed 16-bit integers in "a" and "b" producing an intermediate 32-bit result. Shift the result left by "imm8" bits, and store the upper 16-bits in "dst"). FOR j := 0 to 31 i := j*16 tmp[31:0] := ((a[i+15:i] << 16)[31:0] | b[i+15:i]) << imm8[3:0] dst[i+15:i] := tmp[31:16] ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Shift
Swizzle Load contiguous active 16-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := MEM[mem_addr+m+15:mem_addr+m] m := m + 16 ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Load
Swizzle Load contiguous active 16-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := MEM[mem_addr+m+15:mem_addr+m] m := m + 16 ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Load
Swizzle Load contiguous active 8-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := MEM[mem_addr+m+7:mem_addr+m] m := m + 8 ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Load
Swizzle Load contiguous active 8-bit integers from unaligned memory at "mem_addr" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := MEM[mem_addr+m+7:mem_addr+m] m := m + 8 ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Load
Load contiguous active 16-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := a[m+15:m] m := m + 16 ELSE dst[i+15:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Swizzle
Load contiguous active 16-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 31 i := j*16 IF k[j] dst[i+15:i] := a[m+15:m] m := m + 16 ELSE dst[i+15:i] := src[i+15:i] FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Swizzle
Load contiguous active 8-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). m := 0 FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := a[m+7:m] m := m + 8 ELSE dst[i+7:i] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Swizzle
Load contiguous active 8-bit integers from "a" (those with their respective bit set in mask "k"), and store the results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). m := 0 FOR j := 0 to 63 i := j*8 IF k[j] dst[i+7:i] := a[m+7:m] m := m + 8 ELSE dst[i+7:i] := src[i+7:i] FI ENDFOR dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Swizzle
Contiguously store the active 16-bit integers in "a" (those with their respective bit set in zeromask "k") to "dst", and set the remaining elements to zero. size := 16 m := 0 FOR j := 0 to 31 i := j*16 IF k[j] dst[m+size-1:m] := a[i+15:i] m := m + size FI ENDFOR dst[511:m] := 0 dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Swizzle
Contiguously store the active 16-bit integers in "a" (those with their respective bit set in writemask "k") to "dst", and pass through the remaining elements from "src". size := 16 m := 0 FOR j := 0 to 31 i := j*16 IF k[j] dst[m+size-1:m] := a[i+15:i] m := m + size FI ENDFOR dst[511:m] := src[511:m] dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Swizzle
Contiguously store the active 8-bit integers in "a" (those with their respective bit set in zeromask "k") to "dst", and set the remaining elements to zero. size := 8 m := 0 FOR j := 0 to 63 i := j*8 IF k[j] dst[m+size-1:m] := a[i+7:i] m := m + size FI ENDFOR dst[511:m] := 0 dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Swizzle
Contiguously store the active 8-bit integers in "a" (those with their respective bit set in writemask "k") to "dst", and pass through the remaining elements from "src". size := 8 m := 0 FOR j := 0 to 63 i := j*8 IF k[j] dst[m+size-1:m] := a[i+7:i] m := m + size FI ENDFOR dst[511:m] := src[511:m] dst[MAX:512] := 0 AVX512_VBMI2
immintrin.h
Swizzle
Swizzle Contiguously store the active 16-bit integers in "a" (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". size := 16 m := base_addr FOR j := 0 to 31 i := j*16 IF k[j] MEM[m+size-1:m] := a[i+15:i] m := m + size FI ENDFOR AVX512_VBMI2
immintrin.h
Store
Swizzle Contiguously store the active 8-bit integers in "a" (those with their respective bit set in writemask "k") to unaligned memory at "base_addr". size := 8 m := base_addr FOR j := 0 to 63 i := j*8 IF k[j] MEM[m+size-1:m] := a[i+7:i] m := m + size FI ENDFOR AVX512_VBMI2
immintrin.h
Store
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:256] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2) ENDFOR dst[MAX:256] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 IF k[j] tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 IF k[j] tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:128] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2) ENDFOR dst[MAX:128] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := src.dword[j] + tmp1 + tmp2 ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := src.dword[j] + tmp1 + tmp2 ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:256] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := src.dword[j] + tmp1 + tmp2 ENDFOR dst[MAX:256] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 IF k[j] tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := src.dword[j] + tmp1 + tmp2 ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 IF k[j] tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := src.dword[j] + tmp1 + tmp2 ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:128] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := src.dword[j] + tmp1 + tmp2 ENDFOR dst[MAX:128] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:256] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) ENDFOR dst[MAX:256] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 IF k[j] tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 IF k[j] tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:128] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) ENDFOR dst[MAX:128] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:256] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 7 IF k[j] tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:256] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 ENDFOR dst[MAX:256] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 3 IF k[j] tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:128] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 3 IF k[j] tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:128] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 ENDFOR dst[MAX:128] := 0 AVX512_VNNI AVX512VL
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VNNI
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_VNNI
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 15 tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2) ENDFOR dst[MAX:512] := 0 AVX512_VNNI
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := src.dword[j] + tmp1 + tmp2 ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VNNI
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := src.dword[j] + tmp1 + tmp2 ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_VNNI
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst". FOR j := 0 to 15 tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := src.dword[j] + tmp1 + tmp2 ENDFOR dst[MAX:512] := 0 AVX512_VNNI
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VNNI
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_VNNI
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 15 tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) ENDFOR dst[MAX:512] := 0 AVX512_VNNI
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 ELSE dst.dword[j] := 0 FI ENDFOR dst[MAX:512] := 0 AVX512_VNNI
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). FOR j := 0 to 15 IF k[j] tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 ELSE dst.dword[j] := src.dword[j] FI ENDFOR dst[MAX:512] := 0 AVX512_VNNI
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst". FOR j := 0 to 15 tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 ENDFOR dst[MAX:512] := 0 AVX512_VNNI
immintrin.h
Arithmetic
Compute intersection of packed 32-bit integer vectors "a" and "b", and store indication of match in the corresponding bit of two mask registers specified by "k1" and "k2". A match in corresponding elements of "a" and "b" is indicated by a set bit in the corresponding bit of the mask registers. MEM[k1+15:k1] := 0 MEM[k2+15:k2] := 0 FOR i := 0 TO 15 FOR j := 0 TO 15 match := (a.dword[i] == b.dword[j] ? 1 : 0) MEM[k1+15:k1].bit[i] |= match MEM[k2+15:k2].bit[j] |= match ENDFOR ENDFOR AVX512_VP2INTERSECT AVX512F
immintrin.h
Mask
Compute intersection of packed 64-bit integer vectors "a" and "b", and store indication of match in the corresponding bit of two mask registers specified by "k1" and "k2". A match in corresponding elements of "a" and "b" is indicated by a set bit in the corresponding bit of the mask registers. MEM[k1+7:k1] := 0 MEM[k2+7:k2] := 0 FOR i := 0 TO 7 FOR j := 0 TO 7 match := (a.qword[i] == b.qword[j] ? 1 : 0) MEM[k1+7:k1].bit[i] |= match MEM[k2+7:k2].bit[j] |= match ENDFOR ENDFOR AVX512_VP2INTERSECT AVX512F
immintrin.h
Mask
Compute intersection of packed 32-bit integer vectors "a" and "b", and store indication of match in the corresponding bit of two mask registers specified by "k1" and "k2". A match in corresponding elements of "a" and "b" is indicated by a set bit in the corresponding bit of the mask registers. MEM[k1+7:k1] := 0 MEM[k2+7:k2] := 0 FOR i := 0 TO 3 FOR j := 0 TO 3 match := (a.dword[i] == b.dword[j] ? 1 : 0) MEM[k1+7:k1].bit[i] |= match MEM[k2+7:k2].bit[j] |= match ENDFOR ENDFOR AVX512_VP2INTERSECT AVX512VL
immintrin.h
Mask
Compute intersection of packed 32-bit integer vectors "a" and "b", and store indication of match in the corresponding bit of two mask registers specified by "k1" and "k2". A match in corresponding elements of "a" and "b" is indicated by a set bit in the corresponding bit of the mask registers. MEM[k1+7:k1] := 0 MEM[k2+7:k2] := 0 FOR i := 0 TO 7 FOR j := 0 TO 7 match := (a.dword[i] == b.dword[j] ? 1 : 0) MEM[k1+7:k1].bit[i] |= match MEM[k2+7:k2].bit[j] |= match ENDFOR ENDFOR AVX512_VP2INTERSECT AVX512VL
immintrin.h
Mask
Compute intersection of packed 64-bit integer vectors "a" and "b", and store indication of match in the corresponding bit of two mask registers specified by "k1" and "k2". A match in corresponding elements of "a" and "b" is indicated by a set bit in the corresponding bit of the mask registers. MEM[k1+7:k1] := 0 MEM[k2+7:k2] := 0 FOR i := 0 TO 1 FOR j := 0 TO 1 match := (a.qword[i] == b.qword[j] ? 1 : 0) MEM[k1+7:k1].bit[i] |= match MEM[k2+7:k2].bit[j] |= match ENDFOR ENDFOR AVX512_VP2INTERSECT AVX512VL
immintrin.h
Mask
Compute intersection of packed 64-bit integer vectors "a" and "b", and store indication of match in the corresponding bit of two mask registers specified by "k1" and "k2". A match in corresponding elements of "a" and "b" is indicated by a set bit in the corresponding bit of the mask registers. MEM[k1+7:k1] := 0 MEM[k2+7:k2] := 0 FOR i := 0 TO 3 FOR j := 0 TO 3 match := (a.qword[i] == b.qword[j] ? 1 : 0) MEM[k1+7:k1].bit[i] |= match MEM[k2+7:k2].bit[j] |= match ENDFOR ENDFOR AVX512_VP2INTERSECT AVX512VL
immintrin.h
Mask
Multiply packed unsigned 52-bit integers in each 64-bit element of "__Y" and "__Z" to form a 104-bit intermediate result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "__X", and store the results in "dst". FOR j := 0 to 3 i := j*64 tmp[127:0] := ZeroExtend64(__Y[i+51:i]) * ZeroExtend64(__Z[i+51:i]) dst[i+63:i] := __X[i+63:i] + ZeroExtend64(tmp[103:52]) ENDFOR dst[MAX:256] := 0 AVX_IFMA
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "__Y" and "__Z" to form a 104-bit intermediate result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "__X", and store the results in "dst". FOR j := 0 to 3 i := j*64 tmp[127:0] := ZeroExtend64(__Y[i+51:i]) * ZeroExtend64(__Z[i+51:i]) dst[i+63:i] := __X[i+63:i] + ZeroExtend64(tmp[51:0]) ENDFOR dst[MAX:256] := 0 AVX_IFMA
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "__Y" and "__Z" to form a 104-bit intermediate result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "__X", and store the results in "dst". FOR j := 0 to 1 i := j*64 tmp[127:0] := ZeroExtend64(__Y[i+51:i]) * ZeroExtend64(__Z[i+51:i]) dst[i+63:i] := __X[i+63:i] + ZeroExtend64(tmp[103:52]) ENDFOR dst[MAX:128] := 0 AVX_IFMA
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "__Y" and "__Z" to form a 104-bit intermediate result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "__X", and store the results in "dst". FOR j := 0 to 1 i := j*64 tmp[127:0] := ZeroExtend64(__Y[i+51:i]) * ZeroExtend64(__Z[i+51:i]) dst[i+63:i] := __X[i+63:i] + ZeroExtend64(tmp[51:0]) ENDFOR dst[MAX:128] := 0 AVX_IFMA
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "__Y" and "__Z" to form a 104-bit intermediate result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "__X", and store the results in "dst". FOR j := 0 to 3 i := j*64 tmp[127:0] := ZeroExtend64(__Y[i+51:i]) * ZeroExtend64(__Z[i+51:i]) dst[i+63:i] := __X[i+63:i] + ZeroExtend64(tmp[103:52]) ENDFOR dst[MAX:256] := 0 AVX_IFMA
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "__Y" and "__Z" to form a 104-bit intermediate result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "__X", and store the results in "dst". FOR j := 0 to 3 i := j*64 tmp[127:0] := ZeroExtend64(__Y[i+51:i]) * ZeroExtend64(__Z[i+51:i]) dst[i+63:i] := __X[i+63:i] + ZeroExtend64(tmp[51:0]) ENDFOR dst[MAX:256] := 0 AVX_IFMA
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "__Y" and "__Z" to form a 104-bit intermediate result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "__X", and store the results in "dst". FOR j := 0 to 1 i := j*64 tmp[127:0] := ZeroExtend64(__Y[i+51:i]) * ZeroExtend64(__Z[i+51:i]) dst[i+63:i] := __X[i+63:i] + ZeroExtend64(tmp[103:52]) ENDFOR dst[MAX:128] := 0 AVX_IFMA
immintrin.h
Arithmetic
Multiply packed unsigned 52-bit integers in each 64-bit element of "__Y" and "__Z" to form a 104-bit intermediate result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-bit integer in "__X", and store the results in "dst". FOR j := 0 to 1 i := j*64 tmp[127:0] := ZeroExtend64(__Y[i+51:i]) * ZeroExtend64(__Z[i+51:i]) dst[i+63:i] := __X[i+63:i] + ZeroExtend64(tmp[51:0]) ENDFOR dst[MAX:128] := 0 AVX_IFMA
immintrin.h
Arithmetic
Convert scalar BF16 (16-bit) floating-point element stored at memory locations starting at location "__A" to a single-precision (32-bit) floating-point, broadcast it to packed single-precision (32-bit) floating-point elements, and store the results in "dst". b := Convert_BF16_To_FP32(MEM[__A+15:__A]) FOR j := 0 to 7 m := j*32 dst[m+31:m] := b ENDFOR dst[MAX:256] := 0 AVX_NE_CONVERT
immintrin.h
Convert
Convert scalar half-precision (16-bit) floating-point element stored at memory locations starting at location "__A" to a single-precision (32-bit) floating-point, broadcast it to packed single-precision (32-bit) floating-point elements, and store the results in "dst". b := Convert_FP16_To_FP32(MEM[__A+15:__A]) FOR j := 0 to 7 m := j*32 dst[m+31:m] := b ENDFOR dst[MAX:256] := 0 AVX_NE_CONVERT
immintrin.h
Convert
Convert packed BF16 (16-bit) floating-point even-indexed elements stored at memory locations starting at location "__A" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 m := j*32 dst[m+31:m] := Convert_BF16_To_FP32(MEM[__A+m+15:__A+m]) ENDFOR dst[MAX:256] := 0 AVX_NE_CONVERT
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point even-indexed elements stored at memory locations starting at location "__A" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 m := j*32 dst[m+31:m] := Convert_FP16_To_FP32(MEM[__A+m+15:__A+m]) ENDFOR dst[MAX:256] := 0 AVX_NE_CONVERT
immintrin.h
Convert
Convert packed BF16 (16-bit) floating-point odd-indexed elements stored at memory locations starting at location "__A" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 m := j*32 dst[m+31:m] := Convert_BF16_To_FP32(MEM[__A+m+31:__A+m+16]) ENDFOR dst[MAX:256] := 0 AVX_NE_CONVERT
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point odd-indexed elements stored at memory locations starting at location "__A" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 m := j*32 dst[m+31:m] := Convert_FP16_To_FP32(MEM[__A+m+31:__A+m+16]) ENDFOR dst[MAX:256] := 0 AVX_NE_CONVERT
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "__A" to packed BF16 (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 dst.word[j] := Convert_FP32_To_BF16(__A.fp32[j]) ENDFOR dst[MAX:128] := 0 AVX_NE_CONVERT
immintrin.h
Convert
Convert scalar BF16 (16-bit) floating-point element stored at memory locations starting at location "__A" to a single-precision (32-bit) floating-point, broadcast it to packed single-precision (32-bit) floating-point elements, and store the results in "dst". b := Convert_BF16_To_FP32(MEM[__A+15:__A]) FOR j := 0 to 3 m := j*32 dst[m+31:m] := b ENDFOR dst[MAX:128] := 0 AVX_NE_CONVERT
immintrin.h
Convert
Convert scalar half-precision (16-bit) floating-point element stored at memory locations starting at location "__A" to a single-precision (32-bit) floating-point, broadcast it to packed single-precision (32-bit) floating-point elements, and store the results in "dst". b := Convert_FP16_To_FP32(MEM[__A+15:__A]) FOR j := 0 to 3 m := j*32 dst[m+31:m] := b ENDFOR dst[MAX:128] := 0 AVX_NE_CONVERT
immintrin.h
Convert
Convert packed BF16 (16-bit) floating-point even-indexed elements stored at memory locations starting at location "__A" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 m := j*32 dst[m+31:m] := Convert_BF16_To_FP32(MEM[__A+m+15:__A+m]) ENDFOR dst[MAX:128] := 0 AVX_NE_CONVERT
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point even-indexed elements stored at memory locations starting at location "__A" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 m := j*32 dst[m+31:m] := Convert_FP16_To_FP32(MEM[__A+m+15:__A+m]) ENDFOR dst[MAX:128] := 0 AVX_NE_CONVERT
immintrin.h
Convert
Convert packed BF16 (16-bit) floating-point odd-indexed elements stored at memory locations starting at location "__A" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 m := j*32 dst[m+31:m] := Convert_BF16_To_FP32(MEM[__A+m+31:__A+m+16]) ENDFOR dst[MAX:128] := 0 AVX_NE_CONVERT
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point odd-indexed elements stored at memory locations starting at location "__A" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 m := j*32 dst[m+31:m] := Convert_FP16_To_FP32(MEM[__A+m+31:__A+m+16]) ENDFOR dst[MAX:128] := 0 AVX_NE_CONVERT
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "__A" to packed BF16 (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 dst.word[j] := Convert_FP32_To_BF16(__A.fp32[j]) ENDFOR dst[MAX:128] := 0 AVX_NE_CONVERT
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "__A" to packed BF16 (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 dst.word[j] := Convert_FP32_To_BF16(__A.fp32[j]) ENDFOR dst[MAX:128] := 0 AVX_NE_CONVERT
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "__A" to packed BF16 (16-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 dst.word[j] := Convert_FP32_To_BF16(__A.fp32[j]) ENDFOR dst[MAX:128] := 0 AVX_NE_CONVERT
immintrin.h
Convert
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 ENDFOR dst[MAX:256] := 0 AVX_VNNI
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) ENDFOR dst[MAX:256] := 0 AVX_VNNI
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := src.dword[j] + tmp1 + tmp2 ENDFOR dst[MAX:256] := 0 AVX_VNNI
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2) ENDFOR dst[MAX:256] := 0 AVX_VNNI
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 ENDFOR dst[MAX:128] := 0 AVX_VNNI
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) ENDFOR dst[MAX:128] := 0 AVX_VNNI
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := src.dword[j] + tmp1 + tmp2 ENDFOR dst[MAX:128] := 0 AVX_VNNI
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2) ENDFOR dst[MAX:128] := 0 AVX_VNNI
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 ENDFOR dst[MAX:256] := 0 AVX_VNNI
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) ENDFOR dst[MAX:256] := 0 AVX_VNNI
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := src.dword[j] + tmp1 + tmp2 ENDFOR dst[MAX:256] := 0 AVX_VNNI
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2) ENDFOR dst[MAX:256] := 0 AVX_VNNI
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 ENDFOR dst[MAX:128] := 0 AVX_VNNI
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.word := Signed(ZeroExtend16(a.byte[4*j]) * SignExtend16(b.byte[4*j])) tmp2.word := Signed(ZeroExtend16(a.byte[4*j+1]) * SignExtend16(b.byte[4*j+1])) tmp3.word := Signed(ZeroExtend16(a.byte[4*j+2]) * SignExtend16(b.byte[4*j+2])) tmp4.word := Signed(ZeroExtend16(a.byte[4*j+3]) * SignExtend16(b.byte[4*j+3])) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) ENDFOR dst[MAX:128] := 0 AVX_VNNI
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src", and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := src.dword[j] + tmp1 + tmp2 ENDFOR dst[MAX:128] := 0 AVX_VNNI
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "a" with corresponding 16-bit integers in "b", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "src" using signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.dword := SignExtend32(a.word[2*j]) * SignExtend32(b.word[2*j]) tmp2.dword := SignExtend32(a.word[2*j+1]) * SignExtend32(b.word[2*j+1]) dst.dword[j] := Saturate32(src.dword[j] + tmp1 + tmp2) ENDFOR dst[MAX:128] := 0 AVX_VNNI
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "__A" with corresponding unsigned 16-bit integers in "__B", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "__W", and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.dword := SignExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j]) tmp2.dword := SignExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1]) dst.dword[j] := __W.dword[j] + tmp1 + tmp2 ENDFOR dst[MAX:256] := 0 AVX_VNNI_INT16
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "__A" with corresponding unsigned 16-bit integers in "__B", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "__W" with signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.dword := SignExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j]) tmp2.dword := SignExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1]) dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2) ENDFOR dst[MAX:256] := 0 AVX_VNNI_INT16
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in "__A" with corresponding signed 16-bit integers in "__B", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "__W", and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.dword := ZeroExtend32(__A.word[2*j]) * SignExtend32(__B.word[2*j]) tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * SignExtend32(__B.word[2*j+1]) dst.dword[j] := __W.dword[j] + tmp1 + tmp2 ENDFOR dst[MAX:256] := 0 AVX_VNNI_INT16
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in "__A" with corresponding signed 16-bit integers in "__B", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "__W" with signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.dword := ZeroExtend32(__A.word[2*j]) * SignExtend32(__B.word[2*j]) tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * SignExtend32(__B.word[2*j+1]) dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2) ENDFOR dst[MAX:256] := 0 AVX_VNNI_INT16
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in "__A" with corresponding unsigned 16-bit integers in "__B", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "__W", and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.dword := ZeroExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j]) tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1]) dst.dword[j] := __W.dword[j] + tmp1 + tmp2 ENDFOR dst[MAX:256] := 0 AVX_VNNI_INT16
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in "__A" with corresponding unsigned 16-bit integers in "__B", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "__W" with signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.dword := ZeroExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j]) tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1]) dst.dword[j] := UNSIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2) ENDFOR dst[MAX:256] := 0 AVX_VNNI_INT16
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "__A" with corresponding unsigned 16-bit integers in "__B", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "__W", and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.dword := SignExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j]) tmp2.dword := SignExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1]) dst.dword[j] := __W.dword[j] + tmp1 + tmp2 ENDFOR dst[MAX:128] := 0 AVX_VNNI_INT16
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of signed 16-bit integers in "__A" with corresponding unsigned 16-bit integers in "__B", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "__W" with signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.dword := SignExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j]) tmp2.dword := SignExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1]) dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2) ENDFOR dst[MAX:128] := 0 AVX_VNNI_INT16
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in "__A" with corresponding signed 16-bit integers in "__B", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "__W", and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.dword := ZeroExtend32(__A.word[2*j]) * SignExtend32(__B.word[2*j]) tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * SignExtend32(__B.word[2*j+1]) dst.dword[j] := __W.dword[j] + tmp1 + tmp2 ENDFOR dst[MAX:128] := 0 AVX_VNNI_INT16
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in "__A" with corresponding signed 16-bit integers in "__B", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "__W" with signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.dword := ZeroExtend32(__A.word[2*j]) * SignExtend32(__B.word[2*j]) tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * SignExtend32(__B.word[2*j+1]) dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2) ENDFOR dst[MAX:128] := 0 AVX_VNNI_INT16
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in "__A" with corresponding unsigned 16-bit integers in "__B", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "__W", and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.dword := ZeroExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j]) tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1]) dst.dword[j] := __W.dword[j] + tmp1 + tmp2 ENDFOR dst[MAX:128] := 0 AVX_VNNI_INT16
immintrin.h
Arithmetic
Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in "__A" with corresponding unsigned 16-bit integers in "__B", producing 2 intermediate signed 32-bit results. Sum these 2 results with the corresponding 32-bit integer in "__W" with signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.dword := ZeroExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j]) tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1]) dst.dword[j] := UNSIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2) ENDFOR dst[MAX:128] := 0 AVX_VNNI_INT16
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of signed 8-bit integers in "__A" with corresponding signed 8-bit integers in "__B", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "__W", and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.word := SignExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j]) tmp2.word := SignExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1]) tmp3.word := SignExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2]) tmp4.word := SignExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3]) dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 ENDFOR dst[MAX:256] := 0 AVX_VNNI_INT8
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of signed 8-bit integers in "__A" with corresponding signed 8-bit integers in "__B", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "__W" with signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.word := SignExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j]) tmp2.word := SignExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1]) tmp3.word := SignExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2]) tmp4.word := SignExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3]) dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) ENDFOR dst[MAX:256] := 0 AVX_VNNI_INT8
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of signed 8-bit integers in "__A" with corresponding unsigned 8-bit integers in "__B", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "__W", and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.word := Signed(SignExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j])) tmp2.word := Signed(SignExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1])) tmp3.word := Signed(SignExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2])) tmp4.word := Signed(SignExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3])) dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 ENDFOR dst[MAX:256] := 0 AVX_VNNI_INT8
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of signed 8-bit integers in "__A" with corresponding unsigned 8-bit integers in "__B", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "__W" with signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.word := Signed(SignExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j])) tmp2.word := Signed(SignExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1])) tmp3.word := Signed(SignExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2])) tmp4.word := Signed(SignExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3])) dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) ENDFOR dst[MAX:256] := 0 AVX_VNNI_INT8
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "__A" with corresponding unsigned 8-bit integers in "__B", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "__W", and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.word := ZeroExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j]) tmp2.word := ZeroExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1]) tmp3.word := ZeroExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2]) tmp4.word := ZeroExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3]) dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 ENDFOR dst[MAX:256] := 0 AVX_VNNI_INT8
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of signed 8-bit integers in "__A" with corresponding unsigned 8-bit integers in "__B", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "__W" with unsigned saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 7 tmp1.word := ZeroExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j]) tmp2.word := ZeroExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1]) tmp3.word := ZeroExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2]) tmp4.word := ZeroExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3]) dst.dword[j] := UNSIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) ENDFOR dst[MAX:256] := 0 AVX_VNNI_INT8
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of signed 8-bit integers in "__A" with corresponding signed 8-bit integers in "__B", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "__W", and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.word := SignExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j]) tmp2.word := SignExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1]) tmp3.word := SignExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2]) tmp4.word := SignExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3]) dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 ENDFOR dst[MAX:128] := 0 AVX_VNNI_INT8
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of signed 8-bit integers in "__A" with corresponding signed 8-bit integers in "__B", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "__W" with signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.word := SignExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j]) tmp2.word := SignExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1]) tmp3.word := SignExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2]) tmp4.word := SignExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3]) dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) ENDFOR dst[MAX:128] := 0 AVX_VNNI_INT8
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of signed 8-bit integers in "__A" with corresponding unsigned 8-bit integers in "__B", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "__W", and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.word := Signed(SignExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j])) tmp2.word := Signed(SignExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1])) tmp3.word := Signed(SignExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2])) tmp4.word := Signed(SignExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3])) dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 ENDFOR dst[MAX:128] := 0 AVX_VNNI_INT8
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of signed 8-bit integers in "__A" with corresponding unsigned 8-bit integers in "__B", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "__W" with signed saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.word := Signed(SignExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j])) tmp2.word := Signed(SignExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1])) tmp3.word := Signed(SignExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2])) tmp4.word := Signed(SignExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3])) dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) ENDFOR dst[MAX:128] := 0 AVX_VNNI_INT8
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "__A" with corresponding unsigned 8-bit integers in "__B", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "__W", and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.word := ZeroExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j]) tmp2.word := ZeroExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1]) tmp3.word := ZeroExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2]) tmp4.word := ZeroExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3]) dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 ENDFOR dst[MAX:128] := 0 AVX_VNNI_INT8
immintrin.h
Arithmetic
Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in "__A" with corresponding unsigned 8-bit integers in "__B", producing 4 intermediate signed 16-bit results. Sum these 4 results with the corresponding 32-bit integer in "__W" with unsigned saturation, and store the packed 32-bit results in "dst". FOR j := 0 to 3 tmp1.word := ZeroExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j]) tmp2.word := ZeroExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1]) tmp3.word := ZeroExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2]) tmp4.word := ZeroExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3]) dst.dword[j] := UNSIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) ENDFOR dst[MAX:128] := 0 AVX_VNNI_INT8
immintrin.h
Arithmetic
Extract contiguous bits from unsigned 32-bit integer "a", and store the result in "dst". Extract the number of bits specified by "len", starting at the bit specified by "start". tmp[511:0] := a dst[31:0] := ZeroExtend32(tmp[(start[7:0] + len[7:0] - 1):start[7:0]]) BMI1
immintrin.h
Bit Manipulation
Extract contiguous bits from unsigned 32-bit integer "a", and store the result in "dst". Extract the number of bits specified by bits 15:8 of "control", starting at the bit specified by bits 0:7 of "control". start := control[7:0] len := control[15:8] tmp[511:0] := a dst[31:0] := ZeroExtend32(tmp[(start[7:0] + len[7:0] - 1):start[7:0]]) BMI1
immintrin.h
Bit Manipulation
Extract contiguous bits from unsigned 64-bit integer "a", and store the result in "dst". Extract the number of bits specified by "len", starting at the bit specified by "start". tmp[511:0] := a dst[63:0] := ZeroExtend64(tmp[(start[7:0] + len[7:0] - 1):start[7:0]]) BMI1
immintrin.h
Bit Manipulation
Extract contiguous bits from unsigned 64-bit integer "a", and store the result in "dst". Extract the number of bits specified by bits 15:8 of "control", starting at the bit specified by bits 0:7 of "control".. start := control[7:0] len := control[15:8] tmp[511:0] := a dst[63:0] := ZeroExtend64(tmp[(start[7:0] + len[7:0] - 1):start[7:0]]) BMI1
immintrin.h
Bit Manipulation
Extract the lowest set bit from unsigned 32-bit integer "a" and set the corresponding bit in "dst". All other bits in "dst" are zeroed, and all bits are zeroed if no bits are set in "a". dst := (-a) AND a BMI1
immintrin.h
Bit Manipulation
Extract the lowest set bit from unsigned 64-bit integer "a" and set the corresponding bit in "dst". All other bits in "dst" are zeroed, and all bits are zeroed if no bits are set in "a". dst := (-a) AND a BMI1
immintrin.h
Bit Manipulation
Set all the lower bits of "dst" up to and including the lowest set bit in unsigned 32-bit integer "a". dst := (a - 1) XOR a BMI1
immintrin.h
Bit Manipulation
Set all the lower bits of "dst" up to and including the lowest set bit in unsigned 64-bit integer "a". dst := (a - 1) XOR a BMI1
immintrin.h
Bit Manipulation
Copy all bits from unsigned 32-bit integer "a" to "dst", and reset (set to 0) the bit in "dst" that corresponds to the lowest set bit in "a". dst := (a - 1) AND a BMI1
immintrin.h
Bit Manipulation
Copy all bits from unsigned 64-bit integer "a" to "dst", and reset (set to 0) the bit in "dst" that corresponds to the lowest set bit in "a". dst := (a - 1) AND a BMI1
immintrin.h
Bit Manipulation
Compute the bitwise NOT of 32-bit integer "a" and then AND with b, and store the results in dst. dst[31:0] := ((NOT a[31:0]) AND b[31:0]) BMI1
immintrin.h
Bit Manipulation
Compute the bitwise NOT of 64-bit integer "a" and then AND with b, and store the results in dst. dst[63:0] := ((NOT a[63:0]) AND b[63:0]) BMI1
immintrin.h
Bit Manipulation
Count the number of trailing zero bits in unsigned 16-bit integer "a", and return that count in "dst". tmp := 0 dst := 0 DO WHILE ((tmp < 16) AND a[tmp] == 0) tmp := tmp + 1 dst := dst + 1 OD BMI1
immintrin.h
Bit Manipulation
Count the number of trailing zero bits in unsigned 32-bit integer "a", and return that count in "dst". tmp := 0 dst := 0 DO WHILE ((tmp < 32) AND a[tmp] == 0) tmp := tmp + 1 dst := dst + 1 OD BMI1
immintrin.h
Bit Manipulation
Count the number of trailing zero bits in unsigned 64-bit integer "a", and return that count in "dst". tmp := 0 dst := 0 DO WHILE ((tmp < 64) AND a[tmp] == 0) tmp := tmp + 1 dst := dst + 1 OD BMI1
immintrin.h
Bit Manipulation
Count the number of trailing zero bits in unsigned 32-bit integer "a", and return that count in "dst". tmp := 0 dst := 0 DO WHILE ((tmp < 32) AND a[tmp] == 0) tmp := tmp + 1 dst := dst + 1 OD BMI1
immintrin.h
Bit Manipulation
Count the number of trailing zero bits in unsigned 64-bit integer "a", and return that count in "dst". tmp := 0 dst := 0 DO WHILE ((tmp < 64) AND a[tmp] == 0) tmp := tmp + 1 dst := dst + 1 OD BMI1
immintrin.h
Bit Manipulation
Copy all bits from unsigned 32-bit integer "a" to "dst", and reset (set to 0) the high bits in "dst" starting at "index". n := index[7:0] dst := a IF (n < 32) dst[31:n] := 0 FI BMI2
immintrin.h
Bit Manipulation
Copy all bits from unsigned 64-bit integer "a" to "dst", and reset (set to 0) the high bits in "dst" starting at "index". n := index[7:0] dst := a IF (n < 64) dst[63:n] := 0 FI BMI2
immintrin.h
Bit Manipulation
Deposit contiguous low bits from unsigned 32-bit integer "a" to "dst" at the corresponding bit locations specified by "mask"; all other bits in "dst" are set to zero. tmp := a dst := 0 m := 0 k := 0 DO WHILE m < 32 IF mask[m] == 1 dst[m] := tmp[k] k := k + 1 FI m := m + 1 OD BMI2
immintrin.h
Bit Manipulation
Deposit contiguous low bits from unsigned 64-bit integer "a" to "dst" at the corresponding bit locations specified by "mask"; all other bits in "dst" are set to zero. tmp := a dst := 0 m := 0 k := 0 DO WHILE m < 64 IF mask[m] == 1 dst[m] := tmp[k] k := k + 1 FI m := m + 1 OD BMI2
immintrin.h
Bit Manipulation
Extract bits from unsigned 32-bit integer "a" at the corresponding bit locations specified by "mask" to contiguous low bits in "dst"; the remaining upper bits in "dst" are set to zero. tmp := a dst := 0 m := 0 k := 0 DO WHILE m < 32 IF mask[m] == 1 dst[k] := tmp[m] k := k + 1 FI m := m + 1 OD BMI2
immintrin.h
Bit Manipulation
Extract bits from unsigned 64-bit integer "a" at the corresponding bit locations specified by "mask" to contiguous low bits in "dst"; the remaining upper bits in "dst" are set to zero. tmp := a dst := 0 m := 0 k := 0 DO WHILE m < 64 IF mask[m] == 1 dst[k] := tmp[m] k := k + 1 FI m := m + 1 OD BMI2
immintrin.h
Bit Manipulation
Multiply unsigned 32-bit integers "a" and "b", store the low 32-bits of the result in "dst", and store the high 32-bits in "hi". This does not read or write arithmetic flags. dst[31:0] := (a * b)[31:0] MEM[hi+31:hi] := (a * b)[63:32] BMI2
immintrin.h
Arithmetic
Multiply unsigned 64-bit integers "a" and "b", store the low 64-bits of the result in "dst", and store the high 64-bits in "hi". This does not read or write arithmetic flags. dst[63:0] := (a * b)[63:0] MEM[hi+63:hi] := (a * b)[127:64] BMI2
immintrin.h
Arithmetic
Increment the shadow stack pointer by 4 times the value specified in bits [7:0] of "a". SSP := SSP + a[7:0] * 4 CET_SS
immintrin.h
Miscellaneous
Increment the shadow stack pointer by 8 times the value specified in bits [7:0] of "a". SSP := SSP + a[7:0] * 8 CET_SS
immintrin.h
Miscellaneous
Read the low 32-bits of the current shadow stack pointer, and store the result in "dst". dst := SSP[31:0] CET_SS
immintrin.h
Miscellaneous
Read the current shadow stack pointer, and store the result in "dst". dst := SSP[63:0] CET_SS
immintrin.h
Miscellaneous
Save the previous shadow stack pointer context. CET_SS
immintrin.h
Miscellaneous
Restore the saved shadow stack pointer from the shadow stack restore token previously created on shadow stack by saveprevssp. CET_SS
immintrin.h
Miscellaneous
Write 32-bit value in "val" to a shadow stack page in memory specified by "p". CET_SS
immintrin.h
Miscellaneous
Write 64-bit value in "val" to a shadow stack page in memory specified by "p". CET_SS
immintrin.h
Miscellaneous
Write 32-bit value in "val" to a user shadow stack page in memory specified by "p". CET_SS
immintrin.h
Miscellaneous
Write 64-bit value in "val" to a user shadow stack page in memory specified by "p". CET_SS
immintrin.h
Miscellaneous
Mark shadow stack pointed to by IA32_PL0_SSP as busy. CET_SS
immintrin.h
Miscellaneous
Mark shadow stack pointed to by "p" as not busy. CET_SS
immintrin.h
Miscellaneous
If CET is enabled, read the low 32-bits of the current shadow stack pointer, and store the result in "dst". Otherwise return 0. dst := SSP[31:0] CET_SS
immintrin.h
Miscellaneous
If CET is enabled, read the current shadow stack pointer, and store the result in "dst". Otherwise return 0. dst := SSP[63:0] CET_SS
immintrin.h
Miscellaneous
Increment the shadow stack pointer by 4 times the value specified in bits [7:0] of "a". SSP := SSP + a[7:0] * 4 CET_SS
immintrin.h
Miscellaneous
Hint to hardware that the cache line that contains "p" should be demoted from the cache closest to the processor core to a level more distant from the processor core. CLDEMOTE
immintrin.h
Miscellaneous
Invalidate and flush the cache line that contains "p" from all levels of the cache hierarchy. CLFLUSHOPT
immintrin.h
General Support
Write back to memory the cache line that contains "p" from any level of the cache hierarchy in the cache coherence domain. CLWB
immintrin.h
General Support
Compares the value from the memory "__A" with the value of "__B". If the specified condition "__D" is met, then add the third operand "__C" to the "__A" and write it into "__A", else the value of "__A" is unchanged. The return value is the original value of "__A". CASE (__D[3:0]) OF 0: OP := _CMPCCX_O 1: OP := _CMPCCX_NO 2: OP := _CMPCCX_B 3: OP := _CMPCCX_NB 4: OP := _CMPCCX_Z 5: OP := _CMPCCX_NZ 6: OP := _CMPCCX_BE 7: OP := _CMPCCX_NBE 8: OP := _CMPCCX_S 9: OP := _CMPCCX_NS 10: OP := _CMPCCX_P 11: OP := _CMPCCX_NP 12: OP := _CMPCCX_L 13: OP := _CMPCCX_NL 14: OP := _CMPCCX_LE 15: OP := _CMPCCX_NLE ESAC tmp1 := LOAD_LOCK(__A) tmp2 := tmp1 + __C IF (tmp1[31:0] OP __B[31:0]) STORE_UNLOCK(__A, tmp2) ELSE STORE_UNLOCK(__A, tmp1) FI dst[31:0] := tmp1[31:0] CMPCCXADD
immintrin.h
Arithmetic
Compares the value from the memory "__A" with the value of "__B". If the specified condition "__D" is met, then add the third operand "__C" to the "__A" and write it into "__A", else the value of "__A" is unchanged. The return value is the original value of "__A". CASE (__D[3:0]) OF 0: OP := _CMPCCX_O 1: OP := _CMPCCX_NO 2: OP := _CMPCCX_B 3: OP := _CMPCCX_NB 4: OP := _CMPCCX_Z 5: OP := _CMPCCX_NZ 6: OP := _CMPCCX_BE 7: OP := _CMPCCX_NBE 8: OP := _CMPCCX_S 9: OP := _CMPCCX_NS 10: OP := _CMPCCX_P 11: OP := _CMPCCX_NP 12: OP := _CMPCCX_L 13: OP := _CMPCCX_NL 14: OP := _CMPCCX_LE 15: OP := _CMPCCX_NLE ESAC tmp1 := LOAD_LOCK(__A) tmp2 := tmp1 + __C IF (tmp1[63:0] OP __B[63:0]) STORE_UNLOCK(__A, tmp2) ELSE STORE_UNLOCK(__A, tmp1) FI dst[63:0] := tmp1[63:0] CMPCCXADD
immintrin.h
Arithmetic
Starting with the initial value in "crc", accumulates a CRC32 value for unsigned 8-bit integer "v", and stores the result in "dst". tmp1[7:0] := v[0:7] // bit reflection tmp2[31:0] := crc[0:31] // bit reflection tmp3[39:0] := tmp1[7:0] << 32 tmp4[39:0] := tmp2[31:0] << 8 tmp5[39:0] := tmp3[39:0] XOR tmp4[39:0] tmp6[31:0] := MOD2(tmp5[39:0], 0x11EDC6F41) // remainder from polynomial division modulus 2 dst[31:0] := tmp6[0:31] // bit reflection CRC32
nmmintrin.h
Cryptography
Starting with the initial value in "crc", accumulates a CRC32 value for unsigned 16-bit integer "v", and stores the result in "dst". tmp1[15:0] := v[0:15] // bit reflection tmp2[31:0] := crc[0:31] // bit reflection tmp3[47:0] := tmp1[15:0] << 32 tmp4[47:0] := tmp2[31:0] << 16 tmp5[47:0] := tmp3[47:0] XOR tmp4[47:0] tmp6[31:0] := MOD2(tmp5[47:0], 0x11EDC6F41) // remainder from polynomial division modulus 2 dst[31:0] := tmp6[0:31] // bit reflection CRC32
nmmintrin.h
Cryptography
Starting with the initial value in "crc", accumulates a CRC32 value for unsigned 32-bit integer "v", and stores the result in "dst". tmp1[31:0] := v[0:31] // bit reflection tmp2[31:0] := crc[0:31] // bit reflection tmp3[63:0] := tmp1[31:0] << 32 tmp4[63:0] := tmp2[31:0] << 32 tmp5[63:0] := tmp3[63:0] XOR tmp4[63:0] tmp6[31:0] := MOD2(tmp5[63:0], 0x11EDC6F41) // remainder from polynomial division modulus 2 dst[31:0] := tmp6[0:31] // bit reflection CRC32
nmmintrin.h
Cryptography
Starting with the initial value in "crc", accumulates a CRC32 value for unsigned 64-bit integer "v", and stores the result in "dst". tmp1[63:0] := v[0:63] // bit reflection tmp2[31:0] := crc[0:31] // bit reflection tmp3[95:0] := tmp1[31:0] << 32 tmp4[95:0] := tmp2[63:0] << 64 tmp5[95:0] := tmp3[95:0] XOR tmp4[95:0] tmp6[31:0] := MOD2(tmp5[95:0], 0x11EDC6F41) // remainder from polynomial division modulus 2 dst[31:0] := tmp6[0:31] // bit reflection CRC32
nmmintrin.h
Cryptography
Reads 64-byte command pointed by "__src", formats 64-byte enqueue store data, and performs 64-byte enqueue store to memory pointed by "__dst". This intrinsics may only be used in User mode. ENQCMD
immintrin.h
Unknown
Reads 64-byte command pointed by "__src", formats 64-byte enqueue store data, and performs 64-byte enqueue store to memory pointed by "__dst" This intrinsic may only be used in Privileged mode. ENQCMD
immintrin.h
Unknown
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 7 i := j*32 m := j*16 dst[i+31:i] := Convert_FP16_To_FP32(a[m+15:m]) ENDFOR dst[MAX:256] := 0 F16C
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". [round_imm_note] FOR j := 0 to 7 i := 16*j l := 32*j dst[i+15:i] := Convert_FP32_To_FP16(a[l+31:l]) ENDFOR dst[MAX:128] := 0 F16C
immintrin.h
Convert
Convert packed half-precision (16-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 i := j*32 m := j*16 dst[i+31:i] := Convert_FP16_To_FP32(a[m+15:m]) ENDFOR dst[MAX:128] := 0 F16C
immintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed half-precision (16-bit) floating-point elements, and store the results in "dst". [round_imm_note] FOR j := 0 to 3 i := 16*j l := 32*j dst[i+15:i] := Convert_FP32_To_FP16(a[l+31:l]) ENDFOR dst[MAX:64] := 0 F16C
immintrin.h
Convert
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ENDFOR dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ENDFOR dst[MAX:256] := 0 FMA
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ENDFOR dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the intermediate result to packed elements in "c", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ENDFOR dst[MAX:256] := 0 FMA
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := (a[63:0] * b[63:0]) + c[63:0] dst[127:64] := a[127:64] dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and add the intermediate result to the lower element in "c". Store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := (a[31:0] * b[31:0]) + c[31:0] dst[127:32] := a[127:32] dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst". FOR j := 0 to 1 i := j*64 IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] FI ENDFOR dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst". FOR j := 0 to 3 i := j*64 IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] FI ENDFOR dst[MAX:256] := 0 FMA
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst". FOR j := 0 to 3 i := j*32 IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] FI ENDFOR dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively add and subtract packed elements in "c" to/from the intermediate result, and store the results in "dst". FOR j := 0 to 7 i := j*32 IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] FI ENDFOR dst[MAX:256] := 0 FMA
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ENDFOR dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] ENDFOR dst[MAX:256] := 0 FMA
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ENDFOR dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the intermediate result, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] ENDFOR dst[MAX:256] := 0 FMA
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := (a[63:0] * b[63:0]) - c[63:0] dst[127:64] := a[127:64] dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the intermediate result. Store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := (a[31:0] * b[31:0]) - c[31:0] dst[127:32] := a[127:32] dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst". FOR j := 0 to 1 i := j*64 IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] FI ENDFOR dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst". FOR j := 0 to 3 i := j*64 IF ((j & 1) == 0) dst[i+63:i] := (a[i+63:i] * b[i+63:i]) + c[i+63:i] ELSE dst[i+63:i] := (a[i+63:i] * b[i+63:i]) - c[i+63:i] FI ENDFOR dst[MAX:256] := 0 FMA
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst". FOR j := 0 to 3 i := j*32 IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] FI ENDFOR dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", alternatively subtract and add packed elements in "c" from/to the intermediate result, and store the results in "dst". FOR j := 0 to 7 i := j*32 IF ((j & 1) == 0) dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i] ELSE dst[i+31:i] := (a[i+31:i] * b[i+31:i]) - c[i+31:i] FI ENDFOR dst[MAX:256] := 0 FMA
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) + c[i+63:i] ENDFOR dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) + c[i+63:i] ENDFOR dst[MAX:256] := 0 FMA
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) + c[i+31:i] ENDFOR dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", add the negated intermediate result to packed elements in "c", and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) + c[i+31:i] ENDFOR dst[MAX:256] := 0 FMA
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := -(a[63:0] * b[63:0]) + c[63:0] dst[127:64] := a[127:64] dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and add the negated intermediate result to the lower element in "c". Store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := -(a[31:0] * b[31:0]) + c[31:0] dst[127:32] := a[127:32] dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) - c[i+63:i] ENDFOR dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst". FOR j := 0 to 3 i := j*64 dst[i+63:i] := -(a[i+63:i] * b[i+63:i]) - c[i+63:i] ENDFOR dst[MAX:256] := 0 FMA
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) - c[i+31:i] ENDFOR dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", subtract packed elements in "c" from the negated intermediate result, and store the results in "dst". FOR j := 0 to 7 i := j*32 dst[i+31:i] := -(a[i+31:i] * b[i+31:i]) - c[i+31:i] ENDFOR dst[MAX:256] := 0 FMA
immintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := -(a[63:0] * b[63:0]) - c[63:0] dst[127:64] := a[127:64] dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point elements in "a" and "b", and subtract the lower element in "c" from the negated intermediate result. Store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := -(a[31:0] * b[31:0]) - c[31:0] dst[127:32] := a[127:32] dst[MAX:128] := 0 FMA
immintrin.h
Arithmetic
Read the FS segment base register and store the 32-bit result in "dst". dst[31:0] := FS_Segment_Base_Register dst[63:32] := 0 FSGSBASE
immintrin.h
General Support
Read the FS segment base register and store the 64-bit result in "dst". dst[63:0] := FS_Segment_Base_Register FSGSBASE
immintrin.h
General Support
Read the GS segment base register and store the 32-bit result in "dst". dst[31:0] := GS_Segment_Base_Register dst[63:32] := 0 FSGSBASE
immintrin.h
General Support
Read the GS segment base register and store the 64-bit result in "dst". dst[63:0] := GS_Segment_Base_Register FSGSBASE
immintrin.h
General Support
Write the unsigned 32-bit integer "a" to the FS segment base register. FS_Segment_Base_Register[31:0] := a[31:0] FS_Segment_Base_Register[63:32] := 0 FSGSBASE
immintrin.h
General Support
Write the unsigned 64-bit integer "a" to the FS segment base register. FS_Segment_Base_Register[63:0] := a[63:0] FSGSBASE
immintrin.h
General Support
Write the unsigned 32-bit integer "a" to the GS segment base register. GS_Segment_Base_Register[31:0] := a[31:0] GS_Segment_Base_Register[63:32] := 0 FSGSBASE
immintrin.h
General Support
Write the unsigned 64-bit integer "a" to the GS segment base register. GS_Segment_Base_Register[63:0] := a[63:0] FSGSBASE
immintrin.h
General Support
Reload the x87 FPU, MMX technology, XMM, and MXCSR registers from the 512-byte memory image at "mem_addr". This data should have been written to memory previously using the FXSAVE instruction, and in the same format as required by the operating mode. "mem_addr" must be aligned on a 16-byte boundary. state_x87_fpu_mmx_sse := fxrstor(MEM[mem_addr+512*8:mem_addr]) FXSR
immintrin.h
OS-Targeted
Reload the x87 FPU, MMX technology, XMM, and MXCSR registers from the 512-byte memory image at "mem_addr". This data should have been written to memory previously using the FXSAVE64 instruction, and in the same format as required by the operating mode. "mem_addr" must be aligned on a 16-byte boundary. state_x87_fpu_mmx_sse := fxrstor64(MEM[mem_addr+512*8:mem_addr]) FXSR
immintrin.h
OS-Targeted
Save the current state of the x87 FPU, MMX technology, XMM, and MXCSR registers to a 512-byte memory location at "mem_addr". The layout of the 512-byte region depends on the operating mode. Bytes [511:464] are available for software use and will not be overwritten by the processor. MEM[mem_addr+512*8:mem_addr] := fxsave(state_x87_fpu_mmx_sse) FXSR
immintrin.h
OS-Targeted
Save the current state of the x87 FPU, MMX technology, XMM, and MXCSR registers to a 512-byte memory location at "mem_addr". The layout of the 512-byte region depends on the operating mode. Bytes [511:464] are available for software use and will not be overwritten by the processor. MEM[mem_addr+512*8:mem_addr] := fxsave64(state_x87_fpu_mmx_sse) FXSR
immintrin.h
OS-Targeted
Multiply the packed 8-bit integers in "a" and "b" in the finite field GF(2^8), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The field GF(2^8) is represented in polynomial representation with the reduction polynomial x^8 + x^4 + x^3 + x + 1. DEFINE gf2p8mul_byte(src1byte, src2byte) { tword := 0 FOR i := 0 to 7 IF src2byte.bit[i] tword := tword XOR (src1byte << i) FI ENDFOR FOR i := 14 downto 8 p := 0x11B << (i-8) IF tword.bit[i] tword := tword XOR p FI ENDFOR RETURN tword.byte[0] } FOR j := 0 TO 63 IF k[j] dst.byte[j] := gf2p8mul_byte(a.byte[j], b.byte[j]) ELSE dst.byte[j] := 0 FI ENDFOR dst[MAX:512] := 0 GFNI AVX512F
immintrin.h
Arithmetic
Multiply the packed 8-bit integers in "a" and "b" in the finite field GF(2^8), and store the results in "dst" using writemask "k" (elements are copied from "src"" when the corresponding mask bit is not set). The field GF(2^8) is represented in polynomial representation with the reduction polynomial x^8 + x^4 + x^3 + x + 1. DEFINE gf2p8mul_byte(src1byte, src2byte) { tword := 0 FOR i := 0 to 7 IF src2byte.bit[i] tword := tword XOR (src1byte << i) FI ENDFOR FOR i := 14 downto 8 p := 0x11B << (i-8) IF tword.bit[i] tword := tword XOR p FI ENDFOR RETURN tword.byte[0] } FOR j := 0 TO 63 IF k[j] dst.byte[j] := gf2p8mul_byte(a.byte[j], b.byte[j]) ELSE dst.byte[j] := src.byte[j] FI ENDFOR dst[MAX:512] := 0 GFNI AVX512F
immintrin.h
Arithmetic
Multiply the packed 8-bit integers in "a" and "b" in the finite field GF(2^8), and store the results in "dst". The field GF(2^8) is represented in polynomial representation with the reduction polynomial x^8 + x^4 + x^3 + x + 1. DEFINE gf2p8mul_byte(src1byte, src2byte) { tword := 0 FOR i := 0 to 7 IF src2byte.bit[i] tword := tword XOR (src1byte << i) FI ENDFOR FOR i := 14 downto 8 p := 0x11B << (i-8) IF tword.bit[i] tword := tword XOR p FI ENDFOR RETURN tword.byte[0] } FOR j := 0 TO 63 dst.byte[j] := gf2p8mul_byte(a.byte[j], b.byte[j]) ENDFOR dst[MAX:512] := 0 GFNI AVX512F
immintrin.h
Arithmetic
Compute an affine transformation in the Galois Field 2^8. An affine transformation is defined by "A" * "x" + "b", where "A" represents an 8 by 8 bit matrix, "x" represents an 8-bit vector, and "b" is a constant immediate byte. Store the packed 8-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE parity(x) { t := 0 FOR i := 0 to 7 t := t XOR x.bit[i] ENDFOR RETURN t } DEFINE affine_byte(tsrc2qw, src1byte, imm8) { FOR i := 0 to 7 retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND src1byte) XOR imm8.bit[i] ENDFOR RETURN retbyte } FOR j := 0 TO 7 FOR i := 0 to 7 IF k[j*8+i] dst.qword[j].byte[i] := affine_byte(A.qword[j], x.qword[j].byte[i], b) ELSE dst.qword[j].byte[i] := 0 FI ENDFOR ENDFOR dst[MAX:512] := 0 GFNI AVX512F
immintrin.h
Arithmetic
Compute an affine transformation in the Galois Field 2^8. An affine transformation is defined by "A" * "x" + "b", where "A" represents an 8 by 8 bit matrix, "x" represents an 8-bit vector, and "b" is a constant immediate byte. Store the packed 8-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE parity(x) { t := 0 FOR i := 0 to 7 t := t XOR x.bit[i] ENDFOR RETURN t } DEFINE affine_byte(tsrc2qw, src1byte, imm8) { FOR i := 0 to 7 retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND src1byte) XOR imm8.bit[i] ENDFOR RETURN retbyte } FOR j := 0 TO 7 FOR i := 0 to 7 IF k[j*8+i] dst.qword[j].byte[i] := affine_byte(A.qword[j], x.qword[j].byte[i], b) ELSE dst.qword[j].byte[i] := src.qword[j].byte[i] FI ENDFOR ENDFOR dst[MAX:512] := 0 GFNI AVX512F
immintrin.h
Arithmetic
Compute an affine transformation in the Galois Field 2^8. An affine transformation is defined by "A" * "x" + "b", where "A" represents an 8 by 8 bit matrix, "x" represents an 8-bit vector, and "b" is a constant immediate byte. Store the packed 8-bit results in "dst". DEFINE parity(x) { t := 0 FOR i := 0 to 7 t := t XOR x.bit[i] ENDFOR RETURN t } DEFINE affine_byte(tsrc2qw, src1byte, imm8) { FOR i := 0 to 7 retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND src1byte) XOR imm8.bit[i] ENDFOR RETURN retbyte } FOR j := 0 TO 7 FOR i := 0 to 7 dst.qword[j].byte[i] := affine_byte(A.qword[j], x.qword[j].byte[i], b) ENDFOR ENDFOR dst[MAX:512] := 0 GFNI AVX512F
immintrin.h
Arithmetic
Compute an inverse affine transformation in the Galois Field 2^8. An affine transformation is defined by "A" * "x" + "b", where "A" represents an 8 by 8 bit matrix, "x" represents an 8-bit vector, and "b" is a constant immediate byte. The inverse of the 8-bit values in "x" is defined with respect to the reduction polynomial x^8 + x^4 + x^3 + x + 1. Store the packed 8-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE parity(x) { t := 0 FOR i := 0 to 7 t := t XOR x.bit[i] ENDFOR RETURN t } DEFINE affine_inverse_byte(tsrc2qw, src1byte, imm8) { FOR i := 0 to 7 retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND inverse(src1byte)) XOR imm8.bit[i] ENDFOR RETURN retbyte } FOR j := 0 TO 7 FOR i := 0 to 7 IF k[j*8+i] dst.qword[j].byte[i] := affine_inverse_byte(A.qword[j], x.qword[j].byte[i], b) ELSE dst.qword[j].byte[i] := 0 FI ENDFOR ENDFOR dst[MAX:512] := 0 GFNI AVX512F
immintrin.h
Arithmetic
Compute an inverse affine transformation in the Galois Field 2^8. An affine transformation is defined by "A" * "x" + "b", where "A" represents an 8 by 8 bit matrix, "x" represents an 8-bit vector, and "b" is a constant immediate byte. The inverse of the 8-bit values in "x" is defined with respect to the reduction polynomial x^8 + x^4 + x^3 + x + 1. Store the packed 8-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE parity(x) { t := 0 FOR i := 0 to 7 t := t XOR x.bit[i] ENDFOR RETURN t } DEFINE affine_inverse_byte(tsrc2qw, src1byte, imm8) { FOR i := 0 to 7 retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND inverse(src1byte)) XOR imm8.bit[i] ENDFOR RETURN retbyte } FOR j := 0 TO 7 FOR i := 0 to 7 IF k[j*8+i] dst.qword[j].byte[i] := affine_inverse_byte(A.qword[j], x.qword[j].byte[i], b) ELSE dst.qword[j].byte[i] := src.qword[j].byte[b] FI ENDFOR ENDFOR dst[MAX:512] := 0 GFNI AVX512F
immintrin.h
Arithmetic
Compute an inverse affine transformation in the Galois Field 2^8. An affine transformation is defined by "A" * "x" + "b", where "A" represents an 8 by 8 bit matrix, "x" represents an 8-bit vector, and "b" is a constant immediate byte. The inverse of the 8-bit values in "x" is defined with respect to the reduction polynomial x^8 + x^4 + x^3 + x + 1. Store the packed 8-bit results in "dst". DEFINE parity(x) { t := 0 FOR i := 0 to 7 t := t XOR x.bit[i] ENDFOR RETURN t } DEFINE affine_inverse_byte(tsrc2qw, src1byte, imm8) { FOR i := 0 to 7 retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND inverse(src1byte)) XOR imm8.bit[i] ENDFOR RETURN retbyte } FOR j := 0 TO 7 FOR i := 0 to 7 dst.qword[j].byte[i] := affine_inverse_byte(A.qword[j], x.qword[j].byte[i], b) ENDFOR ENDFOR dst[MAX:512] := 0 GFNI AVX512F
immintrin.h
Arithmetic
Multiply the packed 8-bit integers in "a" and "b" in the finite field GF(2^8), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The field GF(2^8) is represented in polynomial representation with the reduction polynomial x^8 + x^4 + x^3 + x + 1. DEFINE gf2p8mul_byte(src1byte, src2byte) { tword := 0 FOR i := 0 to 7 IF src2byte.bit[i] tword := tword XOR (src1byte << i) FI ENDFOR FOR i := 14 downto 8 p := 0x11B << (i-8) IF tword.bit[i] tword := tword XOR p FI ENDFOR RETURN tword.byte[0] } FOR j := 0 TO 31 IF k[j] dst.byte[j] := gf2p8mul_byte(a.byte[j], b.byte[j]) ELSE dst.byte[j] := 0 FI ENDFOR dst[MAX:256] := 0 GFNI AVX512VL
immintrin.h
Arithmetic
Multiply the packed 8-bit integers in "a" and "b" in the finite field GF(2^8), and store the results in "dst" using writemask "k" (elements are copied from "src"" when the corresponding mask bit is not set). The field GF(2^8) is represented in polynomial representation with the reduction polynomial x^8 + x^4 + x^3 + x + 1. DEFINE gf2p8mul_byte(src1byte, src2byte) { tword := 0 FOR i := 0 to 7 IF src2byte.bit[i] tword := tword XOR (src1byte << i) FI ENDFOR FOR i := 14 downto 8 p := 0x11B << (i-8) IF tword.bit[i] tword := tword XOR p FI ENDFOR RETURN tword.byte[0] } FOR j := 0 TO 31 IF k[j] dst.byte[j] := gf2p8mul_byte(a.byte[j], b.byte[j]) ELSE dst.byte[j] := src.byte[j] FI ENDFOR dst[MAX:256] := 0 GFNI AVX512VL
immintrin.h
Arithmetic
Multiply the packed 8-bit integers in "a" and "b" in the finite field GF(2^8), and store the results in "dst". The field GF(2^8) is represented in polynomial representation with the reduction polynomial x^8 + x^4 + x^3 + x + 1. DEFINE gf2p8mul_byte(src1byte, src2byte) { tword := 0 FOR i := 0 to 7 IF src2byte.bit[i] tword := tword XOR (src1byte << i) FI ENDFOR FOR i := 14 downto 8 p := 0x11B << (i-8) IF tword.bit[i] tword := tword XOR p FI ENDFOR RETURN tword.byte[0] } FOR j := 0 TO 31 dst.byte[j] := gf2p8mul_byte(a.byte[j], b.byte[j]) ENDFOR dst[MAX:256] := 0 GFNI AVX512VL
immintrin.h
Arithmetic
Multiply the packed 8-bit integers in "a" and "b" in the finite field GF(2^8), and store the results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). The field GF(2^8) is represented in polynomial representation with the reduction polynomial x^8 + x^4 + x^3 + x + 1. DEFINE gf2p8mul_byte(src1byte, src2byte) { tword := 0 FOR i := 0 to 7 IF src2byte.bit[i] tword := tword XOR (src1byte << i) FI ENDFOR FOR i := 14 downto 8 p := 0x11B << (i-8) IF tword.bit[i] tword := tword XOR p FI ENDFOR RETURN tword.byte[0] } FOR j := 0 TO 15 IF k[j] dst.byte[j] := gf2p8mul_byte(a.byte[j], b.byte[j]) ELSE dst.byte[j] := 0 FI ENDFOR dst[MAX:128] := 0 GFNI AVX512VL
immintrin.h
Arithmetic
Multiply the packed 8-bit integers in "a" and "b" in the finite field GF(2^8), and store the results in "dst" using writemask "k" (elements are copied from "src"" when the corresponding mask bit is not set). The field GF(2^8) is represented in polynomial representation with the reduction polynomial x^8 + x^4 + x^3 + x + 1. DEFINE gf2p8mul_byte(src1byte, src2byte) { tword := 0 FOR i := 0 to 7 IF src2byte.bit[i] tword := tword XOR (src1byte << i) FI ENDFOR FOR i := 14 downto 8 p := 0x11B << (i-8) IF tword.bit[i] tword := tword XOR p FI ENDFOR RETURN tword.byte[0] } FOR j := 0 TO 15 IF k[j] dst.byte[j] := gf2p8mul_byte(a.byte[j], b.byte[j]) ELSE dst.byte[j] := src.byte[j] FI ENDFOR dst[MAX:128] := 0 GFNI AVX512VL
immintrin.h
Arithmetic
Multiply the packed 8-bit integers in "a" and "b" in the finite field GF(2^8), and store the results in "dst". The field GF(2^8) is represented in polynomial representation with the reduction polynomial x^8 + x^4 + x^3 + x + 1. DEFINE gf2p8mul_byte(src1byte, src2byte) { tword := 0 FOR i := 0 to 7 IF src2byte.bit[i] tword := tword XOR (src1byte << i) FI ENDFOR FOR i := 14 downto 8 p := 0x11B << (i-8) IF tword.bit[i] tword := tword XOR p FI ENDFOR RETURN tword.byte[0] } FOR j := 0 TO 15 dst.byte[j] := gf2p8mul_byte(a.byte[j], b.byte[j]) ENDFOR dst[MAX:128] := 0 GFNI AVX512VL
immintrin.h
Arithmetic
Compute an affine transformation in the Galois Field 2^8. An affine transformation is defined by "A" * "x" + "b", where "A" represents an 8 by 8 bit matrix, "x" represents an 8-bit vector, and "b" is a constant immediate byte. Store the packed 8-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE parity(x) { t := 0 FOR i := 0 to 7 t := t XOR x.bit[i] ENDFOR RETURN t } DEFINE affine_byte(tsrc2qw, src1byte, imm8) { FOR i := 0 to 7 retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND src1byte) XOR imm8.bit[i] ENDFOR RETURN retbyte } FOR j := 0 TO 3 FOR i := 0 to 7 IF k[j*8+i] dst.qword[j].byte[i] := affine_byte(A.qword[j], x.qword[j].byte[i], b) ELSE dst.qword[j].byte[i] := 0 FI ENDFOR ENDFOR dst[MAX:256] := 0 GFNI AVX512VL
immintrin.h
Arithmetic
Compute an affine transformation in the Galois Field 2^8. An affine transformation is defined by "A" * "x" + "b", where "A" represents an 8 by 8 bit matrix, "x" represents an 8-bit vector, and "b" is a constant immediate byte. Store the packed 8-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE parity(x) { t := 0 FOR i := 0 to 7 t := t XOR x.bit[i] ENDFOR RETURN t } DEFINE affine_byte(tsrc2qw, src1byte, imm8) { FOR i := 0 to 7 retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND src1byte) XOR imm8.bit[i] ENDFOR RETURN retbyte } FOR j := 0 TO 3 FOR i := 0 to 7 IF k[j*8+i] dst.qword[j].byte[i] := affine_byte(A.qword[j], x.qword[j].byte[i], b) ELSE dst.qword[j].byte[i] := src.qword[j].byte[i] FI ENDFOR ENDFOR dst[MAX:256] := 0 GFNI AVX512VL
immintrin.h
Arithmetic
Compute an affine transformation in the Galois Field 2^8. An affine transformation is defined by "A" * "x" + "b", where "A" represents an 8 by 8 bit matrix, "x" represents an 8-bit vector, and "b" is a constant immediate byte. Store the packed 8-bit results in "dst". DEFINE parity(x) { t := 0 FOR i := 0 to 7 t := t XOR x.bit[i] ENDFOR RETURN t } DEFINE affine_byte(tsrc2qw, src1byte, imm8) { FOR i := 0 to 7 retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND src1byte) XOR imm8.bit[i] ENDFOR RETURN retbyte } FOR j := 0 TO 3 FOR i := 0 to 7 dst.qword[j].byte[i] := affine_byte(A.qword[j], x.qword[j].byte[i], b) ENDFOR ENDFOR dst[MAX:256] := 0 GFNI AVX512VL
immintrin.h
Arithmetic
Compute an affine transformation in the Galois Field 2^8. An affine transformation is defined by "A" * "x" + "b", where "A" represents an 8 by 8 bit matrix, "x" represents an 8-bit vector, and "b" is a constant immediate byte. Store the packed 8-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE parity(x) { t := 0 FOR i := 0 to 7 t := t XOR x.bit[i] ENDFOR RETURN t } DEFINE affine_byte(tsrc2qw, src1byte, imm8) { FOR i := 0 to 7 retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND src1byte) XOR imm8.bit[i] ENDFOR RETURN retbyte } FOR j := 0 TO 1 FOR i := 0 to 7 IF k[j*8+i] dst.qword[j].byte[i] := affine_byte(A.qword[j], x.qword[j].byte[i], b) ELSE dst.qword[j].byte[i] := 0 FI ENDFOR ENDFOR dst[MAX:128] := 0 GFNI AVX512VL
immintrin.h
Arithmetic
Compute an affine transformation in the Galois Field 2^8. An affine transformation is defined by "A" * "x" + "b", where "A" represents an 8 by 8 bit matrix, "x" represents an 8-bit vector, and "b" is a constant immediate byte. Store the packed 8-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE parity(x) { t := 0 FOR i := 0 to 7 t := t XOR x.bit[i] ENDFOR RETURN t } DEFINE affine_byte(tsrc2qw, src1byte, imm8) { FOR i := 0 to 7 retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND src1byte) XOR imm8.bit[i] ENDFOR RETURN retbyte } FOR j := 0 TO 1 FOR i := 0 to 7 IF k[j*8+i] dst.qword[j].byte[i] := affine_byte(A.qword[j], x.qword[j].byte[i], b) ELSE dst.qword[j].byte[i] := src.qword[j].byte[i] FI ENDFOR ENDFOR dst[MAX:128] := 0 GFNI AVX512VL
immintrin.h
Arithmetic
Compute an affine transformation in the Galois Field 2^8. An affine transformation is defined by "A" * "x" + "b", where "A" represents an 8 by 8 bit matrix, "x" represents an 8-bit vector, and "b" is a constant immediate byte. Store the packed 8-bit results in "dst". DEFINE parity(x) { t := 0 FOR i := 0 to 7 t := t XOR x.bit[i] ENDFOR RETURN t } DEFINE affine_byte(tsrc2qw, src1byte, imm8) { FOR i := 0 to 7 retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND src1byte) XOR imm8.bit[i] ENDFOR RETURN retbyte } FOR j := 0 TO 1 FOR i := 0 to 7 dst.qword[j].byte[i] := affine_byte(A.qword[j], x.qword[j].byte[i], b) ENDFOR ENDFOR dst[MAX:128] := 0 GFNI AVX512VL
immintrin.h
Arithmetic
Compute an inverse affine transformation in the Galois Field 2^8. An affine transformation is defined by "A" * "x" + "b", where "A" represents an 8 by 8 bit matrix, "x" represents an 8-bit vector, and "b" is a constant immediate byte. The inverse of the 8-bit values in "x" is defined with respect to the reduction polynomial x^8 + x^4 + x^3 + x + 1. Store the packed 8-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE parity(x) { t := 0 FOR i := 0 to 7 t := t XOR x.bit[i] ENDFOR RETURN t } DEFINE affine_inverse_byte(tsrc2qw, src1byte, imm8) { FOR i := 0 to 7 retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND inverse(src1byte)) XOR imm8.bit[i] ENDFOR RETURN retbyte } FOR j := 0 TO 3 FOR i := 0 to 7 IF k[j*8+i] dst.qword[j].byte[i] := affine_inverse_byte(A.qword[j], x.qword[j].byte[i], b) ELSE dst.qword[j].byte[i] := 0 FI ENDFOR ENDFOR dst[MAX:256] := 0 GFNI AVX512VL
immintrin.h
Arithmetic
Compute an inverse affine transformation in the Galois Field 2^8. An affine transformation is defined by "A" * "x" + "b", where "A" represents an 8 by 8 bit matrix, "x" represents an 8-bit vector, and "b" is a constant immediate byte. The inverse of the 8-bit values in "x" is defined with respect to the reduction polynomial x^8 + x^4 + x^3 + x + 1. Store the packed 8-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE parity(x) { t := 0 FOR i := 0 to 7 t := t XOR x.bit[i] ENDFOR RETURN t } DEFINE affine_inverse_byte(tsrc2qw, src1byte, imm8) { FOR i := 0 to 7 retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND inverse(src1byte)) XOR imm8.bit[i] ENDFOR RETURN retbyte } FOR j := 0 TO 3 FOR i := 0 to 7 IF k[j*8+i] dst.qword[j].byte[i] := affine_inverse_byte(A.qword[j], x.qword[j].byte[i], b) ELSE dst.qword[j].byte[i] := src.qword[j].byte[i] FI ENDFOR ENDFOR dst[MAX:256] := 0 GFNI AVX512VL
immintrin.h
Arithmetic
Compute an inverse affine transformation in the Galois Field 2^8. An affine transformation is defined by "A" * "x" + "b", where "A" represents an 8 by 8 bit matrix, "x" represents an 8-bit vector, and "b" is a constant immediate byte. The inverse of the 8-bit values in "x" is defined with respect to the reduction polynomial x^8 + x^4 + x^3 + x + 1. Store the packed 8-bit results in "dst". DEFINE parity(x) { t := 0 FOR i := 0 to 7 t := t XOR x.bit[i] ENDFOR RETURN t } DEFINE affine_inverse_byte(tsrc2qw, src1byte, imm8) { FOR i := 0 to 7 retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND inverse(src1byte)) XOR imm8.bit[i] ENDFOR RETURN retbyte } FOR j := 0 TO 3 FOR i := 0 to 7 dst.qword[j].byte[i] := affine_inverse_byte(A.qword[j], x.qword[j].byte[i], b) ENDFOR ENDFOR dst[MAX:256] := 0 GFNI AVX512VL
immintrin.h
Arithmetic
Compute an inverse affine transformation in the Galois Field 2^8. An affine transformation is defined by "A" * "x" + "b", where "A" represents an 8 by 8 bit matrix, "x" represents an 8-bit vector, and "b" is a constant immediate byte. The inverse of the 8-bit values in "x" is defined with respect to the reduction polynomial x^8 + x^4 + x^3 + x + 1. Store the packed 8-bit results in "dst" using zeromask "k" (elements are zeroed out when the corresponding mask bit is not set). DEFINE parity(x) { t := 0 FOR i := 0 to 7 t := t XOR x.bit[i] ENDFOR RETURN t } DEFINE affine_inverse_byte(tsrc2qw, src1byte, imm8) { FOR i := 0 to 7 retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND inverse(src1byte)) XOR imm8.bit[i] ENDFOR RETURN retbyte } FOR j := 0 TO 1 FOR i := 0 to 7 IF k[j*8+i] dst.qword[j].byte[i] := affine_inverse_byte(A.qword[j], x.qword[j].byte[i], b) ELSE dst.qword[j].byte[i] := 0 FI ENDFOR ENDFOR dst[MAX:128] := 0 GFNI AVX512VL
immintrin.h
Arithmetic
Compute an inverse affine transformation in the Galois Field 2^8. An affine transformation is defined by "A" * "x" + "b", where "A" represents an 8 by 8 bit matrix, "x" represents an 8-bit vector, and "b" is a constant immediate byte. The inverse of the 8-bit values in "x" is defined with respect to the reduction polynomial x^8 + x^4 + x^3 + x + 1. Store the packed 8-bit results in "dst" using writemask "k" (elements are copied from "src" when the corresponding mask bit is not set). DEFINE parity(x) { t := 0 FOR i := 0 to 7 t := t XOR x.bit[i] ENDFOR RETURN t } DEFINE affine_inverse_byte(tsrc2qw, src1byte, imm8) { FOR i := 0 to 7 retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND inverse(src1byte)) XOR imm8.bit[i] ENDFOR RETURN retbyte } FOR j := 0 TO 1 FOR i := 0 to 7 IF k[j*8+i] dst.qword[j].byte[i] := affine_inverse_byte(A.qword[j], x.qword[j].byte[i], b) ELSE dst.qword[j].byte[i] := src.qword[j].byte[i] FI ENDFOR ENDFOR dst[MAX:128] := 0 GFNI AVX512VL
immintrin.h
Arithmetic
Compute an inverse affine transformation in the Galois Field 2^8. An affine transformation is defined by "A" * "x" + "b", where "A" represents an 8 by 8 bit matrix, "x" represents an 8-bit vector, and "b" is a constant immediate byte. The inverse of the 8-bit values in "x" is defined with respect to the reduction polynomial x^8 + x^4 + x^3 + x + 1. Store the packed 8-bit results in "dst". DEFINE parity(x) { t := 0 FOR i := 0 to 7 t := t XOR x.bit[i] ENDFOR RETURN t } DEFINE affine_inverse_byte(tsrc2qw, src1byte, imm8) { FOR i := 0 to 7 retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND inverse(src1byte)) XOR imm8.bit[i] ENDFOR RETURN retbyte } FOR j := 0 TO 1 FOR i := 0 to 7 dst.qword[j].byte[i] := affine_inverse_byte(A.qword[j], x.qword[j].byte[i], b) ENDFOR ENDFOR dst[MAX:128] := 0 GFNI AVX512VL
immintrin.h
Arithmetic
Provides a hint to the processor to selectively reset the prediction history of the current logical processor specified by a signed 32-bit integer "__eax". HRESET
immintrin.h
General Support
Invalidate mappings in the Translation Lookaside Buffers (TLBs) and paging-structure caches for the processor context identifier (PCID) specified by "descriptor" based on the invalidation type specified in "type". The PCID "descriptor" is specified as a 16-byte memory operand (with no alignment restrictions) where bits [11:0] specify the PCID, and bits [127:64] specify the linear address; bits [63:12] are reserved. The types supported are: 0) Individual-address invalidation: If "type" is 0, the logical processor invalidates mappings for a single linear address and tagged with the PCID specified in "descriptor", except global translations. The instruction may also invalidate global translations, mappings for other linear addresses, or mappings tagged with other PCIDs. 1) Single-context invalidation: If "type" is 1, the logical processor invalidates all mappings tagged with the PCID specified in "descriptor" except global translations. In some cases, it may invalidate mappings for other PCIDs as well. 2) All-context invalidation: If "type" is 2, the logical processor invalidates all mappings tagged with any PCID. 3) All-context invalidation, retaining global translations: If "type" is 3, the logical processor invalidates all mappings tagged with any PCID except global translations, ignoring "descriptor". The instruction may also invalidate global translations as well. CASE type[1:0] OF 0: // individual-address invalidation retaining global translations OP_PCID := MEM[descriptor+11:descriptor] ADDR := MEM[descriptor+127:descriptor+64] BREAK 1: // single PCID invalidation retaining globals OP_PCID := MEM[descriptor+11:descriptor] // invalidate all mappings tagged with OP_PCID except global translations BREAK 2: // all PCID invalidation // invalidate all mappings tagged with any PCID BREAK 3: // all PCID invalidation retaining global translations // invalidate all mappings tagged with any PCID except global translations BREAK ESAC INVPCID
immintrin.h
OS-Targeted
Flag Decrypt 10 rounds of unsigned 8-bit integers in "__idata" using 128-bit AES key specified in "__h", store the resulting unsigned 8-bit integers into the corresponding elements of "__odata", and set "dst" to the ZF flag status. If exception happens, set ZF flag to 1 and zero initialize "__odata". MEM[__odata+127:__odata] := AES128Decrypt (__idata[127:0], __h[383:0]) dst := ZF KEYLOCKER
immintrin.h
Cryptography
Flag Decrypt 10 rounds of unsigned 8-bit integers in "__idata" using 256-bit AES key specified in "__h", store the resulting unsigned 8-bit integers into the corresponding elements of "__odata", and set "dst" to the ZF flag status. If exception happens, set ZF flag to 1 and zero initialize "__odata". MEM[__odata+127:__odata] := AES256Decrypt (__idata[127:0], __h[511:0]) dst := ZF KEYLOCKER
immintrin.h
Cryptography
Flag Encrypt 10 rounds of unsigned 8-bit integers in "__idata" using 128-bit AES key specified in "__h", store the resulting unsigned 8-bit integers into the corresponding elements of "__odata", and set "dst" to the ZF flag status. MEM[__odata+127:__odata] := AES128Encrypt (__idata[127:0], __h[383:0]) dst := ZF KEYLOCKER
immintrin.h
Cryptography
Flag Encrypt 10 rounds of unsigned 8-bit integers in "__idata" using 256-bit AES key specified in "__h", store the resulting unsigned 8-bit integers into the corresponding elements of "__odata", and set "dst" to the ZF flag status. If exception happens, set ZF flag to 1 and zero initialize "__odata". MEM[__odata+127:__odata] := AES256Encrypt (__idata[127:0], __h[511:0]) dst := ZF KEYLOCKER
immintrin.h
Cryptography
Flag Wrap a 128-bit AES key from "__key" into a 384-bit key __h stored in "__h" and set IWKey's NoBackup and KeySource bits in "dst". The explicit source operand "__htype" specifies __h restrictions. __h[383:0] := WrapKey128(__key[127:0], __htype) dst[0] := IWKey.NoBackup dst[4:1] := IWKey.KeySource[3:0] KEYLOCKER
immintrin.h
Cryptography
Flag Wrap a 256-bit AES key from "__key_hi" and "__key_lo" into a 512-bit key stored in "__h" and set IWKey's NoBackup and KeySource bits in "dst". The 32-bit "__htype" specifies __h restrictions. __h[511:0] := WrapKey256(__key_lo[127:0], __key_hi[127:0], __htype) dst[0] := IWKey.NoBackup dst[4:1] := IWKey.KeySource[3:0] KEYLOCKER
immintrin.h
Cryptography
Flag Load internal wrapping key (IWKey). The 32-bit unsigned integer "__ctl" specifies IWKey's KeySource and whether backing up the key is permitted. IWKey's 256-bit encryption key is loaded from "__enkey_lo" and "__enkey_hi". IWKey's 128-bit integrity key is loaded from "__intkey". KEYLOCKER
immintrin.h
Cryptography
Flag Decrypt 10 rounds of 8 groups of unsigned 8-bit integers in "__idata" using 128-bit AES key specified in "__h", store the resulting unsigned 8-bit integers into the corresponding elements of "__odata", and set "dst" to the ZF flag status. If exception happens, set ZF flag to 1 and zero initialize "__odata". FOR i := 0 to 7 __odata[i] := AES128Decrypt (__idata[i], __h[383:0]) ENDFOR dst := ZF KEYLOCKER_WIDE
immintrin.h
Cryptography
Flag Decrypt 10 rounds of 8 groups of unsigned 8-bit integers in "__idata" using 256-bit AES key specified in "__h", store the resulting unsigned 8-bit integers into the corresponding elements of "__odata", and set "dst" to the ZF flag status. If exception happens, set ZF flag to 1 and zero initialize "__odata". FOR i := 0 to 7 __odata[i] := AES256Decrypt (__idata[i], __h[511:0]) ENDFOR dst := ZF KEYLOCKER_WIDE
immintrin.h
Cryptography
Flag Encrypt 10 rounds of 8 groups of unsigned 8-bit integers in "__idata" using 128-bit AES key specified in "__h", store the resulting unsigned 8-bit integers into the corresponding elements of "__odata", and set "dst" to the ZF flag status. If exception happens, set ZF flag to 1 and zero initialize "__odata". FOR i := 0 to 7 __odata[i] := AES128Encrypt (__idata[i], __h[383:0]) ENDFOR dst := ZF KEYLOCKER_WIDE
immintrin.h
Cryptography
Flag Encrypt 10 rounds of 8 groups of unsigned 8-bit integers in "__idata" using 256-bit AES key specified in "__h", store the resulting unsigned 8-bit integers into the corresponding elements of "__odata", and set "dst" to the ZF flag status. If exception happens, set ZF flag to 1 and zero initialize "__odata". FOR i := 0 to 7 __odata[i] := AES256Encrypt (__idata[i], __h[512:0]) ENDFOR dst := ZF KEYLOCKER_WIDE
immintrin.h
Cryptography
Count the number of leading zero bits in unsigned 32-bit integer "a", and return that count in "dst". tmp := 31 dst := 0 DO WHILE (tmp >= 0 AND a[tmp] == 0) tmp := tmp - 1 dst := dst + 1 OD LZCNT
immintrin.h
Bit Manipulation
Count the number of leading zero bits in unsigned 64-bit integer "a", and return that count in "dst". tmp := 63 dst := 0 DO WHILE (tmp >= 0 AND a[tmp] == 0) tmp := tmp - 1 dst := dst + 1 OD LZCNT
immintrin.h
Bit Manipulation
Copy 64-bit integer "a" to "dst". dst[63:0] := a[63:0] MMX
mmintrin.h
Convert
Copy 64-bit integer "a" to "dst". dst[63:0] := a[63:0] MMX
mmintrin.h
Convert
Copy 32-bit integer "a" to the lower elements of "dst", and zero the upper element of "dst". dst[31:0] := a[31:0] dst[63:32] := 0 MMX
mmintrin.h
Convert
Copy the lower 32-bit integer in "a" to "dst". dst[31:0] := a[31:0] MMX
mmintrin.h
Convert
Copy 32-bit integer "a" to the lower elements of "dst", and zero the upper element of "dst". dst[31:0] := a[31:0] dst[63:32] := 0 MMX
mmintrin.h
Convert
Copy the lower 32-bit integer in "a" to "dst". dst[31:0] := a[31:0] MMX
mmintrin.h
Convert
Copy 64-bit integer "a" to "dst". dst[63:0] := a[63:0] MMX
mmintrin.h
Convert
Copy 64-bit integer "a" to "dst". dst[63:0] := a[63:0] MMX
mmintrin.h
Convert
Empty the MMX state, which marks the x87 FPU registers as available for use by x87 instructions. This instruction must be used at the end of all MMX technology procedures. MMX
mmintrin.h
General Support
Empty the MMX state, which marks the x87 FPU registers as available for use by x87 instructions. This instruction must be used at the end of all MMX technology procedures. MMX
mmintrin.h
General Support
Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using signed saturation, and store the results in "dst". dst[7:0] := Saturate8(a[15:0]) dst[15:8] := Saturate8(a[31:16]) dst[23:16] := Saturate8(a[47:32]) dst[31:24] := Saturate8(a[63:48]) dst[39:32] := Saturate8(b[15:0]) dst[47:40] := Saturate8(b[31:16]) dst[55:48] := Saturate8(b[47:32]) dst[63:56] := Saturate8(b[63:48]) MMX
mmintrin.h
Miscellaneous
Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using signed saturation, and store the results in "dst". dst[15:0] := Saturate16(a[31:0]) dst[31:16] := Saturate16(a[63:32]) dst[47:32] := Saturate16(b[31:0]) dst[63:48] := Saturate16(b[63:32]) MMX
mmintrin.h
Miscellaneous
Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using unsigned saturation, and store the results in "dst". dst[7:0] := SaturateU8(a[15:0]) dst[15:8] := SaturateU8(a[31:16]) dst[23:16] := SaturateU8(a[47:32]) dst[31:24] := SaturateU8(a[63:48]) dst[39:32] := SaturateU8(b[15:0]) dst[47:40] := SaturateU8(b[31:16]) dst[55:48] := SaturateU8(b[47:32]) dst[63:56] := SaturateU8(b[63:48]) MMX
mmintrin.h
Miscellaneous
Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using signed saturation, and store the results in "dst". dst[7:0] := Saturate8(a[15:0]) dst[15:8] := Saturate8(a[31:16]) dst[23:16] := Saturate8(a[47:32]) dst[31:24] := Saturate8(a[63:48]) dst[39:32] := Saturate8(b[15:0]) dst[47:40] := Saturate8(b[31:16]) dst[55:48] := Saturate8(b[47:32]) dst[63:56] := Saturate8(b[63:48]) MMX
mmintrin.h
Miscellaneous
Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using signed saturation, and store the results in "dst". dst[15:0] := Saturate16(a[31:0]) dst[31:16] := Saturate16(a[63:32]) dst[47:32] := Saturate16(b[31:0]) dst[63:48] := Saturate16(b[63:32]) MMX
mmintrin.h
Miscellaneous
Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using unsigned saturation, and store the results in "dst". dst[7:0] := SaturateU8(a[15:0]) dst[15:8] := SaturateU8(a[31:16]) dst[23:16] := SaturateU8(a[47:32]) dst[31:24] := SaturateU8(a[63:48]) dst[39:32] := SaturateU8(b[15:0]) dst[47:40] := SaturateU8(b[31:16]) dst[55:48] := SaturateU8(b[47:32]) dst[63:56] := SaturateU8(b[63:48]) MMX
mmintrin.h
Miscellaneous
Unpack and interleave 8-bit integers from the high half of "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_BYTES(src1[63:0], src2[63:0]) { dst[7:0] := src1[39:32] dst[15:8] := src2[39:32] dst[23:16] := src1[47:40] dst[31:24] := src2[47:40] dst[39:32] := src1[55:48] dst[47:40] := src2[55:48] dst[55:48] := src1[63:56] dst[63:56] := src2[63:56] RETURN dst[63:0] } dst[63:0] := INTERLEAVE_HIGH_BYTES(a[63:0], b[63:0]) MMX
mmintrin.h
Swizzle
Unpack and interleave 16-bit integers from the high half of "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_WORDS(src1[63:0], src2[63:0]) { dst[15:0] := src1[47:32] dst[31:16] := src2[47:32] dst[47:32] := src1[63:48] dst[63:48] := src2[63:48] RETURN dst[63:0] } dst[63:0] := INTERLEAVE_HIGH_WORDS(a[63:0], b[63:0]) MMX
mmintrin.h
Swizzle
Unpack and interleave 32-bit integers from the high half of "a" and "b", and store the results in "dst". dst[31:0] := a[63:32] dst[63:32] := b[63:32] MMX
mmintrin.h
Swizzle
Unpack and interleave 8-bit integers from the low half of "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_BYTES(src1[63:0], src2[63:0]) { dst[7:0] := src1[7:0] dst[15:8] := src2[7:0] dst[23:16] := src1[15:8] dst[31:24] := src2[15:8] dst[39:32] := src1[23:16] dst[47:40] := src2[23:16] dst[55:48] := src1[31:24] dst[63:56] := src2[31:24] RETURN dst[63:0] } dst[63:0] := INTERLEAVE_BYTES(a[63:0], b[63:0]) MMX
mmintrin.h
Swizzle
Unpack and interleave 16-bit integers from the low half of "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_WORDS(src1[63:0], src2[63:0]) { dst[15:0] := src1[15:0] dst[31:16] := src2[15:0] dst[47:32] := src1[31:16] dst[63:48] := src2[31:16] RETURN dst[63:0] } dst[63:0] := INTERLEAVE_WORDS(a[63:0], b[63:0]) MMX
mmintrin.h
Swizzle
Unpack and interleave 32-bit integers from the low half of "a" and "b", and store the results in "dst". dst[31:0] := a[31:0] dst[63:32] := b[31:0] MMX
mmintrin.h
Swizzle
Unpack and interleave 8-bit integers from the high half of "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_BYTES(src1[63:0], src2[63:0]) { dst[7:0] := src1[39:32] dst[15:8] := src2[39:32] dst[23:16] := src1[47:40] dst[31:24] := src2[47:40] dst[39:32] := src1[55:48] dst[47:40] := src2[55:48] dst[55:48] := src1[63:56] dst[63:56] := src2[63:56] RETURN dst[63:0] } dst[63:0] := INTERLEAVE_HIGH_BYTES(a[63:0], b[63:0]) MMX
mmintrin.h
Swizzle
Unpack and interleave 16-bit integers from the high half of "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_WORDS(src1[63:0], src2[63:0]) { dst[15:0] := src1[47:32] dst[31:16] := src2[47:32] dst[47:32] := src1[63:48] dst[63:48] := src2[63:48] RETURN dst[63:0] } dst[63:0] := INTERLEAVE_HIGH_WORDS(a[63:0], b[63:0]) MMX
mmintrin.h
Swizzle
Unpack and interleave 32-bit integers from the high half of "a" and "b", and store the results in "dst". dst[31:0] := a[63:32] dst[63:32] := b[63:32] MMX
mmintrin.h
Swizzle
Unpack and interleave 8-bit integers from the low half of "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_BYTES(src1[63:0], src2[63:0]) { dst[7:0] := src1[7:0] dst[15:8] := src2[7:0] dst[23:16] := src1[15:8] dst[31:24] := src2[15:8] dst[39:32] := src1[23:16] dst[47:40] := src2[23:16] dst[55:48] := src1[31:24] dst[63:56] := src2[31:24] RETURN dst[63:0] } dst[63:0] := INTERLEAVE_BYTES(a[63:0], b[63:0]) MMX
mmintrin.h
Swizzle
Unpack and interleave 16-bit integers from the low half of "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_WORDS(src1[63:0], src2[63:0]) { dst[15:0] := src1[15:0] dst[31:16] := src2[15:0] dst[47:32] := src1[31:16] dst[63:48] := src2[31:16] RETURN dst[63:0] } dst[63:0] := INTERLEAVE_WORDS(a[63:0], b[63:0]) MMX
mmintrin.h
Swizzle
Unpack and interleave 32-bit integers from the low half of "a" and "b", and store the results in "dst". dst[31:0] := a[31:0] dst[63:32] := b[31:0] MMX
mmintrin.h
Swizzle
Add packed 8-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := a[i+7:i] + b[i+7:i] ENDFOR MMX
mmintrin.h
Arithmetic
Add packed 16-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := a[i+15:i] + b[i+15:i] ENDFOR MMX
mmintrin.h
Arithmetic
Add packed 32-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 1 i := j*32 dst[i+31:i] := a[i+31:i] + b[i+31:i] ENDFOR MMX
mmintrin.h
Arithmetic
Add packed signed 8-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] ) ENDFOR MMX
mmintrin.h
Arithmetic
Add packed signed 16-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := Saturate16( a[i+15:i] + b[i+15:i] ) ENDFOR MMX
mmintrin.h
Arithmetic
Add packed unsigned 8-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := SaturateU8( a[i+7:i] + b[i+7:i] ) ENDFOR MMX
mmintrin.h
Arithmetic
Add packed unsigned 16-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := SaturateU16( a[i+15:i] + b[i+15:i] ) ENDFOR MMX
mmintrin.h
Arithmetic
Subtract packed 8-bit integers in "b" from packed 8-bit integers in "a", and store the results in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := a[i+7:i] - b[i+7:i] ENDFOR MMX
mmintrin.h
Arithmetic
Subtract packed 16-bit integers in "b" from packed 16-bit integers in "a", and store the results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := a[i+15:i] - b[i+15:i] ENDFOR MMX
mmintrin.h
Arithmetic
Subtract packed 32-bit integers in "b" from packed 32-bit integers in "a", and store the results in "dst". FOR j := 0 to 1 i := j*32 dst[i+31:i] := a[i+31:i] - b[i+31:i] ENDFOR MMX
mmintrin.h
Arithmetic
Subtract packed signed 8-bit integers in "b" from packed 8-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := Saturate8(a[i+7:i] - b[i+7:i]) ENDFOR MMX
mmintrin.h
Arithmetic
Subtract packed signed 16-bit integers in "b" from packed 16-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := Saturate16(a[i+15:i] - b[i+15:i]) ENDFOR MMX
mmintrin.h
Arithmetic
Subtract packed unsigned 8-bit integers in "b" from packed unsigned 8-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := SaturateU8(a[i+7:i] - b[i+7:i]) ENDFOR MMX
mmintrin.h
Arithmetic
Subtract packed unsigned 16-bit integers in "b" from packed unsigned 16-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := SaturateU16(a[i+15:i] - b[i+15:i]) ENDFOR MMX
mmintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Horizontally add adjacent pairs of intermediate 32-bit integers, and pack the results in "dst". FOR j := 0 to 1 i := j*32 dst[i+31:i] := SignExtend32(a[i+31:i+16]*b[i+31:i+16]) + SignExtend32(a[i+15:i]*b[i+15:i]) ENDFOR MMX
mmintrin.h
Arithmetic
Multiply the packed signed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst". FOR j := 0 to 3 i := j*16 tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[31:16] ENDFOR MMX
mmintrin.h
Arithmetic
Multiply the packed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the low 16 bits of the intermediate integers in "dst". FOR j := 0 to 3 i := j*16 tmp[31:0] := a[i+15:i] * b[i+15:i] dst[i+15:i] := tmp[15:0] ENDFOR MMX
mmintrin.h
Arithmetic
Add packed 8-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := a[i+7:i] + b[i+7:i] ENDFOR MMX
mmintrin.h
Arithmetic
Add packed 16-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := a[i+15:i] + b[i+15:i] ENDFOR MMX
mmintrin.h
Arithmetic
Add packed 32-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 1 i := j*32 dst[i+31:i] := a[i+31:i] + b[i+31:i] ENDFOR MMX
mmintrin.h
Arithmetic
Add packed signed 8-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] ) ENDFOR MMX
mmintrin.h
Arithmetic
Add packed signed 16-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := Saturate16( a[i+15:i] + b[i+15:i] ) ENDFOR MMX
mmintrin.h
Arithmetic
Add packed unsigned 8-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := SaturateU8( a[i+7:i] + b[i+7:i] ) ENDFOR MMX
mmintrin.h
Arithmetic
Add packed unsigned 16-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := SaturateU16( a[i+15:i] + b[i+15:i] ) ENDFOR MMX
mmintrin.h
Arithmetic
Subtract packed 8-bit integers in "b" from packed 8-bit integers in "a", and store the results in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := a[i+7:i] - b[i+7:i] ENDFOR MMX
mmintrin.h
Arithmetic
Subtract packed 16-bit integers in "b" from packed 16-bit integers in "a", and store the results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := a[i+15:i] - b[i+15:i] ENDFOR MMX
mmintrin.h
Arithmetic
Subtract packed 32-bit integers in "b" from packed 32-bit integers in "a", and store the results in "dst". FOR j := 0 to 1 i := j*32 dst[i+31:i] := a[i+31:i] - b[i+31:i] ENDFOR MMX
mmintrin.h
Arithmetic
Subtract packed signed 8-bit integers in "b" from packed 8-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := Saturate8(a[i+7:i] - b[i+7:i]) ENDFOR MMX
mmintrin.h
Arithmetic
Subtract packed signed 16-bit integers in "b" from packed 16-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := Saturate16(a[i+15:i] - b[i+15:i]) ENDFOR MMX
mmintrin.h
Arithmetic
Subtract packed unsigned 8-bit integers in "b" from packed unsigned 8-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := SaturateU8(a[i+7:i] - b[i+7:i]) ENDFOR MMX
mmintrin.h
Arithmetic
Subtract packed unsigned 16-bit integers in "b" from packed unsigned 16-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := SaturateU16(a[i+15:i] - b[i+15:i]) ENDFOR MMX
mmintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Horizontally add adjacent pairs of intermediate 32-bit integers, and pack the results in "dst". FOR j := 0 to 1 i := j*32 dst[i+31:i] := SignExtend32(a[i+31:i+16]*b[i+31:i+16]) + SignExtend32(a[i+15:i]*b[i+15:i]) ENDFOR MMX
mmintrin.h
Arithmetic
Multiply the packed signed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst". FOR j := 0 to 3 i := j*16 tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[31:16] ENDFOR MMX
mmintrin.h
Arithmetic
Multiply the packed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the low 16 bits of the intermediate integers in "dst". FOR j := 0 to 3 i := j*16 tmp[31:0] := a[i+15:i] * b[i+15:i] dst[i+15:i] := tmp[15:0] ENDFOR MMX
mmintrin.h
Arithmetic
Shift packed 16-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*16 IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[63:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 16-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*16 IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << imm8[7:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 32-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 1 i := j*32 IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[63:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 32-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 1 i := j*32 IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << imm8[7:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift 64-bit integer "a" left by "count" while shifting in zeros, and store the result in "dst". IF count[63:0] > 63 dst[63:0] := 0 ELSE dst[63:0] := ZeroExtend64(a[63:0] << count[63:0]) FI MMX
mmintrin.h
Shift
Shift 64-bit integer "a" left by "imm8" while shifting in zeros, and store the result in "dst". IF imm8[7:0] > 63 dst[63:0] := 0 ELSE dst[63:0] := ZeroExtend64(a[63:0] << imm8[7:0]) FI MMX
mmintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 3 i := j*16 IF count[63:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> count[63:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 3 i := j*16 IF imm8[7:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> imm8[7:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 1 i := j*32 IF count[63:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> count[63:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 1 i := j*32 IF imm8[7:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*16 IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[63:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*16 IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 1 i := j*32 IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[63:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 1 i := j*32 IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift 64-bit integer "a" right by "count" while shifting in zeros, and store the result in "dst". IF count[63:0] > 63 dst[63:0] := 0 ELSE dst[63:0] := ZeroExtend64(a[63:0] >> count[63:0]) FI MMX
mmintrin.h
Shift
Shift 64-bit integer "a" right by "imm8" while shifting in zeros, and store the result in "dst". IF imm8[7:0] > 63 dst[63:0] := 0 ELSE dst[63:0] := ZeroExtend64(a[63:0] >> imm8[7:0]) FI MMX
mmintrin.h
Shift
Shift packed 16-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*16 IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[63:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 16-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*16 IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << imm8[7:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 32-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 1 i := j*32 IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[63:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 32-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 1 i := j*32 IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << imm8[7:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift 64-bit integer "a" left by "count" while shifting in zeros, and store the result in "dst". IF count[63:0] > 63 dst[63:0] := 0 ELSE dst[63:0] := ZeroExtend64(a[63:0] << count[63:0]) FI MMX
mmintrin.h
Shift
Shift 64-bit integer "a" left by "imm8" while shifting in zeros, and store the result in "dst". IF imm8[7:0] > 63 dst[63:0] := 0 ELSE dst[63:0] := ZeroExtend64(a[63:0] << imm8[7:0]) FI MMX
mmintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 3 i := j*16 IF count[63:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> count[63:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 3 i := j*16 IF imm8[7:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> imm8[7:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 1 i := j*32 IF count[63:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> count[63:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 1 i := j*32 IF imm8[7:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*16 IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[63:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*16 IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 1 i := j*32 IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[63:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 1 i := j*32 IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0]) FI ENDFOR MMX
mmintrin.h
Shift
Shift 64-bit integer "a" right by "count" while shifting in zeros, and store the result in "dst". IF count[63:0] > 63 dst[63:0] := 0 ELSE dst[63:0] := ZeroExtend64(a[63:0] >> count[63:0]) FI MMX
mmintrin.h
Shift
Shift 64-bit integer "a" right by "imm8" while shifting in zeros, and store the result in "dst". IF imm8[7:0] > 63 dst[63:0] := 0 ELSE dst[63:0] := ZeroExtend64(a[63:0] >> imm8[7:0]) FI MMX
mmintrin.h
Shift
Compute the bitwise AND of 64 bits (representing integer data) in "a" and "b", and store the result in "dst". dst[63:0] := (a[63:0] AND b[63:0]) MMX
mmintrin.h
Logical
Compute the bitwise NOT of 64 bits (representing integer data) in "a" and then AND with "b", and store the result in "dst". dst[63:0] := ((NOT a[63:0]) AND b[63:0]) MMX
mmintrin.h
Logical
Compute the bitwise OR of 64 bits (representing integer data) in "a" and "b", and store the result in "dst". dst[63:0] := (a[63:0] OR b[63:0]) MMX
mmintrin.h
Logical
Compute the bitwise XOR of 64 bits (representing integer data) in "a" and "b", and store the result in "dst". dst[63:0] := (a[63:0] XOR b[63:0]) MMX
mmintrin.h
Logical
Compute the bitwise AND of 64 bits (representing integer data) in "a" and "b", and store the result in "dst". dst[63:0] := (a[63:0] AND b[63:0]) MMX
mmintrin.h
Logical
Compute the bitwise NOT of 64 bits (representing integer data) in "a" and then AND with "b", and store the result in "dst". dst[63:0] := ((NOT a[63:0]) AND b[63:0]) MMX
mmintrin.h
Logical
Compute the bitwise OR of 64 bits (representing integer data) in "a" and "b", and store the result in "dst". dst[63:0] := (a[63:0] OR b[63:0]) MMX
mmintrin.h
Logical
Compute the bitwise XOR of 64 bits (representing integer data) in "a" and "b", and store the result in "dst". dst[63:0] := (a[63:0] XOR b[63:0]) MMX
mmintrin.h
Logical
Compare packed 8-bit integers in "a" and "b" for equality, and store the results in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := ( a[i+7:i] == b[i+7:i] ) ? 0xFF : 0 ENDFOR MMX
mmintrin.h
Compare
Compare packed 16-bit integers in "a" and "b" for equality, and store the results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := ( a[i+15:i] == b[i+15:i] ) ? 0xFFFF : 0 ENDFOR MMX
mmintrin.h
Compare
Compare packed 32-bit integers in "a" and "b" for equality, and store the results in "dst". FOR j := 0 to 1 i := j*32 dst[i+31:i] := ( a[i+31:i] == b[i+31:i] ) ? 0xFFFFFFFF : 0 ENDFOR MMX
mmintrin.h
Compare
Compare packed 8-bit integers in "a" and "b" for greater-than, and store the results in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := ( a[i+7:i] > b[i+7:i] ) ? 0xFF : 0 ENDFOR MMX
mmintrin.h
Compare
Compare packed 16-bit integers in "a" and "b" for greater-than, and store the results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := ( a[i+15:i] > b[i+15:i] ) ? 0xFFFF : 0 ENDFOR MMX
mmintrin.h
Compare
Compare packed 32-bit integers in "a" and "b" for greater-than, and store the results in "dst". FOR j := 0 to 1 i := j*32 dst[i+31:i] := ( a[i+31:i] > b[i+31:i] ) ? 0xFFFFFFFF : 0 ENDFOR MMX
mmintrin.h
Compare
Compare packed 8-bit integers in "a" and "b" for equality, and store the results in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := ( a[i+7:i] == b[i+7:i] ) ? 0xFF : 0 ENDFOR MMX
mmintrin.h
Compare
Compare packed 16-bit integers in "a" and "b" for equality, and store the results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := ( a[i+15:i] == b[i+15:i] ) ? 0xFFFF : 0 ENDFOR MMX
mmintrin.h
Compare
Compare packed 32-bit integers in "a" and "b" for equality, and store the results in "dst". FOR j := 0 to 1 i := j*32 dst[i+31:i] := ( a[i+31:i] == b[i+31:i] ) ? 0xFFFFFFFF : 0 ENDFOR MMX
mmintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for greater-than, and store the results in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := ( a[i+7:i] > b[i+7:i] ) ? 0xFF : 0 ENDFOR MMX
mmintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for greater-than, and store the results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := ( a[i+15:i] > b[i+15:i] ) ? 0xFFFF : 0 ENDFOR MMX
mmintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for greater-than, and store the results in "dst". FOR j := 0 to 1 i := j*32 dst[i+31:i] := ( a[i+31:i] > b[i+31:i] ) ? 0xFFFFFFFF : 0 ENDFOR MMX
mmintrin.h
Compare
Return vector of type __m64 with all elements set to zero. dst[MAX:0] := 0 MMX
mmintrin.h
Set
Set packed 32-bit integers in "dst" with the supplied values. dst[31:0] := e0 dst[63:32] := e1 MMX
mmintrin.h
Set
Set packed 16-bit integers in "dst" with the supplied values. dst[15:0] := e0 dst[31:16] := e1 dst[47:32] := e2 dst[63:48] := e3 MMX
mmintrin.h
Set
Set packed 8-bit integers in "dst" with the supplied values. dst[7:0] := e0 dst[15:8] := e1 dst[23:16] := e2 dst[31:24] := e3 dst[39:32] := e4 dst[47:40] := e5 dst[55:48] := e6 dst[63:56] := e7 MMX
mmintrin.h
Set
Broadcast 32-bit integer "a" to all elements of "dst". FOR j := 0 to 1 i := j*32 dst[i+31:i] := a[31:0] ENDFOR MMX
mmintrin.h
Set
Broadcast 16-bit integer "a" to all all elements of "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := a[15:0] ENDFOR MMX
mmintrin.h
Set
Broadcast 8-bit integer "a" to all elements of "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := a[7:0] ENDFOR MMX
mmintrin.h
Set
Set packed 32-bit integers in "dst" with the supplied values in reverse order. dst[31:0] := e1 dst[63:32] := e0 MMX
mmintrin.h
Set
Set packed 16-bit integers in "dst" with the supplied values in reverse order. dst[15:0] := e3 dst[31:16] := e2 dst[47:32] := e1 dst[63:48] := e0 MMX
mmintrin.h
Set
Set packed 8-bit integers in "dst" with the supplied values in reverse order. dst[7:0] := e7 dst[15:8] := e6 dst[23:16] := e5 dst[31:24] := e4 dst[39:32] := e3 dst[47:40] := e2 dst[55:48] := e1 dst[63:56] := e0 MMX
mmintrin.h
Set
Arm address monitoring hardware using the address specified in "p". A store to an address within the specified address range triggers the monitoring hardware. Specify optional extensions in "extensions", and optional hints in "hints". MONITOR
pmmintrin.h
General Support
Hint to the processor that it can enter an implementation-dependent-optimized state while waiting for an event or store operation to the address range specified by MONITOR. MONITOR
pmmintrin.h
General Support
Load 16 bits from memory, perform a byte swap operation, and store the result in "dst". FOR j := 0 to 1 i := j*8 dst[i+7:i] := MEM[ptr+15-i:ptr+8-i] ENDFOR MOVBE
immintrin.h
Load
Load 32 bits from memory, perform a byte swap operation, and store the result in "dst". FOR j := 0 to 3 i := j*8 dst[i+7:i] := MEM[ptr+31-i:ptr+24-i] ENDFOR MOVBE
immintrin.h
Load
Load 64 bits from memory, perform a byte swap operation, and store the result in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := MEM[ptr+63-i:ptr+56-i] ENDFOR MOVBE
immintrin.h
Load
Perform a bit swap operation of the 16 bits in "data", and store the results to memory. FOR j := 0 to 1 i := j*8 MEM[ptr+i+7:ptr+i] := data[15-i:8-i] ENDFOR MOVBE
immintrin.h
Store
Perform a bit swap operation of the 32 bits in "data", and store the results to memory. addr := MEM[ptr] FOR j := 0 to 3 i := j*8 MEM[ptr+i+7:ptr+i] := data[31-i:24-i] ENDFOR MOVBE
immintrin.h
Store
Perform a bit swap operation of the 64 bits in "data", and store the results to memory. addr := MEM[ptr] FOR j := 0 to 7 i := j*8 MEM[ptr+i+7:ptr+i] := data[63-i:56-i] ENDFOR MOVBE
immintrin.h
Store
Move 64-byte (512-bit) value using direct store from source memory address "src" to destination memory address "dst". MEM[dst+511:dst] := MEM[src+511:src] MOVDIR64B
immintrin.h
Store
Store 64-bit integer from "val" into memory using direct store. MEM[dst+63:dst] := val[63:0] MOVDIRI
immintrin.h
Store
Store 32-bit integer from "val" into memory using direct store. MEM[dst+31:dst] := val[31:0] MOVDIRI
immintrin.h
Store
Make a pointer with the value of "srcmem" and bounds set to ["srcmem", "srcmem" + "size" - 1], and store the result in "dst". dst := srcmem dst.LB := srcmem.LB dst.UB := srcmem + size - 1 MPX
immintrin.h
Miscellaneous
Narrow the bounds for pointer "q" to the intersection of the bounds of "r" and the bounds ["q", "q" + "size" - 1], and store the result in "dst". dst := q IF r.LB > (q + size - 1) OR r.UB < q dst.LB := 1 dst.UB := 0 ELSE dst.LB := MAX(r.LB, q) dst.UB := MIN(r.UB, (q + size - 1)) FI MPX
immintrin.h
Miscellaneous
Make a pointer with the value of "q" and bounds set to the bounds of "r" (e.g. copy the bounds of "r" to pointer "q"), and store the result in "dst". dst := q dst.LB := r.LB dst.UB := r.UB MPX
immintrin.h
Miscellaneous
Make a pointer with the value of "q" and open bounds, which allow the pointer to access the entire virtual address space, and store the result in "dst". dst := q dst.LB := 0 dst.UB := 0 MPX
immintrin.h
Miscellaneous
Stores the bounds of "ptr_val" pointer in memory at address "ptr_addr". MEM[ptr_addr].LB := ptr_val.LB MEM[ptr_addr].UB := ptr_val.UB MPX
immintrin.h
Miscellaneous
Checks if "q" is within its lower bound, and throws a #BR if not. IF q < q.LB #BR FI MPX
immintrin.h
Miscellaneous
Checks if "q" is within its upper bound, and throws a #BR if not. IF q > q.UB #BR FI MPX
immintrin.h
Miscellaneous
Checks if ["q", "q" + "size" - 1] is within the lower and upper bounds of "q" and throws a #BR if not. IF (q + size - 1) < q.LB OR (q + size - 1) > q.UB #BR FI MPX
immintrin.h
Miscellaneous
Return the lower bound of "q". dst := q.LB MPX
immintrin.h
Miscellaneous
Return the upper bound of "q". dst := q.UB MPX
immintrin.h
Miscellaneous
Set "dst" to the index of the lowest set bit in 32-bit integer "a". If no bits are set in "a" then "dst" is undefined. tmp := 0 IF a == 0 // dst is undefined ELSE DO WHILE ((tmp < 32) AND a[tmp] == 0) tmp := tmp + 1 OD FI dst := tmp
immintrin.h
Bit Manipulation
Set "dst" to the index of the highest set bit in 32-bit integer "a". If no bits are set in "a" then "dst" is undefined. tmp := 31 IF a == 0 // dst is undefined ELSE DO WHILE ((tmp > 0) AND a[tmp] == 0) tmp := tmp - 1 OD FI dst := tmp
immintrin.h
Bit Manipulation
Set "index" to the index of the lowest set bit in 32-bit integer "mask". If no bits are set in "a", then "index" is undefined and "dst" is set to 0, otherwise "dst" is set to 1. tmp := 0 IF a == 0 // MEM[index+31:index] is undefined dst := 0 ELSE DO WHILE ((tmp < 32) AND a[tmp] == 0) tmp := tmp + 1 OD MEM[index+31:index] := tmp dst := (tmp == 31) ? 0 : 1 FI
immintrin.h
Bit Manipulation
Set "index" to the index of the highest set bit in 32-bit integer "mask". If no bits are set in "a", then "index" is undefined and "dst" is set to 0, otherwise "dst" is set to 1. tmp := 31 IF a == 0 // MEM[index+31:index] is undefined dst := 0 ELSE DO WHILE ((tmp > 0) AND a[tmp] == 0) tmp := tmp - 1 OD MEM[index+31:index] := tmp dst := (tmp == 0) ? 0 : 1 FI
immintrin.h
Bit Manipulation
Set "index" to the index of the lowest set bit in 32-bit integer "mask". If no bits are set in "a", then "index" is undefined and "dst" is set to 0, otherwise "dst" is set to 1. tmp := 0 IF a == 0 // MEM[index+31:index] is undefined dst := 0 ELSE DO WHILE ((tmp < 64) AND a[tmp] == 0) tmp := tmp + 1 OD MEM[index+31:index] := tmp dst := (tmp == 63) ? 0 : 1 FI
immintrin.h
Bit Manipulation
Set "index" to the index of the highest set bit in 32-bit integer "mask". If no bits are set in "a", then "index" is undefined and "dst" is set to 0, otherwise "dst" is set to 1. tmp := 63 IF a == 0 // MEM[index+31:index] is undefined dst := 0 ELSE DO WHILE ((tmp > 0) AND a[tmp] == 0) tmp := tmp - 1 OD MEM[index+31:index] := tmp dst := (tmp == 0) ? 0 : 1 FI
immintrin.h
Bit Manipulation
Return the bit at index "b" of 32-bit integer "a". addr := a + ZeroExtend64(b) dst[0] := MEM[addr]
immintrin.h
Bit Manipulation
Return the bit at index "b" of 32-bit integer "a", and set that bit to its complement. addr := a + ZeroExtend64(b) dst[0] := MEM[addr] MEM[addr] := ~dst[0]
immintrin.h
Bit Manipulation
Return the bit at index "b" of 32-bit integer "a", and set that bit to zero. addr := a + ZeroExtend64(b) dst[0] := MEM[addr] MEM[addr] := 0
immintrin.h
Bit Manipulation
Return the bit at index "b" of 32-bit integer "a", and set that bit to one. addr := a + ZeroExtend64(b) dst[0] := MEM[addr] MEM[addr] := 1
immintrin.h
Bit Manipulation
Return the bit at index "b" of 64-bit integer "a". addr := a + b dst[0] := MEM[addr]
immintrin.h
Bit Manipulation
Return the bit at index "b" of 64-bit integer "a", and set that bit to its complement. addr := a + b dst[0] := MEM[addr] MEM[addr] := ~dst[0]
immintrin.h
Bit Manipulation
Return the bit at index "b" of 64-bit integer "a", and set that bit to zero. addr := a + b dst[0] := MEM[addr] MEM[addr] := 0
immintrin.h
Bit Manipulation
Return the bit at index "b" of 64-bit integer "a", and set that bit to one. addr := a + b dst[0] := MEM[addr] MEM[addr] := 1
immintrin.h
Bit Manipulation
Reverse the byte order of 32-bit integer "a", and store the result in "dst". This intrinsic is provided for conversion between little and big endian values. dst[7:0] := a[31:24] dst[15:8] := a[23:16] dst[23:16] := a[15:8] dst[31:24] := a[7:0]
immintrin.h
Bit Manipulation
Reverse the byte order of 64-bit integer "a", and store the result in "dst". This intrinsic is provided for conversion between little and big endian values. dst[7:0] := a[63:56] dst[15:8] := a[55:48] dst[23:16] := a[47:40] dst[31:24] := a[39:32] dst[39:32] := a[31:24] dst[47:40] := a[23:16] dst[55:48] := a[15:8] dst[63:56] := a[7:0]
immintrin.h
Bit Manipulation
Cast from type float to type unsigned __int32 without conversion. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
immintrin.h
Cast
Cast from type double to type unsigned __int64 without conversion. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
immintrin.h
Cast
Cast from type unsigned __int32 to type float without conversion. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
immintrin.h
Cast
Cast from type unsigned __int64 to type double without conversion. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
immintrin.h
Cast
Shift the bits of unsigned long integer "a" left by the number of bits specified in "shift", rotating the most-significant bit to the least-significant bit location, and store the unsigned result in "dst". // size := 32 or 64 dst := a count := shift AND (size - 1) DO WHILE (count > 0) tmp[0] := dst[size - 1] dst := (dst << 1) OR tmp[0] count := count - 1 OD
immintrin.h
Shift
Shift the bits of unsigned long integer "a" right by the number of bits specified in "shift", rotating the least-significant bit to the most-significant bit location, and store the unsigned result in "dst". // size := 32 or 64 dst := a count := shift AND (size - 1) DO WHILE (count > 0) tmp[size - 1] := dst[0] dst := (dst >> 1) OR tmp[size - 1] count := count - 1 OD
immintrin.h
Shift
Shift the bits of unsigned 32-bit integer "a" left by the number of bits specified in "shift", rotating the most-significant bit to the least-significant bit location, and store the unsigned result in "dst". dst := a count := shift AND 31 DO WHILE (count > 0) tmp[0] := dst[31] dst := (dst << 1) OR tmp[0] count := count - 1 OD
immintrin.h
Shift
Shift the bits of unsigned 32-bit integer "a" right by the number of bits specified in "shift", rotating the least-significant bit to the most-significant bit location, and store the unsigned result in "dst". dst := a count := shift AND 31 DO WHILE (count > 0) tmp[31] := dst[0] dst := (dst >> 1) OR tmp count := count - 1 OD
immintrin.h
Shift
Shift the bits of unsigned 16-bit integer "a" left by the number of bits specified in "shift", rotating the most-significant bit to the least-significant bit location, and store the unsigned result in "dst". dst := a count := shift AND 15 DO WHILE (count > 0) tmp[0] := dst[15] dst := (dst << 1) OR tmp[0] count := count - 1 OD
immintrin.h
Shift
Shift the bits of unsigned 16-bit integer "a" right by the number of bits specified in "shift", rotating the least-significant bit to the most-significant bit location, and store the unsigned result in "dst". dst := a count := shift AND 15 DO WHILE (count > 0) tmp[15] := dst[0] dst := (dst >> 1) OR tmp count := count - 1 OD
immintrin.h
Shift
Shift the bits of unsigned 64-bit integer "a" left by the number of bits specified in "shift", rotating the most-significant bit to the least-significant bit location, and store the unsigned result in "dst". dst := a count := shift AND 63 DO WHILE (count > 0) tmp[0] := dst[63] dst := (dst << 1) OR tmp[0] count := count - 1 OD
immintrin.h
Shift
Shift the bits of unsigned 64-bit integer "a" right by the number of bits specified in "shift", rotating the least-significant bit to the most-significant bit location, and store the unsigned result in "dst". dst := a count := shift AND 63 DO WHILE (count > 0) tmp[63] := dst[0] dst := (dst >> 1) OR tmp[63] count := count - 1 OD
immintrin.h
Shift
Treat the processor-specific feature(s) specified in "a" as available. Multiple features may be OR'd together. See the valid feature flags below: _FEATURE_GENERIC_IA32 _FEATURE_FPU _FEATURE_CMOV _FEATURE_MMX _FEATURE_FXSAVE _FEATURE_SSE _FEATURE_SSE2 _FEATURE_SSE3 _FEATURE_SSSE3 _FEATURE_SSE4_1 _FEATURE_SSE4_2 _FEATURE_MOVBE _FEATURE_POPCNT _FEATURE_PCLMULQDQ _FEATURE_AES _FEATURE_F16C _FEATURE_AVX _FEATURE_RDRND _FEATURE_FMA _FEATURE_BMI _FEATURE_LZCNT _FEATURE_HLE _FEATURE_RTM _FEATURE_AVX2 _FEATURE_KNCNI _FEATURE_AVX512F _FEATURE_ADX _FEATURE_RDSEED _FEATURE_AVX512ER _FEATURE_AVX512PF _FEATURE_AVX512CD _FEATURE_SHA _FEATURE_MPX _FEATURE_AVX512BW _FEATURE_AVX512VL _FEATURE_AVX512VBMI _FEATURE_AVX512_4FMAPS _FEATURE_AVX512_4VNNIW _FEATURE_AVX512_VPOPCNTDQ _FEATURE_AVX512_BITALG _FEATURE_AVX512_VBMI2 _FEATURE_GFNI _FEATURE_VAES _FEATURE_VPCLMULQDQ _FEATURE_AVX512_VNNI _FEATURE_CLWB _FEATURE_RDPID _FEATURE_IBT _FEATURE_SHSTK _FEATURE_SGX _FEATURE_WBNOINVD _FEATURE_PCONFIG _FEATURE_AXV512_4VNNIB _FEATURE_AXV512_4FMAPH _FEATURE_AXV512_BITALG2 _FEATURE_AXV512_VP2INTERSECT
immintrin.h
General Support
Dynamically query the processor to determine if the processor-specific feature(s) specified in "a" are available, and return true or false (1 or 0) if the set of features is available. Multiple features may be OR'd together. This function is limited to bitmask values in the first 'page' of the libirc cpu-id information. This intrinsic does not check the processor vendor. See the valid feature flags below: _FEATURE_GENERIC_IA32 _FEATURE_FPU _FEATURE_CMOV _FEATURE_MMX _FEATURE_FXSAVE _FEATURE_SSE _FEATURE_SSE2 _FEATURE_SSE3 _FEATURE_SSSE3 _FEATURE_SSE4_1 _FEATURE_SSE4_2 _FEATURE_MOVBE _FEATURE_POPCNT _FEATURE_PCLMULQDQ _FEATURE_AES _FEATURE_F16C _FEATURE_AVX _FEATURE_RDRND _FEATURE_FMA _FEATURE_BMI _FEATURE_LZCNT _FEATURE_HLE _FEATURE_RTM _FEATURE_AVX2 _FEATURE_KNCNI _FEATURE_AVX512F _FEATURE_ADX _FEATURE_RDSEED _FEATURE_AVX512ER _FEATURE_AVX512PF _FEATURE_AVX512CD _FEATURE_SHA _FEATURE_MPX _FEATURE_AVX512BW _FEATURE_AVX512VL _FEATURE_AVX512VBMI _FEATURE_AVX512_4FMAPS _FEATURE_AVX512_4VNNIW _FEATURE_AVX512_VPOPCNTDQ _FEATURE_AVX512_BITALG _FEATURE_AVX512_VBMI2 _FEATURE_GFNI _FEATURE_VAES _FEATURE_VPCLMULQDQ _FEATURE_AVX512_VNNI _FEATURE_CLWB _FEATURE_RDPID _FEATURE_IBT _FEATURE_SHSTK _FEATURE_SGX _FEATURE_WBNOINVD _FEATURE_PCONFIG _FEATURE_AXV512_4VNNIB _FEATURE_AXV512_4FMAPH _FEATURE_AXV512_BITALG2 _FEATURE_AXV512_VP2INTERSECT _FEATURE_AXV512_FP16
immintrin.h
General Support
Dynamically query the processor to determine if the processor-specific feature(s) specified in "a" are available, and return true or false (1 or 0) if the set of features is available. Multiple features may be OR'd together. This works identically to the previous variant, except it also accepts a 'page' index that permits checking features on the 2nd page of the libirc information. When provided with a '0' in the 'page' parameter, this works identically to _may_i_use_cpu_feature. This intrinsic does not check the processor vendor. See the valid feature flags on the 2nd page below: (provided with a '1' in the 'page' parameter) _FEATURE_CLDEMOTE _FEATURE_MOVDIRI _FEATURE_MOVDIR64B _FEATURE_WAITPKG _FEATURE_AVX512_Bf16 _FEATURE_ENQCMD _FEATURE_AVX_VNNI _FEATURE_AMX_TILE _FEATURE_AMX_INT8 _FEATURE_AMX_BF16 _FEATURE_KL _FEATURE_WIDE_KL _FEATURE_HRESET _FEATURE_UINTR _FEATURE_PREFETCHI _FEATURE_AVXVNNIINT8 _FEATURE_CMPCCXADD _FEATURE_AVXIFMA _FEATURE_AVXNECONVERT _FEATURE_RAOINT _FEATURE_AMX_FP16 _FEATURE_AMX_COMPLEX _FEATURE_SHA512 _FEATURE_SM3 _FEATURE_SM4 _FEATURE_AVXVNNIINT16 _FEATURE_USERMSR _FEATURE_AVX10_1_256 _FEATURE_AVX10_1_512 _FEATURE_APXF _FEATURE_MSRLIST _FEATURE_WRMSRNS _FEATURE_PBNDKB
immintrin.h
General Support
Dynamically query the processor to determine if the processor-specific feature(s) specified a series of compile-time string literals in "feature, ..." are available, and return true or false (1 or 0) if the set of features is available. These feature names are converted to a bitmask and uses the same infrastructure as _may_i_use_cpu_feature_ext to validate it. The behavior is the same as the previous variants. This intrinsic does not check the processor vendor. Supported string literals are one-to-one corresponding in the "Operation" sections of _may_i_use_cpu_feature and _may_i_use_cpu_feature_ext. Example string literals are "avx2", "bmi", "avx512fp16", "amx-int8"...
immintrin.h
General Support
Read the Performance Monitor Counter (PMC) specified by "a", and store up to 64-bits in "dst". The width of performance counters is implementation specific. dst[63:0] := ReadPMC(a)
immintrin.h
General Support
Add unsigned 32-bit integers "a" and "b" with unsigned 8-bit carry-in "c_in" (carry flag), and store the unsigned 32-bit result in "out", and the carry-out in "dst" (carry or overflow flag). tmp[32:0] := a[31:0] + b[31:0] + (c_in > 0 ? 1 : 0) MEM[out+31:out] := tmp[31:0] dst[0] := tmp[32] dst[7:1] := 0
immintrin.h
Arithmetic
Add unsigned 64-bit integers "a" and "b" with unsigned 8-bit carry-in "c_in" (carry flag), and store the unsigned 64-bit result in "out", and the carry-out in "dst" (carry or overflow flag). tmp[64:0] := a[63:0] + b[63:0] + (c_in > 0 ? 1 : 0) MEM[out+63:out] := tmp[63:0] dst[0] := tmp[64] dst[7:1] := 0
immintrin.h
Arithmetic
Add unsigned 8-bit borrow "c_in" (carry flag) to unsigned 32-bit integer "b", and subtract the result from unsigned 32-bit integer "a". Store the unsigned 32-bit result in "out", and the carry-out in "dst" (carry or overflow flag). tmp[32:0] := a[31:0] - (b[31:0] + (c_in > 0 ? 1 : 0)) MEM[out+31:out] := tmp[31:0] dst[0] := tmp[32] dst[7:1] := 0
immintrin.h
Arithmetic
Add unsigned 8-bit borrow "c_in" (carry flag) to unsigned 64-bit integer "b", and subtract the result from unsigned 64-bit integer "a". Store the unsigned 64-bit result in "out", and the carry-out in "dst" (carry or overflow flag). tmp[64:0] := a[63:0] - (b[63:0] + (c_in > 0 ? 1 : 0)) MEM[out+63:out] := tmp[63:0] dst[0] := tmp[64] dst[7:1] := 0
immintrin.h
Arithmetic
Insert the 32-bit data from "a" into a Processor Trace stream via a PTW packet. The PTW packet will be inserted if tracing is currently enabled and ptwrite is currently enabled. The current IP will also be inserted via a FUP packet if FUPonPTW is enabled.
immintrin.h
Miscellaneous
Insert the 64-bit data from "a" into a Processor Trace stream via a PTW packet. The PTW packet will be inserted if tracing is currently enabled and ptwrite is currently enabled. The current IP will also be inserted via a FUP packet if FUPonPTW is enabled.
immintrin.h
Miscellaneous
Invoke the Intel SGX enclave user (non-privilege) leaf function specified by "a", and return the error code. The "__data" array contains 3 32- or 64-bit elements that may act as input, output, or be unused, depending on the semantics of the specified leaf function; these correspond to ebx, ecx, and edx.
immintrin.h
Miscellaneous
Invoke the Intel SGX enclave system (privileged) leaf function specified by "a", and return the error code. The "__data" array contains 3 32- or 64-bit elements that may act as input, output, or be unused, depending on the semantics of the specified leaf function; these correspond to ebx, ecx, and edx.
immintrin.h
Miscellaneous
Invoke the Intel SGX enclave virtualized (VMM) leaf function specified by "a", and return the error code. The "__data" array contains 3 32- or 64-bit elements that may act as input, output, or be unused, depending on the semantics of the specified leaf function; these correspond to ebx, ecx, and edx.
immintrin.h
Miscellaneous
Write back and flush internal caches. Initiate writing-back and flushing of external caches.
immintrin.h
Miscellaneous
Convert the half-precision (16-bit) floating-point value "a" to a single-precision (32-bit) floating-point value, and store the result in "dst". dst[31:0] := Convert_FP16_To_FP32(a[15:0])
emmintrin.h
Convert
Convert the single-precision (32-bit) floating-point value "a" to a half-precision (16-bit) floating-point value, and store the result in "dst". [round_note] dst[15:0] := Convert_FP32_To_FP16(a[31:0])
emmintrin.h
Convert
Perform a carry-less multiplication of two 64-bit integers, selected from "a" and "b" according to "imm8", and store the results in "dst". IF (imm8[0] == 0) TEMP1 := a[63:0] ELSE TEMP1 := a[127:64] FI IF (imm8[4] == 0) TEMP2 := b[63:0] ELSE TEMP2 := b[127:64] FI FOR i := 0 to 63 TEMP[i] := (TEMP1[0] and TEMP2[i]) FOR j := 1 to i TEMP[i] := TEMP[i] XOR (TEMP1[j] AND TEMP2[i-j]) ENDFOR dst[i] := TEMP[i] ENDFOR FOR i := 64 to 127 TEMP[i] := 0 FOR j := (i - 63) to 63 TEMP[i] := TEMP[i] XOR (TEMP1[j] AND TEMP2[i-j]) ENDFOR dst[i] := TEMP[i] ENDFOR dst[127] := 0 PCLMULQDQ
wmmintrin.h
Application-Targeted
Invoke the PCONFIG leaf function specified by "a". The "__data" array contains 3 32- or 64-bit elements that may act as input, output, or be unused, depending on the semantics of the specified leaf function; these correspond to ebx, ecx, and edx. May return the value in eax, depending on the semantics of the specified leaf function. PCONFIG
immintrin.h
Miscellaneous
Count the number of bits set to 1 in unsigned 32-bit integer "a", and return that count in "dst". dst := 0 FOR i := 0 to 31 IF a[i] dst := dst + 1 FI ENDFOR POPCNT
immintrin.h
Bit Manipulation
Count the number of bits set to 1 in unsigned 64-bit integer "a", and return that count in "dst". dst := 0 FOR i := 0 to 63 IF a[i] dst := dst + 1 FI ENDFOR POPCNT
immintrin.h
Bit Manipulation
Count the number of bits set to 1 in 32-bit integer "a", and return that count in "dst". dst := 0 FOR i := 0 to 31 IF a[i] dst := dst + 1 FI ENDFOR POPCNT
immintrin.h
Bit Manipulation
Count the number of bits set to 1 in 64-bit integer "a", and return that count in "dst". dst := 0 FOR i := 0 to 63 IF a[i] dst := dst + 1 FI ENDFOR POPCNT
immintrin.h
Bit Manipulation
Loads an instruction sequence containing the specified memory address into all level cache. PREFETCHI
x86gprintrin.h
General Support
Loads an instruction sequence containing the specified memory address into all but the first-level cache. PREFETCHI
x86gprintrin.h
General Support
Fetch the line of data from memory that contains address "p" to a location in the cache hierarchy specified by the locality hint "i", which can be one of:<ul> <li>_MM_HINT_ET0 // 7, move data using the ET0 hint. The PREFETCHW instruction will be generated.</li> <li>_MM_HINT_T0 // 3, move data using the T0 hint. The PREFETCHT0 instruction will be generated.</li> <li>_MM_HINT_T1 // 2, move data using the T1 hint. The PREFETCHT1 instruction will be generated.</li> <li>_MM_HINT_T2 // 1, move data using the T2 hint. The PREFETCHT2 instruction will be generated.</li> <li>_MM_HINT_NTA // 0, move data using the non-temporal access (NTA) hint. The PREFETCHNTA instruction will be generated.</li> PRFCHW
immintrin.h
General Support
Atomically add a 32-bit value at memory operand "__A" and a 32-bit "__B", and store the result to the same memory location. MEM[__A+31:__A] := MEM[__A+31:__A] + __B[31:0] RAO_INT
x86gprintrin.h
Arithmetic
Atomically add a 64-bit value at memory operand "__A" and a 64-bit "__B", and store the result to the same memory location. MEM[__A+63:__A] := MEM[__A+63:__A] + __B[63:0] RAO_INT
x86gprintrin.h
Arithmetic
Atomically and a 32-bit value at memory operand "__A" and a 32-bit "__B", and store the result to the same memory location. MEM[__A+31:__A] := MEM[__A+31:__A] AND __B[31:0] RAO_INT
x86gprintrin.h
Arithmetic
Atomically and a 64-bit value at memory operand "__A" and a 64-bit "__B", and store the result to the same memory location. MEM[__A+63:__A] := MEM[__A+63:__A] AND __B[63:0] RAO_INT
x86gprintrin.h
Arithmetic
Atomically or a 32-bit value at memory operand "__A" and a 32-bit "__B", and store the result to the same memory location. MEM[__A+31:__A] := MEM[__A+31:__A] OR __B[31:0] RAO_INT
x86gprintrin.h
Arithmetic
Atomically or a 64-bit value at memory operand "__A" and a 64-bit "__B", and store the result to the same memory location. MEM[__A+63:__A] := MEM[__A+63:__A] OR __B[63:0] RAO_INT
x86gprintrin.h
Arithmetic
Atomically xor a 32-bit value at memory operand "__A" and a 32-bit "__B", and store the result to the same memory location. MEM[__A+31:__A] := MEM[__A+31:__A] XOR __B[31:0] RAO_INT
x86gprintrin.h
Arithmetic
Atomically xor a 64-bit value at memory operand "__A" and a 64-bit "__B", and store the result to the same memory location. MEM[__A+63:__A] := MEM[__A+63:__A] XOR __B[63:0] RAO_INT
x86gprintrin.h
Arithmetic
Copy the IA32_TSC_AUX MSR (signature value) into "dst". dst[31:0] := IA32_TSC_AUX[31:0] RDPID
immintrin.h
General Support
Read a hardware generated 16-bit random value and store the result in "val". Return 1 if a random value was generated, and 0 otherwise. IF HW_RND_GEN.ready == 1 val[15:0] := HW_RND_GEN.data dst := 1 ELSE val[15:0] := 0 dst := 0 FI RDRAND
immintrin.h
Random
Read a hardware generated 32-bit random value and store the result in "val". Return 1 if a random value was generated, and 0 otherwise. IF HW_RND_GEN.ready == 1 val[31:0] := HW_RND_GEN.data dst := 1 ELSE val[31:0] := 0 dst := 0 FI RDRAND
immintrin.h
Random
Read a hardware generated 64-bit random value and store the result in "val". Return 1 if a random value was generated, and 0 otherwise. IF HW_RND_GEN.ready == 1 val[63:0] := HW_RND_GEN.data dst := 1 ELSE val[63:0] := 0 dst := 0 FI RDRAND
immintrin.h
Random
Read a 16-bit NIST SP800-90B and SP800-90C compliant random value and store in "val". Return 1 if a random value was generated, and 0 otherwise. IF HW_NRND_GEN.ready == 1 val[15:0] := HW_NRND_GEN.data dst := 1 ELSE val[15:0] := 0 dst := 0 FI RDSEED
immintrin.h
Random
Read a 32-bit NIST SP800-90B and SP800-90C compliant random value and store in "val". Return 1 if a random value was generated, and 0 otherwise. IF HW_NRND_GEN.ready == 1 val[31:0] := HW_NRND_GEN.data dst := 1 ELSE val[31:0] := 0 dst := 0 FI RDSEED
immintrin.h
Random
Read a 64-bit NIST SP800-90B and SP800-90C compliant random value and store in "val". Return 1 if a random value was generated, and 0 otherwise. IF HW_NRND_GEN.ready == 1 val[63:0] := HW_NRND_GEN.data dst := 1 ELSE val[63:0] := 0 dst := 0 FI RDSEED
immintrin.h
Random
Copy the current 64-bit value of the processor's time-stamp counter into "dst", and store the IA32_TSC_AUX MSR (signature value) into memory at "mem_addr". dst[63:0] := TimeStampCounter MEM[mem_addr+31:mem_addr] := IA32_TSC_AUX[31:0] RDTSCP
immintrin.h
General Support
Force an RTM abort. The EAX register is updated to reflect an XABORT instruction caused the abort, and the "imm8" parameter will be provided in bits [31:24] of EAX. Following an RTM abort, the logical processor resumes execution at the fallback address computed through the outermost XBEGIN instruction. IF RTM_ACTIVE == 0 // nop ELSE // restore architectural register state // discard memory updates performed in transaction // update EAX with status and imm8 value eax[31:24] := imm8[7:0] RTM_NEST_COUNT := 0 RTM_ACTIVE := 0 IF _64_BIT_MODE RIP := fallbackRIP ELSE EIP := fallbackEIP FI FI RTM
immintrin.h
General Support
Specify the start of an RTM code region. If the logical processor was not already in transactional execution, then this call causes the logical processor to transition into transactional execution. On an RTM abort, the logical processor discards all architectural register and memory updates performed during the RTM execution, restores architectural state, and starts execution beginning at the fallback address computed from the outermost XBEGIN instruction. Return status of ~0 (0xFFFF) if continuing inside transaction; all other codes are aborts. IF RTM_NEST_COUNT < MAX_RTM_NEST_COUNT RTM_NEST_COUNT := RTM_NEST_COUNT + 1 IF RTM_NEST_COUNT == 1 IF _64_BIT_MODE fallbackRIP := RIP ELSE IF _32_BIT_MODE fallbackEIP := EIP FI RTM_ACTIVE := 1 // enter RTM execution, record register state, start tracking memory state FI ELSE // RTM abort (see _xabort) FI RTM
immintrin.h
General Support
Specify the end of an RTM code region. If this corresponds to the outermost scope, the logical processor will attempt to commit the logical processor state atomically. If the commit fails, the logical processor will perform an RTM abort. IF RTM_ACTIVE == 1 RTM_NEST_COUNT := RTM_NEST_COUNT - 1 IF RTM_NEST_COUNT == 0 // try to commit transaction IF FAIL_TO_COMMIT_TRANSACTION // RTM abort (see _xabort) ELSE RTM_ACTIVE := 0 FI FI FI RTM
immintrin.h
General Support
Query the transactional execution status, return 1 if inside a transactionally executing RTM or HLE region, and return 0 otherwise. IF (RTM_ACTIVE == 1 OR HLE_ACTIVE == 1) dst := 1 ELSE dst := 0 FI RTM
immintrin.h
General Support
Serialize instruction execution, ensuring all modifications to flags, registers, and memory by previous instructions are completed before the next instruction is fetched. SERIALIZE
immintrin.h
General Support
Perform an intermediate calculation for the next four SHA1 message values (unsigned 32-bit integers) using previous message values from "a" and "b", and store the result in "dst". W0 := a[127:96] W1 := a[95:64] W2 := a[63:32] W3 := a[31:0] W4 := b[127:96] W5 := b[95:64] dst[127:96] := W2 XOR W0 dst[95:64] := W3 XOR W1 dst[63:32] := W4 XOR W2 dst[31:0] := W5 XOR W3 SHA
immintrin.h
Cryptography
Perform the final calculation for the next four SHA1 message values (unsigned 32-bit integers) using the intermediate result in "a" and the previous message values in "b", and store the result in "dst". W13 := b[95:64] W14 := b[63:32] W15 := b[31:0] W16 := (a[127:96] XOR W13) <<< 1 W17 := (a[95:64] XOR W14) <<< 1 W18 := (a[63:32] XOR W15) <<< 1 W19 := (a[31:0] XOR W16) <<< 1 dst[127:96] := W16 dst[95:64] := W17 dst[63:32] := W18 dst[31:0] := W19 SHA
immintrin.h
Cryptography
Calculate SHA1 state variable E after four rounds of operation from the current SHA1 state variable "a", add that value to the scheduled values (unsigned 32-bit integers) in "b", and store the result in "dst". tmp := (a[127:96] <<< 30) dst[127:96] := b[127:96] + tmp dst[95:64] := b[95:64] dst[63:32] := b[63:32] dst[31:0] := b[31:0] SHA
immintrin.h
Cryptography
Perform four rounds of SHA1 operation using an initial SHA1 state (A,B,C,D) from "a" and some pre-computed sum of the next 4 round message values (unsigned 32-bit integers), and state variable E from "b", and store the updated SHA1 state (A,B,C,D) in "dst". "func" contains the logic functions and round constants. IF (func[1:0] == 0) f := f0() K := K0 ELSE IF (func[1:0] == 1) f := f1() K := K1 ELSE IF (func[1:0] == 2) f := f2() K := K2 ELSE IF (func[1:0] == 3) f := f3() K := K3 FI A := a[127:96] B := a[95:64] C := a[63:32] D := a[31:0] W[0] := b[127:96] W[1] := b[95:64] W[2] := b[63:32] W[3] := b[31:0] A[1] := f(B, C, D) + (A <<< 5) + W[0] + K B[1] := A C[1] := B <<< 30 D[1] := C E[1] := D FOR i := 1 to 3 A[i+1] := f(B[i], C[i], D[i]) + (A[i] <<< 5) + W[i] + E[i] + K B[i+1] := A[i] C[i+1] := B[i] <<< 30 D[i+1] := C[i] E[i+1] := D[i] ENDFOR dst[127:96] := A[4] dst[95:64] := B[4] dst[63:32] := C[4] dst[31:0] := D[4] SHA
immintrin.h
Cryptography
Perform an intermediate calculation for the next four SHA256 message values (unsigned 32-bit integers) using previous message values from "a" and "b", and store the result in "dst". W4 := b[31:0] W3 := a[127:96] W2 := a[95:64] W1 := a[63:32] W0 := a[31:0] dst[127:96] := W3 + sigma0(W4) dst[95:64] := W2 + sigma0(W3) dst[63:32] := W1 + sigma0(W2) dst[31:0] := W0 + sigma0(W1) SHA
immintrin.h
Cryptography
Perform the final calculation for the next four SHA256 message values (unsigned 32-bit integers) using previous message values from "a" and "b", and store the result in "dst"." W14 := b[95:64] W15 := b[127:96] W16 := a[31:0] + sigma1(W14) W17 := a[63:32] + sigma1(W15) W18 := a[95:64] + sigma1(W16) W19 := a[127:96] + sigma1(W17) dst[127:96] := W19 dst[95:64] := W18 dst[63:32] := W17 dst[31:0] := W16 SHA
immintrin.h
Cryptography
Perform 2 rounds of SHA256 operation using an initial SHA256 state (C,D,G,H) from "a", an initial SHA256 state (A,B,E,F) from "b", and a pre-computed sum of the next 2 round message values (unsigned 32-bit integers) and the corresponding round constants from "k", and store the updated SHA256 state (A,B,E,F) in "dst". A[0] := b[127:96] B[0] := b[95:64] C[0] := a[127:96] D[0] := a[95:64] E[0] := b[63:32] F[0] := b[31:0] G[0] := a[63:32] H[0] := a[31:0] W_K[0] := k[31:0] W_K[1] := k[63:32] FOR i := 0 to 1 A[i+1] := Ch(E[i], F[i], G[i]) + sum1(E[i]) + W_K[i] + H[i] + Maj(A[i], B[i], C[i]) + sum0(A[i]) B[i+1] := A[i] C[i+1] := B[i] D[i+1] := C[i] E[i+1] := Ch(E[i], F[i], G[i]) + sum1(E[i]) + W_K[i] + H[i] + D[i] F[i+1] := E[i] G[i+1] := F[i] H[i+1] := G[i] ENDFOR dst[127:96] := A[2] dst[95:64] := B[2] dst[63:32] := E[2] dst[31:0] := F[2] SHA
immintrin.h
Cryptography
This intrinisc is one of the two SHA512 message scheduling instructions. The intrinsic performs an intermediate calculation for the next four SHA512 message qwords. The calculated results are stored in "dst". DEFINE ROR64(qword, n) { count := n % 64 dest := (qword >> count) | (qword << (64 - count)) RETURN dest } DEFINE SHR64(qword, n) { RETURN qword >> n } DEFINE s0(qword) { RETURN ROR64(qword,1) ^ ROR64(qword, 8) ^ SHR64(qword, 7) } W.qword[4] := __B.qword[0] W.qword[3] := __A.qword[3] W.qword[2] := __A.qword[2] W.qword[1] := __A.qword[1] W.qword[0] := __A.qword[0] dst.qword[3] := W.qword[3] + s0(W.qword[4]) dst.qword[2] := W.qword[2] + s0(W.qword[3]) dst.qword[1] := W.qword[1] + s0(W.qword[2]) dst.qword[0] := W.qword[0] + s0(W.qword[1]) SHA512 AVX
immintrin.h
Cryptography
This intrinisc is one of the two SHA512 message scheduling instructions. The intrinsic performs the final calculation for the next four SHA512 message qwords. The calculated results are stored in "dst". DEFINE ROR64(qword, n) { count := n % 64 dest := (qword >> count) | (qword << (64 - count)) RETURN dest } DEFINE SHR64(qword, n) { RETURN qword >> n } DEFINE s1(qword) { RETURN ROR64(qword,19) ^ ROR64(qword, 61) ^ SHR64(qword, 6) } W.qword[14] := __B.qword[2] W.qword[15] := __B.qword[3] W.qword[16] := __A.qword[0] + s1(W.qword[14]) W.qword[17] := __A.qword[1] + s1(W.qword[15]) W.qword[18] := __A.qword[2] + s1(W.qword[16]) W.qword[19] := __A.qword[3] + s1(W.qword[17]) dst.qword[3] := W.qword[19] dst.qword[2] := W.qword[18] dst.qword[1] := W.qword[17] dst.qword[0] := W.qword[16] SHA512 AVX
immintrin.h
Cryptography
This intrinisc performs two rounds of SHA512 operation using initial SHA512 state (C,D,G,H) from "__A", an initial SHA512 state (A,B,E,F) from "__B", and a pre-computed sum of the next two round message qwords and the corresponding round constants from "__C" (only the two lower qwords of the third operand). The updated SHA512 state (A,B,E,F) is written to "dst", and "dst" can be used as the updated state (C,D,G,H) in later rounds. DEFINE ROR64(qword, n) { count := n % 64 dest := (qword >> count) | (qword << (64 - count)) RETURN dest } DEFINE SHR64(qword, n) { RETURN qword >> n } DEFINE cap_sigma0(qword) { RETURN ROR64(qword, 28) ^ ROR64(qword, 34) ^ ROR64(qword, 39) } DEFINE cap_sigma1(qword) { RETURN ROR64(qword, 14) ^ ROR64(qword, 18) ^ ROR64(qword, 41) } DEFINE MAJ(a,b,c) { RETURN (a & b) ^ (a & c) ^ (b & c) } DEFINE CH(a,b,c) { RETURN (a & b) ^ (c & ~a) } A.qword[0] := __B.qword[3] B.qword[0] := __B.qword[2] C.qword[0] := __A.qword[3] D.qword[0] := __A.qword[2] E.qword[0] := __B.qword[1] F.qword[0] := __B.qword[0] G.qword[0] := __A.qword[1] H.qword[0] := __A.qword[0] WK.qword[0]:= __C.qword[0] WK.qword[1]:= __C.qword[1] FOR i := 0 to 1 A.qword[i+1] := CH(E.qword[i], F.qword[i], G.qword[i]) + cap_sigma1(E.qword[i]) + WK.qword[i] + H.qword[i] + MAJ(A.qword[i], B.qword[i], C.qword[i]) + cap_sigma0(A.qword[i]) B.qword[i+1] := A.qword[i] C.qword[i+1] := B.qword[i] D.qword[i+1] := C.qword[i] E.qword[i+1] := CH(E.qword[i], F.qword[i], G.qword[i]) + cap_sigma1(E.qword[i]) + WK.qword[i] + H.qword[i] + D.qword[i] F.qword[i+1] := E.qword[i] G.qword[i+1] := F.qword[i] H.qword[i+1] := G.qword[i] ENDFOR dst.qword[3] := A.qword[2] dst.qword[2] := B.qword[2] dst.qword[1] := E.qword[2] dst.qword[0] := F.qword[2] SHA512 AVX
immintrin.h
Cryptography
The VSM3MSG1 intrinsic is one of the two SM3 message scheduling intrinsics. The intrinsic performs an initial calculation for the next four SM3 message words. The calculated results are stored in "dst". DEFINE ROL32(dword, n) { count := n % 32 dest := (dword << count) | (dword >> (32 - count)) RETURN dest } DEFINE P1(x) { RETURN x ^ ROL32(x, 15) ^ ROL32(x, 23) } W.dword[0] := __C.dword[0] W.dword[1] := __C.dword[1] W.dword[2] := __C.dword[2] W.dword[3] := __C.dword[3] W.dword[7] := __A.dword[0] W.dword[8] := __A.dword[1] W.dword[9] := __A.dword[2] W.dword[10] := __A.dword[3] W.dword[13] := __B.dword[0] W.dword[14] := __B.dword[1] W.dword[15] := __B.dword[2] TMP0 := W.dword[7] ^ W.dword[0] ^ ROL32(W.dword[13], 15) TMP1 := W.dword[8] ^ W.dword[1] ^ ROL32(W.dword[14], 15) TMP2 := W.dword[9] ^ W.dword[2] ^ ROL32(W.dword[15], 15) TMP3 := W.dword[10] ^ W.dword[3] dst.dword[0] := P1(TMP0) dst.dword[1] := P1(TMP1) dst.dword[2] := P1(TMP2) dst.dword[3] := P1(TMP3) SM3 AVX
immintrin.h
Cryptography
The VSM3MSG2 intrinsic is one of the two SM3 message scheduling intrinsics. The intrinsic performs the final calculation for the next four SM3 message words. The calculated results are stored in "dst". DEFINE ROL32(dword, n) { count := n % 32 dest := (dword << count) | (dword >> (32-count)) RETURN dest } WTMP.dword[0] := __A.dword[0] WTMP.dword[1] := __A.dword[1] WTMP.dword[2] := __A.dword[2] WTMP.dword[3] := __A.dword[3] W.dword[3] := __B.dword[0] W.dword[4] := __B.dword[1] W.dword[5] := __B.dword[2] W.dword[6] := __B.dword[3] W.dword[10] := __C.dword[0] W.dword[11] := __C.dword[1] W.dword[12] := __C.dword[2] W.dword[13] := __C.dword[3] W.dword[16] := ROL32(W.dword[3], 7) ^ W.dword[10] ^ WTMP.dword[0] W.dword[17] := ROL32(W.dword[4], 7) ^ W.dword[11] ^ WTMP.dword[1] W.dword[18] := ROL32(W.dword[5], 7) ^ W.dword[12] ^ WTMP.dword[2] W.dword[19] := ROL32(W.dword[6], 7) ^ W.dword[13] ^ WTMP.dword[3] W.dword[19] := W.dword[19] ^ ROL32(W.dword[16], 6) ^ ROL32(W.dword[16], 15) ^ ROL32(W.dword[16], 30) dst.dword[0] := W.dword[16] dst.dword[1] := W.dword[17] dst.dword[2] := W.dword[18] dst.dword[3] := W.dword[19] SM3 AVX
immintrin.h
Cryptography
The intrinsic performs two rounds of SM3 operation using initial SM3 state (C, D, G, H) from "__A", an initial SM3 states (A, B, E, F) from "__B" and a pre-computed words from the "__C". "__A" with initial SM3 state of (C, D, G, H) assumes input of non-rotated left variables from previous state. The updated SM3 state (A, B, E, F) is written to "__A". The "imm8" should contain the even round number for the first of the two rounds computed by this instruction. The computation masks the "imm8" value by ANDing it with 0x3E so that only even round numbers from 0 through 62 are used for this operation. The calculated results are stored in "dst". DEFINE ROL32(dword, n) { count := n % 32 dest := (dword << count) | (dword >> (32-count)) RETURN dest } DEFINE P0(x) { RETURN x ^ ROL32(x, 9) ^ ROL32(x, 17) } DEFINE FF(x, y, z, round) { IF round < 16 RETURN (x ^ y ^ z) ELSE RETURN (x & y) | (x & z) | (y & z) FI } DEFINE GG(x, y, z, round){ IF round < 16 RETURN (x ^ y ^ z) ELSE RETURN (x & y) | (~x & z) FI } A.dword[0] := __B.dword[3] B.dword[0] := __B.dword[2] C.dword[0] := __A.dword[3] D.dword[0] := __A.dword[2] E.dword[0] := __B.dword[1] F.dword[0] := __B.dword[0] G.dword[0] := __A.dword[1] H.dword[0] := __A.dword[0] W.dword[0] := __C.dword[0] W.dword[1] := __C.dword[1] W.dword[4] := __C.dword[2] W.dword[5] := __C.dword[3] C.dword[0] := ROL32(C.dword[0], 9) D.dword[0] := ROL32(D.dword[0], 9) G.dword[0] := ROL32(G.dword[0], 19) H.dword[0] := ROL32(H.dword[0], 19) ROUND := imm8 & 0x3E IF ROUND < 16 CONST.dword[0] := 0x79CC4519 ELSE CONST.dword[0] := 0x7A879D8A FI CONST.dword[0] := ROL32(CONST.dword[0], ROUND) FOR i:= 0 to 1 temp.dword[0] := ROL32(A.dword[i], 12) + E.dword[i] + CONST.dword[0] S1.dword[0] := ROL32(temp.dword[0], 7) S2.dword[0] := S1.dword[0] ^ ROL32(A.dword[i], 12) T1.dword[0] := FF(A.dword[i], B.dword[i], C.dword[i], ROUND) + D.dword[i] + S2.dword[0] + (W.dword[i] ^ W.dword[i+4]) T2.dword[0] := GG(E.dword[i], F.dword[i], G.dword[i], ROUND) + H.dword[i] + S1.dword[0] + W.dword[i] D.dword[i+1] := C.dword[i] C.dword[i+1] := ROL32(B.dword[i], 9) B.dword[i+1] := A.dword[i] A.dword[i+1] := T1.dword[0] H.dword[i+1] := G.dword[i] G.dword[i+1] := ROL32(F.dword[i], 19) F.dword[i+1] := E.dword[i] E.dword[i+1] := P0(T2.dword[0]) CONST.dword[0] := ROL32(CONST.dword[0], 1) ENDFOR dst.dword[3] := A.dword[2] dst.dword[2] := B.dword[2] dst.dword[1] := E.dword[2] dst.dword[0] := F.dword[2] SM3 AVX
immintrin.h
Cryptography
This intrinsic performs four rounds of SM4 key expansion. The intrinsic operates on independent 128-bit lanes. The calculated results are stored in "dst". BYTE sbox[256] = { 0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7, 0x16, 0xB6, 0x14, 0xC2, 0x28, 0xFB, 0x2C, 0x05, 0x2B, 0x67, 0x9A, 0x76, 0x2A, 0xBE, 0x04, 0xC3, 0xAA, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99, 0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF, 0x98, 0x7A, 0x33, 0x54, 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62, 0xE4, 0xB3, 0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95, 0x80, 0xDF, 0x94, 0xFA, 0x75, 0x8F, 0x3F, 0xA6, 0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73, 0x17, 0xBA, 0x83, 0x59, 0x3C, 0x19, 0xE6, 0x85, 0x4F, 0xA8, 0x68, 0x6B, 0x81, 0xB2, 0x71, 0x64, 0xDA, 0x8B, 0xF8, 0xEB, 0x0F, 0x4B, 0x70, 0x56, 0x9D, 0x35, 0x1E, 0x24, 0x0E, 0x5E, 0x63, 0x58, 0xD1, 0xA2, 0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21, 0x78, 0x87, 0xD4, 0x00, 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52, 0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, 0xC8, 0x9E, 0xEA, 0xBF, 0x8A, 0xD2, 0x40, 0xC7, 0x38, 0xB5, 0xA3, 0xF7, 0xF2, 0xCE, 0xF9, 0x61, 0x15, 0xA1, 0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 0x1A, 0x55, 0xAD, 0x93, 0x32, 0x30, 0xF5, 0x8C, 0xB1, 0xE3, 0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60, 0xC0, 0x29, 0x23, 0xAB, 0x0D, 0x53, 0x4E, 0x6F, 0xD5, 0xDB, 0x37, 0x45, 0xDE, 0xFD, 0x8E, 0x2F, 0x03, 0xFF, 0x6A, 0x72, 0x6D, 0x6C, 0x5B, 0x51, 0x8D, 0x1B, 0xAF, 0x92, 0xBB, 0xDD, 0xBC, 0x7F, 0x11, 0xD9, 0x5C, 0x41, 0x1F, 0x10, 0x5A, 0xD8, 0x0A, 0xC1, 0x31, 0x88, 0xA5, 0xCD, 0x7B, 0xBD, 0x2D, 0x74, 0xD0, 0x12, 0xB8, 0xE5, 0xB4, 0xB0, 0x89, 0x69, 0x97, 0x4A, 0x0C, 0x96, 0x77, 0x7E, 0x65, 0xB9, 0xF1, 0x09, 0xC5, 0x6E, 0xC6, 0x84, 0x18, 0xF0, 0x7D, 0xEC, 0x3A, 0xDC, 0x4D, 0x20, 0x79, 0xEE, 0x5F, 0x3E, 0xD7, 0xCB, 0x39, 0x48 } DEFINE ROL32(dword, n) { count := n % 32 dest := (dword << count) | (dword >> (32-count)) RETURN dest } DEFINE SBOX_BYTE(dword, i) { RETURN sbox[dword.byte[i]] } DEFINE lower_t(dword) { tmp.byte[0] := SBOX_BYTE(dword, 0) tmp.byte[1] := SBOX_BYTE(dword, 1) tmp.byte[2] := SBOX_BYTE(dword, 2) tmp.byte[3] := SBOX_BYTE(dword, 3) RETURN tmp } DEFINE L_KEY(dword) { RETURN dword ^ ROL32(dword, 13) ^ ROL32(dword, 23) } DEFINE T_KEY(dword) { RETURN L_KEY(lower_t(dword)) } DEFINE F_KEY(X0, X1, X2, X3, round_key) { RETURN X0 ^ T_KEY(X1 ^ X2 ^ X3 ^ round_key) } FOR i:= 0 to 1 P.dword[0] := __A.dword[4*i] P.dword[1] := __A.dword[4*i+1] P.dword[2] := __A.dword[4*i+2] P.dword[3] := __A.dword[4*i+3] C.dword[0] := F_KEY(P.dword[0], P.dword[1], P.dword[2], P.dword[3], __B.dword[4*i]) C.dword[1] := F_KEY(P.dword[1], P.dword[2], P.dword[3], C.dword[0], __B.dword[4*i+1]) C.dword[2] := F_KEY(P.dword[2], P.dword[3], C.dword[0], C.dword[1], __B.dword[4*i+2]) C.dword[3] := F_KEY(P.dword[3], C.dword[0], C.dword[1], C.dword[2], __B.dword[4*i+3]) dst.dword[4*i] := C.dword[0] dst.dword[4*i+1] := C.dword[1] dst.dword[4*i+2] := C.dword[2] dst.dword[4*i+3] := C.dword[3] ENDFOR dst[MAX:256] := 0 SM4 AVX
immintrin.h
Cryptography
This intrinisc performs four rounds of SM4 encryption. The intrinisc operates on independent 128-bit lanes. The calculated results are stored in "dst". BYTE sbox[256] = { 0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7, 0x16, 0xB6, 0x14, 0xC2, 0x28, 0xFB, 0x2C, 0x05, 0x2B, 0x67, 0x9A, 0x76, 0x2A, 0xBE, 0x04, 0xC3, 0xAA, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99, 0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF, 0x98, 0x7A, 0x33, 0x54, 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62, 0xE4, 0xB3, 0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95, 0x80, 0xDF, 0x94, 0xFA, 0x75, 0x8F, 0x3F, 0xA6, 0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73, 0x17, 0xBA, 0x83, 0x59, 0x3C, 0x19, 0xE6, 0x85, 0x4F, 0xA8, 0x68, 0x6B, 0x81, 0xB2, 0x71, 0x64, 0xDA, 0x8B, 0xF8, 0xEB, 0x0F, 0x4B, 0x70, 0x56, 0x9D, 0x35, 0x1E, 0x24, 0x0E, 0x5E, 0x63, 0x58, 0xD1, 0xA2, 0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21, 0x78, 0x87, 0xD4, 0x00, 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52, 0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, 0xC8, 0x9E, 0xEA, 0xBF, 0x8A, 0xD2, 0x40, 0xC7, 0x38, 0xB5, 0xA3, 0xF7, 0xF2, 0xCE, 0xF9, 0x61, 0x15, 0xA1, 0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 0x1A, 0x55, 0xAD, 0x93, 0x32, 0x30, 0xF5, 0x8C, 0xB1, 0xE3, 0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60, 0xC0, 0x29, 0x23, 0xAB, 0x0D, 0x53, 0x4E, 0x6F, 0xD5, 0xDB, 0x37, 0x45, 0xDE, 0xFD, 0x8E, 0x2F, 0x03, 0xFF, 0x6A, 0x72, 0x6D, 0x6C, 0x5B, 0x51, 0x8D, 0x1B, 0xAF, 0x92, 0xBB, 0xDD, 0xBC, 0x7F, 0x11, 0xD9, 0x5C, 0x41, 0x1F, 0x10, 0x5A, 0xD8, 0x0A, 0xC1, 0x31, 0x88, 0xA5, 0xCD, 0x7B, 0xBD, 0x2D, 0x74, 0xD0, 0x12, 0xB8, 0xE5, 0xB4, 0xB0, 0x89, 0x69, 0x97, 0x4A, 0x0C, 0x96, 0x77, 0x7E, 0x65, 0xB9, 0xF1, 0x09, 0xC5, 0x6E, 0xC6, 0x84, 0x18, 0xF0, 0x7D, 0xEC, 0x3A, 0xDC, 0x4D, 0x20, 0x79, 0xEE, 0x5F, 0x3E, 0xD7, 0xCB, 0x39, 0x48 } DEFINE ROL32(dword, n) { count := n % 32 dest := (dword << count) | (dword >> (32-count)) RETURN dest } DEFINE SBOX_BYTE(dword, i) { RETURN sbox[dword.byte[i]] } DEFINE lower_t(dword) { tmp.byte[0] := SBOX_BYTE(dword, 0) tmp.byte[1] := SBOX_BYTE(dword, 1) tmp.byte[2] := SBOX_BYTE(dword, 2) tmp.byte[3] := SBOX_BYTE(dword, 3) RETURN tmp } DEFINE L_RND(dword) { tmp := dword tmp := tmp ^ ROL32(dword, 2) tmp := tmp ^ ROL32(dword, 10) tmp := tmp ^ ROL32(dword, 18) tmp := tmp ^ ROL32(dword, 24) RETURN tmp } DEFINE T_RND(dword) { RETURN L_RND(lower_t(dword)) } DEFINE F_RND(X0, X1, X2, X3, round_key) { RETURN X0 ^ T_RND(X1 ^ X2 ^ X3 ^ round_key) } FOR i:= 0 to 1 P.dword[0] := __A.dword[4*i] P.dword[1] := __A.dword[4*i+1] P.dword[2] := __A.dword[4*i+2] P.dword[3] := __A.dword[4*i+3] C.dword[0] := F_RND(P.dword[0], P.dword[1], P.dword[2], P.dword[3], __B.dword[4*i]) C.dword[1] := F_RND(P.dword[1], P.dword[2], P.dword[3], C.dword[0], __B.dword[4*i+1]) C.dword[2] := F_RND(P.dword[2], P.dword[3], C.dword[0], C.dword[1], __B.dword[4*i+2]) C.dword[3] := F_RND(P.dword[3], C.dword[0], C.dword[1], C.dword[2], __B.dword[4*i+3]) dst.dword[4*i] := C.dword[0] dst.dword[4*i+1] := C.dword[1] dst.dword[4*i+2] := C.dword[2] dst.dword[4*i+3] := C.dword[3] ENDFOR dst[MAX:256] := 0 SM4 AVX
immintrin.h
Cryptography
This intrinsic performs four rounds of SM4 key expansion. The intrinsic operates on independent 128-bit lanes. The calculated results are stored in "dst". BYTE sbox[256] = { 0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7, 0x16, 0xB6, 0x14, 0xC2, 0x28, 0xFB, 0x2C, 0x05, 0x2B, 0x67, 0x9A, 0x76, 0x2A, 0xBE, 0x04, 0xC3, 0xAA, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99, 0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF, 0x98, 0x7A, 0x33, 0x54, 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62, 0xE4, 0xB3, 0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95, 0x80, 0xDF, 0x94, 0xFA, 0x75, 0x8F, 0x3F, 0xA6, 0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73, 0x17, 0xBA, 0x83, 0x59, 0x3C, 0x19, 0xE6, 0x85, 0x4F, 0xA8, 0x68, 0x6B, 0x81, 0xB2, 0x71, 0x64, 0xDA, 0x8B, 0xF8, 0xEB, 0x0F, 0x4B, 0x70, 0x56, 0x9D, 0x35, 0x1E, 0x24, 0x0E, 0x5E, 0x63, 0x58, 0xD1, 0xA2, 0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21, 0x78, 0x87, 0xD4, 0x00, 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52, 0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, 0xC8, 0x9E, 0xEA, 0xBF, 0x8A, 0xD2, 0x40, 0xC7, 0x38, 0xB5, 0xA3, 0xF7, 0xF2, 0xCE, 0xF9, 0x61, 0x15, 0xA1, 0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 0x1A, 0x55, 0xAD, 0x93, 0x32, 0x30, 0xF5, 0x8C, 0xB1, 0xE3, 0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60, 0xC0, 0x29, 0x23, 0xAB, 0x0D, 0x53, 0x4E, 0x6F, 0xD5, 0xDB, 0x37, 0x45, 0xDE, 0xFD, 0x8E, 0x2F, 0x03, 0xFF, 0x6A, 0x72, 0x6D, 0x6C, 0x5B, 0x51, 0x8D, 0x1B, 0xAF, 0x92, 0xBB, 0xDD, 0xBC, 0x7F, 0x11, 0xD9, 0x5C, 0x41, 0x1F, 0x10, 0x5A, 0xD8, 0x0A, 0xC1, 0x31, 0x88, 0xA5, 0xCD, 0x7B, 0xBD, 0x2D, 0x74, 0xD0, 0x12, 0xB8, 0xE5, 0xB4, 0xB0, 0x89, 0x69, 0x97, 0x4A, 0x0C, 0x96, 0x77, 0x7E, 0x65, 0xB9, 0xF1, 0x09, 0xC5, 0x6E, 0xC6, 0x84, 0x18, 0xF0, 0x7D, 0xEC, 0x3A, 0xDC, 0x4D, 0x20, 0x79, 0xEE, 0x5F, 0x3E, 0xD7, 0xCB, 0x39, 0x48 } DEFINE ROL32(dword, n) { count := n % 32 dest := (dword << count) | (dword >> (32-count)) RETURN dest } DEFINE SBOX_BYTE(dword, i) { RETURN sbox[dword.byte[i]] } DEFINE lower_t(dword) { tmp.byte[0] := SBOX_BYTE(dword, 0) tmp.byte[1] := SBOX_BYTE(dword, 1) tmp.byte[2] := SBOX_BYTE(dword, 2) tmp.byte[3] := SBOX_BYTE(dword, 3) RETURN tmp } DEFINE L_KEY(dword) { RETURN dword ^ ROL32(dword, 13) ^ ROL32(dword, 23) } DEFINE T_KEY(dword) { RETURN L_KEY(lower_t(dword)) } DEFINE F_KEY(X0, X1, X2, X3, round_key) { RETURN X0 ^ T_KEY(X1 ^ X2 ^ X3 ^ round_key) } P.dword[0] := __A.dword[0] P.dword[1] := __A.dword[1] P.dword[2] := __A.dword[2] P.dword[3] := __A.dword[3] C.dword[0] := F_KEY(P.dword[0], P.dword[1], P.dword[2], P.dword[3], __B.dword[0]) C.dword[1] := F_KEY(P.dword[1], P.dword[2], P.dword[3], C.dword[0], __B.dword[1]) C.dword[2] := F_KEY(P.dword[2], P.dword[3], C.dword[0], C.dword[1], __B.dword[2]) C.dword[3] := F_KEY(P.dword[3], C.dword[0], C.dword[1], C.dword[2], __B.dword[3]) dst.dword[0] := C.dword[0] dst.dword[1] := C.dword[1] dst.dword[2] := C.dword[2] dst.dword[3] := C.dword[3] dst[MAX:128] := 0 SM4 AVX
immintrin.h
Cryptography
This intrinisc performs four rounds of SM4 encryption. The intrinisc operates on independent 128-bit lanes. The calculated results are stored in "dst". BYTE sbox[256] = { 0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7, 0x16, 0xB6, 0x14, 0xC2, 0x28, 0xFB, 0x2C, 0x05, 0x2B, 0x67, 0x9A, 0x76, 0x2A, 0xBE, 0x04, 0xC3, 0xAA, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99, 0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF, 0x98, 0x7A, 0x33, 0x54, 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62, 0xE4, 0xB3, 0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95, 0x80, 0xDF, 0x94, 0xFA, 0x75, 0x8F, 0x3F, 0xA6, 0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73, 0x17, 0xBA, 0x83, 0x59, 0x3C, 0x19, 0xE6, 0x85, 0x4F, 0xA8, 0x68, 0x6B, 0x81, 0xB2, 0x71, 0x64, 0xDA, 0x8B, 0xF8, 0xEB, 0x0F, 0x4B, 0x70, 0x56, 0x9D, 0x35, 0x1E, 0x24, 0x0E, 0x5E, 0x63, 0x58, 0xD1, 0xA2, 0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21, 0x78, 0x87, 0xD4, 0x00, 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52, 0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, 0xC8, 0x9E, 0xEA, 0xBF, 0x8A, 0xD2, 0x40, 0xC7, 0x38, 0xB5, 0xA3, 0xF7, 0xF2, 0xCE, 0xF9, 0x61, 0x15, 0xA1, 0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 0x1A, 0x55, 0xAD, 0x93, 0x32, 0x30, 0xF5, 0x8C, 0xB1, 0xE3, 0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60, 0xC0, 0x29, 0x23, 0xAB, 0x0D, 0x53, 0x4E, 0x6F, 0xD5, 0xDB, 0x37, 0x45, 0xDE, 0xFD, 0x8E, 0x2F, 0x03, 0xFF, 0x6A, 0x72, 0x6D, 0x6C, 0x5B, 0x51, 0x8D, 0x1B, 0xAF, 0x92, 0xBB, 0xDD, 0xBC, 0x7F, 0x11, 0xD9, 0x5C, 0x41, 0x1F, 0x10, 0x5A, 0xD8, 0x0A, 0xC1, 0x31, 0x88, 0xA5, 0xCD, 0x7B, 0xBD, 0x2D, 0x74, 0xD0, 0x12, 0xB8, 0xE5, 0xB4, 0xB0, 0x89, 0x69, 0x97, 0x4A, 0x0C, 0x96, 0x77, 0x7E, 0x65, 0xB9, 0xF1, 0x09, 0xC5, 0x6E, 0xC6, 0x84, 0x18, 0xF0, 0x7D, 0xEC, 0x3A, 0xDC, 0x4D, 0x20, 0x79, 0xEE, 0x5F, 0x3E, 0xD7, 0xCB, 0x39, 0x48 } DEFINE ROL32(dword, n) { count := n % 32 dest := (dword << count) | (dword >> (32-count)) RETURN dest } DEFINE SBOX_BYTE(dword, i) { RETURN sbox[dword.byte[i]] } DEFINE lower_t(dword) { tmp.byte[0] := SBOX_BYTE(dword, 0) tmp.byte[1] := SBOX_BYTE(dword, 1) tmp.byte[2] := SBOX_BYTE(dword, 2) tmp.byte[3] := SBOX_BYTE(dword, 3) RETURN tmp } DEFINE L_RND(dword) { tmp := dword tmp := tmp ^ ROL32(dword, 2) tmp := tmp ^ ROL32(dword, 10) tmp := tmp ^ ROL32(dword, 18) tmp := tmp ^ ROL32(dword, 24) RETURN tmp } DEFINE T_RND(dword) { RETURN L_RND(lower_t(dword)) } DEFINE F_RND(X0, X1, X2, X3, round_key) { RETURN X0 ^ T_RND(X1 ^ X2 ^ X3 ^ round_key) } P.dword[0] := __A.dword[0] P.dword[1] := __A.dword[1] P.dword[2] := __A.dword[2] P.dword[3] := __A.dword[3] C.dword[0] := F_RND(P.dword[0], P.dword[1], P.dword[2], P.dword[3], __B.dword[0]) C.dword[1] := F_RND(P.dword[1], P.dword[2], P.dword[3], C.dword[0], __B.dword[1]) C.dword[2] := F_RND(P.dword[2], P.dword[3], C.dword[0], C.dword[1], __B.dword[2]) C.dword[3] := F_RND(P.dword[3], C.dword[0], C.dword[1], C.dword[2], __B.dword[3]) dst.dword[0] := C.dword[0] dst.dword[1] := C.dword[1] dst.dword[2] := C.dword[2] dst.dword[3] := C.dword[3] dst[MAX:128] := 0 SM4 AVX
immintrin.h
Cryptography
Compute the inverse cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := ACOS(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the inverse cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ACOS(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the inverse hyperbolic cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := ACOSH(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the inverse hyperbolic cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ACOSH(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the inverse sine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := ASIN(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the inverse sine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ASIN(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the inverse hyperbolic sine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := ASINH(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the inverse hyperbolic sine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ASINH(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the inverse tangent of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := ATAN(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the inverse tangent of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ATAN(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the inverse tangent of packed double-precision (64-bit) floating-point elements in "a" divided by packed elements in "b", and store the results in "dst" expressed in radians. FOR j := 0 to 1 i := j*64 dst[i+63:i] := ATAN2(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the inverse tangent of packed single-precision (32-bit) floating-point elements in "a" divided by packed elements in "b", and store the results in "dst" expressed in radians. FOR j := 0 to 3 i := j*32 dst[i+31:i] := ATAN2(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the inverse hyperbolic tangent of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := ATANH(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the inverse hyperbolic tangent of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ATANH(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := COS(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := COS(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := COSD(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := COSD(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the hyperbolic cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := COSH(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the hyperbolic cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := COSH(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the length of the hypotenous of a right triangle, with the lengths of the other two sides of the triangle stored as packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := SQRT(POW(a[i+63:i], 2.0) + POW(b[i+63:i], 2.0)) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the length of the hypotenous of a right triangle, with the lengths of the other two sides of the triangle stored as packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := SQRT(POW(a[i+31:i], 2.0) + POW(b[i+31:i], 2.0)) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the sine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := SIN(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the sine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := SIN(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the sine and cosine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, store the sine in "dst", and store the cosine into memory at "mem_addr". FOR j := 0 to 1 i := j*64 dst[i+63:i] := SIN(a[i+63:i]) MEM[mem_addr+i+63:mem_addr+i] := COS(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the sine and cosine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, store the sine in "dst", and store the cosine into memory at "mem_addr". FOR j := 0 to 3 i := j*32 dst[i+31:i] := SIN(a[i+31:i]) MEM[mem_addr+i+31:mem_addr+i] := COS(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the sine of packed double-precision (64-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := SIND(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the sine of packed single-precision (32-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := SIND(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the hyperbolic sine of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := SINH(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the hyperbolic sine of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := SINH(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the tangent of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := TAN(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the tangent of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := TAN(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the tangent of packed double-precision (64-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := TAND(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the tangent of packed single-precision (32-bit) floating-point elements in "a" expressed in degrees, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := TAND(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the hyperbolic tangent of packed double-precision (64-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := TANH(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the hyperbolic tangent of packed single-precision (32-bit) floating-point elements in "a" expressed in radians, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := TANH(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Trigonometry
Compute the cube root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := CubeRoot(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the cube root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := CubeRoot(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the exponential value of "e" raised to the power of packed complex numbers in "a", and store the complex results in "dst". Each complex number is composed of two adjacent single-precision (32-bit) floating-point elements, which defines the complex number "complex = vec.fp32[0] + i * vec.fp32[1]". DEFINE CEXP(a[31:0], b[31:0]) { result[31:0] := POW(FP32(e), a[31:0]) * COS(b[31:0]) result[63:32] := POW(FP32(e), a[31:0]) * SIN(b[31:0]) RETURN result } FOR j := 0 to 1 i := j*64 dst[i+63:i] := CEXP(a[i+31:i], a[i+63:i+32]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the natural logarithm of packed complex numbers in "a", and store the complex results in "dst". Each complex number is composed of two adjacent single-precision (32-bit) floating-point elements, which defines the complex number "complex = vec.fp32[0] + i * vec.fp32[1]". DEFINE CLOG(a[31:0], b[31:0]) { result[31:0] := LOG(SQRT(POW(a, 2.0) + POW(b, 2.0))) result[63:32] := ATAN2(b, a) RETURN result } FOR j := 0 to 1 i := j*64 dst[i+63:i] := CLOG(a[i+31:i], a[i+63:i+32]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the square root of packed complex snumbers in "a", and store the complex results in "dst". Each complex number is composed of two adjacent single-precision (32-bit) floating-point elements, which defines the complex number "complex = vec.fp32[0] + i * vec.fp32[1]". DEFINE CSQRT(a[31:0], b[31:0]) { sign[31:0] := (b < 0.0) ? -FP32(1.0) : FP32(1.0) result[31:0] := SQRT((a + SQRT(POW(a, 2.0) + POW(b, 2.0))) / 2.0) result[63:32] := sign * SQRT((-a + SQRT(POW(a, 2.0) + POW(b, 2.0))) / 2.0) RETURN result } FOR j := 0 to 1 i := j*64 dst[i+63:i] := CSQRT(a[i+31:i], a[i+63:i+32]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the exponential value of "e" raised to the power of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := POW(e, a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the exponential value of "e" raised to the power of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := POW(FP32(e), a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the exponential value of 10 raised to the power of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := POW(10.0, a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the exponential value of 10 raised to the power of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := POW(FP32(10.0), a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the exponential value of 2 raised to the power of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := POW(2.0, a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the exponential value of 2 raised to the power of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := POW(FP32(2.0), a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the exponential value of "e" raised to the power of packed double-precision (64-bit) floating-point elements in "a", subtract one from each element, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := POW(e, a[i+63:i]) - 1.0 ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the exponential value of "e" raised to the power of packed single-precision (32-bit) floating-point elements in "a", subtract one from each element, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := POW(FP32(e), a[i+31:i]) - 1.0 ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the inverse cube root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := InvCubeRoot(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the inverse cube root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := InvCubeRoot(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the inverse square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := InvSQRT(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the inverse square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := InvSQRT(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the natural logarithm of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := LOG(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the natural logarithm of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := LOG(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the base-10 logarithm of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := LOG(a[i+63:i]) / LOG(10.0) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the base-10 logarithm of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := LOG(a[i+31:i]) / LOG(10.0) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the natural logarithm of one plus packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := LOG(1.0 + a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the natural logarithm of one plus packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := LOG(1.0 + a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the base-2 logarithm of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := LOG(a[i+63:i]) / LOG(2.0) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the base-2 logarithm of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := LOG(a[i+31:i]) / LOG(2.0) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Convert the exponent of each packed double-precision (64-bit) floating-point element in "a" to a double-precision floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 1 i := j*64 dst[i+63:i] := ConvertExpFP64(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Convert the exponent of each packed single-precision (32-bit) floating-point element in "a" to a single-precision floating-point number representing the integer exponent, and store the results in "dst". This intrinsic essentially calculates "floor(log2(x))" for each element. FOR j := 0 to 3 i := j*32 dst[i+31:i] := ConvertExpFP32(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the exponential value of packed double-precision (64-bit) floating-point elements in "a" raised by packed elements in "b", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := POW(a[i+63:i], b[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the exponential value of packed single-precision (32-bit) floating-point elements in "a" raised by packed elements in "b", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := POW(a[i+31:i], b[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". Note that this intrinsic is less efficient than "_mm_sqrt_pd". FOR j := 0 to 1 i := j*64 dst[i+63:i] := SQRT(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". Note that this intrinsic is less efficient than "_mm_sqrt_ps". FOR j := 0 to 3 i := j*32 dst[i+31:i] := SQRT(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Elementary Math Functions
Compute the cumulative distribution function of packed double-precision (64-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := CDFNormal(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Probability/Statistics
Compute the cumulative distribution function of packed single-precision (32-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := CDFNormal(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Probability/Statistics
Compute the inverse cumulative distribution function of packed double-precision (64-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := InverseCDFNormal(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Probability/Statistics
Compute the inverse cumulative distribution function of packed single-precision (32-bit) floating-point elements in "a" using the normal distribution, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := InverseCDFNormal(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Probability/Statistics
Compute the error function of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ERF(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Probability/Statistics
Compute the complementary error function of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := 1.0 - ERF(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Probability/Statistics
Compute the complementary error function of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+63:i] := 1.0 - ERF(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Probability/Statistics
Compute the inverse complementary error function of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := 1.0 / (1.0 - ERF(a[i+63:i])) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Probability/Statistics
Compute the inverse complementary error function of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+63:i] := 1.0 / (1.0 - ERF(a[i+31:i])) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Probability/Statistics
Compute the inverse error function of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := 1.0 / ERF(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Probability/Statistics
Compute the inverse error function of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+63:i] := 1.0 / ERF(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Probability/Statistics
Divide packed signed 8-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 15 i := 8*j IF b[i+7:i] == 0 #DE FI dst[i+7:i] := Truncate8(a[i+7:i] / b[i+7:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed signed 16-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 7 i := 16*j IF b[i+15:i] == 0 #DE FI dst[i+15:i] := Truncate16(a[i+15:i] / b[i+15:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed 32-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 3 i := 32*j IF b[i+31:i] == 0 #DE FI dst[i+31:i] := Truncate32(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed signed 64-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 1 i := 64*j IF b[i+63:i] == 0 #DE FI dst[i+63:i] := Truncate64(a[i+63:i] / b[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed unsigned 8-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 15 i := 8*j IF b[i+7:i] == 0 #DE FI dst[i+7:i] := Truncate8(a[i+7:i] / b[i+7:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed unsigned 16-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 7 i := 16*j IF b[i+15:i] == 0 #DE FI dst[i+15:i] := Truncate16(a[i+15:i] / b[i+15:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed unsigned 32-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 3 i := 32*j IF b[i+31:i] == 0 #DE FI dst[i+31:i] := Truncate32(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed unsigned 64-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 1 i := 64*j IF b[i+63:i] == 0 #DE FI dst[i+63:i] := Truncate64(a[i+63:i] / b[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Compute the error function of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := ERF(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed 32-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 3 i := 32*j dst[i+31:i] := TRUNCATE(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed 32-bit integers in "a" by packed elements in "b", store the truncated results in "dst", and store the remainders as packed 32-bit integers into memory at "mem_addr". FOR j := 0 to 3 i := 32*j dst[i+31:i] := TRUNCATE(a[i+31:i] / b[i+31:i]) MEM[mem_addr+i+31:mem_addr+i] := REMAINDER(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed 32-bit integers in "a" by packed elements in "b", and store the remainders as packed 32-bit integers in "dst". FOR j := 0 to 3 i := 32*j dst[i+31:i] := REMAINDER(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed 8-bit integers in "a" by packed elements in "b", and store the remainders as packed 32-bit integers in "dst". FOR j := 0 to 15 i := 8*j dst[i+7:i] := REMAINDER(a[i+7:i] / b[i+7:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed 16-bit integers in "a" by packed elements in "b", and store the remainders as packed 32-bit integers in "dst". FOR j := 0 to 7 i := 16*j dst[i+15:i] := REMAINDER(a[i+15:i] / b[i+15:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed 32-bit integers in "a" by packed elements in "b", and store the remainders as packed 32-bit integers in "dst". FOR j := 0 to 3 i := 32*j dst[i+31:i] := REMAINDER(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed 64-bit integers in "a" by packed elements in "b", and store the remainders as packed 32-bit integers in "dst". FOR j := 0 to 1 i := 64*j dst[i+63:i] := REMAINDER(a[i+63:i] / b[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed unsigned 8-bit integers in "a" by packed elements in "b", and store the remainders as packed unsigned 32-bit integers in "dst". FOR j := 0 to 15 i := 8*j dst[i+7:i] := REMAINDER(a[i+7:i] / b[i+7:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed unsigned 16-bit integers in "a" by packed elements in "b", and store the remainders as packed unsigned 32-bit integers in "dst". FOR j := 0 to 7 i := 16*j dst[i+15:i] := REMAINDER(a[i+15:i] / b[i+15:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed unsigned 32-bit integers in "a" by packed elements in "b", and store the remainders as packed unsigned 32-bit integers in "dst". FOR j := 0 to 3 i := 32*j dst[i+31:i] := REMAINDER(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed unsigned 64-bit integers in "a" by packed elements in "b", and store the remainders as packed unsigned 32-bit integers in "dst". FOR j := 0 to 1 i := 64*j dst[i+63:i] := REMAINDER(a[i+63:i] / b[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed unsigned 32-bit integers in "a" by packed elements in "b", and store the truncated results in "dst". FOR j := 0 to 3 i := 32*j dst[i+31:i] := TRUNCATE(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed unsigned 32-bit integers in "a" by packed elements in "b", store the truncated results in "dst", and store the remainders as packed unsigned 32-bit integers into memory at "mem_addr". FOR j := 0 to 3 i := 32*j dst[i+31:i] := TRUNCATE(a[i+31:i] / b[i+31:i]) MEM[mem_addr+i+31:mem_addr+i] := REMAINDER(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Divide packed unsigned 32-bit integers in "a" by packed elements in "b", and store the remainders as packed unsigned 32-bit integers in "dst". FOR j := 0 to 3 i := 32*j dst[i+31:i] := REMAINDER(a[i+31:i] / b[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Arithmetic
Round the packed double-precision (64-bit) floating-point elements in "a" up to an integer value, and store the results as packed double-precision floating-point elements in "dst". This intrinsic may generate the "roundpd"/"vroundpd" instruction. FOR j := 0 to 1 i := j*64 dst[i+63:i] := CEIL(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Special Math Functions
Round the packed single-precision (32-bit) floating-point elements in "a" up to an integer value, and store the results as packed single-precision floating-point elements in "dst". This intrinsic may generate the "roundps"/"vroundps" instruction. FOR j := 0 to 3 i := j*32 dst[i+31:i] := CEIL(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Special Math Functions
Round the packed double-precision (64-bit) floating-point elements in "a" down to an integer value, and store the results as packed double-precision floating-point elements in "dst". This intrinsic may generate the "roundpd"/"vroundpd" instruction. FOR j := 0 to 1 i := j*64 dst[i+63:i] := FLOOR(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Special Math Functions
Round the packed single-precision (32-bit) floating-point elements in "a" down to an integer value, and store the results as packed single-precision floating-point elements in "dst". This intrinsic may generate the "roundps"/"vroundps" instruction. FOR j := 0 to 3 i := j*32 dst[i+31:i] := FLOOR(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Special Math Functions
Round the packed double-precision (64-bit) floating-point elements in "a" to the nearest integer value, and store the results as packed double-precision floating-point elements in "dst". This intrinsic may generate the "roundpd"/"vroundpd" instruction. FOR j := 0 to 1 i := j*64 dst[i+63:i] := ROUND(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Special Math Functions
Round the packed single-precision (32-bit) floating-point elements in "a" to the nearest integer value, and store the results as packed single-precision floating-point elements in "dst". This intrinsic may generate the "roundps"/"vroundps" instruction. FOR j := 0 to 3 i := j*32 dst[i+31:i] := ROUND(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Special Math Functions
Truncate the packed double-precision (64-bit) floating-point elements in "a", and store the results as packed double-precision floating-point elements in "dst". This intrinsic may generate the "roundpd"/"vroundpd" instruction. FOR j := 0 to 1 i := j*64 dst[i+63:i] := TRUNCATE(a[i+63:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Miscellaneous
Truncate the packed single-precision (32-bit) floating-point elements in "a", and store the results as packed single-precision floating-point elements in "dst". This intrinsic may generate the "roundps"/"vroundps" instruction. FOR j := 0 to 3 i := j*32 dst[i+31:i] := TRUNCATE(a[i+31:i]) ENDFOR dst[MAX:128] := 0 SSE
immintrin.h
Miscellaneous
Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision (32-bit) floating-point elements in "row0", "row1", "row2", and "row3", and store the transposed matrix in these vectors ("row0" now contains column 0, etc.). __m128 tmp3, tmp2, tmp1, tmp0; tmp0 := _mm_unpacklo_ps(row0, row1); tmp2 := _mm_unpacklo_ps(row2, row3); tmp1 := _mm_unpackhi_ps(row0, row1); tmp3 := _mm_unpackhi_ps(row2, row3); row0 := _mm_movelh_ps(tmp0, tmp2); row1 := _mm_movehl_ps(tmp2, tmp0); row2 := _mm_movelh_ps(tmp1, tmp3); row3 := _mm_movehl_ps(tmp3, tmp1); SSE
xmmintrin.h
Swizzle
Extract a 16-bit integer from "a", selected with "imm8", and store the result in the lower element of "dst". dst[15:0] := (a[63:0] >> (imm8[1:0] * 16))[15:0] dst[31:16] := 0 SSE
xmmintrin.h
Swizzle
Extract a 16-bit integer from "a", selected with "imm8", and store the result in the lower element of "dst". dst[15:0] := (a[63:0] >> (imm8[1:0] * 16))[15:0] dst[31:16] := 0 SSE
xmmintrin.h
Swizzle
Copy "a" to "dst", and insert the 16-bit integer "i" into "dst" at the location specified by "imm8". dst[63:0] := a[63:0] sel := imm8[1:0]*16 dst[sel+15:sel] := i[15:0] SSE
xmmintrin.h
Swizzle
Copy "a" to "dst", and insert the 16-bit integer "i" into "dst" at the location specified by "imm8". dst[63:0] := a[63:0] sel := imm8[1:0]*16 dst[sel+15:sel] := i[15:0] SSE
xmmintrin.h
Swizzle
Shuffle 16-bit integers in "a" using the control in "imm8", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[15:0] := src[15:0] 1: tmp[15:0] := src[31:16] 2: tmp[15:0] := src[47:32] 3: tmp[15:0] := src[63:48] ESAC RETURN tmp[15:0] } dst[15:0] := SELECT4(a[63:0], imm8[1:0]) dst[31:16] := SELECT4(a[63:0], imm8[3:2]) dst[47:32] := SELECT4(a[63:0], imm8[5:4]) dst[63:48] := SELECT4(a[63:0], imm8[7:6]) SSE
xmmintrin.h
Swizzle
Shuffle 16-bit integers in "a" using the control in "imm8", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[15:0] := src[15:0] 1: tmp[15:0] := src[31:16] 2: tmp[15:0] := src[47:32] 3: tmp[15:0] := src[63:48] ESAC RETURN tmp[15:0] } dst[15:0] := SELECT4(a[63:0], imm8[1:0]) dst[31:16] := SELECT4(a[63:0], imm8[3:2]) dst[47:32] := SELECT4(a[63:0], imm8[5:4]) dst[63:48] := SELECT4(a[63:0], imm8[7:6]) SSE
xmmintrin.h
Swizzle
Shuffle single-precision (32-bit) floating-point elements in "a" using the control in "imm8", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } dst[31:0] := SELECT4(a[127:0], imm8[1:0]) dst[63:32] := SELECT4(a[127:0], imm8[3:2]) dst[95:64] := SELECT4(b[127:0], imm8[5:4]) dst[127:96] := SELECT4(b[127:0], imm8[7:6]) SSE
xmmintrin.h
Swizzle
Unpack and interleave single-precision (32-bit) floating-point elements from the high half "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[95:64] dst[63:32] := src2[95:64] dst[95:64] := src1[127:96] dst[127:96] := src2[127:96] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_HIGH_DWORDS(a[127:0], b[127:0]) SSE
xmmintrin.h
Swizzle
Unpack and interleave single-precision (32-bit) floating-point elements from the low half of "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[31:0] dst[63:32] := src2[31:0] dst[95:64] := src1[63:32] dst[127:96] := src2[63:32] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_DWORDS(a[127:0], b[127:0]) SSE
xmmintrin.h
Swizzle
Get the unsigned 32-bit value of the MXCSR control and status register. dst[31:0] := MXCSR SSE
immintrin.h
General Support
Set the MXCSR control and status register with the value in unsigned 32-bit integer "a". MXCSR := a[31:0] SSE
immintrin.h
General Support
Macro: Get the exception state bits from the MXCSR control and status register. The exception state may contain any of the following flags: _MM_EXCEPT_INVALID, _MM_EXCEPT_DIV_ZERO, _MM_EXCEPT_DENORM, _MM_EXCEPT_OVERFLOW, _MM_EXCEPT_UNDERFLOW, _MM_EXCEPT_INEXACT dst[31:0] := MXCSR & _MM_EXCEPT_MASK SSE
immintrin.h
General Support
Macro: Set the exception state bits of the MXCSR control and status register to the value in unsigned 32-bit integer "a". The exception state may contain any of the following flags: _MM_EXCEPT_INVALID, _MM_EXCEPT_DIV_ZERO, _MM_EXCEPT_DENORM, _MM_EXCEPT_OVERFLOW, _MM_EXCEPT_UNDERFLOW, _MM_EXCEPT_INEXACT MXCSR := a[31:0] AND ~_MM_EXCEPT_MASK SSE
immintrin.h
General Support
Macro: Get the exception mask bits from the MXCSR control and status register. The exception mask may contain any of the following flags: _MM_MASK_INVALID, _MM_MASK_DIV_ZERO, _MM_MASK_DENORM, _MM_MASK_OVERFLOW, _MM_MASK_UNDERFLOW, _MM_MASK_INEXACT dst[31:0] := MXCSR & _MM_MASK_MASK SSE
immintrin.h
General Support
Macro: Set the exception mask bits of the MXCSR control and status register to the value in unsigned 32-bit integer "a". The exception mask may contain any of the following flags: _MM_MASK_INVALID, _MM_MASK_DIV_ZERO, _MM_MASK_DENORM, _MM_MASK_OVERFLOW, _MM_MASK_UNDERFLOW, _MM_MASK_INEXACT MXCSR := a[31:0] AND ~_MM_MASK_MASK SSE
immintrin.h
General Support
Macro: Get the rounding mode bits from the MXCSR control and status register. The rounding mode may contain any of the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO dst[31:0] := MXCSR & _MM_ROUND_MASK SSE
immintrin.h
General Support
Macro: Set the rounding mode bits of the MXCSR control and status register to the value in unsigned 32-bit integer "a". The rounding mode may contain any of the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO MXCSR := a[31:0] AND ~_MM_ROUND_MASK SSE
immintrin.h
General Support
Macro: Get the flush zero bits from the MXCSR control and status register. The flush zero may contain any of the following flags: _MM_FLUSH_ZERO_ON or _MM_FLUSH_ZERO_OFF dst[31:0] := MXCSR & _MM_FLUSH_MASK SSE
immintrin.h
General Support
Macro: Set the flush zero bits of the MXCSR control and status register to the value in unsigned 32-bit integer "a". The flush zero may contain any of the following flags: _MM_FLUSH_ZERO_ON or _MM_FLUSH_ZERO_OFF MXCSR := a[31:0] AND ~_MM_FLUSH_MASK SSE
immintrin.h
General Support
Fetch the line of data from memory that contains address "p" to a location in the cache hierarchy specified by the locality hint "i", which can be one of:<ul> <li>_MM_HINT_T0 // 3, move data using the T0 hint. The PREFETCHT0 instruction will be generated.</li> <li>_MM_HINT_T1 // 2, move data using the T1 hint. The PREFETCHT1 instruction will be generated.</li> <li>_MM_HINT_T2 // 1, move data using the T2 hint. The PREFETCHT2 instruction will be generated.</li> <li>_MM_HINT_NTA // 0, move data using the non-temporal access (NTA) hint. The PREFETCHNTA instruction will be generated.</li> SSE
immintrin.h
General Support
Perform a serializing operation on all store-to-memory instructions that were issued prior to this instruction. Guarantees that every store instruction that precedes, in program order, is globally visible before any store instruction which follows the fence in program order. SSE
immintrin.h
General Support
Allocate "size" bytes of memory, aligned to the alignment specified in "align", and return a pointer to the allocated memory. "_mm_free" should be used to free memory that is allocated with "_mm_malloc". SSE
immintrin.h
General Support
Free aligned memory that was allocated with "_mm_malloc". SSE
immintrin.h
General Support
Return vector of type __m128 with undefined elements. SSE
immintrin.h
General Support
Compare packed signed 16-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ENDFOR SSE
xmmintrin.h
Special Math Functions
Compare packed signed 16-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ENDFOR SSE
xmmintrin.h
Special Math Functions
Compare packed unsigned 8-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ENDFOR SSE
xmmintrin.h
Special Math Functions
Compare packed unsigned 8-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ENDFOR SSE
xmmintrin.h
Special Math Functions
Compare packed signed 16-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ENDFOR SSE
xmmintrin.h
Special Math Functions
Compare packed signed 16-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ENDFOR SSE
xmmintrin.h
Special Math Functions
Compare packed unsigned 8-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ENDFOR SSE
xmmintrin.h
Special Math Functions
Compare packed unsigned 8-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ENDFOR SSE
xmmintrin.h
Special Math Functions
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b", store the minimum value in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper element of "dst". [min_float_note] dst[31:0] := MIN(a[31:0], b[31:0]) dst[127:32] := a[127:32] SSE
xmmintrin.h
Special Math Functions
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst". [min_float_note] FOR j := 0 to 3 i := j*32 dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ENDFOR SSE
xmmintrin.h
Special Math Functions
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b", store the maximum value in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper element of "dst". [max_float_note] dst[31:0] := MAX(a[31:0], b[31:0]) dst[127:32] := a[127:32] SSE
xmmintrin.h
Special Math Functions
Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst". [max_float_note] FOR j := 0 to 3 i := j*32 dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ENDFOR SSE
xmmintrin.h
Special Math Functions
Multiply the packed unsigned 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst". FOR j := 0 to 3 i := j*16 tmp[31:0] := a[i+15:i] * b[i+15:i] dst[i+15:i] := tmp[31:16] ENDFOR SSE
xmmintrin.h
Arithmetic
Multiply the packed unsigned 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst". FOR j := 0 to 3 i := j*16 tmp[31:0] := a[i+15:i] * b[i+15:i] dst[i+15:i] := tmp[31:16] ENDFOR SSE
xmmintrin.h
Arithmetic
Miscellaneous Compute the absolute differences of packed unsigned 8-bit integers in "a" and "b", then horizontally sum each consecutive 8 differences to produce four unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low 16 bits of "dst". FOR j := 0 to 7 i := j*8 tmp[i+7:i] := ABS(a[i+7:i] - b[i+7:i]) ENDFOR dst[15:0] := tmp[7:0] + tmp[15:8] + tmp[23:16] + tmp[31:24] + tmp[39:32] + tmp[47:40] + tmp[55:48] + tmp[63:56] dst[63:16] := 0 SSE
xmmintrin.h
Arithmetic
Miscellaneous Compute the absolute differences of packed unsigned 8-bit integers in "a" and "b", then horizontally sum each consecutive 8 differences to produce four unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low 16 bits of "dst". FOR j := 0 to 7 i := j*8 tmp[i+7:i] := ABS(a[i+7:i] - b[i+7:i]) ENDFOR dst[15:0] := tmp[7:0] + tmp[15:8] + tmp[23:16] + tmp[31:24] + tmp[39:32] + tmp[47:40] + tmp[55:48] + tmp[63:56] dst[63:16] := 0 SSE
xmmintrin.h
Arithmetic
Add the lower single-precision (32-bit) floating-point element in "a" and "b", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := a[31:0] + b[31:0] dst[127:32] := a[127:32] SSE
xmmintrin.h
Arithmetic
Add packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := a[i+31:i] + b[i+31:i] ENDFOR SSE
xmmintrin.h
Arithmetic
Subtract the lower single-precision (32-bit) floating-point element in "b" from the lower single-precision (32-bit) floating-point element in "a", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := a[31:0] - b[31:0] dst[127:32] := a[127:32] SSE
xmmintrin.h
Arithmetic
Subtract packed single-precision (32-bit) floating-point elements in "b" from packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := a[i+31:i] - b[i+31:i] ENDFOR SSE
xmmintrin.h
Arithmetic
Multiply the lower single-precision (32-bit) floating-point element in "a" and "b", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := a[31:0] * b[31:0] dst[127:32] := a[127:32] SSE
xmmintrin.h
Arithmetic
Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := a[i+31:i] * b[i+31:i] ENDFOR SSE
xmmintrin.h
Arithmetic
Divide the lower single-precision (32-bit) floating-point element in "a" by the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := a[31:0] / b[31:0] dst[127:32] := a[127:32] SSE
xmmintrin.h
Arithmetic
Divide packed single-precision (32-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst". FOR j := 0 to 3 i := 32*j dst[i+31:i] := a[i+31:i] / b[i+31:i] ENDFOR SSE
xmmintrin.h
Arithmetic
Average packed unsigned 8-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 ENDFOR SSE
xmmintrin.h
Probability/Statistics
Average packed unsigned 8-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 ENDFOR SSE
xmmintrin.h
Probability/Statistics
Average packed unsigned 16-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 ENDFOR SSE
xmmintrin.h
Probability/Statistics
Average packed unsigned 16-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 ENDFOR SSE
xmmintrin.h
Probability/Statistics
Convert the signed 32-bit integer "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := Convert_Int32_To_FP32(b[31:0]) dst[127:32] := a[127:32] SSE
xmmintrin.h
Convert
Convert the signed 32-bit integer "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := Convert_Int32_To_FP32(b[31:0]) dst[127:32] := a[127:32] SSE
xmmintrin.h
Convert
Convert the signed 64-bit integer "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := Convert_Int64_To_FP32(b[63:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 SSE
xmmintrin.h
Convert
Convert packed 32-bit integers in "b" to packed single-precision (32-bit) floating-point elements, store the results in the lower 2 elements of "dst", and copy the upper 2 packed elements from "a" to the upper elements of "dst". dst[31:0] := Convert_Int32_To_FP32(b[31:0]) dst[63:32] := Convert_Int32_To_FP32(b[63:32]) dst[95:64] := a[95:64] dst[127:96] := a[127:96] SSE
xmmintrin.h
Convert
Convert packed signed 32-bit integers in "b" to packed single-precision (32-bit) floating-point elements, store the results in the lower 2 elements of "dst", and copy the upper 2 packed elements from "a" to the upper elements of "dst". dst[31:0] := Convert_Int32_To_FP32(b[31:0]) dst[63:32] := Convert_Int32_To_FP32(b[63:32]) dst[95:64] := a[95:64] dst[127:96] := a[127:96] SSE
xmmintrin.h
Convert
Convert packed 16-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 i := j*16 m := j*32 dst[m+31:m] := Convert_Int16_To_FP32(a[i+15:i]) ENDFOR SSE
xmmintrin.h
Convert
Convert packed unsigned 16-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 i := j*16 m := j*32 dst[m+31:m] := Convert_Int16_To_FP32(a[i+15:i]) ENDFOR SSE
xmmintrin.h
Convert
Convert the lower packed 8-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 i := j*8 m := j*32 dst[m+31:m] := Convert_Int8_To_FP32(a[i+7:i]) ENDFOR SSE
xmmintrin.h
Convert
Convert the lower packed unsigned 8-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 i := j*8 m := j*32 dst[m+31:m] := Convert_Int8_To_FP32(a[i+7:i]) ENDFOR SSE
xmmintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed single-precision (32-bit) floating-point elements, store the results in the lower 2 elements of "dst", then covert the packed signed 32-bit integers in "b" to single-precision (32-bit) floating-point element, and store the results in the upper 2 elements of "dst". dst[31:0] := Convert_Int32_To_FP32(a[31:0]) dst[63:32] := Convert_Int32_To_FP32(a[63:32]) dst[95:64] := Convert_Int32_To_FP32(b[31:0]) dst[127:96] := Convert_Int32_To_FP32(b[63:32]) SSE
xmmintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to a 32-bit integer, and store the result in "dst". dst[31:0] := Convert_FP32_To_Int32(a[31:0]) SSE
xmmintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to a 32-bit integer, and store the result in "dst". dst[31:0] := Convert_FP32_To_Int32(a[31:0]) SSE
xmmintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to a 64-bit integer, and store the result in "dst". dst[63:0] := Convert_FP32_To_Int64(a[31:0]) SSE
xmmintrin.h
Convert
Copy the lower single-precision (32-bit) floating-point element of "a" to "dst". dst[31:0] := a[31:0] SSE
xmmintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 1 i := 32*j dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) ENDFOR SSE
xmmintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 1 i := 32*j dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) ENDFOR SSE
xmmintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to a 32-bit integer with truncation, and store the result in "dst". dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0]) SSE
xmmintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to a 32-bit integer with truncation, and store the result in "dst". dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0]) SSE
xmmintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "a" to a 64-bit integer with truncation, and store the result in "dst". dst[63:0] := Convert_FP32_To_Int64_Truncate(a[31:0]) SSE
xmmintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst". FOR j := 0 to 1 i := 32*j dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) ENDFOR SSE
xmmintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst". FOR j := 0 to 1 i := 32*j dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) ENDFOR SSE
xmmintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 16-bit integers, and store the results in "dst". Note: this intrinsic will generate 0x7FFF, rather than 0x8000, for input values between 0x7FFF and 0x7FFFFFFF. FOR j := 0 to 3 i := 16*j k := 32*j IF a[k+31:k] >= FP32(0x7FFF) && a[k+31:k] <= FP32(0x7FFFFFFF) dst[i+15:i] := 0x7FFF ELSE dst[i+15:i] := Convert_FP32_To_Int16(a[k+31:k]) FI ENDFOR SSE
xmmintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 8-bit integers, and store the results in lower 4 elements of "dst". Note: this intrinsic will generate 0x7F, rather than 0x80, for input values between 0x7F and 0x7FFFFFFF. FOR j := 0 to 3 i := 8*j k := 32*j IF a[k+31:k] >= FP32(0x7F) && a[k+31:k] <= FP32(0x7FFFFFFF) dst[i+7:i] := 0x7F ELSE dst[i+7:i] := Convert_FP32_To_Int8(a[k+31:k]) FI ENDFOR SSE
xmmintrin.h
Convert
Store 64-bits of integer data from "a" into memory using a non-temporal memory hint. MEM[mem_addr+63:mem_addr] := a[63:0] SSE
immintrin.h
Store
Conditionally store 8-bit integer elements from "a" into memory using "mask" (elements are not stored when the highest bit is not set in the corresponding element) and a non-temporal memory hint. FOR j := 0 to 7 i := j*8 IF mask[i+7] MEM[mem_addr+i+7:mem_addr+i] := a[i+7:i] FI ENDFOR SSE
immintrin.h
Store
Conditionally store 8-bit integer elements from "a" into memory using "mask" (elements are not stored when the highest bit is not set in the corresponding element). FOR j := 0 to 7 i := j*8 IF mask[i+7] MEM[mem_addr+i+7:mem_addr+i] := a[i+7:i] FI ENDFOR SSE
immintrin.h
Store
Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point elements) from "a" into memory using a non-temporal memory hint. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. MEM[mem_addr+127:mem_addr] := a[127:0] SSE
immintrin.h
Store
Store the upper 2 single-precision (32-bit) floating-point elements from "a" into memory. MEM[mem_addr+31:mem_addr] := a[95:64] MEM[mem_addr+63:mem_addr+32] := a[127:96] SSE
immintrin.h
Store
Store the lower 2 single-precision (32-bit) floating-point elements from "a" into memory. MEM[mem_addr+31:mem_addr] := a[31:0] MEM[mem_addr+63:mem_addr+32] := a[63:32] SSE
immintrin.h
Store
Store the lower single-precision (32-bit) floating-point element from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+31:mem_addr] := a[31:0] SSE
immintrin.h
Store
Store the lower single-precision (32-bit) floating-point element from "a" into 4 contiguous elements in memory. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. MEM[mem_addr+31:mem_addr] := a[31:0] MEM[mem_addr+63:mem_addr+32] := a[31:0] MEM[mem_addr+95:mem_addr+64] := a[31:0] MEM[mem_addr+127:mem_addr+96] := a[31:0] SSE
immintrin.h
Store
Store the lower single-precision (32-bit) floating-point element from "a" into 4 contiguous elements in memory. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. MEM[mem_addr+31:mem_addr] := a[31:0] MEM[mem_addr+63:mem_addr+32] := a[31:0] MEM[mem_addr+95:mem_addr+64] := a[31:0] MEM[mem_addr+127:mem_addr+96] := a[31:0] SSE
immintrin.h
Store
Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point elements) from "a" into memory. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. MEM[mem_addr+127:mem_addr] := a[127:0] SSE
immintrin.h
Store
Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point elements) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+127:mem_addr] := a[127:0] SSE
immintrin.h
Store
Store 4 single-precision (32-bit) floating-point elements from "a" into memory in reverse order. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. MEM[mem_addr+31:mem_addr] := a[127:96] MEM[mem_addr+63:mem_addr+32] := a[95:64] MEM[mem_addr+95:mem_addr+64] := a[63:32] MEM[mem_addr+127:mem_addr+96] := a[31:0] SSE
immintrin.h
Store
Create mask from the most significant bit of each 8-bit element in "a", and store the result in "dst". FOR j := 0 to 7 i := j*8 dst[j] := a[i+7] ENDFOR dst[MAX:8] := 0 SSE
xmmintrin.h
Miscellaneous
Create mask from the most significant bit of each 8-bit element in "a", and store the result in "dst". FOR j := 0 to 7 i := j*8 dst[j] := a[i+7] ENDFOR dst[MAX:8] := 0 SSE
xmmintrin.h
Miscellaneous
Set each bit of mask "dst" based on the most significant bit of the corresponding packed single-precision (32-bit) floating-point element in "a". FOR j := 0 to 3 i := j*32 IF a[i+31] dst[j] := 1 ELSE dst[j] := 0 FI ENDFOR dst[MAX:4] := 0 SSE
xmmintrin.h
Miscellaneous
Compute the square root of the lower single-precision (32-bit) floating-point element in "a", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := SQRT(a[31:0]) dst[127:32] := a[127:32] SSE
xmmintrin.h
Elementary Math Functions
Compute the square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := SQRT(a[i+31:i]) ENDFOR SSE
xmmintrin.h
Elementary Math Functions
Compute the approximate reciprocal of the lower single-precision (32-bit) floating-point element in "a", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". The maximum relative error for this approximation is less than 1.5*2^-12. dst[31:0] := (1.0 / a[31:0]) dst[127:32] := a[127:32] SSE
xmmintrin.h
Elementary Math Functions
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 1.5*2^-12. FOR j := 0 to 3 i := j*32 dst[i+31:i] := (1.0 / a[i+31:i]) ENDFOR SSE
xmmintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of the lower single-precision (32-bit) floating-point element in "a", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". The maximum relative error for this approximation is less than 1.5*2^-12. dst[31:0] := (1.0 / SQRT(a[31:0])) dst[127:32] := a[127:32] SSE
xmmintrin.h
Elementary Math Functions
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 1.5*2^-12. FOR j := 0 to 3 i := j*32 dst[i+31:i] := (1.0 / SQRT(a[i+31:i])) ENDFOR SSE
xmmintrin.h
Elementary Math Functions
Compute the bitwise AND of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := (a[i+31:i] AND b[i+31:i]) ENDFOR SSE
xmmintrin.h
Logical
Compute the bitwise NOT of packed single-precision (32-bit) floating-point elements in "a" and then AND with "b", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ((NOT a[i+31:i]) AND b[i+31:i]) ENDFOR SSE
xmmintrin.h
Logical
Compute the bitwise OR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := a[i+31:i] OR b[i+31:i] ENDFOR SSE
xmmintrin.h
Logical
Compute the bitwise XOR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := a[i+31:i] XOR b[i+31:i] ENDFOR SSE
xmmintrin.h
Logical
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for equality, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := ( a[31:0] == b[31:0] ) ? 0xFFFFFFFF : 0 dst[127:32] := a[127:32] SSE
xmmintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for equality, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ( a[i+31:i] == b[i+31:i] ) ? 0xFFFFFFFF : 0 ENDFOR SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for less-than, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := ( a[31:0] < b[31:0] ) ? 0xFFFFFFFF : 0 dst[127:32] := a[127:32] SSE
xmmintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for less-than, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ( a[i+31:i] < b[i+31:i] ) ? 0xFFFFFFFF : 0 ENDFOR SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for less-than-or-equal, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := ( a[31:0] <= b[31:0] ) ? 0xFFFFFFFF : 0 dst[127:32] := a[127:32] SSE
xmmintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for less-than-or-equal, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ( a[i+31:i] <= b[i+31:i] ) ? 0xFFFFFFFF : 0 ENDFOR SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for greater-than, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := ( a[31:0] > b[31:0] ) ? 0xFFFFFFFF : 0 dst[127:32] := a[127:32] SSE
xmmintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for greater-than, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ( a[i+31:i] > b[i+31:i] ) ? 0xFFFFFFFF : 0 ENDFOR SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for greater-than-or-equal, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := ( a[31:0] >= b[31:0] ) ? 0xFFFFFFFF : 0 dst[127:32] := a[127:32] SSE
xmmintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for greater-than-or-equal, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ( a[i+31:i] >= b[i+31:i] ) ? 0xFFFFFFFF : 0 ENDFOR SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for not-equal, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := ( a[31:0] != b[31:0] ) ? 0xFFFFFFFF : 0 dst[127:32] := a[127:32] SSE
xmmintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for not-equal, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ( a[i+31:i] != b[i+31:i] ) ? 0xFFFFFFFF : 0 ENDFOR SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for not-less-than, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := (!( a[31:0] < b[31:0] )) ? 0xFFFFFFFF : 0 dst[127:32] := a[127:32] SSE
xmmintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for not-less-than, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := !( a[i+31:i] < b[i+31:i] ) ? 0xFFFFFFFF : 0 ENDFOR SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for not-less-than-or-equal, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := (!( a[31:0] <= b[31:0] )) ? 0xFFFFFFFF : 0 dst[127:32] := a[127:32] SSE
xmmintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for not-less-than-or-equal, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := (!( a[i+31:i] <= b[i+31:i] )) ? 0xFFFFFFFF : 0 ENDFOR SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for not-greater-than, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := (!( a[31:0] > b[31:0] )) ? 0xFFFFFFFF : 0 dst[127:32] := a[127:32] SSE
xmmintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for not-greater-than, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := (!( a[i+31:i] > b[i+31:i] )) ? 0xFFFFFFFF : 0 ENDFOR SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for not-greater-than-or-equal, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := (!( a[31:0] >= b[31:0] )) ? 0xFFFFFFFF : 0 dst[127:32] := a[127:32] SSE
xmmintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for not-greater-than-or-equal, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := (!( a[i+31:i] >= b[i+31:i] )) ? 0xFFFFFFFF : 0 ENDFOR SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" to see if neither is NaN, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := ( a[31:0] != NaN AND b[31:0] != NaN ) ? 0xFFFFFFFF : 0 dst[127:32] := a[127:32] SSE
xmmintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" to see if neither is NaN, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ( a[i+31:i] != NaN AND b[i+31:i] != NaN ) ? 0xFFFFFFFF : 0 ENDFOR SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" to see if either is NaN, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := ( a[31:0] == NaN OR b[31:0] == NaN ) ? 0xFFFFFFFF : 0 dst[127:32] := a[127:32] SSE
xmmintrin.h
Compare
Compare packed single-precision (32-bit) floating-point elements in "a" and "b" to see if either is NaN, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ( a[i+31:i] == NaN OR b[i+31:i] == NaN ) ? 0xFFFFFFFF : 0 ENDFOR SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for equality, and return the boolean result (0 or 1). RETURN ( a[31:0] != NaN AND b[31:0] != NaN AND a[31:0] == b[31:0] ) ? 1 : 0 SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for less-than, and return the boolean result (0 or 1). RETURN ( a[31:0] != NaN AND b[31:0] != NaN AND a[31:0] < b[31:0] ) ? 1 : 0 SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for less-than-or-equal, and return the boolean result (0 or 1). RETURN ( a[31:0] != NaN AND b[31:0] != NaN AND a[31:0] <= b[31:0] ) ? 1 : 0 SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for greater-than, and return the boolean result (0 or 1). RETURN ( a[31:0] != NaN AND b[31:0] != NaN AND a[31:0] > b[31:0] ) ? 1 : 0 SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for greater-than-or-equal, and return the boolean result (0 or 1). RETURN ( a[31:0] != NaN AND b[31:0] != NaN AND a[31:0] >= b[31:0] ) ? 1 : 0 SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for not-equal, and return the boolean result (0 or 1). RETURN ( a[31:0] == NaN OR b[31:0] == NaN OR a[31:0] != b[31:0] ) ? 1 : 0 SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for equality, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. RETURN ( a[31:0] != NaN AND b[31:0] != NaN AND a[31:0] == b[31:0] ) ? 1 : 0 SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for less-than, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. RETURN ( a[31:0] != NaN AND b[31:0] != NaN AND a[31:0] < b[31:0] ) ? 1 : 0 SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for less-than-or-equal, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. RETURN ( a[31:0] != NaN AND b[31:0] != NaN AND a[31:0] <= b[31:0] ) ? 1 : 0 SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for greater-than, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. RETURN ( a[31:0] != NaN AND b[31:0] != NaN AND a[31:0] > b[31:0] ) ? 1 : 0 SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for greater-than-or-equal, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. RETURN ( a[31:0] != NaN AND b[31:0] != NaN AND a[31:0] >= b[31:0] ) ? 1 : 0 SSE
xmmintrin.h
Compare
Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for not-equal, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. RETURN ( a[31:0] == NaN OR b[31:0] == NaN OR a[31:0] != b[31:0] ) ? 1 : 0 SSE
xmmintrin.h
Compare
Copy single-precision (32-bit) floating-point element "a" to the lower element of "dst", and zero the upper 3 elements. dst[31:0] := a[31:0] dst[127:32] := 0 SSE
xmmintrin.h
Set
Broadcast single-precision (32-bit) floating-point value "a" to all elements of "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := a[31:0] ENDFOR SSE
xmmintrin.h
Set
Broadcast single-precision (32-bit) floating-point value "a" to all elements of "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := a[31:0] ENDFOR SSE
xmmintrin.h
Set
Set packed single-precision (32-bit) floating-point elements in "dst" with the supplied values. dst[31:0] := e0 dst[63:32] := e1 dst[95:64] := e2 dst[127:96] := e3 SSE
xmmintrin.h
Set
Set packed single-precision (32-bit) floating-point elements in "dst" with the supplied values in reverse order. dst[31:0] := e3 dst[63:32] := e2 dst[95:64] := e1 dst[127:96] := e0 SSE
xmmintrin.h
Set
Return vector of type __m128 with all elements set to zero. dst[MAX:0] := 0 SSE
xmmintrin.h
Set
Load 2 single-precision (32-bit) floating-point elements from memory into the upper 2 elements of "dst", and copy the lower 2 elements from "a" to "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[31:0] := a[31:0] dst[63:32] := a[63:32] dst[95:64] := MEM[mem_addr+31:mem_addr] dst[127:96] := MEM[mem_addr+63:mem_addr+32] SSE
immintrin.h
Load
Load 2 single-precision (32-bit) floating-point elements from memory into the lower 2 elements of "dst", and copy the upper 2 elements from "a" to "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[31:0] := MEM[mem_addr+31:mem_addr] dst[63:32] := MEM[mem_addr+63:mem_addr+32] dst[95:64] := a[95:64] dst[127:96] := a[127:96] SSE
immintrin.h
Load
Load a single-precision (32-bit) floating-point element from memory into the lower of "dst", and zero the upper 3 elements. "mem_addr" does not need to be aligned on any particular boundary. dst[31:0] := MEM[mem_addr+31:mem_addr] dst[127:32] := 0 SSE
immintrin.h
Load
Load a single-precision (32-bit) floating-point element from memory into all elements of "dst". dst[31:0] := MEM[mem_addr+31:mem_addr] dst[63:32] := MEM[mem_addr+31:mem_addr] dst[95:64] := MEM[mem_addr+31:mem_addr] dst[127:96] := MEM[mem_addr+31:mem_addr] SSE
immintrin.h
Load
Load a single-precision (32-bit) floating-point element from memory into all elements of "dst". dst[31:0] := MEM[mem_addr+31:mem_addr] dst[63:32] := MEM[mem_addr+31:mem_addr] dst[95:64] := MEM[mem_addr+31:mem_addr] dst[127:96] := MEM[mem_addr+31:mem_addr] SSE
immintrin.h
Load
Load 128-bits (composed of 4 packed single-precision (32-bit) floating-point elements) from memory into "dst". "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. dst[127:0] := MEM[mem_addr+127:mem_addr] SSE
immintrin.h
Load
Load 128-bits (composed of 4 packed single-precision (32-bit) floating-point elements) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[127:0] := MEM[mem_addr+127:mem_addr] SSE
immintrin.h
Load
Load 4 single-precision (32-bit) floating-point elements from memory into "dst" in reverse order. mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated. dst[31:0] := MEM[mem_addr+127:mem_addr+96] dst[63:32] := MEM[mem_addr+95:mem_addr+64] dst[95:64] := MEM[mem_addr+63:mem_addr+32] dst[127:96] := MEM[mem_addr+31:mem_addr] SSE
immintrin.h
Load
Move the lower single-precision (32-bit) floating-point element from "b" to the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := b[31:0] dst[127:32] := a[127:32] SSE
xmmintrin.h
Move
Move the upper 2 single-precision (32-bit) floating-point elements from "b" to the lower 2 elements of "dst", and copy the upper 2 elements from "a" to the upper 2 elements of "dst". dst[31:0] := b[95:64] dst[63:32] := b[127:96] dst[95:64] := a[95:64] dst[127:96] := a[127:96] SSE
xmmintrin.h
Move
Move the lower 2 single-precision (32-bit) floating-point elements from "b" to the upper 2 elements of "dst", and copy the lower 2 elements from "a" to the lower 2 elements of "dst". dst[31:0] := a[31:0] dst[63:32] := a[63:32] dst[95:64] := b[31:0] dst[127:96] := b[63:32] SSE
xmmintrin.h
Move
Return vector of type __m128d with undefined elements. SSE2
emmintrin.h
General Support
Return vector of type __m128i with undefined elements. SSE2
emmintrin.h
General Support
Provide a hint to the processor that the code sequence is a spin-wait loop. This can help improve the performance and power consumption of spin-wait loops. SSE2
emmintrin.h
General Support
Invalidate and flush the cache line that contains "p" from all levels of the cache hierarchy. SSE2
emmintrin.h
General Support
Perform a serializing operation on all load-from-memory instructions that were issued prior to this instruction. Guarantees that every load instruction that precedes, in program order, is globally visible before any load instruction which follows the fence in program order. SSE2
emmintrin.h
General Support
Perform a serializing operation on all load-from-memory and store-to-memory instructions that were issued prior to this instruction. Guarantees that every memory access that precedes, in program order, the memory fence instruction is globally visible before any memory instruction which follows the fence in program order. SSE2
emmintrin.h
General Support
Load unaligned 64-bit integer from memory into the first element of "dst". dst[63:0] := MEM[mem_addr+63:mem_addr] dst[MAX:64] := 0 SSE2
immintrin.h
Load
Load unaligned 16-bit integer from memory into the first element of "dst". dst[15:0] := MEM[mem_addr+15:mem_addr] dst[MAX:16] := 0 SSE2
immintrin.h
Load
Load unaligned 32-bit integer from memory into the first element of "dst". dst[31:0] := MEM[mem_addr+31:mem_addr] dst[MAX:32] := 0 SSE2
emmintrin.h
Load
Load 64-bit integer from memory into the first element of "dst". dst[63:0] := MEM[mem_addr+63:mem_addr] dst[MAX:64] := 0 SSE2
emmintrin.h
Load
Load 128-bits of integer data from memory into "dst". "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. dst[127:0] := MEM[mem_addr+127:mem_addr] SSE2
emmintrin.h
Load
Load 128-bits of integer data from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[127:0] := MEM[mem_addr+127:mem_addr] SSE2
emmintrin.h
Load
Load 128-bits (composed of 2 packed double-precision (64-bit) floating-point elements) from memory into "dst". "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. dst[127:0] := MEM[mem_addr+127:mem_addr] SSE2
emmintrin.h
Load
Load a double-precision (64-bit) floating-point element from memory into both elements of "dst". dst[63:0] := MEM[mem_addr+63:mem_addr] dst[127:64] := MEM[mem_addr+63:mem_addr] SSE2
emmintrin.h
Load
Load a double-precision (64-bit) floating-point element from memory into both elements of "dst". dst[63:0] := MEM[mem_addr+63:mem_addr] dst[127:64] := MEM[mem_addr+63:mem_addr] SSE2
emmintrin.h
Load
Load 2 double-precision (64-bit) floating-point elements from memory into "dst" in reverse order. mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated. dst[63:0] := MEM[mem_addr+127:mem_addr+64] dst[127:64] := MEM[mem_addr+63:mem_addr] SSE2
emmintrin.h
Load
Load 128-bits (composed of 2 packed double-precision (64-bit) floating-point elements) from memory into "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[127:0] := MEM[mem_addr+127:mem_addr] SSE2
emmintrin.h
Load
Load a double-precision (64-bit) floating-point element from memory into the lower of "dst", and zero the upper element. "mem_addr" does not need to be aligned on any particular boundary. dst[63:0] := MEM[mem_addr+63:mem_addr] dst[127:64] := 0 SSE2
emmintrin.h
Load
Load a double-precision (64-bit) floating-point element from memory into the upper element of "dst", and copy the lower element from "a" to "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[63:0] := a[63:0] dst[127:64] := MEM[mem_addr+63:mem_addr] SSE2
emmintrin.h
Load
Load a double-precision (64-bit) floating-point element from memory into the lower element of "dst", and copy the upper element from "a" to "dst". "mem_addr" does not need to be aligned on any particular boundary. dst[63:0] := MEM[mem_addr+63:mem_addr] dst[127:64] := a[127:64] SSE2
emmintrin.h
Load
Store 16-bit integer from the first element of "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+15:mem_addr] := a[15:0] SSE2
immintrin.h
Store
Store 64-bit integer from the first element of "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+63:mem_addr] := a[63:0] SSE2
immintrin.h
Store
Store 32-bit integer from the first element of "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+31:mem_addr] := a[31:0] SSE2
emmintrin.h
Store
Conditionally store 8-bit integer elements from "a" into memory using "mask" (elements are not stored when the highest bit is not set in the corresponding element) and a non-temporal memory hint. "mem_addr" does not need to be aligned on any particular boundary. FOR j := 0 to 15 i := j*8 IF mask[i+7] MEM[mem_addr+i+7:mem_addr+i] := a[i+7:i] FI ENDFOR SSE2
emmintrin.h
Store
Store 128-bits of integer data from "a" into memory. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. MEM[mem_addr+127:mem_addr] := a[127:0] SSE2
emmintrin.h
Store
Store 128-bits of integer data from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+127:mem_addr] := a[127:0] SSE2
emmintrin.h
Store
Store 64-bit integer from the first element of "a" into memory. MEM[mem_addr+63:mem_addr] := a[63:0] SSE2
emmintrin.h
Store
Store 128-bits of integer data from "a" into memory using a non-temporal memory hint. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. MEM[mem_addr+127:mem_addr] := a[127:0] SSE2
emmintrin.h
Store
Store 32-bit integer "a" into memory using a non-temporal hint to minimize cache pollution. If the cache line containing address "mem_addr" is already in the cache, the cache will be updated. MEM[mem_addr+31:mem_addr] := a[31:0] SSE2
emmintrin.h
Store
Store 64-bit integer "a" into memory using a non-temporal hint to minimize cache pollution. If the cache line containing address "mem_addr" is already in the cache, the cache will be updated. MEM[mem_addr+63:mem_addr] := a[63:0] SSE2
emmintrin.h
Store
Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point elements) from "a" into memory using a non-temporal memory hint. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. MEM[mem_addr+127:mem_addr] := a[127:0] SSE2
emmintrin.h
Store
Store the lower double-precision (64-bit) floating-point element from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+63:mem_addr] := a[63:0] SSE2
emmintrin.h
Store
Store the lower double-precision (64-bit) floating-point element from "a" into 2 contiguous elements in memory. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. MEM[mem_addr+63:mem_addr] := a[63:0] MEM[mem_addr+127:mem_addr+64] := a[63:0] SSE2
emmintrin.h
Store
Store the lower double-precision (64-bit) floating-point element from "a" into 2 contiguous elements in memory. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. MEM[mem_addr+63:mem_addr] := a[63:0] MEM[mem_addr+127:mem_addr+64] := a[63:0] SSE2
emmintrin.h
Store
Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point elements) from "a" into memory. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. MEM[mem_addr+127:mem_addr] := a[127:0] SSE2
emmintrin.h
Store
Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point elements) from "a" into memory. "mem_addr" does not need to be aligned on any particular boundary. MEM[mem_addr+127:mem_addr] := a[127:0] SSE2
emmintrin.h
Store
Store 2 double-precision (64-bit) floating-point elements from "a" into memory in reverse order. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. MEM[mem_addr+63:mem_addr] := a[127:64] MEM[mem_addr+127:mem_addr+64] := a[63:0] SSE2
emmintrin.h
Store
Store the upper double-precision (64-bit) floating-point element from "a" into memory. MEM[mem_addr+63:mem_addr] := a[127:64] SSE2
emmintrin.h
Store
Store the lower double-precision (64-bit) floating-point element from "a" into memory. MEM[mem_addr+63:mem_addr] := a[63:0] SSE2
emmintrin.h
Store
Add packed 8-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 15 i := j*8 dst[i+7:i] := a[i+7:i] + b[i+7:i] ENDFOR SSE2
emmintrin.h
Arithmetic
Add packed 16-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*16 dst[i+15:i] := a[i+15:i] + b[i+15:i] ENDFOR SSE2
emmintrin.h
Arithmetic
Add packed 32-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := a[i+31:i] + b[i+31:i] ENDFOR SSE2
emmintrin.h
Arithmetic
Add 64-bit integers "a" and "b", and store the result in "dst". dst[63:0] := a[63:0] + b[63:0] SSE2
emmintrin.h
Arithmetic
Add packed 64-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := a[i+63:i] + b[i+63:i] ENDFOR SSE2
emmintrin.h
Arithmetic
Add packed signed 8-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 15 i := j*8 dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] ) ENDFOR SSE2
emmintrin.h
Arithmetic
Add packed signed 16-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 7 i := j*16 dst[i+15:i] := Saturate16( a[i+15:i] + b[i+15:i] ) ENDFOR SSE2
emmintrin.h
Arithmetic
Add packed unsigned 8-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 15 i := j*8 dst[i+7:i] := SaturateU8( a[i+7:i] + b[i+7:i] ) ENDFOR SSE2
emmintrin.h
Arithmetic
Add packed unsigned 16-bit integers in "a" and "b" using saturation, and store the results in "dst". FOR j := 0 to 7 i := j*16 dst[i+15:i] := SaturateU16( a[i+15:i] + b[i+15:i] ) ENDFOR SSE2
emmintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Horizontally add adjacent pairs of intermediate 32-bit integers, and pack the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := SignExtend32(a[i+31:i+16]*b[i+31:i+16]) + SignExtend32(a[i+15:i]*b[i+15:i]) ENDFOR SSE2
emmintrin.h
Arithmetic
Multiply the packed signed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst". FOR j := 0 to 7 i := j*16 tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[31:16] ENDFOR SSE2
emmintrin.h
Arithmetic
Multiply the packed unsigned 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the high 16 bits of the intermediate integers in "dst". FOR j := 0 to 7 i := j*16 tmp[31:0] := a[i+15:i] * b[i+15:i] dst[i+15:i] := tmp[31:16] ENDFOR SSE2
emmintrin.h
Arithmetic
Multiply the packed 16-bit integers in "a" and "b", producing intermediate 32-bit integers, and store the low 16 bits of the intermediate integers in "dst". FOR j := 0 to 7 i := j*16 tmp[31:0] := SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i]) dst[i+15:i] := tmp[15:0] ENDFOR SSE2
emmintrin.h
Arithmetic
Multiply the low unsigned 32-bit integers from "a" and "b", and store the unsigned 64-bit result in "dst". dst[63:0] := a[31:0] * b[31:0] SSE2
emmintrin.h
Arithmetic
Multiply the low unsigned 32-bit integers from each packed 64-bit element in "a" and "b", and store the unsigned 64-bit results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := a[i+31:i] * b[i+31:i] ENDFOR SSE2
emmintrin.h
Arithmetic
Miscellaneous Compute the absolute differences of packed unsigned 8-bit integers in "a" and "b", then horizontally sum each consecutive 8 differences to produce two unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low 16 bits of 64-bit elements in "dst". FOR j := 0 to 15 i := j*8 tmp[i+7:i] := ABS(a[i+7:i] - b[i+7:i]) ENDFOR FOR j := 0 to 1 i := j*64 dst[i+15:i] := tmp[i+7:i] + tmp[i+15:i+8] + tmp[i+23:i+16] + tmp[i+31:i+24] + \ tmp[i+39:i+32] + tmp[i+47:i+40] + tmp[i+55:i+48] + tmp[i+63:i+56] dst[i+63:i+16] := 0 ENDFOR SSE2
emmintrin.h
Arithmetic
Subtract packed 8-bit integers in "b" from packed 8-bit integers in "a", and store the results in "dst". FOR j := 0 to 15 i := j*8 dst[i+7:i] := a[i+7:i] - b[i+7:i] ENDFOR SSE2
emmintrin.h
Arithmetic
Subtract packed 16-bit integers in "b" from packed 16-bit integers in "a", and store the results in "dst". FOR j := 0 to 7 i := j*16 dst[i+15:i] := a[i+15:i] - b[i+15:i] ENDFOR SSE2
emmintrin.h
Arithmetic
Subtract packed 32-bit integers in "b" from packed 32-bit integers in "a", and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := a[i+31:i] - b[i+31:i] ENDFOR SSE2
emmintrin.h
Arithmetic
Subtract 64-bit integer "b" from 64-bit integer "a", and store the result in "dst". dst[63:0] := a[63:0] - b[63:0] SSE2
emmintrin.h
Arithmetic
Subtract packed 64-bit integers in "b" from packed 64-bit integers in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := a[i+63:i] - b[i+63:i] ENDFOR SSE2
emmintrin.h
Arithmetic
Subtract packed signed 8-bit integers in "b" from packed 8-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 15 i := j*8 dst[i+7:i] := Saturate8(a[i+7:i] - b[i+7:i]) ENDFOR SSE2
emmintrin.h
Arithmetic
Subtract packed signed 16-bit integers in "b" from packed 16-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 7 i := j*16 dst[i+15:i] := Saturate16(a[i+15:i] - b[i+15:i]) ENDFOR SSE2
emmintrin.h
Arithmetic
Subtract packed unsigned 8-bit integers in "b" from packed unsigned 8-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 15 i := j*8 dst[i+7:i] := SaturateU8(a[i+7:i] - b[i+7:i]) ENDFOR SSE2
emmintrin.h
Arithmetic
Subtract packed unsigned 16-bit integers in "b" from packed unsigned 16-bit integers in "a" using saturation, and store the results in "dst". FOR j := 0 to 7 i := j*16 dst[i+15:i] := SaturateU16(a[i+15:i] - b[i+15:i]) ENDFOR SSE2
emmintrin.h
Arithmetic
Add the lower double-precision (64-bit) floating-point element in "a" and "b", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := a[63:0] + b[63:0] dst[127:64] := a[127:64] SSE2
emmintrin.h
Arithmetic
Add packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := a[i+63:i] + b[i+63:i] ENDFOR SSE2
emmintrin.h
Arithmetic
Divide the lower double-precision (64-bit) floating-point element in "a" by the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := a[63:0] / b[63:0] dst[127:64] := a[127:64] SSE2
emmintrin.h
Arithmetic
Divide packed double-precision (64-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst". FOR j := 0 to 1 i := 64*j dst[i+63:i] := a[i+63:i] / b[i+63:i] ENDFOR SSE2
emmintrin.h
Arithmetic
Multiply the lower double-precision (64-bit) floating-point element in "a" and "b", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := a[63:0] * b[63:0] dst[127:64] := a[127:64] SSE2
emmintrin.h
Arithmetic
Multiply packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := a[i+63:i] * b[i+63:i] ENDFOR SSE2
emmintrin.h
Arithmetic
Subtract the lower double-precision (64-bit) floating-point element in "b" from the lower double-precision (64-bit) floating-point element in "a", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := a[63:0] - b[63:0] dst[127:64] := a[127:64] SSE2
emmintrin.h
Arithmetic
Subtract packed double-precision (64-bit) floating-point elements in "b" from packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := a[i+63:i] - b[i+63:i] ENDFOR SSE2
emmintrin.h
Arithmetic
Average packed unsigned 8-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 15 i := j*8 dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 ENDFOR SSE2
emmintrin.h
Probability/Statistics
Average packed unsigned 16-bit integers in "a" and "b", and store the results in "dst". FOR j := 0 to 7 i := j*16 dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 ENDFOR SSE2
emmintrin.h
Probability/Statistics
Compare packed signed 16-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 7 i := j*16 dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ENDFOR SSE2
emmintrin.h
Special Math Functions
Compare packed unsigned 8-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 15 i := j*8 dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ENDFOR SSE2
emmintrin.h
Special Math Functions
Compare packed signed 16-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 7 i := j*16 dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ENDFOR SSE2
emmintrin.h
Special Math Functions
Compare packed unsigned 8-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 15 i := j*8 dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ENDFOR SSE2
emmintrin.h
Special Math Functions
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b", store the maximum value in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [max_float_note] dst[63:0] := MAX(a[63:0], b[63:0]) dst[127:64] := a[127:64] SSE2
emmintrin.h
Special Math Functions
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst". [max_float_note] FOR j := 0 to 1 i := j*64 dst[i+63:i] := MAX(a[i+63:i], b[i+63:i]) ENDFOR SSE2
emmintrin.h
Special Math Functions
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b", store the minimum value in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [min_float_note] dst[63:0] := MIN(a[63:0], b[63:0]) dst[127:64] := a[127:64] SSE2
emmintrin.h
Special Math Functions
Compare packed double-precision (64-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst". [min_float_note] FOR j := 0 to 1 i := j*64 dst[i+63:i] := MIN(a[i+63:i], b[i+63:i]) ENDFOR SSE2
emmintrin.h
Special Math Functions
Shift "a" left by "imm8" bytes while shifting in zeros, and store the results in "dst". tmp := imm8[7:0] IF tmp > 15 tmp := 16 FI dst[127:0] := a[127:0] << (tmp*8) SSE2
emmintrin.h
Shift
Shift "a" left by "imm8" bytes while shifting in zeros, and store the results in "dst". tmp := imm8[7:0] IF tmp > 15 tmp := 16 FI dst[127:0] := a[127:0] << (tmp*8) SSE2
emmintrin.h
Shift
Shift "a" right by "imm8" bytes while shifting in zeros, and store the results in "dst". tmp := imm8[7:0] IF tmp > 15 tmp := 16 FI dst[127:0] := a[127:0] >> (tmp*8) SSE2
emmintrin.h
Shift
Shift packed 16-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 7 i := j*16 IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << imm8[7:0]) FI ENDFOR SSE2
emmintrin.h
Shift
Shift packed 16-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 7 i := j*16 IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[63:0]) FI ENDFOR SSE2
emmintrin.h
Shift
Shift packed 32-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*32 IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << imm8[7:0]) FI ENDFOR SSE2
emmintrin.h
Shift
Shift packed 32-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*32 IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[63:0]) FI ENDFOR SSE2
emmintrin.h
Shift
Shift packed 64-bit integers in "a" left by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 1 i := j*64 IF imm8[7:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] << imm8[7:0]) FI ENDFOR SSE2
emmintrin.h
Shift
Shift packed 64-bit integers in "a" left by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 1 i := j*64 IF count[63:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[63:0]) FI ENDFOR SSE2
emmintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 7 i := j*16 IF imm8[7:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> imm8[7:0]) FI ENDFOR SSE2
emmintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 7 i := j*16 IF count[63:0] > 15 dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) ELSE dst[i+15:i] := SignExtend16(a[i+15:i] >> count[63:0]) FI ENDFOR SSE2
emmintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 3 i := j*32 IF imm8[7:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0]) FI ENDFOR SSE2
emmintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in sign bits, and store the results in "dst". FOR j := 0 to 3 i := j*32 IF count[63:0] > 31 dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) ELSE dst[i+31:i] := SignExtend32(a[i+31:i] >> count[63:0]) FI ENDFOR SSE2
emmintrin.h
Shift
Shift "a" right by "imm8" bytes while shifting in zeros, and store the results in "dst". tmp := imm8[7:0] IF tmp > 15 tmp := 16 FI dst[127:0] := a[127:0] >> (tmp*8) SSE2
emmintrin.h
Shift
Shift packed 16-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 7 i := j*16 IF imm8[7:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0]) FI ENDFOR SSE2
emmintrin.h
Shift
Shift packed 16-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 7 i := j*16 IF count[63:0] > 15 dst[i+15:i] := 0 ELSE dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[63:0]) FI ENDFOR SSE2
emmintrin.h
Shift
Shift packed 32-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*32 IF imm8[7:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0]) FI ENDFOR SSE2
emmintrin.h
Shift
Shift packed 32-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 3 i := j*32 IF count[63:0] > 31 dst[i+31:i] := 0 ELSE dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[63:0]) FI ENDFOR SSE2
emmintrin.h
Shift
Shift packed 64-bit integers in "a" right by "imm8" while shifting in zeros, and store the results in "dst". FOR j := 0 to 1 i := j*64 IF imm8[7:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0]) FI ENDFOR SSE2
emmintrin.h
Shift
Shift packed 64-bit integers in "a" right by "count" while shifting in zeros, and store the results in "dst". FOR j := 0 to 1 i := j*64 IF count[63:0] > 63 dst[i+63:i] := 0 ELSE dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[63:0]) FI ENDFOR SSE2
emmintrin.h
Shift
Compute the bitwise AND of 128 bits (representing integer data) in "a" and "b", and store the result in "dst". dst[127:0] := (a[127:0] AND b[127:0]) SSE2
emmintrin.h
Logical
Compute the bitwise NOT of 128 bits (representing integer data) in "a" and then AND with "b", and store the result in "dst". dst[127:0] := ((NOT a[127:0]) AND b[127:0]) SSE2
emmintrin.h
Logical
Compute the bitwise OR of 128 bits (representing integer data) in "a" and "b", and store the result in "dst". dst[127:0] := (a[127:0] OR b[127:0]) SSE2
emmintrin.h
Logical
Compute the bitwise XOR of 128 bits (representing integer data) in "a" and "b", and store the result in "dst". dst[127:0] := (a[127:0] XOR b[127:0]) SSE2
emmintrin.h
Logical
Compute the bitwise AND of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := (a[i+63:i] AND b[i+63:i]) ENDFOR SSE2
emmintrin.h
Logical
Compute the bitwise NOT of packed double-precision (64-bit) floating-point elements in "a" and then AND with "b", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) ENDFOR SSE2
emmintrin.h
Logical
Compute the bitwise OR of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := a[i+63:i] OR b[i+63:i] ENDFOR SSE2
emmintrin.h
Logical
Compute the bitwise XOR of packed double-precision (64-bit) floating-point elements in "a" and "b", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := a[i+63:i] XOR b[i+63:i] ENDFOR SSE2
emmintrin.h
Logical
Compare packed 8-bit integers in "a" and "b" for equality, and store the results in "dst". FOR j := 0 to 15 i := j*8 dst[i+7:i] := ( a[i+7:i] == b[i+7:i] ) ? 0xFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare packed 16-bit integers in "a" and "b" for equality, and store the results in "dst". FOR j := 0 to 7 i := j*16 dst[i+15:i] := ( a[i+15:i] == b[i+15:i] ) ? 0xFFFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare packed 32-bit integers in "a" and "b" for equality, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ( a[i+31:i] == b[i+31:i] ) ? 0xFFFFFFFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for greater-than, and store the results in "dst". FOR j := 0 to 15 i := j*8 dst[i+7:i] := ( a[i+7:i] > b[i+7:i] ) ? 0xFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for greater-than, and store the results in "dst". FOR j := 0 to 7 i := j*16 dst[i+15:i] := ( a[i+15:i] > b[i+15:i] ) ? 0xFFFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for greater-than, and store the results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ( a[i+31:i] > b[i+31:i] ) ? 0xFFFFFFFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare packed signed 8-bit integers in "a" and "b" for less-than, and store the results in "dst". Note: This intrinsic emits the pcmpgtb instruction with the order of the operands switched. FOR j := 0 to 15 i := j*8 dst[i+7:i] := ( a[i+7:i] < b[i+7:i] ) ? 0xFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare packed signed 16-bit integers in "a" and "b" for less-than, and store the results in "dst". Note: This intrinsic emits the pcmpgtw instruction with the order of the operands switched. FOR j := 0 to 7 i := j*16 dst[i+15:i] := ( a[i+15:i] < b[i+15:i] ) ? 0xFFFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare packed signed 32-bit integers in "a" and "b" for less-than, and store the results in "dst". Note: This intrinsic emits the pcmpgtd instruction with the order of the operands switched. FOR j := 0 to 3 i := j*32 dst[i+31:i] := ( a[i+31:i] < b[i+31:i] ) ? 0xFFFFFFFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b" for equality, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := (a[63:0] == b[63:0]) ? 0xFFFFFFFFFFFFFFFF : 0 dst[127:64] := a[127:64] SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b" for less-than, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := (a[63:0] < b[63:0]) ? 0xFFFFFFFFFFFFFFFF : 0 dst[127:64] := a[127:64] SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b" for less-than-or-equal, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := (a[63:0] <= b[63:0]) ? 0xFFFFFFFFFFFFFFFF : 0 dst[127:64] := a[127:64] SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b" for greater-than, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := (a[63:0] > b[63:0]) ? 0xFFFFFFFFFFFFFFFF : 0 dst[127:64] := a[127:64] SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b" for greater-than-or-equal, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := (a[63:0] >= b[63:0]) ? 0xFFFFFFFFFFFFFFFF : 0 dst[127:64] := a[127:64] SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b" to see if neither is NaN, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := (a[63:0] != NaN AND b[63:0] != NaN) ? 0xFFFFFFFFFFFFFFFF : 0 dst[127:64] := a[127:64] SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b" to see if either is NaN, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := (a[63:0] == NaN OR b[63:0] == NaN) ? 0xFFFFFFFFFFFFFFFF : 0 dst[127:64] := a[127:64] SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b" for not-equal, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := (a[63:0] != b[63:0]) ? 0xFFFFFFFFFFFFFFFF : 0 dst[127:64] := a[127:64] SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b" for not-less-than, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := (!(a[63:0] < b[63:0])) ? 0xFFFFFFFFFFFFFFFF : 0 dst[127:64] := a[127:64] SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b" for not-less-than-or-equal, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := (!(a[63:0] <= b[63:0])) ? 0xFFFFFFFFFFFFFFFF : 0 dst[127:64] := a[127:64] SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b" for not-greater-than, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := (!(a[63:0] > b[63:0])) ? 0xFFFFFFFFFFFFFFFF : 0 dst[127:64] := a[127:64] SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point elements in "a" and "b" for not-greater-than-or-equal, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := (!(a[63:0] >= b[63:0])) ? 0xFFFFFFFFFFFFFFFF : 0 dst[127:64] := a[127:64] SSE2
emmintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for equality, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := (a[i+63:i] == b[i+63:i]) ? 0xFFFFFFFFFFFFFFFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for less-than, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := (a[i+63:i] < b[i+63:i]) ? 0xFFFFFFFFFFFFFFFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for less-than-or-equal, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := (a[i+63:i] <= b[i+63:i]) ? 0xFFFFFFFFFFFFFFFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for greater-than, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := (a[i+63:i] > b[i+63:i]) ? 0xFFFFFFFFFFFFFFFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for greater-than-or-equal, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := (a[i+63:i] >= b[i+63:i]) ? 0xFFFFFFFFFFFFFFFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" to see if neither is NaN, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := (a[i+63:i] != NaN AND b[i+63:i] != NaN) ? 0xFFFFFFFFFFFFFFFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" to see if either is NaN, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := (a[i+63:i] == NaN OR b[i+63:i] == NaN) ? 0xFFFFFFFFFFFFFFFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for not-equal, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := (a[i+63:i] != b[i+63:i]) ? 0xFFFFFFFFFFFFFFFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for not-less-than, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := (!(a[i+63:i] < b[i+63:i])) ? 0xFFFFFFFFFFFFFFFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for not-less-than-or-equal, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := (!(a[i+63:i] <= b[i+63:i])) ? 0xFFFFFFFFFFFFFFFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for not-greater-than, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := (!(a[i+63:i] > b[i+63:i])) ? 0xFFFFFFFFFFFFFFFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare packed double-precision (64-bit) floating-point elements in "a" and "b" for not-greater-than-or-equal, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := (!(a[i+63:i] >= b[i+63:i])) ? 0xFFFFFFFFFFFFFFFF : 0 ENDFOR SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point element in "a" and "b" for equality, and return the boolean result (0 or 1). RETURN ( a[63:0] != NaN AND b[63:0] != NaN AND a[63:0] == b[63:0] ) ? 1 : 0 SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point element in "a" and "b" for less-than, and return the boolean result (0 or 1). RETURN ( a[63:0] != NaN AND b[63:0] != NaN AND a[63:0] < b[63:0] ) ? 1 : 0 SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point element in "a" and "b" for less-than-or-equal, and return the boolean result (0 or 1). RETURN ( a[63:0] != NaN AND b[63:0] != NaN AND a[63:0] <= b[63:0] ) ? 1 : 0 SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point element in "a" and "b" for greater-than, and return the boolean result (0 or 1). RETURN ( a[63:0] != NaN AND b[63:0] != NaN AND a[63:0] > b[63:0] ) ? 1 : 0 SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point element in "a" and "b" for greater-than-or-equal, and return the boolean result (0 or 1). RETURN ( a[63:0] != NaN AND b[63:0] != NaN AND a[63:0] >= b[63:0] ) ? 1 : 0 SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point element in "a" and "b" for not-equal, and return the boolean result (0 or 1). RETURN ( a[63:0] == NaN OR b[63:0] == NaN OR a[63:0] != b[63:0] ) ? 1 : 0 SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point element in "a" and "b" for equality, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. RETURN ( a[63:0] != NaN AND b[63:0] != NaN AND a[63:0] == b[63:0] ) ? 1 : 0 SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point element in "a" and "b" for less-than, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. RETURN ( a[63:0] != NaN AND b[63:0] != NaN AND a[63:0] < b[63:0] ) ? 1 : 0 SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point element in "a" and "b" for less-than-or-equal, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. RETURN ( a[63:0] != NaN AND b[63:0] != NaN AND a[63:0] <= b[63:0] ) ? 1 : 0 SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point element in "a" and "b" for greater-than, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. RETURN ( a[63:0] != NaN AND b[63:0] != NaN AND a[63:0] > b[63:0] ) ? 1 : 0 SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point element in "a" and "b" for greater-than-or-equal, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. RETURN ( a[63:0] != NaN AND b[63:0] != NaN AND a[63:0] >= b[63:0] ) ? 1 : 0 SSE2
emmintrin.h
Compare
Compare the lower double-precision (64-bit) floating-point element in "a" and "b" for not-equal, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. RETURN ( a[63:0] == NaN OR b[63:0] == NaN OR a[63:0] != b[63:0] ) ? 1 : 0 SSE2
emmintrin.h
Compare
Convert packed signed 32-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 1 i := j*32 m := j*64 dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) ENDFOR SSE2
emmintrin.h
Convert
Convert the signed 32-bit integer "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := Convert_Int32_To_FP64(b[31:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 SSE2
emmintrin.h
Convert
Convert the signed 64-bit integer "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := Convert_Int64_To_FP64(b[63:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 SSE2
emmintrin.h
Convert
Convert the signed 64-bit integer "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := Convert_Int64_To_FP64(b[63:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 SSE2
emmintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 3 i := 32*j dst[i+31:i] := Convert_Int32_To_FP32(a[i+31:i]) ENDFOR SSE2
emmintrin.h
Convert
Convert packed signed 32-bit integers in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 1 i := j*32 m := j*64 dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) ENDFOR SSE2
emmintrin.h
Convert
Copy 32-bit integer "a" to the lower elements of "dst", and zero the upper elements of "dst". dst[31:0] := a[31:0] dst[127:32] := 0 SSE2
emmintrin.h
Convert
Copy 64-bit integer "a" to the lower element of "dst", and zero the upper element. dst[63:0] := a[63:0] dst[127:64] := 0 SSE2
emmintrin.h
Convert
Copy 64-bit integer "a" to the lower element of "dst", and zero the upper element. dst[63:0] := a[63:0] dst[127:64] := 0 SSE2
emmintrin.h
Convert
Copy the lower 32-bit integer in "a" to "dst". dst[31:0] := a[31:0] SSE2
emmintrin.h
Convert
Copy the lower 64-bit integer in "a" to "dst". dst[63:0] := a[63:0] SSE2
emmintrin.h
Convert
Copy the lower 64-bit integer in "a" to "dst". dst[63:0] := a[63:0] SSE2
emmintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed single-precision (32-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 1 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_FP32(a[k+63:k]) ENDFOR dst[127:64] := 0 SSE2
emmintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed double-precision (64-bit) floating-point elements, and store the results in "dst". FOR j := 0 to 1 i := 64*j k := 32*j dst[i+63:i] := Convert_FP32_To_FP64(a[k+31:k]) ENDFOR SSE2
emmintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 1 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k]) ENDFOR SSE2
emmintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to a 32-bit integer, and store the result in "dst". dst[31:0] := Convert_FP64_To_Int32(a[63:0]) SSE2
emmintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to a 64-bit integer, and store the result in "dst". dst[63:0] := Convert_FP64_To_Int64(a[63:0]) SSE2
emmintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to a 64-bit integer, and store the result in "dst". dst[63:0] := Convert_FP64_To_Int64(a[63:0]) SSE2
emmintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := Convert_FP64_To_FP32(b[63:0]) dst[127:32] := a[127:32] dst[MAX:128] := 0 SSE2
emmintrin.h
Convert
Copy the lower double-precision (64-bit) floating-point element of "a" to "dst". dst[63:0] := a[63:0] SSE2
emmintrin.h
Convert
Convert the lower single-precision (32-bit) floating-point element in "b" to a double-precision (64-bit) floating-point element, store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := Convert_FP32_To_FP64(b[31:0]) dst[127:64] := a[127:64] dst[MAX:128] := 0 SSE2
emmintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst". FOR j := 0 to 1 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_Int32_Truncate(a[k+63:k]) ENDFOR SSE2
emmintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to a 32-bit integer with truncation, and store the result in "dst". dst[31:0] := Convert_FP64_To_Int32_Truncate(a[63:0]) SSE2
emmintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to a 64-bit integer with truncation, and store the result in "dst". dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0]) SSE2
emmintrin.h
Convert
Convert the lower double-precision (64-bit) floating-point element in "a" to a 64-bit integer with truncation, and store the result in "dst". dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0]) SSE2
emmintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 3 i := 32*j dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) ENDFOR SSE2
emmintrin.h
Convert
Convert packed single-precision (32-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst". FOR j := 0 to 3 i := 32*j dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) ENDFOR SSE2
emmintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 1 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k]) ENDFOR SSE2
emmintrin.h
Convert
Convert packed double-precision (64-bit) floating-point elements in "a" to packed 32-bit integers with truncation, and store the results in "dst". FOR j := 0 to 1 i := 32*j k := 64*j dst[i+31:i] := Convert_FP64_To_Int32_Truncate(a[k+63:k]) ENDFOR SSE2
emmintrin.h
Convert
Set packed 64-bit integers in "dst" with the supplied values. dst[63:0] := e0 dst[127:64] := e1 SSE2
emmintrin.h
Set
Set packed 64-bit integers in "dst" with the supplied values. dst[63:0] := e0 dst[127:64] := e1 SSE2
emmintrin.h
Set
Set packed 32-bit integers in "dst" with the supplied values. dst[31:0] := e0 dst[63:32] := e1 dst[95:64] := e2 dst[127:96] := e3 SSE2
emmintrin.h
Set
Set packed 16-bit integers in "dst" with the supplied values. dst[15:0] := e0 dst[31:16] := e1 dst[47:32] := e2 dst[63:48] := e3 dst[79:64] := e4 dst[95:80] := e5 dst[111:96] := e6 dst[127:112] := e7 SSE2
emmintrin.h
Set
Set packed 8-bit integers in "dst" with the supplied values. dst[7:0] := e0 dst[15:8] := e1 dst[23:16] := e2 dst[31:24] := e3 dst[39:32] := e4 dst[47:40] := e5 dst[55:48] := e6 dst[63:56] := e7 dst[71:64] := e8 dst[79:72] := e9 dst[87:80] := e10 dst[95:88] := e11 dst[103:96] := e12 dst[111:104] := e13 dst[119:112] := e14 dst[127:120] := e15 SSE2
emmintrin.h
Set
Broadcast 64-bit integer "a" to all elements of "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := a[63:0] ENDFOR SSE2
emmintrin.h
Set
Broadcast 64-bit integer "a" to all elements of "dst". This intrinsic may generate the "vpbroadcastq". FOR j := 0 to 1 i := j*64 dst[i+63:i] := a[63:0] ENDFOR SSE2
emmintrin.h
Set
Broadcast 32-bit integer "a" to all elements of "dst". This intrinsic may generate "vpbroadcastd". FOR j := 0 to 3 i := j*32 dst[i+31:i] := a[31:0] ENDFOR SSE2
emmintrin.h
Set
Broadcast 16-bit integer "a" to all all elements of "dst". This intrinsic may generate "vpbroadcastw". FOR j := 0 to 7 i := j*16 dst[i+15:i] := a[15:0] ENDFOR SSE2
emmintrin.h
Set
Broadcast 8-bit integer "a" to all elements of "dst". This intrinsic may generate "vpbroadcastb". FOR j := 0 to 15 i := j*8 dst[i+7:i] := a[7:0] ENDFOR SSE2
emmintrin.h
Set
Set packed 64-bit integers in "dst" with the supplied values in reverse order. dst[63:0] := e1 dst[127:64] := e0 SSE2
emmintrin.h
Set
Set packed 32-bit integers in "dst" with the supplied values in reverse order. dst[31:0] := e3 dst[63:32] := e2 dst[95:64] := e1 dst[127:96] := e0 SSE2
emmintrin.h
Set
Set packed 16-bit integers in "dst" with the supplied values in reverse order. dst[15:0] := e7 dst[31:16] := e6 dst[47:32] := e5 dst[63:48] := e4 dst[79:64] := e3 dst[95:80] := e2 dst[111:96] := e1 dst[127:112] := e0 SSE2
emmintrin.h
Set
Set packed 8-bit integers in "dst" with the supplied values in reverse order. dst[7:0] := e15 dst[15:8] := e14 dst[23:16] := e13 dst[31:24] := e12 dst[39:32] := e11 dst[47:40] := e10 dst[55:48] := e9 dst[63:56] := e8 dst[71:64] := e7 dst[79:72] := e6 dst[87:80] := e5 dst[95:88] := e4 dst[103:96] := e3 dst[111:104] := e2 dst[119:112] := e1 dst[127:120] := e0 SSE2
emmintrin.h
Set
Return vector of type __m128i with all elements set to zero. dst[MAX:0] := 0 SSE2
emmintrin.h
Set
Copy double-precision (64-bit) floating-point element "a" to the lower element of "dst", and zero the upper element. dst[63:0] := a[63:0] dst[127:64] := 0 SSE2
emmintrin.h
Set
Broadcast double-precision (64-bit) floating-point value "a" to all elements of "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := a[63:0] ENDFOR SSE2
emmintrin.h
Set
Broadcast double-precision (64-bit) floating-point value "a" to all elements of "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := a[63:0] ENDFOR SSE2
emmintrin.h
Set
Set packed double-precision (64-bit) floating-point elements in "dst" with the supplied values. dst[63:0] := e0 dst[127:64] := e1 SSE2
emmintrin.h
Set
Set packed double-precision (64-bit) floating-point elements in "dst" with the supplied values in reverse order. dst[63:0] := e1 dst[127:64] := e0 SSE2
emmintrin.h
Set
Return vector of type __m128d with all elements set to zero. dst[MAX:0] := 0 SSE2
emmintrin.h
Set
Copy the lower 64-bit integer in "a" to "dst". dst[63:0] := a[63:0] SSE2
emmintrin.h
Miscellaneous
Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using signed saturation, and store the results in "dst". dst[7:0] := Saturate8(a[15:0]) dst[15:8] := Saturate8(a[31:16]) dst[23:16] := Saturate8(a[47:32]) dst[31:24] := Saturate8(a[63:48]) dst[39:32] := Saturate8(a[79:64]) dst[47:40] := Saturate8(a[95:80]) dst[55:48] := Saturate8(a[111:96]) dst[63:56] := Saturate8(a[127:112]) dst[71:64] := Saturate8(b[15:0]) dst[79:72] := Saturate8(b[31:16]) dst[87:80] := Saturate8(b[47:32]) dst[95:88] := Saturate8(b[63:48]) dst[103:96] := Saturate8(b[79:64]) dst[111:104] := Saturate8(b[95:80]) dst[119:112] := Saturate8(b[111:96]) dst[127:120] := Saturate8(b[127:112]) SSE2
emmintrin.h
Miscellaneous
Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using signed saturation, and store the results in "dst". dst[15:0] := Saturate16(a[31:0]) dst[31:16] := Saturate16(a[63:32]) dst[47:32] := Saturate16(a[95:64]) dst[63:48] := Saturate16(a[127:96]) dst[79:64] := Saturate16(b[31:0]) dst[95:80] := Saturate16(b[63:32]) dst[111:96] := Saturate16(b[95:64]) dst[127:112] := Saturate16(b[127:96]) SSE2
emmintrin.h
Miscellaneous
Convert packed signed 16-bit integers from "a" and "b" to packed 8-bit integers using unsigned saturation, and store the results in "dst". dst[7:0] := SaturateU8(a[15:0]) dst[15:8] := SaturateU8(a[31:16]) dst[23:16] := SaturateU8(a[47:32]) dst[31:24] := SaturateU8(a[63:48]) dst[39:32] := SaturateU8(a[79:64]) dst[47:40] := SaturateU8(a[95:80]) dst[55:48] := SaturateU8(a[111:96]) dst[63:56] := SaturateU8(a[127:112]) dst[71:64] := SaturateU8(b[15:0]) dst[79:72] := SaturateU8(b[31:16]) dst[87:80] := SaturateU8(b[47:32]) dst[95:88] := SaturateU8(b[63:48]) dst[103:96] := SaturateU8(b[79:64]) dst[111:104] := SaturateU8(b[95:80]) dst[119:112] := SaturateU8(b[111:96]) dst[127:120] := SaturateU8(b[127:112]) SSE2
emmintrin.h
Miscellaneous
Create mask from the most significant bit of each 8-bit element in "a", and store the result in "dst". FOR j := 0 to 15 i := j*8 dst[j] := a[i+7] ENDFOR dst[MAX:16] := 0 SSE2
emmintrin.h
Miscellaneous
Set each bit of mask "dst" based on the most significant bit of the corresponding packed double-precision (64-bit) floating-point element in "a". FOR j := 0 to 1 i := j*64 IF a[i+63] dst[j] := 1 ELSE dst[j] := 0 FI ENDFOR dst[MAX:2] := 0 SSE2
emmintrin.h
Miscellaneous
Copy the 64-bit integer "a" to the lower element of "dst", and zero the upper element. dst[63:0] := a[63:0] dst[127:64] := 0 SSE2
emmintrin.h
Move
Copy the lower 64-bit integer in "a" to the lower element of "dst", and zero the upper element. dst[63:0] := a[63:0] dst[127:64] := 0 SSE2
emmintrin.h
Move
Move the lower double-precision (64-bit) floating-point element from "b" to the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := b[63:0] dst[127:64] := a[127:64] SSE2
emmintrin.h
Move
Extract a 16-bit integer from "a", selected with "imm8", and store the result in the lower element of "dst". dst[15:0] := (a[127:0] >> (imm8[2:0] * 16))[15:0] dst[31:16] := 0 SSE2
emmintrin.h
Swizzle
Copy "a" to "dst", and insert the 16-bit integer "i" into "dst" at the location specified by "imm8". dst[127:0] := a[127:0] sel := imm8[2:0]*16 dst[sel+15:sel] := i[15:0] SSE2
emmintrin.h
Swizzle
Shuffle 32-bit integers in "a" using the control in "imm8", and store the results in "dst". DEFINE SELECT4(src, control) { CASE(control[1:0]) OF 0: tmp[31:0] := src[31:0] 1: tmp[31:0] := src[63:32] 2: tmp[31:0] := src[95:64] 3: tmp[31:0] := src[127:96] ESAC RETURN tmp[31:0] } dst[31:0] := SELECT4(a[127:0], imm8[1:0]) dst[63:32] := SELECT4(a[127:0], imm8[3:2]) dst[95:64] := SELECT4(a[127:0], imm8[5:4]) dst[127:96] := SELECT4(a[127:0], imm8[7:6]) SSE2
emmintrin.h
Swizzle
Shuffle 16-bit integers in the high 64 bits of "a" using the control in "imm8". Store the results in the high 64 bits of "dst", with the low 64 bits being copied from from "a" to "dst". dst[63:0] := a[63:0] dst[79:64] := (a >> (imm8[1:0] * 16))[79:64] dst[95:80] := (a >> (imm8[3:2] * 16))[79:64] dst[111:96] := (a >> (imm8[5:4] * 16))[79:64] dst[127:112] := (a >> (imm8[7:6] * 16))[79:64] SSE2
emmintrin.h
Swizzle
Shuffle 16-bit integers in the low 64 bits of "a" using the control in "imm8". Store the results in the low 64 bits of "dst", with the high 64 bits being copied from from "a" to "dst". dst[15:0] := (a >> (imm8[1:0] * 16))[15:0] dst[31:16] := (a >> (imm8[3:2] * 16))[15:0] dst[47:32] := (a >> (imm8[5:4] * 16))[15:0] dst[63:48] := (a >> (imm8[7:6] * 16))[15:0] dst[127:64] := a[127:64] SSE2
emmintrin.h
Swizzle
Unpack and interleave 8-bit integers from the high half of "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_BYTES(src1[127:0], src2[127:0]) { dst[7:0] := src1[71:64] dst[15:8] := src2[71:64] dst[23:16] := src1[79:72] dst[31:24] := src2[79:72] dst[39:32] := src1[87:80] dst[47:40] := src2[87:80] dst[55:48] := src1[95:88] dst[63:56] := src2[95:88] dst[71:64] := src1[103:96] dst[79:72] := src2[103:96] dst[87:80] := src1[111:104] dst[95:88] := src2[111:104] dst[103:96] := src1[119:112] dst[111:104] := src2[119:112] dst[119:112] := src1[127:120] dst[127:120] := src2[127:120] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_HIGH_BYTES(a[127:0], b[127:0]) SSE2
emmintrin.h
Swizzle
Unpack and interleave 16-bit integers from the high half of "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_WORDS(src1[127:0], src2[127:0]) { dst[15:0] := src1[79:64] dst[31:16] := src2[79:64] dst[47:32] := src1[95:80] dst[63:48] := src2[95:80] dst[79:64] := src1[111:96] dst[95:80] := src2[111:96] dst[111:96] := src1[127:112] dst[127:112] := src2[127:112] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_HIGH_WORDS(a[127:0], b[127:0]) SSE2
emmintrin.h
Swizzle
Unpack and interleave 32-bit integers from the high half of "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[95:64] dst[63:32] := src2[95:64] dst[95:64] := src1[127:96] dst[127:96] := src2[127:96] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_HIGH_DWORDS(a[127:0], b[127:0]) SSE2
emmintrin.h
Swizzle
Unpack and interleave 64-bit integers from the high half of "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[127:64] dst[127:64] := src2[127:64] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) SSE2
emmintrin.h
Swizzle
Unpack and interleave 8-bit integers from the low half of "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_BYTES(src1[127:0], src2[127:0]) { dst[7:0] := src1[7:0] dst[15:8] := src2[7:0] dst[23:16] := src1[15:8] dst[31:24] := src2[15:8] dst[39:32] := src1[23:16] dst[47:40] := src2[23:16] dst[55:48] := src1[31:24] dst[63:56] := src2[31:24] dst[71:64] := src1[39:32] dst[79:72] := src2[39:32] dst[87:80] := src1[47:40] dst[95:88] := src2[47:40] dst[103:96] := src1[55:48] dst[111:104] := src2[55:48] dst[119:112] := src1[63:56] dst[127:120] := src2[63:56] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_BYTES(a[127:0], b[127:0]) SSE2
emmintrin.h
Swizzle
Unpack and interleave 16-bit integers from the low half of "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_WORDS(src1[127:0], src2[127:0]) { dst[15:0] := src1[15:0] dst[31:16] := src2[15:0] dst[47:32] := src1[31:16] dst[63:48] := src2[31:16] dst[79:64] := src1[47:32] dst[95:80] := src2[47:32] dst[111:96] := src1[63:48] dst[127:112] := src2[63:48] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_WORDS(a[127:0], b[127:0]) SSE2
emmintrin.h
Swizzle
Unpack and interleave 32-bit integers from the low half of "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_DWORDS(src1[127:0], src2[127:0]) { dst[31:0] := src1[31:0] dst[63:32] := src2[31:0] dst[95:64] := src1[63:32] dst[127:96] := src2[63:32] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_DWORDS(a[127:0], b[127:0]) SSE2
emmintrin.h
Swizzle
Unpack and interleave 64-bit integers from the low half of "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[63:0] dst[127:64] := src2[63:0] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) SSE2
emmintrin.h
Swizzle
Unpack and interleave double-precision (64-bit) floating-point elements from the high half of "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[127:64] dst[127:64] := src2[127:64] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) SSE2
emmintrin.h
Swizzle
Unpack and interleave double-precision (64-bit) floating-point elements from the low half of "a" and "b", and store the results in "dst". DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { dst[63:0] := src1[63:0] dst[127:64] := src2[63:0] RETURN dst[127:0] } dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) SSE2
emmintrin.h
Swizzle
Shuffle double-precision (64-bit) floating-point elements using the control in "imm8", and store the results in "dst". dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64] dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64] SSE2
emmintrin.h
Swizzle
Compute the square root of the lower double-precision (64-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := SQRT(b[63:0]) dst[127:64] := a[127:64] SSE2
emmintrin.h
Elementary Math Functions
Compute the square root of packed double-precision (64-bit) floating-point elements in "a", and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := SQRT(a[i+63:i]) ENDFOR SSE2
emmintrin.h
Elementary Math Functions
Cast vector of type __m128d to type __m128. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. SSE2
emmintrin.h
Cast
Cast vector of type __m128d to type __m128i. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. SSE2
emmintrin.h
Cast
Cast vector of type __m128 to type __m128d. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. SSE2
emmintrin.h
Cast
Cast vector of type __m128 to type __m128i. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. SSE2
emmintrin.h
Cast
Cast vector of type __m128i to type __m128d. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. SSE2
emmintrin.h
Cast
Cast vector of type __m128i to type __m128. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency. SSE2
emmintrin.h
Cast
Alternatively add and subtract packed single-precision (32-bit) floating-point elements in "a" to/from packed elements in "b", and store the results in "dst". FOR j := 0 to 3 i := j*32 IF ((j & 1) == 0) dst[i+31:i] := a[i+31:i] - b[i+31:i] ELSE dst[i+31:i] := a[i+31:i] + b[i+31:i] FI ENDFOR SSE3
pmmintrin.h
Arithmetic
Alternatively add and subtract packed double-precision (64-bit) floating-point elements in "a" to/from packed elements in "b", and store the results in "dst". FOR j := 0 to 1 i := j*64 IF ((j & 1) == 0) dst[i+63:i] := a[i+63:i] - b[i+63:i] ELSE dst[i+63:i] := a[i+63:i] + b[i+63:i] FI ENDFOR SSE3
pmmintrin.h
Arithmetic
Horizontally add adjacent pairs of double-precision (64-bit) floating-point elements in "a" and "b", and pack the results in "dst". dst[63:0] := a[127:64] + a[63:0] dst[127:64] := b[127:64] + b[63:0] SSE3
pmmintrin.h
Arithmetic
Horizontally add adjacent pairs of single-precision (32-bit) floating-point elements in "a" and "b", and pack the results in "dst". dst[31:0] := a[63:32] + a[31:0] dst[63:32] := a[127:96] + a[95:64] dst[95:64] := b[63:32] + b[31:0] dst[127:96] := b[127:96] + b[95:64] SSE3
pmmintrin.h
Arithmetic
Horizontally subtract adjacent pairs of double-precision (64-bit) floating-point elements in "a" and "b", and pack the results in "dst". dst[63:0] := a[63:0] - a[127:64] dst[127:64] := b[63:0] - b[127:64] SSE3
pmmintrin.h
Arithmetic
Horizontally add adjacent pairs of single-precision (32-bit) floating-point elements in "a" and "b", and pack the results in "dst". dst[31:0] := a[31:0] - a[63:32] dst[63:32] := a[95:64] - a[127:96] dst[95:64] := b[31:0] - b[63:32] dst[127:96] := b[95:64] - b[127:96] SSE3
pmmintrin.h
Arithmetic
Load 128-bits of integer data from unaligned memory into "dst". This intrinsic may perform better than "_mm_loadu_si128" when the data crosses a cache line boundary. dst[127:0] := MEM[mem_addr+127:mem_addr] SSE3
pmmintrin.h
Load
Load a double-precision (64-bit) floating-point element from memory into both elements of "dst". dst[63:0] := MEM[mem_addr+63:mem_addr] dst[127:64] := MEM[mem_addr+63:mem_addr] SSE3
pmmintrin.h
Load
Duplicate the low double-precision (64-bit) floating-point element from "a", and store the results in "dst". dst[63:0] := a[63:0] dst[127:64] := a[63:0] SSE3
pmmintrin.h
Move
Duplicate odd-indexed single-precision (32-bit) floating-point elements from "a", and store the results in "dst". dst[31:0] := a[63:32] dst[63:32] := a[63:32] dst[95:64] := a[127:96] dst[127:96] := a[127:96] SSE3
pmmintrin.h
Move
Duplicate even-indexed single-precision (32-bit) floating-point elements from "a", and store the results in "dst". dst[31:0] := a[31:0] dst[63:32] := a[31:0] dst[95:64] := a[95:64] dst[127:96] := a[95:64] SSE3
pmmintrin.h
Move
Blend packed double-precision (64-bit) floating-point elements from "a" and "b" using control mask "imm8", and store the results in "dst". FOR j := 0 to 1 i := j*64 IF imm8[j] dst[i+63:i] := b[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR SSE4.1
smmintrin.h
Swizzle
Blend packed single-precision (32-bit) floating-point elements from "a" and "b" using control mask "imm8", and store the results in "dst". FOR j := 0 to 3 i := j*32 IF imm8[j] dst[i+31:i] := b[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR SSE4.1
smmintrin.h
Swizzle
Blend packed double-precision (64-bit) floating-point elements from "a" and "b" using "mask", and store the results in "dst". FOR j := 0 to 1 i := j*64 IF mask[i+63] dst[i+63:i] := b[i+63:i] ELSE dst[i+63:i] := a[i+63:i] FI ENDFOR SSE4.1
smmintrin.h
Swizzle
Blend packed single-precision (32-bit) floating-point elements from "a" and "b" using "mask", and store the results in "dst". FOR j := 0 to 3 i := j*32 IF mask[i+31] dst[i+31:i] := b[i+31:i] ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR SSE4.1
smmintrin.h
Swizzle
Blend packed 8-bit integers from "a" and "b" using "mask", and store the results in "dst". FOR j := 0 to 15 i := j*8 IF mask[i+7] dst[i+7:i] := b[i+7:i] ELSE dst[i+7:i] := a[i+7:i] FI ENDFOR SSE4.1
smmintrin.h
Swizzle
Blend packed 16-bit integers from "a" and "b" using control mask "imm8", and store the results in "dst". FOR j := 0 to 7 i := j*16 IF imm8[j] dst[i+15:i] := b[i+15:i] ELSE dst[i+15:i] := a[i+15:i] FI ENDFOR SSE4.1
smmintrin.h
Swizzle
Extract a single-precision (32-bit) floating-point element from "a", selected with "imm8", and store the result in "dst". dst[31:0] := (a[127:0] >> (imm8[1:0] * 32))[31:0] SSE4.1
smmintrin.h
Swizzle
Extract an 8-bit integer from "a", selected with "imm8", and store the result in the lower element of "dst". dst[7:0] := (a[127:0] >> (imm8[3:0] * 8))[7:0] dst[31:8] := 0 SSE4.1
smmintrin.h
Swizzle
Extract a 32-bit integer from "a", selected with "imm8", and store the result in "dst". dst[31:0] := (a[127:0] >> (imm8[1:0] * 32))[31:0] SSE4.1
smmintrin.h
Swizzle
Extract a 64-bit integer from "a", selected with "imm8", and store the result in "dst". dst[63:0] := (a[127:0] >> (imm8[0] * 64))[63:0] SSE4.1
smmintrin.h
Swizzle
Copy "a" to "tmp", then insert a single-precision (32-bit) floating-point element from "b" into "tmp" using the control in "imm8". Store "tmp" to "dst" using the mask in "imm8" (elements are zeroed out when the corresponding bit is set). tmp2[127:0] := a[127:0] CASE (imm8[7:6]) OF 0: tmp1[31:0] := b[31:0] 1: tmp1[31:0] := b[63:32] 2: tmp1[31:0] := b[95:64] 3: tmp1[31:0] := b[127:96] ESAC CASE (imm8[5:4]) OF 0: tmp2[31:0] := tmp1[31:0] 1: tmp2[63:32] := tmp1[31:0] 2: tmp2[95:64] := tmp1[31:0] 3: tmp2[127:96] := tmp1[31:0] ESAC FOR j := 0 to 3 i := j*32 IF imm8[j%8] dst[i+31:i] := 0 ELSE dst[i+31:i] := tmp2[i+31:i] FI ENDFOR SSE4.1
smmintrin.h
Swizzle
Copy "a" to "dst", and insert the lower 8-bit integer from "i" into "dst" at the location specified by "imm8". dst[127:0] := a[127:0] sel := imm8[3:0]*8 dst[sel+7:sel] := i[7:0] SSE4.1
smmintrin.h
Swizzle
Copy "a" to "dst", and insert the 32-bit integer "i" into "dst" at the location specified by "imm8". dst[127:0] := a[127:0] sel := imm8[1:0]*32 dst[sel+31:sel] := i[31:0] SSE4.1
smmintrin.h
Swizzle
Copy "a" to "dst", and insert the 64-bit integer "i" into "dst" at the location specified by "imm8". dst[127:0] := a[127:0] sel := imm8[0]*64 dst[sel+63:sel] := i[63:0] SSE4.1
smmintrin.h
Swizzle
Conditionally multiply the packed double-precision (64-bit) floating-point elements in "a" and "b" using the high 4 bits in "imm8", sum the four products, and conditionally store the sum in "dst" using the low 4 bits of "imm8". DEFINE DP(a[127:0], b[127:0], imm8[7:0]) { FOR j := 0 to 1 i := j*64 IF imm8[(4+j)%8] temp[i+63:i] := a[i+63:i] * b[i+63:i] ELSE temp[i+63:i] := 0.0 FI ENDFOR sum[63:0] := temp[127:64] + temp[63:0] FOR j := 0 to 1 i := j*64 IF imm8[j%8] tmpdst[i+63:i] := sum[63:0] ELSE tmpdst[i+63:i] := 0.0 FI ENDFOR RETURN tmpdst[127:0] } dst[127:0] := DP(a[127:0], b[127:0], imm8[7:0]) SSE4.1
smmintrin.h
Arithmetic
Conditionally multiply the packed single-precision (32-bit) floating-point elements in "a" and "b" using the high 4 bits in "imm8", sum the four products, and conditionally store the sum in "dst" using the low 4 bits of "imm8". DEFINE DP(a[127:0], b[127:0], imm8[7:0]) { FOR j := 0 to 3 i := j*32 IF imm8[(4+j)%8] temp[i+31:i] := a[i+31:i] * b[i+31:i] ELSE temp[i+31:i] := 0 FI ENDFOR sum[31:0] := (temp[127:96] + temp[95:64]) + (temp[63:32] + temp[31:0]) FOR j := 0 to 3 i := j*32 IF imm8[j%8] tmpdst[i+31:i] := sum[31:0] ELSE tmpdst[i+31:i] := 0 FI ENDFOR RETURN tmpdst[127:0] } dst[127:0] := DP(a[127:0], b[127:0], imm8[7:0]) SSE4.1
smmintrin.h
Arithmetic
Multiply the low signed 32-bit integers from each packed 64-bit element in "a" and "b", and store the signed 64-bit results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := SignExtend64(a[i+31:i]) * SignExtend64(b[i+31:i]) ENDFOR SSE4.1
smmintrin.h
Arithmetic
Multiply the packed 32-bit integers in "a" and "b", producing intermediate 64-bit integers, and store the low 32 bits of the intermediate integers in "dst". FOR j := 0 to 3 i := j*32 tmp[63:0] := a[i+31:i] * b[i+31:i] dst[i+31:i] := tmp[31:0] ENDFOR SSE4.1
smmintrin.h
Arithmetic
Miscellaneous Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in "a" compared to those in "b", and store the 16-bit results in "dst". Eight SADs are performed using one quadruplet from "b" and eight quadruplets from "a". One quadruplet is selected from "b" starting at on the offset specified in "imm8". Eight quadruplets are formed from sequential 8-bit integers selected from "a" starting at the offset specified in "imm8". DEFINE MPSADBW(a[127:0], b[127:0], imm8[2:0]) { a_offset := imm8[2]*32 b_offset := imm8[1:0]*32 FOR j := 0 to 7 i := j*8 k := a_offset+i l := b_offset tmp[i*2+15:i*2] := ABS(Signed(a[k+7:k] - b[l+7:l])) + ABS(Signed(a[k+15:k+8] - b[l+15:l+8])) + \ ABS(Signed(a[k+23:k+16] - b[l+23:l+16])) + ABS(Signed(a[k+31:k+24] - b[l+31:l+24])) ENDFOR RETURN tmp[127:0] } dst[127:0] := MPSADBW(a[127:0], b[127:0], imm8[2:0]) SSE4.1
smmintrin.h
Arithmetic
Compare packed signed 8-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 15 i := j*8 dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) ENDFOR SSE4.1
smmintrin.h
Special Math Functions
Compare packed signed 32-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ENDFOR SSE4.1
smmintrin.h
Special Math Functions
Compare packed unsigned 32-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := MAX(a[i+31:i], b[i+31:i]) ENDFOR SSE4.1
smmintrin.h
Special Math Functions
Compare packed unsigned 16-bit integers in "a" and "b", and store packed maximum values in "dst". FOR j := 0 to 7 i := j*16 dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) ENDFOR SSE4.1
smmintrin.h
Special Math Functions
Compare packed signed 8-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 15 i := j*8 dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) ENDFOR SSE4.1
smmintrin.h
Special Math Functions
Compare packed signed 32-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ENDFOR SSE4.1
smmintrin.h
Special Math Functions
Compare packed unsigned 32-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := MIN(a[i+31:i], b[i+31:i]) ENDFOR SSE4.1
smmintrin.h
Special Math Functions
Compare packed unsigned 16-bit integers in "a" and "b", and store packed minimum values in "dst". FOR j := 0 to 7 i := j*16 dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) ENDFOR SSE4.1
smmintrin.h
Special Math Functions
Round the packed double-precision (64-bit) floating-point elements in "a" using the "rounding" parameter, and store the results as packed double-precision floating-point elements in "dst". [round_note] FOR j := 0 to 1 i := j*64 dst[i+63:i] := ROUND(a[i+63:i], rounding) ENDFOR SSE4.1
smmintrin.h
Special Math Functions
Round the packed double-precision (64-bit) floating-point elements in "a" down to an integer value, and store the results as packed double-precision floating-point elements in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := FLOOR(a[i+63:i]) ENDFOR SSE4.1
smmintrin.h
Special Math Functions
Round the packed double-precision (64-bit) floating-point elements in "a" up to an integer value, and store the results as packed double-precision floating-point elements in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := CEIL(a[i+63:i]) ENDFOR SSE4.1
smmintrin.h
Special Math Functions
Round the packed single-precision (32-bit) floating-point elements in "a" using the "rounding" parameter, and store the results as packed single-precision floating-point elements in "dst". [round_note] FOR j := 0 to 3 i := j*32 dst[i+31:i] := ROUND(a[i+31:i], rounding) ENDFOR SSE4.1
smmintrin.h
Special Math Functions
Round the packed single-precision (32-bit) floating-point elements in "a" down to an integer value, and store the results as packed single-precision floating-point elements in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := FLOOR(a[i+31:i]) ENDFOR SSE4.1
smmintrin.h
Special Math Functions
Round the packed single-precision (32-bit) floating-point elements in "a" up to an integer value, and store the results as packed single-precision floating-point elements in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := CEIL(a[i+31:i]) ENDFOR SSE4.1
smmintrin.h
Special Math Functions
Round the lower double-precision (64-bit) floating-point element in "b" using the "rounding" parameter, store the result as a double-precision floating-point element in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". [round_note] dst[63:0] := ROUND(b[63:0], rounding) dst[127:64] := a[127:64] SSE4.1
smmintrin.h
Special Math Functions
Round the lower double-precision (64-bit) floating-point element in "b" down to an integer value, store the result as a double-precision floating-point element in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := FLOOR(b[63:0]) dst[127:64] := a[127:64] SSE4.1
smmintrin.h
Special Math Functions
Round the lower double-precision (64-bit) floating-point element in "b" up to an integer value, store the result as a double-precision floating-point element in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst". dst[63:0] := CEIL(b[63:0]) dst[127:64] := a[127:64] SSE4.1
smmintrin.h
Special Math Functions
Round the lower single-precision (32-bit) floating-point element in "b" using the "rounding" parameter, store the result as a single-precision floating-point element in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". [round_note] dst[31:0] := ROUND(b[31:0], rounding) dst[127:32] := a[127:32] SSE4.1
smmintrin.h
Special Math Functions
Round the lower single-precision (32-bit) floating-point element in "b" down to an integer value, store the result as a single-precision floating-point element in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := FLOOR(b[31:0]) dst[127:32] := a[127:32] SSE4.1
smmintrin.h
Special Math Functions
Round the lower single-precision (32-bit) floating-point element in "b" up to an integer value, store the result as a single-precision floating-point element in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". dst[31:0] := CEIL(b[31:0]) dst[127:32] := a[127:32] SSE4.1
smmintrin.h
Special Math Functions
Miscellaneous Convert packed signed 32-bit integers from "a" and "b" to packed 16-bit integers using unsigned saturation, and store the results in "dst". dst[15:0] := SaturateU16(a[31:0]) dst[31:16] := SaturateU16(a[63:32]) dst[47:32] := SaturateU16(a[95:64]) dst[63:48] := SaturateU16(a[127:96]) dst[79:64] := SaturateU16(b[31:0]) dst[95:80] := SaturateU16(b[63:32]) dst[111:96] := SaturateU16(b[95:64]) dst[127:112] := SaturateU16(b[127:96]) SSE4.1
smmintrin.h
Convert
Sign extend packed 8-bit integers in "a" to packed 16-bit integers, and store the results in "dst". FOR j := 0 to 7 i := j*8 l := j*16 dst[l+15:l] := SignExtend16(a[i+7:i]) ENDFOR SSE4.1
smmintrin.h
Convert
Sign extend packed 8-bit integers in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 3 i := 32*j k := 8*j dst[i+31:i] := SignExtend32(a[k+7:k]) ENDFOR SSE4.1
smmintrin.h
Convert
Sign extend packed 8-bit integers in the low 8 bytes of "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 1 i := 64*j k := 8*j dst[i+63:i] := SignExtend64(a[k+7:k]) ENDFOR SSE4.1
smmintrin.h
Convert
Sign extend packed 16-bit integers in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 3 i := 32*j k := 16*j dst[i+31:i] := SignExtend32(a[k+15:k]) ENDFOR SSE4.1
smmintrin.h
Convert
Sign extend packed 16-bit integers in "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 1 i := 64*j k := 16*j dst[i+63:i] := SignExtend64(a[k+15:k]) ENDFOR SSE4.1
smmintrin.h
Convert
Sign extend packed 32-bit integers in "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 1 i := 64*j k := 32*j dst[i+63:i] := SignExtend64(a[k+31:k]) ENDFOR SSE4.1
smmintrin.h
Convert
Zero extend packed unsigned 8-bit integers in "a" to packed 16-bit integers, and store the results in "dst". FOR j := 0 to 7 i := j*8 l := j*16 dst[l+15:l] := ZeroExtend16(a[i+7:i]) ENDFOR SSE4.1
smmintrin.h
Convert
Zero extend packed unsigned 8-bit integers in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 3 i := 32*j k := 8*j dst[i+31:i] := ZeroExtend32(a[k+7:k]) ENDFOR SSE4.1
smmintrin.h
Convert
Zero extend packed unsigned 8-bit integers in the low 8 byte sof "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 1 i := 64*j k := 8*j dst[i+63:i] := ZeroExtend64(a[k+7:k]) ENDFOR SSE4.1
smmintrin.h
Convert
Zero extend packed unsigned 16-bit integers in "a" to packed 32-bit integers, and store the results in "dst". FOR j := 0 to 3 i := 32*j k := 16*j dst[i+31:i] := ZeroExtend32(a[k+15:k]) ENDFOR SSE4.1
smmintrin.h
Convert
Zero extend packed unsigned 16-bit integers in "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 1 i := 64*j k := 16*j dst[i+63:i] := ZeroExtend64(a[k+15:k]) ENDFOR SSE4.1
smmintrin.h
Convert
Zero extend packed unsigned 32-bit integers in "a" to packed 64-bit integers, and store the results in "dst". FOR j := 0 to 1 i := 64*j k := 32*j dst[i+63:i] := ZeroExtend64(a[k+31:k]) ENDFOR SSE4.1
smmintrin.h
Convert
Compare packed 64-bit integers in "a" and "b" for equality, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := ( a[i+63:i] == b[i+63:i] ) ? 0xFFFFFFFFFFFFFFFF : 0 ENDFOR SSE4.1
smmintrin.h
Compare
Compute the bitwise AND of 128 bits (representing integer data) in "a" and "b", and set "ZF" to 1 if the result is zero, otherwise set "ZF" to 0. Compute the bitwise NOT of "a" and then AND with "b", and set "CF" to 1 if the result is zero, otherwise set "CF" to 0. Return the "ZF" value. IF ((a[127:0] AND b[127:0]) == 0) ZF := 1 ELSE ZF := 0 FI IF (((NOT a[127:0]) AND b[127:0]) == 0) CF := 1 ELSE CF := 0 FI RETURN ZF SSE4.1
smmintrin.h
Logical
Compute the bitwise AND of 128 bits (representing integer data) in "a" and "b", and set "ZF" to 1 if the result is zero, otherwise set "ZF" to 0. Compute the bitwise NOT of "a" and then AND with "b", and set "CF" to 1 if the result is zero, otherwise set "CF" to 0. Return the "CF" value. IF ((a[127:0] AND b[127:0]) == 0) ZF := 1 ELSE ZF := 0 FI IF (((NOT a[127:0]) AND b[127:0]) == 0) CF := 1 ELSE CF := 0 FI RETURN CF SSE4.1
smmintrin.h
Logical
Compute the bitwise AND of 128 bits (representing integer data) in "a" and "b", and set "ZF" to 1 if the result is zero, otherwise set "ZF" to 0. Compute the bitwise NOT of "a" and then AND with "b", and set "CF" to 1 if the result is zero, otherwise set "CF" to 0. Return 1 if both the "ZF" and "CF" values are zero, otherwise return 0. IF ((a[127:0] AND b[127:0]) == 0) ZF := 1 ELSE ZF := 0 FI IF (((NOT a[127:0]) AND b[127:0]) == 0) CF := 1 ELSE CF := 0 FI IF (ZF == 0 && CF == 0) dst := 1 ELSE dst := 0 FI SSE4.1
smmintrin.h
Logical
Compute the bitwise AND of 128 bits (representing integer data) in "a" and "mask", and return 1 if the result is zero, otherwise return 0. IF ((a[127:0] AND mask[127:0]) == 0) ZF := 1 ELSE ZF := 0 FI dst := ZF SSE4.1
smmintrin.h
Logical
Compute the bitwise AND of 128 bits (representing integer data) in "a" and "mask", and set "ZF" to 1 if the result is zero, otherwise set "ZF" to 0. Compute the bitwise NOT of "a" and then AND with "mask", and set "CF" to 1 if the result is zero, otherwise set "CF" to 0. Return 1 if both the "ZF" and "CF" values are zero, otherwise return 0. IF ((a[127:0] AND mask[127:0]) == 0) ZF := 1 ELSE ZF := 0 FI IF (((NOT a[127:0]) AND mask[127:0]) == 0) CF := 1 ELSE CF := 0 FI IF (ZF == 0 && CF == 0) dst := 1 ELSE dst := 0 FI SSE4.1
smmintrin.h
Logical
Compute the bitwise NOT of "a" and then AND with a 128-bit vector containing all 1's, and return 1 if the result is zero, otherwise return 0. FOR j := 0 to 127 tmp[j] := 1 ENDFOR IF (((NOT a[127:0]) AND tmp[127:0]) == 0) CF := 1 ELSE CF := 0 FI dst := CF SSE4.1
smmintrin.h
Logical
Horizontally compute the minimum amongst the packed unsigned 16-bit integers in "a", store the minimum and index in "dst", and zero the remaining bits in "dst". index[2:0] := 0 min[15:0] := a[15:0] FOR j := 0 to 7 i := j*16 IF a[i+15:i] < min[15:0] index[2:0] := j min[15:0] := a[i+15:i] FI ENDFOR dst[15:0] := min[15:0] dst[18:16] := index[2:0] dst[127:19] := 0 SSE4.1
smmintrin.h
Miscellaneous
Load 128-bits of integer data from memory into "dst" using a non-temporal memory hint. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception may be generated. dst[127:0] := MEM[mem_addr+127:mem_addr] SSE4.1
smmintrin.h
Load
Compare packed strings with implicit lengths in "a" and "b" using the control in "imm8", and store the generated mask in "dst". [strcmp_note] size := (imm8[0] ? 16 : 8) // 8 or 16-bit characters UpperBound := (128 / size) - 1 BoolRes := 0 // compare all characters aInvalid := 0 bInvalid := 0 FOR i := 0 to UpperBound m := i*size FOR j := 0 to UpperBound n := j*size BoolRes.word[i].bit[j] := (a[m+size-1:m] == b[n+size-1:n]) ? 1 : 0 // invalidate characters after EOS IF a[m+size-1:m] == 0 aInvalid := 1 FI IF b[n+size-1:n] == 0 bInvalid := 1 FI // override comparisons for invalid characters CASE (imm8[3:2]) OF 0: // equal any IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 1: // ranges IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 2: // equal each IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI 3: // equal ordered IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 1 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI ESAC ENDFOR ENDFOR // aggregate results CASE (imm8[3:2]) OF 0: // equal any IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR BoolRes.word[i].bit[j] ENDFOR ENDFOR 1: // ranges IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR (BoolRes.word[i].bit[j] AND BoolRes.word[i].bit[j+1]) j += 2 ENDFOR ENDFOR 2: // equal each IntRes1 := 0 FOR i := 0 to UpperBound IntRes1[i] := BoolRes.word[i].bit[i] ENDFOR 3: // equal ordered IntRes1 := (imm8[0] ? 0xFF : 0xFFFF) FOR i := 0 to UpperBound k := i FOR j := 0 to UpperBound-i IntRes1[i] := IntRes1[i] AND BoolRes.word[k].bit[j] k := k+1 ENDFOR ENDFOR ESAC // optionally negate results bInvalid := 0 FOR i := 0 to UpperBound IF imm8[4] IF imm8[5] // only negate valid IF b[n+size-1:n] == 0 bInvalid := 1 FI IF bInvalid // invalid, don't negate IntRes2[i] := IntRes1[i] ELSE // valid, negate IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // negate all IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // don't negate IntRes2[i] := IntRes1[i] FI ENDFOR // output IF imm8[6] // byte / word mask FOR i := 0 to UpperBound j := i*size IF IntRes2[i] dst[j+size-1:j] := (imm8[0] ? 0xFF : 0xFFFF) ELSE dst[j+size-1:j] := 0 FI ENDFOR ELSE // bit mask dst[UpperBound:0] := IntRes2[UpperBound:0] dst[127:UpperBound+1] := 0 FI SSE4.2
nmmintrin.h
String Compare
Compare packed strings with implicit lengths in "a" and "b" using the control in "imm8", and store the generated index in "dst". [strcmp_note] size := (imm8[0] ? 16 : 8) // 8 or 16-bit characters UpperBound := (128 / size) - 1 BoolRes := 0 // compare all characters aInvalid := 0 bInvalid := 0 FOR i := 0 to UpperBound m := i*size FOR j := 0 to UpperBound n := j*size BoolRes.word[i].bit[j] := (a[m+size-1:m] == b[n+size-1:n]) ? 1 : 0 // invalidate characters after EOS IF a[m+size-1:m] == 0 aInvalid := 1 FI IF b[n+size-1:n] == 0 bInvalid := 1 FI // override comparisons for invalid characters CASE (imm8[3:2]) OF 0: // equal any IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 1: // ranges IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 2: // equal each IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI 3: // equal ordered IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 1 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI ESAC ENDFOR ENDFOR // aggregate results CASE (imm8[3:2]) OF 0: // equal any IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR BoolRes.word[i].bit[j] ENDFOR ENDFOR 1: // ranges IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR (BoolRes.word[i].bit[j] AND BoolRes.word[i].bit[j+1]) j += 2 ENDFOR ENDFOR 2: // equal each IntRes1 := 0 FOR i := 0 to UpperBound IntRes1[i] := BoolRes.word[i].bit[i] ENDFOR 3: // equal ordered IntRes1 := (imm8[0] ? 0xFF : 0xFFFF) FOR i := 0 to UpperBound k := i FOR j := 0 to UpperBound-i IntRes1[i] := IntRes1[i] AND BoolRes.word[k].bit[j] k := k+1 ENDFOR ENDFOR ESAC // optionally negate results bInvalid := 0 FOR i := 0 to UpperBound IF imm8[4] IF imm8[5] // only negate valid IF b[n+size-1:n] == 0 bInvalid := 1 FI IF bInvalid // invalid, don't negate IntRes2[i] := IntRes1[i] ELSE // valid, negate IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // negate all IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // don't negate IntRes2[i] := IntRes1[i] FI ENDFOR // output IF imm8[6] // most significant bit tmp := UpperBound dst := tmp DO WHILE ((tmp >= 0) AND a[tmp] == 0) tmp := tmp - 1 dst := tmp OD ELSE // least significant bit tmp := 0 dst := tmp DO WHILE ((tmp <= UpperBound) AND a[tmp] == 0) tmp := tmp + 1 dst := tmp OD FI SSE4.2
nmmintrin.h
String Compare
Compare packed strings with implicit lengths in "a" and "b" using the control in "imm8", and returns 1 if any character in "b" was null, and 0 otherwise. [strcmp_note] size := (imm8[0] ? 16 : 8) // 8 or 16-bit characters UpperBound := (128 / size) - 1 bInvalid := 0 FOR j := 0 to UpperBound n := j*size IF b[n+size-1:n] == 0 bInvalid := 1 FI ENDFOR dst := bInvalid SSE4.2
nmmintrin.h
String Compare
Compare packed strings with implicit lengths in "a" and "b" using the control in "imm8", and returns 1 if the resulting mask was non-zero, and 0 otherwise. [strcmp_note] size := (imm8[0] ? 16 : 8) // 8 or 16-bit characters UpperBound := (128 / size) - 1 BoolRes := 0 // compare all characters aInvalid := 0 bInvalid := 0 FOR i := 0 to UpperBound m := i*size FOR j := 0 to UpperBound n := j*size BoolRes.word[i].bit[j] := (a[m+size-1:m] == b[n+size-1:n]) ? 1 : 0 // invalidate characters after EOS IF a[m+size-1:m] == 0 aInvalid := 1 FI IF b[n+size-1:n] == 0 bInvalid := 1 FI // override comparisons for invalid characters CASE (imm8[3:2]) OF 0: // equal any IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 1: // ranges IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 2: // equal each IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI 3: // equal ordered IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 1 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI ESAC ENDFOR ENDFOR // aggregate results CASE (imm8[3:2]) OF 0: // equal any IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR BoolRes.word[i].bit[j] ENDFOR ENDFOR 1: // ranges IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR (BoolRes.word[i].bit[j] AND BoolRes.word[i].bit[j+1]) j += 2 ENDFOR ENDFOR 2: // equal each IntRes1 := 0 FOR i := 0 to UpperBound IntRes1[i] := BoolRes.word[i].bit[i] ENDFOR 3: // equal ordered IntRes1 := (imm8[0] ? 0xFF : 0xFFFF) FOR i := 0 to UpperBound k := i FOR j := 0 to UpperBound-i IntRes1[i] := IntRes1[i] AND BoolRes.word[k].bit[j] k := k+1 ENDFOR ENDFOR ESAC // optionally negate results bInvalid := 0 FOR i := 0 to UpperBound IF imm8[4] IF imm8[5] // only negate valid IF b[n+size-1:n] == 0 bInvalid := 1 FI IF bInvalid // invalid, don't negate IntRes2[i] := IntRes1[i] ELSE // valid, negate IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // negate all IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // don't negate IntRes2[i] := IntRes1[i] FI ENDFOR // output dst := (IntRes2 != 0) SSE4.2
nmmintrin.h
String Compare
Compare packed strings with implicit lengths in "a" and "b" using the control in "imm8", and returns 1 if any character in "a" was null, and 0 otherwise. [strcmp_note] size := (imm8[0] ? 16 : 8) // 8 or 16-bit characters UpperBound := (128 / size) - 1 aInvalid := 0 FOR i := 0 to UpperBound m := i*size IF a[m+size-1:m] == 0 aInvalid := 1 FI ENDFOR dst := aInvalid SSE4.2
nmmintrin.h
String Compare
Compare packed strings with implicit lengths in "a" and "b" using the control in "imm8", and returns bit 0 of the resulting bit mask. [strcmp_note] size := (imm8[0] ? 16 : 8) // 8 or 16-bit characters UpperBound := (128 / size) - 1 BoolRes := 0 // compare all characters aInvalid := 0 bInvalid := 0 FOR i := 0 to UpperBound m := i*size FOR j := 0 to UpperBound n := j*size BoolRes.word[i].bit[j] := (a[m+size-1:m] == b[n+size-1:n]) ? 1 : 0 // invalidate characters after EOS IF a[m+size-1:m] == 0 aInvalid := 1 FI IF b[n+size-1:n] == 0 bInvalid := 1 FI // override comparisons for invalid characters CASE (imm8[3:2]) OF 0: // equal any IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 1: // ranges IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 2: // equal each IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI 3: // equal ordered IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 1 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI ESAC ENDFOR ENDFOR // aggregate results CASE (imm8[3:2]) OF 0: // equal any IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR BoolRes.word[i].bit[j] ENDFOR ENDFOR 1: // ranges IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR (BoolRes.word[i].bit[j] AND BoolRes.word[i].bit[j+1]) j += 2 ENDFOR ENDFOR 2: // equal each IntRes1 := 0 FOR i := 0 to UpperBound IntRes1[i] := BoolRes.word[i].bit[i] ENDFOR 3: // equal ordered IntRes1 := (imm8[0] ? 0xFF : 0xFFFF) FOR i := 0 to UpperBound k := i FOR j := 0 to UpperBound-i IntRes1[i] := IntRes1[i] AND BoolRes.word[k].bit[j] k := k+1 ENDFOR ENDFOR ESAC // optionally negate results bInvalid := 0 FOR i := 0 to UpperBound IF imm8[4] IF imm8[5] // only negate valid IF b[n+size-1:n] == 0 bInvalid := 1 FI IF bInvalid // invalid, don't negate IntRes2[i] := IntRes1[i] ELSE // valid, negate IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // negate all IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // don't negate IntRes2[i] := IntRes1[i] FI ENDFOR // output dst := IntRes2[0] SSE4.2
nmmintrin.h
String Compare
Compare packed strings with implicit lengths in "a" and "b" using the control in "imm8", and returns 1 if "b" did not contain a null character and the resulting mask was zero, and 0 otherwise. [strcmp_note] size := (imm8[0] ? 16 : 8) // 8 or 16-bit characters UpperBound := (128 / size) - 1 BoolRes := 0 // compare all characters aInvalid := 0 bInvalid := 0 FOR i := 0 to UpperBound m := i*size FOR j := 0 to UpperBound n := j*size BoolRes.word[i].bit[j] := (a[m+size-1:m] == b[n+size-1:n]) ? 1 : 0 // invalidate characters after EOS IF a[m+size-1:m] == 0 aInvalid := 1 FI IF b[n+size-1:n] == 0 bInvalid := 1 FI // override comparisons for invalid characters CASE (imm8[3:2]) OF 0: // equal any IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 1: // ranges IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 2: // equal each IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI 3: // equal ordered IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 1 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI ESAC ENDFOR ENDFOR // aggregate results CASE (imm8[3:2]) OF 0: // equal any IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR BoolRes.word[i].bit[j] ENDFOR ENDFOR 1: // ranges IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR (BoolRes.word[i].bit[j] AND BoolRes.word[i].bit[j+1]) j += 2 ENDFOR ENDFOR 2: // equal each IntRes1 := 0 FOR i := 0 to UpperBound IntRes1[i] := BoolRes.word[i].bit[i] ENDFOR 3: // equal ordered IntRes1 := (imm8[0] ? 0xFF : 0xFFFF) FOR i := 0 to UpperBound k := i FOR j := 0 to UpperBound-i IntRes1[i] := IntRes1[i] AND BoolRes.word[k].bit[j] k := k+1 ENDFOR ENDFOR ESAC // optionally negate results bInvalid := 0 FOR i := 0 to UpperBound IF imm8[4] IF imm8[5] // only negate valid IF b[n+size-1:n] == 0 bInvalid := 1 FI IF bInvalid // invalid, don't negate IntRes2[i] := IntRes1[i] ELSE // valid, negate IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // negate all IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // don't negate IntRes2[i] := IntRes1[i] FI ENDFOR // output dst := (IntRes2 == 0) AND bInvalid SSE4.2
nmmintrin.h
String Compare
Compare packed strings in "a" and "b" with lengths "la" and "lb" using the control in "imm8", and store the generated mask in "dst". [strcmp_note] size := (imm8[0] ? 16 : 8) // 8 or 16-bit characters UpperBound := (128 / size) - 1 BoolRes := 0 // compare all characters aInvalid := 0 bInvalid := 0 FOR i := 0 to UpperBound m := i*size FOR j := 0 to UpperBound n := j*size BoolRes.word[i].bit[j] := (a[m+size-1:m] == b[n+size-1:n]) ? 1 : 0 // invalidate characters after EOS IF i == la aInvalid := 1 FI IF j == lb bInvalid := 1 FI // override comparisons for invalid characters CASE (imm8[3:2]) OF 0: // equal any IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 1: // ranges IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 2: // equal each IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI 3: // equal ordered IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 1 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI ESAC ENDFOR ENDFOR // aggregate results CASE (imm8[3:2]) OF 0: // equal any IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR BoolRes.word[i].bit[j] ENDFOR ENDFOR 1: // ranges IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR (BoolRes.word[i].bit[j] AND BoolRes.word[i].bit[j+1]) j += 2 ENDFOR ENDFOR 2: // equal each IntRes1 := 0 FOR i := 0 to UpperBound IntRes1[i] := BoolRes.word[i].bit[i] ENDFOR 3: // equal ordered IntRes1 := (imm8[0] ? 0xFF : 0xFFFF) FOR i := 0 to UpperBound k := i FOR j := 0 to UpperBound-i IntRes1[i] := IntRes1[i] AND BoolRes.word[k].bit[j] k := k+1 ENDFOR ENDFOR ESAC // optionally negate results FOR i := 0 to UpperBound IF imm8[4] IF imm8[5] // only negate valid IF i >= lb // invalid, don't negate IntRes2[i] := IntRes1[i] ELSE // valid, negate IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // negate all IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // don't negate IntRes2[i] := IntRes1[i] FI ENDFOR // output IF imm8[6] // byte / word mask FOR i := 0 to UpperBound j := i*size IF IntRes2[i] dst[j+size-1:j] := (imm8[0] ? 0xFF : 0xFFFF) ELSE dst[j+size-1:j] := 0 FI ENDFOR ELSE // bit mask dst[UpperBound:0] := IntRes2[UpperBound:0] dst[127:UpperBound+1] := 0 FI SSE4.2
nmmintrin.h
String Compare
Compare packed strings in "a" and "b" with lengths "la" and "lb" using the control in "imm8", and store the generated index in "dst". [strcmp_note] size := (imm8[0] ? 16 : 8) // 8 or 16-bit characters UpperBound := (128 / size) - 1 BoolRes := 0 // compare all characters aInvalid := 0 bInvalid := 0 FOR i := 0 to UpperBound m := i*size FOR j := 0 to UpperBound n := j*size BoolRes.word[i].bit[j] := (a[m+size-1:m] == b[n+size-1:n]) ? 1 : 0 // invalidate characters after EOS IF i == la aInvalid := 1 FI IF j == lb bInvalid := 1 FI // override comparisons for invalid characters CASE (imm8[3:2]) OF 0: // equal any IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 1: // ranges IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 2: // equal each IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI 3: // equal ordered IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 1 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI ESAC ENDFOR ENDFOR // aggregate results CASE (imm8[3:2]) OF 0: // equal any IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR BoolRes.word[i].bit[j] ENDFOR ENDFOR 1: // ranges IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR (BoolRes.word[i].bit[j] AND BoolRes.word[i].bit[j+1]) j += 2 ENDFOR ENDFOR 2: // equal each IntRes1 := 0 FOR i := 0 to UpperBound IntRes1[i] := BoolRes.word[i].bit[i] ENDFOR 3: // equal ordered IntRes1 := (imm8[0] ? 0xFF : 0xFFFF) FOR i := 0 to UpperBound k := i FOR j := 0 to UpperBound-i IntRes1[i] := IntRes1[i] AND BoolRes.word[k].bit[j] k := k+1 ENDFOR ENDFOR ESAC // optionally negate results FOR i := 0 to UpperBound IF imm8[4] IF imm8[5] // only negate valid IF i >= lb // invalid, don't negate IntRes2[i] := IntRes1[i] ELSE // valid, negate IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // negate all IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // don't negate IntRes2[i] := IntRes1[i] FI ENDFOR // output IF imm8[6] // most significant bit tmp := UpperBound dst := tmp DO WHILE ((tmp >= 0) AND a[tmp] == 0) tmp := tmp - 1 dst := tmp OD ELSE // least significant bit tmp := 0 dst := tmp DO WHILE ((tmp <= UpperBound) AND a[tmp] == 0) tmp := tmp + 1 dst := tmp OD FI SSE4.2
nmmintrin.h
String Compare
Compare packed strings in "a" and "b" with lengths "la" and "lb" using the control in "imm8", and returns 1 if any character in "b" was null, and 0 otherwise. [strcmp_note] size := (imm8[0] ? 16 : 8) // 8 or 16-bit characters UpperBound := (128 / size) - 1 dst := (lb <= UpperBound) SSE4.2
nmmintrin.h
String Compare
Compare packed strings in "a" and "b" with lengths "la" and "lb" using the control in "imm8", and returns 1 if the resulting mask was non-zero, and 0 otherwise. [strcmp_note] size := (imm8[0] ? 16 : 8) // 8 or 16-bit characters UpperBound := (128 / size) - 1 BoolRes := 0 // compare all characters aInvalid := 0 bInvalid := 0 FOR i := 0 to UpperBound m := i*size FOR j := 0 to UpperBound n := j*size BoolRes.word[i].bit[j] := (a[m+size-1:m] == b[n+size-1:n]) ? 1 : 0 // invalidate characters after EOS IF i == la aInvalid := 1 FI IF j == lb bInvalid := 1 FI // override comparisons for invalid characters CASE (imm8[3:2]) OF 0: // equal any IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 1: // ranges IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 2: // equal each IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI 3: // equal ordered IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 1 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI ESAC ENDFOR ENDFOR // aggregate results CASE (imm8[3:2]) OF 0: // equal any IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR BoolRes.word[i].bit[j] ENDFOR ENDFOR 1: // ranges IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR (BoolRes.word[i].bit[j] AND BoolRes.word[i].bit[j+1]) j += 2 ENDFOR ENDFOR 2: // equal each IntRes1 := 0 FOR i := 0 to UpperBound IntRes1[i] := BoolRes.word[i].bit[i] ENDFOR 3: // equal ordered IntRes1 := (imm8[0] ? 0xFF : 0xFFFF) FOR i := 0 to UpperBound k := i FOR j := 0 to UpperBound-i IntRes1[i] := IntRes1[i] AND BoolRes.word[k].bit[j] k := k+1 ENDFOR ENDFOR ESAC // optionally negate results FOR i := 0 to UpperBound IF imm8[4] IF imm8[5] // only negate valid IF i >= lb // invalid, don't negate IntRes2[i] := IntRes1[i] ELSE // valid, negate IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // negate all IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // don't negate IntRes2[i] := IntRes1[i] FI ENDFOR // output dst := (IntRes2 != 0) SSE4.2
nmmintrin.h
String Compare
Compare packed strings in "a" and "b" with lengths "la" and "lb" using the control in "imm8", and returns 1 if any character in "a" was null, and 0 otherwise. [strcmp_note] size := (imm8[0] ? 16 : 8) // 8 or 16-bit characters UpperBound := (128 / size) - 1 dst := (la <= UpperBound) SSE4.2
nmmintrin.h
String Compare
Compare packed strings in "a" and "b" with lengths "la" and "lb" using the control in "imm8", and returns bit 0 of the resulting bit mask. [strcmp_note] size := (imm8[0] ? 16 : 8) // 8 or 16-bit characters UpperBound := (128 / size) - 1 BoolRes := 0 // compare all characters aInvalid := 0 bInvalid := 0 FOR i := 0 to UpperBound m := i*size FOR j := 0 to UpperBound n := j*size BoolRes.word[i].bit[j] := (a[m+size-1:m] == b[n+size-1:n]) ? 1 : 0 // invalidate characters after EOS IF i == la aInvalid := 1 FI IF j == lb bInvalid := 1 FI // override comparisons for invalid characters CASE (imm8[3:2]) OF 0: // equal any IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 1: // ranges IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 2: // equal each IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI 3: // equal ordered IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 1 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI ESAC ENDFOR ENDFOR // aggregate results CASE (imm8[3:2]) OF 0: // equal any IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR BoolRes.word[i].bit[j] ENDFOR ENDFOR 1: // ranges IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR (BoolRes.word[i].bit[j] AND BoolRes.word[i].bit[j+1]) j += 2 ENDFOR ENDFOR 2: // equal each IntRes1 := 0 FOR i := 0 to UpperBound IntRes1[i] := BoolRes.word[i].bit[i] ENDFOR 3: // equal ordered IntRes1 := (imm8[0] ? 0xFF : 0xFFFF) FOR i := 0 to UpperBound k := i FOR j := 0 to UpperBound-i IntRes1[i] := IntRes1[i] AND BoolRes.word[k].bit[j] k := k+1 ENDFOR ENDFOR ESAC // optionally negate results FOR i := 0 to UpperBound IF imm8[4] IF imm8[5] // only negate valid IF i >= lb // invalid, don't negate IntRes2[i] := IntRes1[i] ELSE // valid, negate IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // negate all IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // don't negate IntRes2[i] := IntRes1[i] FI ENDFOR // output dst := IntRes2[0] SSE4.2
nmmintrin.h
String Compare
Compare packed strings in "a" and "b" with lengths "la" and "lb" using the control in "imm8", and returns 1 if "b" did not contain a null character and the resulting mask was zero, and 0 otherwise. [strcmp_note] size := (imm8[0] ? 16 : 8) // 8 or 16-bit characters UpperBound := (128 / size) - 1 BoolRes := 0 // compare all characters aInvalid := 0 bInvalid := 0 FOR i := 0 to UpperBound m := i*size FOR j := 0 to UpperBound n := j*size BoolRes.word[i].bit[j] := (a[m+size-1:m] == b[n+size-1:n]) ? 1 : 0 // invalidate characters after EOS IF i == la aInvalid := 1 FI IF j == lb bInvalid := 1 FI // override comparisons for invalid characters CASE (imm8[3:2]) OF 0: // equal any IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 1: // ranges IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 FI 2: // equal each IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI 3: // equal ordered IF (!aInvalid && bInvalid) BoolRes.word[i].bit[j] := 0 ELSE IF (aInvalid && !bInvalid) BoolRes.word[i].bit[j] := 1 ELSE IF (aInvalid && bInvalid) BoolRes.word[i].bit[j] := 1 FI ESAC ENDFOR ENDFOR // aggregate results CASE (imm8[3:2]) OF 0: // equal any IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR BoolRes.word[i].bit[j] ENDFOR ENDFOR 1: // ranges IntRes1 := 0 FOR i := 0 to UpperBound FOR j := 0 to UpperBound IntRes1[i] := IntRes1[i] OR (BoolRes.word[i].bit[j] AND BoolRes.word[i].bit[j+1]) j += 2 ENDFOR ENDFOR 2: // equal each IntRes1 := 0 FOR i := 0 to UpperBound IntRes1[i] := BoolRes.word[i].bit[i] ENDFOR 3: // equal ordered IntRes1 := (imm8[0] ? 0xFF : 0xFFFF) FOR i := 0 to UpperBound k := i FOR j := 0 to UpperBound-i IntRes1[i] := IntRes1[i] AND BoolRes.word[k].bit[j] k := k+1 ENDFOR ENDFOR ESAC // optionally negate results FOR i := 0 to UpperBound IF imm8[4] IF imm8[5] // only negate valid IF i >= lb // invalid, don't negate IntRes2[i] := IntRes1[i] ELSE // valid, negate IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // negate all IntRes2[i] := -1 XOR IntRes1[i] FI ELSE // don't negate IntRes2[i] := IntRes1[i] FI ENDFOR // output dst := (IntRes2 == 0) AND (lb > UpperBound) SSE4.2
nmmintrin.h
String Compare
Compare packed signed 64-bit integers in "a" and "b" for greater-than, and store the results in "dst". FOR j := 0 to 1 i := j*64 dst[i+63:i] := ( a[i+63:i] > b[i+63:i] ) ? 0xFFFFFFFFFFFFFFFF : 0 ENDFOR SSE4.2
nmmintrin.h
Compare
Starting with the initial value in "crc", accumulates a CRC32 value for unsigned 8-bit integer "v", and stores the result in "dst". tmp1[7:0] := v[0:7] // bit reflection tmp2[31:0] := crc[0:31] // bit reflection tmp3[39:0] := tmp1[7:0] << 32 tmp4[39:0] := tmp2[31:0] << 8 tmp5[39:0] := tmp3[39:0] XOR tmp4[39:0] tmp6[31:0] := MOD2(tmp5[39:0], 0x11EDC6F41) // remainder from polynomial division modulus 2 dst[31:0] := tmp6[0:31] // bit reflection SSE4.2
nmmintrin.h
Cryptography
Starting with the initial value in "crc", accumulates a CRC32 value for unsigned 16-bit integer "v", and stores the result in "dst". tmp1[15:0] := v[0:15] // bit reflection tmp2[31:0] := crc[0:31] // bit reflection tmp3[47:0] := tmp1[15:0] << 32 tmp4[47:0] := tmp2[31:0] << 16 tmp5[47:0] := tmp3[47:0] XOR tmp4[47:0] tmp6[31:0] := MOD2(tmp5[47:0], 0x11EDC6F41) // remainder from polynomial division modulus 2 dst[31:0] := tmp6[0:31] // bit reflection SSE4.2
nmmintrin.h
Cryptography
Starting with the initial value in "crc", accumulates a CRC32 value for unsigned 32-bit integer "v", and stores the result in "dst". tmp1[31:0] := v[0:31] // bit reflection tmp2[31:0] := crc[0:31] // bit reflection tmp3[63:0] := tmp1[31:0] << 32 tmp4[63:0] := tmp2[31:0] << 32 tmp5[63:0] := tmp3[63:0] XOR tmp4[63:0] tmp6[31:0] := MOD2(tmp5[63:0], 0x11EDC6F41) // remainder from polynomial division modulus 2 dst[31:0] := tmp6[0:31] // bit reflection SSE4.2
nmmintrin.h
Cryptography
Starting with the initial value in "crc", accumulates a CRC32 value for unsigned 64-bit integer "v", and stores the result in "dst". tmp1[63:0] := v[0:63] // bit reflection tmp2[31:0] := crc[0:31] // bit reflection tmp3[95:0] := tmp1[31:0] << 32 tmp4[95:0] := tmp2[63:0] << 64 tmp5[95:0] := tmp3[95:0] XOR tmp4[95:0] tmp6[31:0] := MOD2(tmp5[95:0], 0x11EDC6F41) // remainder from polynomial division modulus 2 dst[31:0] := tmp6[0:31] // bit reflection SSE4.2
nmmintrin.h
Cryptography
Compute the absolute value of packed signed 8-bit integers in "a", and store the unsigned results in "dst". FOR j := 0 to 7 i := j*8 dst[i+7:i] := ABS(Int(a[i+7:i])) ENDFOR SSSE3
tmmintrin.h
Special Math Functions
Compute the absolute value of packed signed 8-bit integers in "a", and store the unsigned results in "dst". FOR j := 0 to 15 i := j*8 dst[i+7:i] := ABS(a[i+7:i]) ENDFOR SSSE3
tmmintrin.h
Special Math Functions
Compute the absolute value of packed signed 16-bit integers in "a", and store the unsigned results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := ABS(Int(a[i+15:i])) ENDFOR SSSE3
tmmintrin.h
Special Math Functions
Compute the absolute value of packed signed 16-bit integers in "a", and store the unsigned results in "dst". FOR j := 0 to 7 i := j*16 dst[i+15:i] := ABS(a[i+15:i]) ENDFOR SSSE3
tmmintrin.h
Special Math Functions
Compute the absolute value of packed signed 32-bit integers in "a", and store the unsigned results in "dst". FOR j := 0 to 1 i := j*32 dst[i+31:i] := ABS(a[i+31:i]) ENDFOR SSSE3
tmmintrin.h
Special Math Functions
Compute the absolute value of packed signed 32-bit integers in "a", and store the unsigned results in "dst". FOR j := 0 to 3 i := j*32 dst[i+31:i] := ABS(a[i+31:i]) ENDFOR SSSE3
tmmintrin.h
Special Math Functions
Shuffle packed 8-bit integers in "a" according to shuffle control mask in the corresponding 8-bit element of "b", and store the results in "dst". FOR j := 0 to 15 i := j*8 IF b[i+7] == 1 dst[i+7:i] := 0 ELSE index[3:0] := b[i+3:i] dst[i+7:i] := a[index*8+7:index*8] FI ENDFOR SSSE3
tmmintrin.h
Swizzle
Shuffle packed 8-bit integers in "a" according to shuffle control mask in the corresponding 8-bit element of "b", and store the results in "dst". FOR j := 0 to 7 i := j*8 IF b[i+7] == 1 dst[i+7:i] := 0 ELSE index[2:0] := b[i+2:i] dst[i+7:i] := a[index*8+7:index*8] FI ENDFOR SSSE3
tmmintrin.h
Swizzle
Concatenate 16-byte blocks in "a" and "b" into a 32-byte temporary result, shift the result right by "imm8" bytes, and store the low 16 bytes in "dst". tmp[255:0] := ((a[127:0] << 128)[255:0] OR b[127:0]) >> (imm8*8) dst[127:0] := tmp[127:0] SSSE3
tmmintrin.h
Miscellaneous
Concatenate 8-byte blocks in "a" and "b" into a 16-byte temporary result, shift the result right by "imm8" bytes, and store the low 16 bytes in "dst". tmp[127:0] := ((a[63:0] << 64)[127:0] OR b[63:0]) >> (imm8*8) dst[63:0] := tmp[63:0] SSSE3
tmmintrin.h
Miscellaneous
Horizontally add adjacent pairs of 16-bit integers in "a" and "b", and pack the signed 16-bit results in "dst". dst[15:0] := a[31:16] + a[15:0] dst[31:16] := a[63:48] + a[47:32] dst[47:32] := a[95:80] + a[79:64] dst[63:48] := a[127:112] + a[111:96] dst[79:64] := b[31:16] + b[15:0] dst[95:80] := b[63:48] + b[47:32] dst[111:96] := b[95:80] + b[79:64] dst[127:112] := b[127:112] + b[111:96] SSSE3
tmmintrin.h
Arithmetic
Horizontally add adjacent pairs of signed 16-bit integers in "a" and "b" using saturation, and pack the signed 16-bit results in "dst". dst[15:0] := Saturate16(a[31:16] + a[15:0]) dst[31:16] := Saturate16(a[63:48] + a[47:32]) dst[47:32] := Saturate16(a[95:80] + a[79:64]) dst[63:48] := Saturate16(a[127:112] + a[111:96]) dst[79:64] := Saturate16(b[31:16] + b[15:0]) dst[95:80] := Saturate16(b[63:48] + b[47:32]) dst[111:96] := Saturate16(b[95:80] + b[79:64]) dst[127:112] := Saturate16(b[127:112] + b[111:96]) SSSE3
tmmintrin.h
Arithmetic
Horizontally add adjacent pairs of 32-bit integers in "a" and "b", and pack the signed 32-bit results in "dst". dst[31:0] := a[63:32] + a[31:0] dst[63:32] := a[127:96] + a[95:64] dst[95:64] := b[63:32] + b[31:0] dst[127:96] := b[127:96] + b[95:64] SSSE3
tmmintrin.h
Arithmetic
Horizontally add adjacent pairs of 16-bit integers in "a" and "b", and pack the signed 16-bit results in "dst". dst[15:0] := a[31:16] + a[15:0] dst[31:16] := a[63:48] + a[47:32] dst[47:32] := b[31:16] + b[15:0] dst[63:48] := b[63:48] + b[47:32] SSSE3
tmmintrin.h
Arithmetic
Horizontally add adjacent pairs of 32-bit integers in "a" and "b", and pack the signed 32-bit results in "dst". dst[31:0] := a[63:32] + a[31:0] dst[63:32] := b[63:32] + b[31:0] SSSE3
tmmintrin.h
Arithmetic
Horizontally add adjacent pairs of signed 16-bit integers in "a" and "b" using saturation, and pack the signed 16-bit results in "dst". dst[15:0] := Saturate16(a[31:16] + a[15:0]) dst[31:16] := Saturate16(a[63:48] + a[47:32]) dst[47:32] := Saturate16(b[31:16] + b[15:0]) dst[63:48] := Saturate16(b[63:48] + b[47:32]) SSSE3
tmmintrin.h
Arithmetic
Horizontally subtract adjacent pairs of 16-bit integers in "a" and "b", and pack the signed 16-bit results in "dst". dst[15:0] := a[15:0] - a[31:16] dst[31:16] := a[47:32] - a[63:48] dst[47:32] := a[79:64] - a[95:80] dst[63:48] := a[111:96] - a[127:112] dst[79:64] := b[15:0] - b[31:16] dst[95:80] := b[47:32] - b[63:48] dst[111:96] := b[79:64] - b[95:80] dst[127:112] := b[111:96] - b[127:112] SSSE3
tmmintrin.h
Arithmetic
Horizontally subtract adjacent pairs of signed 16-bit integers in "a" and "b" using saturation, and pack the signed 16-bit results in "dst". dst[15:0] := Saturate16(a[15:0] - a[31:16]) dst[31:16] := Saturate16(a[47:32] - a[63:48]) dst[47:32] := Saturate16(a[79:64] - a[95:80]) dst[63:48] := Saturate16(a[111:96] - a[127:112]) dst[79:64] := Saturate16(b[15:0] - b[31:16]) dst[95:80] := Saturate16(b[47:32] - b[63:48]) dst[111:96] := Saturate16(b[79:64] - b[95:80]) dst[127:112] := Saturate16(b[111:96] - b[127:112]) SSSE3
tmmintrin.h
Arithmetic
Horizontally subtract adjacent pairs of 32-bit integers in "a" and "b", and pack the signed 32-bit results in "dst". dst[31:0] := a[31:0] - a[63:32] dst[63:32] := a[95:64] - a[127:96] dst[95:64] := b[31:0] - b[63:32] dst[127:96] := b[95:64] - b[127:96] SSSE3
tmmintrin.h
Arithmetic
Horizontally subtract adjacent pairs of 16-bit integers in "a" and "b", and pack the signed 16-bit results in "dst". dst[15:0] := a[15:0] - a[31:16] dst[31:16] := a[47:32] - a[63:48] dst[47:32] := b[15:0] - b[31:16] dst[63:48] := b[47:32] - b[63:48] SSSE3
tmmintrin.h
Arithmetic
Horizontally subtract adjacent pairs of 32-bit integers in "a" and "b", and pack the signed 32-bit results in "dst". dst[31:0] := a[31:0] - a[63:32] dst[63:32] := b[31:0] - b[63:32] SSSE3
tmmintrin.h
Arithmetic
Horizontally subtract adjacent pairs of signed 16-bit integers in "a" and "b" using saturation, and pack the signed 16-bit results in "dst". dst[15:0] := Saturate16(a[15:0] - a[31:16]) dst[31:16] := Saturate16(a[47:32] - a[63:48]) dst[47:32] := Saturate16(b[15:0] - b[31:16]) dst[63:48] := Saturate16(b[47:32] - b[63:48]) SSSE3
tmmintrin.h
Arithmetic
Vertically multiply each unsigned 8-bit integer from "a" with the corresponding signed 8-bit integer from "b", producing intermediate signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit integers, and pack the saturated results in "dst". FOR j := 0 to 7 i := j*16 dst[i+15:i] := Saturate16( a[i+15:i+8]*b[i+15:i+8] + a[i+7:i]*b[i+7:i] ) ENDFOR SSSE3
tmmintrin.h
Arithmetic
Vertically multiply each unsigned 8-bit integer from "a" with the corresponding signed 8-bit integer from "b", producing intermediate signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit integers, and pack the saturated results in "dst". FOR j := 0 to 3 i := j*16 dst[i+15:i] := Saturate16( a[i+15:i+8]*b[i+15:i+8] + a[i+7:i]*b[i+7:i] ) ENDFOR SSSE3
tmmintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Truncate each intermediate integer to the 18 most significant bits, round by adding 1, and store bits [16:1] to "dst". FOR j := 0 to 7 i := j*16 tmp[31:0] := ((SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i])) >> 14) + 1 dst[i+15:i] := tmp[16:1] ENDFOR SSSE3
tmmintrin.h
Arithmetic
Multiply packed signed 16-bit integers in "a" and "b", producing intermediate signed 32-bit integers. Truncate each intermediate integer to the 18 most significant bits, round by adding 1, and store bits [16:1] to "dst". FOR j := 0 to 3 i := j*16 tmp[31:0] := ((SignExtend32(a[i+15:i]) * SignExtend32(b[i+15:i])) >> 14) + 1 dst[i+15:i] := tmp[16:1] ENDFOR SSSE3
tmmintrin.h
Arithmetic
Negate packed 8-bit integers in "a" when the corresponding signed 8-bit integer in "b" is negative, and store the results in "dst". Element in "dst" are zeroed out when the corresponding element in "b" is zero. FOR j := 0 to 15 i := j*8 IF b[i+7:i] < 0 dst[i+7:i] := -(a[i+7:i]) ELSE IF b[i+7:i] == 0 dst[i+7:i] := 0 ELSE dst[i+7:i] := a[i+7:i] FI ENDFOR SSSE3
tmmintrin.h
Arithmetic
Negate packed 16-bit integers in "a" when the corresponding signed 16-bit integer in "b" is negative, and store the results in "dst". Element in "dst" are zeroed out when the corresponding element in "b" is zero. FOR j := 0 to 7 i := j*16 IF b[i+15:i] < 0 dst[i+15:i] := -(a[i+15:i]) ELSE IF b[i+15:i] == 0 dst[i+15:i] := 0 ELSE dst[i+15:i] := a[i+15:i] FI ENDFOR SSSE3
tmmintrin.h
Arithmetic
Negate packed 32-bit integers in "a" when the corresponding signed 32-bit integer in "b" is negative, and store the results in "dst". Element in "dst" are zeroed out when the corresponding element in "b" is zero. FOR j := 0 to 3 i := j*32 IF b[i+31:i] < 0 dst[i+31:i] := -(a[i+31:i]) ELSE IF b[i+31:i] == 0 dst[i+31:i] := 0 ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR SSSE3
tmmintrin.h
Arithmetic
Negate packed 8-bit integers in "a" when the corresponding signed 8-bit integer in "b" is negative, and store the results in "dst". Element in "dst" are zeroed out when the corresponding element in "b" is zero. FOR j := 0 to 7 i := j*8 IF b[i+7:i] < 0 dst[i+7:i] := -(a[i+7:i]) ELSE IF b[i+7:i] == 0 dst[i+7:i] := 0 ELSE dst[i+7:i] := a[i+7:i] FI ENDFOR SSSE3
tmmintrin.h
Arithmetic
Negate packed 16-bit integers in "a" when the corresponding signed 16-bit integer in "b" is negative, and store the results in "dst". Element in "dst" are zeroed out when the corresponding element in "b" is zero. FOR j := 0 to 3 i := j*16 IF b[i+15:i] < 0 dst[i+15:i] := -(a[i+15:i]) ELSE IF b[i+15:i] == 0 dst[i+15:i] := 0 ELSE dst[i+15:i] := a[i+15:i] FI ENDFOR SSSE3
tmmintrin.h
Arithmetic
Negate packed 32-bit integers in "a" when the corresponding signed 32-bit integer in "b" is negative, and store the results in "dst". Element in "dst" are zeroed out when the corresponding element in "b" is zero. FOR j := 0 to 1 i := j*32 IF b[i+31:i] < 0 dst[i+31:i] := -(a[i+31:i]) ELSE IF b[i+31:i] == 0 dst[i+31:i] := 0 ELSE dst[i+31:i] := a[i+31:i] FI ENDFOR SSSE3
tmmintrin.h
Arithmetic
Copy the current 64-bit value of the processor's time-stamp counter into "dst". dst[63:0] := TimeStampCounter TSC
immintrin.h
General Support
Mark the start of a TSX (HLE/RTM) suspend load address tracking region. If this is used inside a transactional region, subsequent loads are not added to the read set of the transaction. If this is used inside a suspend load address tracking region it will cause transaction abort. If this is used outside of a transactional region it behaves like a NOP. TSXLDTRK
immintrin.h
Miscellaneous
Mark the end of a TSX (HLE/RTM) suspend load address tracking region. If this is used inside a suspend load address tracking region it will end the suspend region and all following load addresses will be added to the transaction read set. If this is used inside an active transaction but not in a suspend region it will cause transaction abort. If this is used outside of a transactional region it behaves like a NOP. TSXLDTRK
immintrin.h
Miscellaneous
Clear the user interrupt flag (UIF). UINTR
immintrin.h
General Support
Send user interprocessor interrupts specified in unsigned 64-bit integer "__a". UINTR
immintrin.h
General Support
Sets the user interrupt flag (UIF). UINTR
immintrin.h
General Support
Store the current user interrupt flag (UIF) in unsigned 8-bit integer "dst". UINTR
immintrin.h
General Support
Reads the contents of a 64-bit MSR specified in "__A" into "dst". DEST := MSR[__A] USER_MSR
x86gprintrin.h
General Support
Writes the contents of "__B" into the 64-bit MSR specified in "__A". MSR[__A] := __B USER_MSR
x86gprintrin.h
General Support
Perform the last round of an AES encryption flow on data (state) in "a" using the round key in "RoundKey", and store the results in "dst"." FOR j := 0 to 1 i := j*128 a[i+127:i] := ShiftRows(a[i+127:i]) a[i+127:i] := SubBytes(a[i+127:i]) dst[i+127:i] := a[i+127:i] XOR RoundKey[i+127:i] ENDFOR dst[MAX:256] := 0 VAES AVX512VL
immintrin.h
Cryptography
Perform one round of an AES encryption flow on data (state) in "a" using the round key in "RoundKey", and store the results in "dst"." FOR j := 0 to 1 i := j*128 a[i+127:i] := ShiftRows(a[i+127:i]) a[i+127:i] := SubBytes(a[i+127:i]) a[i+127:i] := MixColumns(a[i+127:i]) dst[i+127:i] := a[i+127:i] XOR RoundKey[i+127:i] ENDFOR dst[MAX:256] := 0 VAES AVX512VL
immintrin.h
Cryptography
Perform the last round of an AES decryption flow on data (state) in "a" using the round key in "RoundKey", and store the results in "dst". FOR j := 0 to 1 i := j*128 a[i+127:i] := InvShiftRows(a[i+127:i]) a[i+127:i] := InvSubBytes(a[i+127:i]) dst[i+127:i] := a[i+127:i] XOR RoundKey[i+127:i] ENDFOR dst[MAX:256] := 0 VAES AVX512VL
immintrin.h
Cryptography
Perform one round of an AES decryption flow on data (state) in "a" using the round key in "RoundKey", and store the results in "dst". FOR j := 0 to 1 i := j*128 a[i+127:i] := InvShiftRows(a[i+127:i]) a[i+127:i] := InvSubBytes(a[i+127:i]) a[i+127:i] := InvMixColumns(a[i+127:i]) dst[i+127:i] := a[i+127:i] XOR RoundKey[i+127:i] ENDFOR dst[MAX:256] := 0 VAES AVX512VL
immintrin.h
Cryptography
Carry-less multiplication of one quadword of 'b' by one quadword of 'c', stores the 128-bit result in 'dst'. The immediate 'Imm8' is used to determine which quadwords of 'b' and 'c' should be used. DEFINE PCLMUL128(X,Y) { FOR i := 0 to 63 TMP[i] := X[ 0 ] and Y[ i ] FOR j := 1 to i TMP[i] := TMP[i] xor (X[ j ] and Y[ i - j ]) ENDFOR DEST[ i ] := TMP[ i ] ENDFOR FOR i := 64 to 126 TMP[i] := 0 FOR j := i - 63 to 63 TMP[i] := TMP[i] xor (X[ j ] and Y[ i - j ]) ENDFOR DEST[ i ] := TMP[ i ] ENDFOR DEST[127] := 0 RETURN DEST // 128b vector } FOR i := 0 to 1 IF Imm8[0] == 0 TEMP1 := b.m128[i].qword[0] ELSE TEMP1 := b.m128[i].qword[1] FI IF Imm8[4] == 0 TEMP2 := c.m128[i].qword[0] ELSE TEMP2 := c.m128[i].qword[1] FI dst.m128[i] := PCLMUL128(TEMP1, TEMP2) ENDFOR dst[MAX:256] := 0 VPCLMULQDQ AVX512VL
immintrin.h
Application-Targeted
Carry-less multiplication of one quadword of 'b' by one quadword of 'c', stores the 128-bit result in 'dst'. The immediate 'Imm8' is used to determine which quadwords of 'b' and 'c' should be used. DEFINE PCLMUL128(X,Y) { FOR i := 0 to 63 TMP[i] := X[ 0 ] and Y[ i ] FOR j := 1 to i TMP[i] := TMP[i] xor (X[ j ] and Y[ i - j ]) ENDFOR DEST[ i ] := TMP[ i ] ENDFOR FOR i := 64 to 126 TMP[i] := 0 FOR j := i - 63 to 63 TMP[i] := TMP[i] xor (X[ j ] and Y[ i - j ]) ENDFOR DEST[ i ] := TMP[ i ] ENDFOR DEST[127] := 0 RETURN DEST // 128b vector } FOR i := 0 to 3 IF Imm8[0] == 0 TEMP1 := b.m128[i].qword[0] ELSE TEMP1 := b.m128[i].qword[1] FI IF Imm8[4] == 0 TEMP2 := c.m128[i].qword[0] ELSE TEMP2 := c.m128[i].qword[1] FI dst.m128[i] := PCLMUL128(TEMP1, TEMP2) ENDFOR dst[MAX:512] := 0 VPCLMULQDQ
immintrin.h
Application-Targeted
Directs the processor to enter an implementation-dependent optimized state until the TSC reaches or exceeds the value specified in "counter". Bit 0 of "ctrl" selects between a lower power (cleared) or faster wakeup (set) optimized state. Returns the carry flag (CF). If the processor that executed a UMWAIT instruction wakes due to the expiration of the operating system timelimit, the instructions sets RFLAGS.CF; otherwise, that flag is cleared. WAITPKG
immintrin.h
Miscellaneous
Directs the processor to enter an implementation-dependent optimized state while monitoring a range of addresses. The instruction wakes up when the TSC reaches or exceeds the value specified in "counter" (if the monitoring hardware did not trigger beforehand). Bit 0 of "ctrl" selects between a lower power (cleared) or faster wakeup (set) optimized state. Returns the carry flag (CF). If the processor that executed a UMWAIT instruction wakes due to the expiration of the operating system timelimit, the instructions sets RFLAGS.CF; otherwise, that flag is cleared. WAITPKG
immintrin.h
Miscellaneous
Sets up a linear address range to be monitored by hardware and activates the monitor. The address range should be a writeback memory caching type. The address is contained in "a". WAITPKG
immintrin.h
Miscellaneous
Write back and do not flush internal caches. Initiate writing-back without flushing of external caches. WBNOINVD
immintrin.h
Miscellaneous
Perform a full or partial save of the enabled processor states to memory at "mem_addr"; xsavec differs from xsave in that it uses compaction and that it may use init optimization. State is saved based on bits [62:0] in "save_mask" and "XCR0". "mem_addr" must be aligned on a 64-byte boundary. mask[62:0] := save_mask[62:0] AND XCR0[62:0] FOR i := 0 to 62 IF mask[i] CASE (i) OF 0: mem_addr.FPUSSESave_Area[FPU] := ProcessorState[x87_FPU] 1: mem_addr.FPUSSESaveArea[SSE] := ProcessorState[SSE] DEFAULT: mem_addr.Ext_Save_Area[i] := ProcessorState[i] ESAC mem_addr.HEADER.XSTATE_BV[i] := INIT_FUNCTION[i] FI i := i + 1 ENDFOR XSAVE XSAVEC
immintrin.h
OS-Targeted
Perform a full or partial save of the enabled processor states to memory at "mem_addr"; xsavec differs from xsave in that it uses compaction and that it may use init optimization. State is saved based on bits [62:0] in "save_mask" and "XCR0". "mem_addr" must be aligned on a 64-byte boundary. mask[62:0] := save_mask[62:0] AND XCR0[62:0] FOR i := 0 to 62 IF mask[i] CASE (i) OF 0: mem_addr.FPUSSESave_Area[FPU] := ProcessorState[x87_FPU] 1: mem_addr.FPUSSESaveArea[SSE] := ProcessorState[SSE] DEFAULT: mem_addr.Ext_Save_Area[i] := ProcessorState[i] ESAC mem_addr.HEADER.XSTATE_BV[i] := INIT_FUNCTION[i] FI i := i + 1 ENDFOR XSAVE XSAVEC
immintrin.h
OS-Targeted
Perform a full or partial save of the enabled processor states to memory at "mem_addr". State is saved based on bits [62:0] in "save_mask" and "XCR0". "mem_addr" must be aligned on a 64-byte boundary. The hardware may optimize the manner in which data is saved. The performance of this instruction will be equal to or better than using the XSAVE instruction. mask[62:0] := save_mask[62:0] AND XCR0[62:0] FOR i := 0 to 62 IF mask[i] CASE (i) OF 0: mem_addr.FPUSSESave_Area[FPU] := ProcessorState[x87_FPU] 1: mem_addr.FPUSSESaveArea[SSE] := ProcessorState[SSE] 2: mem_addr.EXT_SAVE_Area2[YMM] := ProcessorState[YMM] DEFAULT: mem_addr.Ext_Save_Area[i] := ProcessorState[i] ESAC mem_addr.HEADER.XSTATE_BV[i] := INIT_FUNCTION[i] FI i := i + 1 ENDFOR XSAVE XSAVEOPT
immintrin.h
OS-Targeted
Perform a full or partial save of the enabled processor states to memory at "mem_addr". State is saved based on bits [62:0] in "save_mask" and "XCR0". "mem_addr" must be aligned on a 64-byte boundary. The hardware may optimize the manner in which data is saved. The performance of this instruction will be equal to or better than using the XSAVE64 instruction. mask[62:0] := save_mask[62:0] AND XCR0[62:0] FOR i := 0 to 62 IF mask[i] CASE (i) OF 0: mem_addr.FPUSSESave_Area[FPU] := ProcessorState[x87_FPU] 1: mem_addr.FPUSSESaveArea[SSE] := ProcessorState[SSE] 2: mem_addr.EXT_SAVE_Area2[YMM] := ProcessorState[YMM] DEFAULT: mem_addr.Ext_Save_Area[i] := ProcessorState[i] ESAC mem_addr.HEADER.XSTATE_BV[i] := INIT_FUNCTION[i] FI i := i + 1 ENDFOR XSAVE XSAVEOPT
immintrin.h
OS-Targeted
Perform a full or partial save of the enabled processor states to memory at "mem_addr"; xsaves differs from xsave in that it can save state components corresponding to bits set in IA32_XSS MSR and that it may use the modified optimization. State is saved based on bits [62:0] in "save_mask" and "XCR0". "mem_addr" must be aligned on a 64-byte boundary. mask[62:0] := save_mask[62:0] AND XCR0[62:0] FOR i := 0 to 62 IF mask[i] CASE (i) OF 0: mem_addr.FPUSSESave_Area[FPU] := ProcessorState[x87_FPU] 1: mem_addr.FPUSSESaveArea[SSE] := ProcessorState[SSE] DEFAULT: mem_addr.Ext_Save_Area[i] := ProcessorState[i] ESAC mem_addr.HEADER.XSTATE_BV[i] := INIT_FUNCTION[i] FI i := i + 1 ENDFOR XSAVE XSS
immintrin.h
OS-Targeted
Perform a full or partial save of the enabled processor states to memory at "mem_addr"; xsaves differs from xsave in that it can save state components corresponding to bits set in IA32_XSS MSR and that it may use the modified optimization. State is saved based on bits [62:0] in "save_mask" and "XCR0". "mem_addr" must be aligned on a 64-byte boundary. mask[62:0] := save_mask[62:0] AND XCR0[62:0] FOR i := 0 to 62 IF mask[i] CASE (i) OF 0: mem_addr.FPUSSESave_Area[FPU] := ProcessorState[x87_FPU] 1: mem_addr.FPUSSESaveArea[SSE] := ProcessorState[SSE] DEFAULT: mem_addr.Ext_Save_Area[i] := ProcessorState[i] ESAC mem_addr.HEADER.XSTATE_BV[i] := INIT_FUNCTION[i] FI i := i + 1 ENDFOR XSAVE XSS
immintrin.h
OS-Targeted
Perform a full or partial restore of the enabled processor states using the state information stored in memory at "mem_addr". xrstors differs from xrstor in that it can restore state components corresponding to bits set in the IA32_XSS MSR; xrstors cannot restore from an xsave area in which the extended region is in the standard form. State is restored based on bits [62:0] in "rs_mask", "XCR0", and "mem_addr.HEADER.XSTATE_BV". "mem_addr" must be aligned on a 64-byte boundary. st_mask := mem_addr.HEADER.XSTATE_BV[62:0] FOR i := 0 to 62 IF (rs_mask[i] AND XCR0[i]) IF st_mask[i] CASE (i) OF 0: ProcessorState[x87_FPU] := mem_addr.FPUSSESave_Area[FPU] 1: ProcessorState[SSE] := mem_addr.FPUSSESaveArea[SSE] DEFAULT: ProcessorState[i] := mem_addr.Ext_Save_Area[i] ESAC ELSE // ProcessorExtendedState := Processor Supplied Values CASE (i) OF 1: MXCSR := mem_addr.FPUSSESave_Area[SSE] ESAC FI FI i := i + 1 ENDFOR XSAVE XSS
immintrin.h
OS-Targeted
Perform a full or partial restore of the enabled processor states using the state information stored in memory at "mem_addr". xrstors differs from xrstor in that it can restore state components corresponding to bits set in the IA32_XSS MSR; xrstors cannot restore from an xsave area in which the extended region is in the standard form. State is restored based on bits [62:0] in "rs_mask", "XCR0", and "mem_addr.HEADER.XSTATE_BV". "mem_addr" must be aligned on a 64-byte boundary. st_mask := mem_addr.HEADER.XSTATE_BV[62:0] FOR i := 0 to 62 IF (rs_mask[i] AND XCR0[i]) IF st_mask[i] CASE (i) OF 0: ProcessorState[x87_FPU] := mem_addr.FPUSSESave_Area[FPU] 1: ProcessorState[SSE] := mem_addr.FPUSSESaveArea[SSE] DEFAULT: ProcessorState[i] := mem_addr.Ext_Save_Area[i] ESAC ELSE // ProcessorExtendedState := Processor Supplied Values CASE (i) OF 1: MXCSR := mem_addr.FPUSSESave_Area[SSE] ESAC FI FI i := i + 1 ENDFOR XSAVE XSS
immintrin.h
OS-Targeted
Copy up to 64-bits from the value of the extended control register (XCR) specified by "a" into "dst". Currently only XFEATURE_ENABLED_MASK XCR is supported. dst[63:0] := XCR[a] XSAVE
immintrin.h
OS-Targeted
Perform a full or partial restore of the enabled processor states using the state information stored in memory at "mem_addr". State is restored based on bits [62:0] in "rs_mask", "XCR0", and "mem_addr.HEADER.XSTATE_BV". "mem_addr" must be aligned on a 64-byte boundary. st_mask := mem_addr.HEADER.XSTATE_BV[62:0] FOR i := 0 to 62 IF (rs_mask[i] AND XCR0[i]) IF st_mask[i] CASE (i) OF 0: ProcessorState[x87_FPU] := mem_addr.FPUSSESave_Area[FPU] 1: ProcessorState[SSE] := mem_addr.FPUSSESaveArea[SSE] DEFAULT: ProcessorState[i] := mem_addr.Ext_Save_Area[i] ESAC ELSE // ProcessorExtendedState := Processor Supplied Values CASE (i) OF 1: MXCSR := mem_addr.FPUSSESave_Area[SSE] ESAC FI FI i := i + 1 ENDFOR XSAVE
immintrin.h
OS-Targeted
Perform a full or partial restore of the enabled processor states using the state information stored in memory at "mem_addr". State is restored based on bits [62:0] in "rs_mask", "XCR0", and "mem_addr.HEADER.XSTATE_BV". "mem_addr" must be aligned on a 64-byte boundary. st_mask := mem_addr.HEADER.XSTATE_BV[62:0] FOR i := 0 to 62 IF (rs_mask[i] AND XCR0[i]) IF st_mask[i] CASE (i) OF 0: ProcessorState[x87_FPU] := mem_addr.FPUSSESave_Area[FPU] 1: ProcessorState[SSE] := mem_addr.FPUSSESaveArea[SSE] DEFAULT: ProcessorState[i] := mem_addr.Ext_Save_Area[i] ESAC ELSE // ProcessorExtendedState := Processor Supplied Values CASE (i) OF 1: MXCSR := mem_addr.FPUSSESave_Area[SSE] ESAC FI FI i := i + 1 ENDFOR XSAVE
immintrin.h
OS-Targeted
Perform a full or partial save of the enabled processor states to memory at "mem_addr". State is saved based on bits [62:0] in "save_mask" and "XCR0". "mem_addr" must be aligned on a 64-byte boundary. mask[62:0] := save_mask[62:0] AND XCR0[62:0] FOR i := 0 to 62 IF mask[i] CASE (i) OF 0: mem_addr.FPUSSESave_Area[FPU] := ProcessorState[x87_FPU] 1: mem_addr.FPUSSESaveArea[SSE] := ProcessorState[SSE] DEFAULT: mem_addr.Ext_Save_Area[i] := ProcessorState[i] ESAC mem_addr.HEADER.XSTATE_BV[i] := INIT_FUNCTION[i] FI i := i + 1 ENDFOR XSAVE
immintrin.h
OS-Targeted
Perform a full or partial save of the enabled processor states to memory at "mem_addr". State is saved based on bits [62:0] in "save_mask" and "XCR0". "mem_addr" must be aligned on a 64-byte boundary. mask[62:0] := save_mask[62:0] AND XCR0[62:0] FOR i := 0 to 62 IF mask[i] CASE (i) OF 0: mem_addr.FPUSSESave_Area[FPU] := ProcessorState[x87_FPU] 1: mem_addr.FPUSSESaveArea[SSE] := ProcessorState[SSE] DEFAULT: mem_addr.Ext_Save_Area[i] := ProcessorState[i] ESAC mem_addr.HEADER.XSTATE_BV[i] := INIT_FUNCTION[i] FI i := i + 1 ENDFOR XSAVE
immintrin.h
OS-Targeted
Copy 64-bits from "val" to the extended control register (XCR) specified by "a". Currently only XFEATURE_ENABLED_MASK XCR is supported. XCR[a] := val[63:0] XSAVE
immintrin.h
OS-Targeted