mirror of
				https://git.proxmox.com/git/qemu
				synced 2025-10-31 16:49:58 +00:00 
			
		
		
		
	 a8170e5e97
			
		
	
	
		a8170e5e97
		
	
	
	
	
		
			
			target_phys_addr_t is unwieldly, violates the C standard (_t suffixes are
reserved) and its purpose doesn't match the name (most target_phys_addr_t
addresses are not target specific).  Replace it with a finger-friendly,
standards conformant hwaddr.
Outstanding patchsets can be fixed up with the command
  git rebase -i --exec 'find -name "*.[ch]"
                        | xargs s/target_phys_addr_t/hwaddr/g' origin
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
		
	
			
		
			
				
	
	
		
			2212 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2212 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU KVM support
 | |
|  *
 | |
|  * Copyright (C) 2006-2008 Qumranet Technologies
 | |
|  * Copyright IBM, Corp. 2008
 | |
|  *
 | |
|  * Authors:
 | |
|  *  Anthony Liguori   <aliguori@us.ibm.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <sys/types.h>
 | |
| #include <sys/ioctl.h>
 | |
| #include <sys/mman.h>
 | |
| #include <sys/utsname.h>
 | |
| 
 | |
| #include <linux/kvm.h>
 | |
| #include <linux/kvm_para.h>
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #include "sysemu.h"
 | |
| #include "kvm.h"
 | |
| #include "kvm_i386.h"
 | |
| #include "cpu.h"
 | |
| #include "gdbstub.h"
 | |
| #include "host-utils.h"
 | |
| #include "hw/pc.h"
 | |
| #include "hw/apic.h"
 | |
| #include "ioport.h"
 | |
| #include "hyperv.h"
 | |
| #include "hw/pci.h"
 | |
| 
 | |
| //#define DEBUG_KVM
 | |
| 
 | |
| #ifdef DEBUG_KVM
 | |
| #define DPRINTF(fmt, ...) \
 | |
|     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
 | |
| #else
 | |
| #define DPRINTF(fmt, ...) \
 | |
|     do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #define MSR_KVM_WALL_CLOCK  0x11
 | |
| #define MSR_KVM_SYSTEM_TIME 0x12
 | |
| 
 | |
| #ifndef BUS_MCEERR_AR
 | |
| #define BUS_MCEERR_AR 4
 | |
| #endif
 | |
| #ifndef BUS_MCEERR_AO
 | |
| #define BUS_MCEERR_AO 5
 | |
| #endif
 | |
| 
 | |
| const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
 | |
|     KVM_CAP_INFO(SET_TSS_ADDR),
 | |
|     KVM_CAP_INFO(EXT_CPUID),
 | |
|     KVM_CAP_INFO(MP_STATE),
 | |
|     KVM_CAP_LAST_INFO
 | |
| };
 | |
| 
 | |
| static bool has_msr_star;
 | |
| static bool has_msr_hsave_pa;
 | |
| static bool has_msr_tsc_deadline;
 | |
| static bool has_msr_async_pf_en;
 | |
| static bool has_msr_pv_eoi_en;
 | |
| static bool has_msr_misc_enable;
 | |
| static int lm_capable_kernel;
 | |
| 
 | |
| bool kvm_allows_irq0_override(void)
 | |
| {
 | |
|     return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
 | |
| }
 | |
| 
 | |
| static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
 | |
| {
 | |
|     struct kvm_cpuid2 *cpuid;
 | |
|     int r, size;
 | |
| 
 | |
|     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
 | |
|     cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
 | |
|     cpuid->nent = max;
 | |
|     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
 | |
|     if (r == 0 && cpuid->nent >= max) {
 | |
|         r = -E2BIG;
 | |
|     }
 | |
|     if (r < 0) {
 | |
|         if (r == -E2BIG) {
 | |
|             g_free(cpuid);
 | |
|             return NULL;
 | |
|         } else {
 | |
|             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
 | |
|                     strerror(-r));
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
|     return cpuid;
 | |
| }
 | |
| 
 | |
| struct kvm_para_features {
 | |
|     int cap;
 | |
|     int feature;
 | |
| } para_features[] = {
 | |
|     { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
 | |
|     { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
 | |
|     { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
 | |
|     { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
 | |
|     { -1, -1 }
 | |
| };
 | |
| 
 | |
| static int get_para_features(KVMState *s)
 | |
| {
 | |
|     int i, features = 0;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
 | |
|         if (kvm_check_extension(s, para_features[i].cap)) {
 | |
|             features |= (1 << para_features[i].feature);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return features;
 | |
| }
 | |
| 
 | |
| 
 | |
| uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
 | |
|                                       uint32_t index, int reg)
 | |
| {
 | |
|     struct kvm_cpuid2 *cpuid;
 | |
|     int i, max;
 | |
|     uint32_t ret = 0;
 | |
|     uint32_t cpuid_1_edx;
 | |
|     int has_kvm_features = 0;
 | |
| 
 | |
|     max = 1;
 | |
|     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
 | |
|         max *= 2;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < cpuid->nent; ++i) {
 | |
|         if (cpuid->entries[i].function == function &&
 | |
|             cpuid->entries[i].index == index) {
 | |
|             if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
 | |
|                 has_kvm_features = 1;
 | |
|             }
 | |
|             switch (reg) {
 | |
|             case R_EAX:
 | |
|                 ret = cpuid->entries[i].eax;
 | |
|                 break;
 | |
|             case R_EBX:
 | |
|                 ret = cpuid->entries[i].ebx;
 | |
|                 break;
 | |
|             case R_ECX:
 | |
|                 ret = cpuid->entries[i].ecx;
 | |
|                 break;
 | |
|             case R_EDX:
 | |
|                 ret = cpuid->entries[i].edx;
 | |
|                 switch (function) {
 | |
|                 case 1:
 | |
|                     /* KVM before 2.6.30 misreports the following features */
 | |
|                     ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
 | |
|                     break;
 | |
|                 case 0x80000001:
 | |
|                     /* On Intel, kvm returns cpuid according to the Intel spec,
 | |
|                      * so add missing bits according to the AMD spec:
 | |
|                      */
 | |
|                     cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
 | |
|                     ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
 | |
|                     break;
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     g_free(cpuid);
 | |
| 
 | |
|     /* fallback for older kernels */
 | |
|     if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
 | |
|         ret = get_para_features(s);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| typedef struct HWPoisonPage {
 | |
|     ram_addr_t ram_addr;
 | |
|     QLIST_ENTRY(HWPoisonPage) list;
 | |
| } HWPoisonPage;
 | |
| 
 | |
| static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
 | |
|     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
 | |
| 
 | |
| static void kvm_unpoison_all(void *param)
 | |
| {
 | |
|     HWPoisonPage *page, *next_page;
 | |
| 
 | |
|     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
 | |
|         QLIST_REMOVE(page, list);
 | |
|         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
 | |
|         g_free(page);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
 | |
| {
 | |
|     HWPoisonPage *page;
 | |
| 
 | |
|     QLIST_FOREACH(page, &hwpoison_page_list, list) {
 | |
|         if (page->ram_addr == ram_addr) {
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     page = g_malloc(sizeof(HWPoisonPage));
 | |
|     page->ram_addr = ram_addr;
 | |
|     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
 | |
| }
 | |
| 
 | |
| static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
 | |
|                                      int *max_banks)
 | |
| {
 | |
|     int r;
 | |
| 
 | |
|     r = kvm_check_extension(s, KVM_CAP_MCE);
 | |
|     if (r > 0) {
 | |
|         *max_banks = r;
 | |
|         return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
 | |
|     }
 | |
|     return -ENOSYS;
 | |
| }
 | |
| 
 | |
| static void kvm_mce_inject(CPUX86State *env, hwaddr paddr, int code)
 | |
| {
 | |
|     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
 | |
|                       MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
 | |
|     uint64_t mcg_status = MCG_STATUS_MCIP;
 | |
| 
 | |
|     if (code == BUS_MCEERR_AR) {
 | |
|         status |= MCI_STATUS_AR | 0x134;
 | |
|         mcg_status |= MCG_STATUS_EIPV;
 | |
|     } else {
 | |
|         status |= 0xc0;
 | |
|         mcg_status |= MCG_STATUS_RIPV;
 | |
|     }
 | |
|     cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
 | |
|                        (MCM_ADDR_PHYS << 6) | 0xc,
 | |
|                        cpu_x86_support_mca_broadcast(env) ?
 | |
|                        MCE_INJECT_BROADCAST : 0);
 | |
| }
 | |
| 
 | |
| static void hardware_memory_error(void)
 | |
| {
 | |
|     fprintf(stderr, "Hardware memory error!\n");
 | |
|     exit(1);
 | |
| }
 | |
| 
 | |
| int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
 | |
| {
 | |
|     ram_addr_t ram_addr;
 | |
|     hwaddr paddr;
 | |
| 
 | |
|     if ((env->mcg_cap & MCG_SER_P) && addr
 | |
|         && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
 | |
|         if (qemu_ram_addr_from_host(addr, &ram_addr) ||
 | |
|             !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
 | |
|             fprintf(stderr, "Hardware memory error for memory used by "
 | |
|                     "QEMU itself instead of guest system!\n");
 | |
|             /* Hope we are lucky for AO MCE */
 | |
|             if (code == BUS_MCEERR_AO) {
 | |
|                 return 0;
 | |
|             } else {
 | |
|                 hardware_memory_error();
 | |
|             }
 | |
|         }
 | |
|         kvm_hwpoison_page_add(ram_addr);
 | |
|         kvm_mce_inject(env, paddr, code);
 | |
|     } else {
 | |
|         if (code == BUS_MCEERR_AO) {
 | |
|             return 0;
 | |
|         } else if (code == BUS_MCEERR_AR) {
 | |
|             hardware_memory_error();
 | |
|         } else {
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_on_sigbus(int code, void *addr)
 | |
| {
 | |
|     if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
 | |
|         ram_addr_t ram_addr;
 | |
|         hwaddr paddr;
 | |
| 
 | |
|         /* Hope we are lucky for AO MCE */
 | |
|         if (qemu_ram_addr_from_host(addr, &ram_addr) ||
 | |
|             !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
 | |
|                                                 &paddr)) {
 | |
|             fprintf(stderr, "Hardware memory error for memory used by "
 | |
|                     "QEMU itself instead of guest system!: %p\n", addr);
 | |
|             return 0;
 | |
|         }
 | |
|         kvm_hwpoison_page_add(ram_addr);
 | |
|         kvm_mce_inject(first_cpu, paddr, code);
 | |
|     } else {
 | |
|         if (code == BUS_MCEERR_AO) {
 | |
|             return 0;
 | |
|         } else if (code == BUS_MCEERR_AR) {
 | |
|             hardware_memory_error();
 | |
|         } else {
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_inject_mce_oldstyle(CPUX86State *env)
 | |
| {
 | |
|     if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
 | |
|         unsigned int bank, bank_num = env->mcg_cap & 0xff;
 | |
|         struct kvm_x86_mce mce;
 | |
| 
 | |
|         env->exception_injected = -1;
 | |
| 
 | |
|         /*
 | |
|          * There must be at least one bank in use if an MCE is pending.
 | |
|          * Find it and use its values for the event injection.
 | |
|          */
 | |
|         for (bank = 0; bank < bank_num; bank++) {
 | |
|             if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         assert(bank < bank_num);
 | |
| 
 | |
|         mce.bank = bank;
 | |
|         mce.status = env->mce_banks[bank * 4 + 1];
 | |
|         mce.mcg_status = env->mcg_status;
 | |
|         mce.addr = env->mce_banks[bank * 4 + 2];
 | |
|         mce.misc = env->mce_banks[bank * 4 + 3];
 | |
| 
 | |
|         return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void cpu_update_state(void *opaque, int running, RunState state)
 | |
| {
 | |
|     CPUX86State *env = opaque;
 | |
| 
 | |
|     if (running) {
 | |
|         env->tsc_valid = false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int kvm_arch_init_vcpu(CPUX86State *env)
 | |
| {
 | |
|     struct {
 | |
|         struct kvm_cpuid2 cpuid;
 | |
|         struct kvm_cpuid_entry2 entries[100];
 | |
|     } QEMU_PACKED cpuid_data;
 | |
|     KVMState *s = env->kvm_state;
 | |
|     uint32_t limit, i, j, cpuid_i;
 | |
|     uint32_t unused;
 | |
|     struct kvm_cpuid_entry2 *c;
 | |
|     uint32_t signature[3];
 | |
|     int r;
 | |
| 
 | |
|     env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
 | |
| 
 | |
|     i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
 | |
|     j = env->cpuid_ext_features & CPUID_EXT_TSC_DEADLINE_TIMER;
 | |
|     env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
 | |
|     env->cpuid_ext_features |= i;
 | |
|     if (j && kvm_irqchip_in_kernel() &&
 | |
|         kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
 | |
|         env->cpuid_ext_features |= CPUID_EXT_TSC_DEADLINE_TIMER;
 | |
|     }
 | |
| 
 | |
|     env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
 | |
|                                                              0, R_EDX);
 | |
|     env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
 | |
|                                                              0, R_ECX);
 | |
|     env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
 | |
|                                                              0, R_EDX);
 | |
| 
 | |
|     cpuid_i = 0;
 | |
| 
 | |
|     /* Paravirtualization CPUIDs */
 | |
|     c = &cpuid_data.entries[cpuid_i++];
 | |
|     memset(c, 0, sizeof(*c));
 | |
|     c->function = KVM_CPUID_SIGNATURE;
 | |
|     if (!hyperv_enabled()) {
 | |
|         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
 | |
|         c->eax = 0;
 | |
|     } else {
 | |
|         memcpy(signature, "Microsoft Hv", 12);
 | |
|         c->eax = HYPERV_CPUID_MIN;
 | |
|     }
 | |
|     c->ebx = signature[0];
 | |
|     c->ecx = signature[1];
 | |
|     c->edx = signature[2];
 | |
| 
 | |
|     c = &cpuid_data.entries[cpuid_i++];
 | |
|     memset(c, 0, sizeof(*c));
 | |
|     c->function = KVM_CPUID_FEATURES;
 | |
|     c->eax = env->cpuid_kvm_features &
 | |
|         kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
 | |
| 
 | |
|     if (hyperv_enabled()) {
 | |
|         memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
 | |
|         c->eax = signature[0];
 | |
| 
 | |
|         c = &cpuid_data.entries[cpuid_i++];
 | |
|         memset(c, 0, sizeof(*c));
 | |
|         c->function = HYPERV_CPUID_VERSION;
 | |
|         c->eax = 0x00001bbc;
 | |
|         c->ebx = 0x00060001;
 | |
| 
 | |
|         c = &cpuid_data.entries[cpuid_i++];
 | |
|         memset(c, 0, sizeof(*c));
 | |
|         c->function = HYPERV_CPUID_FEATURES;
 | |
|         if (hyperv_relaxed_timing_enabled()) {
 | |
|             c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
 | |
|         }
 | |
|         if (hyperv_vapic_recommended()) {
 | |
|             c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
 | |
|             c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
 | |
|         }
 | |
| 
 | |
|         c = &cpuid_data.entries[cpuid_i++];
 | |
|         memset(c, 0, sizeof(*c));
 | |
|         c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
 | |
|         if (hyperv_relaxed_timing_enabled()) {
 | |
|             c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
 | |
|         }
 | |
|         if (hyperv_vapic_recommended()) {
 | |
|             c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
 | |
|         }
 | |
|         c->ebx = hyperv_get_spinlock_retries();
 | |
| 
 | |
|         c = &cpuid_data.entries[cpuid_i++];
 | |
|         memset(c, 0, sizeof(*c));
 | |
|         c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
 | |
|         c->eax = 0x40;
 | |
|         c->ebx = 0x40;
 | |
| 
 | |
|         c = &cpuid_data.entries[cpuid_i++];
 | |
|         memset(c, 0, sizeof(*c));
 | |
|         c->function = KVM_CPUID_SIGNATURE_NEXT;
 | |
|         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
 | |
|         c->eax = 0;
 | |
|         c->ebx = signature[0];
 | |
|         c->ecx = signature[1];
 | |
|         c->edx = signature[2];
 | |
|     }
 | |
| 
 | |
|     has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
 | |
| 
 | |
|     has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
 | |
| 
 | |
|     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
 | |
| 
 | |
|     for (i = 0; i <= limit; i++) {
 | |
|         c = &cpuid_data.entries[cpuid_i++];
 | |
| 
 | |
|         switch (i) {
 | |
|         case 2: {
 | |
|             /* Keep reading function 2 till all the input is received */
 | |
|             int times;
 | |
| 
 | |
|             c->function = i;
 | |
|             c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
 | |
|                        KVM_CPUID_FLAG_STATE_READ_NEXT;
 | |
|             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 | |
|             times = c->eax & 0xff;
 | |
| 
 | |
|             for (j = 1; j < times; ++j) {
 | |
|                 c = &cpuid_data.entries[cpuid_i++];
 | |
|                 c->function = i;
 | |
|                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
 | |
|                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|         case 4:
 | |
|         case 0xb:
 | |
|         case 0xd:
 | |
|             for (j = 0; ; j++) {
 | |
|                 if (i == 0xd && j == 64) {
 | |
|                     break;
 | |
|                 }
 | |
|                 c->function = i;
 | |
|                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 | |
|                 c->index = j;
 | |
|                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
 | |
| 
 | |
|                 if (i == 4 && c->eax == 0) {
 | |
|                     break;
 | |
|                 }
 | |
|                 if (i == 0xb && !(c->ecx & 0xff00)) {
 | |
|                     break;
 | |
|                 }
 | |
|                 if (i == 0xd && c->eax == 0) {
 | |
|                     continue;
 | |
|                 }
 | |
|                 c = &cpuid_data.entries[cpuid_i++];
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             c->function = i;
 | |
|             c->flags = 0;
 | |
|             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
 | |
| 
 | |
|     for (i = 0x80000000; i <= limit; i++) {
 | |
|         c = &cpuid_data.entries[cpuid_i++];
 | |
| 
 | |
|         c->function = i;
 | |
|         c->flags = 0;
 | |
|         cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 | |
|     }
 | |
| 
 | |
|     /* Call Centaur's CPUID instructions they are supported. */
 | |
|     if (env->cpuid_xlevel2 > 0) {
 | |
|         env->cpuid_ext4_features &=
 | |
|             kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
 | |
|         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
 | |
| 
 | |
|         for (i = 0xC0000000; i <= limit; i++) {
 | |
|             c = &cpuid_data.entries[cpuid_i++];
 | |
| 
 | |
|             c->function = i;
 | |
|             c->flags = 0;
 | |
|             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     cpuid_data.cpuid.nent = cpuid_i;
 | |
| 
 | |
|     if (((env->cpuid_version >> 8)&0xF) >= 6
 | |
|         && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
 | |
|         && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
 | |
|         uint64_t mcg_cap;
 | |
|         int banks;
 | |
|         int ret;
 | |
| 
 | |
|         ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
 | |
|         if (ret < 0) {
 | |
|             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
|         if (banks > MCE_BANKS_DEF) {
 | |
|             banks = MCE_BANKS_DEF;
 | |
|         }
 | |
|         mcg_cap &= MCE_CAP_DEF;
 | |
|         mcg_cap |= banks;
 | |
|         ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
 | |
|         if (ret < 0) {
 | |
|             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
|         env->mcg_cap = mcg_cap;
 | |
|     }
 | |
| 
 | |
|     qemu_add_vm_change_state_handler(cpu_update_state, env);
 | |
| 
 | |
|     cpuid_data.cpuid.padding = 0;
 | |
|     r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
 | |
|     if (r) {
 | |
|         return r;
 | |
|     }
 | |
| 
 | |
|     r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
 | |
|     if (r && env->tsc_khz) {
 | |
|         r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
 | |
|         if (r < 0) {
 | |
|             fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
 | |
|             return r;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (kvm_has_xsave()) {
 | |
|         env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void kvm_arch_reset_vcpu(CPUX86State *env)
 | |
| {
 | |
|     X86CPU *cpu = x86_env_get_cpu(env);
 | |
| 
 | |
|     env->exception_injected = -1;
 | |
|     env->interrupt_injected = -1;
 | |
|     env->xcr0 = 1;
 | |
|     if (kvm_irqchip_in_kernel()) {
 | |
|         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
 | |
|                                           KVM_MP_STATE_UNINITIALIZED;
 | |
|     } else {
 | |
|         env->mp_state = KVM_MP_STATE_RUNNABLE;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int kvm_get_supported_msrs(KVMState *s)
 | |
| {
 | |
|     static int kvm_supported_msrs;
 | |
|     int ret = 0;
 | |
| 
 | |
|     /* first time */
 | |
|     if (kvm_supported_msrs == 0) {
 | |
|         struct kvm_msr_list msr_list, *kvm_msr_list;
 | |
| 
 | |
|         kvm_supported_msrs = -1;
 | |
| 
 | |
|         /* Obtain MSR list from KVM.  These are the MSRs that we must
 | |
|          * save/restore */
 | |
|         msr_list.nmsrs = 0;
 | |
|         ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
 | |
|         if (ret < 0 && ret != -E2BIG) {
 | |
|             return ret;
 | |
|         }
 | |
|         /* Old kernel modules had a bug and could write beyond the provided
 | |
|            memory. Allocate at least a safe amount of 1K. */
 | |
|         kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
 | |
|                                               msr_list.nmsrs *
 | |
|                                               sizeof(msr_list.indices[0])));
 | |
| 
 | |
|         kvm_msr_list->nmsrs = msr_list.nmsrs;
 | |
|         ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
 | |
|         if (ret >= 0) {
 | |
|             int i;
 | |
| 
 | |
|             for (i = 0; i < kvm_msr_list->nmsrs; i++) {
 | |
|                 if (kvm_msr_list->indices[i] == MSR_STAR) {
 | |
|                     has_msr_star = true;
 | |
|                     continue;
 | |
|                 }
 | |
|                 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
 | |
|                     has_msr_hsave_pa = true;
 | |
|                     continue;
 | |
|                 }
 | |
|                 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
 | |
|                     has_msr_tsc_deadline = true;
 | |
|                     continue;
 | |
|                 }
 | |
|                 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
 | |
|                     has_msr_misc_enable = true;
 | |
|                     continue;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         g_free(kvm_msr_list);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_arch_init(KVMState *s)
 | |
| {
 | |
|     QemuOptsList *list = qemu_find_opts("machine");
 | |
|     uint64_t identity_base = 0xfffbc000;
 | |
|     uint64_t shadow_mem;
 | |
|     int ret;
 | |
|     struct utsname utsname;
 | |
| 
 | |
|     ret = kvm_get_supported_msrs(s);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     uname(&utsname);
 | |
|     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
 | |
| 
 | |
|     /*
 | |
|      * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
 | |
|      * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
 | |
|      * Since these must be part of guest physical memory, we need to allocate
 | |
|      * them, both by setting their start addresses in the kernel and by
 | |
|      * creating a corresponding e820 entry. We need 4 pages before the BIOS.
 | |
|      *
 | |
|      * Older KVM versions may not support setting the identity map base. In
 | |
|      * that case we need to stick with the default, i.e. a 256K maximum BIOS
 | |
|      * size.
 | |
|      */
 | |
|     if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
 | |
|         /* Allows up to 16M BIOSes. */
 | |
|         identity_base = 0xfeffc000;
 | |
| 
 | |
|         ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
 | |
|         if (ret < 0) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Set TSS base one page after EPT identity map. */
 | |
|     ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* Tell fw_cfg to notify the BIOS to reserve the range. */
 | |
|     ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
 | |
|     if (ret < 0) {
 | |
|         fprintf(stderr, "e820_add_entry() table is full\n");
 | |
|         return ret;
 | |
|     }
 | |
|     qemu_register_reset(kvm_unpoison_all, NULL);
 | |
| 
 | |
|     if (!QTAILQ_EMPTY(&list->head)) {
 | |
|         shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
 | |
|                                        "kvm_shadow_mem", -1);
 | |
|         if (shadow_mem != -1) {
 | |
|             shadow_mem /= 4096;
 | |
|             ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
 | |
|             if (ret < 0) {
 | |
|                 return ret;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
 | |
| {
 | |
|     lhs->selector = rhs->selector;
 | |
|     lhs->base = rhs->base;
 | |
|     lhs->limit = rhs->limit;
 | |
|     lhs->type = 3;
 | |
|     lhs->present = 1;
 | |
|     lhs->dpl = 3;
 | |
|     lhs->db = 0;
 | |
|     lhs->s = 1;
 | |
|     lhs->l = 0;
 | |
|     lhs->g = 0;
 | |
|     lhs->avl = 0;
 | |
|     lhs->unusable = 0;
 | |
| }
 | |
| 
 | |
| static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
 | |
| {
 | |
|     unsigned flags = rhs->flags;
 | |
|     lhs->selector = rhs->selector;
 | |
|     lhs->base = rhs->base;
 | |
|     lhs->limit = rhs->limit;
 | |
|     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
 | |
|     lhs->present = (flags & DESC_P_MASK) != 0;
 | |
|     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
 | |
|     lhs->db = (flags >> DESC_B_SHIFT) & 1;
 | |
|     lhs->s = (flags & DESC_S_MASK) != 0;
 | |
|     lhs->l = (flags >> DESC_L_SHIFT) & 1;
 | |
|     lhs->g = (flags & DESC_G_MASK) != 0;
 | |
|     lhs->avl = (flags & DESC_AVL_MASK) != 0;
 | |
|     lhs->unusable = 0;
 | |
|     lhs->padding = 0;
 | |
| }
 | |
| 
 | |
| static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
 | |
| {
 | |
|     lhs->selector = rhs->selector;
 | |
|     lhs->base = rhs->base;
 | |
|     lhs->limit = rhs->limit;
 | |
|     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
 | |
|                  (rhs->present * DESC_P_MASK) |
 | |
|                  (rhs->dpl << DESC_DPL_SHIFT) |
 | |
|                  (rhs->db << DESC_B_SHIFT) |
 | |
|                  (rhs->s * DESC_S_MASK) |
 | |
|                  (rhs->l << DESC_L_SHIFT) |
 | |
|                  (rhs->g * DESC_G_MASK) |
 | |
|                  (rhs->avl * DESC_AVL_MASK);
 | |
| }
 | |
| 
 | |
| static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
 | |
| {
 | |
|     if (set) {
 | |
|         *kvm_reg = *qemu_reg;
 | |
|     } else {
 | |
|         *qemu_reg = *kvm_reg;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int kvm_getput_regs(CPUX86State *env, int set)
 | |
| {
 | |
|     struct kvm_regs regs;
 | |
|     int ret = 0;
 | |
| 
 | |
|     if (!set) {
 | |
|         ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
 | |
|         if (ret < 0) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     kvm_getput_reg(®s.rax, &env->regs[R_EAX], set);
 | |
|     kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set);
 | |
|     kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set);
 | |
|     kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set);
 | |
|     kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set);
 | |
|     kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set);
 | |
|     kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set);
 | |
|     kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set);
 | |
| #ifdef TARGET_X86_64
 | |
|     kvm_getput_reg(®s.r8, &env->regs[8], set);
 | |
|     kvm_getput_reg(®s.r9, &env->regs[9], set);
 | |
|     kvm_getput_reg(®s.r10, &env->regs[10], set);
 | |
|     kvm_getput_reg(®s.r11, &env->regs[11], set);
 | |
|     kvm_getput_reg(®s.r12, &env->regs[12], set);
 | |
|     kvm_getput_reg(®s.r13, &env->regs[13], set);
 | |
|     kvm_getput_reg(®s.r14, &env->regs[14], set);
 | |
|     kvm_getput_reg(®s.r15, &env->regs[15], set);
 | |
| #endif
 | |
| 
 | |
|     kvm_getput_reg(®s.rflags, &env->eflags, set);
 | |
|     kvm_getput_reg(®s.rip, &env->eip, set);
 | |
| 
 | |
|     if (set) {
 | |
|         ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_put_fpu(CPUX86State *env)
 | |
| {
 | |
|     struct kvm_fpu fpu;
 | |
|     int i;
 | |
| 
 | |
|     memset(&fpu, 0, sizeof fpu);
 | |
|     fpu.fsw = env->fpus & ~(7 << 11);
 | |
|     fpu.fsw |= (env->fpstt & 7) << 11;
 | |
|     fpu.fcw = env->fpuc;
 | |
|     fpu.last_opcode = env->fpop;
 | |
|     fpu.last_ip = env->fpip;
 | |
|     fpu.last_dp = env->fpdp;
 | |
|     for (i = 0; i < 8; ++i) {
 | |
|         fpu.ftwx |= (!env->fptags[i]) << i;
 | |
|     }
 | |
|     memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
 | |
|     memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
 | |
|     fpu.mxcsr = env->mxcsr;
 | |
| 
 | |
|     return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
 | |
| }
 | |
| 
 | |
| #define XSAVE_FCW_FSW     0
 | |
| #define XSAVE_FTW_FOP     1
 | |
| #define XSAVE_CWD_RIP     2
 | |
| #define XSAVE_CWD_RDP     4
 | |
| #define XSAVE_MXCSR       6
 | |
| #define XSAVE_ST_SPACE    8
 | |
| #define XSAVE_XMM_SPACE   40
 | |
| #define XSAVE_XSTATE_BV   128
 | |
| #define XSAVE_YMMH_SPACE  144
 | |
| 
 | |
| static int kvm_put_xsave(CPUX86State *env)
 | |
| {
 | |
|     struct kvm_xsave* xsave = env->kvm_xsave_buf;
 | |
|     uint16_t cwd, swd, twd;
 | |
|     int i, r;
 | |
| 
 | |
|     if (!kvm_has_xsave()) {
 | |
|         return kvm_put_fpu(env);
 | |
|     }
 | |
| 
 | |
|     memset(xsave, 0, sizeof(struct kvm_xsave));
 | |
|     twd = 0;
 | |
|     swd = env->fpus & ~(7 << 11);
 | |
|     swd |= (env->fpstt & 7) << 11;
 | |
|     cwd = env->fpuc;
 | |
|     for (i = 0; i < 8; ++i) {
 | |
|         twd |= (!env->fptags[i]) << i;
 | |
|     }
 | |
|     xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
 | |
|     xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
 | |
|     memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
 | |
|     memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
 | |
|     memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
 | |
|             sizeof env->fpregs);
 | |
|     memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
 | |
|             sizeof env->xmm_regs);
 | |
|     xsave->region[XSAVE_MXCSR] = env->mxcsr;
 | |
|     *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
 | |
|     memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
 | |
|             sizeof env->ymmh_regs);
 | |
|     r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static int kvm_put_xcrs(CPUX86State *env)
 | |
| {
 | |
|     struct kvm_xcrs xcrs;
 | |
| 
 | |
|     if (!kvm_has_xcrs()) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     xcrs.nr_xcrs = 1;
 | |
|     xcrs.flags = 0;
 | |
|     xcrs.xcrs[0].xcr = 0;
 | |
|     xcrs.xcrs[0].value = env->xcr0;
 | |
|     return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
 | |
| }
 | |
| 
 | |
| static int kvm_put_sregs(CPUX86State *env)
 | |
| {
 | |
|     struct kvm_sregs sregs;
 | |
| 
 | |
|     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
 | |
|     if (env->interrupt_injected >= 0) {
 | |
|         sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
 | |
|                 (uint64_t)1 << (env->interrupt_injected % 64);
 | |
|     }
 | |
| 
 | |
|     if ((env->eflags & VM_MASK)) {
 | |
|         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
 | |
|         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
 | |
|         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
 | |
|         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
 | |
|         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
 | |
|         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
 | |
|     } else {
 | |
|         set_seg(&sregs.cs, &env->segs[R_CS]);
 | |
|         set_seg(&sregs.ds, &env->segs[R_DS]);
 | |
|         set_seg(&sregs.es, &env->segs[R_ES]);
 | |
|         set_seg(&sregs.fs, &env->segs[R_FS]);
 | |
|         set_seg(&sregs.gs, &env->segs[R_GS]);
 | |
|         set_seg(&sregs.ss, &env->segs[R_SS]);
 | |
|     }
 | |
| 
 | |
|     set_seg(&sregs.tr, &env->tr);
 | |
|     set_seg(&sregs.ldt, &env->ldt);
 | |
| 
 | |
|     sregs.idt.limit = env->idt.limit;
 | |
|     sregs.idt.base = env->idt.base;
 | |
|     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
 | |
|     sregs.gdt.limit = env->gdt.limit;
 | |
|     sregs.gdt.base = env->gdt.base;
 | |
|     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
 | |
| 
 | |
|     sregs.cr0 = env->cr[0];
 | |
|     sregs.cr2 = env->cr[2];
 | |
|     sregs.cr3 = env->cr[3];
 | |
|     sregs.cr4 = env->cr[4];
 | |
| 
 | |
|     sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
 | |
|     sregs.apic_base = cpu_get_apic_base(env->apic_state);
 | |
| 
 | |
|     sregs.efer = env->efer;
 | |
| 
 | |
|     return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
 | |
| }
 | |
| 
 | |
| static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
 | |
|                               uint32_t index, uint64_t value)
 | |
| {
 | |
|     entry->index = index;
 | |
|     entry->data = value;
 | |
| }
 | |
| 
 | |
| static int kvm_put_msrs(CPUX86State *env, int level)
 | |
| {
 | |
|     struct {
 | |
|         struct kvm_msrs info;
 | |
|         struct kvm_msr_entry entries[100];
 | |
|     } msr_data;
 | |
|     struct kvm_msr_entry *msrs = msr_data.entries;
 | |
|     int n = 0;
 | |
| 
 | |
|     kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
 | |
|     kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
 | |
|     kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
 | |
|     kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
 | |
|     if (has_msr_star) {
 | |
|         kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
 | |
|     }
 | |
|     if (has_msr_hsave_pa) {
 | |
|         kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
 | |
|     }
 | |
|     if (has_msr_tsc_deadline) {
 | |
|         kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
 | |
|     }
 | |
|     if (has_msr_misc_enable) {
 | |
|         kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
 | |
|                           env->msr_ia32_misc_enable);
 | |
|     }
 | |
| #ifdef TARGET_X86_64
 | |
|     if (lm_capable_kernel) {
 | |
|         kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
 | |
|         kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
 | |
|         kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
 | |
|         kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
 | |
|     }
 | |
| #endif
 | |
|     if (level == KVM_PUT_FULL_STATE) {
 | |
|         /*
 | |
|          * KVM is yet unable to synchronize TSC values of multiple VCPUs on
 | |
|          * writeback. Until this is fixed, we only write the offset to SMP
 | |
|          * guests after migration, desynchronizing the VCPUs, but avoiding
 | |
|          * huge jump-backs that would occur without any writeback at all.
 | |
|          */
 | |
|         if (smp_cpus == 1 || env->tsc != 0) {
 | |
|             kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
 | |
|         }
 | |
|     }
 | |
|     /*
 | |
|      * The following paravirtual MSRs have side effects on the guest or are
 | |
|      * too heavy for normal writeback. Limit them to reset or full state
 | |
|      * updates.
 | |
|      */
 | |
|     if (level >= KVM_PUT_RESET_STATE) {
 | |
|         kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
 | |
|                           env->system_time_msr);
 | |
|         kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
 | |
|         if (has_msr_async_pf_en) {
 | |
|             kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
 | |
|                               env->async_pf_en_msr);
 | |
|         }
 | |
|         if (has_msr_pv_eoi_en) {
 | |
|             kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
 | |
|                               env->pv_eoi_en_msr);
 | |
|         }
 | |
|         if (hyperv_hypercall_available()) {
 | |
|             kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
 | |
|             kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
 | |
|         }
 | |
|         if (hyperv_vapic_recommended()) {
 | |
|             kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
 | |
|         }
 | |
|     }
 | |
|     if (env->mcg_cap) {
 | |
|         int i;
 | |
| 
 | |
|         kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
 | |
|         kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
 | |
|         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
 | |
|             kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     msr_data.info.nmsrs = n;
 | |
| 
 | |
|     return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| static int kvm_get_fpu(CPUX86State *env)
 | |
| {
 | |
|     struct kvm_fpu fpu;
 | |
|     int i, ret;
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     env->fpstt = (fpu.fsw >> 11) & 7;
 | |
|     env->fpus = fpu.fsw;
 | |
|     env->fpuc = fpu.fcw;
 | |
|     env->fpop = fpu.last_opcode;
 | |
|     env->fpip = fpu.last_ip;
 | |
|     env->fpdp = fpu.last_dp;
 | |
|     for (i = 0; i < 8; ++i) {
 | |
|         env->fptags[i] = !((fpu.ftwx >> i) & 1);
 | |
|     }
 | |
|     memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
 | |
|     memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
 | |
|     env->mxcsr = fpu.mxcsr;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_get_xsave(CPUX86State *env)
 | |
| {
 | |
|     struct kvm_xsave* xsave = env->kvm_xsave_buf;
 | |
|     int ret, i;
 | |
|     uint16_t cwd, swd, twd;
 | |
| 
 | |
|     if (!kvm_has_xsave()) {
 | |
|         return kvm_get_fpu(env);
 | |
|     }
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
 | |
|     swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
 | |
|     twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
 | |
|     env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
 | |
|     env->fpstt = (swd >> 11) & 7;
 | |
|     env->fpus = swd;
 | |
|     env->fpuc = cwd;
 | |
|     for (i = 0; i < 8; ++i) {
 | |
|         env->fptags[i] = !((twd >> i) & 1);
 | |
|     }
 | |
|     memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
 | |
|     memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
 | |
|     env->mxcsr = xsave->region[XSAVE_MXCSR];
 | |
|     memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
 | |
|             sizeof env->fpregs);
 | |
|     memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
 | |
|             sizeof env->xmm_regs);
 | |
|     env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
 | |
|     memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
 | |
|             sizeof env->ymmh_regs);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_get_xcrs(CPUX86State *env)
 | |
| {
 | |
|     int i, ret;
 | |
|     struct kvm_xcrs xcrs;
 | |
| 
 | |
|     if (!kvm_has_xcrs()) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < xcrs.nr_xcrs; i++) {
 | |
|         /* Only support xcr0 now */
 | |
|         if (xcrs.xcrs[0].xcr == 0) {
 | |
|             env->xcr0 = xcrs.xcrs[0].value;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_get_sregs(CPUX86State *env)
 | |
| {
 | |
|     struct kvm_sregs sregs;
 | |
|     uint32_t hflags;
 | |
|     int bit, i, ret;
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* There can only be one pending IRQ set in the bitmap at a time, so try
 | |
|        to find it and save its number instead (-1 for none). */
 | |
|     env->interrupt_injected = -1;
 | |
|     for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
 | |
|         if (sregs.interrupt_bitmap[i]) {
 | |
|             bit = ctz64(sregs.interrupt_bitmap[i]);
 | |
|             env->interrupt_injected = i * 64 + bit;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     get_seg(&env->segs[R_CS], &sregs.cs);
 | |
|     get_seg(&env->segs[R_DS], &sregs.ds);
 | |
|     get_seg(&env->segs[R_ES], &sregs.es);
 | |
|     get_seg(&env->segs[R_FS], &sregs.fs);
 | |
|     get_seg(&env->segs[R_GS], &sregs.gs);
 | |
|     get_seg(&env->segs[R_SS], &sregs.ss);
 | |
| 
 | |
|     get_seg(&env->tr, &sregs.tr);
 | |
|     get_seg(&env->ldt, &sregs.ldt);
 | |
| 
 | |
|     env->idt.limit = sregs.idt.limit;
 | |
|     env->idt.base = sregs.idt.base;
 | |
|     env->gdt.limit = sregs.gdt.limit;
 | |
|     env->gdt.base = sregs.gdt.base;
 | |
| 
 | |
|     env->cr[0] = sregs.cr0;
 | |
|     env->cr[2] = sregs.cr2;
 | |
|     env->cr[3] = sregs.cr3;
 | |
|     env->cr[4] = sregs.cr4;
 | |
| 
 | |
|     env->efer = sregs.efer;
 | |
| 
 | |
|     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
 | |
| 
 | |
| #define HFLAG_COPY_MASK \
 | |
|     ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
 | |
|        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
 | |
|        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
 | |
|        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
 | |
| 
 | |
|     hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
 | |
|     hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
 | |
|     hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
 | |
|                 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
 | |
|     hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
 | |
|     hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
 | |
|                 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
 | |
| 
 | |
|     if (env->efer & MSR_EFER_LMA) {
 | |
|         hflags |= HF_LMA_MASK;
 | |
|     }
 | |
| 
 | |
|     if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
 | |
|         hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
 | |
|     } else {
 | |
|         hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
 | |
|                     (DESC_B_SHIFT - HF_CS32_SHIFT);
 | |
|         hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
 | |
|                     (DESC_B_SHIFT - HF_SS32_SHIFT);
 | |
|         if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
 | |
|             !(hflags & HF_CS32_MASK)) {
 | |
|             hflags |= HF_ADDSEG_MASK;
 | |
|         } else {
 | |
|             hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
 | |
|                         env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
 | |
|         }
 | |
|     }
 | |
|     env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_get_msrs(CPUX86State *env)
 | |
| {
 | |
|     struct {
 | |
|         struct kvm_msrs info;
 | |
|         struct kvm_msr_entry entries[100];
 | |
|     } msr_data;
 | |
|     struct kvm_msr_entry *msrs = msr_data.entries;
 | |
|     int ret, i, n;
 | |
| 
 | |
|     n = 0;
 | |
|     msrs[n++].index = MSR_IA32_SYSENTER_CS;
 | |
|     msrs[n++].index = MSR_IA32_SYSENTER_ESP;
 | |
|     msrs[n++].index = MSR_IA32_SYSENTER_EIP;
 | |
|     msrs[n++].index = MSR_PAT;
 | |
|     if (has_msr_star) {
 | |
|         msrs[n++].index = MSR_STAR;
 | |
|     }
 | |
|     if (has_msr_hsave_pa) {
 | |
|         msrs[n++].index = MSR_VM_HSAVE_PA;
 | |
|     }
 | |
|     if (has_msr_tsc_deadline) {
 | |
|         msrs[n++].index = MSR_IA32_TSCDEADLINE;
 | |
|     }
 | |
|     if (has_msr_misc_enable) {
 | |
|         msrs[n++].index = MSR_IA32_MISC_ENABLE;
 | |
|     }
 | |
| 
 | |
|     if (!env->tsc_valid) {
 | |
|         msrs[n++].index = MSR_IA32_TSC;
 | |
|         env->tsc_valid = !runstate_is_running();
 | |
|     }
 | |
| 
 | |
| #ifdef TARGET_X86_64
 | |
|     if (lm_capable_kernel) {
 | |
|         msrs[n++].index = MSR_CSTAR;
 | |
|         msrs[n++].index = MSR_KERNELGSBASE;
 | |
|         msrs[n++].index = MSR_FMASK;
 | |
|         msrs[n++].index = MSR_LSTAR;
 | |
|     }
 | |
| #endif
 | |
|     msrs[n++].index = MSR_KVM_SYSTEM_TIME;
 | |
|     msrs[n++].index = MSR_KVM_WALL_CLOCK;
 | |
|     if (has_msr_async_pf_en) {
 | |
|         msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
 | |
|     }
 | |
|     if (has_msr_pv_eoi_en) {
 | |
|         msrs[n++].index = MSR_KVM_PV_EOI_EN;
 | |
|     }
 | |
| 
 | |
|     if (env->mcg_cap) {
 | |
|         msrs[n++].index = MSR_MCG_STATUS;
 | |
|         msrs[n++].index = MSR_MCG_CTL;
 | |
|         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
 | |
|             msrs[n++].index = MSR_MC0_CTL + i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     msr_data.info.nmsrs = n;
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < ret; i++) {
 | |
|         switch (msrs[i].index) {
 | |
|         case MSR_IA32_SYSENTER_CS:
 | |
|             env->sysenter_cs = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_IA32_SYSENTER_ESP:
 | |
|             env->sysenter_esp = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_IA32_SYSENTER_EIP:
 | |
|             env->sysenter_eip = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_PAT:
 | |
|             env->pat = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_STAR:
 | |
|             env->star = msrs[i].data;
 | |
|             break;
 | |
| #ifdef TARGET_X86_64
 | |
|         case MSR_CSTAR:
 | |
|             env->cstar = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_KERNELGSBASE:
 | |
|             env->kernelgsbase = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_FMASK:
 | |
|             env->fmask = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_LSTAR:
 | |
|             env->lstar = msrs[i].data;
 | |
|             break;
 | |
| #endif
 | |
|         case MSR_IA32_TSC:
 | |
|             env->tsc = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_IA32_TSCDEADLINE:
 | |
|             env->tsc_deadline = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_VM_HSAVE_PA:
 | |
|             env->vm_hsave = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_KVM_SYSTEM_TIME:
 | |
|             env->system_time_msr = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_KVM_WALL_CLOCK:
 | |
|             env->wall_clock_msr = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_MCG_STATUS:
 | |
|             env->mcg_status = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_MCG_CTL:
 | |
|             env->mcg_ctl = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_IA32_MISC_ENABLE:
 | |
|             env->msr_ia32_misc_enable = msrs[i].data;
 | |
|             break;
 | |
|         default:
 | |
|             if (msrs[i].index >= MSR_MC0_CTL &&
 | |
|                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
 | |
|                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
 | |
|             }
 | |
|             break;
 | |
|         case MSR_KVM_ASYNC_PF_EN:
 | |
|             env->async_pf_en_msr = msrs[i].data;
 | |
|             break;
 | |
|         case MSR_KVM_PV_EOI_EN:
 | |
|             env->pv_eoi_en_msr = msrs[i].data;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_put_mp_state(CPUX86State *env)
 | |
| {
 | |
|     struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
 | |
| 
 | |
|     return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
 | |
| }
 | |
| 
 | |
| static int kvm_get_mp_state(CPUX86State *env)
 | |
| {
 | |
|     struct kvm_mp_state mp_state;
 | |
|     int ret;
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     env->mp_state = mp_state.mp_state;
 | |
|     if (kvm_irqchip_in_kernel()) {
 | |
|         env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_get_apic(CPUX86State *env)
 | |
| {
 | |
|     DeviceState *apic = env->apic_state;
 | |
|     struct kvm_lapic_state kapic;
 | |
|     int ret;
 | |
| 
 | |
|     if (apic && kvm_irqchip_in_kernel()) {
 | |
|         ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
 | |
|         if (ret < 0) {
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
|         kvm_get_apic_state(apic, &kapic);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_put_apic(CPUX86State *env)
 | |
| {
 | |
|     DeviceState *apic = env->apic_state;
 | |
|     struct kvm_lapic_state kapic;
 | |
| 
 | |
|     if (apic && kvm_irqchip_in_kernel()) {
 | |
|         kvm_put_apic_state(apic, &kapic);
 | |
| 
 | |
|         return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_put_vcpu_events(CPUX86State *env, int level)
 | |
| {
 | |
|     struct kvm_vcpu_events events;
 | |
| 
 | |
|     if (!kvm_has_vcpu_events()) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     events.exception.injected = (env->exception_injected >= 0);
 | |
|     events.exception.nr = env->exception_injected;
 | |
|     events.exception.has_error_code = env->has_error_code;
 | |
|     events.exception.error_code = env->error_code;
 | |
|     events.exception.pad = 0;
 | |
| 
 | |
|     events.interrupt.injected = (env->interrupt_injected >= 0);
 | |
|     events.interrupt.nr = env->interrupt_injected;
 | |
|     events.interrupt.soft = env->soft_interrupt;
 | |
| 
 | |
|     events.nmi.injected = env->nmi_injected;
 | |
|     events.nmi.pending = env->nmi_pending;
 | |
|     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
 | |
|     events.nmi.pad = 0;
 | |
| 
 | |
|     events.sipi_vector = env->sipi_vector;
 | |
| 
 | |
|     events.flags = 0;
 | |
|     if (level >= KVM_PUT_RESET_STATE) {
 | |
|         events.flags |=
 | |
|             KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
 | |
|     }
 | |
| 
 | |
|     return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
 | |
| }
 | |
| 
 | |
| static int kvm_get_vcpu_events(CPUX86State *env)
 | |
| {
 | |
|     struct kvm_vcpu_events events;
 | |
|     int ret;
 | |
| 
 | |
|     if (!kvm_has_vcpu_events()) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
 | |
|     if (ret < 0) {
 | |
|        return ret;
 | |
|     }
 | |
|     env->exception_injected =
 | |
|        events.exception.injected ? events.exception.nr : -1;
 | |
|     env->has_error_code = events.exception.has_error_code;
 | |
|     env->error_code = events.exception.error_code;
 | |
| 
 | |
|     env->interrupt_injected =
 | |
|         events.interrupt.injected ? events.interrupt.nr : -1;
 | |
|     env->soft_interrupt = events.interrupt.soft;
 | |
| 
 | |
|     env->nmi_injected = events.nmi.injected;
 | |
|     env->nmi_pending = events.nmi.pending;
 | |
|     if (events.nmi.masked) {
 | |
|         env->hflags2 |= HF2_NMI_MASK;
 | |
|     } else {
 | |
|         env->hflags2 &= ~HF2_NMI_MASK;
 | |
|     }
 | |
| 
 | |
|     env->sipi_vector = events.sipi_vector;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_guest_debug_workarounds(CPUX86State *env)
 | |
| {
 | |
|     int ret = 0;
 | |
|     unsigned long reinject_trap = 0;
 | |
| 
 | |
|     if (!kvm_has_vcpu_events()) {
 | |
|         if (env->exception_injected == 1) {
 | |
|             reinject_trap = KVM_GUESTDBG_INJECT_DB;
 | |
|         } else if (env->exception_injected == 3) {
 | |
|             reinject_trap = KVM_GUESTDBG_INJECT_BP;
 | |
|         }
 | |
|         env->exception_injected = -1;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
 | |
|      * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
 | |
|      * by updating the debug state once again if single-stepping is on.
 | |
|      * Another reason to call kvm_update_guest_debug here is a pending debug
 | |
|      * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
 | |
|      * reinject them via SET_GUEST_DEBUG.
 | |
|      */
 | |
|     if (reinject_trap ||
 | |
|         (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
 | |
|         ret = kvm_update_guest_debug(env, reinject_trap);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_put_debugregs(CPUX86State *env)
 | |
| {
 | |
|     struct kvm_debugregs dbgregs;
 | |
|     int i;
 | |
| 
 | |
|     if (!kvm_has_debugregs()) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         dbgregs.db[i] = env->dr[i];
 | |
|     }
 | |
|     dbgregs.dr6 = env->dr[6];
 | |
|     dbgregs.dr7 = env->dr[7];
 | |
|     dbgregs.flags = 0;
 | |
| 
 | |
|     return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
 | |
| }
 | |
| 
 | |
| static int kvm_get_debugregs(CPUX86State *env)
 | |
| {
 | |
|     struct kvm_debugregs dbgregs;
 | |
|     int i, ret;
 | |
| 
 | |
|     if (!kvm_has_debugregs()) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         env->dr[i] = dbgregs.db[i];
 | |
|     }
 | |
|     env->dr[4] = env->dr[6] = dbgregs.dr6;
 | |
|     env->dr[5] = env->dr[7] = dbgregs.dr7;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_put_registers(CPUX86State *env, int level)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
 | |
| 
 | |
|     ret = kvm_getput_regs(env, 1);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     ret = kvm_put_xsave(env);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     ret = kvm_put_xcrs(env);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     ret = kvm_put_sregs(env);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     /* must be before kvm_put_msrs */
 | |
|     ret = kvm_inject_mce_oldstyle(env);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     ret = kvm_put_msrs(env, level);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     if (level >= KVM_PUT_RESET_STATE) {
 | |
|         ret = kvm_put_mp_state(env);
 | |
|         if (ret < 0) {
 | |
|             return ret;
 | |
|         }
 | |
|         ret = kvm_put_apic(env);
 | |
|         if (ret < 0) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
|     ret = kvm_put_vcpu_events(env, level);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     ret = kvm_put_debugregs(env);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     /* must be last */
 | |
|     ret = kvm_guest_debug_workarounds(env);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_get_registers(CPUX86State *env)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
 | |
| 
 | |
|     ret = kvm_getput_regs(env, 0);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     ret = kvm_get_xsave(env);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     ret = kvm_get_xcrs(env);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     ret = kvm_get_sregs(env);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     ret = kvm_get_msrs(env);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     ret = kvm_get_mp_state(env);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     ret = kvm_get_apic(env);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     ret = kvm_get_vcpu_events(env);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     ret = kvm_get_debugregs(env);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     /* Inject NMI */
 | |
|     if (env->interrupt_request & CPU_INTERRUPT_NMI) {
 | |
|         env->interrupt_request &= ~CPU_INTERRUPT_NMI;
 | |
|         DPRINTF("injected NMI\n");
 | |
|         ret = kvm_vcpu_ioctl(env, KVM_NMI);
 | |
|         if (ret < 0) {
 | |
|             fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
 | |
|                     strerror(-ret));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!kvm_irqchip_in_kernel()) {
 | |
|         /* Force the VCPU out of its inner loop to process any INIT requests
 | |
|          * or pending TPR access reports. */
 | |
|         if (env->interrupt_request &
 | |
|             (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
 | |
|             env->exit_request = 1;
 | |
|         }
 | |
| 
 | |
|         /* Try to inject an interrupt if the guest can accept it */
 | |
|         if (run->ready_for_interrupt_injection &&
 | |
|             (env->interrupt_request & CPU_INTERRUPT_HARD) &&
 | |
|             (env->eflags & IF_MASK)) {
 | |
|             int irq;
 | |
| 
 | |
|             env->interrupt_request &= ~CPU_INTERRUPT_HARD;
 | |
|             irq = cpu_get_pic_interrupt(env);
 | |
|             if (irq >= 0) {
 | |
|                 struct kvm_interrupt intr;
 | |
| 
 | |
|                 intr.irq = irq;
 | |
|                 DPRINTF("injected interrupt %d\n", irq);
 | |
|                 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
 | |
|                 if (ret < 0) {
 | |
|                     fprintf(stderr,
 | |
|                             "KVM: injection failed, interrupt lost (%s)\n",
 | |
|                             strerror(-ret));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* If we have an interrupt but the guest is not ready to receive an
 | |
|          * interrupt, request an interrupt window exit.  This will
 | |
|          * cause a return to userspace as soon as the guest is ready to
 | |
|          * receive interrupts. */
 | |
|         if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
 | |
|             run->request_interrupt_window = 1;
 | |
|         } else {
 | |
|             run->request_interrupt_window = 0;
 | |
|         }
 | |
| 
 | |
|         DPRINTF("setting tpr\n");
 | |
|         run->cr8 = cpu_get_apic_tpr(env->apic_state);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
 | |
| {
 | |
|     if (run->if_flag) {
 | |
|         env->eflags |= IF_MASK;
 | |
|     } else {
 | |
|         env->eflags &= ~IF_MASK;
 | |
|     }
 | |
|     cpu_set_apic_tpr(env->apic_state, run->cr8);
 | |
|     cpu_set_apic_base(env->apic_state, run->apic_base);
 | |
| }
 | |
| 
 | |
| int kvm_arch_process_async_events(CPUX86State *env)
 | |
| {
 | |
|     X86CPU *cpu = x86_env_get_cpu(env);
 | |
| 
 | |
|     if (env->interrupt_request & CPU_INTERRUPT_MCE) {
 | |
|         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
 | |
|         assert(env->mcg_cap);
 | |
| 
 | |
|         env->interrupt_request &= ~CPU_INTERRUPT_MCE;
 | |
| 
 | |
|         kvm_cpu_synchronize_state(env);
 | |
| 
 | |
|         if (env->exception_injected == EXCP08_DBLE) {
 | |
|             /* this means triple fault */
 | |
|             qemu_system_reset_request();
 | |
|             env->exit_request = 1;
 | |
|             return 0;
 | |
|         }
 | |
|         env->exception_injected = EXCP12_MCHK;
 | |
|         env->has_error_code = 0;
 | |
| 
 | |
|         env->halted = 0;
 | |
|         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
 | |
|             env->mp_state = KVM_MP_STATE_RUNNABLE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (kvm_irqchip_in_kernel()) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (env->interrupt_request & CPU_INTERRUPT_POLL) {
 | |
|         env->interrupt_request &= ~CPU_INTERRUPT_POLL;
 | |
|         apic_poll_irq(env->apic_state);
 | |
|     }
 | |
|     if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
 | |
|          (env->eflags & IF_MASK)) ||
 | |
|         (env->interrupt_request & CPU_INTERRUPT_NMI)) {
 | |
|         env->halted = 0;
 | |
|     }
 | |
|     if (env->interrupt_request & CPU_INTERRUPT_INIT) {
 | |
|         kvm_cpu_synchronize_state(env);
 | |
|         do_cpu_init(cpu);
 | |
|     }
 | |
|     if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
 | |
|         kvm_cpu_synchronize_state(env);
 | |
|         do_cpu_sipi(cpu);
 | |
|     }
 | |
|     if (env->interrupt_request & CPU_INTERRUPT_TPR) {
 | |
|         env->interrupt_request &= ~CPU_INTERRUPT_TPR;
 | |
|         kvm_cpu_synchronize_state(env);
 | |
|         apic_handle_tpr_access_report(env->apic_state, env->eip,
 | |
|                                       env->tpr_access_type);
 | |
|     }
 | |
| 
 | |
|     return env->halted;
 | |
| }
 | |
| 
 | |
| static int kvm_handle_halt(CPUX86State *env)
 | |
| {
 | |
|     if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
 | |
|           (env->eflags & IF_MASK)) &&
 | |
|         !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
 | |
|         env->halted = 1;
 | |
|         return EXCP_HLT;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_handle_tpr_access(CPUX86State *env)
 | |
| {
 | |
|     struct kvm_run *run = env->kvm_run;
 | |
| 
 | |
|     apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
 | |
|                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
 | |
|                                                            : TPR_ACCESS_READ);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
 | |
| {
 | |
|     static const uint8_t int3 = 0xcc;
 | |
| 
 | |
|     if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
 | |
|         cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
 | |
|         return -EINVAL;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
 | |
| {
 | |
|     uint8_t int3;
 | |
| 
 | |
|     if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
 | |
|         cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
 | |
|         return -EINVAL;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static struct {
 | |
|     target_ulong addr;
 | |
|     int len;
 | |
|     int type;
 | |
| } hw_breakpoint[4];
 | |
| 
 | |
| static int nb_hw_breakpoint;
 | |
| 
 | |
| static int find_hw_breakpoint(target_ulong addr, int len, int type)
 | |
| {
 | |
|     int n;
 | |
| 
 | |
|     for (n = 0; n < nb_hw_breakpoint; n++) {
 | |
|         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
 | |
|             (hw_breakpoint[n].len == len || len == -1)) {
 | |
|             return n;
 | |
|         }
 | |
|     }
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 | |
|                                   target_ulong len, int type)
 | |
| {
 | |
|     switch (type) {
 | |
|     case GDB_BREAKPOINT_HW:
 | |
|         len = 1;
 | |
|         break;
 | |
|     case GDB_WATCHPOINT_WRITE:
 | |
|     case GDB_WATCHPOINT_ACCESS:
 | |
|         switch (len) {
 | |
|         case 1:
 | |
|             break;
 | |
|         case 2:
 | |
|         case 4:
 | |
|         case 8:
 | |
|             if (addr & (len - 1)) {
 | |
|                 return -EINVAL;
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             return -EINVAL;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         return -ENOSYS;
 | |
|     }
 | |
| 
 | |
|     if (nb_hw_breakpoint == 4) {
 | |
|         return -ENOBUFS;
 | |
|     }
 | |
|     if (find_hw_breakpoint(addr, len, type) >= 0) {
 | |
|         return -EEXIST;
 | |
|     }
 | |
|     hw_breakpoint[nb_hw_breakpoint].addr = addr;
 | |
|     hw_breakpoint[nb_hw_breakpoint].len = len;
 | |
|     hw_breakpoint[nb_hw_breakpoint].type = type;
 | |
|     nb_hw_breakpoint++;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_remove_hw_breakpoint(target_ulong addr,
 | |
|                                   target_ulong len, int type)
 | |
| {
 | |
|     int n;
 | |
| 
 | |
|     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
 | |
|     if (n < 0) {
 | |
|         return -ENOENT;
 | |
|     }
 | |
|     nb_hw_breakpoint--;
 | |
|     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void kvm_arch_remove_all_hw_breakpoints(void)
 | |
| {
 | |
|     nb_hw_breakpoint = 0;
 | |
| }
 | |
| 
 | |
| static CPUWatchpoint hw_watchpoint;
 | |
| 
 | |
| static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
 | |
| {
 | |
|     int ret = 0;
 | |
|     int n;
 | |
| 
 | |
|     if (arch_info->exception == 1) {
 | |
|         if (arch_info->dr6 & (1 << 14)) {
 | |
|             if (cpu_single_env->singlestep_enabled) {
 | |
|                 ret = EXCP_DEBUG;
 | |
|             }
 | |
|         } else {
 | |
|             for (n = 0; n < 4; n++) {
 | |
|                 if (arch_info->dr6 & (1 << n)) {
 | |
|                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
 | |
|                     case 0x0:
 | |
|                         ret = EXCP_DEBUG;
 | |
|                         break;
 | |
|                     case 0x1:
 | |
|                         ret = EXCP_DEBUG;
 | |
|                         cpu_single_env->watchpoint_hit = &hw_watchpoint;
 | |
|                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
 | |
|                         hw_watchpoint.flags = BP_MEM_WRITE;
 | |
|                         break;
 | |
|                     case 0x3:
 | |
|                         ret = EXCP_DEBUG;
 | |
|                         cpu_single_env->watchpoint_hit = &hw_watchpoint;
 | |
|                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
 | |
|                         hw_watchpoint.flags = BP_MEM_ACCESS;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
 | |
|         ret = EXCP_DEBUG;
 | |
|     }
 | |
|     if (ret == 0) {
 | |
|         cpu_synchronize_state(cpu_single_env);
 | |
|         assert(cpu_single_env->exception_injected == -1);
 | |
| 
 | |
|         /* pass to guest */
 | |
|         cpu_single_env->exception_injected = arch_info->exception;
 | |
|         cpu_single_env->has_error_code = 0;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
 | |
| {
 | |
|     const uint8_t type_code[] = {
 | |
|         [GDB_BREAKPOINT_HW] = 0x0,
 | |
|         [GDB_WATCHPOINT_WRITE] = 0x1,
 | |
|         [GDB_WATCHPOINT_ACCESS] = 0x3
 | |
|     };
 | |
|     const uint8_t len_code[] = {
 | |
|         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
 | |
|     };
 | |
|     int n;
 | |
| 
 | |
|     if (kvm_sw_breakpoints_active(env)) {
 | |
|         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
 | |
|     }
 | |
|     if (nb_hw_breakpoint > 0) {
 | |
|         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
 | |
|         dbg->arch.debugreg[7] = 0x0600;
 | |
|         for (n = 0; n < nb_hw_breakpoint; n++) {
 | |
|             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
 | |
|             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
 | |
|                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
 | |
|                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool host_supports_vmx(void)
 | |
| {
 | |
|     uint32_t ecx, unused;
 | |
| 
 | |
|     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
 | |
|     return ecx & CPUID_EXT_VMX;
 | |
| }
 | |
| 
 | |
| #define VMX_INVALID_GUEST_STATE 0x80000021
 | |
| 
 | |
| int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
 | |
| {
 | |
|     uint64_t code;
 | |
|     int ret;
 | |
| 
 | |
|     switch (run->exit_reason) {
 | |
|     case KVM_EXIT_HLT:
 | |
|         DPRINTF("handle_hlt\n");
 | |
|         ret = kvm_handle_halt(env);
 | |
|         break;
 | |
|     case KVM_EXIT_SET_TPR:
 | |
|         ret = 0;
 | |
|         break;
 | |
|     case KVM_EXIT_TPR_ACCESS:
 | |
|         ret = kvm_handle_tpr_access(env);
 | |
|         break;
 | |
|     case KVM_EXIT_FAIL_ENTRY:
 | |
|         code = run->fail_entry.hardware_entry_failure_reason;
 | |
|         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
 | |
|                 code);
 | |
|         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
 | |
|             fprintf(stderr,
 | |
|                     "\nIf you're running a guest on an Intel machine without "
 | |
|                         "unrestricted mode\n"
 | |
|                     "support, the failure can be most likely due to the guest "
 | |
|                         "entering an invalid\n"
 | |
|                     "state for Intel VT. For example, the guest maybe running "
 | |
|                         "in big real mode\n"
 | |
|                     "which is not supported on less recent Intel processors."
 | |
|                         "\n\n");
 | |
|         }
 | |
|         ret = -1;
 | |
|         break;
 | |
|     case KVM_EXIT_EXCEPTION:
 | |
|         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
 | |
|                 run->ex.exception, run->ex.error_code);
 | |
|         ret = -1;
 | |
|         break;
 | |
|     case KVM_EXIT_DEBUG:
 | |
|         DPRINTF("kvm_exit_debug\n");
 | |
|         ret = kvm_handle_debug(&run->debug.arch);
 | |
|         break;
 | |
|     default:
 | |
|         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
 | |
|         ret = -1;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
 | |
| {
 | |
|     kvm_cpu_synchronize_state(env);
 | |
|     return !(env->cr[0] & CR0_PE_MASK) ||
 | |
|            ((env->segs[R_CS].selector  & 3) != 3);
 | |
| }
 | |
| 
 | |
| void kvm_arch_init_irq_routing(KVMState *s)
 | |
| {
 | |
|     if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
 | |
|         /* If kernel can't do irq routing, interrupt source
 | |
|          * override 0->2 cannot be set up as required by HPET.
 | |
|          * So we have to disable it.
 | |
|          */
 | |
|         no_hpet = 1;
 | |
|     }
 | |
|     /* We know at this point that we're using the in-kernel
 | |
|      * irqchip, so we can use irqfds, and on x86 we know
 | |
|      * we can use msi via irqfd and GSI routing.
 | |
|      */
 | |
|     kvm_irqfds_allowed = true;
 | |
|     kvm_msi_via_irqfd_allowed = true;
 | |
|     kvm_gsi_routing_allowed = true;
 | |
| }
 | |
| 
 | |
| /* Classic KVM device assignment interface. Will remain x86 only. */
 | |
| int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
 | |
|                           uint32_t flags, uint32_t *dev_id)
 | |
| {
 | |
|     struct kvm_assigned_pci_dev dev_data = {
 | |
|         .segnr = dev_addr->domain,
 | |
|         .busnr = dev_addr->bus,
 | |
|         .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
 | |
|         .flags = flags,
 | |
|     };
 | |
|     int ret;
 | |
| 
 | |
|     dev_data.assigned_dev_id =
 | |
|         (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
 | |
| 
 | |
|     ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     *dev_id = dev_data.assigned_dev_id;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
 | |
| {
 | |
|     struct kvm_assigned_pci_dev dev_data = {
 | |
|         .assigned_dev_id = dev_id,
 | |
|     };
 | |
| 
 | |
|     return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
 | |
| }
 | |
| 
 | |
| static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
 | |
|                                    uint32_t irq_type, uint32_t guest_irq)
 | |
| {
 | |
|     struct kvm_assigned_irq assigned_irq = {
 | |
|         .assigned_dev_id = dev_id,
 | |
|         .guest_irq = guest_irq,
 | |
|         .flags = irq_type,
 | |
|     };
 | |
| 
 | |
|     if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
 | |
|         return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
 | |
|     } else {
 | |
|         return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
 | |
|                            uint32_t guest_irq)
 | |
| {
 | |
|     uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
 | |
|         (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
 | |
| 
 | |
|     return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
 | |
| }
 | |
| 
 | |
| int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
 | |
| {
 | |
|     struct kvm_assigned_pci_dev dev_data = {
 | |
|         .assigned_dev_id = dev_id,
 | |
|         .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
 | |
|     };
 | |
| 
 | |
|     return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
 | |
| }
 | |
| 
 | |
| static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
 | |
|                                      uint32_t type)
 | |
| {
 | |
|     struct kvm_assigned_irq assigned_irq = {
 | |
|         .assigned_dev_id = dev_id,
 | |
|         .flags = type,
 | |
|     };
 | |
| 
 | |
|     return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
 | |
| }
 | |
| 
 | |
| int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
 | |
| {
 | |
|     return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
 | |
|         (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
 | |
| }
 | |
| 
 | |
| int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
 | |
| {
 | |
|     return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
 | |
|                                               KVM_DEV_IRQ_GUEST_MSI, virq);
 | |
| }
 | |
| 
 | |
| int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
 | |
| {
 | |
|     return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
 | |
|                                                 KVM_DEV_IRQ_HOST_MSI);
 | |
| }
 | |
| 
 | |
| bool kvm_device_msix_supported(KVMState *s)
 | |
| {
 | |
|     /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
 | |
|      * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
 | |
|     return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
 | |
| }
 | |
| 
 | |
| int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
 | |
|                                  uint32_t nr_vectors)
 | |
| {
 | |
|     struct kvm_assigned_msix_nr msix_nr = {
 | |
|         .assigned_dev_id = dev_id,
 | |
|         .entry_nr = nr_vectors,
 | |
|     };
 | |
| 
 | |
|     return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
 | |
| }
 | |
| 
 | |
| int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
 | |
|                                int virq)
 | |
| {
 | |
|     struct kvm_assigned_msix_entry msix_entry = {
 | |
|         .assigned_dev_id = dev_id,
 | |
|         .gsi = virq,
 | |
|         .entry = vector,
 | |
|     };
 | |
| 
 | |
|     return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
 | |
| }
 | |
| 
 | |
| int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
 | |
| {
 | |
|     return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
 | |
|                                               KVM_DEV_IRQ_GUEST_MSIX, 0);
 | |
| }
 | |
| 
 | |
| int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
 | |
| {
 | |
|     return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
 | |
|                                                 KVM_DEV_IRQ_HOST_MSIX);
 | |
| }
 |