mirror of
				https://git.proxmox.com/git/qemu
				synced 2025-10-31 15:09:27 +00:00 
			
		
		
		
	 b14ef7c9ab
			
		
	
	
		b14ef7c9ab
		
	
	
	
	
		
			
			cea5f9a28f exposed bugs in unassigned memory
access handling. Fix them by always passing CPUState to the handlers.
Reported-by: Hervé Poussineau <hpoussin@reactos.org>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
		
			
				
	
	
		
			1351 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1351 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Alpha emulation cpu micro-operations helpers for qemu.
 | |
|  *
 | |
|  *  Copyright (c) 2007 Jocelyn Mayer
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "exec.h"
 | |
| #include "host-utils.h"
 | |
| #include "softfloat.h"
 | |
| #include "helper.h"
 | |
| #include "qemu-timer.h"
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* Exceptions processing helpers */
 | |
| 
 | |
| /* This should only be called from translate, via gen_excp.
 | |
|    We expect that ENV->PC has already been updated.  */
 | |
| void QEMU_NORETURN helper_excp(int excp, int error)
 | |
| {
 | |
|     env->exception_index = excp;
 | |
|     env->error_code = error;
 | |
|     cpu_loop_exit(env);
 | |
| }
 | |
| 
 | |
| static void do_restore_state(void *retaddr)
 | |
| {
 | |
|     unsigned long pc = (unsigned long)retaddr;
 | |
| 
 | |
|     if (pc) {
 | |
|         TranslationBlock *tb = tb_find_pc(pc);
 | |
|         if (tb) {
 | |
|             cpu_restore_state(tb, env, pc);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* This may be called from any of the helpers to set up EXCEPTION_INDEX.  */
 | |
| static void QEMU_NORETURN dynamic_excp(int excp, int error)
 | |
| {
 | |
|     env->exception_index = excp;
 | |
|     env->error_code = error;
 | |
|     do_restore_state(GETPC());
 | |
|     cpu_loop_exit(env);
 | |
| }
 | |
| 
 | |
| static void QEMU_NORETURN arith_excp(int exc, uint64_t mask)
 | |
| {
 | |
|     env->trap_arg0 = exc;
 | |
|     env->trap_arg1 = mask;
 | |
|     dynamic_excp(EXCP_ARITH, 0);
 | |
| }
 | |
| 
 | |
| uint64_t helper_load_pcc (void)
 | |
| {
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     /* In system mode we have access to a decent high-resolution clock.
 | |
|        In order to make OS-level time accounting work with the RPCC,
 | |
|        present it with a well-timed clock fixed at 250MHz.  */
 | |
|     return (((uint64_t)env->pcc_ofs << 32)
 | |
|             | (uint32_t)(qemu_get_clock_ns(vm_clock) >> 2));
 | |
| #else
 | |
|     /* In user-mode, vm_clock doesn't exist.  Just pass through the host cpu
 | |
|        clock ticks.  Also, don't bother taking PCC_OFS into account.  */
 | |
|     return (uint32_t)cpu_get_real_ticks();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| uint64_t helper_load_fpcr (void)
 | |
| {
 | |
|     return cpu_alpha_load_fpcr (env);
 | |
| }
 | |
| 
 | |
| void helper_store_fpcr (uint64_t val)
 | |
| {
 | |
|     cpu_alpha_store_fpcr (env, val);
 | |
| }
 | |
| 
 | |
| uint64_t helper_addqv (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t tmp = op1;
 | |
|     op1 += op2;
 | |
|     if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) {
 | |
|         arith_excp(EXC_M_IOV, 0);
 | |
|     }
 | |
|     return op1;
 | |
| }
 | |
| 
 | |
| uint64_t helper_addlv (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t tmp = op1;
 | |
|     op1 = (uint32_t)(op1 + op2);
 | |
|     if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) {
 | |
|         arith_excp(EXC_M_IOV, 0);
 | |
|     }
 | |
|     return op1;
 | |
| }
 | |
| 
 | |
| uint64_t helper_subqv (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t res;
 | |
|     res = op1 - op2;
 | |
|     if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) {
 | |
|         arith_excp(EXC_M_IOV, 0);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint64_t helper_sublv (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint32_t res;
 | |
|     res = op1 - op2;
 | |
|     if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) {
 | |
|         arith_excp(EXC_M_IOV, 0);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint64_t helper_mullv (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     int64_t res = (int64_t)op1 * (int64_t)op2;
 | |
| 
 | |
|     if (unlikely((int32_t)res != res)) {
 | |
|         arith_excp(EXC_M_IOV, 0);
 | |
|     }
 | |
|     return (int64_t)((int32_t)res);
 | |
| }
 | |
| 
 | |
| uint64_t helper_mulqv (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t tl, th;
 | |
| 
 | |
|     muls64(&tl, &th, op1, op2);
 | |
|     /* If th != 0 && th != -1, then we had an overflow */
 | |
|     if (unlikely((th + 1) > 1)) {
 | |
|         arith_excp(EXC_M_IOV, 0);
 | |
|     }
 | |
|     return tl;
 | |
| }
 | |
| 
 | |
| uint64_t helper_umulh (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t tl, th;
 | |
| 
 | |
|     mulu64(&tl, &th, op1, op2);
 | |
|     return th;
 | |
| }
 | |
| 
 | |
| uint64_t helper_ctpop (uint64_t arg)
 | |
| {
 | |
|     return ctpop64(arg);
 | |
| }
 | |
| 
 | |
| uint64_t helper_ctlz (uint64_t arg)
 | |
| {
 | |
|     return clz64(arg);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cttz (uint64_t arg)
 | |
| {
 | |
|     return ctz64(arg);
 | |
| }
 | |
| 
 | |
| static inline uint64_t byte_zap(uint64_t op, uint8_t mskb)
 | |
| {
 | |
|     uint64_t mask;
 | |
| 
 | |
|     mask = 0;
 | |
|     mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL;
 | |
|     mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL;
 | |
|     mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL;
 | |
|     mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL;
 | |
|     mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL;
 | |
|     mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL;
 | |
|     mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL;
 | |
|     mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL;
 | |
| 
 | |
|     return op & ~mask;
 | |
| }
 | |
| 
 | |
| uint64_t helper_zap(uint64_t val, uint64_t mask)
 | |
| {
 | |
|     return byte_zap(val, mask);
 | |
| }
 | |
| 
 | |
| uint64_t helper_zapnot(uint64_t val, uint64_t mask)
 | |
| {
 | |
|     return byte_zap(val, ~mask);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpbge (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint8_t opa, opb, res;
 | |
|     int i;
 | |
| 
 | |
|     res = 0;
 | |
|     for (i = 0; i < 8; i++) {
 | |
|         opa = op1 >> (i * 8);
 | |
|         opb = op2 >> (i * 8);
 | |
|         if (opa >= opb)
 | |
|             res |= 1 << i;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint64_t helper_minub8 (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t res = 0;
 | |
|     uint8_t opa, opb, opr;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 8; ++i) {
 | |
|         opa = op1 >> (i * 8);
 | |
|         opb = op2 >> (i * 8);
 | |
|         opr = opa < opb ? opa : opb;
 | |
|         res |= (uint64_t)opr << (i * 8);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint64_t helper_minsb8 (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t res = 0;
 | |
|     int8_t opa, opb;
 | |
|     uint8_t opr;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 8; ++i) {
 | |
|         opa = op1 >> (i * 8);
 | |
|         opb = op2 >> (i * 8);
 | |
|         opr = opa < opb ? opa : opb;
 | |
|         res |= (uint64_t)opr << (i * 8);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint64_t helper_minuw4 (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t res = 0;
 | |
|     uint16_t opa, opb, opr;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 4; ++i) {
 | |
|         opa = op1 >> (i * 16);
 | |
|         opb = op2 >> (i * 16);
 | |
|         opr = opa < opb ? opa : opb;
 | |
|         res |= (uint64_t)opr << (i * 16);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint64_t helper_minsw4 (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t res = 0;
 | |
|     int16_t opa, opb;
 | |
|     uint16_t opr;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 4; ++i) {
 | |
|         opa = op1 >> (i * 16);
 | |
|         opb = op2 >> (i * 16);
 | |
|         opr = opa < opb ? opa : opb;
 | |
|         res |= (uint64_t)opr << (i * 16);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint64_t helper_maxub8 (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t res = 0;
 | |
|     uint8_t opa, opb, opr;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 8; ++i) {
 | |
|         opa = op1 >> (i * 8);
 | |
|         opb = op2 >> (i * 8);
 | |
|         opr = opa > opb ? opa : opb;
 | |
|         res |= (uint64_t)opr << (i * 8);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint64_t helper_maxsb8 (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t res = 0;
 | |
|     int8_t opa, opb;
 | |
|     uint8_t opr;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 8; ++i) {
 | |
|         opa = op1 >> (i * 8);
 | |
|         opb = op2 >> (i * 8);
 | |
|         opr = opa > opb ? opa : opb;
 | |
|         res |= (uint64_t)opr << (i * 8);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint64_t helper_maxuw4 (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t res = 0;
 | |
|     uint16_t opa, opb, opr;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 4; ++i) {
 | |
|         opa = op1 >> (i * 16);
 | |
|         opb = op2 >> (i * 16);
 | |
|         opr = opa > opb ? opa : opb;
 | |
|         res |= (uint64_t)opr << (i * 16);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint64_t helper_maxsw4 (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t res = 0;
 | |
|     int16_t opa, opb;
 | |
|     uint16_t opr;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 4; ++i) {
 | |
|         opa = op1 >> (i * 16);
 | |
|         opb = op2 >> (i * 16);
 | |
|         opr = opa > opb ? opa : opb;
 | |
|         res |= (uint64_t)opr << (i * 16);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint64_t helper_perr (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t res = 0;
 | |
|     uint8_t opa, opb, opr;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 8; ++i) {
 | |
|         opa = op1 >> (i * 8);
 | |
|         opb = op2 >> (i * 8);
 | |
|         if (opa >= opb)
 | |
|             opr = opa - opb;
 | |
|         else
 | |
|             opr = opb - opa;
 | |
|         res += opr;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint64_t helper_pklb (uint64_t op1)
 | |
| {
 | |
|     return (op1 & 0xff) | ((op1 >> 24) & 0xff00);
 | |
| }
 | |
| 
 | |
| uint64_t helper_pkwb (uint64_t op1)
 | |
| {
 | |
|     return ((op1 & 0xff)
 | |
|             | ((op1 >> 8) & 0xff00)
 | |
|             | ((op1 >> 16) & 0xff0000)
 | |
|             | ((op1 >> 24) & 0xff000000));
 | |
| }
 | |
| 
 | |
| uint64_t helper_unpkbl (uint64_t op1)
 | |
| {
 | |
|     return (op1 & 0xff) | ((op1 & 0xff00) << 24);
 | |
| }
 | |
| 
 | |
| uint64_t helper_unpkbw (uint64_t op1)
 | |
| {
 | |
|     return ((op1 & 0xff)
 | |
|             | ((op1 & 0xff00) << 8)
 | |
|             | ((op1 & 0xff0000) << 16)
 | |
|             | ((op1 & 0xff000000) << 24));
 | |
| }
 | |
| 
 | |
| /* Floating point helpers */
 | |
| 
 | |
| void helper_setroundmode (uint32_t val)
 | |
| {
 | |
|     set_float_rounding_mode(val, &FP_STATUS);
 | |
| }
 | |
| 
 | |
| void helper_setflushzero (uint32_t val)
 | |
| {
 | |
|     set_flush_to_zero(val, &FP_STATUS);
 | |
| }
 | |
| 
 | |
| void helper_fp_exc_clear (void)
 | |
| {
 | |
|     set_float_exception_flags(0, &FP_STATUS);
 | |
| }
 | |
| 
 | |
| uint32_t helper_fp_exc_get (void)
 | |
| {
 | |
|     return get_float_exception_flags(&FP_STATUS);
 | |
| }
 | |
| 
 | |
| /* Raise exceptions for ieee fp insns without software completion.
 | |
|    In that case there are no exceptions that don't trap; the mask
 | |
|    doesn't apply.  */
 | |
| void helper_fp_exc_raise(uint32_t exc, uint32_t regno)
 | |
| {
 | |
|     if (exc) {
 | |
|         uint32_t hw_exc = 0;
 | |
| 
 | |
|         if (exc & float_flag_invalid) {
 | |
|             hw_exc |= EXC_M_INV;
 | |
|         }
 | |
|         if (exc & float_flag_divbyzero) {
 | |
|             hw_exc |= EXC_M_DZE;
 | |
|         }
 | |
|         if (exc & float_flag_overflow) {
 | |
|             hw_exc |= EXC_M_FOV;
 | |
|         }
 | |
|         if (exc & float_flag_underflow) {
 | |
|             hw_exc |= EXC_M_UNF;
 | |
|         }
 | |
|         if (exc & float_flag_inexact) {
 | |
|             hw_exc |= EXC_M_INE;
 | |
|         }
 | |
| 
 | |
|         arith_excp(hw_exc, 1ull << regno);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Raise exceptions for ieee fp insns with software completion.  */
 | |
| void helper_fp_exc_raise_s(uint32_t exc, uint32_t regno)
 | |
| {
 | |
|     if (exc) {
 | |
|         env->fpcr_exc_status |= exc;
 | |
| 
 | |
|         exc &= ~env->fpcr_exc_mask;
 | |
|         if (exc) {
 | |
|             helper_fp_exc_raise(exc, regno);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Input remapping without software completion.  Handle denormal-map-to-zero
 | |
|    and trap for all other non-finite numbers.  */
 | |
| uint64_t helper_ieee_input(uint64_t val)
 | |
| {
 | |
|     uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
 | |
|     uint64_t frac = val & 0xfffffffffffffull;
 | |
| 
 | |
|     if (exp == 0) {
 | |
|         if (frac != 0) {
 | |
|             /* If DNZ is set flush denormals to zero on input.  */
 | |
|             if (env->fpcr_dnz) {
 | |
|                 val &= 1ull << 63;
 | |
|             } else {
 | |
|                 arith_excp(EXC_M_UNF, 0);
 | |
|             }
 | |
|         }
 | |
|     } else if (exp == 0x7ff) {
 | |
|         /* Infinity or NaN.  */
 | |
|         /* ??? I'm not sure these exception bit flags are correct.  I do
 | |
|            know that the Linux kernel, at least, doesn't rely on them and
 | |
|            just emulates the insn to figure out what exception to use.  */
 | |
|         arith_excp(frac ? EXC_M_INV : EXC_M_FOV, 0);
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* Similar, but does not trap for infinities.  Used for comparisons.  */
 | |
| uint64_t helper_ieee_input_cmp(uint64_t val)
 | |
| {
 | |
|     uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
 | |
|     uint64_t frac = val & 0xfffffffffffffull;
 | |
| 
 | |
|     if (exp == 0) {
 | |
|         if (frac != 0) {
 | |
|             /* If DNZ is set flush denormals to zero on input.  */
 | |
|             if (env->fpcr_dnz) {
 | |
|                 val &= 1ull << 63;
 | |
|             } else {
 | |
|                 arith_excp(EXC_M_UNF, 0);
 | |
|             }
 | |
|         }
 | |
|     } else if (exp == 0x7ff && frac) {
 | |
|         /* NaN.  */
 | |
|         arith_excp(EXC_M_INV, 0);
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* Input remapping with software completion enabled.  All we have to do
 | |
|    is handle denormal-map-to-zero; all other inputs get exceptions as
 | |
|    needed from the actual operation.  */
 | |
| uint64_t helper_ieee_input_s(uint64_t val)
 | |
| {
 | |
|     if (env->fpcr_dnz) {
 | |
|         uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
 | |
|         if (exp == 0) {
 | |
|             val &= 1ull << 63;
 | |
|         }
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* F floating (VAX) */
 | |
| static inline uint64_t float32_to_f(float32 fa)
 | |
| {
 | |
|     uint64_t r, exp, mant, sig;
 | |
|     CPU_FloatU a;
 | |
| 
 | |
|     a.f = fa;
 | |
|     sig = ((uint64_t)a.l & 0x80000000) << 32;
 | |
|     exp = (a.l >> 23) & 0xff;
 | |
|     mant = ((uint64_t)a.l & 0x007fffff) << 29;
 | |
| 
 | |
|     if (exp == 255) {
 | |
|         /* NaN or infinity */
 | |
|         r = 1; /* VAX dirty zero */
 | |
|     } else if (exp == 0) {
 | |
|         if (mant == 0) {
 | |
|             /* Zero */
 | |
|             r = 0;
 | |
|         } else {
 | |
|             /* Denormalized */
 | |
|             r = sig | ((exp + 1) << 52) | mant;
 | |
|         }
 | |
|     } else {
 | |
|         if (exp >= 253) {
 | |
|             /* Overflow */
 | |
|             r = 1; /* VAX dirty zero */
 | |
|         } else {
 | |
|             r = sig | ((exp + 2) << 52);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static inline float32 f_to_float32(uint64_t a)
 | |
| {
 | |
|     uint32_t exp, mant_sig;
 | |
|     CPU_FloatU r;
 | |
| 
 | |
|     exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f);
 | |
|     mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff);
 | |
| 
 | |
|     if (unlikely(!exp && mant_sig)) {
 | |
|         /* Reserved operands / Dirty zero */
 | |
|         dynamic_excp(EXCP_OPCDEC, 0);
 | |
|     }
 | |
| 
 | |
|     if (exp < 3) {
 | |
|         /* Underflow */
 | |
|         r.l = 0;
 | |
|     } else {
 | |
|         r.l = ((exp - 2) << 23) | mant_sig;
 | |
|     }
 | |
| 
 | |
|     return r.f;
 | |
| }
 | |
| 
 | |
| uint32_t helper_f_to_memory (uint64_t a)
 | |
| {
 | |
|     uint32_t r;
 | |
|     r =  (a & 0x00001fffe0000000ull) >> 13;
 | |
|     r |= (a & 0x07ffe00000000000ull) >> 45;
 | |
|     r |= (a & 0xc000000000000000ull) >> 48;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| uint64_t helper_memory_to_f (uint32_t a)
 | |
| {
 | |
|     uint64_t r;
 | |
|     r =  ((uint64_t)(a & 0x0000c000)) << 48;
 | |
|     r |= ((uint64_t)(a & 0x003fffff)) << 45;
 | |
|     r |= ((uint64_t)(a & 0xffff0000)) << 13;
 | |
|     if (!(a & 0x00004000))
 | |
|         r |= 0x7ll << 59;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /* ??? Emulating VAX arithmetic with IEEE arithmetic is wrong.  We should
 | |
|    either implement VAX arithmetic properly or just signal invalid opcode.  */
 | |
| 
 | |
| uint64_t helper_addf (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = f_to_float32(a);
 | |
|     fb = f_to_float32(b);
 | |
|     fr = float32_add(fa, fb, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_subf (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = f_to_float32(a);
 | |
|     fb = f_to_float32(b);
 | |
|     fr = float32_sub(fa, fb, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_mulf (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = f_to_float32(a);
 | |
|     fb = f_to_float32(b);
 | |
|     fr = float32_mul(fa, fb, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_divf (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = f_to_float32(a);
 | |
|     fb = f_to_float32(b);
 | |
|     fr = float32_div(fa, fb, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_sqrtf (uint64_t t)
 | |
| {
 | |
|     float32 ft, fr;
 | |
| 
 | |
|     ft = f_to_float32(t);
 | |
|     fr = float32_sqrt(ft, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* G floating (VAX) */
 | |
| static inline uint64_t float64_to_g(float64 fa)
 | |
| {
 | |
|     uint64_t r, exp, mant, sig;
 | |
|     CPU_DoubleU a;
 | |
| 
 | |
|     a.d = fa;
 | |
|     sig = a.ll & 0x8000000000000000ull;
 | |
|     exp = (a.ll >> 52) & 0x7ff;
 | |
|     mant = a.ll & 0x000fffffffffffffull;
 | |
| 
 | |
|     if (exp == 2047) {
 | |
|         /* NaN or infinity */
 | |
|         r = 1; /* VAX dirty zero */
 | |
|     } else if (exp == 0) {
 | |
|         if (mant == 0) {
 | |
|             /* Zero */
 | |
|             r = 0;
 | |
|         } else {
 | |
|             /* Denormalized */
 | |
|             r = sig | ((exp + 1) << 52) | mant;
 | |
|         }
 | |
|     } else {
 | |
|         if (exp >= 2045) {
 | |
|             /* Overflow */
 | |
|             r = 1; /* VAX dirty zero */
 | |
|         } else {
 | |
|             r = sig | ((exp + 2) << 52);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static inline float64 g_to_float64(uint64_t a)
 | |
| {
 | |
|     uint64_t exp, mant_sig;
 | |
|     CPU_DoubleU r;
 | |
| 
 | |
|     exp = (a >> 52) & 0x7ff;
 | |
|     mant_sig = a & 0x800fffffffffffffull;
 | |
| 
 | |
|     if (!exp && mant_sig) {
 | |
|         /* Reserved operands / Dirty zero */
 | |
|         dynamic_excp(EXCP_OPCDEC, 0);
 | |
|     }
 | |
| 
 | |
|     if (exp < 3) {
 | |
|         /* Underflow */
 | |
|         r.ll = 0;
 | |
|     } else {
 | |
|         r.ll = ((exp - 2) << 52) | mant_sig;
 | |
|     }
 | |
| 
 | |
|     return r.d;
 | |
| }
 | |
| 
 | |
| uint64_t helper_g_to_memory (uint64_t a)
 | |
| {
 | |
|     uint64_t r;
 | |
|     r =  (a & 0x000000000000ffffull) << 48;
 | |
|     r |= (a & 0x00000000ffff0000ull) << 16;
 | |
|     r |= (a & 0x0000ffff00000000ull) >> 16;
 | |
|     r |= (a & 0xffff000000000000ull) >> 48;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| uint64_t helper_memory_to_g (uint64_t a)
 | |
| {
 | |
|     uint64_t r;
 | |
|     r =  (a & 0x000000000000ffffull) << 48;
 | |
|     r |= (a & 0x00000000ffff0000ull) << 16;
 | |
|     r |= (a & 0x0000ffff00000000ull) >> 16;
 | |
|     r |= (a & 0xffff000000000000ull) >> 48;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| uint64_t helper_addg (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = g_to_float64(a);
 | |
|     fb = g_to_float64(b);
 | |
|     fr = float64_add(fa, fb, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_subg (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = g_to_float64(a);
 | |
|     fb = g_to_float64(b);
 | |
|     fr = float64_sub(fa, fb, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_mulg (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = g_to_float64(a);
 | |
|     fb = g_to_float64(b);
 | |
|     fr = float64_mul(fa, fb, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_divg (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = g_to_float64(a);
 | |
|     fb = g_to_float64(b);
 | |
|     fr = float64_div(fa, fb, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_sqrtg (uint64_t a)
 | |
| {
 | |
|     float64 fa, fr;
 | |
| 
 | |
|     fa = g_to_float64(a);
 | |
|     fr = float64_sqrt(fa, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* S floating (single) */
 | |
| 
 | |
| /* Taken from linux/arch/alpha/kernel/traps.c, s_mem_to_reg.  */
 | |
| static inline uint64_t float32_to_s_int(uint32_t fi)
 | |
| {
 | |
|     uint32_t frac = fi & 0x7fffff;
 | |
|     uint32_t sign = fi >> 31;
 | |
|     uint32_t exp_msb = (fi >> 30) & 1;
 | |
|     uint32_t exp_low = (fi >> 23) & 0x7f;
 | |
|     uint32_t exp;
 | |
| 
 | |
|     exp = (exp_msb << 10) | exp_low;
 | |
|     if (exp_msb) {
 | |
|         if (exp_low == 0x7f)
 | |
|             exp = 0x7ff;
 | |
|     } else {
 | |
|         if (exp_low != 0x00)
 | |
|             exp |= 0x380;
 | |
|     }
 | |
| 
 | |
|     return (((uint64_t)sign << 63)
 | |
|             | ((uint64_t)exp << 52)
 | |
|             | ((uint64_t)frac << 29));
 | |
| }
 | |
| 
 | |
| static inline uint64_t float32_to_s(float32 fa)
 | |
| {
 | |
|     CPU_FloatU a;
 | |
|     a.f = fa;
 | |
|     return float32_to_s_int(a.l);
 | |
| }
 | |
| 
 | |
| static inline uint32_t s_to_float32_int(uint64_t a)
 | |
| {
 | |
|     return ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff);
 | |
| }
 | |
| 
 | |
| static inline float32 s_to_float32(uint64_t a)
 | |
| {
 | |
|     CPU_FloatU r;
 | |
|     r.l = s_to_float32_int(a);
 | |
|     return r.f;
 | |
| }
 | |
| 
 | |
| uint32_t helper_s_to_memory (uint64_t a)
 | |
| {
 | |
|     return s_to_float32_int(a);
 | |
| }
 | |
| 
 | |
| uint64_t helper_memory_to_s (uint32_t a)
 | |
| {
 | |
|     return float32_to_s_int(a);
 | |
| }
 | |
| 
 | |
| uint64_t helper_adds (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fb = s_to_float32(b);
 | |
|     fr = float32_add(fa, fb, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_subs (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fb = s_to_float32(b);
 | |
|     fr = float32_sub(fa, fb, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_muls (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fb = s_to_float32(b);
 | |
|     fr = float32_mul(fa, fb, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_divs (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fb = s_to_float32(b);
 | |
|     fr = float32_div(fa, fb, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_sqrts (uint64_t a)
 | |
| {
 | |
|     float32 fa, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fr = float32_sqrt(fa, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* T floating (double) */
 | |
| static inline float64 t_to_float64(uint64_t a)
 | |
| {
 | |
|     /* Memory format is the same as float64 */
 | |
|     CPU_DoubleU r;
 | |
|     r.ll = a;
 | |
|     return r.d;
 | |
| }
 | |
| 
 | |
| static inline uint64_t float64_to_t(float64 fa)
 | |
| {
 | |
|     /* Memory format is the same as float64 */
 | |
|     CPU_DoubleU r;
 | |
|     r.d = fa;
 | |
|     return r.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_addt (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
|     fr = float64_add(fa, fb, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_subt (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
|     fr = float64_sub(fa, fb, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_mult (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
|     fr = float64_mul(fa, fb, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_divt (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
|     fr = float64_div(fa, fb, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_sqrtt (uint64_t a)
 | |
| {
 | |
|     float64 fa, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fr = float64_sqrt(fa, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| /* Comparisons */
 | |
| uint64_t helper_cmptun (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
| 
 | |
|     if (float64_unordered_quiet(fa, fb, &FP_STATUS)) {
 | |
|         return 0x4000000000000000ULL;
 | |
|     } else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpteq(uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
| 
 | |
|     if (float64_eq_quiet(fa, fb, &FP_STATUS))
 | |
|         return 0x4000000000000000ULL;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmptle(uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
| 
 | |
|     if (float64_le(fa, fb, &FP_STATUS))
 | |
|         return 0x4000000000000000ULL;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmptlt(uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
| 
 | |
|     if (float64_lt(fa, fb, &FP_STATUS))
 | |
|         return 0x4000000000000000ULL;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpgeq(uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = g_to_float64(a);
 | |
|     fb = g_to_float64(b);
 | |
| 
 | |
|     if (float64_eq_quiet(fa, fb, &FP_STATUS))
 | |
|         return 0x4000000000000000ULL;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpgle(uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = g_to_float64(a);
 | |
|     fb = g_to_float64(b);
 | |
| 
 | |
|     if (float64_le(fa, fb, &FP_STATUS))
 | |
|         return 0x4000000000000000ULL;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpglt(uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = g_to_float64(a);
 | |
|     fb = g_to_float64(b);
 | |
| 
 | |
|     if (float64_lt(fa, fb, &FP_STATUS))
 | |
|         return 0x4000000000000000ULL;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| /* Floating point format conversion */
 | |
| uint64_t helper_cvtts (uint64_t a)
 | |
| {
 | |
|     float64 fa;
 | |
|     float32 fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fr = float64_to_float32(fa, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtst (uint64_t a)
 | |
| {
 | |
|     float32 fa;
 | |
|     float64 fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fr = float32_to_float64(fa, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtqs (uint64_t a)
 | |
| {
 | |
|     float32 fr = int64_to_float32(a, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| /* Implement float64 to uint64 conversion without saturation -- we must
 | |
|    supply the truncated result.  This behaviour is used by the compiler
 | |
|    to get unsigned conversion for free with the same instruction.
 | |
| 
 | |
|    The VI flag is set when overflow or inexact exceptions should be raised.  */
 | |
| 
 | |
| static inline uint64_t helper_cvttq_internal(uint64_t a, int roundmode, int VI)
 | |
| {
 | |
|     uint64_t frac, ret = 0;
 | |
|     uint32_t exp, sign, exc = 0;
 | |
|     int shift;
 | |
| 
 | |
|     sign = (a >> 63);
 | |
|     exp = (uint32_t)(a >> 52) & 0x7ff;
 | |
|     frac = a & 0xfffffffffffffull;
 | |
| 
 | |
|     if (exp == 0) {
 | |
|         if (unlikely(frac != 0)) {
 | |
|             goto do_underflow;
 | |
|         }
 | |
|     } else if (exp == 0x7ff) {
 | |
|         exc = (frac ? float_flag_invalid : VI ? float_flag_overflow : 0);
 | |
|     } else {
 | |
|         /* Restore implicit bit.  */
 | |
|         frac |= 0x10000000000000ull;
 | |
| 
 | |
|         shift = exp - 1023 - 52;
 | |
|         if (shift >= 0) {
 | |
|             /* In this case the number is so large that we must shift
 | |
|                the fraction left.  There is no rounding to do.  */
 | |
|             if (shift < 63) {
 | |
|                 ret = frac << shift;
 | |
|                 if (VI && (ret >> shift) != frac) {
 | |
|                     exc = float_flag_overflow;
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             uint64_t round;
 | |
| 
 | |
|             /* In this case the number is smaller than the fraction as
 | |
|                represented by the 52 bit number.  Here we must think
 | |
|                about rounding the result.  Handle this by shifting the
 | |
|                fractional part of the number into the high bits of ROUND.
 | |
|                This will let us efficiently handle round-to-nearest.  */
 | |
|             shift = -shift;
 | |
|             if (shift < 63) {
 | |
|                 ret = frac >> shift;
 | |
|                 round = frac << (64 - shift);
 | |
|             } else {
 | |
|                 /* The exponent is so small we shift out everything.
 | |
|                    Leave a sticky bit for proper rounding below.  */
 | |
|             do_underflow:
 | |
|                 round = 1;
 | |
|             }
 | |
| 
 | |
|             if (round) {
 | |
|                 exc = (VI ? float_flag_inexact : 0);
 | |
|                 switch (roundmode) {
 | |
|                 case float_round_nearest_even:
 | |
|                     if (round == (1ull << 63)) {
 | |
|                         /* Fraction is exactly 0.5; round to even.  */
 | |
|                         ret += (ret & 1);
 | |
|                     } else if (round > (1ull << 63)) {
 | |
|                         ret += 1;
 | |
|                     }
 | |
|                     break;
 | |
|                 case float_round_to_zero:
 | |
|                     break;
 | |
|                 case float_round_up:
 | |
|                     ret += 1 - sign;
 | |
|                     break;
 | |
|                 case float_round_down:
 | |
|                     ret += sign;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (sign) {
 | |
|             ret = -ret;
 | |
|         }
 | |
|     }
 | |
|     if (unlikely(exc)) {
 | |
|         float_raise(exc, &FP_STATUS);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvttq(uint64_t a)
 | |
| {
 | |
|     return helper_cvttq_internal(a, FP_STATUS.float_rounding_mode, 1);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvttq_c(uint64_t a)
 | |
| {
 | |
|     return helper_cvttq_internal(a, float_round_to_zero, 0);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvttq_svic(uint64_t a)
 | |
| {
 | |
|     return helper_cvttq_internal(a, float_round_to_zero, 1);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtqt (uint64_t a)
 | |
| {
 | |
|     float64 fr = int64_to_float64(a, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtqf (uint64_t a)
 | |
| {
 | |
|     float32 fr = int64_to_float32(a, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtgf (uint64_t a)
 | |
| {
 | |
|     float64 fa;
 | |
|     float32 fr;
 | |
| 
 | |
|     fa = g_to_float64(a);
 | |
|     fr = float64_to_float32(fa, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtgq (uint64_t a)
 | |
| {
 | |
|     float64 fa = g_to_float64(a);
 | |
|     return float64_to_int64_round_to_zero(fa, &FP_STATUS);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtqg (uint64_t a)
 | |
| {
 | |
|     float64 fr;
 | |
|     fr = int64_to_float64(a, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| /* PALcode support special instructions */
 | |
| #if !defined (CONFIG_USER_ONLY)
 | |
| void helper_hw_ret (uint64_t a)
 | |
| {
 | |
|     env->pc = a & ~3;
 | |
|     env->intr_flag = 0;
 | |
|     env->lock_addr = -1;
 | |
|     if ((a & 1) == 0) {
 | |
|         env->pal_mode = 0;
 | |
|         swap_shadow_regs(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_tbia(void)
 | |
| {
 | |
|     tlb_flush(env, 1);
 | |
| }
 | |
| 
 | |
| void helper_tbis(uint64_t p)
 | |
| {
 | |
|     tlb_flush_page(env, p);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* Softmmu support */
 | |
| #if !defined (CONFIG_USER_ONLY)
 | |
| uint64_t helper_ldl_phys(uint64_t p)
 | |
| {
 | |
|     return (int32_t)ldl_phys(p);
 | |
| }
 | |
| 
 | |
| uint64_t helper_ldq_phys(uint64_t p)
 | |
| {
 | |
|     return ldq_phys(p);
 | |
| }
 | |
| 
 | |
| uint64_t helper_ldl_l_phys(uint64_t p)
 | |
| {
 | |
|     env->lock_addr = p;
 | |
|     return env->lock_value = (int32_t)ldl_phys(p);
 | |
| }
 | |
| 
 | |
| uint64_t helper_ldq_l_phys(uint64_t p)
 | |
| {
 | |
|     env->lock_addr = p;
 | |
|     return env->lock_value = ldl_phys(p);
 | |
| }
 | |
| 
 | |
| void helper_stl_phys(uint64_t p, uint64_t v)
 | |
| {
 | |
|     stl_phys(p, v);
 | |
| }
 | |
| 
 | |
| void helper_stq_phys(uint64_t p, uint64_t v)
 | |
| {
 | |
|     stq_phys(p, v);
 | |
| }
 | |
| 
 | |
| uint64_t helper_stl_c_phys(uint64_t p, uint64_t v)
 | |
| {
 | |
|     uint64_t ret = 0;
 | |
| 
 | |
|     if (p == env->lock_addr) {
 | |
|         int32_t old = ldl_phys(p);
 | |
|         if (old == (int32_t)env->lock_value) {
 | |
|             stl_phys(p, v);
 | |
|             ret = 1;
 | |
|         }
 | |
|     }
 | |
|     env->lock_addr = -1;
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| uint64_t helper_stq_c_phys(uint64_t p, uint64_t v)
 | |
| {
 | |
|     uint64_t ret = 0;
 | |
| 
 | |
|     if (p == env->lock_addr) {
 | |
|         uint64_t old = ldq_phys(p);
 | |
|         if (old == env->lock_value) {
 | |
|             stq_phys(p, v);
 | |
|             ret = 1;
 | |
|         }
 | |
|     }
 | |
|     env->lock_addr = -1;
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void QEMU_NORETURN do_unaligned_access(target_ulong addr, int is_write,
 | |
|                                               int is_user, void *retaddr)
 | |
| {
 | |
|     uint64_t pc;
 | |
|     uint32_t insn;
 | |
| 
 | |
|     do_restore_state(retaddr);
 | |
| 
 | |
|     pc = env->pc;
 | |
|     insn = ldl_code(pc);
 | |
| 
 | |
|     env->trap_arg0 = addr;
 | |
|     env->trap_arg1 = insn >> 26;                /* opcode */
 | |
|     env->trap_arg2 = (insn >> 21) & 31;         /* dest regno */
 | |
|     helper_excp(EXCP_UNALIGN, 0);
 | |
| }
 | |
| 
 | |
| void QEMU_NORETURN cpu_unassigned_access(CPUState *env1,
 | |
|                                          target_phys_addr_t addr, int is_write,
 | |
|                                          int is_exec, int unused, int size)
 | |
| {
 | |
|     env = env1;
 | |
|     env->trap_arg0 = addr;
 | |
|     env->trap_arg1 = is_write;
 | |
|     dynamic_excp(EXCP_MCHK, 0);
 | |
| }
 | |
| 
 | |
| #define MMUSUFFIX _mmu
 | |
| #define ALIGNED_ONLY
 | |
| 
 | |
| #define SHIFT 0
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 1
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 2
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 3
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| /* try to fill the TLB and return an exception if error. If retaddr is
 | |
|    NULL, it means that the function was called in C code (i.e. not
 | |
|    from generated code or from helper.c) */
 | |
| /* XXX: fix it to restore all registers */
 | |
| void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
 | |
| {
 | |
|     CPUState *saved_env;
 | |
|     int ret;
 | |
| 
 | |
|     /* XXX: hack to restore env in all cases, even if not called from
 | |
|        generated code */
 | |
|     saved_env = env;
 | |
|     env = cpu_single_env;
 | |
|     ret = cpu_alpha_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
 | |
|     if (unlikely(ret != 0)) {
 | |
|         do_restore_state(retaddr);
 | |
|         /* Exception index and error code are already set */
 | |
|         cpu_loop_exit(env);
 | |
|     }
 | |
|     env = saved_env;
 | |
| }
 | |
| #endif
 |