mirror of
				https://git.proxmox.com/git/qemu
				synced 2025-10-26 05:20:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			232 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			232 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * General purpose implementation of a simple periodic countdown timer.
 | |
|  *
 | |
|  * Copyright (c) 2007 CodeSourcery.
 | |
|  *
 | |
|  * This code is licensed under the GNU LGPL.
 | |
|  */
 | |
| #include "hw.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "ptimer.h"
 | |
| #include "qemu/host-utils.h"
 | |
| 
 | |
| struct ptimer_state
 | |
| {
 | |
|     uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
 | |
|     uint64_t limit;
 | |
|     uint64_t delta;
 | |
|     uint32_t period_frac;
 | |
|     int64_t period;
 | |
|     int64_t last_event;
 | |
|     int64_t next_event;
 | |
|     QEMUBH *bh;
 | |
|     QEMUTimer *timer;
 | |
| };
 | |
| 
 | |
| /* Use a bottom-half routine to avoid reentrancy issues.  */
 | |
| static void ptimer_trigger(ptimer_state *s)
 | |
| {
 | |
|     if (s->bh) {
 | |
|         qemu_bh_schedule(s->bh);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ptimer_reload(ptimer_state *s)
 | |
| {
 | |
|     if (s->delta == 0) {
 | |
|         ptimer_trigger(s);
 | |
|         s->delta = s->limit;
 | |
|     }
 | |
|     if (s->delta == 0 || s->period == 0) {
 | |
|         fprintf(stderr, "Timer with period zero, disabling\n");
 | |
|         s->enabled = 0;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     s->last_event = s->next_event;
 | |
|     s->next_event = s->last_event + s->delta * s->period;
 | |
|     if (s->period_frac) {
 | |
|         s->next_event += ((int64_t)s->period_frac * s->delta) >> 32;
 | |
|     }
 | |
|     qemu_mod_timer(s->timer, s->next_event);
 | |
| }
 | |
| 
 | |
| static void ptimer_tick(void *opaque)
 | |
| {
 | |
|     ptimer_state *s = (ptimer_state *)opaque;
 | |
|     ptimer_trigger(s);
 | |
|     s->delta = 0;
 | |
|     if (s->enabled == 2) {
 | |
|         s->enabled = 0;
 | |
|     } else {
 | |
|         ptimer_reload(s);
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint64_t ptimer_get_count(ptimer_state *s)
 | |
| {
 | |
|     int64_t now;
 | |
|     uint64_t counter;
 | |
| 
 | |
|     if (s->enabled) {
 | |
|         now = qemu_get_clock_ns(vm_clock);
 | |
|         /* Figure out the current counter value.  */
 | |
|         if (now - s->next_event > 0
 | |
|             || s->period == 0) {
 | |
|             /* Prevent timer underflowing if it should already have
 | |
|                triggered.  */
 | |
|             counter = 0;
 | |
|         } else {
 | |
|             uint64_t rem;
 | |
|             uint64_t div;
 | |
|             int clz1, clz2;
 | |
|             int shift;
 | |
| 
 | |
|             /* We need to divide time by period, where time is stored in
 | |
|                rem (64-bit integer) and period is stored in period/period_frac
 | |
|                (64.32 fixed point).
 | |
|               
 | |
|                Doing full precision division is hard, so scale values and
 | |
|                do a 64-bit division.  The result should be rounded down,
 | |
|                so that the rounding error never causes the timer to go
 | |
|                backwards.
 | |
|             */
 | |
| 
 | |
|             rem = s->next_event - now;
 | |
|             div = s->period;
 | |
| 
 | |
|             clz1 = clz64(rem);
 | |
|             clz2 = clz64(div);
 | |
|             shift = clz1 < clz2 ? clz1 : clz2;
 | |
| 
 | |
|             rem <<= shift;
 | |
|             div <<= shift;
 | |
|             if (shift >= 32) {
 | |
|                 div |= ((uint64_t)s->period_frac << (shift - 32));
 | |
|             } else {
 | |
|                 if (shift != 0)
 | |
|                     div |= (s->period_frac >> (32 - shift));
 | |
|                 /* Look at remaining bits of period_frac and round div up if 
 | |
|                    necessary.  */
 | |
|                 if ((uint32_t)(s->period_frac << shift))
 | |
|                     div += 1;
 | |
|             }
 | |
|             counter = rem / div;
 | |
|         }
 | |
|     } else {
 | |
|         counter = s->delta;
 | |
|     }
 | |
|     return counter;
 | |
| }
 | |
| 
 | |
| void ptimer_set_count(ptimer_state *s, uint64_t count)
 | |
| {
 | |
|     s->delta = count;
 | |
|     if (s->enabled) {
 | |
|         s->next_event = qemu_get_clock_ns(vm_clock);
 | |
|         ptimer_reload(s);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ptimer_run(ptimer_state *s, int oneshot)
 | |
| {
 | |
|     if (s->enabled) {
 | |
|         return;
 | |
|     }
 | |
|     if (s->period == 0) {
 | |
|         fprintf(stderr, "Timer with period zero, disabling\n");
 | |
|         return;
 | |
|     }
 | |
|     s->enabled = oneshot ? 2 : 1;
 | |
|     s->next_event = qemu_get_clock_ns(vm_clock);
 | |
|     ptimer_reload(s);
 | |
| }
 | |
| 
 | |
| /* Pause a timer.  Note that this may cause it to "lose" time, even if it
 | |
|    is immediately restarted.  */
 | |
| void ptimer_stop(ptimer_state *s)
 | |
| {
 | |
|     if (!s->enabled)
 | |
|         return;
 | |
| 
 | |
|     s->delta = ptimer_get_count(s);
 | |
|     qemu_del_timer(s->timer);
 | |
|     s->enabled = 0;
 | |
| }
 | |
| 
 | |
| /* Set counter increment interval in nanoseconds.  */
 | |
| void ptimer_set_period(ptimer_state *s, int64_t period)
 | |
| {
 | |
|     s->period = period;
 | |
|     s->period_frac = 0;
 | |
|     if (s->enabled) {
 | |
|         s->next_event = qemu_get_clock_ns(vm_clock);
 | |
|         ptimer_reload(s);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Set counter frequency in Hz.  */
 | |
| void ptimer_set_freq(ptimer_state *s, uint32_t freq)
 | |
| {
 | |
|     s->period = 1000000000ll / freq;
 | |
|     s->period_frac = (1000000000ll << 32) / freq;
 | |
|     if (s->enabled) {
 | |
|         s->next_event = qemu_get_clock_ns(vm_clock);
 | |
|         ptimer_reload(s);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Set the initial countdown value.  If reload is nonzero then also set
 | |
|    count = limit.  */
 | |
| void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
 | |
| {
 | |
|     /*
 | |
|      * Artificially limit timeout rate to something
 | |
|      * achievable under QEMU.  Otherwise, QEMU spends all
 | |
|      * its time generating timer interrupts, and there
 | |
|      * is no forward progress.
 | |
|      * About ten microseconds is the fastest that really works
 | |
|      * on the current generation of host machines.
 | |
|      */
 | |
| 
 | |
|     if (limit * s->period < 10000 && s->period) {
 | |
|         limit = 10000 / s->period;
 | |
|     }
 | |
| 
 | |
|     s->limit = limit;
 | |
|     if (reload)
 | |
|         s->delta = limit;
 | |
|     if (s->enabled && reload) {
 | |
|         s->next_event = qemu_get_clock_ns(vm_clock);
 | |
|         ptimer_reload(s);
 | |
|     }
 | |
| }
 | |
| 
 | |
| const VMStateDescription vmstate_ptimer = {
 | |
|     .name = "ptimer",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .minimum_version_id_old = 1,
 | |
|     .fields      = (VMStateField[]) {
 | |
|         VMSTATE_UINT8(enabled, ptimer_state),
 | |
|         VMSTATE_UINT64(limit, ptimer_state),
 | |
|         VMSTATE_UINT64(delta, ptimer_state),
 | |
|         VMSTATE_UINT32(period_frac, ptimer_state),
 | |
|         VMSTATE_INT64(period, ptimer_state),
 | |
|         VMSTATE_INT64(last_event, ptimer_state),
 | |
|         VMSTATE_INT64(next_event, ptimer_state),
 | |
|         VMSTATE_TIMER(timer, ptimer_state),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| ptimer_state *ptimer_init(QEMUBH *bh)
 | |
| {
 | |
|     ptimer_state *s;
 | |
| 
 | |
|     s = (ptimer_state *)g_malloc0(sizeof(ptimer_state));
 | |
|     s->bh = bh;
 | |
|     s->timer = qemu_new_timer_ns(vm_clock, ptimer_tick, s);
 | |
|     return s;
 | |
| }
 | 
