mirror of
				https://git.proxmox.com/git/qemu
				synced 2025-10-31 21:46:35 +00:00 
			
		
		
		
	 79614b781d
			
		
	
	
		79614b781d
		
	
	
	
	
		
			
			Ensures that a QOM-created ARMCPU is usable. Signed-off-by: Andreas Färber <afaerber@suse.de>
		
			
				
	
	
		
			3480 lines
		
	
	
		
			112 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3480 lines
		
	
	
		
			112 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "cpu.h"
 | |
| #include "exec/gdbstub.h"
 | |
| #include "helper.h"
 | |
| #include "qemu/host-utils.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "qemu/bitops.h"
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| static inline int get_phys_addr(CPUARMState *env, uint32_t address,
 | |
|                                 int access_type, int is_user,
 | |
|                                 hwaddr *phys_ptr, int *prot,
 | |
|                                 target_ulong *page_size);
 | |
| #endif
 | |
| 
 | |
| static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
 | |
| {
 | |
|     int nregs;
 | |
| 
 | |
|     /* VFP data registers are always little-endian.  */
 | |
|     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
 | |
|     if (reg < nregs) {
 | |
|         stfq_le_p(buf, env->vfp.regs[reg]);
 | |
|         return 8;
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_NEON)) {
 | |
|         /* Aliases for Q regs.  */
 | |
|         nregs += 16;
 | |
|         if (reg < nregs) {
 | |
|             stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
 | |
|             stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
 | |
|             return 16;
 | |
|         }
 | |
|     }
 | |
|     switch (reg - nregs) {
 | |
|     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
 | |
|     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
 | |
|     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
 | |
| {
 | |
|     int nregs;
 | |
| 
 | |
|     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
 | |
|     if (reg < nregs) {
 | |
|         env->vfp.regs[reg] = ldfq_le_p(buf);
 | |
|         return 8;
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_NEON)) {
 | |
|         nregs += 16;
 | |
|         if (reg < nregs) {
 | |
|             env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
 | |
|             env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
 | |
|             return 16;
 | |
|         }
 | |
|     }
 | |
|     switch (reg - nregs) {
 | |
|     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
 | |
|     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
 | |
|     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
|     env->cp15.c3 = value;
 | |
|     tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
|     if (env->cp15.c13_fcse != value) {
 | |
|         /* Unlike real hardware the qemu TLB uses virtual addresses,
 | |
|          * not modified virtual addresses, so this causes a TLB flush.
 | |
|          */
 | |
|         tlb_flush(env, 1);
 | |
|         env->cp15.c13_fcse = value;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
 | |
|         /* For VMSA (when not using the LPAE long descriptor page table
 | |
|          * format) this register includes the ASID, so do a TLB flush.
 | |
|          * For PMSA it is purely a process ID and no action is needed.
 | |
|          */
 | |
|         tlb_flush(env, 1);
 | |
|     }
 | |
|     env->cp15.c13_context = value;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     /* Invalidate all (TLBIALL) */
 | |
|     tlb_flush(env, 1);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
 | |
|     tlb_flush_page(env, value & TARGET_PAGE_MASK);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     /* Invalidate by ASID (TLBIASID) */
 | |
|     tlb_flush(env, value == 0);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
 | |
|     tlb_flush_page(env, value & TARGET_PAGE_MASK);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo cp_reginfo[] = {
 | |
|     /* DBGDIDR: just RAZ. In particular this means the "debug architecture
 | |
|      * version" bits will read as a reserved value, which should cause
 | |
|      * Linux to not try to use the debug hardware.
 | |
|      */
 | |
|     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     /* MMU Domain access control / MPU write buffer control */
 | |
|     { .name = "DACR", .cp = 15,
 | |
|       .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
 | |
|       .resetvalue = 0, .writefn = dacr_write },
 | |
|     { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
 | |
|       .resetvalue = 0, .writefn = fcse_write },
 | |
|     { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
 | |
|       .resetvalue = 0, .writefn = contextidr_write },
 | |
|     /* ??? This covers not just the impdef TLB lockdown registers but also
 | |
|      * some v7VMSA registers relating to TEX remap, so it is overly broad.
 | |
|      */
 | |
|     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
 | |
|       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 | |
|     /* MMU TLB control. Note that the wildcarding means we cover not just
 | |
|      * the unified TLB ops but also the dside/iside/inner-shareable variants.
 | |
|      */
 | |
|     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
 | |
|       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, },
 | |
|     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
 | |
|       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, },
 | |
|     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
 | |
|       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, },
 | |
|     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
 | |
|       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, },
 | |
|     /* Cache maintenance ops; some of this space may be overridden later. */
 | |
|     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
 | |
|       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
 | |
|       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo not_v6_cp_reginfo[] = {
 | |
|     /* Not all pre-v6 cores implemented this WFI, so this is slightly
 | |
|      * over-broad.
 | |
|      */
 | |
|     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL1_W, .type = ARM_CP_WFI },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo not_v7_cp_reginfo[] = {
 | |
|     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
 | |
|      * is UNPREDICTABLE; we choose to NOP as most implementations do).
 | |
|      */
 | |
|     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
 | |
|       .access = PL1_W, .type = ARM_CP_WFI },
 | |
|     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
 | |
|      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
 | |
|      * OMAPCP will override this space.
 | |
|      */
 | |
|     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
 | |
|       .resetvalue = 0 },
 | |
|     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
 | |
|     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
 | |
|       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
|     if (env->cp15.c1_coproc != value) {
 | |
|         env->cp15.c1_coproc = value;
 | |
|         /* ??? Is this safe when called from within a TB?  */
 | |
|         tb_flush(env);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo v6_cp_reginfo[] = {
 | |
|     /* prefetch by MVA in v6, NOP in v7 */
 | |
|     { .name = "MVA_prefetch",
 | |
|       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP },
 | |
|     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP },
 | |
|     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP },
 | |
|     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP },
 | |
|     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
 | |
|       .resetvalue = 0, },
 | |
|     /* Watchpoint Fault Address Register : should actually only be present
 | |
|      * for 1136, 1176, 11MPCore.
 | |
|      */
 | |
|     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
 | |
|     { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
 | |
|       .resetvalue = 0, .writefn = cpacr_write },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                       uint64_t *value)
 | |
| {
 | |
|     /* Generic performance monitor register read function for where
 | |
|      * user access may be allowed by PMUSERENR.
 | |
|      */
 | |
|     if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
 | |
|         return EXCP_UDEF;
 | |
|     }
 | |
|     *value = CPREG_FIELD32(env, ri);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                       uint64_t value)
 | |
| {
 | |
|     if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
 | |
|         return EXCP_UDEF;
 | |
|     }
 | |
|     /* only the DP, X, D and E bits are writable */
 | |
|     env->cp15.c9_pmcr &= ~0x39;
 | |
|     env->cp15.c9_pmcr |= (value & 0x39);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
 | |
|         return EXCP_UDEF;
 | |
|     }
 | |
|     value &= (1 << 31);
 | |
|     env->cp15.c9_pmcnten |= value;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
 | |
|         return EXCP_UDEF;
 | |
|     }
 | |
|     value &= (1 << 31);
 | |
|     env->cp15.c9_pmcnten &= ~value;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
 | |
|         return EXCP_UDEF;
 | |
|     }
 | |
|     env->cp15.c9_pmovsr &= ~value;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
 | |
|         return EXCP_UDEF;
 | |
|     }
 | |
|     env->cp15.c9_pmxevtyper = value & 0xff;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     env->cp15.c9_pmuserenr = value & 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     /* We have no event counters so only the C bit can be changed */
 | |
|     value &= (1 << 31);
 | |
|     env->cp15.c9_pminten |= value;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     value &= (1 << 31);
 | |
|     env->cp15.c9_pminten &= ~value;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                        uint64_t *value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     *value = cpu->ccsidr[env->cp15.c0_cssel];
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     env->cp15.c0_cssel = value & 0xf;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo v7_cp_reginfo[] = {
 | |
|     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
 | |
|      * debug components
 | |
|      */
 | |
|     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
 | |
|     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP },
 | |
|     /* Performance monitors are implementation defined in v7,
 | |
|      * but with an ARM recommended set of registers, which we
 | |
|      * follow (although we don't actually implement any counters)
 | |
|      *
 | |
|      * Performance registers fall into three categories:
 | |
|      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
 | |
|      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
 | |
|      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
 | |
|      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
 | |
|      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
 | |
|      */
 | |
|     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL0_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
 | |
|       .readfn = pmreg_read, .writefn = pmcntenset_write },
 | |
|     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
 | |
|       .readfn = pmreg_read, .writefn = pmcntenclr_write },
 | |
|     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
 | |
|       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
 | |
|       .readfn = pmreg_read, .writefn = pmovsr_write },
 | |
|     /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
 | |
|      * respect PMUSERENR.
 | |
|      */
 | |
|     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP },
 | |
|     /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
 | |
|      * We choose to RAZ/WI. XXX should respect PMUSERENR.
 | |
|      */
 | |
|     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
 | |
|       .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     /* Unimplemented, RAZ/WI. XXX PMUSERENR */
 | |
|     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL0_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
 | |
|       .readfn = pmreg_read, .writefn = pmxevtyper_write },
 | |
|     /* Unimplemented, RAZ/WI. XXX PMUSERENR */
 | |
|     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL0_R | PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
 | |
|       .resetvalue = 0,
 | |
|       .writefn = pmuserenr_write },
 | |
|     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
 | |
|       .resetvalue = 0,
 | |
|       .writefn = pmintenset_write },
 | |
|     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
 | |
|       .resetvalue = 0,
 | |
|       .writefn = pmintenclr_write },
 | |
|     { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
 | |
|       .resetvalue = 0, },
 | |
|     { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
 | |
|       .access = PL1_R, .readfn = ccsidr_read },
 | |
|     { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
 | |
|       .writefn = csselr_write, .resetvalue = 0 },
 | |
|     /* Auxiliary ID register: this actually has an IMPDEF value but for now
 | |
|      * just RAZ for all cores:
 | |
|      */
 | |
|     { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
 | |
|       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
|     value &= 1;
 | |
|     env->teecr = value;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                        uint64_t *value)
 | |
| {
 | |
|     /* This is a helper function because the user access rights
 | |
|      * depend on the value of the TEECR.
 | |
|      */
 | |
|     if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
 | |
|         return EXCP_UDEF;
 | |
|     }
 | |
|     *value = env->teehbr;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
 | |
|         return EXCP_UDEF;
 | |
|     }
 | |
|     env->teehbr = value;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo t2ee_cp_reginfo[] = {
 | |
|     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
 | |
|       .resetvalue = 0,
 | |
|       .writefn = teecr_write },
 | |
|     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
 | |
|       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
 | |
|       .resetvalue = 0,
 | |
|       .readfn = teehbr_read, .writefn = teehbr_write },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo v6k_cp_reginfo[] = {
 | |
|     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL0_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
 | |
|       .access = PL0_R|PL1_W,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
 | |
|       .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
 | |
|     /* Dummy implementation: RAZ/WI the whole crn=14 space */
 | |
|     { .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
 | |
|       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
|     if (arm_feature(env, ARM_FEATURE_LPAE)) {
 | |
|         env->cp15.c7_par = value;
 | |
|     } else if (arm_feature(env, ARM_FEATURE_V7)) {
 | |
|         env->cp15.c7_par = value & 0xfffff6ff;
 | |
|     } else {
 | |
|         env->cp15.c7_par = value & 0xfffff1ff;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| /* get_phys_addr() isn't present for user-mode-only targets */
 | |
| 
 | |
| /* Return true if extended addresses are enabled, ie this is an
 | |
|  * LPAE implementation and we are using the long-descriptor translation
 | |
|  * table format because the TTBCR EAE bit is set.
 | |
|  */
 | |
| static inline bool extended_addresses_enabled(CPUARMState *env)
 | |
| {
 | |
|     return arm_feature(env, ARM_FEATURE_LPAE)
 | |
|         && (env->cp15.c2_control & (1 << 31));
 | |
| }
 | |
| 
 | |
| static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
|     hwaddr phys_addr;
 | |
|     target_ulong page_size;
 | |
|     int prot;
 | |
|     int ret, is_user = ri->opc2 & 2;
 | |
|     int access_type = ri->opc2 & 1;
 | |
| 
 | |
|     if (ri->opc2 & 4) {
 | |
|         /* Other states are only available with TrustZone */
 | |
|         return EXCP_UDEF;
 | |
|     }
 | |
|     ret = get_phys_addr(env, value, access_type, is_user,
 | |
|                         &phys_addr, &prot, &page_size);
 | |
|     if (extended_addresses_enabled(env)) {
 | |
|         /* ret is a DFSR/IFSR value for the long descriptor
 | |
|          * translation table format, but with WnR always clear.
 | |
|          * Convert it to a 64-bit PAR.
 | |
|          */
 | |
|         uint64_t par64 = (1 << 11); /* LPAE bit always set */
 | |
|         if (ret == 0) {
 | |
|             par64 |= phys_addr & ~0xfffULL;
 | |
|             /* We don't set the ATTR or SH fields in the PAR. */
 | |
|         } else {
 | |
|             par64 |= 1; /* F */
 | |
|             par64 |= (ret & 0x3f) << 1; /* FS */
 | |
|             /* Note that S2WLK and FSTAGE are always zero, because we don't
 | |
|              * implement virtualization and therefore there can't be a stage 2
 | |
|              * fault.
 | |
|              */
 | |
|         }
 | |
|         env->cp15.c7_par = par64;
 | |
|         env->cp15.c7_par_hi = par64 >> 32;
 | |
|     } else {
 | |
|         /* ret is a DFSR/IFSR value for the short descriptor
 | |
|          * translation table format (with WnR always clear).
 | |
|          * Convert it to a 32-bit PAR.
 | |
|          */
 | |
|         if (ret == 0) {
 | |
|             /* We do not set any attribute bits in the PAR */
 | |
|             if (page_size == (1 << 24)
 | |
|                 && arm_feature(env, ARM_FEATURE_V7)) {
 | |
|                 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
 | |
|             } else {
 | |
|                 env->cp15.c7_par = phys_addr & 0xfffff000;
 | |
|             }
 | |
|         } else {
 | |
|             env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
 | |
|                 ((ret & (12 << 1)) >> 6) |
 | |
|                 ((ret & 0xf) << 1) | 1;
 | |
|         }
 | |
|         env->cp15.c7_par_hi = 0;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const ARMCPRegInfo vapa_cp_reginfo[] = {
 | |
|     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
 | |
|       .writefn = par_write },
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
 | |
|       .access = PL1_W, .writefn = ats_write },
 | |
| #endif
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| /* Return basic MPU access permission bits.  */
 | |
| static uint32_t simple_mpu_ap_bits(uint32_t val)
 | |
| {
 | |
|     uint32_t ret;
 | |
|     uint32_t mask;
 | |
|     int i;
 | |
|     ret = 0;
 | |
|     mask = 3;
 | |
|     for (i = 0; i < 16; i += 2) {
 | |
|         ret |= (val >> i) & mask;
 | |
|         mask <<= 2;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Pad basic MPU access permission bits to extended format.  */
 | |
| static uint32_t extended_mpu_ap_bits(uint32_t val)
 | |
| {
 | |
|     uint32_t ret;
 | |
|     uint32_t mask;
 | |
|     int i;
 | |
|     ret = 0;
 | |
|     mask = 3;
 | |
|     for (i = 0; i < 16; i += 2) {
 | |
|         ret |= (val & mask) << i;
 | |
|         mask <<= 2;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                 uint64_t value)
 | |
| {
 | |
|     env->cp15.c5_data = extended_mpu_ap_bits(value);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                uint64_t *value)
 | |
| {
 | |
|     *value = simple_mpu_ap_bits(env->cp15.c5_data);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                 uint64_t value)
 | |
| {
 | |
|     env->cp15.c5_insn = extended_mpu_ap_bits(value);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                uint64_t *value)
 | |
| {
 | |
|     *value = simple_mpu_ap_bits(env->cp15.c5_insn);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t *value)
 | |
| {
 | |
|     if (ri->crm >= 8) {
 | |
|         return EXCP_UDEF;
 | |
|     }
 | |
|     *value = env->cp15.c6_region[ri->crm];
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     if (ri->crm >= 8) {
 | |
|         return EXCP_UDEF;
 | |
|     }
 | |
|     env->cp15.c6_region[ri->crm] = value;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
 | |
|     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
 | |
|       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
 | |
|     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
 | |
|       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
 | |
|     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
 | |
|     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
 | |
|     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
 | |
|     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
 | |
|     /* Protection region base and size registers */
 | |
|     { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
 | |
|       .opc2 = CP_ANY, .access = PL1_RW,
 | |
|       .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     if (arm_feature(env, ARM_FEATURE_LPAE)) {
 | |
|         value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
 | |
|         /* With LPAE the TTBCR could result in a change of ASID
 | |
|          * via the TTBCR.A1 bit, so do a TLB flush.
 | |
|          */
 | |
|         tlb_flush(env, 1);
 | |
|     } else {
 | |
|         value &= 7;
 | |
|     }
 | |
|     /* Note that we always calculate c2_mask and c2_base_mask, but
 | |
|      * they are only used for short-descriptor tables (ie if EAE is 0);
 | |
|      * for long-descriptor tables the TTBCR fields are used differently
 | |
|      * and the c2_mask and c2_base_mask values are meaningless.
 | |
|      */
 | |
|     env->cp15.c2_control = value;
 | |
|     env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> value);
 | |
|     env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> value);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     env->cp15.c2_base_mask = 0xffffc000u;
 | |
|     env->cp15.c2_control = 0;
 | |
|     env->cp15.c2_mask = 0;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo vmsa_cp_reginfo[] = {
 | |
|     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
 | |
|     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
 | |
|     { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
 | |
|     { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
 | |
|     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL1_RW, .writefn = vmsa_ttbcr_write,
 | |
|       .resetfn = vmsa_ttbcr_reset,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
 | |
|     { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
 | |
|       .resetvalue = 0, },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                uint64_t value)
 | |
| {
 | |
|     env->cp15.c15_ticonfig = value & 0xe7;
 | |
|     /* The OS_TYPE bit in this register changes the reported CPUID! */
 | |
|     env->cp15.c0_cpuid = (value & (1 << 5)) ?
 | |
|         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                uint64_t value)
 | |
| {
 | |
|     env->cp15.c15_threadid = value & 0xffff;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     /* Wait-for-interrupt (deprecated) */
 | |
|     cpu_interrupt(env, CPU_INTERRUPT_HALT);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  uint64_t value)
 | |
| {
 | |
|     /* On OMAP there are registers indicating the max/min index of dcache lines
 | |
|      * containing a dirty line; cache flush operations have to reset these.
 | |
|      */
 | |
|     env->cp15.c15_i_max = 0x000;
 | |
|     env->cp15.c15_i_min = 0xff0;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo omap_cp_reginfo[] = {
 | |
|     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
 | |
|       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
 | |
|     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_NOP },
 | |
|     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
 | |
|       .writefn = omap_ticonfig_write },
 | |
|     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
 | |
|     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .resetvalue = 0xff0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
 | |
|     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
 | |
|       .writefn = omap_threadid_write },
 | |
|     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
 | |
|       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
 | |
|       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
 | |
|     /* TODO: Peripheral port remap register:
 | |
|      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
 | |
|      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
 | |
|      * when MMU is off.
 | |
|      */
 | |
|     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
 | |
|       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE,
 | |
|       .writefn = omap_cachemaint_write },
 | |
|     { .name = "C9", .cp = 15, .crn = 9,
 | |
|       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
 | |
|       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     value &= 0x3fff;
 | |
|     if (env->cp15.c15_cpar != value) {
 | |
|         /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
 | |
|         tb_flush(env);
 | |
|         env->cp15.c15_cpar = value;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo xscale_cp_reginfo[] = {
 | |
|     { .name = "XSCALE_CPAR",
 | |
|       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
 | |
|       .writefn = xscale_cpar_write, },
 | |
|     { .name = "XSCALE_AUXCR",
 | |
|       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
 | |
|       .resetvalue = 0, },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
 | |
|     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
 | |
|      * implementation of this implementation-defined space.
 | |
|      * Ideally this should eventually disappear in favour of actually
 | |
|      * implementing the correct behaviour for all cores.
 | |
|      */
 | |
|     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
 | |
|       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
 | |
|     /* Cache status: RAZ because we have no cache so it's always clean */
 | |
|     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
 | |
|       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
 | |
|     /* We never have a a block transfer operation in progress */
 | |
|     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     /* The cache ops themselves: these all NOP for QEMU */
 | |
|     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | |
|     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | |
|     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | |
|     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | |
|     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | |
|     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
 | |
|     /* The cache test-and-clean instructions always return (1 << 30)
 | |
|      * to indicate that there are no dirty cache lines.
 | |
|      */
 | |
|     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
 | |
|     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo strongarm_cp_reginfo[] = {
 | |
|     /* Ignore ReadBuffer accesses */
 | |
|     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
 | |
|       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
 | |
|       .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                       uint64_t *value)
 | |
| {
 | |
|     CPUState *cs = CPU(arm_env_get_cpu(env));
 | |
|     uint32_t mpidr = cs->cpu_index;
 | |
|     /* We don't support setting cluster ID ([8..11])
 | |
|      * so these bits always RAZ.
 | |
|      */
 | |
|     if (arm_feature(env, ARM_FEATURE_V7MP)) {
 | |
|         mpidr |= (1 << 31);
 | |
|         /* Cores which are uniprocessor (non-coherent)
 | |
|          * but still implement the MP extensions set
 | |
|          * bit 30. (For instance, A9UP.) However we do
 | |
|          * not currently model any of those cores.
 | |
|          */
 | |
|     }
 | |
|     *value = mpidr;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo mpidr_cp_reginfo[] = {
 | |
|     { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
 | |
|       .access = PL1_R, .readfn = mpidr_read },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
 | |
| {
 | |
|     *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
|     env->cp15.c7_par_hi = value >> 32;
 | |
|     env->cp15.c7_par = value;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     env->cp15.c7_par_hi = 0;
 | |
|     env->cp15.c7_par = 0;
 | |
| }
 | |
| 
 | |
| static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t *value)
 | |
| {
 | |
|     *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     env->cp15.c2_base0_hi = value >> 32;
 | |
|     env->cp15.c2_base0 = value;
 | |
|     /* Writes to the 64 bit format TTBRs may change the ASID */
 | |
|     tlb_flush(env, 1);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     env->cp15.c2_base0_hi = 0;
 | |
|     env->cp15.c2_base0 = 0;
 | |
| }
 | |
| 
 | |
| static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t *value)
 | |
| {
 | |
|     *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     env->cp15.c2_base1_hi = value >> 32;
 | |
|     env->cp15.c2_base1 = value;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     env->cp15.c2_base1_hi = 0;
 | |
|     env->cp15.c2_base1 = 0;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo lpae_cp_reginfo[] = {
 | |
|     /* NOP AMAIR0/1: the override is because these clash with the rather
 | |
|      * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
 | |
|      */
 | |
|     { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
 | |
|       .resetvalue = 0 },
 | |
|     /* 64 bit access versions of the (dummy) debug registers */
 | |
|     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
 | |
|     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
 | |
|     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_64BIT,
 | |
|       .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
 | |
|     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
 | |
|       .writefn = ttbr064_write, .resetfn = ttbr064_reset },
 | |
|     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
 | |
|       .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
 | |
|       .writefn = ttbr164_write, .resetfn = ttbr164_reset },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
|     env->cp15.c1_sys = value;
 | |
|     /* ??? Lots of these bits are not implemented.  */
 | |
|     /* This may enable/disable the MMU, so do a TLB flush.  */
 | |
|     tlb_flush(env, 1);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void register_cp_regs_for_features(ARMCPU *cpu)
 | |
| {
 | |
|     /* Register all the coprocessor registers based on feature bits */
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|         /* M profile has no coprocessor registers */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     define_arm_cp_regs(cpu, cp_reginfo);
 | |
|     if (arm_feature(env, ARM_FEATURE_V6)) {
 | |
|         /* The ID registers all have impdef reset values */
 | |
|         ARMCPRegInfo v6_idregs[] = {
 | |
|             { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
 | |
|               .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_pfr0 },
 | |
|             { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
 | |
|               .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_pfr1 },
 | |
|             { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
 | |
|               .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_dfr0 },
 | |
|             { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
 | |
|               .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_afr0 },
 | |
|             { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
 | |
|               .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_mmfr0 },
 | |
|             { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
 | |
|               .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_mmfr1 },
 | |
|             { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
 | |
|               .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_mmfr2 },
 | |
|             { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
 | |
|               .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_mmfr3 },
 | |
|             { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
 | |
|               .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_isar0 },
 | |
|             { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
 | |
|               .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_isar1 },
 | |
|             { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
 | |
|               .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_isar2 },
 | |
|             { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
 | |
|               .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_isar3 },
 | |
|             { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
 | |
|               .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_isar4 },
 | |
|             { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
 | |
|               .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_isar5 },
 | |
|             /* 6..7 are as yet unallocated and must RAZ */
 | |
|             { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
 | |
|               .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
 | |
|               .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = 0 },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         define_arm_cp_regs(cpu, v6_idregs);
 | |
|         define_arm_cp_regs(cpu, v6_cp_reginfo);
 | |
|     } else {
 | |
|         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_V6K)) {
 | |
|         define_arm_cp_regs(cpu, v6k_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_V7)) {
 | |
|         /* v7 performance monitor control register: same implementor
 | |
|          * field as main ID register, and we implement no event counters.
 | |
|          */
 | |
|         ARMCPRegInfo pmcr = {
 | |
|             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
 | |
|             .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
 | |
|             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
 | |
|             .readfn = pmreg_read, .writefn = pmcr_write
 | |
|         };
 | |
|         ARMCPRegInfo clidr = {
 | |
|             .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
 | |
|             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
 | |
|         };
 | |
|         define_one_arm_cp_reg(cpu, &pmcr);
 | |
|         define_one_arm_cp_reg(cpu, &clidr);
 | |
|         define_arm_cp_regs(cpu, v7_cp_reginfo);
 | |
|     } else {
 | |
|         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_MPU)) {
 | |
|         /* These are the MPU registers prior to PMSAv6. Any new
 | |
|          * PMSA core later than the ARM946 will require that we
 | |
|          * implement the PMSAv6 or PMSAv7 registers, which are
 | |
|          * completely different.
 | |
|          */
 | |
|         assert(!arm_feature(env, ARM_FEATURE_V6));
 | |
|         define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
 | |
|     } else {
 | |
|         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
 | |
|         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
 | |
|         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_VAPA)) {
 | |
|         define_arm_cp_regs(cpu, vapa_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
 | |
|         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
 | |
|         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
 | |
|         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
 | |
|         define_arm_cp_regs(cpu, omap_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
 | |
|         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 | |
|         define_arm_cp_regs(cpu, xscale_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
 | |
|         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
 | |
|         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_LPAE)) {
 | |
|         define_arm_cp_regs(cpu, lpae_cp_reginfo);
 | |
|     }
 | |
|     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
 | |
|      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
 | |
|      * be read-only (ie write causes UNDEF exception).
 | |
|      */
 | |
|     {
 | |
|         ARMCPRegInfo id_cp_reginfo[] = {
 | |
|             /* Note that the MIDR isn't a simple constant register because
 | |
|              * of the TI925 behaviour where writes to another register can
 | |
|              * cause the MIDR value to change.
 | |
|              */
 | |
|             { .name = "MIDR",
 | |
|               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|               .access = PL1_R, .resetvalue = cpu->midr,
 | |
|               .writefn = arm_cp_write_ignore,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid) },
 | |
|             { .name = "CTR",
 | |
|               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
 | |
|             { .name = "TCMTR",
 | |
|               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|             { .name = "TLBTR",
 | |
|               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
 | |
|             { .name = "DUMMY",
 | |
|               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|             { .name = "DUMMY",
 | |
|               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|             { .name = "DUMMY",
 | |
|               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|             { .name = "DUMMY",
 | |
|               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|             { .name = "DUMMY",
 | |
|               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         ARMCPRegInfo crn0_wi_reginfo = {
 | |
|             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
 | |
|             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
 | |
|             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
 | |
|         };
 | |
|         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
 | |
|             arm_feature(env, ARM_FEATURE_STRONGARM)) {
 | |
|             ARMCPRegInfo *r;
 | |
|             /* Register the blanket "writes ignored" value first to cover the
 | |
|              * whole space. Then define the specific ID registers, but update
 | |
|              * their access field to allow write access, so that they ignore
 | |
|              * writes rather than causing them to UNDEF.
 | |
|              */
 | |
|             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
 | |
|             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
 | |
|                 r->access = PL1_RW;
 | |
|                 define_one_arm_cp_reg(cpu, r);
 | |
|             }
 | |
|         } else {
 | |
|             /* Just register the standard ID registers (read-only, meaning
 | |
|              * that writes will UNDEF).
 | |
|              */
 | |
|             define_arm_cp_regs(cpu, id_cp_reginfo);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
 | |
|         ARMCPRegInfo auxcr = {
 | |
|             .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|             .access = PL1_RW, .type = ARM_CP_CONST,
 | |
|             .resetvalue = cpu->reset_auxcr
 | |
|         };
 | |
|         define_one_arm_cp_reg(cpu, &auxcr);
 | |
|     }
 | |
| 
 | |
|     /* Generic registers whose values depend on the implementation */
 | |
|     {
 | |
|         ARMCPRegInfo sctlr = {
 | |
|             .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|             .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
 | |
|             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr
 | |
|         };
 | |
|         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 | |
|             /* Normally we would always end the TB on an SCTLR write, but Linux
 | |
|              * arch/arm/mach-pxa/sleep.S expects two instructions following
 | |
|              * an MMU enable to execute from cache.  Imitate this behaviour.
 | |
|              */
 | |
|             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
 | |
|         }
 | |
|         define_one_arm_cp_reg(cpu, &sctlr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| ARMCPU *cpu_arm_init(const char *cpu_model)
 | |
| {
 | |
|     ARMCPU *cpu;
 | |
|     CPUARMState *env;
 | |
|     ObjectClass *oc;
 | |
| 
 | |
|     oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
 | |
|     if (!oc) {
 | |
|         return NULL;
 | |
|     }
 | |
|     cpu = ARM_CPU(object_new(object_class_get_name(oc)));
 | |
|     env = &cpu->env;
 | |
|     env->cpu_model_str = cpu_model;
 | |
| 
 | |
|     /* TODO this should be set centrally, once possible */
 | |
|     object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
 | |
| 
 | |
|     return cpu;
 | |
| }
 | |
| 
 | |
| void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
 | |
| {
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_NEON)) {
 | |
|         gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
 | |
|                                  51, "arm-neon.xml", 0);
 | |
|     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
 | |
|         gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
 | |
|                                  35, "arm-vfp3.xml", 0);
 | |
|     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
 | |
|         gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
 | |
|                                  19, "arm-vfp.xml", 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Sort alphabetically by type name, except for "any". */
 | |
| static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
 | |
| {
 | |
|     ObjectClass *class_a = (ObjectClass *)a;
 | |
|     ObjectClass *class_b = (ObjectClass *)b;
 | |
|     const char *name_a, *name_b;
 | |
| 
 | |
|     name_a = object_class_get_name(class_a);
 | |
|     name_b = object_class_get_name(class_b);
 | |
|     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
 | |
|         return 1;
 | |
|     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
 | |
|         return -1;
 | |
|     } else {
 | |
|         return strcmp(name_a, name_b);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void arm_cpu_list_entry(gpointer data, gpointer user_data)
 | |
| {
 | |
|     ObjectClass *oc = data;
 | |
|     CPUListState *s = user_data;
 | |
|     const char *typename;
 | |
|     char *name;
 | |
| 
 | |
|     typename = object_class_get_name(oc);
 | |
|     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
 | |
|     (*s->cpu_fprintf)(s->file, "  %s\n",
 | |
|                       name);
 | |
|     g_free(name);
 | |
| }
 | |
| 
 | |
| void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
 | |
| {
 | |
|     CPUListState s = {
 | |
|         .file = f,
 | |
|         .cpu_fprintf = cpu_fprintf,
 | |
|     };
 | |
|     GSList *list;
 | |
| 
 | |
|     list = object_class_get_list(TYPE_ARM_CPU, false);
 | |
|     list = g_slist_sort(list, arm_cpu_list_compare);
 | |
|     (*cpu_fprintf)(f, "Available CPUs:\n");
 | |
|     g_slist_foreach(list, arm_cpu_list_entry, &s);
 | |
|     g_slist_free(list);
 | |
| }
 | |
| 
 | |
| void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
 | |
|                                        const ARMCPRegInfo *r, void *opaque)
 | |
| {
 | |
|     /* Define implementations of coprocessor registers.
 | |
|      * We store these in a hashtable because typically
 | |
|      * there are less than 150 registers in a space which
 | |
|      * is 16*16*16*8*8 = 262144 in size.
 | |
|      * Wildcarding is supported for the crm, opc1 and opc2 fields.
 | |
|      * If a register is defined twice then the second definition is
 | |
|      * used, so this can be used to define some generic registers and
 | |
|      * then override them with implementation specific variations.
 | |
|      * At least one of the original and the second definition should
 | |
|      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
 | |
|      * against accidental use.
 | |
|      */
 | |
|     int crm, opc1, opc2;
 | |
|     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
 | |
|     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
 | |
|     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
 | |
|     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
 | |
|     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
 | |
|     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
 | |
|     /* 64 bit registers have only CRm and Opc1 fields */
 | |
|     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
 | |
|     /* Check that the register definition has enough info to handle
 | |
|      * reads and writes if they are permitted.
 | |
|      */
 | |
|     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
 | |
|         if (r->access & PL3_R) {
 | |
|             assert(r->fieldoffset || r->readfn);
 | |
|         }
 | |
|         if (r->access & PL3_W) {
 | |
|             assert(r->fieldoffset || r->writefn);
 | |
|         }
 | |
|     }
 | |
|     /* Bad type field probably means missing sentinel at end of reg list */
 | |
|     assert(cptype_valid(r->type));
 | |
|     for (crm = crmmin; crm <= crmmax; crm++) {
 | |
|         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
 | |
|             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
 | |
|                 uint32_t *key = g_new(uint32_t, 1);
 | |
|                 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
 | |
|                 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
 | |
|                 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
 | |
|                 r2->opaque = opaque;
 | |
|                 /* Make sure reginfo passed to helpers for wildcarded regs
 | |
|                  * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
 | |
|                  */
 | |
|                 r2->crm = crm;
 | |
|                 r2->opc1 = opc1;
 | |
|                 r2->opc2 = opc2;
 | |
|                 /* Overriding of an existing definition must be explicitly
 | |
|                  * requested.
 | |
|                  */
 | |
|                 if (!(r->type & ARM_CP_OVERRIDE)) {
 | |
|                     ARMCPRegInfo *oldreg;
 | |
|                     oldreg = g_hash_table_lookup(cpu->cp_regs, key);
 | |
|                     if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
 | |
|                         fprintf(stderr, "Register redefined: cp=%d %d bit "
 | |
|                                 "crn=%d crm=%d opc1=%d opc2=%d, "
 | |
|                                 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
 | |
|                                 r2->crn, r2->crm, r2->opc1, r2->opc2,
 | |
|                                 oldreg->name, r2->name);
 | |
|                         assert(0);
 | |
|                     }
 | |
|                 }
 | |
|                 g_hash_table_insert(cpu->cp_regs, key, r2);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
 | |
|                                     const ARMCPRegInfo *regs, void *opaque)
 | |
| {
 | |
|     /* Define a whole list of registers */
 | |
|     const ARMCPRegInfo *r;
 | |
|     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
 | |
|         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
 | |
|     }
 | |
| }
 | |
| 
 | |
| const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
 | |
| {
 | |
|     return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
 | |
| }
 | |
| 
 | |
| int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     /* Helper coprocessor write function for write-ignore registers */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
 | |
| {
 | |
|     /* Helper coprocessor write function for read-as-zero registers */
 | |
|     *value = 0;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int bad_mode_switch(CPUARMState *env, int mode)
 | |
| {
 | |
|     /* Return true if it is not valid for us to switch to
 | |
|      * this CPU mode (ie all the UNPREDICTABLE cases in
 | |
|      * the ARM ARM CPSRWriteByInstr pseudocode).
 | |
|      */
 | |
|     switch (mode) {
 | |
|     case ARM_CPU_MODE_USR:
 | |
|     case ARM_CPU_MODE_SYS:
 | |
|     case ARM_CPU_MODE_SVC:
 | |
|     case ARM_CPU_MODE_ABT:
 | |
|     case ARM_CPU_MODE_UND:
 | |
|     case ARM_CPU_MODE_IRQ:
 | |
|     case ARM_CPU_MODE_FIQ:
 | |
|         return 0;
 | |
|     default:
 | |
|         return 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t cpsr_read(CPUARMState *env)
 | |
| {
 | |
|     int ZF;
 | |
|     ZF = (env->ZF == 0);
 | |
|     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
 | |
|         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
 | |
|         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
 | |
|         | ((env->condexec_bits & 0xfc) << 8)
 | |
|         | (env->GE << 16);
 | |
| }
 | |
| 
 | |
| void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
 | |
| {
 | |
|     if (mask & CPSR_NZCV) {
 | |
|         env->ZF = (~val) & CPSR_Z;
 | |
|         env->NF = val;
 | |
|         env->CF = (val >> 29) & 1;
 | |
|         env->VF = (val << 3) & 0x80000000;
 | |
|     }
 | |
|     if (mask & CPSR_Q)
 | |
|         env->QF = ((val & CPSR_Q) != 0);
 | |
|     if (mask & CPSR_T)
 | |
|         env->thumb = ((val & CPSR_T) != 0);
 | |
|     if (mask & CPSR_IT_0_1) {
 | |
|         env->condexec_bits &= ~3;
 | |
|         env->condexec_bits |= (val >> 25) & 3;
 | |
|     }
 | |
|     if (mask & CPSR_IT_2_7) {
 | |
|         env->condexec_bits &= 3;
 | |
|         env->condexec_bits |= (val >> 8) & 0xfc;
 | |
|     }
 | |
|     if (mask & CPSR_GE) {
 | |
|         env->GE = (val >> 16) & 0xf;
 | |
|     }
 | |
| 
 | |
|     if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
 | |
|         if (bad_mode_switch(env, val & CPSR_M)) {
 | |
|             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
 | |
|              * We choose to ignore the attempt and leave the CPSR M field
 | |
|              * untouched.
 | |
|              */
 | |
|             mask &= ~CPSR_M;
 | |
|         } else {
 | |
|             switch_mode(env, val & CPSR_M);
 | |
|         }
 | |
|     }
 | |
|     mask &= ~CACHED_CPSR_BITS;
 | |
|     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
 | |
| }
 | |
| 
 | |
| /* Sign/zero extend */
 | |
| uint32_t HELPER(sxtb16)(uint32_t x)
 | |
| {
 | |
|     uint32_t res;
 | |
|     res = (uint16_t)(int8_t)x;
 | |
|     res |= (uint32_t)(int8_t)(x >> 16) << 16;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(uxtb16)(uint32_t x)
 | |
| {
 | |
|     uint32_t res;
 | |
|     res = (uint16_t)(uint8_t)x;
 | |
|     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(clz)(uint32_t x)
 | |
| {
 | |
|     return clz32(x);
 | |
| }
 | |
| 
 | |
| int32_t HELPER(sdiv)(int32_t num, int32_t den)
 | |
| {
 | |
|     if (den == 0)
 | |
|       return 0;
 | |
|     if (num == INT_MIN && den == -1)
 | |
|       return INT_MIN;
 | |
|     return num / den;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
 | |
| {
 | |
|     if (den == 0)
 | |
|       return 0;
 | |
|     return num / den;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(rbit)(uint32_t x)
 | |
| {
 | |
|     x =  ((x & 0xff000000) >> 24)
 | |
|        | ((x & 0x00ff0000) >> 8)
 | |
|        | ((x & 0x0000ff00) << 8)
 | |
|        | ((x & 0x000000ff) << 24);
 | |
|     x =  ((x & 0xf0f0f0f0) >> 4)
 | |
|        | ((x & 0x0f0f0f0f) << 4);
 | |
|     x =  ((x & 0x88888888) >> 3)
 | |
|        | ((x & 0x44444444) >> 1)
 | |
|        | ((x & 0x22222222) << 1)
 | |
|        | ((x & 0x11111111) << 3);
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| void do_interrupt (CPUARMState *env)
 | |
| {
 | |
|     env->exception_index = -1;
 | |
| }
 | |
| 
 | |
| int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
 | |
|                               int mmu_idx)
 | |
| {
 | |
|     if (rw == 2) {
 | |
|         env->exception_index = EXCP_PREFETCH_ABORT;
 | |
|         env->cp15.c6_insn = address;
 | |
|     } else {
 | |
|         env->exception_index = EXCP_DATA_ABORT;
 | |
|         env->cp15.c6_data = address;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* These should probably raise undefined insn exceptions.  */
 | |
| void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
 | |
| {
 | |
|     cpu_abort(env, "v7m_mrs %d\n", reg);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
 | |
| {
 | |
|     cpu_abort(env, "v7m_mrs %d\n", reg);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void switch_mode(CPUARMState *env, int mode)
 | |
| {
 | |
|     if (mode != ARM_CPU_MODE_USR)
 | |
|         cpu_abort(env, "Tried to switch out of user mode\n");
 | |
| }
 | |
| 
 | |
| void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
 | |
| {
 | |
|     cpu_abort(env, "banked r13 write\n");
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
 | |
| {
 | |
|     cpu_abort(env, "banked r13 read\n");
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* Map CPU modes onto saved register banks.  */
 | |
| static inline int bank_number(CPUARMState *env, int mode)
 | |
| {
 | |
|     switch (mode) {
 | |
|     case ARM_CPU_MODE_USR:
 | |
|     case ARM_CPU_MODE_SYS:
 | |
|         return 0;
 | |
|     case ARM_CPU_MODE_SVC:
 | |
|         return 1;
 | |
|     case ARM_CPU_MODE_ABT:
 | |
|         return 2;
 | |
|     case ARM_CPU_MODE_UND:
 | |
|         return 3;
 | |
|     case ARM_CPU_MODE_IRQ:
 | |
|         return 4;
 | |
|     case ARM_CPU_MODE_FIQ:
 | |
|         return 5;
 | |
|     }
 | |
|     cpu_abort(env, "Bad mode %x\n", mode);
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| void switch_mode(CPUARMState *env, int mode)
 | |
| {
 | |
|     int old_mode;
 | |
|     int i;
 | |
| 
 | |
|     old_mode = env->uncached_cpsr & CPSR_M;
 | |
|     if (mode == old_mode)
 | |
|         return;
 | |
| 
 | |
|     if (old_mode == ARM_CPU_MODE_FIQ) {
 | |
|         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
 | |
|         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
 | |
|     } else if (mode == ARM_CPU_MODE_FIQ) {
 | |
|         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
 | |
|         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
 | |
|     }
 | |
| 
 | |
|     i = bank_number(env, old_mode);
 | |
|     env->banked_r13[i] = env->regs[13];
 | |
|     env->banked_r14[i] = env->regs[14];
 | |
|     env->banked_spsr[i] = env->spsr;
 | |
| 
 | |
|     i = bank_number(env, mode);
 | |
|     env->regs[13] = env->banked_r13[i];
 | |
|     env->regs[14] = env->banked_r14[i];
 | |
|     env->spsr = env->banked_spsr[i];
 | |
| }
 | |
| 
 | |
| static void v7m_push(CPUARMState *env, uint32_t val)
 | |
| {
 | |
|     env->regs[13] -= 4;
 | |
|     stl_phys(env->regs[13], val);
 | |
| }
 | |
| 
 | |
| static uint32_t v7m_pop(CPUARMState *env)
 | |
| {
 | |
|     uint32_t val;
 | |
|     val = ldl_phys(env->regs[13]);
 | |
|     env->regs[13] += 4;
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* Switch to V7M main or process stack pointer.  */
 | |
| static void switch_v7m_sp(CPUARMState *env, int process)
 | |
| {
 | |
|     uint32_t tmp;
 | |
|     if (env->v7m.current_sp != process) {
 | |
|         tmp = env->v7m.other_sp;
 | |
|         env->v7m.other_sp = env->regs[13];
 | |
|         env->regs[13] = tmp;
 | |
|         env->v7m.current_sp = process;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void do_v7m_exception_exit(CPUARMState *env)
 | |
| {
 | |
|     uint32_t type;
 | |
|     uint32_t xpsr;
 | |
| 
 | |
|     type = env->regs[15];
 | |
|     if (env->v7m.exception != 0)
 | |
|         armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
 | |
| 
 | |
|     /* Switch to the target stack.  */
 | |
|     switch_v7m_sp(env, (type & 4) != 0);
 | |
|     /* Pop registers.  */
 | |
|     env->regs[0] = v7m_pop(env);
 | |
|     env->regs[1] = v7m_pop(env);
 | |
|     env->regs[2] = v7m_pop(env);
 | |
|     env->regs[3] = v7m_pop(env);
 | |
|     env->regs[12] = v7m_pop(env);
 | |
|     env->regs[14] = v7m_pop(env);
 | |
|     env->regs[15] = v7m_pop(env);
 | |
|     xpsr = v7m_pop(env);
 | |
|     xpsr_write(env, xpsr, 0xfffffdff);
 | |
|     /* Undo stack alignment.  */
 | |
|     if (xpsr & 0x200)
 | |
|         env->regs[13] |= 4;
 | |
|     /* ??? The exception return type specifies Thread/Handler mode.  However
 | |
|        this is also implied by the xPSR value. Not sure what to do
 | |
|        if there is a mismatch.  */
 | |
|     /* ??? Likewise for mismatches between the CONTROL register and the stack
 | |
|        pointer.  */
 | |
| }
 | |
| 
 | |
| static void do_interrupt_v7m(CPUARMState *env)
 | |
| {
 | |
|     uint32_t xpsr = xpsr_read(env);
 | |
|     uint32_t lr;
 | |
|     uint32_t addr;
 | |
| 
 | |
|     lr = 0xfffffff1;
 | |
|     if (env->v7m.current_sp)
 | |
|         lr |= 4;
 | |
|     if (env->v7m.exception == 0)
 | |
|         lr |= 8;
 | |
| 
 | |
|     /* For exceptions we just mark as pending on the NVIC, and let that
 | |
|        handle it.  */
 | |
|     /* TODO: Need to escalate if the current priority is higher than the
 | |
|        one we're raising.  */
 | |
|     switch (env->exception_index) {
 | |
|     case EXCP_UDEF:
 | |
|         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
 | |
|         return;
 | |
|     case EXCP_SWI:
 | |
|         /* The PC already points to the next instruction.  */
 | |
|         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
 | |
|         return;
 | |
|     case EXCP_PREFETCH_ABORT:
 | |
|     case EXCP_DATA_ABORT:
 | |
|         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
 | |
|         return;
 | |
|     case EXCP_BKPT:
 | |
|         if (semihosting_enabled) {
 | |
|             int nr;
 | |
|             nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
 | |
|             if (nr == 0xab) {
 | |
|                 env->regs[15] += 2;
 | |
|                 env->regs[0] = do_arm_semihosting(env);
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
 | |
|         return;
 | |
|     case EXCP_IRQ:
 | |
|         env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
 | |
|         break;
 | |
|     case EXCP_EXCEPTION_EXIT:
 | |
|         do_v7m_exception_exit(env);
 | |
|         return;
 | |
|     default:
 | |
|         cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
 | |
|         return; /* Never happens.  Keep compiler happy.  */
 | |
|     }
 | |
| 
 | |
|     /* Align stack pointer.  */
 | |
|     /* ??? Should only do this if Configuration Control Register
 | |
|        STACKALIGN bit is set.  */
 | |
|     if (env->regs[13] & 4) {
 | |
|         env->regs[13] -= 4;
 | |
|         xpsr |= 0x200;
 | |
|     }
 | |
|     /* Switch to the handler mode.  */
 | |
|     v7m_push(env, xpsr);
 | |
|     v7m_push(env, env->regs[15]);
 | |
|     v7m_push(env, env->regs[14]);
 | |
|     v7m_push(env, env->regs[12]);
 | |
|     v7m_push(env, env->regs[3]);
 | |
|     v7m_push(env, env->regs[2]);
 | |
|     v7m_push(env, env->regs[1]);
 | |
|     v7m_push(env, env->regs[0]);
 | |
|     switch_v7m_sp(env, 0);
 | |
|     /* Clear IT bits */
 | |
|     env->condexec_bits = 0;
 | |
|     env->regs[14] = lr;
 | |
|     addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
 | |
|     env->regs[15] = addr & 0xfffffffe;
 | |
|     env->thumb = addr & 1;
 | |
| }
 | |
| 
 | |
| /* Handle a CPU exception.  */
 | |
| void do_interrupt(CPUARMState *env)
 | |
| {
 | |
|     uint32_t addr;
 | |
|     uint32_t mask;
 | |
|     int new_mode;
 | |
|     uint32_t offset;
 | |
| 
 | |
|     if (IS_M(env)) {
 | |
|         do_interrupt_v7m(env);
 | |
|         return;
 | |
|     }
 | |
|     /* TODO: Vectored interrupt controller.  */
 | |
|     switch (env->exception_index) {
 | |
|     case EXCP_UDEF:
 | |
|         new_mode = ARM_CPU_MODE_UND;
 | |
|         addr = 0x04;
 | |
|         mask = CPSR_I;
 | |
|         if (env->thumb)
 | |
|             offset = 2;
 | |
|         else
 | |
|             offset = 4;
 | |
|         break;
 | |
|     case EXCP_SWI:
 | |
|         if (semihosting_enabled) {
 | |
|             /* Check for semihosting interrupt.  */
 | |
|             if (env->thumb) {
 | |
|                 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
 | |
|                     & 0xff;
 | |
|             } else {
 | |
|                 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
 | |
|                     & 0xffffff;
 | |
|             }
 | |
|             /* Only intercept calls from privileged modes, to provide some
 | |
|                semblance of security.  */
 | |
|             if (((mask == 0x123456 && !env->thumb)
 | |
|                     || (mask == 0xab && env->thumb))
 | |
|                   && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
 | |
|                 env->regs[0] = do_arm_semihosting(env);
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|         new_mode = ARM_CPU_MODE_SVC;
 | |
|         addr = 0x08;
 | |
|         mask = CPSR_I;
 | |
|         /* The PC already points to the next instruction.  */
 | |
|         offset = 0;
 | |
|         break;
 | |
|     case EXCP_BKPT:
 | |
|         /* See if this is a semihosting syscall.  */
 | |
|         if (env->thumb && semihosting_enabled) {
 | |
|             mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
 | |
|             if (mask == 0xab
 | |
|                   && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
 | |
|                 env->regs[15] += 2;
 | |
|                 env->regs[0] = do_arm_semihosting(env);
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|         env->cp15.c5_insn = 2;
 | |
|         /* Fall through to prefetch abort.  */
 | |
|     case EXCP_PREFETCH_ABORT:
 | |
|         new_mode = ARM_CPU_MODE_ABT;
 | |
|         addr = 0x0c;
 | |
|         mask = CPSR_A | CPSR_I;
 | |
|         offset = 4;
 | |
|         break;
 | |
|     case EXCP_DATA_ABORT:
 | |
|         new_mode = ARM_CPU_MODE_ABT;
 | |
|         addr = 0x10;
 | |
|         mask = CPSR_A | CPSR_I;
 | |
|         offset = 8;
 | |
|         break;
 | |
|     case EXCP_IRQ:
 | |
|         new_mode = ARM_CPU_MODE_IRQ;
 | |
|         addr = 0x18;
 | |
|         /* Disable IRQ and imprecise data aborts.  */
 | |
|         mask = CPSR_A | CPSR_I;
 | |
|         offset = 4;
 | |
|         break;
 | |
|     case EXCP_FIQ:
 | |
|         new_mode = ARM_CPU_MODE_FIQ;
 | |
|         addr = 0x1c;
 | |
|         /* Disable FIQ, IRQ and imprecise data aborts.  */
 | |
|         mask = CPSR_A | CPSR_I | CPSR_F;
 | |
|         offset = 4;
 | |
|         break;
 | |
|     default:
 | |
|         cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
 | |
|         return; /* Never happens.  Keep compiler happy.  */
 | |
|     }
 | |
|     /* High vectors.  */
 | |
|     if (env->cp15.c1_sys & (1 << 13)) {
 | |
|         addr += 0xffff0000;
 | |
|     }
 | |
|     switch_mode (env, new_mode);
 | |
|     env->spsr = cpsr_read(env);
 | |
|     /* Clear IT bits.  */
 | |
|     env->condexec_bits = 0;
 | |
|     /* Switch to the new mode, and to the correct instruction set.  */
 | |
|     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
 | |
|     env->uncached_cpsr |= mask;
 | |
|     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
 | |
|      * and we should just guard the thumb mode on V4 */
 | |
|     if (arm_feature(env, ARM_FEATURE_V4T)) {
 | |
|         env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
 | |
|     }
 | |
|     env->regs[14] = env->regs[15] + offset;
 | |
|     env->regs[15] = addr;
 | |
|     env->interrupt_request |= CPU_INTERRUPT_EXITTB;
 | |
| }
 | |
| 
 | |
| /* Check section/page access permissions.
 | |
|    Returns the page protection flags, or zero if the access is not
 | |
|    permitted.  */
 | |
| static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
 | |
|                            int access_type, int is_user)
 | |
| {
 | |
|   int prot_ro;
 | |
| 
 | |
|   if (domain_prot == 3) {
 | |
|     return PAGE_READ | PAGE_WRITE;
 | |
|   }
 | |
| 
 | |
|   if (access_type == 1)
 | |
|       prot_ro = 0;
 | |
|   else
 | |
|       prot_ro = PAGE_READ;
 | |
| 
 | |
|   switch (ap) {
 | |
|   case 0:
 | |
|       if (access_type == 1)
 | |
|           return 0;
 | |
|       switch ((env->cp15.c1_sys >> 8) & 3) {
 | |
|       case 1:
 | |
|           return is_user ? 0 : PAGE_READ;
 | |
|       case 2:
 | |
|           return PAGE_READ;
 | |
|       default:
 | |
|           return 0;
 | |
|       }
 | |
|   case 1:
 | |
|       return is_user ? 0 : PAGE_READ | PAGE_WRITE;
 | |
|   case 2:
 | |
|       if (is_user)
 | |
|           return prot_ro;
 | |
|       else
 | |
|           return PAGE_READ | PAGE_WRITE;
 | |
|   case 3:
 | |
|       return PAGE_READ | PAGE_WRITE;
 | |
|   case 4: /* Reserved.  */
 | |
|       return 0;
 | |
|   case 5:
 | |
|       return is_user ? 0 : prot_ro;
 | |
|   case 6:
 | |
|       return prot_ro;
 | |
|   case 7:
 | |
|       if (!arm_feature (env, ARM_FEATURE_V6K))
 | |
|           return 0;
 | |
|       return prot_ro;
 | |
|   default:
 | |
|       abort();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
 | |
| {
 | |
|     uint32_t table;
 | |
| 
 | |
|     if (address & env->cp15.c2_mask)
 | |
|         table = env->cp15.c2_base1 & 0xffffc000;
 | |
|     else
 | |
|         table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
 | |
| 
 | |
|     table |= (address >> 18) & 0x3ffc;
 | |
|     return table;
 | |
| }
 | |
| 
 | |
| static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
 | |
|                             int is_user, hwaddr *phys_ptr,
 | |
|                             int *prot, target_ulong *page_size)
 | |
| {
 | |
|     int code;
 | |
|     uint32_t table;
 | |
|     uint32_t desc;
 | |
|     int type;
 | |
|     int ap;
 | |
|     int domain;
 | |
|     int domain_prot;
 | |
|     hwaddr phys_addr;
 | |
| 
 | |
|     /* Pagetable walk.  */
 | |
|     /* Lookup l1 descriptor.  */
 | |
|     table = get_level1_table_address(env, address);
 | |
|     desc = ldl_phys(table);
 | |
|     type = (desc & 3);
 | |
|     domain = (desc >> 5) & 0x0f;
 | |
|     domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
 | |
|     if (type == 0) {
 | |
|         /* Section translation fault.  */
 | |
|         code = 5;
 | |
|         goto do_fault;
 | |
|     }
 | |
|     if (domain_prot == 0 || domain_prot == 2) {
 | |
|         if (type == 2)
 | |
|             code = 9; /* Section domain fault.  */
 | |
|         else
 | |
|             code = 11; /* Page domain fault.  */
 | |
|         goto do_fault;
 | |
|     }
 | |
|     if (type == 2) {
 | |
|         /* 1Mb section.  */
 | |
|         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
 | |
|         ap = (desc >> 10) & 3;
 | |
|         code = 13;
 | |
|         *page_size = 1024 * 1024;
 | |
|     } else {
 | |
|         /* Lookup l2 entry.  */
 | |
| 	if (type == 1) {
 | |
| 	    /* Coarse pagetable.  */
 | |
| 	    table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
 | |
| 	} else {
 | |
| 	    /* Fine pagetable.  */
 | |
| 	    table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
 | |
| 	}
 | |
|         desc = ldl_phys(table);
 | |
|         switch (desc & 3) {
 | |
|         case 0: /* Page translation fault.  */
 | |
|             code = 7;
 | |
|             goto do_fault;
 | |
|         case 1: /* 64k page.  */
 | |
|             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
 | |
|             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
 | |
|             *page_size = 0x10000;
 | |
|             break;
 | |
|         case 2: /* 4k page.  */
 | |
|             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
 | |
|             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
 | |
|             *page_size = 0x1000;
 | |
|             break;
 | |
|         case 3: /* 1k page.  */
 | |
| 	    if (type == 1) {
 | |
| 		if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 | |
| 		    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
 | |
| 		} else {
 | |
| 		    /* Page translation fault.  */
 | |
| 		    code = 7;
 | |
| 		    goto do_fault;
 | |
| 		}
 | |
| 	    } else {
 | |
| 		phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
 | |
| 	    }
 | |
|             ap = (desc >> 4) & 3;
 | |
|             *page_size = 0x400;
 | |
|             break;
 | |
|         default:
 | |
|             /* Never happens, but compiler isn't smart enough to tell.  */
 | |
|             abort();
 | |
|         }
 | |
|         code = 15;
 | |
|     }
 | |
|     *prot = check_ap(env, ap, domain_prot, access_type, is_user);
 | |
|     if (!*prot) {
 | |
|         /* Access permission fault.  */
 | |
|         goto do_fault;
 | |
|     }
 | |
|     *prot |= PAGE_EXEC;
 | |
|     *phys_ptr = phys_addr;
 | |
|     return 0;
 | |
| do_fault:
 | |
|     return code | (domain << 4);
 | |
| }
 | |
| 
 | |
| static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
 | |
|                             int is_user, hwaddr *phys_ptr,
 | |
|                             int *prot, target_ulong *page_size)
 | |
| {
 | |
|     int code;
 | |
|     uint32_t table;
 | |
|     uint32_t desc;
 | |
|     uint32_t xn;
 | |
|     uint32_t pxn = 0;
 | |
|     int type;
 | |
|     int ap;
 | |
|     int domain = 0;
 | |
|     int domain_prot;
 | |
|     hwaddr phys_addr;
 | |
| 
 | |
|     /* Pagetable walk.  */
 | |
|     /* Lookup l1 descriptor.  */
 | |
|     table = get_level1_table_address(env, address);
 | |
|     desc = ldl_phys(table);
 | |
|     type = (desc & 3);
 | |
|     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
 | |
|         /* Section translation fault, or attempt to use the encoding
 | |
|          * which is Reserved on implementations without PXN.
 | |
|          */
 | |
|         code = 5;
 | |
|         goto do_fault;
 | |
|     }
 | |
|     if ((type == 1) || !(desc & (1 << 18))) {
 | |
|         /* Page or Section.  */
 | |
|         domain = (desc >> 5) & 0x0f;
 | |
|     }
 | |
|     domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
 | |
|     if (domain_prot == 0 || domain_prot == 2) {
 | |
|         if (type != 1) {
 | |
|             code = 9; /* Section domain fault.  */
 | |
|         } else {
 | |
|             code = 11; /* Page domain fault.  */
 | |
|         }
 | |
|         goto do_fault;
 | |
|     }
 | |
|     if (type != 1) {
 | |
|         if (desc & (1 << 18)) {
 | |
|             /* Supersection.  */
 | |
|             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
 | |
|             *page_size = 0x1000000;
 | |
|         } else {
 | |
|             /* Section.  */
 | |
|             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
 | |
|             *page_size = 0x100000;
 | |
|         }
 | |
|         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
 | |
|         xn = desc & (1 << 4);
 | |
|         pxn = desc & 1;
 | |
|         code = 13;
 | |
|     } else {
 | |
|         if (arm_feature(env, ARM_FEATURE_PXN)) {
 | |
|             pxn = (desc >> 2) & 1;
 | |
|         }
 | |
|         /* Lookup l2 entry.  */
 | |
|         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
 | |
|         desc = ldl_phys(table);
 | |
|         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
 | |
|         switch (desc & 3) {
 | |
|         case 0: /* Page translation fault.  */
 | |
|             code = 7;
 | |
|             goto do_fault;
 | |
|         case 1: /* 64k page.  */
 | |
|             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
 | |
|             xn = desc & (1 << 15);
 | |
|             *page_size = 0x10000;
 | |
|             break;
 | |
|         case 2: case 3: /* 4k page.  */
 | |
|             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
 | |
|             xn = desc & 1;
 | |
|             *page_size = 0x1000;
 | |
|             break;
 | |
|         default:
 | |
|             /* Never happens, but compiler isn't smart enough to tell.  */
 | |
|             abort();
 | |
|         }
 | |
|         code = 15;
 | |
|     }
 | |
|     if (domain_prot == 3) {
 | |
|         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
|     } else {
 | |
|         if (pxn && !is_user) {
 | |
|             xn = 1;
 | |
|         }
 | |
|         if (xn && access_type == 2)
 | |
|             goto do_fault;
 | |
| 
 | |
|         /* The simplified model uses AP[0] as an access control bit.  */
 | |
|         if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
 | |
|             /* Access flag fault.  */
 | |
|             code = (code == 15) ? 6 : 3;
 | |
|             goto do_fault;
 | |
|         }
 | |
|         *prot = check_ap(env, ap, domain_prot, access_type, is_user);
 | |
|         if (!*prot) {
 | |
|             /* Access permission fault.  */
 | |
|             goto do_fault;
 | |
|         }
 | |
|         if (!xn) {
 | |
|             *prot |= PAGE_EXEC;
 | |
|         }
 | |
|     }
 | |
|     *phys_ptr = phys_addr;
 | |
|     return 0;
 | |
| do_fault:
 | |
|     return code | (domain << 4);
 | |
| }
 | |
| 
 | |
| /* Fault type for long-descriptor MMU fault reporting; this corresponds
 | |
|  * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
 | |
|  */
 | |
| typedef enum {
 | |
|     translation_fault = 1,
 | |
|     access_fault = 2,
 | |
|     permission_fault = 3,
 | |
| } MMUFaultType;
 | |
| 
 | |
| static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
 | |
|                               int access_type, int is_user,
 | |
|                               hwaddr *phys_ptr, int *prot,
 | |
|                               target_ulong *page_size_ptr)
 | |
| {
 | |
|     /* Read an LPAE long-descriptor translation table. */
 | |
|     MMUFaultType fault_type = translation_fault;
 | |
|     uint32_t level = 1;
 | |
|     uint32_t epd;
 | |
|     uint32_t tsz;
 | |
|     uint64_t ttbr;
 | |
|     int ttbr_select;
 | |
|     int n;
 | |
|     hwaddr descaddr;
 | |
|     uint32_t tableattrs;
 | |
|     target_ulong page_size;
 | |
|     uint32_t attrs;
 | |
| 
 | |
|     /* Determine whether this address is in the region controlled by
 | |
|      * TTBR0 or TTBR1 (or if it is in neither region and should fault).
 | |
|      * This is a Non-secure PL0/1 stage 1 translation, so controlled by
 | |
|      * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
 | |
|      */
 | |
|     uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
 | |
|     uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
 | |
|     if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
 | |
|         /* there is a ttbr0 region and we are in it (high bits all zero) */
 | |
|         ttbr_select = 0;
 | |
|     } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
 | |
|         /* there is a ttbr1 region and we are in it (high bits all one) */
 | |
|         ttbr_select = 1;
 | |
|     } else if (!t0sz) {
 | |
|         /* ttbr0 region is "everything not in the ttbr1 region" */
 | |
|         ttbr_select = 0;
 | |
|     } else if (!t1sz) {
 | |
|         /* ttbr1 region is "everything not in the ttbr0 region" */
 | |
|         ttbr_select = 1;
 | |
|     } else {
 | |
|         /* in the gap between the two regions, this is a Translation fault */
 | |
|         fault_type = translation_fault;
 | |
|         goto do_fault;
 | |
|     }
 | |
| 
 | |
|     /* Note that QEMU ignores shareability and cacheability attributes,
 | |
|      * so we don't need to do anything with the SH, ORGN, IRGN fields
 | |
|      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
 | |
|      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
 | |
|      * implement any ASID-like capability so we can ignore it (instead
 | |
|      * we will always flush the TLB any time the ASID is changed).
 | |
|      */
 | |
|     if (ttbr_select == 0) {
 | |
|         ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
 | |
|         epd = extract32(env->cp15.c2_control, 7, 1);
 | |
|         tsz = t0sz;
 | |
|     } else {
 | |
|         ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
 | |
|         epd = extract32(env->cp15.c2_control, 23, 1);
 | |
|         tsz = t1sz;
 | |
|     }
 | |
| 
 | |
|     if (epd) {
 | |
|         /* Translation table walk disabled => Translation fault on TLB miss */
 | |
|         goto do_fault;
 | |
|     }
 | |
| 
 | |
|     /* If the region is small enough we will skip straight to a 2nd level
 | |
|      * lookup. This affects the number of bits of the address used in
 | |
|      * combination with the TTBR to find the first descriptor. ('n' here
 | |
|      * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
 | |
|      * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
 | |
|      */
 | |
|     if (tsz > 1) {
 | |
|         level = 2;
 | |
|         n = 14 - tsz;
 | |
|     } else {
 | |
|         n = 5 - tsz;
 | |
|     }
 | |
| 
 | |
|     /* Clear the vaddr bits which aren't part of the within-region address,
 | |
|      * so that we don't have to special case things when calculating the
 | |
|      * first descriptor address.
 | |
|      */
 | |
|     address &= (0xffffffffU >> tsz);
 | |
| 
 | |
|     /* Now we can extract the actual base address from the TTBR */
 | |
|     descaddr = extract64(ttbr, 0, 40);
 | |
|     descaddr &= ~((1ULL << n) - 1);
 | |
| 
 | |
|     tableattrs = 0;
 | |
|     for (;;) {
 | |
|         uint64_t descriptor;
 | |
| 
 | |
|         descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
 | |
|         descriptor = ldq_phys(descaddr);
 | |
|         if (!(descriptor & 1) ||
 | |
|             (!(descriptor & 2) && (level == 3))) {
 | |
|             /* Invalid, or the Reserved level 3 encoding */
 | |
|             goto do_fault;
 | |
|         }
 | |
|         descaddr = descriptor & 0xfffffff000ULL;
 | |
| 
 | |
|         if ((descriptor & 2) && (level < 3)) {
 | |
|             /* Table entry. The top five bits are attributes which  may
 | |
|              * propagate down through lower levels of the table (and
 | |
|              * which are all arranged so that 0 means "no effect", so
 | |
|              * we can gather them up by ORing in the bits at each level).
 | |
|              */
 | |
|             tableattrs |= extract64(descriptor, 59, 5);
 | |
|             level++;
 | |
|             continue;
 | |
|         }
 | |
|         /* Block entry at level 1 or 2, or page entry at level 3.
 | |
|          * These are basically the same thing, although the number
 | |
|          * of bits we pull in from the vaddr varies.
 | |
|          */
 | |
|         page_size = (1 << (39 - (9 * level)));
 | |
|         descaddr |= (address & (page_size - 1));
 | |
|         /* Extract attributes from the descriptor and merge with table attrs */
 | |
|         attrs = extract64(descriptor, 2, 10)
 | |
|             | (extract64(descriptor, 52, 12) << 10);
 | |
|         attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
 | |
|         attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
 | |
|         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
 | |
|          * means "force PL1 access only", which means forcing AP[1] to 0.
 | |
|          */
 | |
|         if (extract32(tableattrs, 2, 1)) {
 | |
|             attrs &= ~(1 << 4);
 | |
|         }
 | |
|         /* Since we're always in the Non-secure state, NSTable is ignored. */
 | |
|         break;
 | |
|     }
 | |
|     /* Here descaddr is the final physical address, and attributes
 | |
|      * are all in attrs.
 | |
|      */
 | |
|     fault_type = access_fault;
 | |
|     if ((attrs & (1 << 8)) == 0) {
 | |
|         /* Access flag */
 | |
|         goto do_fault;
 | |
|     }
 | |
|     fault_type = permission_fault;
 | |
|     if (is_user && !(attrs & (1 << 4))) {
 | |
|         /* Unprivileged access not enabled */
 | |
|         goto do_fault;
 | |
|     }
 | |
|     *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
|     if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
 | |
|         /* XN or PXN */
 | |
|         if (access_type == 2) {
 | |
|             goto do_fault;
 | |
|         }
 | |
|         *prot &= ~PAGE_EXEC;
 | |
|     }
 | |
|     if (attrs & (1 << 5)) {
 | |
|         /* Write access forbidden */
 | |
|         if (access_type == 1) {
 | |
|             goto do_fault;
 | |
|         }
 | |
|         *prot &= ~PAGE_WRITE;
 | |
|     }
 | |
| 
 | |
|     *phys_ptr = descaddr;
 | |
|     *page_size_ptr = page_size;
 | |
|     return 0;
 | |
| 
 | |
| do_fault:
 | |
|     /* Long-descriptor format IFSR/DFSR value */
 | |
|     return (1 << 9) | (fault_type << 2) | level;
 | |
| }
 | |
| 
 | |
| static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
 | |
|                              int access_type, int is_user,
 | |
|                              hwaddr *phys_ptr, int *prot)
 | |
| {
 | |
|     int n;
 | |
|     uint32_t mask;
 | |
|     uint32_t base;
 | |
| 
 | |
|     *phys_ptr = address;
 | |
|     for (n = 7; n >= 0; n--) {
 | |
| 	base = env->cp15.c6_region[n];
 | |
| 	if ((base & 1) == 0)
 | |
| 	    continue;
 | |
| 	mask = 1 << ((base >> 1) & 0x1f);
 | |
| 	/* Keep this shift separate from the above to avoid an
 | |
| 	   (undefined) << 32.  */
 | |
| 	mask = (mask << 1) - 1;
 | |
| 	if (((base ^ address) & ~mask) == 0)
 | |
| 	    break;
 | |
|     }
 | |
|     if (n < 0)
 | |
| 	return 2;
 | |
| 
 | |
|     if (access_type == 2) {
 | |
| 	mask = env->cp15.c5_insn;
 | |
|     } else {
 | |
| 	mask = env->cp15.c5_data;
 | |
|     }
 | |
|     mask = (mask >> (n * 4)) & 0xf;
 | |
|     switch (mask) {
 | |
|     case 0:
 | |
| 	return 1;
 | |
|     case 1:
 | |
| 	if (is_user)
 | |
| 	  return 1;
 | |
| 	*prot = PAGE_READ | PAGE_WRITE;
 | |
| 	break;
 | |
|     case 2:
 | |
| 	*prot = PAGE_READ;
 | |
| 	if (!is_user)
 | |
| 	    *prot |= PAGE_WRITE;
 | |
| 	break;
 | |
|     case 3:
 | |
| 	*prot = PAGE_READ | PAGE_WRITE;
 | |
| 	break;
 | |
|     case 5:
 | |
| 	if (is_user)
 | |
| 	    return 1;
 | |
| 	*prot = PAGE_READ;
 | |
| 	break;
 | |
|     case 6:
 | |
| 	*prot = PAGE_READ;
 | |
| 	break;
 | |
|     default:
 | |
| 	/* Bad permission.  */
 | |
| 	return 1;
 | |
|     }
 | |
|     *prot |= PAGE_EXEC;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* get_phys_addr - get the physical address for this virtual address
 | |
|  *
 | |
|  * Find the physical address corresponding to the given virtual address,
 | |
|  * by doing a translation table walk on MMU based systems or using the
 | |
|  * MPU state on MPU based systems.
 | |
|  *
 | |
|  * Returns 0 if the translation was successful. Otherwise, phys_ptr,
 | |
|  * prot and page_size are not filled in, and the return value provides
 | |
|  * information on why the translation aborted, in the format of a
 | |
|  * DFSR/IFSR fault register, with the following caveats:
 | |
|  *  * we honour the short vs long DFSR format differences.
 | |
|  *  * the WnR bit is never set (the caller must do this).
 | |
|  *  * for MPU based systems we don't bother to return a full FSR format
 | |
|  *    value.
 | |
|  *
 | |
|  * @env: CPUARMState
 | |
|  * @address: virtual address to get physical address for
 | |
|  * @access_type: 0 for read, 1 for write, 2 for execute
 | |
|  * @is_user: 0 for privileged access, 1 for user
 | |
|  * @phys_ptr: set to the physical address corresponding to the virtual address
 | |
|  * @prot: set to the permissions for the page containing phys_ptr
 | |
|  * @page_size: set to the size of the page containing phys_ptr
 | |
|  */
 | |
| static inline int get_phys_addr(CPUARMState *env, uint32_t address,
 | |
|                                 int access_type, int is_user,
 | |
|                                 hwaddr *phys_ptr, int *prot,
 | |
|                                 target_ulong *page_size)
 | |
| {
 | |
|     /* Fast Context Switch Extension.  */
 | |
|     if (address < 0x02000000)
 | |
|         address += env->cp15.c13_fcse;
 | |
| 
 | |
|     if ((env->cp15.c1_sys & 1) == 0) {
 | |
|         /* MMU/MPU disabled.  */
 | |
|         *phys_ptr = address;
 | |
|         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
|         *page_size = TARGET_PAGE_SIZE;
 | |
|         return 0;
 | |
|     } else if (arm_feature(env, ARM_FEATURE_MPU)) {
 | |
|         *page_size = TARGET_PAGE_SIZE;
 | |
| 	return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
 | |
| 				 prot);
 | |
|     } else if (extended_addresses_enabled(env)) {
 | |
|         return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
 | |
|                                   prot, page_size);
 | |
|     } else if (env->cp15.c1_sys & (1 << 23)) {
 | |
|         return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
 | |
|                                 prot, page_size);
 | |
|     } else {
 | |
|         return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
 | |
|                                 prot, page_size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
 | |
|                               int access_type, int mmu_idx)
 | |
| {
 | |
|     hwaddr phys_addr;
 | |
|     target_ulong page_size;
 | |
|     int prot;
 | |
|     int ret, is_user;
 | |
| 
 | |
|     is_user = mmu_idx == MMU_USER_IDX;
 | |
|     ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
 | |
|                         &page_size);
 | |
|     if (ret == 0) {
 | |
|         /* Map a single [sub]page.  */
 | |
|         phys_addr &= ~(hwaddr)0x3ff;
 | |
|         address &= ~(uint32_t)0x3ff;
 | |
|         tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (access_type == 2) {
 | |
|         env->cp15.c5_insn = ret;
 | |
|         env->cp15.c6_insn = address;
 | |
|         env->exception_index = EXCP_PREFETCH_ABORT;
 | |
|     } else {
 | |
|         env->cp15.c5_data = ret;
 | |
|         if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
 | |
|             env->cp15.c5_data |= (1 << 11);
 | |
|         env->cp15.c6_data = address;
 | |
|         env->exception_index = EXCP_DATA_ABORT;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| hwaddr cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
 | |
| {
 | |
|     hwaddr phys_addr;
 | |
|     target_ulong page_size;
 | |
|     int prot;
 | |
|     int ret;
 | |
| 
 | |
|     ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
 | |
| 
 | |
|     if (ret != 0)
 | |
|         return -1;
 | |
| 
 | |
|     return phys_addr;
 | |
| }
 | |
| 
 | |
| void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
 | |
| {
 | |
|     if ((env->uncached_cpsr & CPSR_M) == mode) {
 | |
|         env->regs[13] = val;
 | |
|     } else {
 | |
|         env->banked_r13[bank_number(env, mode)] = val;
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
 | |
| {
 | |
|     if ((env->uncached_cpsr & CPSR_M) == mode) {
 | |
|         return env->regs[13];
 | |
|     } else {
 | |
|         return env->banked_r13[bank_number(env, mode)];
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
 | |
| {
 | |
|     switch (reg) {
 | |
|     case 0: /* APSR */
 | |
|         return xpsr_read(env) & 0xf8000000;
 | |
|     case 1: /* IAPSR */
 | |
|         return xpsr_read(env) & 0xf80001ff;
 | |
|     case 2: /* EAPSR */
 | |
|         return xpsr_read(env) & 0xff00fc00;
 | |
|     case 3: /* xPSR */
 | |
|         return xpsr_read(env) & 0xff00fdff;
 | |
|     case 5: /* IPSR */
 | |
|         return xpsr_read(env) & 0x000001ff;
 | |
|     case 6: /* EPSR */
 | |
|         return xpsr_read(env) & 0x0700fc00;
 | |
|     case 7: /* IEPSR */
 | |
|         return xpsr_read(env) & 0x0700edff;
 | |
|     case 8: /* MSP */
 | |
|         return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
 | |
|     case 9: /* PSP */
 | |
|         return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
 | |
|     case 16: /* PRIMASK */
 | |
|         return (env->uncached_cpsr & CPSR_I) != 0;
 | |
|     case 17: /* BASEPRI */
 | |
|     case 18: /* BASEPRI_MAX */
 | |
|         return env->v7m.basepri;
 | |
|     case 19: /* FAULTMASK */
 | |
|         return (env->uncached_cpsr & CPSR_F) != 0;
 | |
|     case 20: /* CONTROL */
 | |
|         return env->v7m.control;
 | |
|     default:
 | |
|         /* ??? For debugging only.  */
 | |
|         cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
 | |
| {
 | |
|     switch (reg) {
 | |
|     case 0: /* APSR */
 | |
|         xpsr_write(env, val, 0xf8000000);
 | |
|         break;
 | |
|     case 1: /* IAPSR */
 | |
|         xpsr_write(env, val, 0xf8000000);
 | |
|         break;
 | |
|     case 2: /* EAPSR */
 | |
|         xpsr_write(env, val, 0xfe00fc00);
 | |
|         break;
 | |
|     case 3: /* xPSR */
 | |
|         xpsr_write(env, val, 0xfe00fc00);
 | |
|         break;
 | |
|     case 5: /* IPSR */
 | |
|         /* IPSR bits are readonly.  */
 | |
|         break;
 | |
|     case 6: /* EPSR */
 | |
|         xpsr_write(env, val, 0x0600fc00);
 | |
|         break;
 | |
|     case 7: /* IEPSR */
 | |
|         xpsr_write(env, val, 0x0600fc00);
 | |
|         break;
 | |
|     case 8: /* MSP */
 | |
|         if (env->v7m.current_sp)
 | |
|             env->v7m.other_sp = val;
 | |
|         else
 | |
|             env->regs[13] = val;
 | |
|         break;
 | |
|     case 9: /* PSP */
 | |
|         if (env->v7m.current_sp)
 | |
|             env->regs[13] = val;
 | |
|         else
 | |
|             env->v7m.other_sp = val;
 | |
|         break;
 | |
|     case 16: /* PRIMASK */
 | |
|         if (val & 1)
 | |
|             env->uncached_cpsr |= CPSR_I;
 | |
|         else
 | |
|             env->uncached_cpsr &= ~CPSR_I;
 | |
|         break;
 | |
|     case 17: /* BASEPRI */
 | |
|         env->v7m.basepri = val & 0xff;
 | |
|         break;
 | |
|     case 18: /* BASEPRI_MAX */
 | |
|         val &= 0xff;
 | |
|         if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
 | |
|             env->v7m.basepri = val;
 | |
|         break;
 | |
|     case 19: /* FAULTMASK */
 | |
|         if (val & 1)
 | |
|             env->uncached_cpsr |= CPSR_F;
 | |
|         else
 | |
|             env->uncached_cpsr &= ~CPSR_F;
 | |
|         break;
 | |
|     case 20: /* CONTROL */
 | |
|         env->v7m.control = val & 3;
 | |
|         switch_v7m_sp(env, (val & 2) != 0);
 | |
|         break;
 | |
|     default:
 | |
|         /* ??? For debugging only.  */
 | |
|         cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
 | |
|         return;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Note that signed overflow is undefined in C.  The following routines are
 | |
|    careful to use unsigned types where modulo arithmetic is required.
 | |
|    Failure to do so _will_ break on newer gcc.  */
 | |
| 
 | |
| /* Signed saturating arithmetic.  */
 | |
| 
 | |
| /* Perform 16-bit signed saturating addition.  */
 | |
| static inline uint16_t add16_sat(uint16_t a, uint16_t b)
 | |
| {
 | |
|     uint16_t res;
 | |
| 
 | |
|     res = a + b;
 | |
|     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
 | |
|         if (a & 0x8000)
 | |
|             res = 0x8000;
 | |
|         else
 | |
|             res = 0x7fff;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Perform 8-bit signed saturating addition.  */
 | |
| static inline uint8_t add8_sat(uint8_t a, uint8_t b)
 | |
| {
 | |
|     uint8_t res;
 | |
| 
 | |
|     res = a + b;
 | |
|     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
 | |
|         if (a & 0x80)
 | |
|             res = 0x80;
 | |
|         else
 | |
|             res = 0x7f;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Perform 16-bit signed saturating subtraction.  */
 | |
| static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
 | |
| {
 | |
|     uint16_t res;
 | |
| 
 | |
|     res = a - b;
 | |
|     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
 | |
|         if (a & 0x8000)
 | |
|             res = 0x8000;
 | |
|         else
 | |
|             res = 0x7fff;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Perform 8-bit signed saturating subtraction.  */
 | |
| static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
 | |
| {
 | |
|     uint8_t res;
 | |
| 
 | |
|     res = a - b;
 | |
|     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
 | |
|         if (a & 0x80)
 | |
|             res = 0x80;
 | |
|         else
 | |
|             res = 0x7f;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
 | |
| #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
 | |
| #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
 | |
| #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
 | |
| #define PFX q
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Unsigned saturating arithmetic.  */
 | |
| static inline uint16_t add16_usat(uint16_t a, uint16_t b)
 | |
| {
 | |
|     uint16_t res;
 | |
|     res = a + b;
 | |
|     if (res < a)
 | |
|         res = 0xffff;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
 | |
| {
 | |
|     if (a > b)
 | |
|         return a - b;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| static inline uint8_t add8_usat(uint8_t a, uint8_t b)
 | |
| {
 | |
|     uint8_t res;
 | |
|     res = a + b;
 | |
|     if (res < a)
 | |
|         res = 0xff;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
 | |
| {
 | |
|     if (a > b)
 | |
|         return a - b;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
 | |
| #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
 | |
| #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
 | |
| #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
 | |
| #define PFX uq
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Signed modulo arithmetic.  */
 | |
| #define SARITH16(a, b, n, op) do { \
 | |
|     int32_t sum; \
 | |
|     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
 | |
|     RESULT(sum, n, 16); \
 | |
|     if (sum >= 0) \
 | |
|         ge |= 3 << (n * 2); \
 | |
|     } while(0)
 | |
| 
 | |
| #define SARITH8(a, b, n, op) do { \
 | |
|     int32_t sum; \
 | |
|     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
 | |
|     RESULT(sum, n, 8); \
 | |
|     if (sum >= 0) \
 | |
|         ge |= 1 << n; \
 | |
|     } while(0)
 | |
| 
 | |
| 
 | |
| #define ADD16(a, b, n) SARITH16(a, b, n, +)
 | |
| #define SUB16(a, b, n) SARITH16(a, b, n, -)
 | |
| #define ADD8(a, b, n)  SARITH8(a, b, n, +)
 | |
| #define SUB8(a, b, n)  SARITH8(a, b, n, -)
 | |
| #define PFX s
 | |
| #define ARITH_GE
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Unsigned modulo arithmetic.  */
 | |
| #define ADD16(a, b, n) do { \
 | |
|     uint32_t sum; \
 | |
|     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
 | |
|     RESULT(sum, n, 16); \
 | |
|     if ((sum >> 16) == 1) \
 | |
|         ge |= 3 << (n * 2); \
 | |
|     } while(0)
 | |
| 
 | |
| #define ADD8(a, b, n) do { \
 | |
|     uint32_t sum; \
 | |
|     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
 | |
|     RESULT(sum, n, 8); \
 | |
|     if ((sum >> 8) == 1) \
 | |
|         ge |= 1 << n; \
 | |
|     } while(0)
 | |
| 
 | |
| #define SUB16(a, b, n) do { \
 | |
|     uint32_t sum; \
 | |
|     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
 | |
|     RESULT(sum, n, 16); \
 | |
|     if ((sum >> 16) == 0) \
 | |
|         ge |= 3 << (n * 2); \
 | |
|     } while(0)
 | |
| 
 | |
| #define SUB8(a, b, n) do { \
 | |
|     uint32_t sum; \
 | |
|     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
 | |
|     RESULT(sum, n, 8); \
 | |
|     if ((sum >> 8) == 0) \
 | |
|         ge |= 1 << n; \
 | |
|     } while(0)
 | |
| 
 | |
| #define PFX u
 | |
| #define ARITH_GE
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Halved signed arithmetic.  */
 | |
| #define ADD16(a, b, n) \
 | |
|   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
 | |
| #define SUB16(a, b, n) \
 | |
|   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
 | |
| #define ADD8(a, b, n) \
 | |
|   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
 | |
| #define SUB8(a, b, n) \
 | |
|   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
 | |
| #define PFX sh
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Halved unsigned arithmetic.  */
 | |
| #define ADD16(a, b, n) \
 | |
|   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
 | |
| #define SUB16(a, b, n) \
 | |
|   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
 | |
| #define ADD8(a, b, n) \
 | |
|   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
 | |
| #define SUB8(a, b, n) \
 | |
|   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
 | |
| #define PFX uh
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| static inline uint8_t do_usad(uint8_t a, uint8_t b)
 | |
| {
 | |
|     if (a > b)
 | |
|         return a - b;
 | |
|     else
 | |
|         return b - a;
 | |
| }
 | |
| 
 | |
| /* Unsigned sum of absolute byte differences.  */
 | |
| uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t sum;
 | |
|     sum = do_usad(a, b);
 | |
|     sum += do_usad(a >> 8, b >> 8);
 | |
|     sum += do_usad(a >> 16, b >>16);
 | |
|     sum += do_usad(a >> 24, b >> 24);
 | |
|     return sum;
 | |
| }
 | |
| 
 | |
| /* For ARMv6 SEL instruction.  */
 | |
| uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t mask;
 | |
| 
 | |
|     mask = 0;
 | |
|     if (flags & 1)
 | |
|         mask |= 0xff;
 | |
|     if (flags & 2)
 | |
|         mask |= 0xff00;
 | |
|     if (flags & 4)
 | |
|         mask |= 0xff0000;
 | |
|     if (flags & 8)
 | |
|         mask |= 0xff000000;
 | |
|     return (a & mask) | (b & ~mask);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(logicq_cc)(uint64_t val)
 | |
| {
 | |
|     return (val >> 32) | (val != 0);
 | |
| }
 | |
| 
 | |
| /* VFP support.  We follow the convention used for VFP instructions:
 | |
|    Single precision routines have a "s" suffix, double precision a
 | |
|    "d" suffix.  */
 | |
| 
 | |
| /* Convert host exception flags to vfp form.  */
 | |
| static inline int vfp_exceptbits_from_host(int host_bits)
 | |
| {
 | |
|     int target_bits = 0;
 | |
| 
 | |
|     if (host_bits & float_flag_invalid)
 | |
|         target_bits |= 1;
 | |
|     if (host_bits & float_flag_divbyzero)
 | |
|         target_bits |= 2;
 | |
|     if (host_bits & float_flag_overflow)
 | |
|         target_bits |= 4;
 | |
|     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
 | |
|         target_bits |= 8;
 | |
|     if (host_bits & float_flag_inexact)
 | |
|         target_bits |= 0x10;
 | |
|     if (host_bits & float_flag_input_denormal)
 | |
|         target_bits |= 0x80;
 | |
|     return target_bits;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
 | |
| {
 | |
|     int i;
 | |
|     uint32_t fpscr;
 | |
| 
 | |
|     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
 | |
|             | (env->vfp.vec_len << 16)
 | |
|             | (env->vfp.vec_stride << 20);
 | |
|     i = get_float_exception_flags(&env->vfp.fp_status);
 | |
|     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
 | |
|     fpscr |= vfp_exceptbits_from_host(i);
 | |
|     return fpscr;
 | |
| }
 | |
| 
 | |
| uint32_t vfp_get_fpscr(CPUARMState *env)
 | |
| {
 | |
|     return HELPER(vfp_get_fpscr)(env);
 | |
| }
 | |
| 
 | |
| /* Convert vfp exception flags to target form.  */
 | |
| static inline int vfp_exceptbits_to_host(int target_bits)
 | |
| {
 | |
|     int host_bits = 0;
 | |
| 
 | |
|     if (target_bits & 1)
 | |
|         host_bits |= float_flag_invalid;
 | |
|     if (target_bits & 2)
 | |
|         host_bits |= float_flag_divbyzero;
 | |
|     if (target_bits & 4)
 | |
|         host_bits |= float_flag_overflow;
 | |
|     if (target_bits & 8)
 | |
|         host_bits |= float_flag_underflow;
 | |
|     if (target_bits & 0x10)
 | |
|         host_bits |= float_flag_inexact;
 | |
|     if (target_bits & 0x80)
 | |
|         host_bits |= float_flag_input_denormal;
 | |
|     return host_bits;
 | |
| }
 | |
| 
 | |
| void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
 | |
| {
 | |
|     int i;
 | |
|     uint32_t changed;
 | |
| 
 | |
|     changed = env->vfp.xregs[ARM_VFP_FPSCR];
 | |
|     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
 | |
|     env->vfp.vec_len = (val >> 16) & 7;
 | |
|     env->vfp.vec_stride = (val >> 20) & 3;
 | |
| 
 | |
|     changed ^= val;
 | |
|     if (changed & (3 << 22)) {
 | |
|         i = (val >> 22) & 3;
 | |
|         switch (i) {
 | |
|         case 0:
 | |
|             i = float_round_nearest_even;
 | |
|             break;
 | |
|         case 1:
 | |
|             i = float_round_up;
 | |
|             break;
 | |
|         case 2:
 | |
|             i = float_round_down;
 | |
|             break;
 | |
|         case 3:
 | |
|             i = float_round_to_zero;
 | |
|             break;
 | |
|         }
 | |
|         set_float_rounding_mode(i, &env->vfp.fp_status);
 | |
|     }
 | |
|     if (changed & (1 << 24)) {
 | |
|         set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
 | |
|         set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
 | |
|     }
 | |
|     if (changed & (1 << 25))
 | |
|         set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
 | |
| 
 | |
|     i = vfp_exceptbits_to_host(val);
 | |
|     set_float_exception_flags(i, &env->vfp.fp_status);
 | |
|     set_float_exception_flags(0, &env->vfp.standard_fp_status);
 | |
| }
 | |
| 
 | |
| void vfp_set_fpscr(CPUARMState *env, uint32_t val)
 | |
| {
 | |
|     HELPER(vfp_set_fpscr)(env, val);
 | |
| }
 | |
| 
 | |
| #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
 | |
| 
 | |
| #define VFP_BINOP(name) \
 | |
| float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     return float32_ ## name(a, b, fpst); \
 | |
| } \
 | |
| float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     return float64_ ## name(a, b, fpst); \
 | |
| }
 | |
| VFP_BINOP(add)
 | |
| VFP_BINOP(sub)
 | |
| VFP_BINOP(mul)
 | |
| VFP_BINOP(div)
 | |
| #undef VFP_BINOP
 | |
| 
 | |
| float32 VFP_HELPER(neg, s)(float32 a)
 | |
| {
 | |
|     return float32_chs(a);
 | |
| }
 | |
| 
 | |
| float64 VFP_HELPER(neg, d)(float64 a)
 | |
| {
 | |
|     return float64_chs(a);
 | |
| }
 | |
| 
 | |
| float32 VFP_HELPER(abs, s)(float32 a)
 | |
| {
 | |
|     return float32_abs(a);
 | |
| }
 | |
| 
 | |
| float64 VFP_HELPER(abs, d)(float64 a)
 | |
| {
 | |
|     return float64_abs(a);
 | |
| }
 | |
| 
 | |
| float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
 | |
| {
 | |
|     return float32_sqrt(a, &env->vfp.fp_status);
 | |
| }
 | |
| 
 | |
| float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
 | |
| {
 | |
|     return float64_sqrt(a, &env->vfp.fp_status);
 | |
| }
 | |
| 
 | |
| /* XXX: check quiet/signaling case */
 | |
| #define DO_VFP_cmp(p, type) \
 | |
| void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
 | |
| { \
 | |
|     uint32_t flags; \
 | |
|     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
 | |
|     case 0: flags = 0x6; break; \
 | |
|     case -1: flags = 0x8; break; \
 | |
|     case 1: flags = 0x2; break; \
 | |
|     default: case 2: flags = 0x3; break; \
 | |
|     } \
 | |
|     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
 | |
|         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
 | |
| } \
 | |
| void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
 | |
| { \
 | |
|     uint32_t flags; \
 | |
|     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
 | |
|     case 0: flags = 0x6; break; \
 | |
|     case -1: flags = 0x8; break; \
 | |
|     case 1: flags = 0x2; break; \
 | |
|     default: case 2: flags = 0x3; break; \
 | |
|     } \
 | |
|     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
 | |
|         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
 | |
| }
 | |
| DO_VFP_cmp(s, float32)
 | |
| DO_VFP_cmp(d, float64)
 | |
| #undef DO_VFP_cmp
 | |
| 
 | |
| /* Integer to float and float to integer conversions */
 | |
| 
 | |
| #define CONV_ITOF(name, fsz, sign) \
 | |
|     float##fsz HELPER(name)(uint32_t x, void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
 | |
| }
 | |
| 
 | |
| #define CONV_FTOI(name, fsz, sign, round) \
 | |
| uint32_t HELPER(name)(float##fsz x, void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     if (float##fsz##_is_any_nan(x)) { \
 | |
|         float_raise(float_flag_invalid, fpst); \
 | |
|         return 0; \
 | |
|     } \
 | |
|     return float##fsz##_to_##sign##int32##round(x, fpst); \
 | |
| }
 | |
| 
 | |
| #define FLOAT_CONVS(name, p, fsz, sign) \
 | |
| CONV_ITOF(vfp_##name##to##p, fsz, sign) \
 | |
| CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
 | |
| CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
 | |
| 
 | |
| FLOAT_CONVS(si, s, 32, )
 | |
| FLOAT_CONVS(si, d, 64, )
 | |
| FLOAT_CONVS(ui, s, 32, u)
 | |
| FLOAT_CONVS(ui, d, 64, u)
 | |
| 
 | |
| #undef CONV_ITOF
 | |
| #undef CONV_FTOI
 | |
| #undef FLOAT_CONVS
 | |
| 
 | |
| /* floating point conversion */
 | |
| float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
 | |
| {
 | |
|     float64 r = float32_to_float64(x, &env->vfp.fp_status);
 | |
|     /* ARM requires that S<->D conversion of any kind of NaN generates
 | |
|      * a quiet NaN by forcing the most significant frac bit to 1.
 | |
|      */
 | |
|     return float64_maybe_silence_nan(r);
 | |
| }
 | |
| 
 | |
| float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
 | |
| {
 | |
|     float32 r =  float64_to_float32(x, &env->vfp.fp_status);
 | |
|     /* ARM requires that S<->D conversion of any kind of NaN generates
 | |
|      * a quiet NaN by forcing the most significant frac bit to 1.
 | |
|      */
 | |
|     return float32_maybe_silence_nan(r);
 | |
| }
 | |
| 
 | |
| /* VFP3 fixed point conversion.  */
 | |
| #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
 | |
| float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t  x, uint32_t shift, \
 | |
|                                     void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     float##fsz tmp; \
 | |
|     tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
 | |
|     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
 | |
| } \
 | |
| uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
 | |
|                                        void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     float##fsz tmp; \
 | |
|     if (float##fsz##_is_any_nan(x)) { \
 | |
|         float_raise(float_flag_invalid, fpst); \
 | |
|         return 0; \
 | |
|     } \
 | |
|     tmp = float##fsz##_scalbn(x, shift, fpst); \
 | |
|     return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
 | |
| }
 | |
| 
 | |
| VFP_CONV_FIX(sh, d, 64, int16, )
 | |
| VFP_CONV_FIX(sl, d, 64, int32, )
 | |
| VFP_CONV_FIX(uh, d, 64, uint16, u)
 | |
| VFP_CONV_FIX(ul, d, 64, uint32, u)
 | |
| VFP_CONV_FIX(sh, s, 32, int16, )
 | |
| VFP_CONV_FIX(sl, s, 32, int32, )
 | |
| VFP_CONV_FIX(uh, s, 32, uint16, u)
 | |
| VFP_CONV_FIX(ul, s, 32, uint32, u)
 | |
| #undef VFP_CONV_FIX
 | |
| 
 | |
| /* Half precision conversions.  */
 | |
| static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
 | |
| {
 | |
|     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
 | |
|     float32 r = float16_to_float32(make_float16(a), ieee, s);
 | |
|     if (ieee) {
 | |
|         return float32_maybe_silence_nan(r);
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
 | |
| {
 | |
|     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
 | |
|     float16 r = float32_to_float16(a, ieee, s);
 | |
|     if (ieee) {
 | |
|         r = float16_maybe_silence_nan(r);
 | |
|     }
 | |
|     return float16_val(r);
 | |
| }
 | |
| 
 | |
| float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
 | |
| {
 | |
|     return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
 | |
| {
 | |
|     return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
 | |
| }
 | |
| 
 | |
| float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
 | |
| {
 | |
|     return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
 | |
| {
 | |
|     return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
 | |
| }
 | |
| 
 | |
| #define float32_two make_float32(0x40000000)
 | |
| #define float32_three make_float32(0x40400000)
 | |
| #define float32_one_point_five make_float32(0x3fc00000)
 | |
| 
 | |
| float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
 | |
| {
 | |
|     float_status *s = &env->vfp.standard_fp_status;
 | |
|     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
 | |
|         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
 | |
|         if (!(float32_is_zero(a) || float32_is_zero(b))) {
 | |
|             float_raise(float_flag_input_denormal, s);
 | |
|         }
 | |
|         return float32_two;
 | |
|     }
 | |
|     return float32_sub(float32_two, float32_mul(a, b, s), s);
 | |
| }
 | |
| 
 | |
| float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
 | |
| {
 | |
|     float_status *s = &env->vfp.standard_fp_status;
 | |
|     float32 product;
 | |
|     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
 | |
|         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
 | |
|         if (!(float32_is_zero(a) || float32_is_zero(b))) {
 | |
|             float_raise(float_flag_input_denormal, s);
 | |
|         }
 | |
|         return float32_one_point_five;
 | |
|     }
 | |
|     product = float32_mul(a, b, s);
 | |
|     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
 | |
| }
 | |
| 
 | |
| /* NEON helpers.  */
 | |
| 
 | |
| /* Constants 256 and 512 are used in some helpers; we avoid relying on
 | |
|  * int->float conversions at run-time.  */
 | |
| #define float64_256 make_float64(0x4070000000000000LL)
 | |
| #define float64_512 make_float64(0x4080000000000000LL)
 | |
| 
 | |
| /* The algorithm that must be used to calculate the estimate
 | |
|  * is specified by the ARM ARM.
 | |
|  */
 | |
| static float64 recip_estimate(float64 a, CPUARMState *env)
 | |
| {
 | |
|     /* These calculations mustn't set any fp exception flags,
 | |
|      * so we use a local copy of the fp_status.
 | |
|      */
 | |
|     float_status dummy_status = env->vfp.standard_fp_status;
 | |
|     float_status *s = &dummy_status;
 | |
|     /* q = (int)(a * 512.0) */
 | |
|     float64 q = float64_mul(float64_512, a, s);
 | |
|     int64_t q_int = float64_to_int64_round_to_zero(q, s);
 | |
| 
 | |
|     /* r = 1.0 / (((double)q + 0.5) / 512.0) */
 | |
|     q = int64_to_float64(q_int, s);
 | |
|     q = float64_add(q, float64_half, s);
 | |
|     q = float64_div(q, float64_512, s);
 | |
|     q = float64_div(float64_one, q, s);
 | |
| 
 | |
|     /* s = (int)(256.0 * r + 0.5) */
 | |
|     q = float64_mul(q, float64_256, s);
 | |
|     q = float64_add(q, float64_half, s);
 | |
|     q_int = float64_to_int64_round_to_zero(q, s);
 | |
| 
 | |
|     /* return (double)s / 256.0 */
 | |
|     return float64_div(int64_to_float64(q_int, s), float64_256, s);
 | |
| }
 | |
| 
 | |
| float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
 | |
| {
 | |
|     float_status *s = &env->vfp.standard_fp_status;
 | |
|     float64 f64;
 | |
|     uint32_t val32 = float32_val(a);
 | |
| 
 | |
|     int result_exp;
 | |
|     int a_exp = (val32  & 0x7f800000) >> 23;
 | |
|     int sign = val32 & 0x80000000;
 | |
| 
 | |
|     if (float32_is_any_nan(a)) {
 | |
|         if (float32_is_signaling_nan(a)) {
 | |
|             float_raise(float_flag_invalid, s);
 | |
|         }
 | |
|         return float32_default_nan;
 | |
|     } else if (float32_is_infinity(a)) {
 | |
|         return float32_set_sign(float32_zero, float32_is_neg(a));
 | |
|     } else if (float32_is_zero_or_denormal(a)) {
 | |
|         if (!float32_is_zero(a)) {
 | |
|             float_raise(float_flag_input_denormal, s);
 | |
|         }
 | |
|         float_raise(float_flag_divbyzero, s);
 | |
|         return float32_set_sign(float32_infinity, float32_is_neg(a));
 | |
|     } else if (a_exp >= 253) {
 | |
|         float_raise(float_flag_underflow, s);
 | |
|         return float32_set_sign(float32_zero, float32_is_neg(a));
 | |
|     }
 | |
| 
 | |
|     f64 = make_float64((0x3feULL << 52)
 | |
|                        | ((int64_t)(val32 & 0x7fffff) << 29));
 | |
| 
 | |
|     result_exp = 253 - a_exp;
 | |
| 
 | |
|     f64 = recip_estimate(f64, env);
 | |
| 
 | |
|     val32 = sign
 | |
|         | ((result_exp & 0xff) << 23)
 | |
|         | ((float64_val(f64) >> 29) & 0x7fffff);
 | |
|     return make_float32(val32);
 | |
| }
 | |
| 
 | |
| /* The algorithm that must be used to calculate the estimate
 | |
|  * is specified by the ARM ARM.
 | |
|  */
 | |
| static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
 | |
| {
 | |
|     /* These calculations mustn't set any fp exception flags,
 | |
|      * so we use a local copy of the fp_status.
 | |
|      */
 | |
|     float_status dummy_status = env->vfp.standard_fp_status;
 | |
|     float_status *s = &dummy_status;
 | |
|     float64 q;
 | |
|     int64_t q_int;
 | |
| 
 | |
|     if (float64_lt(a, float64_half, s)) {
 | |
|         /* range 0.25 <= a < 0.5 */
 | |
| 
 | |
|         /* a in units of 1/512 rounded down */
 | |
|         /* q0 = (int)(a * 512.0);  */
 | |
|         q = float64_mul(float64_512, a, s);
 | |
|         q_int = float64_to_int64_round_to_zero(q, s);
 | |
| 
 | |
|         /* reciprocal root r */
 | |
|         /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
 | |
|         q = int64_to_float64(q_int, s);
 | |
|         q = float64_add(q, float64_half, s);
 | |
|         q = float64_div(q, float64_512, s);
 | |
|         q = float64_sqrt(q, s);
 | |
|         q = float64_div(float64_one, q, s);
 | |
|     } else {
 | |
|         /* range 0.5 <= a < 1.0 */
 | |
| 
 | |
|         /* a in units of 1/256 rounded down */
 | |
|         /* q1 = (int)(a * 256.0); */
 | |
|         q = float64_mul(float64_256, a, s);
 | |
|         int64_t q_int = float64_to_int64_round_to_zero(q, s);
 | |
| 
 | |
|         /* reciprocal root r */
 | |
|         /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
 | |
|         q = int64_to_float64(q_int, s);
 | |
|         q = float64_add(q, float64_half, s);
 | |
|         q = float64_div(q, float64_256, s);
 | |
|         q = float64_sqrt(q, s);
 | |
|         q = float64_div(float64_one, q, s);
 | |
|     }
 | |
|     /* r in units of 1/256 rounded to nearest */
 | |
|     /* s = (int)(256.0 * r + 0.5); */
 | |
| 
 | |
|     q = float64_mul(q, float64_256,s );
 | |
|     q = float64_add(q, float64_half, s);
 | |
|     q_int = float64_to_int64_round_to_zero(q, s);
 | |
| 
 | |
|     /* return (double)s / 256.0;*/
 | |
|     return float64_div(int64_to_float64(q_int, s), float64_256, s);
 | |
| }
 | |
| 
 | |
| float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
 | |
| {
 | |
|     float_status *s = &env->vfp.standard_fp_status;
 | |
|     int result_exp;
 | |
|     float64 f64;
 | |
|     uint32_t val;
 | |
|     uint64_t val64;
 | |
| 
 | |
|     val = float32_val(a);
 | |
| 
 | |
|     if (float32_is_any_nan(a)) {
 | |
|         if (float32_is_signaling_nan(a)) {
 | |
|             float_raise(float_flag_invalid, s);
 | |
|         }
 | |
|         return float32_default_nan;
 | |
|     } else if (float32_is_zero_or_denormal(a)) {
 | |
|         if (!float32_is_zero(a)) {
 | |
|             float_raise(float_flag_input_denormal, s);
 | |
|         }
 | |
|         float_raise(float_flag_divbyzero, s);
 | |
|         return float32_set_sign(float32_infinity, float32_is_neg(a));
 | |
|     } else if (float32_is_neg(a)) {
 | |
|         float_raise(float_flag_invalid, s);
 | |
|         return float32_default_nan;
 | |
|     } else if (float32_is_infinity(a)) {
 | |
|         return float32_zero;
 | |
|     }
 | |
| 
 | |
|     /* Normalize to a double-precision value between 0.25 and 1.0,
 | |
|      * preserving the parity of the exponent.  */
 | |
|     if ((val & 0x800000) == 0) {
 | |
|         f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
 | |
|                            | (0x3feULL << 52)
 | |
|                            | ((uint64_t)(val & 0x7fffff) << 29));
 | |
|     } else {
 | |
|         f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
 | |
|                            | (0x3fdULL << 52)
 | |
|                            | ((uint64_t)(val & 0x7fffff) << 29));
 | |
|     }
 | |
| 
 | |
|     result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
 | |
| 
 | |
|     f64 = recip_sqrt_estimate(f64, env);
 | |
| 
 | |
|     val64 = float64_val(f64);
 | |
| 
 | |
|     val = ((result_exp & 0xff) << 23)
 | |
|         | ((val64 >> 29)  & 0x7fffff);
 | |
|     return make_float32(val);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
 | |
| {
 | |
|     float64 f64;
 | |
| 
 | |
|     if ((a & 0x80000000) == 0) {
 | |
|         return 0xffffffff;
 | |
|     }
 | |
| 
 | |
|     f64 = make_float64((0x3feULL << 52)
 | |
|                        | ((int64_t)(a & 0x7fffffff) << 21));
 | |
| 
 | |
|     f64 = recip_estimate (f64, env);
 | |
| 
 | |
|     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
 | |
| {
 | |
|     float64 f64;
 | |
| 
 | |
|     if ((a & 0xc0000000) == 0) {
 | |
|         return 0xffffffff;
 | |
|     }
 | |
| 
 | |
|     if (a & 0x80000000) {
 | |
|         f64 = make_float64((0x3feULL << 52)
 | |
|                            | ((uint64_t)(a & 0x7fffffff) << 21));
 | |
|     } else { /* bits 31-30 == '01' */
 | |
|         f64 = make_float64((0x3fdULL << 52)
 | |
|                            | ((uint64_t)(a & 0x3fffffff) << 22));
 | |
|     }
 | |
| 
 | |
|     f64 = recip_sqrt_estimate(f64, env);
 | |
| 
 | |
|     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
 | |
| }
 | |
| 
 | |
| /* VFPv4 fused multiply-accumulate */
 | |
| float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     return float32_muladd(a, b, c, 0, fpst);
 | |
| }
 | |
| 
 | |
| float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     return float64_muladd(a, b, c, 0, fpst);
 | |
| }
 |