mirror of
				https://git.proxmox.com/git/qemu
				synced 2025-10-31 18:49:42 +00:00 
			
		
		
		
	 8fcd36920e
			
		
	
	
		8fcd36920e
		
	
	
	
	
		
			
			git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@5022 c046a42c-6fe2-441c-8c8c-71466251a162
		
			
				
	
	
		
			3188 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3188 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  virtual page mapping and translated block handling
 | |
|  *
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
|  */
 | |
| #include "config.h"
 | |
| #ifdef _WIN32
 | |
| #define WIN32_LEAN_AND_MEAN
 | |
| #include <windows.h>
 | |
| #else
 | |
| #include <sys/types.h>
 | |
| #include <sys/mman.h>
 | |
| #endif
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| #include <stdarg.h>
 | |
| #include <string.h>
 | |
| #include <errno.h>
 | |
| #include <unistd.h>
 | |
| #include <inttypes.h>
 | |
| 
 | |
| #include "cpu.h"
 | |
| #include "exec-all.h"
 | |
| #include "qemu-common.h"
 | |
| #include "tcg.h"
 | |
| #include "hw/hw.h"
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| #include <qemu.h>
 | |
| #endif
 | |
| 
 | |
| //#define DEBUG_TB_INVALIDATE
 | |
| //#define DEBUG_FLUSH
 | |
| //#define DEBUG_TLB
 | |
| //#define DEBUG_UNASSIGNED
 | |
| 
 | |
| /* make various TB consistency checks */
 | |
| //#define DEBUG_TB_CHECK
 | |
| //#define DEBUG_TLB_CHECK
 | |
| 
 | |
| //#define DEBUG_IOPORT
 | |
| //#define DEBUG_SUBPAGE
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| /* TB consistency checks only implemented for usermode emulation.  */
 | |
| #undef DEBUG_TB_CHECK
 | |
| #endif
 | |
| 
 | |
| #define SMC_BITMAP_USE_THRESHOLD 10
 | |
| 
 | |
| #define MMAP_AREA_START        0x00000000
 | |
| #define MMAP_AREA_END          0xa8000000
 | |
| 
 | |
| #if defined(TARGET_SPARC64)
 | |
| #define TARGET_PHYS_ADDR_SPACE_BITS 41
 | |
| #elif defined(TARGET_SPARC)
 | |
| #define TARGET_PHYS_ADDR_SPACE_BITS 36
 | |
| #elif defined(TARGET_ALPHA)
 | |
| #define TARGET_PHYS_ADDR_SPACE_BITS 42
 | |
| #define TARGET_VIRT_ADDR_SPACE_BITS 42
 | |
| #elif defined(TARGET_PPC64)
 | |
| #define TARGET_PHYS_ADDR_SPACE_BITS 42
 | |
| #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
 | |
| #define TARGET_PHYS_ADDR_SPACE_BITS 42
 | |
| #elif defined(TARGET_I386) && !defined(USE_KQEMU)
 | |
| #define TARGET_PHYS_ADDR_SPACE_BITS 36
 | |
| #else
 | |
| /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
 | |
| #define TARGET_PHYS_ADDR_SPACE_BITS 32
 | |
| #endif
 | |
| 
 | |
| TranslationBlock *tbs;
 | |
| int code_gen_max_blocks;
 | |
| TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
 | |
| int nb_tbs;
 | |
| /* any access to the tbs or the page table must use this lock */
 | |
| spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
 | |
| 
 | |
| #if defined(__arm__) || defined(__sparc_v9__)
 | |
| /* The prologue must be reachable with a direct jump. ARM and Sparc64
 | |
|  have limited branch ranges (possibly also PPC) so place it in a
 | |
|  section close to code segment. */
 | |
| #define code_gen_section                                \
 | |
|     __attribute__((__section__(".gen_code")))           \
 | |
|     __attribute__((aligned (32)))
 | |
| #else
 | |
| #define code_gen_section                                \
 | |
|     __attribute__((aligned (32)))
 | |
| #endif
 | |
| 
 | |
| uint8_t code_gen_prologue[1024] code_gen_section;
 | |
| uint8_t *code_gen_buffer;
 | |
| unsigned long code_gen_buffer_size;
 | |
| /* threshold to flush the translated code buffer */
 | |
| unsigned long code_gen_buffer_max_size; 
 | |
| uint8_t *code_gen_ptr;
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| ram_addr_t phys_ram_size;
 | |
| int phys_ram_fd;
 | |
| uint8_t *phys_ram_base;
 | |
| uint8_t *phys_ram_dirty;
 | |
| static ram_addr_t phys_ram_alloc_offset = 0;
 | |
| #endif
 | |
| 
 | |
| CPUState *first_cpu;
 | |
| /* current CPU in the current thread. It is only valid inside
 | |
|    cpu_exec() */
 | |
| CPUState *cpu_single_env;
 | |
| /* 0 = Do not count executed instructions.
 | |
|    1 = Precise instruction counting.
 | |
|    2 = Adaptive rate instruction counting.  */
 | |
| int use_icount = 0;
 | |
| /* Current instruction counter.  While executing translated code this may
 | |
|    include some instructions that have not yet been executed.  */
 | |
| int64_t qemu_icount;
 | |
| 
 | |
| typedef struct PageDesc {
 | |
|     /* list of TBs intersecting this ram page */
 | |
|     TranslationBlock *first_tb;
 | |
|     /* in order to optimize self modifying code, we count the number
 | |
|        of lookups we do to a given page to use a bitmap */
 | |
|     unsigned int code_write_count;
 | |
|     uint8_t *code_bitmap;
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     unsigned long flags;
 | |
| #endif
 | |
| } PageDesc;
 | |
| 
 | |
| typedef struct PhysPageDesc {
 | |
|     /* offset in host memory of the page + io_index in the low bits */
 | |
|     ram_addr_t phys_offset;
 | |
| } PhysPageDesc;
 | |
| 
 | |
| #define L2_BITS 10
 | |
| #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
 | |
| /* XXX: this is a temporary hack for alpha target.
 | |
|  *      In the future, this is to be replaced by a multi-level table
 | |
|  *      to actually be able to handle the complete 64 bits address space.
 | |
|  */
 | |
| #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
 | |
| #else
 | |
| #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
 | |
| #endif
 | |
| 
 | |
| #define L1_SIZE (1 << L1_BITS)
 | |
| #define L2_SIZE (1 << L2_BITS)
 | |
| 
 | |
| unsigned long qemu_real_host_page_size;
 | |
| unsigned long qemu_host_page_bits;
 | |
| unsigned long qemu_host_page_size;
 | |
| unsigned long qemu_host_page_mask;
 | |
| 
 | |
| /* XXX: for system emulation, it could just be an array */
 | |
| static PageDesc *l1_map[L1_SIZE];
 | |
| PhysPageDesc **l1_phys_map;
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| static void io_mem_init(void);
 | |
| 
 | |
| /* io memory support */
 | |
| CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
 | |
| CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
 | |
| void *io_mem_opaque[IO_MEM_NB_ENTRIES];
 | |
| static int io_mem_nb;
 | |
| static int io_mem_watch;
 | |
| #endif
 | |
| 
 | |
| /* log support */
 | |
| char *logfilename = "/tmp/qemu.log";
 | |
| FILE *logfile;
 | |
| int loglevel;
 | |
| static int log_append = 0;
 | |
| 
 | |
| /* statistics */
 | |
| static int tlb_flush_count;
 | |
| static int tb_flush_count;
 | |
| static int tb_phys_invalidate_count;
 | |
| 
 | |
| #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
 | |
| typedef struct subpage_t {
 | |
|     target_phys_addr_t base;
 | |
|     CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
 | |
|     CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
 | |
|     void *opaque[TARGET_PAGE_SIZE][2][4];
 | |
| } subpage_t;
 | |
| 
 | |
| #ifdef _WIN32
 | |
| static void map_exec(void *addr, long size)
 | |
| {
 | |
|     DWORD old_protect;
 | |
|     VirtualProtect(addr, size,
 | |
|                    PAGE_EXECUTE_READWRITE, &old_protect);
 | |
|     
 | |
| }
 | |
| #else
 | |
| static void map_exec(void *addr, long size)
 | |
| {
 | |
|     unsigned long start, end, page_size;
 | |
|     
 | |
|     page_size = getpagesize();
 | |
|     start = (unsigned long)addr;
 | |
|     start &= ~(page_size - 1);
 | |
|     
 | |
|     end = (unsigned long)addr + size;
 | |
|     end += page_size - 1;
 | |
|     end &= ~(page_size - 1);
 | |
|     
 | |
|     mprotect((void *)start, end - start,
 | |
|              PROT_READ | PROT_WRITE | PROT_EXEC);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void page_init(void)
 | |
| {
 | |
|     /* NOTE: we can always suppose that qemu_host_page_size >=
 | |
|        TARGET_PAGE_SIZE */
 | |
| #ifdef _WIN32
 | |
|     {
 | |
|         SYSTEM_INFO system_info;
 | |
|         DWORD old_protect;
 | |
| 
 | |
|         GetSystemInfo(&system_info);
 | |
|         qemu_real_host_page_size = system_info.dwPageSize;
 | |
|     }
 | |
| #else
 | |
|     qemu_real_host_page_size = getpagesize();
 | |
| #endif
 | |
|     if (qemu_host_page_size == 0)
 | |
|         qemu_host_page_size = qemu_real_host_page_size;
 | |
|     if (qemu_host_page_size < TARGET_PAGE_SIZE)
 | |
|         qemu_host_page_size = TARGET_PAGE_SIZE;
 | |
|     qemu_host_page_bits = 0;
 | |
|     while ((1 << qemu_host_page_bits) < qemu_host_page_size)
 | |
|         qemu_host_page_bits++;
 | |
|     qemu_host_page_mask = ~(qemu_host_page_size - 1);
 | |
|     l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
 | |
|     memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
 | |
| 
 | |
| #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
 | |
|     {
 | |
|         long long startaddr, endaddr;
 | |
|         FILE *f;
 | |
|         int n;
 | |
| 
 | |
|         mmap_lock();
 | |
|         last_brk = (unsigned long)sbrk(0);
 | |
|         f = fopen("/proc/self/maps", "r");
 | |
|         if (f) {
 | |
|             do {
 | |
|                 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
 | |
|                 if (n == 2) {
 | |
|                     startaddr = MIN(startaddr,
 | |
|                                     (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
 | |
|                     endaddr = MIN(endaddr,
 | |
|                                     (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
 | |
|                     page_set_flags(startaddr & TARGET_PAGE_MASK,
 | |
|                                    TARGET_PAGE_ALIGN(endaddr),
 | |
|                                    PAGE_RESERVED); 
 | |
|                 }
 | |
|             } while (!feof(f));
 | |
|             fclose(f);
 | |
|         }
 | |
|         mmap_unlock();
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline PageDesc *page_find_alloc(target_ulong index)
 | |
| {
 | |
|     PageDesc **lp, *p;
 | |
| 
 | |
| #if TARGET_LONG_BITS > 32
 | |
|     /* Host memory outside guest VM.  For 32-bit targets we have already
 | |
|        excluded high addresses.  */
 | |
|     if (index > ((target_ulong)L2_SIZE * L1_SIZE * TARGET_PAGE_SIZE))
 | |
|         return NULL;
 | |
| #endif
 | |
|     lp = &l1_map[index >> L2_BITS];
 | |
|     p = *lp;
 | |
|     if (!p) {
 | |
|         /* allocate if not found */
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|         unsigned long addr;
 | |
|         size_t len = sizeof(PageDesc) * L2_SIZE;
 | |
|         /* Don't use qemu_malloc because it may recurse.  */
 | |
|         p = mmap(0, len, PROT_READ | PROT_WRITE,
 | |
|                  MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
 | |
|         *lp = p;
 | |
|         addr = h2g(p);
 | |
|         if (addr == (target_ulong)addr) {
 | |
|             page_set_flags(addr & TARGET_PAGE_MASK,
 | |
|                            TARGET_PAGE_ALIGN(addr + len),
 | |
|                            PAGE_RESERVED); 
 | |
|         }
 | |
| #else
 | |
|         p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
 | |
|         *lp = p;
 | |
| #endif
 | |
|     }
 | |
|     return p + (index & (L2_SIZE - 1));
 | |
| }
 | |
| 
 | |
| static inline PageDesc *page_find(target_ulong index)
 | |
| {
 | |
|     PageDesc *p;
 | |
| 
 | |
|     p = l1_map[index >> L2_BITS];
 | |
|     if (!p)
 | |
|         return 0;
 | |
|     return p + (index & (L2_SIZE - 1));
 | |
| }
 | |
| 
 | |
| static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
 | |
| {
 | |
|     void **lp, **p;
 | |
|     PhysPageDesc *pd;
 | |
| 
 | |
|     p = (void **)l1_phys_map;
 | |
| #if TARGET_PHYS_ADDR_SPACE_BITS > 32
 | |
| 
 | |
| #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
 | |
| #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
 | |
| #endif
 | |
|     lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
 | |
|     p = *lp;
 | |
|     if (!p) {
 | |
|         /* allocate if not found */
 | |
|         if (!alloc)
 | |
|             return NULL;
 | |
|         p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
 | |
|         memset(p, 0, sizeof(void *) * L1_SIZE);
 | |
|         *lp = p;
 | |
|     }
 | |
| #endif
 | |
|     lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
 | |
|     pd = *lp;
 | |
|     if (!pd) {
 | |
|         int i;
 | |
|         /* allocate if not found */
 | |
|         if (!alloc)
 | |
|             return NULL;
 | |
|         pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
 | |
|         *lp = pd;
 | |
|         for (i = 0; i < L2_SIZE; i++)
 | |
|           pd[i].phys_offset = IO_MEM_UNASSIGNED;
 | |
|     }
 | |
|     return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
 | |
| }
 | |
| 
 | |
| static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
 | |
| {
 | |
|     return phys_page_find_alloc(index, 0);
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| static void tlb_protect_code(ram_addr_t ram_addr);
 | |
| static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
 | |
|                                     target_ulong vaddr);
 | |
| #define mmap_lock() do { } while(0)
 | |
| #define mmap_unlock() do { } while(0)
 | |
| #endif
 | |
| 
 | |
| #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| /* Currently it is not recommanded to allocate big chunks of data in
 | |
|    user mode. It will change when a dedicated libc will be used */
 | |
| #define USE_STATIC_CODE_GEN_BUFFER
 | |
| #endif
 | |
| 
 | |
| #ifdef USE_STATIC_CODE_GEN_BUFFER
 | |
| static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
 | |
| #endif
 | |
| 
 | |
| static void code_gen_alloc(unsigned long tb_size)
 | |
| {
 | |
| #ifdef USE_STATIC_CODE_GEN_BUFFER
 | |
|     code_gen_buffer = static_code_gen_buffer;
 | |
|     code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
 | |
|     map_exec(code_gen_buffer, code_gen_buffer_size);
 | |
| #else
 | |
|     code_gen_buffer_size = tb_size;
 | |
|     if (code_gen_buffer_size == 0) {
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|         /* in user mode, phys_ram_size is not meaningful */
 | |
|         code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
 | |
| #else
 | |
|         /* XXX: needs ajustments */
 | |
|         code_gen_buffer_size = (int)(phys_ram_size / 4);
 | |
| #endif
 | |
|     }
 | |
|     if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
 | |
|         code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
 | |
|     /* The code gen buffer location may have constraints depending on
 | |
|        the host cpu and OS */
 | |
| #if defined(__linux__) 
 | |
|     {
 | |
|         int flags;
 | |
|         void *start = NULL;
 | |
| 
 | |
|         flags = MAP_PRIVATE | MAP_ANONYMOUS;
 | |
| #if defined(__x86_64__)
 | |
|         flags |= MAP_32BIT;
 | |
|         /* Cannot map more than that */
 | |
|         if (code_gen_buffer_size > (800 * 1024 * 1024))
 | |
|             code_gen_buffer_size = (800 * 1024 * 1024);
 | |
| #elif defined(__sparc_v9__)
 | |
|         // Map the buffer below 2G, so we can use direct calls and branches
 | |
|         flags |= MAP_FIXED;
 | |
|         start = (void *) 0x60000000UL;
 | |
|         if (code_gen_buffer_size > (512 * 1024 * 1024))
 | |
|             code_gen_buffer_size = (512 * 1024 * 1024);
 | |
| #endif
 | |
|         code_gen_buffer = mmap(start, code_gen_buffer_size,
 | |
|                                PROT_WRITE | PROT_READ | PROT_EXEC,
 | |
|                                flags, -1, 0);
 | |
|         if (code_gen_buffer == MAP_FAILED) {
 | |
|             fprintf(stderr, "Could not allocate dynamic translator buffer\n");
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     code_gen_buffer = qemu_malloc(code_gen_buffer_size);
 | |
|     if (!code_gen_buffer) {
 | |
|         fprintf(stderr, "Could not allocate dynamic translator buffer\n");
 | |
|         exit(1);
 | |
|     }
 | |
|     map_exec(code_gen_buffer, code_gen_buffer_size);
 | |
| #endif
 | |
| #endif /* !USE_STATIC_CODE_GEN_BUFFER */
 | |
|     map_exec(code_gen_prologue, sizeof(code_gen_prologue));
 | |
|     code_gen_buffer_max_size = code_gen_buffer_size - 
 | |
|         code_gen_max_block_size();
 | |
|     code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
 | |
|     tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
 | |
| }
 | |
| 
 | |
| /* Must be called before using the QEMU cpus. 'tb_size' is the size
 | |
|    (in bytes) allocated to the translation buffer. Zero means default
 | |
|    size. */
 | |
| void cpu_exec_init_all(unsigned long tb_size)
 | |
| {
 | |
|     cpu_gen_init();
 | |
|     code_gen_alloc(tb_size);
 | |
|     code_gen_ptr = code_gen_buffer;
 | |
|     page_init();
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|     io_mem_init();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| #define CPU_COMMON_SAVE_VERSION 1
 | |
| 
 | |
| static void cpu_common_save(QEMUFile *f, void *opaque)
 | |
| {
 | |
|     CPUState *env = opaque;
 | |
| 
 | |
|     qemu_put_be32s(f, &env->halted);
 | |
|     qemu_put_be32s(f, &env->interrupt_request);
 | |
| }
 | |
| 
 | |
| static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
 | |
| {
 | |
|     CPUState *env = opaque;
 | |
| 
 | |
|     if (version_id != CPU_COMMON_SAVE_VERSION)
 | |
|         return -EINVAL;
 | |
| 
 | |
|     qemu_get_be32s(f, &env->halted);
 | |
|     qemu_get_be32s(f, &env->interrupt_request);
 | |
|     tlb_flush(env, 1);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void cpu_exec_init(CPUState *env)
 | |
| {
 | |
|     CPUState **penv;
 | |
|     int cpu_index;
 | |
| 
 | |
|     env->next_cpu = NULL;
 | |
|     penv = &first_cpu;
 | |
|     cpu_index = 0;
 | |
|     while (*penv != NULL) {
 | |
|         penv = (CPUState **)&(*penv)->next_cpu;
 | |
|         cpu_index++;
 | |
|     }
 | |
|     env->cpu_index = cpu_index;
 | |
|     env->nb_watchpoints = 0;
 | |
|     *penv = env;
 | |
| #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
 | |
|     register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
 | |
|                     cpu_common_save, cpu_common_load, env);
 | |
|     register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
 | |
|                     cpu_save, cpu_load, env);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void invalidate_page_bitmap(PageDesc *p)
 | |
| {
 | |
|     if (p->code_bitmap) {
 | |
|         qemu_free(p->code_bitmap);
 | |
|         p->code_bitmap = NULL;
 | |
|     }
 | |
|     p->code_write_count = 0;
 | |
| }
 | |
| 
 | |
| /* set to NULL all the 'first_tb' fields in all PageDescs */
 | |
| static void page_flush_tb(void)
 | |
| {
 | |
|     int i, j;
 | |
|     PageDesc *p;
 | |
| 
 | |
|     for(i = 0; i < L1_SIZE; i++) {
 | |
|         p = l1_map[i];
 | |
|         if (p) {
 | |
|             for(j = 0; j < L2_SIZE; j++) {
 | |
|                 p->first_tb = NULL;
 | |
|                 invalidate_page_bitmap(p);
 | |
|                 p++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* flush all the translation blocks */
 | |
| /* XXX: tb_flush is currently not thread safe */
 | |
| void tb_flush(CPUState *env1)
 | |
| {
 | |
|     CPUState *env;
 | |
| #if defined(DEBUG_FLUSH)
 | |
|     printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
 | |
|            (unsigned long)(code_gen_ptr - code_gen_buffer),
 | |
|            nb_tbs, nb_tbs > 0 ?
 | |
|            ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
 | |
| #endif
 | |
|     if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
 | |
|         cpu_abort(env1, "Internal error: code buffer overflow\n");
 | |
| 
 | |
|     nb_tbs = 0;
 | |
| 
 | |
|     for(env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
 | |
|     }
 | |
| 
 | |
|     memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
 | |
|     page_flush_tb();
 | |
| 
 | |
|     code_gen_ptr = code_gen_buffer;
 | |
|     /* XXX: flush processor icache at this point if cache flush is
 | |
|        expensive */
 | |
|     tb_flush_count++;
 | |
| }
 | |
| 
 | |
| #ifdef DEBUG_TB_CHECK
 | |
| 
 | |
| static void tb_invalidate_check(target_ulong address)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int i;
 | |
|     address &= TARGET_PAGE_MASK;
 | |
|     for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
 | |
|         for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
 | |
|             if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
 | |
|                   address >= tb->pc + tb->size)) {
 | |
|                 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
 | |
|                        address, (long)tb->pc, tb->size);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* verify that all the pages have correct rights for code */
 | |
| static void tb_page_check(void)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int i, flags1, flags2;
 | |
| 
 | |
|     for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
 | |
|         for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
 | |
|             flags1 = page_get_flags(tb->pc);
 | |
|             flags2 = page_get_flags(tb->pc + tb->size - 1);
 | |
|             if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
 | |
|                 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
 | |
|                        (long)tb->pc, tb->size, flags1, flags2);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tb_jmp_check(TranslationBlock *tb)
 | |
| {
 | |
|     TranslationBlock *tb1;
 | |
|     unsigned int n1;
 | |
| 
 | |
|     /* suppress any remaining jumps to this TB */
 | |
|     tb1 = tb->jmp_first;
 | |
|     for(;;) {
 | |
|         n1 = (long)tb1 & 3;
 | |
|         tb1 = (TranslationBlock *)((long)tb1 & ~3);
 | |
|         if (n1 == 2)
 | |
|             break;
 | |
|         tb1 = tb1->jmp_next[n1];
 | |
|     }
 | |
|     /* check end of list */
 | |
|     if (tb1 != tb) {
 | |
|         printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* invalidate one TB */
 | |
| static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
 | |
|                              int next_offset)
 | |
| {
 | |
|     TranslationBlock *tb1;
 | |
|     for(;;) {
 | |
|         tb1 = *ptb;
 | |
|         if (tb1 == tb) {
 | |
|             *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
 | |
|             break;
 | |
|         }
 | |
|         ptb = (TranslationBlock **)((char *)tb1 + next_offset);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
 | |
| {
 | |
|     TranslationBlock *tb1;
 | |
|     unsigned int n1;
 | |
| 
 | |
|     for(;;) {
 | |
|         tb1 = *ptb;
 | |
|         n1 = (long)tb1 & 3;
 | |
|         tb1 = (TranslationBlock *)((long)tb1 & ~3);
 | |
|         if (tb1 == tb) {
 | |
|             *ptb = tb1->page_next[n1];
 | |
|             break;
 | |
|         }
 | |
|         ptb = &tb1->page_next[n1];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void tb_jmp_remove(TranslationBlock *tb, int n)
 | |
| {
 | |
|     TranslationBlock *tb1, **ptb;
 | |
|     unsigned int n1;
 | |
| 
 | |
|     ptb = &tb->jmp_next[n];
 | |
|     tb1 = *ptb;
 | |
|     if (tb1) {
 | |
|         /* find tb(n) in circular list */
 | |
|         for(;;) {
 | |
|             tb1 = *ptb;
 | |
|             n1 = (long)tb1 & 3;
 | |
|             tb1 = (TranslationBlock *)((long)tb1 & ~3);
 | |
|             if (n1 == n && tb1 == tb)
 | |
|                 break;
 | |
|             if (n1 == 2) {
 | |
|                 ptb = &tb1->jmp_first;
 | |
|             } else {
 | |
|                 ptb = &tb1->jmp_next[n1];
 | |
|             }
 | |
|         }
 | |
|         /* now we can suppress tb(n) from the list */
 | |
|         *ptb = tb->jmp_next[n];
 | |
| 
 | |
|         tb->jmp_next[n] = NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* reset the jump entry 'n' of a TB so that it is not chained to
 | |
|    another TB */
 | |
| static inline void tb_reset_jump(TranslationBlock *tb, int n)
 | |
| {
 | |
|     tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
 | |
| }
 | |
| 
 | |
| void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
 | |
| {
 | |
|     CPUState *env;
 | |
|     PageDesc *p;
 | |
|     unsigned int h, n1;
 | |
|     target_phys_addr_t phys_pc;
 | |
|     TranslationBlock *tb1, *tb2;
 | |
| 
 | |
|     /* remove the TB from the hash list */
 | |
|     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
 | |
|     h = tb_phys_hash_func(phys_pc);
 | |
|     tb_remove(&tb_phys_hash[h], tb,
 | |
|               offsetof(TranslationBlock, phys_hash_next));
 | |
| 
 | |
|     /* remove the TB from the page list */
 | |
|     if (tb->page_addr[0] != page_addr) {
 | |
|         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
 | |
|         tb_page_remove(&p->first_tb, tb);
 | |
|         invalidate_page_bitmap(p);
 | |
|     }
 | |
|     if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
 | |
|         p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
 | |
|         tb_page_remove(&p->first_tb, tb);
 | |
|         invalidate_page_bitmap(p);
 | |
|     }
 | |
| 
 | |
|     tb_invalidated_flag = 1;
 | |
| 
 | |
|     /* remove the TB from the hash list */
 | |
|     h = tb_jmp_cache_hash_func(tb->pc);
 | |
|     for(env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         if (env->tb_jmp_cache[h] == tb)
 | |
|             env->tb_jmp_cache[h] = NULL;
 | |
|     }
 | |
| 
 | |
|     /* suppress this TB from the two jump lists */
 | |
|     tb_jmp_remove(tb, 0);
 | |
|     tb_jmp_remove(tb, 1);
 | |
| 
 | |
|     /* suppress any remaining jumps to this TB */
 | |
|     tb1 = tb->jmp_first;
 | |
|     for(;;) {
 | |
|         n1 = (long)tb1 & 3;
 | |
|         if (n1 == 2)
 | |
|             break;
 | |
|         tb1 = (TranslationBlock *)((long)tb1 & ~3);
 | |
|         tb2 = tb1->jmp_next[n1];
 | |
|         tb_reset_jump(tb1, n1);
 | |
|         tb1->jmp_next[n1] = NULL;
 | |
|         tb1 = tb2;
 | |
|     }
 | |
|     tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
 | |
| 
 | |
|     tb_phys_invalidate_count++;
 | |
| }
 | |
| 
 | |
| static inline void set_bits(uint8_t *tab, int start, int len)
 | |
| {
 | |
|     int end, mask, end1;
 | |
| 
 | |
|     end = start + len;
 | |
|     tab += start >> 3;
 | |
|     mask = 0xff << (start & 7);
 | |
|     if ((start & ~7) == (end & ~7)) {
 | |
|         if (start < end) {
 | |
|             mask &= ~(0xff << (end & 7));
 | |
|             *tab |= mask;
 | |
|         }
 | |
|     } else {
 | |
|         *tab++ |= mask;
 | |
|         start = (start + 8) & ~7;
 | |
|         end1 = end & ~7;
 | |
|         while (start < end1) {
 | |
|             *tab++ = 0xff;
 | |
|             start += 8;
 | |
|         }
 | |
|         if (start < end) {
 | |
|             mask = ~(0xff << (end & 7));
 | |
|             *tab |= mask;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void build_page_bitmap(PageDesc *p)
 | |
| {
 | |
|     int n, tb_start, tb_end;
 | |
|     TranslationBlock *tb;
 | |
| 
 | |
|     p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
 | |
|     if (!p->code_bitmap)
 | |
|         return;
 | |
| 
 | |
|     tb = p->first_tb;
 | |
|     while (tb != NULL) {
 | |
|         n = (long)tb & 3;
 | |
|         tb = (TranslationBlock *)((long)tb & ~3);
 | |
|         /* NOTE: this is subtle as a TB may span two physical pages */
 | |
|         if (n == 0) {
 | |
|             /* NOTE: tb_end may be after the end of the page, but
 | |
|                it is not a problem */
 | |
|             tb_start = tb->pc & ~TARGET_PAGE_MASK;
 | |
|             tb_end = tb_start + tb->size;
 | |
|             if (tb_end > TARGET_PAGE_SIZE)
 | |
|                 tb_end = TARGET_PAGE_SIZE;
 | |
|         } else {
 | |
|             tb_start = 0;
 | |
|             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
 | |
|         }
 | |
|         set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
 | |
|         tb = tb->page_next[n];
 | |
|     }
 | |
| }
 | |
| 
 | |
| TranslationBlock *tb_gen_code(CPUState *env,
 | |
|                               target_ulong pc, target_ulong cs_base,
 | |
|                               int flags, int cflags)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     uint8_t *tc_ptr;
 | |
|     target_ulong phys_pc, phys_page2, virt_page2;
 | |
|     int code_gen_size;
 | |
| 
 | |
|     phys_pc = get_phys_addr_code(env, pc);
 | |
|     tb = tb_alloc(pc);
 | |
|     if (!tb) {
 | |
|         /* flush must be done */
 | |
|         tb_flush(env);
 | |
|         /* cannot fail at this point */
 | |
|         tb = tb_alloc(pc);
 | |
|         /* Don't forget to invalidate previous TB info.  */
 | |
|         tb_invalidated_flag = 1;
 | |
|     }
 | |
|     tc_ptr = code_gen_ptr;
 | |
|     tb->tc_ptr = tc_ptr;
 | |
|     tb->cs_base = cs_base;
 | |
|     tb->flags = flags;
 | |
|     tb->cflags = cflags;
 | |
|     cpu_gen_code(env, tb, &code_gen_size);
 | |
|     code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
 | |
| 
 | |
|     /* check next page if needed */
 | |
|     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
 | |
|     phys_page2 = -1;
 | |
|     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
 | |
|         phys_page2 = get_phys_addr_code(env, virt_page2);
 | |
|     }
 | |
|     tb_link_phys(tb, phys_pc, phys_page2);
 | |
|     return tb;
 | |
| }
 | |
| 
 | |
| /* invalidate all TBs which intersect with the target physical page
 | |
|    starting in range [start;end[. NOTE: start and end must refer to
 | |
|    the same physical page. 'is_cpu_write_access' should be true if called
 | |
|    from a real cpu write access: the virtual CPU will exit the current
 | |
|    TB if code is modified inside this TB. */
 | |
| void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
 | |
|                                    int is_cpu_write_access)
 | |
| {
 | |
|     int n, current_tb_modified, current_tb_not_found, current_flags;
 | |
|     CPUState *env = cpu_single_env;
 | |
|     PageDesc *p;
 | |
|     TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
 | |
|     target_ulong tb_start, tb_end;
 | |
|     target_ulong current_pc, current_cs_base;
 | |
| 
 | |
|     p = page_find(start >> TARGET_PAGE_BITS);
 | |
|     if (!p)
 | |
|         return;
 | |
|     if (!p->code_bitmap &&
 | |
|         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
 | |
|         is_cpu_write_access) {
 | |
|         /* build code bitmap */
 | |
|         build_page_bitmap(p);
 | |
|     }
 | |
| 
 | |
|     /* we remove all the TBs in the range [start, end[ */
 | |
|     /* XXX: see if in some cases it could be faster to invalidate all the code */
 | |
|     current_tb_not_found = is_cpu_write_access;
 | |
|     current_tb_modified = 0;
 | |
|     current_tb = NULL; /* avoid warning */
 | |
|     current_pc = 0; /* avoid warning */
 | |
|     current_cs_base = 0; /* avoid warning */
 | |
|     current_flags = 0; /* avoid warning */
 | |
|     tb = p->first_tb;
 | |
|     while (tb != NULL) {
 | |
|         n = (long)tb & 3;
 | |
|         tb = (TranslationBlock *)((long)tb & ~3);
 | |
|         tb_next = tb->page_next[n];
 | |
|         /* NOTE: this is subtle as a TB may span two physical pages */
 | |
|         if (n == 0) {
 | |
|             /* NOTE: tb_end may be after the end of the page, but
 | |
|                it is not a problem */
 | |
|             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
 | |
|             tb_end = tb_start + tb->size;
 | |
|         } else {
 | |
|             tb_start = tb->page_addr[1];
 | |
|             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
 | |
|         }
 | |
|         if (!(tb_end <= start || tb_start >= end)) {
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|             if (current_tb_not_found) {
 | |
|                 current_tb_not_found = 0;
 | |
|                 current_tb = NULL;
 | |
|                 if (env->mem_io_pc) {
 | |
|                     /* now we have a real cpu fault */
 | |
|                     current_tb = tb_find_pc(env->mem_io_pc);
 | |
|                 }
 | |
|             }
 | |
|             if (current_tb == tb &&
 | |
|                 (current_tb->cflags & CF_COUNT_MASK) != 1) {
 | |
|                 /* If we are modifying the current TB, we must stop
 | |
|                 its execution. We could be more precise by checking
 | |
|                 that the modification is after the current PC, but it
 | |
|                 would require a specialized function to partially
 | |
|                 restore the CPU state */
 | |
| 
 | |
|                 current_tb_modified = 1;
 | |
|                 cpu_restore_state(current_tb, env,
 | |
|                                   env->mem_io_pc, NULL);
 | |
| #if defined(TARGET_I386)
 | |
|                 current_flags = env->hflags;
 | |
|                 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
 | |
|                 current_cs_base = (target_ulong)env->segs[R_CS].base;
 | |
|                 current_pc = current_cs_base + env->eip;
 | |
| #else
 | |
| #error unsupported CPU
 | |
| #endif
 | |
|             }
 | |
| #endif /* TARGET_HAS_PRECISE_SMC */
 | |
|             /* we need to do that to handle the case where a signal
 | |
|                occurs while doing tb_phys_invalidate() */
 | |
|             saved_tb = NULL;
 | |
|             if (env) {
 | |
|                 saved_tb = env->current_tb;
 | |
|                 env->current_tb = NULL;
 | |
|             }
 | |
|             tb_phys_invalidate(tb, -1);
 | |
|             if (env) {
 | |
|                 env->current_tb = saved_tb;
 | |
|                 if (env->interrupt_request && env->current_tb)
 | |
|                     cpu_interrupt(env, env->interrupt_request);
 | |
|             }
 | |
|         }
 | |
|         tb = tb_next;
 | |
|     }
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|     /* if no code remaining, no need to continue to use slow writes */
 | |
|     if (!p->first_tb) {
 | |
|         invalidate_page_bitmap(p);
 | |
|         if (is_cpu_write_access) {
 | |
|             tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     if (current_tb_modified) {
 | |
|         /* we generate a block containing just the instruction
 | |
|            modifying the memory. It will ensure that it cannot modify
 | |
|            itself */
 | |
|         env->current_tb = NULL;
 | |
|         tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
 | |
|         cpu_resume_from_signal(env, NULL);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* len must be <= 8 and start must be a multiple of len */
 | |
| static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
 | |
| {
 | |
|     PageDesc *p;
 | |
|     int offset, b;
 | |
| #if 0
 | |
|     if (1) {
 | |
|         if (loglevel) {
 | |
|             fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
 | |
|                    cpu_single_env->mem_io_vaddr, len,
 | |
|                    cpu_single_env->eip,
 | |
|                    cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     p = page_find(start >> TARGET_PAGE_BITS);
 | |
|     if (!p)
 | |
|         return;
 | |
|     if (p->code_bitmap) {
 | |
|         offset = start & ~TARGET_PAGE_MASK;
 | |
|         b = p->code_bitmap[offset >> 3] >> (offset & 7);
 | |
|         if (b & ((1 << len) - 1))
 | |
|             goto do_invalidate;
 | |
|     } else {
 | |
|     do_invalidate:
 | |
|         tb_invalidate_phys_page_range(start, start + len, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_SOFTMMU)
 | |
| static void tb_invalidate_phys_page(target_phys_addr_t addr,
 | |
|                                     unsigned long pc, void *puc)
 | |
| {
 | |
|     int n, current_flags, current_tb_modified;
 | |
|     target_ulong current_pc, current_cs_base;
 | |
|     PageDesc *p;
 | |
|     TranslationBlock *tb, *current_tb;
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     CPUState *env = cpu_single_env;
 | |
| #endif
 | |
| 
 | |
|     addr &= TARGET_PAGE_MASK;
 | |
|     p = page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p)
 | |
|         return;
 | |
|     tb = p->first_tb;
 | |
|     current_tb_modified = 0;
 | |
|     current_tb = NULL;
 | |
|     current_pc = 0; /* avoid warning */
 | |
|     current_cs_base = 0; /* avoid warning */
 | |
|     current_flags = 0; /* avoid warning */
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     if (tb && pc != 0) {
 | |
|         current_tb = tb_find_pc(pc);
 | |
|     }
 | |
| #endif
 | |
|     while (tb != NULL) {
 | |
|         n = (long)tb & 3;
 | |
|         tb = (TranslationBlock *)((long)tb & ~3);
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|         if (current_tb == tb &&
 | |
|             (current_tb->cflags & CF_COUNT_MASK) != 1) {
 | |
|                 /* If we are modifying the current TB, we must stop
 | |
|                    its execution. We could be more precise by checking
 | |
|                    that the modification is after the current PC, but it
 | |
|                    would require a specialized function to partially
 | |
|                    restore the CPU state */
 | |
| 
 | |
|             current_tb_modified = 1;
 | |
|             cpu_restore_state(current_tb, env, pc, puc);
 | |
| #if defined(TARGET_I386)
 | |
|             current_flags = env->hflags;
 | |
|             current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
 | |
|             current_cs_base = (target_ulong)env->segs[R_CS].base;
 | |
|             current_pc = current_cs_base + env->eip;
 | |
| #else
 | |
| #error unsupported CPU
 | |
| #endif
 | |
|         }
 | |
| #endif /* TARGET_HAS_PRECISE_SMC */
 | |
|         tb_phys_invalidate(tb, addr);
 | |
|         tb = tb->page_next[n];
 | |
|     }
 | |
|     p->first_tb = NULL;
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     if (current_tb_modified) {
 | |
|         /* we generate a block containing just the instruction
 | |
|            modifying the memory. It will ensure that it cannot modify
 | |
|            itself */
 | |
|         env->current_tb = NULL;
 | |
|         tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
 | |
|         cpu_resume_from_signal(env, puc);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* add the tb in the target page and protect it if necessary */
 | |
| static inline void tb_alloc_page(TranslationBlock *tb,
 | |
|                                  unsigned int n, target_ulong page_addr)
 | |
| {
 | |
|     PageDesc *p;
 | |
|     TranslationBlock *last_first_tb;
 | |
| 
 | |
|     tb->page_addr[n] = page_addr;
 | |
|     p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
 | |
|     tb->page_next[n] = p->first_tb;
 | |
|     last_first_tb = p->first_tb;
 | |
|     p->first_tb = (TranslationBlock *)((long)tb | n);
 | |
|     invalidate_page_bitmap(p);
 | |
| 
 | |
| #if defined(TARGET_HAS_SMC) || 1
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     if (p->flags & PAGE_WRITE) {
 | |
|         target_ulong addr;
 | |
|         PageDesc *p2;
 | |
|         int prot;
 | |
| 
 | |
|         /* force the host page as non writable (writes will have a
 | |
|            page fault + mprotect overhead) */
 | |
|         page_addr &= qemu_host_page_mask;
 | |
|         prot = 0;
 | |
|         for(addr = page_addr; addr < page_addr + qemu_host_page_size;
 | |
|             addr += TARGET_PAGE_SIZE) {
 | |
| 
 | |
|             p2 = page_find (addr >> TARGET_PAGE_BITS);
 | |
|             if (!p2)
 | |
|                 continue;
 | |
|             prot |= p2->flags;
 | |
|             p2->flags &= ~PAGE_WRITE;
 | |
|             page_get_flags(addr);
 | |
|           }
 | |
|         mprotect(g2h(page_addr), qemu_host_page_size,
 | |
|                  (prot & PAGE_BITS) & ~PAGE_WRITE);
 | |
| #ifdef DEBUG_TB_INVALIDATE
 | |
|         printf("protecting code page: 0x" TARGET_FMT_lx "\n",
 | |
|                page_addr);
 | |
| #endif
 | |
|     }
 | |
| #else
 | |
|     /* if some code is already present, then the pages are already
 | |
|        protected. So we handle the case where only the first TB is
 | |
|        allocated in a physical page */
 | |
|     if (!last_first_tb) {
 | |
|         tlb_protect_code(page_addr);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #endif /* TARGET_HAS_SMC */
 | |
| }
 | |
| 
 | |
| /* Allocate a new translation block. Flush the translation buffer if
 | |
|    too many translation blocks or too much generated code. */
 | |
| TranslationBlock *tb_alloc(target_ulong pc)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
| 
 | |
|     if (nb_tbs >= code_gen_max_blocks ||
 | |
|         (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
 | |
|         return NULL;
 | |
|     tb = &tbs[nb_tbs++];
 | |
|     tb->pc = pc;
 | |
|     tb->cflags = 0;
 | |
|     return tb;
 | |
| }
 | |
| 
 | |
| void tb_free(TranslationBlock *tb)
 | |
| {
 | |
|     /* In practice this is mostly used for single use temporary TB
 | |
|        Ignore the hard cases and just back up if this TB happens to
 | |
|        be the last one generated.  */
 | |
|     if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
 | |
|         code_gen_ptr = tb->tc_ptr;
 | |
|         nb_tbs--;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* add a new TB and link it to the physical page tables. phys_page2 is
 | |
|    (-1) to indicate that only one page contains the TB. */
 | |
| void tb_link_phys(TranslationBlock *tb,
 | |
|                   target_ulong phys_pc, target_ulong phys_page2)
 | |
| {
 | |
|     unsigned int h;
 | |
|     TranslationBlock **ptb;
 | |
| 
 | |
|     /* Grab the mmap lock to stop another thread invalidating this TB
 | |
|        before we are done.  */
 | |
|     mmap_lock();
 | |
|     /* add in the physical hash table */
 | |
|     h = tb_phys_hash_func(phys_pc);
 | |
|     ptb = &tb_phys_hash[h];
 | |
|     tb->phys_hash_next = *ptb;
 | |
|     *ptb = tb;
 | |
| 
 | |
|     /* add in the page list */
 | |
|     tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
 | |
|     if (phys_page2 != -1)
 | |
|         tb_alloc_page(tb, 1, phys_page2);
 | |
|     else
 | |
|         tb->page_addr[1] = -1;
 | |
| 
 | |
|     tb->jmp_first = (TranslationBlock *)((long)tb | 2);
 | |
|     tb->jmp_next[0] = NULL;
 | |
|     tb->jmp_next[1] = NULL;
 | |
| 
 | |
|     /* init original jump addresses */
 | |
|     if (tb->tb_next_offset[0] != 0xffff)
 | |
|         tb_reset_jump(tb, 0);
 | |
|     if (tb->tb_next_offset[1] != 0xffff)
 | |
|         tb_reset_jump(tb, 1);
 | |
| 
 | |
| #ifdef DEBUG_TB_CHECK
 | |
|     tb_page_check();
 | |
| #endif
 | |
|     mmap_unlock();
 | |
| }
 | |
| 
 | |
| /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
 | |
|    tb[1].tc_ptr. Return NULL if not found */
 | |
| TranslationBlock *tb_find_pc(unsigned long tc_ptr)
 | |
| {
 | |
|     int m_min, m_max, m;
 | |
|     unsigned long v;
 | |
|     TranslationBlock *tb;
 | |
| 
 | |
|     if (nb_tbs <= 0)
 | |
|         return NULL;
 | |
|     if (tc_ptr < (unsigned long)code_gen_buffer ||
 | |
|         tc_ptr >= (unsigned long)code_gen_ptr)
 | |
|         return NULL;
 | |
|     /* binary search (cf Knuth) */
 | |
|     m_min = 0;
 | |
|     m_max = nb_tbs - 1;
 | |
|     while (m_min <= m_max) {
 | |
|         m = (m_min + m_max) >> 1;
 | |
|         tb = &tbs[m];
 | |
|         v = (unsigned long)tb->tc_ptr;
 | |
|         if (v == tc_ptr)
 | |
|             return tb;
 | |
|         else if (tc_ptr < v) {
 | |
|             m_max = m - 1;
 | |
|         } else {
 | |
|             m_min = m + 1;
 | |
|         }
 | |
|     }
 | |
|     return &tbs[m_max];
 | |
| }
 | |
| 
 | |
| static void tb_reset_jump_recursive(TranslationBlock *tb);
 | |
| 
 | |
| static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
 | |
| {
 | |
|     TranslationBlock *tb1, *tb_next, **ptb;
 | |
|     unsigned int n1;
 | |
| 
 | |
|     tb1 = tb->jmp_next[n];
 | |
|     if (tb1 != NULL) {
 | |
|         /* find head of list */
 | |
|         for(;;) {
 | |
|             n1 = (long)tb1 & 3;
 | |
|             tb1 = (TranslationBlock *)((long)tb1 & ~3);
 | |
|             if (n1 == 2)
 | |
|                 break;
 | |
|             tb1 = tb1->jmp_next[n1];
 | |
|         }
 | |
|         /* we are now sure now that tb jumps to tb1 */
 | |
|         tb_next = tb1;
 | |
| 
 | |
|         /* remove tb from the jmp_first list */
 | |
|         ptb = &tb_next->jmp_first;
 | |
|         for(;;) {
 | |
|             tb1 = *ptb;
 | |
|             n1 = (long)tb1 & 3;
 | |
|             tb1 = (TranslationBlock *)((long)tb1 & ~3);
 | |
|             if (n1 == n && tb1 == tb)
 | |
|                 break;
 | |
|             ptb = &tb1->jmp_next[n1];
 | |
|         }
 | |
|         *ptb = tb->jmp_next[n];
 | |
|         tb->jmp_next[n] = NULL;
 | |
| 
 | |
|         /* suppress the jump to next tb in generated code */
 | |
|         tb_reset_jump(tb, n);
 | |
| 
 | |
|         /* suppress jumps in the tb on which we could have jumped */
 | |
|         tb_reset_jump_recursive(tb_next);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tb_reset_jump_recursive(TranslationBlock *tb)
 | |
| {
 | |
|     tb_reset_jump_recursive2(tb, 0);
 | |
|     tb_reset_jump_recursive2(tb, 1);
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_HAS_ICE)
 | |
| static void breakpoint_invalidate(CPUState *env, target_ulong pc)
 | |
| {
 | |
|     target_phys_addr_t addr;
 | |
|     target_ulong pd;
 | |
|     ram_addr_t ram_addr;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     addr = cpu_get_phys_page_debug(env, pc);
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
|     ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
 | |
|     tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Add a watchpoint.  */
 | |
| int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < env->nb_watchpoints; i++) {
 | |
|         if (addr == env->watchpoint[i].vaddr)
 | |
|             return 0;
 | |
|     }
 | |
|     if (env->nb_watchpoints >= MAX_WATCHPOINTS)
 | |
|         return -1;
 | |
| 
 | |
|     i = env->nb_watchpoints++;
 | |
|     env->watchpoint[i].vaddr = addr;
 | |
|     env->watchpoint[i].type = type;
 | |
|     tlb_flush_page(env, addr);
 | |
|     /* FIXME: This flush is needed because of the hack to make memory ops
 | |
|        terminate the TB.  It can be removed once the proper IO trap and
 | |
|        re-execute bits are in.  */
 | |
|     tb_flush(env);
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| /* Remove a watchpoint.  */
 | |
| int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < env->nb_watchpoints; i++) {
 | |
|         if (addr == env->watchpoint[i].vaddr) {
 | |
|             env->nb_watchpoints--;
 | |
|             env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
 | |
|             tlb_flush_page(env, addr);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| /* Remove all watchpoints. */
 | |
| void cpu_watchpoint_remove_all(CPUState *env) {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < env->nb_watchpoints; i++) {
 | |
|         tlb_flush_page(env, env->watchpoint[i].vaddr);
 | |
|     }
 | |
|     env->nb_watchpoints = 0;
 | |
| }
 | |
| 
 | |
| /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
 | |
|    breakpoint is reached */
 | |
| int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     int i;
 | |
| 
 | |
|     for(i = 0; i < env->nb_breakpoints; i++) {
 | |
|         if (env->breakpoints[i] == pc)
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     if (env->nb_breakpoints >= MAX_BREAKPOINTS)
 | |
|         return -1;
 | |
|     env->breakpoints[env->nb_breakpoints++] = pc;
 | |
| 
 | |
|     breakpoint_invalidate(env, pc);
 | |
|     return 0;
 | |
| #else
 | |
|     return -1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* remove all breakpoints */
 | |
| void cpu_breakpoint_remove_all(CPUState *env) {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     int i;
 | |
|     for(i = 0; i < env->nb_breakpoints; i++) {
 | |
|         breakpoint_invalidate(env, env->breakpoints[i]);
 | |
|     }
 | |
|     env->nb_breakpoints = 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* remove a breakpoint */
 | |
| int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     int i;
 | |
|     for(i = 0; i < env->nb_breakpoints; i++) {
 | |
|         if (env->breakpoints[i] == pc)
 | |
|             goto found;
 | |
|     }
 | |
|     return -1;
 | |
|  found:
 | |
|     env->nb_breakpoints--;
 | |
|     if (i < env->nb_breakpoints)
 | |
|       env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
 | |
| 
 | |
|     breakpoint_invalidate(env, pc);
 | |
|     return 0;
 | |
| #else
 | |
|     return -1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* enable or disable single step mode. EXCP_DEBUG is returned by the
 | |
|    CPU loop after each instruction */
 | |
| void cpu_single_step(CPUState *env, int enabled)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     if (env->singlestep_enabled != enabled) {
 | |
|         env->singlestep_enabled = enabled;
 | |
|         /* must flush all the translated code to avoid inconsistancies */
 | |
|         /* XXX: only flush what is necessary */
 | |
|         tb_flush(env);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* enable or disable low levels log */
 | |
| void cpu_set_log(int log_flags)
 | |
| {
 | |
|     loglevel = log_flags;
 | |
|     if (loglevel && !logfile) {
 | |
|         logfile = fopen(logfilename, log_append ? "a" : "w");
 | |
|         if (!logfile) {
 | |
|             perror(logfilename);
 | |
|             _exit(1);
 | |
|         }
 | |
| #if !defined(CONFIG_SOFTMMU)
 | |
|         /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
 | |
|         {
 | |
|             static uint8_t logfile_buf[4096];
 | |
|             setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
 | |
|         }
 | |
| #else
 | |
|         setvbuf(logfile, NULL, _IOLBF, 0);
 | |
| #endif
 | |
|         log_append = 1;
 | |
|     }
 | |
|     if (!loglevel && logfile) {
 | |
|         fclose(logfile);
 | |
|         logfile = NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cpu_set_log_filename(const char *filename)
 | |
| {
 | |
|     logfilename = strdup(filename);
 | |
|     if (logfile) {
 | |
|         fclose(logfile);
 | |
|         logfile = NULL;
 | |
|     }
 | |
|     cpu_set_log(loglevel);
 | |
| }
 | |
| 
 | |
| /* mask must never be zero, except for A20 change call */
 | |
| void cpu_interrupt(CPUState *env, int mask)
 | |
| {
 | |
| #if !defined(USE_NPTL)
 | |
|     TranslationBlock *tb;
 | |
|     static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
 | |
| #endif
 | |
|     int old_mask;
 | |
| 
 | |
|     old_mask = env->interrupt_request;
 | |
|     /* FIXME: This is probably not threadsafe.  A different thread could
 | |
|        be in the middle of a read-modify-write operation.  */
 | |
|     env->interrupt_request |= mask;
 | |
| #if defined(USE_NPTL)
 | |
|     /* FIXME: TB unchaining isn't SMP safe.  For now just ignore the
 | |
|        problem and hope the cpu will stop of its own accord.  For userspace
 | |
|        emulation this often isn't actually as bad as it sounds.  Often
 | |
|        signals are used primarily to interrupt blocking syscalls.  */
 | |
| #else
 | |
|     if (use_icount) {
 | |
|         env->icount_decr.u16.high = 0xffff;
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|         /* CPU_INTERRUPT_EXIT isn't a real interrupt.  It just means
 | |
|            an async event happened and we need to process it.  */
 | |
|         if (!can_do_io(env)
 | |
|             && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
 | |
|             cpu_abort(env, "Raised interrupt while not in I/O function");
 | |
|         }
 | |
| #endif
 | |
|     } else {
 | |
|         tb = env->current_tb;
 | |
|         /* if the cpu is currently executing code, we must unlink it and
 | |
|            all the potentially executing TB */
 | |
|         if (tb && !testandset(&interrupt_lock)) {
 | |
|             env->current_tb = NULL;
 | |
|             tb_reset_jump_recursive(tb);
 | |
|             resetlock(&interrupt_lock);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void cpu_reset_interrupt(CPUState *env, int mask)
 | |
| {
 | |
|     env->interrupt_request &= ~mask;
 | |
| }
 | |
| 
 | |
| CPULogItem cpu_log_items[] = {
 | |
|     { CPU_LOG_TB_OUT_ASM, "out_asm",
 | |
|       "show generated host assembly code for each compiled TB" },
 | |
|     { CPU_LOG_TB_IN_ASM, "in_asm",
 | |
|       "show target assembly code for each compiled TB" },
 | |
|     { CPU_LOG_TB_OP, "op",
 | |
|       "show micro ops for each compiled TB" },
 | |
|     { CPU_LOG_TB_OP_OPT, "op_opt",
 | |
|       "show micro ops "
 | |
| #ifdef TARGET_I386
 | |
|       "before eflags optimization and "
 | |
| #endif
 | |
|       "after liveness analysis" },
 | |
|     { CPU_LOG_INT, "int",
 | |
|       "show interrupts/exceptions in short format" },
 | |
|     { CPU_LOG_EXEC, "exec",
 | |
|       "show trace before each executed TB (lots of logs)" },
 | |
|     { CPU_LOG_TB_CPU, "cpu",
 | |
|       "show CPU state before block translation" },
 | |
| #ifdef TARGET_I386
 | |
|     { CPU_LOG_PCALL, "pcall",
 | |
|       "show protected mode far calls/returns/exceptions" },
 | |
| #endif
 | |
| #ifdef DEBUG_IOPORT
 | |
|     { CPU_LOG_IOPORT, "ioport",
 | |
|       "show all i/o ports accesses" },
 | |
| #endif
 | |
|     { 0, NULL, NULL },
 | |
| };
 | |
| 
 | |
| static int cmp1(const char *s1, int n, const char *s2)
 | |
| {
 | |
|     if (strlen(s2) != n)
 | |
|         return 0;
 | |
|     return memcmp(s1, s2, n) == 0;
 | |
| }
 | |
| 
 | |
| /* takes a comma separated list of log masks. Return 0 if error. */
 | |
| int cpu_str_to_log_mask(const char *str)
 | |
| {
 | |
|     CPULogItem *item;
 | |
|     int mask;
 | |
|     const char *p, *p1;
 | |
| 
 | |
|     p = str;
 | |
|     mask = 0;
 | |
|     for(;;) {
 | |
|         p1 = strchr(p, ',');
 | |
|         if (!p1)
 | |
|             p1 = p + strlen(p);
 | |
| 	if(cmp1(p,p1-p,"all")) {
 | |
| 		for(item = cpu_log_items; item->mask != 0; item++) {
 | |
| 			mask |= item->mask;
 | |
| 		}
 | |
| 	} else {
 | |
|         for(item = cpu_log_items; item->mask != 0; item++) {
 | |
|             if (cmp1(p, p1 - p, item->name))
 | |
|                 goto found;
 | |
|         }
 | |
|         return 0;
 | |
| 	}
 | |
|     found:
 | |
|         mask |= item->mask;
 | |
|         if (*p1 != ',')
 | |
|             break;
 | |
|         p = p1 + 1;
 | |
|     }
 | |
|     return mask;
 | |
| }
 | |
| 
 | |
| void cpu_abort(CPUState *env, const char *fmt, ...)
 | |
| {
 | |
|     va_list ap;
 | |
|     va_list ap2;
 | |
| 
 | |
|     va_start(ap, fmt);
 | |
|     va_copy(ap2, ap);
 | |
|     fprintf(stderr, "qemu: fatal: ");
 | |
|     vfprintf(stderr, fmt, ap);
 | |
|     fprintf(stderr, "\n");
 | |
| #ifdef TARGET_I386
 | |
|     cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
 | |
| #else
 | |
|     cpu_dump_state(env, stderr, fprintf, 0);
 | |
| #endif
 | |
|     if (logfile) {
 | |
|         fprintf(logfile, "qemu: fatal: ");
 | |
|         vfprintf(logfile, fmt, ap2);
 | |
|         fprintf(logfile, "\n");
 | |
| #ifdef TARGET_I386
 | |
|         cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
 | |
| #else
 | |
|         cpu_dump_state(env, logfile, fprintf, 0);
 | |
| #endif
 | |
|         fflush(logfile);
 | |
|         fclose(logfile);
 | |
|     }
 | |
|     va_end(ap2);
 | |
|     va_end(ap);
 | |
|     abort();
 | |
| }
 | |
| 
 | |
| CPUState *cpu_copy(CPUState *env)
 | |
| {
 | |
|     CPUState *new_env = cpu_init(env->cpu_model_str);
 | |
|     /* preserve chaining and index */
 | |
|     CPUState *next_cpu = new_env->next_cpu;
 | |
|     int cpu_index = new_env->cpu_index;
 | |
|     memcpy(new_env, env, sizeof(CPUState));
 | |
|     new_env->next_cpu = next_cpu;
 | |
|     new_env->cpu_index = cpu_index;
 | |
|     return new_env;
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
 | |
| {
 | |
|     unsigned int i;
 | |
| 
 | |
|     /* Discard jump cache entries for any tb which might potentially
 | |
|        overlap the flushed page.  */
 | |
|     i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
 | |
|     memset (&env->tb_jmp_cache[i], 0, 
 | |
| 	    TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
 | |
| 
 | |
|     i = tb_jmp_cache_hash_page(addr);
 | |
|     memset (&env->tb_jmp_cache[i], 0, 
 | |
| 	    TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
 | |
| }
 | |
| 
 | |
| /* NOTE: if flush_global is true, also flush global entries (not
 | |
|    implemented yet) */
 | |
| void tlb_flush(CPUState *env, int flush_global)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
| #if defined(DEBUG_TLB)
 | |
|     printf("tlb_flush:\n");
 | |
| #endif
 | |
|     /* must reset current TB so that interrupts cannot modify the
 | |
|        links while we are modifying them */
 | |
|     env->current_tb = NULL;
 | |
| 
 | |
|     for(i = 0; i < CPU_TLB_SIZE; i++) {
 | |
|         env->tlb_table[0][i].addr_read = -1;
 | |
|         env->tlb_table[0][i].addr_write = -1;
 | |
|         env->tlb_table[0][i].addr_code = -1;
 | |
|         env->tlb_table[1][i].addr_read = -1;
 | |
|         env->tlb_table[1][i].addr_write = -1;
 | |
|         env->tlb_table[1][i].addr_code = -1;
 | |
| #if (NB_MMU_MODES >= 3)
 | |
|         env->tlb_table[2][i].addr_read = -1;
 | |
|         env->tlb_table[2][i].addr_write = -1;
 | |
|         env->tlb_table[2][i].addr_code = -1;
 | |
| #if (NB_MMU_MODES == 4)
 | |
|         env->tlb_table[3][i].addr_read = -1;
 | |
|         env->tlb_table[3][i].addr_write = -1;
 | |
|         env->tlb_table[3][i].addr_code = -1;
 | |
| #endif
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
 | |
| 
 | |
| #ifdef USE_KQEMU
 | |
|     if (env->kqemu_enabled) {
 | |
|         kqemu_flush(env, flush_global);
 | |
|     }
 | |
| #endif
 | |
|     tlb_flush_count++;
 | |
| }
 | |
| 
 | |
| static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
 | |
| {
 | |
|     if (addr == (tlb_entry->addr_read &
 | |
|                  (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
 | |
|         addr == (tlb_entry->addr_write &
 | |
|                  (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
 | |
|         addr == (tlb_entry->addr_code &
 | |
|                  (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
 | |
|         tlb_entry->addr_read = -1;
 | |
|         tlb_entry->addr_write = -1;
 | |
|         tlb_entry->addr_code = -1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tlb_flush_page(CPUState *env, target_ulong addr)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
| #if defined(DEBUG_TLB)
 | |
|     printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
 | |
| #endif
 | |
|     /* must reset current TB so that interrupts cannot modify the
 | |
|        links while we are modifying them */
 | |
|     env->current_tb = NULL;
 | |
| 
 | |
|     addr &= TARGET_PAGE_MASK;
 | |
|     i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|     tlb_flush_entry(&env->tlb_table[0][i], addr);
 | |
|     tlb_flush_entry(&env->tlb_table[1][i], addr);
 | |
| #if (NB_MMU_MODES >= 3)
 | |
|     tlb_flush_entry(&env->tlb_table[2][i], addr);
 | |
| #if (NB_MMU_MODES == 4)
 | |
|     tlb_flush_entry(&env->tlb_table[3][i], addr);
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
|     tlb_flush_jmp_cache(env, addr);
 | |
| 
 | |
| #ifdef USE_KQEMU
 | |
|     if (env->kqemu_enabled) {
 | |
|         kqemu_flush_page(env, addr);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* update the TLBs so that writes to code in the virtual page 'addr'
 | |
|    can be detected */
 | |
| static void tlb_protect_code(ram_addr_t ram_addr)
 | |
| {
 | |
|     cpu_physical_memory_reset_dirty(ram_addr,
 | |
|                                     ram_addr + TARGET_PAGE_SIZE,
 | |
|                                     CODE_DIRTY_FLAG);
 | |
| }
 | |
| 
 | |
| /* update the TLB so that writes in physical page 'phys_addr' are no longer
 | |
|    tested for self modifying code */
 | |
| static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
 | |
|                                     target_ulong vaddr)
 | |
| {
 | |
|     phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
 | |
| }
 | |
| 
 | |
| static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
 | |
|                                          unsigned long start, unsigned long length)
 | |
| {
 | |
|     unsigned long addr;
 | |
|     if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
 | |
|         addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
 | |
|         if ((addr - start) < length) {
 | |
|             tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
 | |
|                                      int dirty_flags)
 | |
| {
 | |
|     CPUState *env;
 | |
|     unsigned long length, start1;
 | |
|     int i, mask, len;
 | |
|     uint8_t *p;
 | |
| 
 | |
|     start &= TARGET_PAGE_MASK;
 | |
|     end = TARGET_PAGE_ALIGN(end);
 | |
| 
 | |
|     length = end - start;
 | |
|     if (length == 0)
 | |
|         return;
 | |
|     len = length >> TARGET_PAGE_BITS;
 | |
| #ifdef USE_KQEMU
 | |
|     /* XXX: should not depend on cpu context */
 | |
|     env = first_cpu;
 | |
|     if (env->kqemu_enabled) {
 | |
|         ram_addr_t addr;
 | |
|         addr = start;
 | |
|         for(i = 0; i < len; i++) {
 | |
|             kqemu_set_notdirty(env, addr);
 | |
|             addr += TARGET_PAGE_SIZE;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     mask = ~dirty_flags;
 | |
|     p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
 | |
|     for(i = 0; i < len; i++)
 | |
|         p[i] &= mask;
 | |
| 
 | |
|     /* we modify the TLB cache so that the dirty bit will be set again
 | |
|        when accessing the range */
 | |
|     start1 = start + (unsigned long)phys_ram_base;
 | |
|     for(env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         for(i = 0; i < CPU_TLB_SIZE; i++)
 | |
|             tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
 | |
|         for(i = 0; i < CPU_TLB_SIZE; i++)
 | |
|             tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
 | |
| #if (NB_MMU_MODES >= 3)
 | |
|         for(i = 0; i < CPU_TLB_SIZE; i++)
 | |
|             tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
 | |
| #if (NB_MMU_MODES == 4)
 | |
|         for(i = 0; i < CPU_TLB_SIZE; i++)
 | |
|             tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
 | |
| #endif
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
 | |
| {
 | |
|     ram_addr_t ram_addr;
 | |
| 
 | |
|     if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
 | |
|         ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
 | |
|             tlb_entry->addend - (unsigned long)phys_ram_base;
 | |
|         if (!cpu_physical_memory_is_dirty(ram_addr)) {
 | |
|             tlb_entry->addr_write |= TLB_NOTDIRTY;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* update the TLB according to the current state of the dirty bits */
 | |
| void cpu_tlb_update_dirty(CPUState *env)
 | |
| {
 | |
|     int i;
 | |
|     for(i = 0; i < CPU_TLB_SIZE; i++)
 | |
|         tlb_update_dirty(&env->tlb_table[0][i]);
 | |
|     for(i = 0; i < CPU_TLB_SIZE; i++)
 | |
|         tlb_update_dirty(&env->tlb_table[1][i]);
 | |
| #if (NB_MMU_MODES >= 3)
 | |
|     for(i = 0; i < CPU_TLB_SIZE; i++)
 | |
|         tlb_update_dirty(&env->tlb_table[2][i]);
 | |
| #if (NB_MMU_MODES == 4)
 | |
|     for(i = 0; i < CPU_TLB_SIZE; i++)
 | |
|         tlb_update_dirty(&env->tlb_table[3][i]);
 | |
| #endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
 | |
| {
 | |
|     if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
 | |
|         tlb_entry->addr_write = vaddr;
 | |
| }
 | |
| 
 | |
| /* update the TLB corresponding to virtual page vaddr
 | |
|    so that it is no longer dirty */
 | |
| static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     vaddr &= TARGET_PAGE_MASK;
 | |
|     i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|     tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
 | |
|     tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
 | |
| #if (NB_MMU_MODES >= 3)
 | |
|     tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
 | |
| #if (NB_MMU_MODES == 4)
 | |
|     tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
 | |
| #endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* add a new TLB entry. At most one entry for a given virtual address
 | |
|    is permitted. Return 0 if OK or 2 if the page could not be mapped
 | |
|    (can only happen in non SOFTMMU mode for I/O pages or pages
 | |
|    conflicting with the host address space). */
 | |
| int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
 | |
|                       target_phys_addr_t paddr, int prot,
 | |
|                       int mmu_idx, int is_softmmu)
 | |
| {
 | |
|     PhysPageDesc *p;
 | |
|     unsigned long pd;
 | |
|     unsigned int index;
 | |
|     target_ulong address;
 | |
|     target_ulong code_address;
 | |
|     target_phys_addr_t addend;
 | |
|     int ret;
 | |
|     CPUTLBEntry *te;
 | |
|     int i;
 | |
|     target_phys_addr_t iotlb;
 | |
| 
 | |
|     p = phys_page_find(paddr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
| #if defined(DEBUG_TLB)
 | |
|     printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
 | |
|            vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
 | |
| #endif
 | |
| 
 | |
|     ret = 0;
 | |
|     address = vaddr;
 | |
|     if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
 | |
|         /* IO memory case (romd handled later) */
 | |
|         address |= TLB_MMIO;
 | |
|     }
 | |
|     addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
 | |
|     if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
 | |
|         /* Normal RAM.  */
 | |
|         iotlb = pd & TARGET_PAGE_MASK;
 | |
|         if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
 | |
|             iotlb |= IO_MEM_NOTDIRTY;
 | |
|         else
 | |
|             iotlb |= IO_MEM_ROM;
 | |
|     } else {
 | |
|         /* IO handlers are currently passed a phsical address.
 | |
|            It would be nice to pass an offset from the base address
 | |
|            of that region.  This would avoid having to special case RAM,
 | |
|            and avoid full address decoding in every device.
 | |
|            We can't use the high bits of pd for this because
 | |
|            IO_MEM_ROMD uses these as a ram address.  */
 | |
|         iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
 | |
|     }
 | |
| 
 | |
|     code_address = address;
 | |
|     /* Make accesses to pages with watchpoints go via the
 | |
|        watchpoint trap routines.  */
 | |
|     for (i = 0; i < env->nb_watchpoints; i++) {
 | |
|         if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
 | |
|             iotlb = io_mem_watch + paddr;
 | |
|             /* TODO: The memory case can be optimized by not trapping
 | |
|                reads of pages with a write breakpoint.  */
 | |
|             address |= TLB_MMIO;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|     env->iotlb[mmu_idx][index] = iotlb - vaddr;
 | |
|     te = &env->tlb_table[mmu_idx][index];
 | |
|     te->addend = addend - vaddr;
 | |
|     if (prot & PAGE_READ) {
 | |
|         te->addr_read = address;
 | |
|     } else {
 | |
|         te->addr_read = -1;
 | |
|     }
 | |
| 
 | |
|     if (prot & PAGE_EXEC) {
 | |
|         te->addr_code = code_address;
 | |
|     } else {
 | |
|         te->addr_code = -1;
 | |
|     }
 | |
|     if (prot & PAGE_WRITE) {
 | |
|         if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
 | |
|             (pd & IO_MEM_ROMD)) {
 | |
|             /* Write access calls the I/O callback.  */
 | |
|             te->addr_write = address | TLB_MMIO;
 | |
|         } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
 | |
|                    !cpu_physical_memory_is_dirty(pd)) {
 | |
|             te->addr_write = address | TLB_NOTDIRTY;
 | |
|         } else {
 | |
|             te->addr_write = address;
 | |
|         }
 | |
|     } else {
 | |
|         te->addr_write = -1;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| void tlb_flush(CPUState *env, int flush_global)
 | |
| {
 | |
| }
 | |
| 
 | |
| void tlb_flush_page(CPUState *env, target_ulong addr)
 | |
| {
 | |
| }
 | |
| 
 | |
| int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
 | |
|                       target_phys_addr_t paddr, int prot,
 | |
|                       int mmu_idx, int is_softmmu)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* dump memory mappings */
 | |
| void page_dump(FILE *f)
 | |
| {
 | |
|     unsigned long start, end;
 | |
|     int i, j, prot, prot1;
 | |
|     PageDesc *p;
 | |
| 
 | |
|     fprintf(f, "%-8s %-8s %-8s %s\n",
 | |
|             "start", "end", "size", "prot");
 | |
|     start = -1;
 | |
|     end = -1;
 | |
|     prot = 0;
 | |
|     for(i = 0; i <= L1_SIZE; i++) {
 | |
|         if (i < L1_SIZE)
 | |
|             p = l1_map[i];
 | |
|         else
 | |
|             p = NULL;
 | |
|         for(j = 0;j < L2_SIZE; j++) {
 | |
|             if (!p)
 | |
|                 prot1 = 0;
 | |
|             else
 | |
|                 prot1 = p[j].flags;
 | |
|             if (prot1 != prot) {
 | |
|                 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
 | |
|                 if (start != -1) {
 | |
|                     fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
 | |
|                             start, end, end - start,
 | |
|                             prot & PAGE_READ ? 'r' : '-',
 | |
|                             prot & PAGE_WRITE ? 'w' : '-',
 | |
|                             prot & PAGE_EXEC ? 'x' : '-');
 | |
|                 }
 | |
|                 if (prot1 != 0)
 | |
|                     start = end;
 | |
|                 else
 | |
|                     start = -1;
 | |
|                 prot = prot1;
 | |
|             }
 | |
|             if (!p)
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| int page_get_flags(target_ulong address)
 | |
| {
 | |
|     PageDesc *p;
 | |
| 
 | |
|     p = page_find(address >> TARGET_PAGE_BITS);
 | |
|     if (!p)
 | |
|         return 0;
 | |
|     return p->flags;
 | |
| }
 | |
| 
 | |
| /* modify the flags of a page and invalidate the code if
 | |
|    necessary. The flag PAGE_WRITE_ORG is positionned automatically
 | |
|    depending on PAGE_WRITE */
 | |
| void page_set_flags(target_ulong start, target_ulong end, int flags)
 | |
| {
 | |
|     PageDesc *p;
 | |
|     target_ulong addr;
 | |
| 
 | |
|     /* mmap_lock should already be held.  */
 | |
|     start = start & TARGET_PAGE_MASK;
 | |
|     end = TARGET_PAGE_ALIGN(end);
 | |
|     if (flags & PAGE_WRITE)
 | |
|         flags |= PAGE_WRITE_ORG;
 | |
|     for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
 | |
|         p = page_find_alloc(addr >> TARGET_PAGE_BITS);
 | |
|         /* We may be called for host regions that are outside guest
 | |
|            address space.  */
 | |
|         if (!p)
 | |
|             return;
 | |
|         /* if the write protection is set, then we invalidate the code
 | |
|            inside */
 | |
|         if (!(p->flags & PAGE_WRITE) &&
 | |
|             (flags & PAGE_WRITE) &&
 | |
|             p->first_tb) {
 | |
|             tb_invalidate_phys_page(addr, 0, NULL);
 | |
|         }
 | |
|         p->flags = flags;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int page_check_range(target_ulong start, target_ulong len, int flags)
 | |
| {
 | |
|     PageDesc *p;
 | |
|     target_ulong end;
 | |
|     target_ulong addr;
 | |
| 
 | |
|     end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
 | |
|     start = start & TARGET_PAGE_MASK;
 | |
| 
 | |
|     if( end < start )
 | |
|         /* we've wrapped around */
 | |
|         return -1;
 | |
|     for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
 | |
|         p = page_find(addr >> TARGET_PAGE_BITS);
 | |
|         if( !p )
 | |
|             return -1;
 | |
|         if( !(p->flags & PAGE_VALID) )
 | |
|             return -1;
 | |
| 
 | |
|         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
 | |
|             return -1;
 | |
|         if (flags & PAGE_WRITE) {
 | |
|             if (!(p->flags & PAGE_WRITE_ORG))
 | |
|                 return -1;
 | |
|             /* unprotect the page if it was put read-only because it
 | |
|                contains translated code */
 | |
|             if (!(p->flags & PAGE_WRITE)) {
 | |
|                 if (!page_unprotect(addr, 0, NULL))
 | |
|                     return -1;
 | |
|             }
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* called from signal handler: invalidate the code and unprotect the
 | |
|    page. Return TRUE if the fault was succesfully handled. */
 | |
| int page_unprotect(target_ulong address, unsigned long pc, void *puc)
 | |
| {
 | |
|     unsigned int page_index, prot, pindex;
 | |
|     PageDesc *p, *p1;
 | |
|     target_ulong host_start, host_end, addr;
 | |
| 
 | |
|     /* Technically this isn't safe inside a signal handler.  However we
 | |
|        know this only ever happens in a synchronous SEGV handler, so in
 | |
|        practice it seems to be ok.  */
 | |
|     mmap_lock();
 | |
| 
 | |
|     host_start = address & qemu_host_page_mask;
 | |
|     page_index = host_start >> TARGET_PAGE_BITS;
 | |
|     p1 = page_find(page_index);
 | |
|     if (!p1) {
 | |
|         mmap_unlock();
 | |
|         return 0;
 | |
|     }
 | |
|     host_end = host_start + qemu_host_page_size;
 | |
|     p = p1;
 | |
|     prot = 0;
 | |
|     for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
 | |
|         prot |= p->flags;
 | |
|         p++;
 | |
|     }
 | |
|     /* if the page was really writable, then we change its
 | |
|        protection back to writable */
 | |
|     if (prot & PAGE_WRITE_ORG) {
 | |
|         pindex = (address - host_start) >> TARGET_PAGE_BITS;
 | |
|         if (!(p1[pindex].flags & PAGE_WRITE)) {
 | |
|             mprotect((void *)g2h(host_start), qemu_host_page_size,
 | |
|                      (prot & PAGE_BITS) | PAGE_WRITE);
 | |
|             p1[pindex].flags |= PAGE_WRITE;
 | |
|             /* and since the content will be modified, we must invalidate
 | |
|                the corresponding translated code. */
 | |
|             tb_invalidate_phys_page(address, pc, puc);
 | |
| #ifdef DEBUG_TB_CHECK
 | |
|             tb_invalidate_check(address);
 | |
| #endif
 | |
|             mmap_unlock();
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
|     mmap_unlock();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline void tlb_set_dirty(CPUState *env,
 | |
|                                  unsigned long addr, target_ulong vaddr)
 | |
| {
 | |
| }
 | |
| #endif /* defined(CONFIG_USER_ONLY) */
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
 | |
|                              ram_addr_t memory);
 | |
| static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
 | |
|                            ram_addr_t orig_memory);
 | |
| #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
 | |
|                       need_subpage)                                     \
 | |
|     do {                                                                \
 | |
|         if (addr > start_addr)                                          \
 | |
|             start_addr2 = 0;                                            \
 | |
|         else {                                                          \
 | |
|             start_addr2 = start_addr & ~TARGET_PAGE_MASK;               \
 | |
|             if (start_addr2 > 0)                                        \
 | |
|                 need_subpage = 1;                                       \
 | |
|         }                                                               \
 | |
|                                                                         \
 | |
|         if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE)        \
 | |
|             end_addr2 = TARGET_PAGE_SIZE - 1;                           \
 | |
|         else {                                                          \
 | |
|             end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
 | |
|             if (end_addr2 < TARGET_PAGE_SIZE - 1)                       \
 | |
|                 need_subpage = 1;                                       \
 | |
|         }                                                               \
 | |
|     } while (0)
 | |
| 
 | |
| /* register physical memory. 'size' must be a multiple of the target
 | |
|    page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
 | |
|    io memory page */
 | |
| void cpu_register_physical_memory(target_phys_addr_t start_addr,
 | |
|                                   ram_addr_t size,
 | |
|                                   ram_addr_t phys_offset)
 | |
| {
 | |
|     target_phys_addr_t addr, end_addr;
 | |
|     PhysPageDesc *p;
 | |
|     CPUState *env;
 | |
|     ram_addr_t orig_size = size;
 | |
|     void *subpage;
 | |
| 
 | |
| #ifdef USE_KQEMU
 | |
|     /* XXX: should not depend on cpu context */
 | |
|     env = first_cpu;
 | |
|     if (env->kqemu_enabled) {
 | |
|         kqemu_set_phys_mem(start_addr, size, phys_offset);
 | |
|     }
 | |
| #endif
 | |
|     size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
 | |
|     end_addr = start_addr + (target_phys_addr_t)size;
 | |
|     for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
 | |
|         p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|         if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
 | |
|             ram_addr_t orig_memory = p->phys_offset;
 | |
|             target_phys_addr_t start_addr2, end_addr2;
 | |
|             int need_subpage = 0;
 | |
| 
 | |
|             CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
 | |
|                           need_subpage);
 | |
|             if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
 | |
|                 if (!(orig_memory & IO_MEM_SUBPAGE)) {
 | |
|                     subpage = subpage_init((addr & TARGET_PAGE_MASK),
 | |
|                                            &p->phys_offset, orig_memory);
 | |
|                 } else {
 | |
|                     subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
 | |
|                                             >> IO_MEM_SHIFT];
 | |
|                 }
 | |
|                 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
 | |
|             } else {
 | |
|                 p->phys_offset = phys_offset;
 | |
|                 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
 | |
|                     (phys_offset & IO_MEM_ROMD))
 | |
|                     phys_offset += TARGET_PAGE_SIZE;
 | |
|             }
 | |
|         } else {
 | |
|             p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
 | |
|             p->phys_offset = phys_offset;
 | |
|             if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
 | |
|                 (phys_offset & IO_MEM_ROMD))
 | |
|                 phys_offset += TARGET_PAGE_SIZE;
 | |
|             else {
 | |
|                 target_phys_addr_t start_addr2, end_addr2;
 | |
|                 int need_subpage = 0;
 | |
| 
 | |
|                 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
 | |
|                               end_addr2, need_subpage);
 | |
| 
 | |
|                 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
 | |
|                     subpage = subpage_init((addr & TARGET_PAGE_MASK),
 | |
|                                            &p->phys_offset, IO_MEM_UNASSIGNED);
 | |
|                     subpage_register(subpage, start_addr2, end_addr2,
 | |
|                                      phys_offset);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* since each CPU stores ram addresses in its TLB cache, we must
 | |
|        reset the modified entries */
 | |
|     /* XXX: slow ! */
 | |
|     for(env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         tlb_flush(env, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* XXX: temporary until new memory mapping API */
 | |
| ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
 | |
| {
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p)
 | |
|         return IO_MEM_UNASSIGNED;
 | |
|     return p->phys_offset;
 | |
| }
 | |
| 
 | |
| /* XXX: better than nothing */
 | |
| ram_addr_t qemu_ram_alloc(ram_addr_t size)
 | |
| {
 | |
|     ram_addr_t addr;
 | |
|     if ((phys_ram_alloc_offset + size) > phys_ram_size) {
 | |
|         fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 "\n",
 | |
|                 (uint64_t)size, (uint64_t)phys_ram_size);
 | |
|         abort();
 | |
|     }
 | |
|     addr = phys_ram_alloc_offset;
 | |
|     phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
 | |
|     return addr;
 | |
| }
 | |
| 
 | |
| void qemu_ram_free(ram_addr_t addr)
 | |
| {
 | |
| }
 | |
| 
 | |
| static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
| #ifdef DEBUG_UNASSIGNED
 | |
|     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
 | |
| #endif
 | |
| #ifdef TARGET_SPARC
 | |
|     do_unassigned_access(addr, 0, 0, 0);
 | |
| #elif TARGET_CRIS
 | |
|     do_unassigned_access(addr, 0, 0, 0);
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
| #ifdef DEBUG_UNASSIGNED
 | |
|     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
 | |
| #endif
 | |
| #ifdef TARGET_SPARC
 | |
|     do_unassigned_access(addr, 1, 0, 0);
 | |
| #elif TARGET_CRIS
 | |
|     do_unassigned_access(addr, 1, 0, 0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static CPUReadMemoryFunc *unassigned_mem_read[3] = {
 | |
|     unassigned_mem_readb,
 | |
|     unassigned_mem_readb,
 | |
|     unassigned_mem_readb,
 | |
| };
 | |
| 
 | |
| static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
 | |
|     unassigned_mem_writeb,
 | |
|     unassigned_mem_writeb,
 | |
|     unassigned_mem_writeb,
 | |
| };
 | |
| 
 | |
| static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
 | |
|                                 uint32_t val)
 | |
| {
 | |
|     int dirty_flags;
 | |
|     dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
 | |
|     if (!(dirty_flags & CODE_DIRTY_FLAG)) {
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|         tb_invalidate_phys_page_fast(ram_addr, 1);
 | |
|         dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
 | |
| #endif
 | |
|     }
 | |
|     stb_p(phys_ram_base + ram_addr, val);
 | |
| #ifdef USE_KQEMU
 | |
|     if (cpu_single_env->kqemu_enabled &&
 | |
|         (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
 | |
|         kqemu_modify_page(cpu_single_env, ram_addr);
 | |
| #endif
 | |
|     dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
 | |
|     phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
 | |
|     /* we remove the notdirty callback only if the code has been
 | |
|        flushed */
 | |
|     if (dirty_flags == 0xff)
 | |
|         tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
 | |
| }
 | |
| 
 | |
| static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
 | |
|                                 uint32_t val)
 | |
| {
 | |
|     int dirty_flags;
 | |
|     dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
 | |
|     if (!(dirty_flags & CODE_DIRTY_FLAG)) {
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|         tb_invalidate_phys_page_fast(ram_addr, 2);
 | |
|         dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
 | |
| #endif
 | |
|     }
 | |
|     stw_p(phys_ram_base + ram_addr, val);
 | |
| #ifdef USE_KQEMU
 | |
|     if (cpu_single_env->kqemu_enabled &&
 | |
|         (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
 | |
|         kqemu_modify_page(cpu_single_env, ram_addr);
 | |
| #endif
 | |
|     dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
 | |
|     phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
 | |
|     /* we remove the notdirty callback only if the code has been
 | |
|        flushed */
 | |
|     if (dirty_flags == 0xff)
 | |
|         tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
 | |
| }
 | |
| 
 | |
| static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
 | |
|                                 uint32_t val)
 | |
| {
 | |
|     int dirty_flags;
 | |
|     dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
 | |
|     if (!(dirty_flags & CODE_DIRTY_FLAG)) {
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|         tb_invalidate_phys_page_fast(ram_addr, 4);
 | |
|         dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
 | |
| #endif
 | |
|     }
 | |
|     stl_p(phys_ram_base + ram_addr, val);
 | |
| #ifdef USE_KQEMU
 | |
|     if (cpu_single_env->kqemu_enabled &&
 | |
|         (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
 | |
|         kqemu_modify_page(cpu_single_env, ram_addr);
 | |
| #endif
 | |
|     dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
 | |
|     phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
 | |
|     /* we remove the notdirty callback only if the code has been
 | |
|        flushed */
 | |
|     if (dirty_flags == 0xff)
 | |
|         tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
 | |
| }
 | |
| 
 | |
| static CPUReadMemoryFunc *error_mem_read[3] = {
 | |
|     NULL, /* never used */
 | |
|     NULL, /* never used */
 | |
|     NULL, /* never used */
 | |
| };
 | |
| 
 | |
| static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
 | |
|     notdirty_mem_writeb,
 | |
|     notdirty_mem_writew,
 | |
|     notdirty_mem_writel,
 | |
| };
 | |
| 
 | |
| /* Generate a debug exception if a watchpoint has been hit.  */
 | |
| static void check_watchpoint(int offset, int flags)
 | |
| {
 | |
|     CPUState *env = cpu_single_env;
 | |
|     target_ulong vaddr;
 | |
|     int i;
 | |
| 
 | |
|     vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
 | |
|     for (i = 0; i < env->nb_watchpoints; i++) {
 | |
|         if (vaddr == env->watchpoint[i].vaddr
 | |
|                 && (env->watchpoint[i].type & flags)) {
 | |
|             env->watchpoint_hit = i + 1;
 | |
|             cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
 | |
|    so these check for a hit then pass through to the normal out-of-line
 | |
|    phys routines.  */
 | |
| static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
 | |
|     return ldub_phys(addr);
 | |
| }
 | |
| 
 | |
| static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
 | |
|     return lduw_phys(addr);
 | |
| }
 | |
| 
 | |
| static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
 | |
|     return ldl_phys(addr);
 | |
| }
 | |
| 
 | |
| static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
 | |
|                              uint32_t val)
 | |
| {
 | |
|     check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
 | |
|     stb_phys(addr, val);
 | |
| }
 | |
| 
 | |
| static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
 | |
|                              uint32_t val)
 | |
| {
 | |
|     check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
 | |
|     stw_phys(addr, val);
 | |
| }
 | |
| 
 | |
| static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
 | |
|                              uint32_t val)
 | |
| {
 | |
|     check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
 | |
|     stl_phys(addr, val);
 | |
| }
 | |
| 
 | |
| static CPUReadMemoryFunc *watch_mem_read[3] = {
 | |
|     watch_mem_readb,
 | |
|     watch_mem_readw,
 | |
|     watch_mem_readl,
 | |
| };
 | |
| 
 | |
| static CPUWriteMemoryFunc *watch_mem_write[3] = {
 | |
|     watch_mem_writeb,
 | |
|     watch_mem_writew,
 | |
|     watch_mem_writel,
 | |
| };
 | |
| 
 | |
| static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
 | |
|                                  unsigned int len)
 | |
| {
 | |
|     uint32_t ret;
 | |
|     unsigned int idx;
 | |
| 
 | |
|     idx = SUBPAGE_IDX(addr - mmio->base);
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
 | |
|            mmio, len, addr, idx);
 | |
| #endif
 | |
|     ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
 | |
|                               uint32_t value, unsigned int len)
 | |
| {
 | |
|     unsigned int idx;
 | |
| 
 | |
|     idx = SUBPAGE_IDX(addr - mmio->base);
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
 | |
|            mmio, len, addr, idx, value);
 | |
| #endif
 | |
|     (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
 | |
| }
 | |
| 
 | |
| static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
 | |
| #endif
 | |
| 
 | |
|     return subpage_readlen(opaque, addr, 0);
 | |
| }
 | |
| 
 | |
| static void subpage_writeb (void *opaque, target_phys_addr_t addr,
 | |
|                             uint32_t value)
 | |
| {
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
 | |
| #endif
 | |
|     subpage_writelen(opaque, addr, value, 0);
 | |
| }
 | |
| 
 | |
| static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
 | |
| #endif
 | |
| 
 | |
|     return subpage_readlen(opaque, addr, 1);
 | |
| }
 | |
| 
 | |
| static void subpage_writew (void *opaque, target_phys_addr_t addr,
 | |
|                             uint32_t value)
 | |
| {
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
 | |
| #endif
 | |
|     subpage_writelen(opaque, addr, value, 1);
 | |
| }
 | |
| 
 | |
| static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
 | |
| #endif
 | |
| 
 | |
|     return subpage_readlen(opaque, addr, 2);
 | |
| }
 | |
| 
 | |
| static void subpage_writel (void *opaque,
 | |
|                          target_phys_addr_t addr, uint32_t value)
 | |
| {
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
 | |
| #endif
 | |
|     subpage_writelen(opaque, addr, value, 2);
 | |
| }
 | |
| 
 | |
| static CPUReadMemoryFunc *subpage_read[] = {
 | |
|     &subpage_readb,
 | |
|     &subpage_readw,
 | |
|     &subpage_readl,
 | |
| };
 | |
| 
 | |
| static CPUWriteMemoryFunc *subpage_write[] = {
 | |
|     &subpage_writeb,
 | |
|     &subpage_writew,
 | |
|     &subpage_writel,
 | |
| };
 | |
| 
 | |
| static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
 | |
|                              ram_addr_t memory)
 | |
| {
 | |
|     int idx, eidx;
 | |
|     unsigned int i;
 | |
| 
 | |
|     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
 | |
|         return -1;
 | |
|     idx = SUBPAGE_IDX(start);
 | |
|     eidx = SUBPAGE_IDX(end);
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
 | |
|            mmio, start, end, idx, eidx, memory);
 | |
| #endif
 | |
|     memory >>= IO_MEM_SHIFT;
 | |
|     for (; idx <= eidx; idx++) {
 | |
|         for (i = 0; i < 4; i++) {
 | |
|             if (io_mem_read[memory][i]) {
 | |
|                 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
 | |
|                 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
 | |
|             }
 | |
|             if (io_mem_write[memory][i]) {
 | |
|                 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
 | |
|                 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
 | |
|                            ram_addr_t orig_memory)
 | |
| {
 | |
|     subpage_t *mmio;
 | |
|     int subpage_memory;
 | |
| 
 | |
|     mmio = qemu_mallocz(sizeof(subpage_t));
 | |
|     if (mmio != NULL) {
 | |
|         mmio->base = base;
 | |
|         subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|         printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
 | |
|                mmio, base, TARGET_PAGE_SIZE, subpage_memory);
 | |
| #endif
 | |
|         *phys = subpage_memory | IO_MEM_SUBPAGE;
 | |
|         subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
 | |
|     }
 | |
| 
 | |
|     return mmio;
 | |
| }
 | |
| 
 | |
| static void io_mem_init(void)
 | |
| {
 | |
|     cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
 | |
|     cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
 | |
|     cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
 | |
|     io_mem_nb = 5;
 | |
| 
 | |
|     io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
 | |
|                                           watch_mem_write, NULL);
 | |
|     /* alloc dirty bits array */
 | |
|     phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
 | |
|     memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
 | |
| }
 | |
| 
 | |
| /* mem_read and mem_write are arrays of functions containing the
 | |
|    function to access byte (index 0), word (index 1) and dword (index
 | |
|    2). Functions can be omitted with a NULL function pointer. The
 | |
|    registered functions may be modified dynamically later.
 | |
|    If io_index is non zero, the corresponding io zone is
 | |
|    modified. If it is zero, a new io zone is allocated. The return
 | |
|    value can be used with cpu_register_physical_memory(). (-1) is
 | |
|    returned if error. */
 | |
| int cpu_register_io_memory(int io_index,
 | |
|                            CPUReadMemoryFunc **mem_read,
 | |
|                            CPUWriteMemoryFunc **mem_write,
 | |
|                            void *opaque)
 | |
| {
 | |
|     int i, subwidth = 0;
 | |
| 
 | |
|     if (io_index <= 0) {
 | |
|         if (io_mem_nb >= IO_MEM_NB_ENTRIES)
 | |
|             return -1;
 | |
|         io_index = io_mem_nb++;
 | |
|     } else {
 | |
|         if (io_index >= IO_MEM_NB_ENTRIES)
 | |
|             return -1;
 | |
|     }
 | |
| 
 | |
|     for(i = 0;i < 3; i++) {
 | |
|         if (!mem_read[i] || !mem_write[i])
 | |
|             subwidth = IO_MEM_SUBWIDTH;
 | |
|         io_mem_read[io_index][i] = mem_read[i];
 | |
|         io_mem_write[io_index][i] = mem_write[i];
 | |
|     }
 | |
|     io_mem_opaque[io_index] = opaque;
 | |
|     return (io_index << IO_MEM_SHIFT) | subwidth;
 | |
| }
 | |
| 
 | |
| CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
 | |
| {
 | |
|     return io_mem_write[io_index >> IO_MEM_SHIFT];
 | |
| }
 | |
| 
 | |
| CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
 | |
| {
 | |
|     return io_mem_read[io_index >> IO_MEM_SHIFT];
 | |
| }
 | |
| 
 | |
| #endif /* !defined(CONFIG_USER_ONLY) */
 | |
| 
 | |
| /* physical memory access (slow version, mainly for debug) */
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
 | |
|                             int len, int is_write)
 | |
| {
 | |
|     int l, flags;
 | |
|     target_ulong page;
 | |
|     void * p;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         flags = page_get_flags(page);
 | |
|         if (!(flags & PAGE_VALID))
 | |
|             return;
 | |
|         if (is_write) {
 | |
|             if (!(flags & PAGE_WRITE))
 | |
|                 return;
 | |
|             /* XXX: this code should not depend on lock_user */
 | |
|             if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
 | |
|                 /* FIXME - should this return an error rather than just fail? */
 | |
|                 return;
 | |
|             memcpy(p, buf, l);
 | |
|             unlock_user(p, addr, l);
 | |
|         } else {
 | |
|             if (!(flags & PAGE_READ))
 | |
|                 return;
 | |
|             /* XXX: this code should not depend on lock_user */
 | |
|             if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
 | |
|                 /* FIXME - should this return an error rather than just fail? */
 | |
|                 return;
 | |
|             memcpy(buf, p, l);
 | |
|             unlock_user(p, addr, 0);
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #else
 | |
| void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
 | |
|                             int len, int is_write)
 | |
| {
 | |
|     int l, io_index;
 | |
|     uint8_t *ptr;
 | |
|     uint32_t val;
 | |
|     target_phys_addr_t page;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         p = phys_page_find(page >> TARGET_PAGE_BITS);
 | |
|         if (!p) {
 | |
|             pd = IO_MEM_UNASSIGNED;
 | |
|         } else {
 | |
|             pd = p->phys_offset;
 | |
|         }
 | |
| 
 | |
|         if (is_write) {
 | |
|             if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
 | |
|                 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|                 /* XXX: could force cpu_single_env to NULL to avoid
 | |
|                    potential bugs */
 | |
|                 if (l >= 4 && ((addr & 3) == 0)) {
 | |
|                     /* 32 bit write access */
 | |
|                     val = ldl_p(buf);
 | |
|                     io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
 | |
|                     l = 4;
 | |
|                 } else if (l >= 2 && ((addr & 1) == 0)) {
 | |
|                     /* 16 bit write access */
 | |
|                     val = lduw_p(buf);
 | |
|                     io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
 | |
|                     l = 2;
 | |
|                 } else {
 | |
|                     /* 8 bit write access */
 | |
|                     val = ldub_p(buf);
 | |
|                     io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
 | |
|                     l = 1;
 | |
|                 }
 | |
|             } else {
 | |
|                 unsigned long addr1;
 | |
|                 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
 | |
|                 /* RAM case */
 | |
|                 ptr = phys_ram_base + addr1;
 | |
|                 memcpy(ptr, buf, l);
 | |
|                 if (!cpu_physical_memory_is_dirty(addr1)) {
 | |
|                     /* invalidate code */
 | |
|                     tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
 | |
|                     /* set dirty bit */
 | |
|                     phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
 | |
|                         (0xff & ~CODE_DIRTY_FLAG);
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
 | |
|                 !(pd & IO_MEM_ROMD)) {
 | |
|                 /* I/O case */
 | |
|                 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|                 if (l >= 4 && ((addr & 3) == 0)) {
 | |
|                     /* 32 bit read access */
 | |
|                     val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
 | |
|                     stl_p(buf, val);
 | |
|                     l = 4;
 | |
|                 } else if (l >= 2 && ((addr & 1) == 0)) {
 | |
|                     /* 16 bit read access */
 | |
|                     val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
 | |
|                     stw_p(buf, val);
 | |
|                     l = 2;
 | |
|                 } else {
 | |
|                     /* 8 bit read access */
 | |
|                     val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
 | |
|                     stb_p(buf, val);
 | |
|                     l = 1;
 | |
|                 }
 | |
|             } else {
 | |
|                 /* RAM case */
 | |
|                 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
 | |
|                     (addr & ~TARGET_PAGE_MASK);
 | |
|                 memcpy(buf, ptr, l);
 | |
|             }
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* used for ROM loading : can write in RAM and ROM */
 | |
| void cpu_physical_memory_write_rom(target_phys_addr_t addr,
 | |
|                                    const uint8_t *buf, int len)
 | |
| {
 | |
|     int l;
 | |
|     uint8_t *ptr;
 | |
|     target_phys_addr_t page;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         p = phys_page_find(page >> TARGET_PAGE_BITS);
 | |
|         if (!p) {
 | |
|             pd = IO_MEM_UNASSIGNED;
 | |
|         } else {
 | |
|             pd = p->phys_offset;
 | |
|         }
 | |
| 
 | |
|         if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
 | |
|             (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
 | |
|             !(pd & IO_MEM_ROMD)) {
 | |
|             /* do nothing */
 | |
|         } else {
 | |
|             unsigned long addr1;
 | |
|             addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
 | |
|             /* ROM/RAM case */
 | |
|             ptr = phys_ram_base + addr1;
 | |
|             memcpy(ptr, buf, l);
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| uint32_t ldl_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     int io_index;
 | |
|     uint8_t *ptr;
 | |
|     uint32_t val;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
| 
 | |
|     if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
 | |
|         !(pd & IO_MEM_ROMD)) {
 | |
|         /* I/O case */
 | |
|         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|         val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
 | |
|             (addr & ~TARGET_PAGE_MASK);
 | |
|         val = ldl_p(ptr);
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| uint64_t ldq_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     int io_index;
 | |
|     uint8_t *ptr;
 | |
|     uint64_t val;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
| 
 | |
|     if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
 | |
|         !(pd & IO_MEM_ROMD)) {
 | |
|         /* I/O case */
 | |
|         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
|         val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
 | |
|         val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
 | |
| #else
 | |
|         val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
 | |
|         val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
 | |
| #endif
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
 | |
|             (addr & ~TARGET_PAGE_MASK);
 | |
|         val = ldq_p(ptr);
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| uint32_t ldub_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     uint8_t val;
 | |
|     cpu_physical_memory_read(addr, &val, 1);
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| uint32_t lduw_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     uint16_t val;
 | |
|     cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
 | |
|     return tswap16(val);
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned. The ram page is not masked as dirty
 | |
|    and the code inside is not invalidated. It is useful if the dirty
 | |
|    bits are used to track modified PTEs */
 | |
| void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     int io_index;
 | |
|     uint8_t *ptr;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
| 
 | |
|     if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
 | |
|         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|         io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
 | |
|     } else {
 | |
|         ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
 | |
|             (addr & ~TARGET_PAGE_MASK);
 | |
|         stl_p(ptr, val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
 | |
| {
 | |
|     int io_index;
 | |
|     uint8_t *ptr;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
| 
 | |
|     if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
 | |
|         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
|         io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
 | |
|         io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
 | |
| #else
 | |
|         io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
 | |
|         io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
 | |
| #endif
 | |
|     } else {
 | |
|         ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
 | |
|             (addr & ~TARGET_PAGE_MASK);
 | |
|         stq_p(ptr, val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| void stl_phys(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     int io_index;
 | |
|     uint8_t *ptr;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
| 
 | |
|     if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
 | |
|         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|         io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
 | |
|     } else {
 | |
|         unsigned long addr1;
 | |
|         addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
 | |
|         /* RAM case */
 | |
|         ptr = phys_ram_base + addr1;
 | |
|         stl_p(ptr, val);
 | |
|         if (!cpu_physical_memory_is_dirty(addr1)) {
 | |
|             /* invalidate code */
 | |
|             tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
 | |
|             /* set dirty bit */
 | |
|             phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
 | |
|                 (0xff & ~CODE_DIRTY_FLAG);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| void stb_phys(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     uint8_t v = val;
 | |
|     cpu_physical_memory_write(addr, &v, 1);
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| void stw_phys(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     uint16_t v = tswap16(val);
 | |
|     cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| void stq_phys(target_phys_addr_t addr, uint64_t val)
 | |
| {
 | |
|     val = tswap64(val);
 | |
|     cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* virtual memory access for debug */
 | |
| int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
 | |
|                         uint8_t *buf, int len, int is_write)
 | |
| {
 | |
|     int l;
 | |
|     target_phys_addr_t phys_addr;
 | |
|     target_ulong page;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         phys_addr = cpu_get_phys_page_debug(env, page);
 | |
|         /* if no physical page mapped, return an error */
 | |
|         if (phys_addr == -1)
 | |
|             return -1;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
 | |
|                                buf, l, is_write);
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* in deterministic execution mode, instructions doing device I/Os
 | |
|    must be at the end of the TB */
 | |
| void cpu_io_recompile(CPUState *env, void *retaddr)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     uint32_t n, cflags;
 | |
|     target_ulong pc, cs_base;
 | |
|     uint64_t flags;
 | |
| 
 | |
|     tb = tb_find_pc((unsigned long)retaddr);
 | |
|     if (!tb) {
 | |
|         cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", 
 | |
|                   retaddr);
 | |
|     }
 | |
|     n = env->icount_decr.u16.low + tb->icount;
 | |
|     cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
 | |
|     /* Calculate how many instructions had been executed before the fault
 | |
|        occurred.  */
 | |
|     n = n - env->icount_decr.u16.low;
 | |
|     /* Generate a new TB ending on the I/O insn.  */
 | |
|     n++;
 | |
|     /* On MIPS and SH, delay slot instructions can only be restarted if
 | |
|        they were already the first instruction in the TB.  If this is not
 | |
|        the first instruction in a TB then re-execute the preceding
 | |
|        branch.  */
 | |
| #if defined(TARGET_MIPS)
 | |
|     if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
 | |
|         env->active_tc.PC -= 4;
 | |
|         env->icount_decr.u16.low++;
 | |
|         env->hflags &= ~MIPS_HFLAG_BMASK;
 | |
|     }
 | |
| #elif defined(TARGET_SH4)
 | |
|     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
 | |
|             && n > 1) {
 | |
|         env->pc -= 2;
 | |
|         env->icount_decr.u16.low++;
 | |
|         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
 | |
|     }
 | |
| #endif
 | |
|     /* This should never happen.  */
 | |
|     if (n > CF_COUNT_MASK)
 | |
|         cpu_abort(env, "TB too big during recompile");
 | |
| 
 | |
|     cflags = n | CF_LAST_IO;
 | |
|     pc = tb->pc;
 | |
|     cs_base = tb->cs_base;
 | |
|     flags = tb->flags;
 | |
|     tb_phys_invalidate(tb, -1);
 | |
|     /* FIXME: In theory this could raise an exception.  In practice
 | |
|        we have already translated the block once so it's probably ok.  */
 | |
|     tb_gen_code(env, pc, cs_base, flags, cflags);
 | |
|     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
 | |
|        the first in the TB) then we end up generating a whole new TB and
 | |
|        repeating the fault, which is horribly inefficient.
 | |
|        Better would be to execute just this insn uncached, or generate a
 | |
|        second new TB.  */
 | |
|     cpu_resume_from_signal(env, NULL);
 | |
| }
 | |
| 
 | |
| void dump_exec_info(FILE *f,
 | |
|                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
 | |
| {
 | |
|     int i, target_code_size, max_target_code_size;
 | |
|     int direct_jmp_count, direct_jmp2_count, cross_page;
 | |
|     TranslationBlock *tb;
 | |
| 
 | |
|     target_code_size = 0;
 | |
|     max_target_code_size = 0;
 | |
|     cross_page = 0;
 | |
|     direct_jmp_count = 0;
 | |
|     direct_jmp2_count = 0;
 | |
|     for(i = 0; i < nb_tbs; i++) {
 | |
|         tb = &tbs[i];
 | |
|         target_code_size += tb->size;
 | |
|         if (tb->size > max_target_code_size)
 | |
|             max_target_code_size = tb->size;
 | |
|         if (tb->page_addr[1] != -1)
 | |
|             cross_page++;
 | |
|         if (tb->tb_next_offset[0] != 0xffff) {
 | |
|             direct_jmp_count++;
 | |
|             if (tb->tb_next_offset[1] != 0xffff) {
 | |
|                 direct_jmp2_count++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     /* XXX: avoid using doubles ? */
 | |
|     cpu_fprintf(f, "Translation buffer state:\n");
 | |
|     cpu_fprintf(f, "gen code size       %ld/%ld\n",
 | |
|                 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
 | |
|     cpu_fprintf(f, "TB count            %d/%d\n", 
 | |
|                 nb_tbs, code_gen_max_blocks);
 | |
|     cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
 | |
|                 nb_tbs ? target_code_size / nb_tbs : 0,
 | |
|                 max_target_code_size);
 | |
|     cpu_fprintf(f, "TB avg host size    %d bytes (expansion ratio: %0.1f)\n",
 | |
|                 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
 | |
|                 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
 | |
|     cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
 | |
|             cross_page,
 | |
|             nb_tbs ? (cross_page * 100) / nb_tbs : 0);
 | |
|     cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
 | |
|                 direct_jmp_count,
 | |
|                 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
 | |
|                 direct_jmp2_count,
 | |
|                 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
 | |
|     cpu_fprintf(f, "\nStatistics:\n");
 | |
|     cpu_fprintf(f, "TB flush count      %d\n", tb_flush_count);
 | |
|     cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
 | |
|     cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
 | |
|     tcg_dump_info(f, cpu_fprintf);
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| #define MMUSUFFIX _cmmu
 | |
| #define GETPC() NULL
 | |
| #define env cpu_single_env
 | |
| #define SOFTMMU_CODE_ACCESS
 | |
| 
 | |
| #define SHIFT 0
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 1
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 2
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 3
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #undef env
 | |
| 
 | |
| #endif
 |