mirror of
				https://git.proxmox.com/git/qemu
				synced 2025-10-31 15:09:27 +00:00 
			
		
		
		
	 856074ec70
			
		
	
	
		856074ec70
		
	
	
	
	
		
			
			git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2034 c046a42c-6fe2-441c-8c8c-71466251a162
		
			
				
	
	
		
			2395 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2395 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  virtual page mapping and translated block handling
 | |
|  * 
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
|  */
 | |
| #include "config.h"
 | |
| #ifdef _WIN32
 | |
| #include <windows.h>
 | |
| #else
 | |
| #include <sys/types.h>
 | |
| #include <sys/mman.h>
 | |
| #endif
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| #include <stdarg.h>
 | |
| #include <string.h>
 | |
| #include <errno.h>
 | |
| #include <unistd.h>
 | |
| #include <inttypes.h>
 | |
| 
 | |
| #include "cpu.h"
 | |
| #include "exec-all.h"
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| #include <qemu.h>
 | |
| #endif
 | |
| 
 | |
| //#define DEBUG_TB_INVALIDATE
 | |
| //#define DEBUG_FLUSH
 | |
| //#define DEBUG_TLB
 | |
| 
 | |
| /* make various TB consistency checks */
 | |
| //#define DEBUG_TB_CHECK 
 | |
| //#define DEBUG_TLB_CHECK 
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| /* TB consistency checks only implemented for usermode emulation.  */
 | |
| #undef DEBUG_TB_CHECK
 | |
| #endif
 | |
| 
 | |
| /* threshold to flush the translated code buffer */
 | |
| #define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
 | |
| 
 | |
| #define SMC_BITMAP_USE_THRESHOLD 10
 | |
| 
 | |
| #define MMAP_AREA_START        0x00000000
 | |
| #define MMAP_AREA_END          0xa8000000
 | |
| 
 | |
| #if defined(TARGET_SPARC64)
 | |
| #define TARGET_PHYS_ADDR_SPACE_BITS 41
 | |
| #elif defined(TARGET_PPC64)
 | |
| #define TARGET_PHYS_ADDR_SPACE_BITS 42
 | |
| #else
 | |
| /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
 | |
| #define TARGET_PHYS_ADDR_SPACE_BITS 32
 | |
| #endif
 | |
| 
 | |
| TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
 | |
| TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
 | |
| int nb_tbs;
 | |
| /* any access to the tbs or the page table must use this lock */
 | |
| spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
 | |
| 
 | |
| uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE] __attribute__((aligned (32)));
 | |
| uint8_t *code_gen_ptr;
 | |
| 
 | |
| int phys_ram_size;
 | |
| int phys_ram_fd;
 | |
| uint8_t *phys_ram_base;
 | |
| uint8_t *phys_ram_dirty;
 | |
| 
 | |
| CPUState *first_cpu;
 | |
| /* current CPU in the current thread. It is only valid inside
 | |
|    cpu_exec() */
 | |
| CPUState *cpu_single_env; 
 | |
| 
 | |
| typedef struct PageDesc {
 | |
|     /* list of TBs intersecting this ram page */
 | |
|     TranslationBlock *first_tb;
 | |
|     /* in order to optimize self modifying code, we count the number
 | |
|        of lookups we do to a given page to use a bitmap */
 | |
|     unsigned int code_write_count;
 | |
|     uint8_t *code_bitmap;
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     unsigned long flags;
 | |
| #endif
 | |
| } PageDesc;
 | |
| 
 | |
| typedef struct PhysPageDesc {
 | |
|     /* offset in host memory of the page + io_index in the low 12 bits */
 | |
|     uint32_t phys_offset;
 | |
| } PhysPageDesc;
 | |
| 
 | |
| #define L2_BITS 10
 | |
| #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
 | |
| 
 | |
| #define L1_SIZE (1 << L1_BITS)
 | |
| #define L2_SIZE (1 << L2_BITS)
 | |
| 
 | |
| static void io_mem_init(void);
 | |
| 
 | |
| unsigned long qemu_real_host_page_size;
 | |
| unsigned long qemu_host_page_bits;
 | |
| unsigned long qemu_host_page_size;
 | |
| unsigned long qemu_host_page_mask;
 | |
| 
 | |
| /* XXX: for system emulation, it could just be an array */
 | |
| static PageDesc *l1_map[L1_SIZE];
 | |
| PhysPageDesc **l1_phys_map;
 | |
| 
 | |
| /* io memory support */
 | |
| CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
 | |
| CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
 | |
| void *io_mem_opaque[IO_MEM_NB_ENTRIES];
 | |
| static int io_mem_nb;
 | |
| 
 | |
| /* log support */
 | |
| char *logfilename = "/tmp/qemu.log";
 | |
| FILE *logfile;
 | |
| int loglevel;
 | |
| 
 | |
| /* statistics */
 | |
| static int tlb_flush_count;
 | |
| static int tb_flush_count;
 | |
| static int tb_phys_invalidate_count;
 | |
| 
 | |
| static void page_init(void)
 | |
| {
 | |
|     /* NOTE: we can always suppose that qemu_host_page_size >=
 | |
|        TARGET_PAGE_SIZE */
 | |
| #ifdef _WIN32
 | |
|     {
 | |
|         SYSTEM_INFO system_info;
 | |
|         DWORD old_protect;
 | |
|         
 | |
|         GetSystemInfo(&system_info);
 | |
|         qemu_real_host_page_size = system_info.dwPageSize;
 | |
|         
 | |
|         VirtualProtect(code_gen_buffer, sizeof(code_gen_buffer),
 | |
|                        PAGE_EXECUTE_READWRITE, &old_protect);
 | |
|     }
 | |
| #else
 | |
|     qemu_real_host_page_size = getpagesize();
 | |
|     {
 | |
|         unsigned long start, end;
 | |
| 
 | |
|         start = (unsigned long)code_gen_buffer;
 | |
|         start &= ~(qemu_real_host_page_size - 1);
 | |
|         
 | |
|         end = (unsigned long)code_gen_buffer + sizeof(code_gen_buffer);
 | |
|         end += qemu_real_host_page_size - 1;
 | |
|         end &= ~(qemu_real_host_page_size - 1);
 | |
|         
 | |
|         mprotect((void *)start, end - start, 
 | |
|                  PROT_READ | PROT_WRITE | PROT_EXEC);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (qemu_host_page_size == 0)
 | |
|         qemu_host_page_size = qemu_real_host_page_size;
 | |
|     if (qemu_host_page_size < TARGET_PAGE_SIZE)
 | |
|         qemu_host_page_size = TARGET_PAGE_SIZE;
 | |
|     qemu_host_page_bits = 0;
 | |
|     while ((1 << qemu_host_page_bits) < qemu_host_page_size)
 | |
|         qemu_host_page_bits++;
 | |
|     qemu_host_page_mask = ~(qemu_host_page_size - 1);
 | |
|     l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
 | |
|     memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
 | |
| }
 | |
| 
 | |
| static inline PageDesc *page_find_alloc(unsigned int index)
 | |
| {
 | |
|     PageDesc **lp, *p;
 | |
| 
 | |
|     lp = &l1_map[index >> L2_BITS];
 | |
|     p = *lp;
 | |
|     if (!p) {
 | |
|         /* allocate if not found */
 | |
|         p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
 | |
|         memset(p, 0, sizeof(PageDesc) * L2_SIZE);
 | |
|         *lp = p;
 | |
|     }
 | |
|     return p + (index & (L2_SIZE - 1));
 | |
| }
 | |
| 
 | |
| static inline PageDesc *page_find(unsigned int index)
 | |
| {
 | |
|     PageDesc *p;
 | |
| 
 | |
|     p = l1_map[index >> L2_BITS];
 | |
|     if (!p)
 | |
|         return 0;
 | |
|     return p + (index & (L2_SIZE - 1));
 | |
| }
 | |
| 
 | |
| static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
 | |
| {
 | |
|     void **lp, **p;
 | |
|     PhysPageDesc *pd;
 | |
| 
 | |
|     p = (void **)l1_phys_map;
 | |
| #if TARGET_PHYS_ADDR_SPACE_BITS > 32
 | |
| 
 | |
| #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
 | |
| #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
 | |
| #endif
 | |
|     lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
 | |
|     p = *lp;
 | |
|     if (!p) {
 | |
|         /* allocate if not found */
 | |
|         if (!alloc)
 | |
|             return NULL;
 | |
|         p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
 | |
|         memset(p, 0, sizeof(void *) * L1_SIZE);
 | |
|         *lp = p;
 | |
|     }
 | |
| #endif
 | |
|     lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
 | |
|     pd = *lp;
 | |
|     if (!pd) {
 | |
|         int i;
 | |
|         /* allocate if not found */
 | |
|         if (!alloc)
 | |
|             return NULL;
 | |
|         pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
 | |
|         *lp = pd;
 | |
|         for (i = 0; i < L2_SIZE; i++)
 | |
|           pd[i].phys_offset = IO_MEM_UNASSIGNED;
 | |
|     }
 | |
|     return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
 | |
| }
 | |
| 
 | |
| static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
 | |
| {
 | |
|     return phys_page_find_alloc(index, 0);
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| static void tlb_protect_code(ram_addr_t ram_addr);
 | |
| static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, 
 | |
|                                     target_ulong vaddr);
 | |
| #endif
 | |
| 
 | |
| void cpu_exec_init(CPUState *env)
 | |
| {
 | |
|     CPUState **penv;
 | |
|     int cpu_index;
 | |
| 
 | |
|     if (!code_gen_ptr) {
 | |
|         code_gen_ptr = code_gen_buffer;
 | |
|         page_init();
 | |
|         io_mem_init();
 | |
|     }
 | |
|     env->next_cpu = NULL;
 | |
|     penv = &first_cpu;
 | |
|     cpu_index = 0;
 | |
|     while (*penv != NULL) {
 | |
|         penv = (CPUState **)&(*penv)->next_cpu;
 | |
|         cpu_index++;
 | |
|     }
 | |
|     env->cpu_index = cpu_index;
 | |
|     *penv = env;
 | |
| }
 | |
| 
 | |
| static inline void invalidate_page_bitmap(PageDesc *p)
 | |
| {
 | |
|     if (p->code_bitmap) {
 | |
|         qemu_free(p->code_bitmap);
 | |
|         p->code_bitmap = NULL;
 | |
|     }
 | |
|     p->code_write_count = 0;
 | |
| }
 | |
| 
 | |
| /* set to NULL all the 'first_tb' fields in all PageDescs */
 | |
| static void page_flush_tb(void)
 | |
| {
 | |
|     int i, j;
 | |
|     PageDesc *p;
 | |
| 
 | |
|     for(i = 0; i < L1_SIZE; i++) {
 | |
|         p = l1_map[i];
 | |
|         if (p) {
 | |
|             for(j = 0; j < L2_SIZE; j++) {
 | |
|                 p->first_tb = NULL;
 | |
|                 invalidate_page_bitmap(p);
 | |
|                 p++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* flush all the translation blocks */
 | |
| /* XXX: tb_flush is currently not thread safe */
 | |
| void tb_flush(CPUState *env1)
 | |
| {
 | |
|     CPUState *env;
 | |
| #if defined(DEBUG_FLUSH)
 | |
|     printf("qemu: flush code_size=%d nb_tbs=%d avg_tb_size=%d\n", 
 | |
|            code_gen_ptr - code_gen_buffer, 
 | |
|            nb_tbs, 
 | |
|            nb_tbs > 0 ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0);
 | |
| #endif
 | |
|     nb_tbs = 0;
 | |
|     
 | |
|     for(env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
 | |
|     }
 | |
| 
 | |
|     memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
 | |
|     page_flush_tb();
 | |
| 
 | |
|     code_gen_ptr = code_gen_buffer;
 | |
|     /* XXX: flush processor icache at this point if cache flush is
 | |
|        expensive */
 | |
|     tb_flush_count++;
 | |
| }
 | |
| 
 | |
| #ifdef DEBUG_TB_CHECK
 | |
| 
 | |
| static void tb_invalidate_check(unsigned long address)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int i;
 | |
|     address &= TARGET_PAGE_MASK;
 | |
|     for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
 | |
|         for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
 | |
|             if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
 | |
|                   address >= tb->pc + tb->size)) {
 | |
|                 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
 | |
|                        address, (long)tb->pc, tb->size);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* verify that all the pages have correct rights for code */
 | |
| static void tb_page_check(void)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int i, flags1, flags2;
 | |
|     
 | |
|     for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
 | |
|         for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
 | |
|             flags1 = page_get_flags(tb->pc);
 | |
|             flags2 = page_get_flags(tb->pc + tb->size - 1);
 | |
|             if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
 | |
|                 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
 | |
|                        (long)tb->pc, tb->size, flags1, flags2);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tb_jmp_check(TranslationBlock *tb)
 | |
| {
 | |
|     TranslationBlock *tb1;
 | |
|     unsigned int n1;
 | |
| 
 | |
|     /* suppress any remaining jumps to this TB */
 | |
|     tb1 = tb->jmp_first;
 | |
|     for(;;) {
 | |
|         n1 = (long)tb1 & 3;
 | |
|         tb1 = (TranslationBlock *)((long)tb1 & ~3);
 | |
|         if (n1 == 2)
 | |
|             break;
 | |
|         tb1 = tb1->jmp_next[n1];
 | |
|     }
 | |
|     /* check end of list */
 | |
|     if (tb1 != tb) {
 | |
|         printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* invalidate one TB */
 | |
| static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
 | |
|                              int next_offset)
 | |
| {
 | |
|     TranslationBlock *tb1;
 | |
|     for(;;) {
 | |
|         tb1 = *ptb;
 | |
|         if (tb1 == tb) {
 | |
|             *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
 | |
|             break;
 | |
|         }
 | |
|         ptb = (TranslationBlock **)((char *)tb1 + next_offset);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
 | |
| {
 | |
|     TranslationBlock *tb1;
 | |
|     unsigned int n1;
 | |
| 
 | |
|     for(;;) {
 | |
|         tb1 = *ptb;
 | |
|         n1 = (long)tb1 & 3;
 | |
|         tb1 = (TranslationBlock *)((long)tb1 & ~3);
 | |
|         if (tb1 == tb) {
 | |
|             *ptb = tb1->page_next[n1];
 | |
|             break;
 | |
|         }
 | |
|         ptb = &tb1->page_next[n1];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void tb_jmp_remove(TranslationBlock *tb, int n)
 | |
| {
 | |
|     TranslationBlock *tb1, **ptb;
 | |
|     unsigned int n1;
 | |
| 
 | |
|     ptb = &tb->jmp_next[n];
 | |
|     tb1 = *ptb;
 | |
|     if (tb1) {
 | |
|         /* find tb(n) in circular list */
 | |
|         for(;;) {
 | |
|             tb1 = *ptb;
 | |
|             n1 = (long)tb1 & 3;
 | |
|             tb1 = (TranslationBlock *)((long)tb1 & ~3);
 | |
|             if (n1 == n && tb1 == tb)
 | |
|                 break;
 | |
|             if (n1 == 2) {
 | |
|                 ptb = &tb1->jmp_first;
 | |
|             } else {
 | |
|                 ptb = &tb1->jmp_next[n1];
 | |
|             }
 | |
|         }
 | |
|         /* now we can suppress tb(n) from the list */
 | |
|         *ptb = tb->jmp_next[n];
 | |
| 
 | |
|         tb->jmp_next[n] = NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* reset the jump entry 'n' of a TB so that it is not chained to
 | |
|    another TB */
 | |
| static inline void tb_reset_jump(TranslationBlock *tb, int n)
 | |
| {
 | |
|     tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
 | |
| }
 | |
| 
 | |
| static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr)
 | |
| {
 | |
|     CPUState *env;
 | |
|     PageDesc *p;
 | |
|     unsigned int h, n1;
 | |
|     target_ulong phys_pc;
 | |
|     TranslationBlock *tb1, *tb2;
 | |
|     
 | |
|     /* remove the TB from the hash list */
 | |
|     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
 | |
|     h = tb_phys_hash_func(phys_pc);
 | |
|     tb_remove(&tb_phys_hash[h], tb, 
 | |
|               offsetof(TranslationBlock, phys_hash_next));
 | |
| 
 | |
|     /* remove the TB from the page list */
 | |
|     if (tb->page_addr[0] != page_addr) {
 | |
|         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
 | |
|         tb_page_remove(&p->first_tb, tb);
 | |
|         invalidate_page_bitmap(p);
 | |
|     }
 | |
|     if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
 | |
|         p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
 | |
|         tb_page_remove(&p->first_tb, tb);
 | |
|         invalidate_page_bitmap(p);
 | |
|     }
 | |
| 
 | |
|     tb_invalidated_flag = 1;
 | |
| 
 | |
|     /* remove the TB from the hash list */
 | |
|     h = tb_jmp_cache_hash_func(tb->pc);
 | |
|     for(env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         if (env->tb_jmp_cache[h] == tb)
 | |
|             env->tb_jmp_cache[h] = NULL;
 | |
|     }
 | |
| 
 | |
|     /* suppress this TB from the two jump lists */
 | |
|     tb_jmp_remove(tb, 0);
 | |
|     tb_jmp_remove(tb, 1);
 | |
| 
 | |
|     /* suppress any remaining jumps to this TB */
 | |
|     tb1 = tb->jmp_first;
 | |
|     for(;;) {
 | |
|         n1 = (long)tb1 & 3;
 | |
|         if (n1 == 2)
 | |
|             break;
 | |
|         tb1 = (TranslationBlock *)((long)tb1 & ~3);
 | |
|         tb2 = tb1->jmp_next[n1];
 | |
|         tb_reset_jump(tb1, n1);
 | |
|         tb1->jmp_next[n1] = NULL;
 | |
|         tb1 = tb2;
 | |
|     }
 | |
|     tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
 | |
| 
 | |
|     tb_phys_invalidate_count++;
 | |
| }
 | |
| 
 | |
| static inline void set_bits(uint8_t *tab, int start, int len)
 | |
| {
 | |
|     int end, mask, end1;
 | |
| 
 | |
|     end = start + len;
 | |
|     tab += start >> 3;
 | |
|     mask = 0xff << (start & 7);
 | |
|     if ((start & ~7) == (end & ~7)) {
 | |
|         if (start < end) {
 | |
|             mask &= ~(0xff << (end & 7));
 | |
|             *tab |= mask;
 | |
|         }
 | |
|     } else {
 | |
|         *tab++ |= mask;
 | |
|         start = (start + 8) & ~7;
 | |
|         end1 = end & ~7;
 | |
|         while (start < end1) {
 | |
|             *tab++ = 0xff;
 | |
|             start += 8;
 | |
|         }
 | |
|         if (start < end) {
 | |
|             mask = ~(0xff << (end & 7));
 | |
|             *tab |= mask;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void build_page_bitmap(PageDesc *p)
 | |
| {
 | |
|     int n, tb_start, tb_end;
 | |
|     TranslationBlock *tb;
 | |
|     
 | |
|     p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
 | |
|     if (!p->code_bitmap)
 | |
|         return;
 | |
|     memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
 | |
| 
 | |
|     tb = p->first_tb;
 | |
|     while (tb != NULL) {
 | |
|         n = (long)tb & 3;
 | |
|         tb = (TranslationBlock *)((long)tb & ~3);
 | |
|         /* NOTE: this is subtle as a TB may span two physical pages */
 | |
|         if (n == 0) {
 | |
|             /* NOTE: tb_end may be after the end of the page, but
 | |
|                it is not a problem */
 | |
|             tb_start = tb->pc & ~TARGET_PAGE_MASK;
 | |
|             tb_end = tb_start + tb->size;
 | |
|             if (tb_end > TARGET_PAGE_SIZE)
 | |
|                 tb_end = TARGET_PAGE_SIZE;
 | |
|         } else {
 | |
|             tb_start = 0;
 | |
|             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
 | |
|         }
 | |
|         set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
 | |
|         tb = tb->page_next[n];
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
| 
 | |
| static void tb_gen_code(CPUState *env, 
 | |
|                         target_ulong pc, target_ulong cs_base, int flags,
 | |
|                         int cflags)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     uint8_t *tc_ptr;
 | |
|     target_ulong phys_pc, phys_page2, virt_page2;
 | |
|     int code_gen_size;
 | |
| 
 | |
|     phys_pc = get_phys_addr_code(env, pc);
 | |
|     tb = tb_alloc(pc);
 | |
|     if (!tb) {
 | |
|         /* flush must be done */
 | |
|         tb_flush(env);
 | |
|         /* cannot fail at this point */
 | |
|         tb = tb_alloc(pc);
 | |
|     }
 | |
|     tc_ptr = code_gen_ptr;
 | |
|     tb->tc_ptr = tc_ptr;
 | |
|     tb->cs_base = cs_base;
 | |
|     tb->flags = flags;
 | |
|     tb->cflags = cflags;
 | |
|     cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
 | |
|     code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
 | |
|     
 | |
|     /* check next page if needed */
 | |
|     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
 | |
|     phys_page2 = -1;
 | |
|     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
 | |
|         phys_page2 = get_phys_addr_code(env, virt_page2);
 | |
|     }
 | |
|     tb_link_phys(tb, phys_pc, phys_page2);
 | |
| }
 | |
| #endif
 | |
|     
 | |
| /* invalidate all TBs which intersect with the target physical page
 | |
|    starting in range [start;end[. NOTE: start and end must refer to
 | |
|    the same physical page. 'is_cpu_write_access' should be true if called
 | |
|    from a real cpu write access: the virtual CPU will exit the current
 | |
|    TB if code is modified inside this TB. */
 | |
| void tb_invalidate_phys_page_range(target_ulong start, target_ulong end, 
 | |
|                                    int is_cpu_write_access)
 | |
| {
 | |
|     int n, current_tb_modified, current_tb_not_found, current_flags;
 | |
|     CPUState *env = cpu_single_env;
 | |
|     PageDesc *p;
 | |
|     TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
 | |
|     target_ulong tb_start, tb_end;
 | |
|     target_ulong current_pc, current_cs_base;
 | |
| 
 | |
|     p = page_find(start >> TARGET_PAGE_BITS);
 | |
|     if (!p) 
 | |
|         return;
 | |
|     if (!p->code_bitmap && 
 | |
|         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
 | |
|         is_cpu_write_access) {
 | |
|         /* build code bitmap */
 | |
|         build_page_bitmap(p);
 | |
|     }
 | |
| 
 | |
|     /* we remove all the TBs in the range [start, end[ */
 | |
|     /* XXX: see if in some cases it could be faster to invalidate all the code */
 | |
|     current_tb_not_found = is_cpu_write_access;
 | |
|     current_tb_modified = 0;
 | |
|     current_tb = NULL; /* avoid warning */
 | |
|     current_pc = 0; /* avoid warning */
 | |
|     current_cs_base = 0; /* avoid warning */
 | |
|     current_flags = 0; /* avoid warning */
 | |
|     tb = p->first_tb;
 | |
|     while (tb != NULL) {
 | |
|         n = (long)tb & 3;
 | |
|         tb = (TranslationBlock *)((long)tb & ~3);
 | |
|         tb_next = tb->page_next[n];
 | |
|         /* NOTE: this is subtle as a TB may span two physical pages */
 | |
|         if (n == 0) {
 | |
|             /* NOTE: tb_end may be after the end of the page, but
 | |
|                it is not a problem */
 | |
|             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
 | |
|             tb_end = tb_start + tb->size;
 | |
|         } else {
 | |
|             tb_start = tb->page_addr[1];
 | |
|             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
 | |
|         }
 | |
|         if (!(tb_end <= start || tb_start >= end)) {
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|             if (current_tb_not_found) {
 | |
|                 current_tb_not_found = 0;
 | |
|                 current_tb = NULL;
 | |
|                 if (env->mem_write_pc) {
 | |
|                     /* now we have a real cpu fault */
 | |
|                     current_tb = tb_find_pc(env->mem_write_pc);
 | |
|                 }
 | |
|             }
 | |
|             if (current_tb == tb &&
 | |
|                 !(current_tb->cflags & CF_SINGLE_INSN)) {
 | |
|                 /* If we are modifying the current TB, we must stop
 | |
|                 its execution. We could be more precise by checking
 | |
|                 that the modification is after the current PC, but it
 | |
|                 would require a specialized function to partially
 | |
|                 restore the CPU state */
 | |
|                 
 | |
|                 current_tb_modified = 1;
 | |
|                 cpu_restore_state(current_tb, env, 
 | |
|                                   env->mem_write_pc, NULL);
 | |
| #if defined(TARGET_I386)
 | |
|                 current_flags = env->hflags;
 | |
|                 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
 | |
|                 current_cs_base = (target_ulong)env->segs[R_CS].base;
 | |
|                 current_pc = current_cs_base + env->eip;
 | |
| #else
 | |
| #error unsupported CPU
 | |
| #endif
 | |
|             }
 | |
| #endif /* TARGET_HAS_PRECISE_SMC */
 | |
|             /* we need to do that to handle the case where a signal
 | |
|                occurs while doing tb_phys_invalidate() */
 | |
|             saved_tb = NULL;
 | |
|             if (env) {
 | |
|                 saved_tb = env->current_tb;
 | |
|                 env->current_tb = NULL;
 | |
|             }
 | |
|             tb_phys_invalidate(tb, -1);
 | |
|             if (env) {
 | |
|                 env->current_tb = saved_tb;
 | |
|                 if (env->interrupt_request && env->current_tb)
 | |
|                     cpu_interrupt(env, env->interrupt_request);
 | |
|             }
 | |
|         }
 | |
|         tb = tb_next;
 | |
|     }
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|     /* if no code remaining, no need to continue to use slow writes */
 | |
|     if (!p->first_tb) {
 | |
|         invalidate_page_bitmap(p);
 | |
|         if (is_cpu_write_access) {
 | |
|             tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     if (current_tb_modified) {
 | |
|         /* we generate a block containing just the instruction
 | |
|            modifying the memory. It will ensure that it cannot modify
 | |
|            itself */
 | |
|         env->current_tb = NULL;
 | |
|         tb_gen_code(env, current_pc, current_cs_base, current_flags, 
 | |
|                     CF_SINGLE_INSN);
 | |
|         cpu_resume_from_signal(env, NULL);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* len must be <= 8 and start must be a multiple of len */
 | |
| static inline void tb_invalidate_phys_page_fast(target_ulong start, int len)
 | |
| {
 | |
|     PageDesc *p;
 | |
|     int offset, b;
 | |
| #if 0
 | |
|     if (1) {
 | |
|         if (loglevel) {
 | |
|             fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n", 
 | |
|                    cpu_single_env->mem_write_vaddr, len, 
 | |
|                    cpu_single_env->eip, 
 | |
|                    cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     p = page_find(start >> TARGET_PAGE_BITS);
 | |
|     if (!p) 
 | |
|         return;
 | |
|     if (p->code_bitmap) {
 | |
|         offset = start & ~TARGET_PAGE_MASK;
 | |
|         b = p->code_bitmap[offset >> 3] >> (offset & 7);
 | |
|         if (b & ((1 << len) - 1))
 | |
|             goto do_invalidate;
 | |
|     } else {
 | |
|     do_invalidate:
 | |
|         tb_invalidate_phys_page_range(start, start + len, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_SOFTMMU)
 | |
| static void tb_invalidate_phys_page(target_ulong addr, 
 | |
|                                     unsigned long pc, void *puc)
 | |
| {
 | |
|     int n, current_flags, current_tb_modified;
 | |
|     target_ulong current_pc, current_cs_base;
 | |
|     PageDesc *p;
 | |
|     TranslationBlock *tb, *current_tb;
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     CPUState *env = cpu_single_env;
 | |
| #endif
 | |
| 
 | |
|     addr &= TARGET_PAGE_MASK;
 | |
|     p = page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) 
 | |
|         return;
 | |
|     tb = p->first_tb;
 | |
|     current_tb_modified = 0;
 | |
|     current_tb = NULL;
 | |
|     current_pc = 0; /* avoid warning */
 | |
|     current_cs_base = 0; /* avoid warning */
 | |
|     current_flags = 0; /* avoid warning */
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     if (tb && pc != 0) {
 | |
|         current_tb = tb_find_pc(pc);
 | |
|     }
 | |
| #endif
 | |
|     while (tb != NULL) {
 | |
|         n = (long)tb & 3;
 | |
|         tb = (TranslationBlock *)((long)tb & ~3);
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|         if (current_tb == tb &&
 | |
|             !(current_tb->cflags & CF_SINGLE_INSN)) {
 | |
|                 /* If we are modifying the current TB, we must stop
 | |
|                    its execution. We could be more precise by checking
 | |
|                    that the modification is after the current PC, but it
 | |
|                    would require a specialized function to partially
 | |
|                    restore the CPU state */
 | |
|             
 | |
|             current_tb_modified = 1;
 | |
|             cpu_restore_state(current_tb, env, pc, puc);
 | |
| #if defined(TARGET_I386)
 | |
|             current_flags = env->hflags;
 | |
|             current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
 | |
|             current_cs_base = (target_ulong)env->segs[R_CS].base;
 | |
|             current_pc = current_cs_base + env->eip;
 | |
| #else
 | |
| #error unsupported CPU
 | |
| #endif
 | |
|         }
 | |
| #endif /* TARGET_HAS_PRECISE_SMC */
 | |
|         tb_phys_invalidate(tb, addr);
 | |
|         tb = tb->page_next[n];
 | |
|     }
 | |
|     p->first_tb = NULL;
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     if (current_tb_modified) {
 | |
|         /* we generate a block containing just the instruction
 | |
|            modifying the memory. It will ensure that it cannot modify
 | |
|            itself */
 | |
|         env->current_tb = NULL;
 | |
|         tb_gen_code(env, current_pc, current_cs_base, current_flags, 
 | |
|                     CF_SINGLE_INSN);
 | |
|         cpu_resume_from_signal(env, puc);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* add the tb in the target page and protect it if necessary */
 | |
| static inline void tb_alloc_page(TranslationBlock *tb, 
 | |
|                                  unsigned int n, target_ulong page_addr)
 | |
| {
 | |
|     PageDesc *p;
 | |
|     TranslationBlock *last_first_tb;
 | |
| 
 | |
|     tb->page_addr[n] = page_addr;
 | |
|     p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
 | |
|     tb->page_next[n] = p->first_tb;
 | |
|     last_first_tb = p->first_tb;
 | |
|     p->first_tb = (TranslationBlock *)((long)tb | n);
 | |
|     invalidate_page_bitmap(p);
 | |
| 
 | |
| #if defined(TARGET_HAS_SMC) || 1
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     if (p->flags & PAGE_WRITE) {
 | |
|         target_ulong addr;
 | |
|         PageDesc *p2;
 | |
|         int prot;
 | |
| 
 | |
|         /* force the host page as non writable (writes will have a
 | |
|            page fault + mprotect overhead) */
 | |
|         page_addr &= qemu_host_page_mask;
 | |
|         prot = 0;
 | |
|         for(addr = page_addr; addr < page_addr + qemu_host_page_size;
 | |
|             addr += TARGET_PAGE_SIZE) {
 | |
| 
 | |
|             p2 = page_find (addr >> TARGET_PAGE_BITS);
 | |
|             if (!p2)
 | |
|                 continue;
 | |
|             prot |= p2->flags;
 | |
|             p2->flags &= ~PAGE_WRITE;
 | |
|             page_get_flags(addr);
 | |
|           }
 | |
|         mprotect(g2h(page_addr), qemu_host_page_size, 
 | |
|                  (prot & PAGE_BITS) & ~PAGE_WRITE);
 | |
| #ifdef DEBUG_TB_INVALIDATE
 | |
|         printf("protecting code page: 0x%08lx\n", 
 | |
|                page_addr);
 | |
| #endif
 | |
|     }
 | |
| #else
 | |
|     /* if some code is already present, then the pages are already
 | |
|        protected. So we handle the case where only the first TB is
 | |
|        allocated in a physical page */
 | |
|     if (!last_first_tb) {
 | |
|         tlb_protect_code(page_addr);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #endif /* TARGET_HAS_SMC */
 | |
| }
 | |
| 
 | |
| /* Allocate a new translation block. Flush the translation buffer if
 | |
|    too many translation blocks or too much generated code. */
 | |
| TranslationBlock *tb_alloc(target_ulong pc)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
| 
 | |
|     if (nb_tbs >= CODE_GEN_MAX_BLOCKS || 
 | |
|         (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
 | |
|         return NULL;
 | |
|     tb = &tbs[nb_tbs++];
 | |
|     tb->pc = pc;
 | |
|     tb->cflags = 0;
 | |
|     return tb;
 | |
| }
 | |
| 
 | |
| /* add a new TB and link it to the physical page tables. phys_page2 is
 | |
|    (-1) to indicate that only one page contains the TB. */
 | |
| void tb_link_phys(TranslationBlock *tb, 
 | |
|                   target_ulong phys_pc, target_ulong phys_page2)
 | |
| {
 | |
|     unsigned int h;
 | |
|     TranslationBlock **ptb;
 | |
| 
 | |
|     /* add in the physical hash table */
 | |
|     h = tb_phys_hash_func(phys_pc);
 | |
|     ptb = &tb_phys_hash[h];
 | |
|     tb->phys_hash_next = *ptb;
 | |
|     *ptb = tb;
 | |
| 
 | |
|     /* add in the page list */
 | |
|     tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
 | |
|     if (phys_page2 != -1)
 | |
|         tb_alloc_page(tb, 1, phys_page2);
 | |
|     else
 | |
|         tb->page_addr[1] = -1;
 | |
| 
 | |
|     tb->jmp_first = (TranslationBlock *)((long)tb | 2);
 | |
|     tb->jmp_next[0] = NULL;
 | |
|     tb->jmp_next[1] = NULL;
 | |
| #ifdef USE_CODE_COPY
 | |
|     tb->cflags &= ~CF_FP_USED;
 | |
|     if (tb->cflags & CF_TB_FP_USED)
 | |
|         tb->cflags |= CF_FP_USED;
 | |
| #endif
 | |
| 
 | |
|     /* init original jump addresses */
 | |
|     if (tb->tb_next_offset[0] != 0xffff)
 | |
|         tb_reset_jump(tb, 0);
 | |
|     if (tb->tb_next_offset[1] != 0xffff)
 | |
|         tb_reset_jump(tb, 1);
 | |
| 
 | |
| #ifdef DEBUG_TB_CHECK
 | |
|     tb_page_check();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
 | |
|    tb[1].tc_ptr. Return NULL if not found */
 | |
| TranslationBlock *tb_find_pc(unsigned long tc_ptr)
 | |
| {
 | |
|     int m_min, m_max, m;
 | |
|     unsigned long v;
 | |
|     TranslationBlock *tb;
 | |
| 
 | |
|     if (nb_tbs <= 0)
 | |
|         return NULL;
 | |
|     if (tc_ptr < (unsigned long)code_gen_buffer ||
 | |
|         tc_ptr >= (unsigned long)code_gen_ptr)
 | |
|         return NULL;
 | |
|     /* binary search (cf Knuth) */
 | |
|     m_min = 0;
 | |
|     m_max = nb_tbs - 1;
 | |
|     while (m_min <= m_max) {
 | |
|         m = (m_min + m_max) >> 1;
 | |
|         tb = &tbs[m];
 | |
|         v = (unsigned long)tb->tc_ptr;
 | |
|         if (v == tc_ptr)
 | |
|             return tb;
 | |
|         else if (tc_ptr < v) {
 | |
|             m_max = m - 1;
 | |
|         } else {
 | |
|             m_min = m + 1;
 | |
|         }
 | |
|     } 
 | |
|     return &tbs[m_max];
 | |
| }
 | |
| 
 | |
| static void tb_reset_jump_recursive(TranslationBlock *tb);
 | |
| 
 | |
| static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
 | |
| {
 | |
|     TranslationBlock *tb1, *tb_next, **ptb;
 | |
|     unsigned int n1;
 | |
| 
 | |
|     tb1 = tb->jmp_next[n];
 | |
|     if (tb1 != NULL) {
 | |
|         /* find head of list */
 | |
|         for(;;) {
 | |
|             n1 = (long)tb1 & 3;
 | |
|             tb1 = (TranslationBlock *)((long)tb1 & ~3);
 | |
|             if (n1 == 2)
 | |
|                 break;
 | |
|             tb1 = tb1->jmp_next[n1];
 | |
|         }
 | |
|         /* we are now sure now that tb jumps to tb1 */
 | |
|         tb_next = tb1;
 | |
| 
 | |
|         /* remove tb from the jmp_first list */
 | |
|         ptb = &tb_next->jmp_first;
 | |
|         for(;;) {
 | |
|             tb1 = *ptb;
 | |
|             n1 = (long)tb1 & 3;
 | |
|             tb1 = (TranslationBlock *)((long)tb1 & ~3);
 | |
|             if (n1 == n && tb1 == tb)
 | |
|                 break;
 | |
|             ptb = &tb1->jmp_next[n1];
 | |
|         }
 | |
|         *ptb = tb->jmp_next[n];
 | |
|         tb->jmp_next[n] = NULL;
 | |
|         
 | |
|         /* suppress the jump to next tb in generated code */
 | |
|         tb_reset_jump(tb, n);
 | |
| 
 | |
|         /* suppress jumps in the tb on which we could have jumped */
 | |
|         tb_reset_jump_recursive(tb_next);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tb_reset_jump_recursive(TranslationBlock *tb)
 | |
| {
 | |
|     tb_reset_jump_recursive2(tb, 0);
 | |
|     tb_reset_jump_recursive2(tb, 1);
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_HAS_ICE)
 | |
| static void breakpoint_invalidate(CPUState *env, target_ulong pc)
 | |
| {
 | |
|     target_ulong addr, pd;
 | |
|     ram_addr_t ram_addr;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     addr = cpu_get_phys_page_debug(env, pc);
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
|     ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
 | |
|     tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
 | |
|    breakpoint is reached */
 | |
| int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     int i;
 | |
|     
 | |
|     for(i = 0; i < env->nb_breakpoints; i++) {
 | |
|         if (env->breakpoints[i] == pc)
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     if (env->nb_breakpoints >= MAX_BREAKPOINTS)
 | |
|         return -1;
 | |
|     env->breakpoints[env->nb_breakpoints++] = pc;
 | |
|     
 | |
|     breakpoint_invalidate(env, pc);
 | |
|     return 0;
 | |
| #else
 | |
|     return -1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* remove a breakpoint */
 | |
| int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     int i;
 | |
|     for(i = 0; i < env->nb_breakpoints; i++) {
 | |
|         if (env->breakpoints[i] == pc)
 | |
|             goto found;
 | |
|     }
 | |
|     return -1;
 | |
|  found:
 | |
|     env->nb_breakpoints--;
 | |
|     if (i < env->nb_breakpoints)
 | |
|       env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
 | |
| 
 | |
|     breakpoint_invalidate(env, pc);
 | |
|     return 0;
 | |
| #else
 | |
|     return -1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* enable or disable single step mode. EXCP_DEBUG is returned by the
 | |
|    CPU loop after each instruction */
 | |
| void cpu_single_step(CPUState *env, int enabled)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     if (env->singlestep_enabled != enabled) {
 | |
|         env->singlestep_enabled = enabled;
 | |
|         /* must flush all the translated code to avoid inconsistancies */
 | |
|         /* XXX: only flush what is necessary */
 | |
|         tb_flush(env);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* enable or disable low levels log */
 | |
| void cpu_set_log(int log_flags)
 | |
| {
 | |
|     loglevel = log_flags;
 | |
|     if (loglevel && !logfile) {
 | |
|         logfile = fopen(logfilename, "w");
 | |
|         if (!logfile) {
 | |
|             perror(logfilename);
 | |
|             _exit(1);
 | |
|         }
 | |
| #if !defined(CONFIG_SOFTMMU)
 | |
|         /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
 | |
|         {
 | |
|             static uint8_t logfile_buf[4096];
 | |
|             setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
 | |
|         }
 | |
| #else
 | |
|         setvbuf(logfile, NULL, _IOLBF, 0);
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cpu_set_log_filename(const char *filename)
 | |
| {
 | |
|     logfilename = strdup(filename);
 | |
| }
 | |
| 
 | |
| /* mask must never be zero, except for A20 change call */
 | |
| void cpu_interrupt(CPUState *env, int mask)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     static int interrupt_lock;
 | |
| 
 | |
|     env->interrupt_request |= mask;
 | |
|     /* if the cpu is currently executing code, we must unlink it and
 | |
|        all the potentially executing TB */
 | |
|     tb = env->current_tb;
 | |
|     if (tb && !testandset(&interrupt_lock)) {
 | |
|         env->current_tb = NULL;
 | |
|         tb_reset_jump_recursive(tb);
 | |
|         interrupt_lock = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cpu_reset_interrupt(CPUState *env, int mask)
 | |
| {
 | |
|     env->interrupt_request &= ~mask;
 | |
| }
 | |
| 
 | |
| CPULogItem cpu_log_items[] = {
 | |
|     { CPU_LOG_TB_OUT_ASM, "out_asm", 
 | |
|       "show generated host assembly code for each compiled TB" },
 | |
|     { CPU_LOG_TB_IN_ASM, "in_asm",
 | |
|       "show target assembly code for each compiled TB" },
 | |
|     { CPU_LOG_TB_OP, "op", 
 | |
|       "show micro ops for each compiled TB (only usable if 'in_asm' used)" },
 | |
| #ifdef TARGET_I386
 | |
|     { CPU_LOG_TB_OP_OPT, "op_opt",
 | |
|       "show micro ops after optimization for each compiled TB" },
 | |
| #endif
 | |
|     { CPU_LOG_INT, "int",
 | |
|       "show interrupts/exceptions in short format" },
 | |
|     { CPU_LOG_EXEC, "exec",
 | |
|       "show trace before each executed TB (lots of logs)" },
 | |
|     { CPU_LOG_TB_CPU, "cpu",
 | |
|       "show CPU state before bloc translation" },
 | |
| #ifdef TARGET_I386
 | |
|     { CPU_LOG_PCALL, "pcall",
 | |
|       "show protected mode far calls/returns/exceptions" },
 | |
| #endif
 | |
| #ifdef DEBUG_IOPORT
 | |
|     { CPU_LOG_IOPORT, "ioport",
 | |
|       "show all i/o ports accesses" },
 | |
| #endif
 | |
|     { 0, NULL, NULL },
 | |
| };
 | |
| 
 | |
| static int cmp1(const char *s1, int n, const char *s2)
 | |
| {
 | |
|     if (strlen(s2) != n)
 | |
|         return 0;
 | |
|     return memcmp(s1, s2, n) == 0;
 | |
| }
 | |
|       
 | |
| /* takes a comma separated list of log masks. Return 0 if error. */
 | |
| int cpu_str_to_log_mask(const char *str)
 | |
| {
 | |
|     CPULogItem *item;
 | |
|     int mask;
 | |
|     const char *p, *p1;
 | |
| 
 | |
|     p = str;
 | |
|     mask = 0;
 | |
|     for(;;) {
 | |
|         p1 = strchr(p, ',');
 | |
|         if (!p1)
 | |
|             p1 = p + strlen(p);
 | |
| 	if(cmp1(p,p1-p,"all")) {
 | |
| 		for(item = cpu_log_items; item->mask != 0; item++) {
 | |
| 			mask |= item->mask;
 | |
| 		}
 | |
| 	} else {
 | |
|         for(item = cpu_log_items; item->mask != 0; item++) {
 | |
|             if (cmp1(p, p1 - p, item->name))
 | |
|                 goto found;
 | |
|         }
 | |
|         return 0;
 | |
| 	}
 | |
|     found:
 | |
|         mask |= item->mask;
 | |
|         if (*p1 != ',')
 | |
|             break;
 | |
|         p = p1 + 1;
 | |
|     }
 | |
|     return mask;
 | |
| }
 | |
| 
 | |
| void cpu_abort(CPUState *env, const char *fmt, ...)
 | |
| {
 | |
|     va_list ap;
 | |
| 
 | |
|     va_start(ap, fmt);
 | |
|     fprintf(stderr, "qemu: fatal: ");
 | |
|     vfprintf(stderr, fmt, ap);
 | |
|     fprintf(stderr, "\n");
 | |
| #ifdef TARGET_I386
 | |
|     cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
 | |
| #else
 | |
|     cpu_dump_state(env, stderr, fprintf, 0);
 | |
| #endif
 | |
|     va_end(ap);
 | |
|     abort();
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| /* NOTE: if flush_global is true, also flush global entries (not
 | |
|    implemented yet) */
 | |
| void tlb_flush(CPUState *env, int flush_global)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
| #if defined(DEBUG_TLB)
 | |
|     printf("tlb_flush:\n");
 | |
| #endif
 | |
|     /* must reset current TB so that interrupts cannot modify the
 | |
|        links while we are modifying them */
 | |
|     env->current_tb = NULL;
 | |
| 
 | |
|     for(i = 0; i < CPU_TLB_SIZE; i++) {
 | |
|         env->tlb_table[0][i].addr_read = -1;
 | |
|         env->tlb_table[0][i].addr_write = -1;
 | |
|         env->tlb_table[0][i].addr_code = -1;
 | |
|         env->tlb_table[1][i].addr_read = -1;
 | |
|         env->tlb_table[1][i].addr_write = -1;
 | |
|         env->tlb_table[1][i].addr_code = -1;
 | |
|     }
 | |
| 
 | |
|     memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
 | |
| 
 | |
| #if !defined(CONFIG_SOFTMMU)
 | |
|     munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
 | |
| #endif
 | |
| #ifdef USE_KQEMU
 | |
|     if (env->kqemu_enabled) {
 | |
|         kqemu_flush(env, flush_global);
 | |
|     }
 | |
| #endif
 | |
|     tlb_flush_count++;
 | |
| }
 | |
| 
 | |
| static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
 | |
| {
 | |
|     if (addr == (tlb_entry->addr_read & 
 | |
|                  (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
 | |
|         addr == (tlb_entry->addr_write & 
 | |
|                  (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
 | |
|         addr == (tlb_entry->addr_code & 
 | |
|                  (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
 | |
|         tlb_entry->addr_read = -1;
 | |
|         tlb_entry->addr_write = -1;
 | |
|         tlb_entry->addr_code = -1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tlb_flush_page(CPUState *env, target_ulong addr)
 | |
| {
 | |
|     int i;
 | |
|     TranslationBlock *tb;
 | |
| 
 | |
| #if defined(DEBUG_TLB)
 | |
|     printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
 | |
| #endif
 | |
|     /* must reset current TB so that interrupts cannot modify the
 | |
|        links while we are modifying them */
 | |
|     env->current_tb = NULL;
 | |
| 
 | |
|     addr &= TARGET_PAGE_MASK;
 | |
|     i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|     tlb_flush_entry(&env->tlb_table[0][i], addr);
 | |
|     tlb_flush_entry(&env->tlb_table[1][i], addr);
 | |
| 
 | |
|     for(i = 0; i < TB_JMP_CACHE_SIZE; i++) {
 | |
|         tb = env->tb_jmp_cache[i];
 | |
|         if (tb && 
 | |
|             ((tb->pc & TARGET_PAGE_MASK) == addr ||
 | |
|              ((tb->pc + tb->size - 1) & TARGET_PAGE_MASK) == addr)) {
 | |
|             env->tb_jmp_cache[i] = NULL;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #if !defined(CONFIG_SOFTMMU)
 | |
|     if (addr < MMAP_AREA_END)
 | |
|         munmap((void *)addr, TARGET_PAGE_SIZE);
 | |
| #endif
 | |
| #ifdef USE_KQEMU
 | |
|     if (env->kqemu_enabled) {
 | |
|         kqemu_flush_page(env, addr);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* update the TLBs so that writes to code in the virtual page 'addr'
 | |
|    can be detected */
 | |
| static void tlb_protect_code(ram_addr_t ram_addr)
 | |
| {
 | |
|     cpu_physical_memory_reset_dirty(ram_addr, 
 | |
|                                     ram_addr + TARGET_PAGE_SIZE,
 | |
|                                     CODE_DIRTY_FLAG);
 | |
| }
 | |
| 
 | |
| /* update the TLB so that writes in physical page 'phys_addr' are no longer
 | |
|    tested for self modifying code */
 | |
| static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, 
 | |
|                                     target_ulong vaddr)
 | |
| {
 | |
|     phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
 | |
| }
 | |
| 
 | |
| static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, 
 | |
|                                          unsigned long start, unsigned long length)
 | |
| {
 | |
|     unsigned long addr;
 | |
|     if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
 | |
|         addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
 | |
|         if ((addr - start) < length) {
 | |
|             tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
 | |
|                                      int dirty_flags)
 | |
| {
 | |
|     CPUState *env;
 | |
|     unsigned long length, start1;
 | |
|     int i, mask, len;
 | |
|     uint8_t *p;
 | |
| 
 | |
|     start &= TARGET_PAGE_MASK;
 | |
|     end = TARGET_PAGE_ALIGN(end);
 | |
| 
 | |
|     length = end - start;
 | |
|     if (length == 0)
 | |
|         return;
 | |
|     len = length >> TARGET_PAGE_BITS;
 | |
| #ifdef USE_KQEMU
 | |
|     /* XXX: should not depend on cpu context */
 | |
|     env = first_cpu;
 | |
|     if (env->kqemu_enabled) {
 | |
|         ram_addr_t addr;
 | |
|         addr = start;
 | |
|         for(i = 0; i < len; i++) {
 | |
|             kqemu_set_notdirty(env, addr);
 | |
|             addr += TARGET_PAGE_SIZE;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     mask = ~dirty_flags;
 | |
|     p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
 | |
|     for(i = 0; i < len; i++)
 | |
|         p[i] &= mask;
 | |
| 
 | |
|     /* we modify the TLB cache so that the dirty bit will be set again
 | |
|        when accessing the range */
 | |
|     start1 = start + (unsigned long)phys_ram_base;
 | |
|     for(env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         for(i = 0; i < CPU_TLB_SIZE; i++)
 | |
|             tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
 | |
|         for(i = 0; i < CPU_TLB_SIZE; i++)
 | |
|             tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
 | |
|     }
 | |
| 
 | |
| #if !defined(CONFIG_SOFTMMU)
 | |
|     /* XXX: this is expensive */
 | |
|     {
 | |
|         VirtPageDesc *p;
 | |
|         int j;
 | |
|         target_ulong addr;
 | |
| 
 | |
|         for(i = 0; i < L1_SIZE; i++) {
 | |
|             p = l1_virt_map[i];
 | |
|             if (p) {
 | |
|                 addr = i << (TARGET_PAGE_BITS + L2_BITS);
 | |
|                 for(j = 0; j < L2_SIZE; j++) {
 | |
|                     if (p->valid_tag == virt_valid_tag &&
 | |
|                         p->phys_addr >= start && p->phys_addr < end &&
 | |
|                         (p->prot & PROT_WRITE)) {
 | |
|                         if (addr < MMAP_AREA_END) {
 | |
|                             mprotect((void *)addr, TARGET_PAGE_SIZE, 
 | |
|                                      p->prot & ~PROT_WRITE);
 | |
|                         }
 | |
|                     }
 | |
|                     addr += TARGET_PAGE_SIZE;
 | |
|                     p++;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
 | |
| {
 | |
|     ram_addr_t ram_addr;
 | |
| 
 | |
|     if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
 | |
|         ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + 
 | |
|             tlb_entry->addend - (unsigned long)phys_ram_base;
 | |
|         if (!cpu_physical_memory_is_dirty(ram_addr)) {
 | |
|             tlb_entry->addr_write |= IO_MEM_NOTDIRTY;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* update the TLB according to the current state of the dirty bits */
 | |
| void cpu_tlb_update_dirty(CPUState *env)
 | |
| {
 | |
|     int i;
 | |
|     for(i = 0; i < CPU_TLB_SIZE; i++)
 | |
|         tlb_update_dirty(&env->tlb_table[0][i]);
 | |
|     for(i = 0; i < CPU_TLB_SIZE; i++)
 | |
|         tlb_update_dirty(&env->tlb_table[1][i]);
 | |
| }
 | |
| 
 | |
| static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, 
 | |
|                                   unsigned long start)
 | |
| {
 | |
|     unsigned long addr;
 | |
|     if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
 | |
|         addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
 | |
|         if (addr == start) {
 | |
|             tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_RAM;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* update the TLB corresponding to virtual page vaddr and phys addr
 | |
|    addr so that it is no longer dirty */
 | |
| static inline void tlb_set_dirty(CPUState *env,
 | |
|                                  unsigned long addr, target_ulong vaddr)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     addr &= TARGET_PAGE_MASK;
 | |
|     i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|     tlb_set_dirty1(&env->tlb_table[0][i], addr);
 | |
|     tlb_set_dirty1(&env->tlb_table[1][i], addr);
 | |
| }
 | |
| 
 | |
| /* add a new TLB entry. At most one entry for a given virtual address
 | |
|    is permitted. Return 0 if OK or 2 if the page could not be mapped
 | |
|    (can only happen in non SOFTMMU mode for I/O pages or pages
 | |
|    conflicting with the host address space). */
 | |
| int tlb_set_page_exec(CPUState *env, target_ulong vaddr, 
 | |
|                       target_phys_addr_t paddr, int prot, 
 | |
|                       int is_user, int is_softmmu)
 | |
| {
 | |
|     PhysPageDesc *p;
 | |
|     unsigned long pd;
 | |
|     unsigned int index;
 | |
|     target_ulong address;
 | |
|     target_phys_addr_t addend;
 | |
|     int ret;
 | |
|     CPUTLBEntry *te;
 | |
| 
 | |
|     p = phys_page_find(paddr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
| #if defined(DEBUG_TLB)
 | |
|     printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x u=%d smmu=%d pd=0x%08lx\n",
 | |
|            vaddr, (int)paddr, prot, is_user, is_softmmu, pd);
 | |
| #endif
 | |
| 
 | |
|     ret = 0;
 | |
| #if !defined(CONFIG_SOFTMMU)
 | |
|     if (is_softmmu) 
 | |
| #endif
 | |
|     {
 | |
|         if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
 | |
|             /* IO memory case */
 | |
|             address = vaddr | pd;
 | |
|             addend = paddr;
 | |
|         } else {
 | |
|             /* standard memory */
 | |
|             address = vaddr;
 | |
|             addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
 | |
|         }
 | |
|         
 | |
|         index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|         addend -= vaddr;
 | |
|         te = &env->tlb_table[is_user][index];
 | |
|         te->addend = addend;
 | |
|         if (prot & PAGE_READ) {
 | |
|             te->addr_read = address;
 | |
|         } else {
 | |
|             te->addr_read = -1;
 | |
|         }
 | |
|         if (prot & PAGE_EXEC) {
 | |
|             te->addr_code = address;
 | |
|         } else {
 | |
|             te->addr_code = -1;
 | |
|         }
 | |
|         if (prot & PAGE_WRITE) {
 | |
|             if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || 
 | |
|                 (pd & IO_MEM_ROMD)) {
 | |
|                 /* write access calls the I/O callback */
 | |
|                 te->addr_write = vaddr | 
 | |
|                     (pd & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
 | |
|             } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && 
 | |
|                        !cpu_physical_memory_is_dirty(pd)) {
 | |
|                 te->addr_write = vaddr | IO_MEM_NOTDIRTY;
 | |
|             } else {
 | |
|                 te->addr_write = address;
 | |
|             }
 | |
|         } else {
 | |
|             te->addr_write = -1;
 | |
|         }
 | |
|     }
 | |
| #if !defined(CONFIG_SOFTMMU)
 | |
|     else {
 | |
|         if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
 | |
|             /* IO access: no mapping is done as it will be handled by the
 | |
|                soft MMU */
 | |
|             if (!(env->hflags & HF_SOFTMMU_MASK))
 | |
|                 ret = 2;
 | |
|         } else {
 | |
|             void *map_addr;
 | |
| 
 | |
|             if (vaddr >= MMAP_AREA_END) {
 | |
|                 ret = 2;
 | |
|             } else {
 | |
|                 if (prot & PROT_WRITE) {
 | |
|                     if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || 
 | |
| #if defined(TARGET_HAS_SMC) || 1
 | |
|                         first_tb ||
 | |
| #endif
 | |
|                         ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && 
 | |
|                          !cpu_physical_memory_is_dirty(pd))) {
 | |
|                         /* ROM: we do as if code was inside */
 | |
|                         /* if code is present, we only map as read only and save the
 | |
|                            original mapping */
 | |
|                         VirtPageDesc *vp;
 | |
|                         
 | |
|                         vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS, 1);
 | |
|                         vp->phys_addr = pd;
 | |
|                         vp->prot = prot;
 | |
|                         vp->valid_tag = virt_valid_tag;
 | |
|                         prot &= ~PAGE_WRITE;
 | |
|                     }
 | |
|                 }
 | |
|                 map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot, 
 | |
|                                 MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
 | |
|                 if (map_addr == MAP_FAILED) {
 | |
|                     cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
 | |
|                               paddr, vaddr);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* called from signal handler: invalidate the code and unprotect the
 | |
|    page. Return TRUE if the fault was succesfully handled. */
 | |
| int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
 | |
| {
 | |
| #if !defined(CONFIG_SOFTMMU)
 | |
|     VirtPageDesc *vp;
 | |
| 
 | |
| #if defined(DEBUG_TLB)
 | |
|     printf("page_unprotect: addr=0x%08x\n", addr);
 | |
| #endif
 | |
|     addr &= TARGET_PAGE_MASK;
 | |
| 
 | |
|     /* if it is not mapped, no need to worry here */
 | |
|     if (addr >= MMAP_AREA_END)
 | |
|         return 0;
 | |
|     vp = virt_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!vp)
 | |
|         return 0;
 | |
|     /* NOTE: in this case, validate_tag is _not_ tested as it
 | |
|        validates only the code TLB */
 | |
|     if (vp->valid_tag != virt_valid_tag)
 | |
|         return 0;
 | |
|     if (!(vp->prot & PAGE_WRITE))
 | |
|         return 0;
 | |
| #if defined(DEBUG_TLB)
 | |
|     printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n", 
 | |
|            addr, vp->phys_addr, vp->prot);
 | |
| #endif
 | |
|     if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
 | |
|         cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
 | |
|                   (unsigned long)addr, vp->prot);
 | |
|     /* set the dirty bit */
 | |
|     phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
 | |
|     /* flush the code inside */
 | |
|     tb_invalidate_phys_page(vp->phys_addr, pc, puc);
 | |
|     return 1;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| void tlb_flush(CPUState *env, int flush_global)
 | |
| {
 | |
| }
 | |
| 
 | |
| void tlb_flush_page(CPUState *env, target_ulong addr)
 | |
| {
 | |
| }
 | |
| 
 | |
| int tlb_set_page_exec(CPUState *env, target_ulong vaddr, 
 | |
|                       target_phys_addr_t paddr, int prot, 
 | |
|                       int is_user, int is_softmmu)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* dump memory mappings */
 | |
| void page_dump(FILE *f)
 | |
| {
 | |
|     unsigned long start, end;
 | |
|     int i, j, prot, prot1;
 | |
|     PageDesc *p;
 | |
| 
 | |
|     fprintf(f, "%-8s %-8s %-8s %s\n",
 | |
|             "start", "end", "size", "prot");
 | |
|     start = -1;
 | |
|     end = -1;
 | |
|     prot = 0;
 | |
|     for(i = 0; i <= L1_SIZE; i++) {
 | |
|         if (i < L1_SIZE)
 | |
|             p = l1_map[i];
 | |
|         else
 | |
|             p = NULL;
 | |
|         for(j = 0;j < L2_SIZE; j++) {
 | |
|             if (!p)
 | |
|                 prot1 = 0;
 | |
|             else
 | |
|                 prot1 = p[j].flags;
 | |
|             if (prot1 != prot) {
 | |
|                 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
 | |
|                 if (start != -1) {
 | |
|                     fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
 | |
|                             start, end, end - start, 
 | |
|                             prot & PAGE_READ ? 'r' : '-',
 | |
|                             prot & PAGE_WRITE ? 'w' : '-',
 | |
|                             prot & PAGE_EXEC ? 'x' : '-');
 | |
|                 }
 | |
|                 if (prot1 != 0)
 | |
|                     start = end;
 | |
|                 else
 | |
|                     start = -1;
 | |
|                 prot = prot1;
 | |
|             }
 | |
|             if (!p)
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| int page_get_flags(target_ulong address)
 | |
| {
 | |
|     PageDesc *p;
 | |
| 
 | |
|     p = page_find(address >> TARGET_PAGE_BITS);
 | |
|     if (!p)
 | |
|         return 0;
 | |
|     return p->flags;
 | |
| }
 | |
| 
 | |
| /* modify the flags of a page and invalidate the code if
 | |
|    necessary. The flag PAGE_WRITE_ORG is positionned automatically
 | |
|    depending on PAGE_WRITE */
 | |
| void page_set_flags(target_ulong start, target_ulong end, int flags)
 | |
| {
 | |
|     PageDesc *p;
 | |
|     target_ulong addr;
 | |
| 
 | |
|     start = start & TARGET_PAGE_MASK;
 | |
|     end = TARGET_PAGE_ALIGN(end);
 | |
|     if (flags & PAGE_WRITE)
 | |
|         flags |= PAGE_WRITE_ORG;
 | |
|     spin_lock(&tb_lock);
 | |
|     for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
 | |
|         p = page_find_alloc(addr >> TARGET_PAGE_BITS);
 | |
|         /* if the write protection is set, then we invalidate the code
 | |
|            inside */
 | |
|         if (!(p->flags & PAGE_WRITE) && 
 | |
|             (flags & PAGE_WRITE) &&
 | |
|             p->first_tb) {
 | |
|             tb_invalidate_phys_page(addr, 0, NULL);
 | |
|         }
 | |
|         p->flags = flags;
 | |
|     }
 | |
|     spin_unlock(&tb_lock);
 | |
| }
 | |
| 
 | |
| /* called from signal handler: invalidate the code and unprotect the
 | |
|    page. Return TRUE if the fault was succesfully handled. */
 | |
| int page_unprotect(target_ulong address, unsigned long pc, void *puc)
 | |
| {
 | |
|     unsigned int page_index, prot, pindex;
 | |
|     PageDesc *p, *p1;
 | |
|     target_ulong host_start, host_end, addr;
 | |
| 
 | |
|     host_start = address & qemu_host_page_mask;
 | |
|     page_index = host_start >> TARGET_PAGE_BITS;
 | |
|     p1 = page_find(page_index);
 | |
|     if (!p1)
 | |
|         return 0;
 | |
|     host_end = host_start + qemu_host_page_size;
 | |
|     p = p1;
 | |
|     prot = 0;
 | |
|     for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
 | |
|         prot |= p->flags;
 | |
|         p++;
 | |
|     }
 | |
|     /* if the page was really writable, then we change its
 | |
|        protection back to writable */
 | |
|     if (prot & PAGE_WRITE_ORG) {
 | |
|         pindex = (address - host_start) >> TARGET_PAGE_BITS;
 | |
|         if (!(p1[pindex].flags & PAGE_WRITE)) {
 | |
|             mprotect((void *)g2h(host_start), qemu_host_page_size, 
 | |
|                      (prot & PAGE_BITS) | PAGE_WRITE);
 | |
|             p1[pindex].flags |= PAGE_WRITE;
 | |
|             /* and since the content will be modified, we must invalidate
 | |
|                the corresponding translated code. */
 | |
|             tb_invalidate_phys_page(address, pc, puc);
 | |
| #ifdef DEBUG_TB_CHECK
 | |
|             tb_invalidate_check(address);
 | |
| #endif
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* call this function when system calls directly modify a memory area */
 | |
| /* ??? This should be redundant now we have lock_user.  */
 | |
| void page_unprotect_range(target_ulong data, target_ulong data_size)
 | |
| {
 | |
|     target_ulong start, end, addr;
 | |
| 
 | |
|     start = data;
 | |
|     end = start + data_size;
 | |
|     start &= TARGET_PAGE_MASK;
 | |
|     end = TARGET_PAGE_ALIGN(end);
 | |
|     for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
 | |
|         page_unprotect(addr, 0, NULL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void tlb_set_dirty(CPUState *env,
 | |
|                                  unsigned long addr, target_ulong vaddr)
 | |
| {
 | |
| }
 | |
| #endif /* defined(CONFIG_USER_ONLY) */
 | |
| 
 | |
| /* register physical memory. 'size' must be a multiple of the target
 | |
|    page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
 | |
|    io memory page */
 | |
| void cpu_register_physical_memory(target_phys_addr_t start_addr, 
 | |
|                                   unsigned long size,
 | |
|                                   unsigned long phys_offset)
 | |
| {
 | |
|     target_phys_addr_t addr, end_addr;
 | |
|     PhysPageDesc *p;
 | |
|     CPUState *env;
 | |
| 
 | |
|     size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
 | |
|     end_addr = start_addr + size;
 | |
|     for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
 | |
|         p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
 | |
|         p->phys_offset = phys_offset;
 | |
|         if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
 | |
|             (phys_offset & IO_MEM_ROMD))
 | |
|             phys_offset += TARGET_PAGE_SIZE;
 | |
|     }
 | |
|     
 | |
|     /* since each CPU stores ram addresses in its TLB cache, we must
 | |
|        reset the modified entries */
 | |
|     /* XXX: slow ! */
 | |
|     for(env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         tlb_flush(env, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
| }
 | |
| 
 | |
| static CPUReadMemoryFunc *unassigned_mem_read[3] = {
 | |
|     unassigned_mem_readb,
 | |
|     unassigned_mem_readb,
 | |
|     unassigned_mem_readb,
 | |
| };
 | |
| 
 | |
| static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
 | |
|     unassigned_mem_writeb,
 | |
|     unassigned_mem_writeb,
 | |
|     unassigned_mem_writeb,
 | |
| };
 | |
| 
 | |
| static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     unsigned long ram_addr;
 | |
|     int dirty_flags;
 | |
|     ram_addr = addr - (unsigned long)phys_ram_base;
 | |
|     dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
 | |
|     if (!(dirty_flags & CODE_DIRTY_FLAG)) {
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|         tb_invalidate_phys_page_fast(ram_addr, 1);
 | |
|         dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
 | |
| #endif
 | |
|     }
 | |
|     stb_p((uint8_t *)(long)addr, val);
 | |
| #ifdef USE_KQEMU
 | |
|     if (cpu_single_env->kqemu_enabled &&
 | |
|         (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
 | |
|         kqemu_modify_page(cpu_single_env, ram_addr);
 | |
| #endif
 | |
|     dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
 | |
|     phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
 | |
|     /* we remove the notdirty callback only if the code has been
 | |
|        flushed */
 | |
|     if (dirty_flags == 0xff)
 | |
|         tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
 | |
| }
 | |
| 
 | |
| static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     unsigned long ram_addr;
 | |
|     int dirty_flags;
 | |
|     ram_addr = addr - (unsigned long)phys_ram_base;
 | |
|     dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
 | |
|     if (!(dirty_flags & CODE_DIRTY_FLAG)) {
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|         tb_invalidate_phys_page_fast(ram_addr, 2);
 | |
|         dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
 | |
| #endif
 | |
|     }
 | |
|     stw_p((uint8_t *)(long)addr, val);
 | |
| #ifdef USE_KQEMU
 | |
|     if (cpu_single_env->kqemu_enabled &&
 | |
|         (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
 | |
|         kqemu_modify_page(cpu_single_env, ram_addr);
 | |
| #endif
 | |
|     dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
 | |
|     phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
 | |
|     /* we remove the notdirty callback only if the code has been
 | |
|        flushed */
 | |
|     if (dirty_flags == 0xff)
 | |
|         tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
 | |
| }
 | |
| 
 | |
| static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     unsigned long ram_addr;
 | |
|     int dirty_flags;
 | |
|     ram_addr = addr - (unsigned long)phys_ram_base;
 | |
|     dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
 | |
|     if (!(dirty_flags & CODE_DIRTY_FLAG)) {
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|         tb_invalidate_phys_page_fast(ram_addr, 4);
 | |
|         dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
 | |
| #endif
 | |
|     }
 | |
|     stl_p((uint8_t *)(long)addr, val);
 | |
| #ifdef USE_KQEMU
 | |
|     if (cpu_single_env->kqemu_enabled &&
 | |
|         (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
 | |
|         kqemu_modify_page(cpu_single_env, ram_addr);
 | |
| #endif
 | |
|     dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
 | |
|     phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
 | |
|     /* we remove the notdirty callback only if the code has been
 | |
|        flushed */
 | |
|     if (dirty_flags == 0xff)
 | |
|         tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
 | |
| }
 | |
| 
 | |
| static CPUReadMemoryFunc *error_mem_read[3] = {
 | |
|     NULL, /* never used */
 | |
|     NULL, /* never used */
 | |
|     NULL, /* never used */
 | |
| };
 | |
| 
 | |
| static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
 | |
|     notdirty_mem_writeb,
 | |
|     notdirty_mem_writew,
 | |
|     notdirty_mem_writel,
 | |
| };
 | |
| 
 | |
| static void io_mem_init(void)
 | |
| {
 | |
|     cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
 | |
|     cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
 | |
|     cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
 | |
|     io_mem_nb = 5;
 | |
| 
 | |
|     /* alloc dirty bits array */
 | |
|     phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
 | |
|     memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
 | |
| }
 | |
| 
 | |
| /* mem_read and mem_write are arrays of functions containing the
 | |
|    function to access byte (index 0), word (index 1) and dword (index
 | |
|    2). All functions must be supplied. If io_index is non zero, the
 | |
|    corresponding io zone is modified. If it is zero, a new io zone is
 | |
|    allocated. The return value can be used with
 | |
|    cpu_register_physical_memory(). (-1) is returned if error. */
 | |
| int cpu_register_io_memory(int io_index,
 | |
|                            CPUReadMemoryFunc **mem_read,
 | |
|                            CPUWriteMemoryFunc **mem_write,
 | |
|                            void *opaque)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (io_index <= 0) {
 | |
|         if (io_mem_nb >= IO_MEM_NB_ENTRIES)
 | |
|             return -1;
 | |
|         io_index = io_mem_nb++;
 | |
|     } else {
 | |
|         if (io_index >= IO_MEM_NB_ENTRIES)
 | |
|             return -1;
 | |
|     }
 | |
| 
 | |
|     for(i = 0;i < 3; i++) {
 | |
|         io_mem_read[io_index][i] = mem_read[i];
 | |
|         io_mem_write[io_index][i] = mem_write[i];
 | |
|     }
 | |
|     io_mem_opaque[io_index] = opaque;
 | |
|     return io_index << IO_MEM_SHIFT;
 | |
| }
 | |
| 
 | |
| CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
 | |
| {
 | |
|     return io_mem_write[io_index >> IO_MEM_SHIFT];
 | |
| }
 | |
| 
 | |
| CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
 | |
| {
 | |
|     return io_mem_read[io_index >> IO_MEM_SHIFT];
 | |
| }
 | |
| 
 | |
| /* physical memory access (slow version, mainly for debug) */
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, 
 | |
|                             int len, int is_write)
 | |
| {
 | |
|     int l, flags;
 | |
|     target_ulong page;
 | |
|     void * p;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         flags = page_get_flags(page);
 | |
|         if (!(flags & PAGE_VALID))
 | |
|             return;
 | |
|         if (is_write) {
 | |
|             if (!(flags & PAGE_WRITE))
 | |
|                 return;
 | |
|             p = lock_user(addr, len, 0);
 | |
|             memcpy(p, buf, len);
 | |
|             unlock_user(p, addr, len);
 | |
|         } else {
 | |
|             if (!(flags & PAGE_READ))
 | |
|                 return;
 | |
|             p = lock_user(addr, len, 1);
 | |
|             memcpy(buf, p, len);
 | |
|             unlock_user(p, addr, 0);
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #else
 | |
| void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, 
 | |
|                             int len, int is_write)
 | |
| {
 | |
|     int l, io_index;
 | |
|     uint8_t *ptr;
 | |
|     uint32_t val;
 | |
|     target_phys_addr_t page;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
|     
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         p = phys_page_find(page >> TARGET_PAGE_BITS);
 | |
|         if (!p) {
 | |
|             pd = IO_MEM_UNASSIGNED;
 | |
|         } else {
 | |
|             pd = p->phys_offset;
 | |
|         }
 | |
|         
 | |
|         if (is_write) {
 | |
|             if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
 | |
|                 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|                 /* XXX: could force cpu_single_env to NULL to avoid
 | |
|                    potential bugs */
 | |
|                 if (l >= 4 && ((addr & 3) == 0)) {
 | |
|                     /* 32 bit write access */
 | |
|                     val = ldl_p(buf);
 | |
|                     io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
 | |
|                     l = 4;
 | |
|                 } else if (l >= 2 && ((addr & 1) == 0)) {
 | |
|                     /* 16 bit write access */
 | |
|                     val = lduw_p(buf);
 | |
|                     io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
 | |
|                     l = 2;
 | |
|                 } else {
 | |
|                     /* 8 bit write access */
 | |
|                     val = ldub_p(buf);
 | |
|                     io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
 | |
|                     l = 1;
 | |
|                 }
 | |
|             } else {
 | |
|                 unsigned long addr1;
 | |
|                 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
 | |
|                 /* RAM case */
 | |
|                 ptr = phys_ram_base + addr1;
 | |
|                 memcpy(ptr, buf, l);
 | |
|                 if (!cpu_physical_memory_is_dirty(addr1)) {
 | |
|                     /* invalidate code */
 | |
|                     tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
 | |
|                     /* set dirty bit */
 | |
|                     phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= 
 | |
|                         (0xff & ~CODE_DIRTY_FLAG);
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && 
 | |
|                 !(pd & IO_MEM_ROMD)) {
 | |
|                 /* I/O case */
 | |
|                 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|                 if (l >= 4 && ((addr & 3) == 0)) {
 | |
|                     /* 32 bit read access */
 | |
|                     val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
 | |
|                     stl_p(buf, val);
 | |
|                     l = 4;
 | |
|                 } else if (l >= 2 && ((addr & 1) == 0)) {
 | |
|                     /* 16 bit read access */
 | |
|                     val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
 | |
|                     stw_p(buf, val);
 | |
|                     l = 2;
 | |
|                 } else {
 | |
|                     /* 8 bit read access */
 | |
|                     val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
 | |
|                     stb_p(buf, val);
 | |
|                     l = 1;
 | |
|                 }
 | |
|             } else {
 | |
|                 /* RAM case */
 | |
|                 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + 
 | |
|                     (addr & ~TARGET_PAGE_MASK);
 | |
|                 memcpy(buf, ptr, l);
 | |
|             }
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* used for ROM loading : can write in RAM and ROM */
 | |
| void cpu_physical_memory_write_rom(target_phys_addr_t addr, 
 | |
|                                    const uint8_t *buf, int len)
 | |
| {
 | |
|     int l;
 | |
|     uint8_t *ptr;
 | |
|     target_phys_addr_t page;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
|     
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         p = phys_page_find(page >> TARGET_PAGE_BITS);
 | |
|         if (!p) {
 | |
|             pd = IO_MEM_UNASSIGNED;
 | |
|         } else {
 | |
|             pd = p->phys_offset;
 | |
|         }
 | |
|         
 | |
|         if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
 | |
|             (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
 | |
|             !(pd & IO_MEM_ROMD)) {
 | |
|             /* do nothing */
 | |
|         } else {
 | |
|             unsigned long addr1;
 | |
|             addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
 | |
|             /* ROM/RAM case */
 | |
|             ptr = phys_ram_base + addr1;
 | |
|             memcpy(ptr, buf, l);
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| uint32_t ldl_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     int io_index;
 | |
|     uint8_t *ptr;
 | |
|     uint32_t val;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
|         
 | |
|     if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && 
 | |
|         !(pd & IO_MEM_ROMD)) {
 | |
|         /* I/O case */
 | |
|         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|         val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + 
 | |
|             (addr & ~TARGET_PAGE_MASK);
 | |
|         val = ldl_p(ptr);
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| uint64_t ldq_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     int io_index;
 | |
|     uint8_t *ptr;
 | |
|     uint64_t val;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
|         
 | |
|     if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
 | |
|         !(pd & IO_MEM_ROMD)) {
 | |
|         /* I/O case */
 | |
|         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
|         val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
 | |
|         val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
 | |
| #else
 | |
|         val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
 | |
|         val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
 | |
| #endif
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + 
 | |
|             (addr & ~TARGET_PAGE_MASK);
 | |
|         val = ldq_p(ptr);
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| uint32_t ldub_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     uint8_t val;
 | |
|     cpu_physical_memory_read(addr, &val, 1);
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| uint32_t lduw_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     uint16_t val;
 | |
|     cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
 | |
|     return tswap16(val);
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned. The ram page is not masked as dirty
 | |
|    and the code inside is not invalidated. It is useful if the dirty
 | |
|    bits are used to track modified PTEs */
 | |
| void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     int io_index;
 | |
|     uint8_t *ptr;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
|         
 | |
|     if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
 | |
|         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|         io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
 | |
|     } else {
 | |
|         ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + 
 | |
|             (addr & ~TARGET_PAGE_MASK);
 | |
|         stl_p(ptr, val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| void stl_phys(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     int io_index;
 | |
|     uint8_t *ptr;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
|         
 | |
|     if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
 | |
|         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|         io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
 | |
|     } else {
 | |
|         unsigned long addr1;
 | |
|         addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
 | |
|         /* RAM case */
 | |
|         ptr = phys_ram_base + addr1;
 | |
|         stl_p(ptr, val);
 | |
|         if (!cpu_physical_memory_is_dirty(addr1)) {
 | |
|             /* invalidate code */
 | |
|             tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
 | |
|             /* set dirty bit */
 | |
|             phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
 | |
|                 (0xff & ~CODE_DIRTY_FLAG);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| void stb_phys(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     uint8_t v = val;
 | |
|     cpu_physical_memory_write(addr, &v, 1);
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| void stw_phys(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     uint16_t v = tswap16(val);
 | |
|     cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| void stq_phys(target_phys_addr_t addr, uint64_t val)
 | |
| {
 | |
|     val = tswap64(val);
 | |
|     cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* virtual memory access for debug */
 | |
| int cpu_memory_rw_debug(CPUState *env, target_ulong addr, 
 | |
|                         uint8_t *buf, int len, int is_write)
 | |
| {
 | |
|     int l;
 | |
|     target_ulong page, phys_addr;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         phys_addr = cpu_get_phys_page_debug(env, page);
 | |
|         /* if no physical page mapped, return an error */
 | |
|         if (phys_addr == -1)
 | |
|             return -1;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK), 
 | |
|                                buf, l, is_write);
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void dump_exec_info(FILE *f,
 | |
|                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
 | |
| {
 | |
|     int i, target_code_size, max_target_code_size;
 | |
|     int direct_jmp_count, direct_jmp2_count, cross_page;
 | |
|     TranslationBlock *tb;
 | |
|     
 | |
|     target_code_size = 0;
 | |
|     max_target_code_size = 0;
 | |
|     cross_page = 0;
 | |
|     direct_jmp_count = 0;
 | |
|     direct_jmp2_count = 0;
 | |
|     for(i = 0; i < nb_tbs; i++) {
 | |
|         tb = &tbs[i];
 | |
|         target_code_size += tb->size;
 | |
|         if (tb->size > max_target_code_size)
 | |
|             max_target_code_size = tb->size;
 | |
|         if (tb->page_addr[1] != -1)
 | |
|             cross_page++;
 | |
|         if (tb->tb_next_offset[0] != 0xffff) {
 | |
|             direct_jmp_count++;
 | |
|             if (tb->tb_next_offset[1] != 0xffff) {
 | |
|                 direct_jmp2_count++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     /* XXX: avoid using doubles ? */
 | |
|     cpu_fprintf(f, "TB count            %d\n", nb_tbs);
 | |
|     cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n", 
 | |
|                 nb_tbs ? target_code_size / nb_tbs : 0,
 | |
|                 max_target_code_size);
 | |
|     cpu_fprintf(f, "TB avg host size    %d bytes (expansion ratio: %0.1f)\n", 
 | |
|                 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
 | |
|                 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
 | |
|     cpu_fprintf(f, "cross page TB count %d (%d%%)\n", 
 | |
|             cross_page, 
 | |
|             nb_tbs ? (cross_page * 100) / nb_tbs : 0);
 | |
|     cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
 | |
|                 direct_jmp_count, 
 | |
|                 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
 | |
|                 direct_jmp2_count,
 | |
|                 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
 | |
|     cpu_fprintf(f, "TB flush count      %d\n", tb_flush_count);
 | |
|     cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
 | |
|     cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY) 
 | |
| 
 | |
| #define MMUSUFFIX _cmmu
 | |
| #define GETPC() NULL
 | |
| #define env cpu_single_env
 | |
| #define SOFTMMU_CODE_ACCESS
 | |
| 
 | |
| #define SHIFT 0
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 1
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 2
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 3
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #undef env
 | |
| 
 | |
| #endif
 |