mirror of
				https://git.proxmox.com/git/qemu
				synced 2025-10-26 05:20:22 +00:00 
			
		
		
		
	 ecabe8cc13
			
		
	
	
		ecabe8cc13
		
	
	
	
	
		
			
			SLES10 SP2 installer complains when probing a scsi disk and exits qemu when failing to read one of the registers. lsi_scsi: error: readb 0x15 -- Ryan Harper Software Engineer; Linux Technology Center IBM Corp., Austin, Tx ryanh@us.ibm.com diffstat output: lsi53c895a.c | 2 ++ 1 files changed, 2 insertions(+) Signed-off-by: Ryan Harper <ryanh@us.ibm.com> --- Subject: [PATCH] lsi: add ISTAT1 register read From: Ryan Harper <ryanh@us.ibm.com> Cc: kvm@vger.kernel.org SLES10 SP2 installer complains when probing a scsi disk and exits qemu when failing to read one of the registers. lsi_scsi: error: readb 0x15 Signed-off-by: Ryan Harper <ryanh@us.ibm.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6688 c046a42c-6fe2-441c-8c8c-71466251a162
		
			
				
	
	
		
			2027 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2027 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU LSI53C895A SCSI Host Bus Adapter emulation
 | |
|  *
 | |
|  * Copyright (c) 2006 CodeSourcery.
 | |
|  * Written by Paul Brook
 | |
|  *
 | |
|  * This code is licenced under the LGPL.
 | |
|  */
 | |
| 
 | |
| /* ??? Need to check if the {read,write}[wl] routines work properly on
 | |
|    big-endian targets.  */
 | |
| 
 | |
| #include "hw.h"
 | |
| #include "pci.h"
 | |
| #include "scsi-disk.h"
 | |
| #include "block_int.h"
 | |
| 
 | |
| //#define DEBUG_LSI
 | |
| //#define DEBUG_LSI_REG
 | |
| 
 | |
| #ifdef DEBUG_LSI
 | |
| #define DPRINTF(fmt, args...) \
 | |
| do { printf("lsi_scsi: " fmt , ##args); } while (0)
 | |
| #define BADF(fmt, args...) \
 | |
| do { fprintf(stderr, "lsi_scsi: error: " fmt , ##args); exit(1);} while (0)
 | |
| #else
 | |
| #define DPRINTF(fmt, args...) do {} while(0)
 | |
| #define BADF(fmt, args...) \
 | |
| do { fprintf(stderr, "lsi_scsi: error: " fmt , ##args);} while (0)
 | |
| #endif
 | |
| 
 | |
| #define LSI_SCNTL0_TRG    0x01
 | |
| #define LSI_SCNTL0_AAP    0x02
 | |
| #define LSI_SCNTL0_EPC    0x08
 | |
| #define LSI_SCNTL0_WATN   0x10
 | |
| #define LSI_SCNTL0_START  0x20
 | |
| 
 | |
| #define LSI_SCNTL1_SST    0x01
 | |
| #define LSI_SCNTL1_IARB   0x02
 | |
| #define LSI_SCNTL1_AESP   0x04
 | |
| #define LSI_SCNTL1_RST    0x08
 | |
| #define LSI_SCNTL1_CON    0x10
 | |
| #define LSI_SCNTL1_DHP    0x20
 | |
| #define LSI_SCNTL1_ADB    0x40
 | |
| #define LSI_SCNTL1_EXC    0x80
 | |
| 
 | |
| #define LSI_SCNTL2_WSR    0x01
 | |
| #define LSI_SCNTL2_VUE0   0x02
 | |
| #define LSI_SCNTL2_VUE1   0x04
 | |
| #define LSI_SCNTL2_WSS    0x08
 | |
| #define LSI_SCNTL2_SLPHBEN 0x10
 | |
| #define LSI_SCNTL2_SLPMD  0x20
 | |
| #define LSI_SCNTL2_CHM    0x40
 | |
| #define LSI_SCNTL2_SDU    0x80
 | |
| 
 | |
| #define LSI_ISTAT0_DIP    0x01
 | |
| #define LSI_ISTAT0_SIP    0x02
 | |
| #define LSI_ISTAT0_INTF   0x04
 | |
| #define LSI_ISTAT0_CON    0x08
 | |
| #define LSI_ISTAT0_SEM    0x10
 | |
| #define LSI_ISTAT0_SIGP   0x20
 | |
| #define LSI_ISTAT0_SRST   0x40
 | |
| #define LSI_ISTAT0_ABRT   0x80
 | |
| 
 | |
| #define LSI_ISTAT1_SI     0x01
 | |
| #define LSI_ISTAT1_SRUN   0x02
 | |
| #define LSI_ISTAT1_FLSH   0x04
 | |
| 
 | |
| #define LSI_SSTAT0_SDP0   0x01
 | |
| #define LSI_SSTAT0_RST    0x02
 | |
| #define LSI_SSTAT0_WOA    0x04
 | |
| #define LSI_SSTAT0_LOA    0x08
 | |
| #define LSI_SSTAT0_AIP    0x10
 | |
| #define LSI_SSTAT0_OLF    0x20
 | |
| #define LSI_SSTAT0_ORF    0x40
 | |
| #define LSI_SSTAT0_ILF    0x80
 | |
| 
 | |
| #define LSI_SIST0_PAR     0x01
 | |
| #define LSI_SIST0_RST     0x02
 | |
| #define LSI_SIST0_UDC     0x04
 | |
| #define LSI_SIST0_SGE     0x08
 | |
| #define LSI_SIST0_RSL     0x10
 | |
| #define LSI_SIST0_SEL     0x20
 | |
| #define LSI_SIST0_CMP     0x40
 | |
| #define LSI_SIST0_MA      0x80
 | |
| 
 | |
| #define LSI_SIST1_HTH     0x01
 | |
| #define LSI_SIST1_GEN     0x02
 | |
| #define LSI_SIST1_STO     0x04
 | |
| #define LSI_SIST1_SBMC    0x10
 | |
| 
 | |
| #define LSI_SOCL_IO       0x01
 | |
| #define LSI_SOCL_CD       0x02
 | |
| #define LSI_SOCL_MSG      0x04
 | |
| #define LSI_SOCL_ATN      0x08
 | |
| #define LSI_SOCL_SEL      0x10
 | |
| #define LSI_SOCL_BSY      0x20
 | |
| #define LSI_SOCL_ACK      0x40
 | |
| #define LSI_SOCL_REQ      0x80
 | |
| 
 | |
| #define LSI_DSTAT_IID     0x01
 | |
| #define LSI_DSTAT_SIR     0x04
 | |
| #define LSI_DSTAT_SSI     0x08
 | |
| #define LSI_DSTAT_ABRT    0x10
 | |
| #define LSI_DSTAT_BF      0x20
 | |
| #define LSI_DSTAT_MDPE    0x40
 | |
| #define LSI_DSTAT_DFE     0x80
 | |
| 
 | |
| #define LSI_DCNTL_COM     0x01
 | |
| #define LSI_DCNTL_IRQD    0x02
 | |
| #define LSI_DCNTL_STD     0x04
 | |
| #define LSI_DCNTL_IRQM    0x08
 | |
| #define LSI_DCNTL_SSM     0x10
 | |
| #define LSI_DCNTL_PFEN    0x20
 | |
| #define LSI_DCNTL_PFF     0x40
 | |
| #define LSI_DCNTL_CLSE    0x80
 | |
| 
 | |
| #define LSI_DMODE_MAN     0x01
 | |
| #define LSI_DMODE_BOF     0x02
 | |
| #define LSI_DMODE_ERMP    0x04
 | |
| #define LSI_DMODE_ERL     0x08
 | |
| #define LSI_DMODE_DIOM    0x10
 | |
| #define LSI_DMODE_SIOM    0x20
 | |
| 
 | |
| #define LSI_CTEST2_DACK   0x01
 | |
| #define LSI_CTEST2_DREQ   0x02
 | |
| #define LSI_CTEST2_TEOP   0x04
 | |
| #define LSI_CTEST2_PCICIE 0x08
 | |
| #define LSI_CTEST2_CM     0x10
 | |
| #define LSI_CTEST2_CIO    0x20
 | |
| #define LSI_CTEST2_SIGP   0x40
 | |
| #define LSI_CTEST2_DDIR   0x80
 | |
| 
 | |
| #define LSI_CTEST5_BL2    0x04
 | |
| #define LSI_CTEST5_DDIR   0x08
 | |
| #define LSI_CTEST5_MASR   0x10
 | |
| #define LSI_CTEST5_DFSN   0x20
 | |
| #define LSI_CTEST5_BBCK   0x40
 | |
| #define LSI_CTEST5_ADCK   0x80
 | |
| 
 | |
| #define LSI_CCNTL0_DILS   0x01
 | |
| #define LSI_CCNTL0_DISFC  0x10
 | |
| #define LSI_CCNTL0_ENNDJ  0x20
 | |
| #define LSI_CCNTL0_PMJCTL 0x40
 | |
| #define LSI_CCNTL0_ENPMJ  0x80
 | |
| 
 | |
| #define LSI_CCNTL1_EN64DBMV  0x01
 | |
| #define LSI_CCNTL1_EN64TIBMV 0x02
 | |
| #define LSI_CCNTL1_64TIMOD   0x04
 | |
| #define LSI_CCNTL1_DDAC      0x08
 | |
| #define LSI_CCNTL1_ZMOD      0x80
 | |
| 
 | |
| #define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
 | |
| 
 | |
| #define PHASE_DO          0
 | |
| #define PHASE_DI          1
 | |
| #define PHASE_CMD         2
 | |
| #define PHASE_ST          3
 | |
| #define PHASE_MO          6
 | |
| #define PHASE_MI          7
 | |
| #define PHASE_MASK        7
 | |
| 
 | |
| /* Maximum length of MSG IN data.  */
 | |
| #define LSI_MAX_MSGIN_LEN 8
 | |
| 
 | |
| /* Flag set if this is a tagged command.  */
 | |
| #define LSI_TAG_VALID     (1 << 16)
 | |
| 
 | |
| typedef struct {
 | |
|     uint32_t tag;
 | |
|     uint32_t pending;
 | |
|     int out;
 | |
| } lsi_queue;
 | |
| 
 | |
| typedef struct {
 | |
|     PCIDevice pci_dev;
 | |
|     int mmio_io_addr;
 | |
|     int ram_io_addr;
 | |
|     uint32_t script_ram_base;
 | |
| 
 | |
|     int carry; /* ??? Should this be an a visible register somewhere?  */
 | |
|     int sense;
 | |
|     /* Action to take at the end of a MSG IN phase.
 | |
|        0 = COMMAND, 1 = disconect, 2 = DATA OUT, 3 = DATA IN.  */
 | |
|     int msg_action;
 | |
|     int msg_len;
 | |
|     uint8_t msg[LSI_MAX_MSGIN_LEN];
 | |
|     /* 0 if SCRIPTS are running or stopped.
 | |
|      * 1 if a Wait Reselect instruction has been issued.
 | |
|      * 2 if processing DMA from lsi_execute_script.
 | |
|      * 3 if a DMA operation is in progress.  */
 | |
|     int waiting;
 | |
|     SCSIDevice *scsi_dev[LSI_MAX_DEVS];
 | |
|     SCSIDevice *current_dev;
 | |
|     int current_lun;
 | |
|     /* The tag is a combination of the device ID and the SCSI tag.  */
 | |
|     uint32_t current_tag;
 | |
|     uint32_t current_dma_len;
 | |
|     int command_complete;
 | |
|     uint8_t *dma_buf;
 | |
|     lsi_queue *queue;
 | |
|     int queue_len;
 | |
|     int active_commands;
 | |
| 
 | |
|     uint32_t dsa;
 | |
|     uint32_t temp;
 | |
|     uint32_t dnad;
 | |
|     uint32_t dbc;
 | |
|     uint8_t istat0;
 | |
|     uint8_t istat1;
 | |
|     uint8_t dcmd;
 | |
|     uint8_t dstat;
 | |
|     uint8_t dien;
 | |
|     uint8_t sist0;
 | |
|     uint8_t sist1;
 | |
|     uint8_t sien0;
 | |
|     uint8_t sien1;
 | |
|     uint8_t mbox0;
 | |
|     uint8_t mbox1;
 | |
|     uint8_t dfifo;
 | |
|     uint8_t ctest2;
 | |
|     uint8_t ctest3;
 | |
|     uint8_t ctest4;
 | |
|     uint8_t ctest5;
 | |
|     uint8_t ccntl0;
 | |
|     uint8_t ccntl1;
 | |
|     uint32_t dsp;
 | |
|     uint32_t dsps;
 | |
|     uint8_t dmode;
 | |
|     uint8_t dcntl;
 | |
|     uint8_t scntl0;
 | |
|     uint8_t scntl1;
 | |
|     uint8_t scntl2;
 | |
|     uint8_t scntl3;
 | |
|     uint8_t sstat0;
 | |
|     uint8_t sstat1;
 | |
|     uint8_t scid;
 | |
|     uint8_t sxfer;
 | |
|     uint8_t socl;
 | |
|     uint8_t sdid;
 | |
|     uint8_t ssid;
 | |
|     uint8_t sfbr;
 | |
|     uint8_t stest1;
 | |
|     uint8_t stest2;
 | |
|     uint8_t stest3;
 | |
|     uint8_t sidl;
 | |
|     uint8_t stime0;
 | |
|     uint8_t respid0;
 | |
|     uint8_t respid1;
 | |
|     uint32_t mmrs;
 | |
|     uint32_t mmws;
 | |
|     uint32_t sfs;
 | |
|     uint32_t drs;
 | |
|     uint32_t sbms;
 | |
|     uint32_t dbms;
 | |
|     uint32_t dnad64;
 | |
|     uint32_t pmjad1;
 | |
|     uint32_t pmjad2;
 | |
|     uint32_t rbc;
 | |
|     uint32_t ua;
 | |
|     uint32_t ia;
 | |
|     uint32_t sbc;
 | |
|     uint32_t csbc;
 | |
|     uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
 | |
| 
 | |
|     /* Script ram is stored as 32-bit words in host byteorder.  */
 | |
|     uint32_t script_ram[2048];
 | |
| } LSIState;
 | |
| 
 | |
| static void lsi_soft_reset(LSIState *s)
 | |
| {
 | |
|     DPRINTF("Reset\n");
 | |
|     s->carry = 0;
 | |
| 
 | |
|     s->waiting = 0;
 | |
|     s->dsa = 0;
 | |
|     s->dnad = 0;
 | |
|     s->dbc = 0;
 | |
|     s->temp = 0;
 | |
|     memset(s->scratch, 0, sizeof(s->scratch));
 | |
|     s->istat0 = 0;
 | |
|     s->istat1 = 0;
 | |
|     s->dcmd = 0;
 | |
|     s->dstat = 0;
 | |
|     s->dien = 0;
 | |
|     s->sist0 = 0;
 | |
|     s->sist1 = 0;
 | |
|     s->sien0 = 0;
 | |
|     s->sien1 = 0;
 | |
|     s->mbox0 = 0;
 | |
|     s->mbox1 = 0;
 | |
|     s->dfifo = 0;
 | |
|     s->ctest2 = 0;
 | |
|     s->ctest3 = 0;
 | |
|     s->ctest4 = 0;
 | |
|     s->ctest5 = 0;
 | |
|     s->ccntl0 = 0;
 | |
|     s->ccntl1 = 0;
 | |
|     s->dsp = 0;
 | |
|     s->dsps = 0;
 | |
|     s->dmode = 0;
 | |
|     s->dcntl = 0;
 | |
|     s->scntl0 = 0xc0;
 | |
|     s->scntl1 = 0;
 | |
|     s->scntl2 = 0;
 | |
|     s->scntl3 = 0;
 | |
|     s->sstat0 = 0;
 | |
|     s->sstat1 = 0;
 | |
|     s->scid = 7;
 | |
|     s->sxfer = 0;
 | |
|     s->socl = 0;
 | |
|     s->stest1 = 0;
 | |
|     s->stest2 = 0;
 | |
|     s->stest3 = 0;
 | |
|     s->sidl = 0;
 | |
|     s->stime0 = 0;
 | |
|     s->respid0 = 0x80;
 | |
|     s->respid1 = 0;
 | |
|     s->mmrs = 0;
 | |
|     s->mmws = 0;
 | |
|     s->sfs = 0;
 | |
|     s->drs = 0;
 | |
|     s->sbms = 0;
 | |
|     s->dbms = 0;
 | |
|     s->dnad64 = 0;
 | |
|     s->pmjad1 = 0;
 | |
|     s->pmjad2 = 0;
 | |
|     s->rbc = 0;
 | |
|     s->ua = 0;
 | |
|     s->ia = 0;
 | |
|     s->sbc = 0;
 | |
|     s->csbc = 0;
 | |
| }
 | |
| 
 | |
| static int lsi_dma_40bit(LSIState *s)
 | |
| {
 | |
|     if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
 | |
|         return 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int lsi_dma_ti64bit(LSIState *s)
 | |
| {
 | |
|     if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
 | |
|         return 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int lsi_dma_64bit(LSIState *s)
 | |
| {
 | |
|     if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
 | |
|         return 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static uint8_t lsi_reg_readb(LSIState *s, int offset);
 | |
| static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
 | |
| static void lsi_execute_script(LSIState *s);
 | |
| 
 | |
| static inline uint32_t read_dword(LSIState *s, uint32_t addr)
 | |
| {
 | |
|     uint32_t buf;
 | |
| 
 | |
|     /* Optimize reading from SCRIPTS RAM.  */
 | |
|     if ((addr & 0xffffe000) == s->script_ram_base) {
 | |
|         return s->script_ram[(addr & 0x1fff) >> 2];
 | |
|     }
 | |
|     cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
 | |
|     return cpu_to_le32(buf);
 | |
| }
 | |
| 
 | |
| static void lsi_stop_script(LSIState *s)
 | |
| {
 | |
|     s->istat1 &= ~LSI_ISTAT1_SRUN;
 | |
| }
 | |
| 
 | |
| static void lsi_update_irq(LSIState *s)
 | |
| {
 | |
|     int level;
 | |
|     static int last_level;
 | |
| 
 | |
|     /* It's unclear whether the DIP/SIP bits should be cleared when the
 | |
|        Interrupt Status Registers are cleared or when istat0 is read.
 | |
|        We currently do the formwer, which seems to work.  */
 | |
|     level = 0;
 | |
|     if (s->dstat) {
 | |
|         if (s->dstat & s->dien)
 | |
|             level = 1;
 | |
|         s->istat0 |= LSI_ISTAT0_DIP;
 | |
|     } else {
 | |
|         s->istat0 &= ~LSI_ISTAT0_DIP;
 | |
|     }
 | |
| 
 | |
|     if (s->sist0 || s->sist1) {
 | |
|         if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
 | |
|             level = 1;
 | |
|         s->istat0 |= LSI_ISTAT0_SIP;
 | |
|     } else {
 | |
|         s->istat0 &= ~LSI_ISTAT0_SIP;
 | |
|     }
 | |
|     if (s->istat0 & LSI_ISTAT0_INTF)
 | |
|         level = 1;
 | |
| 
 | |
|     if (level != last_level) {
 | |
|         DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
 | |
|                 level, s->dstat, s->sist1, s->sist0);
 | |
|         last_level = level;
 | |
|     }
 | |
|     qemu_set_irq(s->pci_dev.irq[0], level);
 | |
| }
 | |
| 
 | |
| /* Stop SCRIPTS execution and raise a SCSI interrupt.  */
 | |
| static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
 | |
| {
 | |
|     uint32_t mask0;
 | |
|     uint32_t mask1;
 | |
| 
 | |
|     DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
 | |
|             stat1, stat0, s->sist1, s->sist0);
 | |
|     s->sist0 |= stat0;
 | |
|     s->sist1 |= stat1;
 | |
|     /* Stop processor on fatal or unmasked interrupt.  As a special hack
 | |
|        we don't stop processing when raising STO.  Instead continue
 | |
|        execution and stop at the next insn that accesses the SCSI bus.  */
 | |
|     mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
 | |
|     mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
 | |
|     mask1 &= ~LSI_SIST1_STO;
 | |
|     if (s->sist0 & mask0 || s->sist1 & mask1) {
 | |
|         lsi_stop_script(s);
 | |
|     }
 | |
|     lsi_update_irq(s);
 | |
| }
 | |
| 
 | |
| /* Stop SCRIPTS execution and raise a DMA interrupt.  */
 | |
| static void lsi_script_dma_interrupt(LSIState *s, int stat)
 | |
| {
 | |
|     DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
 | |
|     s->dstat |= stat;
 | |
|     lsi_update_irq(s);
 | |
|     lsi_stop_script(s);
 | |
| }
 | |
| 
 | |
| static inline void lsi_set_phase(LSIState *s, int phase)
 | |
| {
 | |
|     s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
 | |
| }
 | |
| 
 | |
| static void lsi_bad_phase(LSIState *s, int out, int new_phase)
 | |
| {
 | |
|     /* Trigger a phase mismatch.  */
 | |
|     if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
 | |
|         if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
 | |
|             s->dsp = s->pmjad1;
 | |
|         } else {
 | |
|             s->dsp = s->pmjad2;
 | |
|         }
 | |
|         DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
 | |
|     } else {
 | |
|         DPRINTF("Phase mismatch interrupt\n");
 | |
|         lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
 | |
|         lsi_stop_script(s);
 | |
|     }
 | |
|     lsi_set_phase(s, new_phase);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Resume SCRIPTS execution after a DMA operation.  */
 | |
| static void lsi_resume_script(LSIState *s)
 | |
| {
 | |
|     if (s->waiting != 2) {
 | |
|         s->waiting = 0;
 | |
|         lsi_execute_script(s);
 | |
|     } else {
 | |
|         s->waiting = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Initiate a SCSI layer data transfer.  */
 | |
| static void lsi_do_dma(LSIState *s, int out)
 | |
| {
 | |
|     uint32_t count;
 | |
|     target_phys_addr_t addr;
 | |
| 
 | |
|     if (!s->current_dma_len) {
 | |
|         /* Wait until data is available.  */
 | |
|         DPRINTF("DMA no data available\n");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     count = s->dbc;
 | |
|     if (count > s->current_dma_len)
 | |
|         count = s->current_dma_len;
 | |
| 
 | |
|     addr = s->dnad;
 | |
|     /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
 | |
|     if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
 | |
|         addr |= ((uint64_t)s->dnad64 << 32);
 | |
|     else if (s->dbms)
 | |
|         addr |= ((uint64_t)s->dbms << 32);
 | |
|     else if (s->sbms)
 | |
|         addr |= ((uint64_t)s->sbms << 32);
 | |
| 
 | |
|     DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
 | |
|     s->csbc += count;
 | |
|     s->dnad += count;
 | |
|     s->dbc -= count;
 | |
| 
 | |
|     if (s->dma_buf == NULL) {
 | |
|         s->dma_buf = s->current_dev->get_buf(s->current_dev,
 | |
|                                              s->current_tag);
 | |
|     }
 | |
| 
 | |
|     /* ??? Set SFBR to first data byte.  */
 | |
|     if (out) {
 | |
|         cpu_physical_memory_read(addr, s->dma_buf, count);
 | |
|     } else {
 | |
|         cpu_physical_memory_write(addr, s->dma_buf, count);
 | |
|     }
 | |
|     s->current_dma_len -= count;
 | |
|     if (s->current_dma_len == 0) {
 | |
|         s->dma_buf = NULL;
 | |
|         if (out) {
 | |
|             /* Write the data.  */
 | |
|             s->current_dev->write_data(s->current_dev, s->current_tag);
 | |
|         } else {
 | |
|             /* Request any remaining data.  */
 | |
|             s->current_dev->read_data(s->current_dev, s->current_tag);
 | |
|         }
 | |
|     } else {
 | |
|         s->dma_buf += count;
 | |
|         lsi_resume_script(s);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Add a command to the queue.  */
 | |
| static void lsi_queue_command(LSIState *s)
 | |
| {
 | |
|     lsi_queue *p;
 | |
| 
 | |
|     DPRINTF("Queueing tag=0x%x\n", s->current_tag);
 | |
|     if (s->queue_len == s->active_commands) {
 | |
|         s->queue_len++;
 | |
|         s->queue = qemu_realloc(s->queue, s->queue_len * sizeof(lsi_queue));
 | |
|     }
 | |
|     p = &s->queue[s->active_commands++];
 | |
|     p->tag = s->current_tag;
 | |
|     p->pending = 0;
 | |
|     p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
 | |
| }
 | |
| 
 | |
| /* Queue a byte for a MSG IN phase.  */
 | |
| static void lsi_add_msg_byte(LSIState *s, uint8_t data)
 | |
| {
 | |
|     if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
 | |
|         BADF("MSG IN data too long\n");
 | |
|     } else {
 | |
|         DPRINTF("MSG IN 0x%02x\n", data);
 | |
|         s->msg[s->msg_len++] = data;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Perform reselection to continue a command.  */
 | |
| static void lsi_reselect(LSIState *s, uint32_t tag)
 | |
| {
 | |
|     lsi_queue *p;
 | |
|     int n;
 | |
|     int id;
 | |
| 
 | |
|     p = NULL;
 | |
|     for (n = 0; n < s->active_commands; n++) {
 | |
|         p = &s->queue[n];
 | |
|         if (p->tag == tag)
 | |
|             break;
 | |
|     }
 | |
|     if (n == s->active_commands) {
 | |
|         BADF("Reselected non-existant command tag=0x%x\n", tag);
 | |
|         return;
 | |
|     }
 | |
|     id = (tag >> 8) & 0xf;
 | |
|     s->ssid = id | 0x80;
 | |
|     DPRINTF("Reselected target %d\n", id);
 | |
|     s->current_dev = s->scsi_dev[id];
 | |
|     s->current_tag = tag;
 | |
|     s->scntl1 |= LSI_SCNTL1_CON;
 | |
|     lsi_set_phase(s, PHASE_MI);
 | |
|     s->msg_action = p->out ? 2 : 3;
 | |
|     s->current_dma_len = p->pending;
 | |
|     s->dma_buf = NULL;
 | |
|     lsi_add_msg_byte(s, 0x80);
 | |
|     if (s->current_tag & LSI_TAG_VALID) {
 | |
|         lsi_add_msg_byte(s, 0x20);
 | |
|         lsi_add_msg_byte(s, tag & 0xff);
 | |
|     }
 | |
| 
 | |
|     s->active_commands--;
 | |
|     if (n != s->active_commands) {
 | |
|         s->queue[n] = s->queue[s->active_commands];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Record that data is available for a queued command.  Returns zero if
 | |
|    the device was reselected, nonzero if the IO is deferred.  */
 | |
| static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
 | |
| {
 | |
|     lsi_queue *p;
 | |
|     int i;
 | |
|     for (i = 0; i < s->active_commands; i++) {
 | |
|         p = &s->queue[i];
 | |
|         if (p->tag == tag) {
 | |
|             if (p->pending) {
 | |
|                 BADF("Multiple IO pending for tag %d\n", tag);
 | |
|             }
 | |
|             p->pending = arg;
 | |
|             if (s->waiting == 1) {
 | |
|                 /* Reselect device.  */
 | |
|                 lsi_reselect(s, tag);
 | |
|                 return 0;
 | |
|             } else {
 | |
|                DPRINTF("Queueing IO tag=0x%x\n", tag);
 | |
|                 p->pending = arg;
 | |
|                 return 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     BADF("IO with unknown tag %d\n", tag);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* Callback to indicate that the SCSI layer has completed a transfer.  */
 | |
| static void lsi_command_complete(void *opaque, int reason, uint32_t tag,
 | |
|                                  uint32_t arg)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
|     int out;
 | |
| 
 | |
|     out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
 | |
|     if (reason == SCSI_REASON_DONE) {
 | |
|         DPRINTF("Command complete sense=%d\n", (int)arg);
 | |
|         s->sense = arg;
 | |
|         s->command_complete = 2;
 | |
|         if (s->waiting && s->dbc != 0) {
 | |
|             /* Raise phase mismatch for short transfers.  */
 | |
|             lsi_bad_phase(s, out, PHASE_ST);
 | |
|         } else {
 | |
|             lsi_set_phase(s, PHASE_ST);
 | |
|         }
 | |
|         lsi_resume_script(s);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (s->waiting == 1 || tag != s->current_tag) {
 | |
|         if (lsi_queue_tag(s, tag, arg))
 | |
|             return;
 | |
|     }
 | |
|     DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
 | |
|     s->current_dma_len = arg;
 | |
|     s->command_complete = 1;
 | |
|     if (!s->waiting)
 | |
|         return;
 | |
|     if (s->waiting == 1 || s->dbc == 0) {
 | |
|         lsi_resume_script(s);
 | |
|     } else {
 | |
|         lsi_do_dma(s, out);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void lsi_do_command(LSIState *s)
 | |
| {
 | |
|     uint8_t buf[16];
 | |
|     int n;
 | |
| 
 | |
|     DPRINTF("Send command len=%d\n", s->dbc);
 | |
|     if (s->dbc > 16)
 | |
|         s->dbc = 16;
 | |
|     cpu_physical_memory_read(s->dnad, buf, s->dbc);
 | |
|     s->sfbr = buf[0];
 | |
|     s->command_complete = 0;
 | |
|     n = s->current_dev->send_command(s->current_dev, s->current_tag, buf,
 | |
|                                      s->current_lun);
 | |
|     if (n > 0) {
 | |
|         lsi_set_phase(s, PHASE_DI);
 | |
|         s->current_dev->read_data(s->current_dev, s->current_tag);
 | |
|     } else if (n < 0) {
 | |
|         lsi_set_phase(s, PHASE_DO);
 | |
|         s->current_dev->write_data(s->current_dev, s->current_tag);
 | |
|     }
 | |
| 
 | |
|     if (!s->command_complete) {
 | |
|         if (n) {
 | |
|             /* Command did not complete immediately so disconnect.  */
 | |
|             lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
 | |
|             lsi_add_msg_byte(s, 4); /* DISCONNECT */
 | |
|             /* wait data */
 | |
|             lsi_set_phase(s, PHASE_MI);
 | |
|             s->msg_action = 1;
 | |
|             lsi_queue_command(s);
 | |
|         } else {
 | |
|             /* wait command complete */
 | |
|             lsi_set_phase(s, PHASE_DI);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void lsi_do_status(LSIState *s)
 | |
| {
 | |
|     uint8_t sense;
 | |
|     DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
 | |
|     if (s->dbc != 1)
 | |
|         BADF("Bad Status move\n");
 | |
|     s->dbc = 1;
 | |
|     sense = s->sense;
 | |
|     s->sfbr = sense;
 | |
|     cpu_physical_memory_write(s->dnad, &sense, 1);
 | |
|     lsi_set_phase(s, PHASE_MI);
 | |
|     s->msg_action = 1;
 | |
|     lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
 | |
| }
 | |
| 
 | |
| static void lsi_disconnect(LSIState *s)
 | |
| {
 | |
|     s->scntl1 &= ~LSI_SCNTL1_CON;
 | |
|     s->sstat1 &= ~PHASE_MASK;
 | |
| }
 | |
| 
 | |
| static void lsi_do_msgin(LSIState *s)
 | |
| {
 | |
|     int len;
 | |
|     DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
 | |
|     s->sfbr = s->msg[0];
 | |
|     len = s->msg_len;
 | |
|     if (len > s->dbc)
 | |
|         len = s->dbc;
 | |
|     cpu_physical_memory_write(s->dnad, s->msg, len);
 | |
|     /* Linux drivers rely on the last byte being in the SIDL.  */
 | |
|     s->sidl = s->msg[len - 1];
 | |
|     s->msg_len -= len;
 | |
|     if (s->msg_len) {
 | |
|         memmove(s->msg, s->msg + len, s->msg_len);
 | |
|     } else {
 | |
|         /* ??? Check if ATN (not yet implemented) is asserted and maybe
 | |
|            switch to PHASE_MO.  */
 | |
|         switch (s->msg_action) {
 | |
|         case 0:
 | |
|             lsi_set_phase(s, PHASE_CMD);
 | |
|             break;
 | |
|         case 1:
 | |
|             lsi_disconnect(s);
 | |
|             break;
 | |
|         case 2:
 | |
|             lsi_set_phase(s, PHASE_DO);
 | |
|             break;
 | |
|         case 3:
 | |
|             lsi_set_phase(s, PHASE_DI);
 | |
|             break;
 | |
|         default:
 | |
|             abort();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Read the next byte during a MSGOUT phase.  */
 | |
| static uint8_t lsi_get_msgbyte(LSIState *s)
 | |
| {
 | |
|     uint8_t data;
 | |
|     cpu_physical_memory_read(s->dnad, &data, 1);
 | |
|     s->dnad++;
 | |
|     s->dbc--;
 | |
|     return data;
 | |
| }
 | |
| 
 | |
| static void lsi_do_msgout(LSIState *s)
 | |
| {
 | |
|     uint8_t msg;
 | |
|     int len;
 | |
| 
 | |
|     DPRINTF("MSG out len=%d\n", s->dbc);
 | |
|     while (s->dbc) {
 | |
|         msg = lsi_get_msgbyte(s);
 | |
|         s->sfbr = msg;
 | |
| 
 | |
|         switch (msg) {
 | |
|         case 0x00:
 | |
|             DPRINTF("MSG: Disconnect\n");
 | |
|             lsi_disconnect(s);
 | |
|             break;
 | |
|         case 0x08:
 | |
|             DPRINTF("MSG: No Operation\n");
 | |
|             lsi_set_phase(s, PHASE_CMD);
 | |
|             break;
 | |
|         case 0x01:
 | |
|             len = lsi_get_msgbyte(s);
 | |
|             msg = lsi_get_msgbyte(s);
 | |
|             DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
 | |
|             switch (msg) {
 | |
|             case 1:
 | |
|                 DPRINTF("SDTR (ignored)\n");
 | |
|                 s->dbc -= 2;
 | |
|                 break;
 | |
|             case 3:
 | |
|                 DPRINTF("WDTR (ignored)\n");
 | |
|                 s->dbc -= 1;
 | |
|                 break;
 | |
|             default:
 | |
|                 goto bad;
 | |
|             }
 | |
|             break;
 | |
|         case 0x20: /* SIMPLE queue */
 | |
|             s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
 | |
|             DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
 | |
|             break;
 | |
|         case 0x21: /* HEAD of queue */
 | |
|             BADF("HEAD queue not implemented\n");
 | |
|             s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
 | |
|             break;
 | |
|         case 0x22: /* ORDERED queue */
 | |
|             BADF("ORDERED queue not implemented\n");
 | |
|             s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
 | |
|             break;
 | |
|         default:
 | |
|             if ((msg & 0x80) == 0) {
 | |
|                 goto bad;
 | |
|             }
 | |
|             s->current_lun = msg & 7;
 | |
|             DPRINTF("Select LUN %d\n", s->current_lun);
 | |
|             lsi_set_phase(s, PHASE_CMD);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return;
 | |
| bad:
 | |
|     BADF("Unimplemented message 0x%02x\n", msg);
 | |
|     lsi_set_phase(s, PHASE_MI);
 | |
|     lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
 | |
|     s->msg_action = 0;
 | |
| }
 | |
| 
 | |
| /* Sign extend a 24-bit value.  */
 | |
| static inline int32_t sxt24(int32_t n)
 | |
| {
 | |
|     return (n << 8) >> 8;
 | |
| }
 | |
| 
 | |
| static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
 | |
| {
 | |
|     int n;
 | |
|     uint8_t buf[TARGET_PAGE_SIZE];
 | |
| 
 | |
|     DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
 | |
|     while (count) {
 | |
|         n = (count > TARGET_PAGE_SIZE) ? TARGET_PAGE_SIZE : count;
 | |
|         cpu_physical_memory_read(src, buf, n);
 | |
|         cpu_physical_memory_write(dest, buf, n);
 | |
|         src += n;
 | |
|         dest += n;
 | |
|         count -= n;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void lsi_wait_reselect(LSIState *s)
 | |
| {
 | |
|     int i;
 | |
|     DPRINTF("Wait Reselect\n");
 | |
|     if (s->current_dma_len)
 | |
|         BADF("Reselect with pending DMA\n");
 | |
|     for (i = 0; i < s->active_commands; i++) {
 | |
|         if (s->queue[i].pending) {
 | |
|             lsi_reselect(s, s->queue[i].tag);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (s->current_dma_len == 0) {
 | |
|         s->waiting = 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void lsi_execute_script(LSIState *s)
 | |
| {
 | |
|     uint32_t insn;
 | |
|     uint32_t addr, addr_high;
 | |
|     int opcode;
 | |
|     int insn_processed = 0;
 | |
| 
 | |
|     s->istat1 |= LSI_ISTAT1_SRUN;
 | |
| again:
 | |
|     insn_processed++;
 | |
|     insn = read_dword(s, s->dsp);
 | |
|     if (!insn) {
 | |
|         /* If we receive an empty opcode increment the DSP by 4 bytes
 | |
|            instead of 8 and execute the next opcode at that location */
 | |
|         s->dsp += 4;
 | |
|         goto again;
 | |
|     }
 | |
|     addr = read_dword(s, s->dsp + 4);
 | |
|     addr_high = 0;
 | |
|     DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
 | |
|     s->dsps = addr;
 | |
|     s->dcmd = insn >> 24;
 | |
|     s->dsp += 8;
 | |
|     switch (insn >> 30) {
 | |
|     case 0: /* Block move.  */
 | |
|         if (s->sist1 & LSI_SIST1_STO) {
 | |
|             DPRINTF("Delayed select timeout\n");
 | |
|             lsi_stop_script(s);
 | |
|             break;
 | |
|         }
 | |
|         s->dbc = insn & 0xffffff;
 | |
|         s->rbc = s->dbc;
 | |
|         /* ??? Set ESA.  */
 | |
|         s->ia = s->dsp - 8;
 | |
|         if (insn & (1 << 29)) {
 | |
|             /* Indirect addressing.  */
 | |
|             addr = read_dword(s, addr);
 | |
|         } else if (insn & (1 << 28)) {
 | |
|             uint32_t buf[2];
 | |
|             int32_t offset;
 | |
|             /* Table indirect addressing.  */
 | |
| 
 | |
|             /* 32-bit Table indirect */
 | |
|             offset = sxt24(addr);
 | |
|             cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
 | |
|             /* byte count is stored in bits 0:23 only */
 | |
|             s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
 | |
|             s->rbc = s->dbc;
 | |
|             addr = cpu_to_le32(buf[1]);
 | |
| 
 | |
|             /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
 | |
|              * table, bits [31:24] */
 | |
|             if (lsi_dma_40bit(s))
 | |
|                 addr_high = cpu_to_le32(buf[0]) >> 24;
 | |
|             else if (lsi_dma_ti64bit(s)) {
 | |
|                 int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
 | |
|                 switch (selector) {
 | |
|                 case 0 ... 0x0f:
 | |
|                     /* offset index into scratch registers since
 | |
|                      * TI64 mode can use registers C to R */
 | |
|                     addr_high = s->scratch[2 + selector];
 | |
|                     break;
 | |
|                 case 0x10:
 | |
|                     addr_high = s->mmrs;
 | |
|                     break;
 | |
|                 case 0x11:
 | |
|                     addr_high = s->mmws;
 | |
|                     break;
 | |
|                 case 0x12:
 | |
|                     addr_high = s->sfs;
 | |
|                     break;
 | |
|                 case 0x13:
 | |
|                     addr_high = s->drs;
 | |
|                     break;
 | |
|                 case 0x14:
 | |
|                     addr_high = s->sbms;
 | |
|                     break;
 | |
|                 case 0x15:
 | |
|                     addr_high = s->dbms;
 | |
|                     break;
 | |
|                 default:
 | |
|                     BADF("Illegal selector specified (0x%x > 0x15)"
 | |
|                          " for 64-bit DMA block move", selector);
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         } else if (lsi_dma_64bit(s)) {
 | |
|             /* fetch a 3rd dword if 64-bit direct move is enabled and
 | |
|                only if we're not doing table indirect or indirect addressing */
 | |
|             s->dbms = read_dword(s, s->dsp);
 | |
|             s->dsp += 4;
 | |
|             s->ia = s->dsp - 12;
 | |
|         }
 | |
|         if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
 | |
|             DPRINTF("Wrong phase got %d expected %d\n",
 | |
|                     s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
 | |
|             lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
 | |
|             break;
 | |
|         }
 | |
|         s->dnad = addr;
 | |
|         s->dnad64 = addr_high;
 | |
|         switch (s->sstat1 & 0x7) {
 | |
|         case PHASE_DO:
 | |
|             s->waiting = 2;
 | |
|             lsi_do_dma(s, 1);
 | |
|             if (s->waiting)
 | |
|                 s->waiting = 3;
 | |
|             break;
 | |
|         case PHASE_DI:
 | |
|             s->waiting = 2;
 | |
|             lsi_do_dma(s, 0);
 | |
|             if (s->waiting)
 | |
|                 s->waiting = 3;
 | |
|             break;
 | |
|         case PHASE_CMD:
 | |
|             lsi_do_command(s);
 | |
|             break;
 | |
|         case PHASE_ST:
 | |
|             lsi_do_status(s);
 | |
|             break;
 | |
|         case PHASE_MO:
 | |
|             lsi_do_msgout(s);
 | |
|             break;
 | |
|         case PHASE_MI:
 | |
|             lsi_do_msgin(s);
 | |
|             break;
 | |
|         default:
 | |
|             BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
 | |
|             exit(1);
 | |
|         }
 | |
|         s->dfifo = s->dbc & 0xff;
 | |
|         s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
 | |
|         s->sbc = s->dbc;
 | |
|         s->rbc -= s->dbc;
 | |
|         s->ua = addr + s->dbc;
 | |
|         break;
 | |
| 
 | |
|     case 1: /* IO or Read/Write instruction.  */
 | |
|         opcode = (insn >> 27) & 7;
 | |
|         if (opcode < 5) {
 | |
|             uint32_t id;
 | |
| 
 | |
|             if (insn & (1 << 25)) {
 | |
|                 id = read_dword(s, s->dsa + sxt24(insn));
 | |
|             } else {
 | |
|                 id = addr;
 | |
|             }
 | |
|             id = (id >> 16) & 0xf;
 | |
|             if (insn & (1 << 26)) {
 | |
|                 addr = s->dsp + sxt24(addr);
 | |
|             }
 | |
|             s->dnad = addr;
 | |
|             switch (opcode) {
 | |
|             case 0: /* Select */
 | |
|                 s->sdid = id;
 | |
|                 if (s->current_dma_len && (s->ssid & 0xf) == id) {
 | |
|                     DPRINTF("Already reselected by target %d\n", id);
 | |
|                     break;
 | |
|                 }
 | |
|                 s->sstat0 |= LSI_SSTAT0_WOA;
 | |
|                 s->scntl1 &= ~LSI_SCNTL1_IARB;
 | |
|                 if (id >= LSI_MAX_DEVS || !s->scsi_dev[id]) {
 | |
|                     DPRINTF("Selected absent target %d\n", id);
 | |
|                     lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
 | |
|                     lsi_disconnect(s);
 | |
|                     break;
 | |
|                 }
 | |
|                 DPRINTF("Selected target %d%s\n",
 | |
|                         id, insn & (1 << 3) ? " ATN" : "");
 | |
|                 /* ??? Linux drivers compain when this is set.  Maybe
 | |
|                    it only applies in low-level mode (unimplemented).
 | |
|                 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
 | |
|                 s->current_dev = s->scsi_dev[id];
 | |
|                 s->current_tag = id << 8;
 | |
|                 s->scntl1 |= LSI_SCNTL1_CON;
 | |
|                 if (insn & (1 << 3)) {
 | |
|                     s->socl |= LSI_SOCL_ATN;
 | |
|                 }
 | |
|                 lsi_set_phase(s, PHASE_MO);
 | |
|                 break;
 | |
|             case 1: /* Disconnect */
 | |
|                 DPRINTF("Wait Disconect\n");
 | |
|                 s->scntl1 &= ~LSI_SCNTL1_CON;
 | |
|                 break;
 | |
|             case 2: /* Wait Reselect */
 | |
|                 lsi_wait_reselect(s);
 | |
|                 break;
 | |
|             case 3: /* Set */
 | |
|                 DPRINTF("Set%s%s%s%s\n",
 | |
|                         insn & (1 << 3) ? " ATN" : "",
 | |
|                         insn & (1 << 6) ? " ACK" : "",
 | |
|                         insn & (1 << 9) ? " TM" : "",
 | |
|                         insn & (1 << 10) ? " CC" : "");
 | |
|                 if (insn & (1 << 3)) {
 | |
|                     s->socl |= LSI_SOCL_ATN;
 | |
|                     lsi_set_phase(s, PHASE_MO);
 | |
|                 }
 | |
|                 if (insn & (1 << 9)) {
 | |
|                     BADF("Target mode not implemented\n");
 | |
|                     exit(1);
 | |
|                 }
 | |
|                 if (insn & (1 << 10))
 | |
|                     s->carry = 1;
 | |
|                 break;
 | |
|             case 4: /* Clear */
 | |
|                 DPRINTF("Clear%s%s%s%s\n",
 | |
|                         insn & (1 << 3) ? " ATN" : "",
 | |
|                         insn & (1 << 6) ? " ACK" : "",
 | |
|                         insn & (1 << 9) ? " TM" : "",
 | |
|                         insn & (1 << 10) ? " CC" : "");
 | |
|                 if (insn & (1 << 3)) {
 | |
|                     s->socl &= ~LSI_SOCL_ATN;
 | |
|                 }
 | |
|                 if (insn & (1 << 10))
 | |
|                     s->carry = 0;
 | |
|                 break;
 | |
|             }
 | |
|         } else {
 | |
|             uint8_t op0;
 | |
|             uint8_t op1;
 | |
|             uint8_t data8;
 | |
|             int reg;
 | |
|             int operator;
 | |
| #ifdef DEBUG_LSI
 | |
|             static const char *opcode_names[3] =
 | |
|                 {"Write", "Read", "Read-Modify-Write"};
 | |
|             static const char *operator_names[8] =
 | |
|                 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
 | |
| #endif
 | |
| 
 | |
|             reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
 | |
|             data8 = (insn >> 8) & 0xff;
 | |
|             opcode = (insn >> 27) & 7;
 | |
|             operator = (insn >> 24) & 7;
 | |
|             DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
 | |
|                     opcode_names[opcode - 5], reg,
 | |
|                     operator_names[operator], data8, s->sfbr,
 | |
|                     (insn & (1 << 23)) ? " SFBR" : "");
 | |
|             op0 = op1 = 0;
 | |
|             switch (opcode) {
 | |
|             case 5: /* From SFBR */
 | |
|                 op0 = s->sfbr;
 | |
|                 op1 = data8;
 | |
|                 break;
 | |
|             case 6: /* To SFBR */
 | |
|                 if (operator)
 | |
|                     op0 = lsi_reg_readb(s, reg);
 | |
|                 op1 = data8;
 | |
|                 break;
 | |
|             case 7: /* Read-modify-write */
 | |
|                 if (operator)
 | |
|                     op0 = lsi_reg_readb(s, reg);
 | |
|                 if (insn & (1 << 23)) {
 | |
|                     op1 = s->sfbr;
 | |
|                 } else {
 | |
|                     op1 = data8;
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             switch (operator) {
 | |
|             case 0: /* move */
 | |
|                 op0 = op1;
 | |
|                 break;
 | |
|             case 1: /* Shift left */
 | |
|                 op1 = op0 >> 7;
 | |
|                 op0 = (op0 << 1) | s->carry;
 | |
|                 s->carry = op1;
 | |
|                 break;
 | |
|             case 2: /* OR */
 | |
|                 op0 |= op1;
 | |
|                 break;
 | |
|             case 3: /* XOR */
 | |
|                 op0 ^= op1;
 | |
|                 break;
 | |
|             case 4: /* AND */
 | |
|                 op0 &= op1;
 | |
|                 break;
 | |
|             case 5: /* SHR */
 | |
|                 op1 = op0 & 1;
 | |
|                 op0 = (op0 >> 1) | (s->carry << 7);
 | |
|                 s->carry = op1;
 | |
|                 break;
 | |
|             case 6: /* ADD */
 | |
|                 op0 += op1;
 | |
|                 s->carry = op0 < op1;
 | |
|                 break;
 | |
|             case 7: /* ADC */
 | |
|                 op0 += op1 + s->carry;
 | |
|                 if (s->carry)
 | |
|                     s->carry = op0 <= op1;
 | |
|                 else
 | |
|                     s->carry = op0 < op1;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             switch (opcode) {
 | |
|             case 5: /* From SFBR */
 | |
|             case 7: /* Read-modify-write */
 | |
|                 lsi_reg_writeb(s, reg, op0);
 | |
|                 break;
 | |
|             case 6: /* To SFBR */
 | |
|                 s->sfbr = op0;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case 2: /* Transfer Control.  */
 | |
|         {
 | |
|             int cond;
 | |
|             int jmp;
 | |
| 
 | |
|             if ((insn & 0x002e0000) == 0) {
 | |
|                 DPRINTF("NOP\n");
 | |
|                 break;
 | |
|             }
 | |
|             if (s->sist1 & LSI_SIST1_STO) {
 | |
|                 DPRINTF("Delayed select timeout\n");
 | |
|                 lsi_stop_script(s);
 | |
|                 break;
 | |
|             }
 | |
|             cond = jmp = (insn & (1 << 19)) != 0;
 | |
|             if (cond == jmp && (insn & (1 << 21))) {
 | |
|                 DPRINTF("Compare carry %d\n", s->carry == jmp);
 | |
|                 cond = s->carry != 0;
 | |
|             }
 | |
|             if (cond == jmp && (insn & (1 << 17))) {
 | |
|                 DPRINTF("Compare phase %d %c= %d\n",
 | |
|                         (s->sstat1 & PHASE_MASK),
 | |
|                         jmp ? '=' : '!',
 | |
|                         ((insn >> 24) & 7));
 | |
|                 cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
 | |
|             }
 | |
|             if (cond == jmp && (insn & (1 << 18))) {
 | |
|                 uint8_t mask;
 | |
| 
 | |
|                 mask = (~insn >> 8) & 0xff;
 | |
|                 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
 | |
|                         s->sfbr, mask, jmp ? '=' : '!', insn & mask);
 | |
|                 cond = (s->sfbr & mask) == (insn & mask);
 | |
|             }
 | |
|             if (cond == jmp) {
 | |
|                 if (insn & (1 << 23)) {
 | |
|                     /* Relative address.  */
 | |
|                     addr = s->dsp + sxt24(addr);
 | |
|                 }
 | |
|                 switch ((insn >> 27) & 7) {
 | |
|                 case 0: /* Jump */
 | |
|                     DPRINTF("Jump to 0x%08x\n", addr);
 | |
|                     s->dsp = addr;
 | |
|                     break;
 | |
|                 case 1: /* Call */
 | |
|                     DPRINTF("Call 0x%08x\n", addr);
 | |
|                     s->temp = s->dsp;
 | |
|                     s->dsp = addr;
 | |
|                     break;
 | |
|                 case 2: /* Return */
 | |
|                     DPRINTF("Return to 0x%08x\n", s->temp);
 | |
|                     s->dsp = s->temp;
 | |
|                     break;
 | |
|                 case 3: /* Interrupt */
 | |
|                     DPRINTF("Interrupt 0x%08x\n", s->dsps);
 | |
|                     if ((insn & (1 << 20)) != 0) {
 | |
|                         s->istat0 |= LSI_ISTAT0_INTF;
 | |
|                         lsi_update_irq(s);
 | |
|                     } else {
 | |
|                         lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
 | |
|                     }
 | |
|                     break;
 | |
|                 default:
 | |
|                     DPRINTF("Illegal transfer control\n");
 | |
|                     lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
 | |
|                     break;
 | |
|                 }
 | |
|             } else {
 | |
|                 DPRINTF("Control condition failed\n");
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case 3:
 | |
|         if ((insn & (1 << 29)) == 0) {
 | |
|             /* Memory move.  */
 | |
|             uint32_t dest;
 | |
|             /* ??? The docs imply the destination address is loaded into
 | |
|                the TEMP register.  However the Linux drivers rely on
 | |
|                the value being presrved.  */
 | |
|             dest = read_dword(s, s->dsp);
 | |
|             s->dsp += 4;
 | |
|             lsi_memcpy(s, dest, addr, insn & 0xffffff);
 | |
|         } else {
 | |
|             uint8_t data[7];
 | |
|             int reg;
 | |
|             int n;
 | |
|             int i;
 | |
| 
 | |
|             if (insn & (1 << 28)) {
 | |
|                 addr = s->dsa + sxt24(addr);
 | |
|             }
 | |
|             n = (insn & 7);
 | |
|             reg = (insn >> 16) & 0xff;
 | |
|             if (insn & (1 << 24)) {
 | |
|                 cpu_physical_memory_read(addr, data, n);
 | |
|                 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
 | |
|                         addr, *(int *)data);
 | |
|                 for (i = 0; i < n; i++) {
 | |
|                     lsi_reg_writeb(s, reg + i, data[i]);
 | |
|                 }
 | |
|             } else {
 | |
|                 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
 | |
|                 for (i = 0; i < n; i++) {
 | |
|                     data[i] = lsi_reg_readb(s, reg + i);
 | |
|                 }
 | |
|                 cpu_physical_memory_write(addr, data, n);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (insn_processed > 10000 && !s->waiting) {
 | |
|         /* Some windows drivers make the device spin waiting for a memory
 | |
|            location to change.  If we have been executed a lot of code then
 | |
|            assume this is the case and force an unexpected device disconnect.
 | |
|            This is apparently sufficient to beat the drivers into submission.
 | |
|          */
 | |
|         if (!(s->sien0 & LSI_SIST0_UDC))
 | |
|             fprintf(stderr, "inf. loop with UDC masked\n");
 | |
|         lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
 | |
|         lsi_disconnect(s);
 | |
|     } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
 | |
|         if (s->dcntl & LSI_DCNTL_SSM) {
 | |
|             lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
 | |
|         } else {
 | |
|             goto again;
 | |
|         }
 | |
|     }
 | |
|     DPRINTF("SCRIPTS execution stopped\n");
 | |
| }
 | |
| 
 | |
| static uint8_t lsi_reg_readb(LSIState *s, int offset)
 | |
| {
 | |
|     uint8_t tmp;
 | |
| #define CASE_GET_REG24(name, addr) \
 | |
|     case addr: return s->name & 0xff; \
 | |
|     case addr + 1: return (s->name >> 8) & 0xff; \
 | |
|     case addr + 2: return (s->name >> 16) & 0xff;
 | |
| 
 | |
| #define CASE_GET_REG32(name, addr) \
 | |
|     case addr: return s->name & 0xff; \
 | |
|     case addr + 1: return (s->name >> 8) & 0xff; \
 | |
|     case addr + 2: return (s->name >> 16) & 0xff; \
 | |
|     case addr + 3: return (s->name >> 24) & 0xff;
 | |
| 
 | |
| #ifdef DEBUG_LSI_REG
 | |
|     DPRINTF("Read reg %x\n", offset);
 | |
| #endif
 | |
|     switch (offset) {
 | |
|     case 0x00: /* SCNTL0 */
 | |
|         return s->scntl0;
 | |
|     case 0x01: /* SCNTL1 */
 | |
|         return s->scntl1;
 | |
|     case 0x02: /* SCNTL2 */
 | |
|         return s->scntl2;
 | |
|     case 0x03: /* SCNTL3 */
 | |
|         return s->scntl3;
 | |
|     case 0x04: /* SCID */
 | |
|         return s->scid;
 | |
|     case 0x05: /* SXFER */
 | |
|         return s->sxfer;
 | |
|     case 0x06: /* SDID */
 | |
|         return s->sdid;
 | |
|     case 0x07: /* GPREG0 */
 | |
|         return 0x7f;
 | |
|     case 0x08: /* Revision ID */
 | |
|         return 0x00;
 | |
|     case 0xa: /* SSID */
 | |
|         return s->ssid;
 | |
|     case 0xb: /* SBCL */
 | |
|         /* ??? This is not correct. However it's (hopefully) only
 | |
|            used for diagnostics, so should be ok.  */
 | |
|         return 0;
 | |
|     case 0xc: /* DSTAT */
 | |
|         tmp = s->dstat | 0x80;
 | |
|         if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
 | |
|             s->dstat = 0;
 | |
|         lsi_update_irq(s);
 | |
|         return tmp;
 | |
|     case 0x0d: /* SSTAT0 */
 | |
|         return s->sstat0;
 | |
|     case 0x0e: /* SSTAT1 */
 | |
|         return s->sstat1;
 | |
|     case 0x0f: /* SSTAT2 */
 | |
|         return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
 | |
|     CASE_GET_REG32(dsa, 0x10)
 | |
|     case 0x14: /* ISTAT0 */
 | |
|         return s->istat0;
 | |
|     case 0x15: /* ISTAT1 */
 | |
|         return s->istat1;
 | |
|     case 0x16: /* MBOX0 */
 | |
|         return s->mbox0;
 | |
|     case 0x17: /* MBOX1 */
 | |
|         return s->mbox1;
 | |
|     case 0x18: /* CTEST0 */
 | |
|         return 0xff;
 | |
|     case 0x19: /* CTEST1 */
 | |
|         return 0;
 | |
|     case 0x1a: /* CTEST2 */
 | |
|         tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
 | |
|         if (s->istat0 & LSI_ISTAT0_SIGP) {
 | |
|             s->istat0 &= ~LSI_ISTAT0_SIGP;
 | |
|             tmp |= LSI_CTEST2_SIGP;
 | |
|         }
 | |
|         return tmp;
 | |
|     case 0x1b: /* CTEST3 */
 | |
|         return s->ctest3;
 | |
|     CASE_GET_REG32(temp, 0x1c)
 | |
|     case 0x20: /* DFIFO */
 | |
|         return 0;
 | |
|     case 0x21: /* CTEST4 */
 | |
|         return s->ctest4;
 | |
|     case 0x22: /* CTEST5 */
 | |
|         return s->ctest5;
 | |
|     case 0x23: /* CTEST6 */
 | |
|          return 0;
 | |
|     CASE_GET_REG24(dbc, 0x24)
 | |
|     case 0x27: /* DCMD */
 | |
|         return s->dcmd;
 | |
|     CASE_GET_REG32(dsp, 0x2c)
 | |
|     CASE_GET_REG32(dsps, 0x30)
 | |
|     CASE_GET_REG32(scratch[0], 0x34)
 | |
|     case 0x38: /* DMODE */
 | |
|         return s->dmode;
 | |
|     case 0x39: /* DIEN */
 | |
|         return s->dien;
 | |
|     case 0x3b: /* DCNTL */
 | |
|         return s->dcntl;
 | |
|     case 0x40: /* SIEN0 */
 | |
|         return s->sien0;
 | |
|     case 0x41: /* SIEN1 */
 | |
|         return s->sien1;
 | |
|     case 0x42: /* SIST0 */
 | |
|         tmp = s->sist0;
 | |
|         s->sist0 = 0;
 | |
|         lsi_update_irq(s);
 | |
|         return tmp;
 | |
|     case 0x43: /* SIST1 */
 | |
|         tmp = s->sist1;
 | |
|         s->sist1 = 0;
 | |
|         lsi_update_irq(s);
 | |
|         return tmp;
 | |
|     case 0x46: /* MACNTL */
 | |
|         return 0x0f;
 | |
|     case 0x47: /* GPCNTL0 */
 | |
|         return 0x0f;
 | |
|     case 0x48: /* STIME0 */
 | |
|         return s->stime0;
 | |
|     case 0x4a: /* RESPID0 */
 | |
|         return s->respid0;
 | |
|     case 0x4b: /* RESPID1 */
 | |
|         return s->respid1;
 | |
|     case 0x4d: /* STEST1 */
 | |
|         return s->stest1;
 | |
|     case 0x4e: /* STEST2 */
 | |
|         return s->stest2;
 | |
|     case 0x4f: /* STEST3 */
 | |
|         return s->stest3;
 | |
|     case 0x50: /* SIDL */
 | |
|         /* This is needed by the linux drivers.  We currently only update it
 | |
|            during the MSG IN phase.  */
 | |
|         return s->sidl;
 | |
|     case 0x52: /* STEST4 */
 | |
|         return 0xe0;
 | |
|     case 0x56: /* CCNTL0 */
 | |
|         return s->ccntl0;
 | |
|     case 0x57: /* CCNTL1 */
 | |
|         return s->ccntl1;
 | |
|     case 0x58: /* SBDL */
 | |
|         /* Some drivers peek at the data bus during the MSG IN phase.  */
 | |
|         if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
 | |
|             return s->msg[0];
 | |
|         return 0;
 | |
|     case 0x59: /* SBDL high */
 | |
|         return 0;
 | |
|     CASE_GET_REG32(mmrs, 0xa0)
 | |
|     CASE_GET_REG32(mmws, 0xa4)
 | |
|     CASE_GET_REG32(sfs, 0xa8)
 | |
|     CASE_GET_REG32(drs, 0xac)
 | |
|     CASE_GET_REG32(sbms, 0xb0)
 | |
|     CASE_GET_REG32(dbms, 0xb4)
 | |
|     CASE_GET_REG32(dnad64, 0xb8)
 | |
|     CASE_GET_REG32(pmjad1, 0xc0)
 | |
|     CASE_GET_REG32(pmjad2, 0xc4)
 | |
|     CASE_GET_REG32(rbc, 0xc8)
 | |
|     CASE_GET_REG32(ua, 0xcc)
 | |
|     CASE_GET_REG32(ia, 0xd4)
 | |
|     CASE_GET_REG32(sbc, 0xd8)
 | |
|     CASE_GET_REG32(csbc, 0xdc)
 | |
|     }
 | |
|     if (offset >= 0x5c && offset < 0xa0) {
 | |
|         int n;
 | |
|         int shift;
 | |
|         n = (offset - 0x58) >> 2;
 | |
|         shift = (offset & 3) * 8;
 | |
|         return (s->scratch[n] >> shift) & 0xff;
 | |
|     }
 | |
|     BADF("readb 0x%x\n", offset);
 | |
|     exit(1);
 | |
| #undef CASE_GET_REG24
 | |
| #undef CASE_GET_REG32
 | |
| }
 | |
| 
 | |
| static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
 | |
| {
 | |
| #define CASE_SET_REG32(name, addr) \
 | |
|     case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
 | |
|     case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
 | |
|     case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
 | |
|     case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
 | |
| 
 | |
| #ifdef DEBUG_LSI_REG
 | |
|     DPRINTF("Write reg %x = %02x\n", offset, val);
 | |
| #endif
 | |
|     switch (offset) {
 | |
|     case 0x00: /* SCNTL0 */
 | |
|         s->scntl0 = val;
 | |
|         if (val & LSI_SCNTL0_START) {
 | |
|             BADF("Start sequence not implemented\n");
 | |
|         }
 | |
|         break;
 | |
|     case 0x01: /* SCNTL1 */
 | |
|         s->scntl1 = val & ~LSI_SCNTL1_SST;
 | |
|         if (val & LSI_SCNTL1_IARB) {
 | |
|             BADF("Immediate Arbritration not implemented\n");
 | |
|         }
 | |
|         if (val & LSI_SCNTL1_RST) {
 | |
|             s->sstat0 |= LSI_SSTAT0_RST;
 | |
|             lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
 | |
|         } else {
 | |
|             s->sstat0 &= ~LSI_SSTAT0_RST;
 | |
|         }
 | |
|         break;
 | |
|     case 0x02: /* SCNTL2 */
 | |
|         val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
 | |
|         s->scntl2 = val;
 | |
|         break;
 | |
|     case 0x03: /* SCNTL3 */
 | |
|         s->scntl3 = val;
 | |
|         break;
 | |
|     case 0x04: /* SCID */
 | |
|         s->scid = val;
 | |
|         break;
 | |
|     case 0x05: /* SXFER */
 | |
|         s->sxfer = val;
 | |
|         break;
 | |
|     case 0x06: /* SDID */
 | |
|         if ((val & 0xf) != (s->ssid & 0xf))
 | |
|             BADF("Destination ID does not match SSID\n");
 | |
|         s->sdid = val & 0xf;
 | |
|         break;
 | |
|     case 0x07: /* GPREG0 */
 | |
|         break;
 | |
|     case 0x08: /* SFBR */
 | |
|         /* The CPU is not allowed to write to this register.  However the
 | |
|            SCRIPTS register move instructions are.  */
 | |
|         s->sfbr = val;
 | |
|         break;
 | |
|     case 0x0a: case 0x0b: 
 | |
|         /* Openserver writes to these readonly registers on startup */
 | |
| 	return;    
 | |
|     case 0x0c: case 0x0d: case 0x0e: case 0x0f:
 | |
|         /* Linux writes to these readonly registers on startup.  */
 | |
|         return;
 | |
|     CASE_SET_REG32(dsa, 0x10)
 | |
|     case 0x14: /* ISTAT0 */
 | |
|         s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
 | |
|         if (val & LSI_ISTAT0_ABRT) {
 | |
|             lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
 | |
|         }
 | |
|         if (val & LSI_ISTAT0_INTF) {
 | |
|             s->istat0 &= ~LSI_ISTAT0_INTF;
 | |
|             lsi_update_irq(s);
 | |
|         }
 | |
|         if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
 | |
|             DPRINTF("Woken by SIGP\n");
 | |
|             s->waiting = 0;
 | |
|             s->dsp = s->dnad;
 | |
|             lsi_execute_script(s);
 | |
|         }
 | |
|         if (val & LSI_ISTAT0_SRST) {
 | |
|             lsi_soft_reset(s);
 | |
|         }
 | |
|         break;
 | |
|     case 0x16: /* MBOX0 */
 | |
|         s->mbox0 = val;
 | |
|         break;
 | |
|     case 0x17: /* MBOX1 */
 | |
|         s->mbox1 = val;
 | |
|         break;
 | |
|     case 0x1a: /* CTEST2 */
 | |
| 	s->ctest2 = val & LSI_CTEST2_PCICIE;
 | |
| 	break;
 | |
|     case 0x1b: /* CTEST3 */
 | |
|         s->ctest3 = val & 0x0f;
 | |
|         break;
 | |
|     CASE_SET_REG32(temp, 0x1c)
 | |
|     case 0x21: /* CTEST4 */
 | |
|         if (val & 7) {
 | |
|            BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
 | |
|         }
 | |
|         s->ctest4 = val;
 | |
|         break;
 | |
|     case 0x22: /* CTEST5 */
 | |
|         if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
 | |
|             BADF("CTEST5 DMA increment not implemented\n");
 | |
|         }
 | |
|         s->ctest5 = val;
 | |
|         break;
 | |
|     case 0x2c: /* DSP[0:7] */
 | |
|         s->dsp &= 0xffffff00;
 | |
|         s->dsp |= val;
 | |
|         break;
 | |
|     case 0x2d: /* DSP[8:15] */
 | |
|         s->dsp &= 0xffff00ff;
 | |
|         s->dsp |= val << 8;
 | |
|         break;
 | |
|     case 0x2e: /* DSP[16:23] */
 | |
|         s->dsp &= 0xff00ffff;
 | |
|         s->dsp |= val << 16;
 | |
|         break;
 | |
|     case 0x2f: /* DSP[24:31] */
 | |
|         s->dsp &= 0x00ffffff;
 | |
|         s->dsp |= val << 24;
 | |
|         if ((s->dmode & LSI_DMODE_MAN) == 0
 | |
|             && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
 | |
|             lsi_execute_script(s);
 | |
|         break;
 | |
|     CASE_SET_REG32(dsps, 0x30)
 | |
|     CASE_SET_REG32(scratch[0], 0x34)
 | |
|     case 0x38: /* DMODE */
 | |
|         if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
 | |
|             BADF("IO mappings not implemented\n");
 | |
|         }
 | |
|         s->dmode = val;
 | |
|         break;
 | |
|     case 0x39: /* DIEN */
 | |
|         s->dien = val;
 | |
|         lsi_update_irq(s);
 | |
|         break;
 | |
|     case 0x3b: /* DCNTL */
 | |
|         s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
 | |
|         if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
 | |
|             lsi_execute_script(s);
 | |
|         break;
 | |
|     case 0x40: /* SIEN0 */
 | |
|         s->sien0 = val;
 | |
|         lsi_update_irq(s);
 | |
|         break;
 | |
|     case 0x41: /* SIEN1 */
 | |
|         s->sien1 = val;
 | |
|         lsi_update_irq(s);
 | |
|         break;
 | |
|     case 0x47: /* GPCNTL0 */
 | |
|         break;
 | |
|     case 0x48: /* STIME0 */
 | |
|         s->stime0 = val;
 | |
|         break;
 | |
|     case 0x49: /* STIME1 */
 | |
|         if (val & 0xf) {
 | |
|             DPRINTF("General purpose timer not implemented\n");
 | |
|             /* ??? Raising the interrupt immediately seems to be sufficient
 | |
|                to keep the FreeBSD driver happy.  */
 | |
|             lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
 | |
|         }
 | |
|         break;
 | |
|     case 0x4a: /* RESPID0 */
 | |
|         s->respid0 = val;
 | |
|         break;
 | |
|     case 0x4b: /* RESPID1 */
 | |
|         s->respid1 = val;
 | |
|         break;
 | |
|     case 0x4d: /* STEST1 */
 | |
|         s->stest1 = val;
 | |
|         break;
 | |
|     case 0x4e: /* STEST2 */
 | |
|         if (val & 1) {
 | |
|             BADF("Low level mode not implemented\n");
 | |
|         }
 | |
|         s->stest2 = val;
 | |
|         break;
 | |
|     case 0x4f: /* STEST3 */
 | |
|         if (val & 0x41) {
 | |
|             BADF("SCSI FIFO test mode not implemented\n");
 | |
|         }
 | |
|         s->stest3 = val;
 | |
|         break;
 | |
|     case 0x56: /* CCNTL0 */
 | |
|         s->ccntl0 = val;
 | |
|         break;
 | |
|     case 0x57: /* CCNTL1 */
 | |
|         s->ccntl1 = val;
 | |
|         break;
 | |
|     CASE_SET_REG32(mmrs, 0xa0)
 | |
|     CASE_SET_REG32(mmws, 0xa4)
 | |
|     CASE_SET_REG32(sfs, 0xa8)
 | |
|     CASE_SET_REG32(drs, 0xac)
 | |
|     CASE_SET_REG32(sbms, 0xb0)
 | |
|     CASE_SET_REG32(dbms, 0xb4)
 | |
|     CASE_SET_REG32(dnad64, 0xb8)
 | |
|     CASE_SET_REG32(pmjad1, 0xc0)
 | |
|     CASE_SET_REG32(pmjad2, 0xc4)
 | |
|     CASE_SET_REG32(rbc, 0xc8)
 | |
|     CASE_SET_REG32(ua, 0xcc)
 | |
|     CASE_SET_REG32(ia, 0xd4)
 | |
|     CASE_SET_REG32(sbc, 0xd8)
 | |
|     CASE_SET_REG32(csbc, 0xdc)
 | |
|     default:
 | |
|         if (offset >= 0x5c && offset < 0xa0) {
 | |
|             int n;
 | |
|             int shift;
 | |
|             n = (offset - 0x58) >> 2;
 | |
|             shift = (offset & 3) * 8;
 | |
|             s->scratch[n] &= ~(0xff << shift);
 | |
|             s->scratch[n] |= (val & 0xff) << shift;
 | |
|         } else {
 | |
|             BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
 | |
|         }
 | |
|     }
 | |
| #undef CASE_SET_REG32
 | |
| }
 | |
| 
 | |
| static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
| 
 | |
|     lsi_reg_writeb(s, addr & 0xff, val);
 | |
| }
 | |
| 
 | |
| static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
| 
 | |
|     addr &= 0xff;
 | |
|     lsi_reg_writeb(s, addr, val & 0xff);
 | |
|     lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
 | |
| }
 | |
| 
 | |
| static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
| 
 | |
|     addr &= 0xff;
 | |
|     lsi_reg_writeb(s, addr, val & 0xff);
 | |
|     lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
 | |
|     lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
 | |
|     lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
 | |
| }
 | |
| 
 | |
| static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
| 
 | |
|     return lsi_reg_readb(s, addr & 0xff);
 | |
| }
 | |
| 
 | |
| static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
|     uint32_t val;
 | |
| 
 | |
|     addr &= 0xff;
 | |
|     val = lsi_reg_readb(s, addr);
 | |
|     val |= lsi_reg_readb(s, addr + 1) << 8;
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
|     uint32_t val;
 | |
|     addr &= 0xff;
 | |
|     val = lsi_reg_readb(s, addr);
 | |
|     val |= lsi_reg_readb(s, addr + 1) << 8;
 | |
|     val |= lsi_reg_readb(s, addr + 2) << 16;
 | |
|     val |= lsi_reg_readb(s, addr + 3) << 24;
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| static CPUReadMemoryFunc *lsi_mmio_readfn[3] = {
 | |
|     lsi_mmio_readb,
 | |
|     lsi_mmio_readw,
 | |
|     lsi_mmio_readl,
 | |
| };
 | |
| 
 | |
| static CPUWriteMemoryFunc *lsi_mmio_writefn[3] = {
 | |
|     lsi_mmio_writeb,
 | |
|     lsi_mmio_writew,
 | |
|     lsi_mmio_writel,
 | |
| };
 | |
| 
 | |
| static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
|     uint32_t newval;
 | |
|     int shift;
 | |
| 
 | |
|     addr &= 0x1fff;
 | |
|     newval = s->script_ram[addr >> 2];
 | |
|     shift = (addr & 3) * 8;
 | |
|     newval &= ~(0xff << shift);
 | |
|     newval |= val << shift;
 | |
|     s->script_ram[addr >> 2] = newval;
 | |
| }
 | |
| 
 | |
| static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
|     uint32_t newval;
 | |
| 
 | |
|     addr &= 0x1fff;
 | |
|     newval = s->script_ram[addr >> 2];
 | |
|     if (addr & 2) {
 | |
|         newval = (newval & 0xffff) | (val << 16);
 | |
|     } else {
 | |
|         newval = (newval & 0xffff0000) | val;
 | |
|     }
 | |
|     s->script_ram[addr >> 2] = newval;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
| 
 | |
|     addr &= 0x1fff;
 | |
|     s->script_ram[addr >> 2] = val;
 | |
| }
 | |
| 
 | |
| static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
|     uint32_t val;
 | |
| 
 | |
|     addr &= 0x1fff;
 | |
|     val = s->script_ram[addr >> 2];
 | |
|     val >>= (addr & 3) * 8;
 | |
|     return val & 0xff;
 | |
| }
 | |
| 
 | |
| static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
|     uint32_t val;
 | |
| 
 | |
|     addr &= 0x1fff;
 | |
|     val = s->script_ram[addr >> 2];
 | |
|     if (addr & 2)
 | |
|         val >>= 16;
 | |
|     return le16_to_cpu(val);
 | |
| }
 | |
| 
 | |
| static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
| 
 | |
|     addr &= 0x1fff;
 | |
|     return le32_to_cpu(s->script_ram[addr >> 2]);
 | |
| }
 | |
| 
 | |
| static CPUReadMemoryFunc *lsi_ram_readfn[3] = {
 | |
|     lsi_ram_readb,
 | |
|     lsi_ram_readw,
 | |
|     lsi_ram_readl,
 | |
| };
 | |
| 
 | |
| static CPUWriteMemoryFunc *lsi_ram_writefn[3] = {
 | |
|     lsi_ram_writeb,
 | |
|     lsi_ram_writew,
 | |
|     lsi_ram_writel,
 | |
| };
 | |
| 
 | |
| static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
|     return lsi_reg_readb(s, addr & 0xff);
 | |
| }
 | |
| 
 | |
| static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
|     uint32_t val;
 | |
|     addr &= 0xff;
 | |
|     val = lsi_reg_readb(s, addr);
 | |
|     val |= lsi_reg_readb(s, addr + 1) << 8;
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
|     uint32_t val;
 | |
|     addr &= 0xff;
 | |
|     val = lsi_reg_readb(s, addr);
 | |
|     val |= lsi_reg_readb(s, addr + 1) << 8;
 | |
|     val |= lsi_reg_readb(s, addr + 2) << 16;
 | |
|     val |= lsi_reg_readb(s, addr + 3) << 24;
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
|     lsi_reg_writeb(s, addr & 0xff, val);
 | |
| }
 | |
| 
 | |
| static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
|     addr &= 0xff;
 | |
|     lsi_reg_writeb(s, addr, val & 0xff);
 | |
|     lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
 | |
| }
 | |
| 
 | |
| static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
|     addr &= 0xff;
 | |
|     lsi_reg_writeb(s, addr, val & 0xff);
 | |
|     lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
 | |
|     lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
 | |
|     lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
 | |
| }
 | |
| 
 | |
| static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
 | |
|                            uint32_t addr, uint32_t size, int type)
 | |
| {
 | |
|     LSIState *s = (LSIState *)pci_dev;
 | |
| 
 | |
|     DPRINTF("Mapping IO at %08x\n", addr);
 | |
| 
 | |
|     register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
 | |
|     register_ioport_read(addr, 256, 1, lsi_io_readb, s);
 | |
|     register_ioport_write(addr, 256, 2, lsi_io_writew, s);
 | |
|     register_ioport_read(addr, 256, 2, lsi_io_readw, s);
 | |
|     register_ioport_write(addr, 256, 4, lsi_io_writel, s);
 | |
|     register_ioport_read(addr, 256, 4, lsi_io_readl, s);
 | |
| }
 | |
| 
 | |
| static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
 | |
|                             uint32_t addr, uint32_t size, int type)
 | |
| {
 | |
|     LSIState *s = (LSIState *)pci_dev;
 | |
| 
 | |
|     DPRINTF("Mapping ram at %08x\n", addr);
 | |
|     s->script_ram_base = addr;
 | |
|     cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
 | |
| }
 | |
| 
 | |
| static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
 | |
|                              uint32_t addr, uint32_t size, int type)
 | |
| {
 | |
|     LSIState *s = (LSIState *)pci_dev;
 | |
| 
 | |
|     DPRINTF("Mapping registers at %08x\n", addr);
 | |
|     cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
 | |
| }
 | |
| 
 | |
| void lsi_scsi_attach(void *opaque, BlockDriverState *bd, int id)
 | |
| {
 | |
|     LSIState *s = (LSIState *)opaque;
 | |
| 
 | |
|     if (id < 0) {
 | |
|         for (id = 0; id < LSI_MAX_DEVS; id++) {
 | |
|             if (s->scsi_dev[id] == NULL)
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
|     if (id >= LSI_MAX_DEVS) {
 | |
|         BADF("Bad Device ID %d\n", id);
 | |
|         return;
 | |
|     }
 | |
|     if (s->scsi_dev[id]) {
 | |
|         DPRINTF("Destroying device %d\n", id);
 | |
|         s->scsi_dev[id]->destroy(s->scsi_dev[id]);
 | |
|     }
 | |
|     DPRINTF("Attaching block device %d\n", id);
 | |
|     s->scsi_dev[id] = scsi_generic_init(bd, 1, lsi_command_complete, s);
 | |
|     if (s->scsi_dev[id] == NULL)
 | |
|         s->scsi_dev[id] = scsi_disk_init(bd, 1, lsi_command_complete, s);
 | |
|     bd->private = &s->pci_dev;
 | |
| }
 | |
| 
 | |
| static int lsi_scsi_uninit(PCIDevice *d)
 | |
| {
 | |
|     LSIState *s = (LSIState *) d;
 | |
| 
 | |
|     cpu_unregister_io_memory(s->mmio_io_addr);
 | |
|     cpu_unregister_io_memory(s->ram_io_addr);
 | |
| 
 | |
|     qemu_free(s->queue);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void *lsi_scsi_init(PCIBus *bus, int devfn)
 | |
| {
 | |
|     LSIState *s;
 | |
|     uint8_t *pci_conf;
 | |
| 
 | |
|     s = (LSIState *)pci_register_device(bus, "LSI53C895A SCSI HBA",
 | |
|                                         sizeof(*s), devfn, NULL, NULL);
 | |
|     if (s == NULL) {
 | |
|         fprintf(stderr, "lsi-scsi: Failed to register PCI device\n");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     pci_conf = s->pci_dev.config;
 | |
| 
 | |
|     /* PCI Vendor ID (word) */
 | |
|     pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
 | |
|     /* PCI device ID (word) */
 | |
|     pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
 | |
|     /* PCI base class code */
 | |
|     pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
 | |
|     /* PCI subsystem ID */
 | |
|     pci_conf[0x2e] = 0x00;
 | |
|     pci_conf[0x2f] = 0x10;
 | |
|     /* PCI latency timer = 255 */
 | |
|     pci_conf[0x0d] = 0xff;
 | |
|     /* Interrupt pin 1 */
 | |
|     pci_conf[0x3d] = 0x01;
 | |
| 
 | |
|     s->mmio_io_addr = cpu_register_io_memory(0, lsi_mmio_readfn,
 | |
|                                              lsi_mmio_writefn, s);
 | |
|     s->ram_io_addr = cpu_register_io_memory(0, lsi_ram_readfn,
 | |
|                                             lsi_ram_writefn, s);
 | |
| 
 | |
|     pci_register_io_region((struct PCIDevice *)s, 0, 256,
 | |
|                            PCI_ADDRESS_SPACE_IO, lsi_io_mapfunc);
 | |
|     pci_register_io_region((struct PCIDevice *)s, 1, 0x400,
 | |
|                            PCI_ADDRESS_SPACE_MEM, lsi_mmio_mapfunc);
 | |
|     pci_register_io_region((struct PCIDevice *)s, 2, 0x2000,
 | |
|                            PCI_ADDRESS_SPACE_MEM, lsi_ram_mapfunc);
 | |
|     s->queue = qemu_malloc(sizeof(lsi_queue));
 | |
|     s->queue_len = 1;
 | |
|     s->active_commands = 0;
 | |
|     s->pci_dev.unregister = lsi_scsi_uninit;
 | |
| 
 | |
|     lsi_soft_reset(s);
 | |
| 
 | |
|     return s;
 | |
| }
 |