Merge branch 'qspi.2' of git://developer.petalogix.com/public/qemu

* 'qspi.2' of git://developer.petalogix.com/public/qemu:
  xilinx_zynq: added QSPI controller
  xilinx_spips: Generalised to model QSPI
  m25p80: Support for Quad SPI
This commit is contained in:
Blue Swirl 2012-10-30 18:35:18 +00:00
commit 742a40229d
3 changed files with 341 additions and 51 deletions

View File

@ -72,6 +72,10 @@ typedef struct FlashPartInfo {
.page_size = 256,\ .page_size = 256,\
.flags = (_flags),\ .flags = (_flags),\
#define JEDEC_NUMONYX 0x20
#define JEDEC_WINBOND 0xEF
#define JEDEC_SPANSION 0x01
static const FlashPartInfo known_devices[] = { static const FlashPartInfo known_devices[] = {
/* Atmel -- some are (confusingly) marketed as "DataFlash" */ /* Atmel -- some are (confusingly) marketed as "DataFlash" */
{ INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) }, { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
@ -180,17 +184,26 @@ static const FlashPartInfo known_devices[] = {
typedef enum { typedef enum {
NOP = 0, NOP = 0,
PP = 0x2,
READ = 0x3,
WRDI = 0x4, WRDI = 0x4,
RDSR = 0x5, RDSR = 0x5,
WREN = 0x6, WREN = 0x6,
JEDEC_READ = 0x9f,
BULK_ERASE = 0xc7,
READ = 0x3,
FAST_READ = 0xb, FAST_READ = 0xb,
DOR = 0x3b,
QOR = 0x6b,
DIOR = 0xbb,
QIOR = 0xeb,
PP = 0x2,
DPP = 0xa2,
QPP = 0x32,
ERASE_4K = 0x20, ERASE_4K = 0x20,
ERASE_32K = 0x52, ERASE_32K = 0x52,
ERASE_SECTOR = 0xd8, ERASE_SECTOR = 0xd8,
JEDEC_READ = 0x9f,
BULK_ERASE = 0xc7,
} FlashCMD; } FlashCMD;
typedef enum { typedef enum {
@ -346,11 +359,17 @@ static void complete_collecting_data(Flash *s)
s->cur_addr |= s->data[2]; s->cur_addr |= s->data[2];
switch (s->cmd_in_progress) { switch (s->cmd_in_progress) {
case DPP:
case QPP:
case PP: case PP:
s->state = STATE_PAGE_PROGRAM; s->state = STATE_PAGE_PROGRAM;
break; break;
case READ: case READ:
case FAST_READ: case FAST_READ:
case DOR:
case QOR:
case DIOR:
case QIOR:
s->state = STATE_READ; s->state = STATE_READ;
break; break;
case ERASE_4K: case ERASE_4K:
@ -374,6 +393,8 @@ static void decode_new_cmd(Flash *s, uint32_t value)
case ERASE_32K: case ERASE_32K:
case ERASE_SECTOR: case ERASE_SECTOR:
case READ: case READ:
case DPP:
case QPP:
case PP: case PP:
s->needed_bytes = 3; s->needed_bytes = 3;
s->pos = 0; s->pos = 0;
@ -382,12 +403,44 @@ static void decode_new_cmd(Flash *s, uint32_t value)
break; break;
case FAST_READ: case FAST_READ:
case DOR:
case QOR:
s->needed_bytes = 4; s->needed_bytes = 4;
s->pos = 0; s->pos = 0;
s->len = 0; s->len = 0;
s->state = STATE_COLLECTING_DATA; s->state = STATE_COLLECTING_DATA;
break; break;
case DIOR:
switch ((s->pi->jedec >> 16) & 0xFF) {
case JEDEC_WINBOND:
case JEDEC_SPANSION:
s->needed_bytes = 4;
break;
case JEDEC_NUMONYX:
default:
s->needed_bytes = 5;
}
s->pos = 0;
s->len = 0;
s->state = STATE_COLLECTING_DATA;
break;
case QIOR:
switch ((s->pi->jedec >> 16) & 0xFF) {
case JEDEC_WINBOND:
case JEDEC_SPANSION:
s->needed_bytes = 6;
break;
case JEDEC_NUMONYX:
default:
s->needed_bytes = 8;
}
s->pos = 0;
s->len = 0;
s->state = STATE_COLLECTING_DATA;
break;
case WRDI: case WRDI:
s->write_enable = false; s->write_enable = false;
break; break;

View File

@ -28,6 +28,7 @@
#include "qemu-log.h" #include "qemu-log.h"
#include "fifo.h" #include "fifo.h"
#include "ssi.h" #include "ssi.h"
#include "bitops.h"
#ifdef XILINX_SPIPS_ERR_DEBUG #ifdef XILINX_SPIPS_ERR_DEBUG
#define DB_PRINT(...) do { \ #define DB_PRINT(...) do { \
@ -40,6 +41,8 @@
/* config register */ /* config register */
#define R_CONFIG (0x00 / 4) #define R_CONFIG (0x00 / 4)
#define IFMODE (1 << 31)
#define ENDIAN (1 << 26)
#define MODEFAIL_GEN_EN (1 << 17) #define MODEFAIL_GEN_EN (1 << 17)
#define MAN_START_COM (1 << 16) #define MAN_START_COM (1 << 16)
#define MAN_START_EN (1 << 15) #define MAN_START_EN (1 << 15)
@ -75,45 +78,101 @@
#define R_SLAVE_IDLE_COUNT (0x24 / 4) #define R_SLAVE_IDLE_COUNT (0x24 / 4)
#define R_TX_THRES (0x28 / 4) #define R_TX_THRES (0x28 / 4)
#define R_RX_THRES (0x2C / 4) #define R_RX_THRES (0x2C / 4)
#define R_TXD1 (0x80 / 4)
#define R_TXD2 (0x84 / 4)
#define R_TXD3 (0x88 / 4)
#define R_LQSPI_CFG (0xa0 / 4)
#define R_LQSPI_CFG_RESET 0x03A002EB
#define LQSPI_CFG_LQ_MODE (1 << 31)
#define LQSPI_CFG_TWO_MEM (1 << 30)
#define LQSPI_CFG_SEP_BUS (1 << 30)
#define LQSPI_CFG_U_PAGE (1 << 28)
#define LQSPI_CFG_MODE_EN (1 << 25)
#define LQSPI_CFG_MODE_WIDTH 8
#define LQSPI_CFG_MODE_SHIFT 16
#define LQSPI_CFG_DUMMY_WIDTH 3
#define LQSPI_CFG_DUMMY_SHIFT 8
#define LQSPI_CFG_INST_CODE 0xFF
#define R_LQSPI_STS (0xA4 / 4)
#define LQSPI_STS_WR_RECVD (1 << 1)
#define R_MOD_ID (0xFC / 4) #define R_MOD_ID (0xFC / 4)
#define R_MAX (R_MOD_ID+1) #define R_MAX (R_MOD_ID+1)
/* size of TXRX FIFOs */ /* size of TXRX FIFOs */
#define NUM_CS_LINES 4
#define RXFF_A 32 #define RXFF_A 32
#define TXFF_A 32 #define TXFF_A 32
/* 16MB per linear region */
#define LQSPI_ADDRESS_BITS 24
/* Bite off 4k chunks at a time */
#define LQSPI_CACHE_SIZE 1024
#define SNOOP_CHECKING 0xFF
#define SNOOP_NONE 0xFE
#define SNOOP_STRIPING 0
typedef struct { typedef struct {
SysBusDevice busdev; SysBusDevice busdev;
MemoryRegion iomem; MemoryRegion iomem;
MemoryRegion mmlqspi;
qemu_irq irq; qemu_irq irq;
int irqline; int irqline;
qemu_irq cs_lines[NUM_CS_LINES]; uint8_t num_cs;
SSIBus *spi; uint8_t num_busses;
uint8_t snoop_state;
qemu_irq *cs_lines;
SSIBus **spi;
Fifo8 rx_fifo; Fifo8 rx_fifo;
Fifo8 tx_fifo; Fifo8 tx_fifo;
uint8_t num_txrx_bytes;
uint32_t regs[R_MAX]; uint32_t regs[R_MAX];
uint32_t lqspi_buf[LQSPI_CACHE_SIZE];
hwaddr lqspi_cached_addr;
} XilinxSPIPS; } XilinxSPIPS;
static inline int num_effective_busses(XilinxSPIPS *s)
{
return (s->regs[R_LQSPI_STS] & LQSPI_CFG_SEP_BUS &&
s->regs[R_LQSPI_STS] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1;
}
static void xilinx_spips_update_cs_lines(XilinxSPIPS *s) static void xilinx_spips_update_cs_lines(XilinxSPIPS *s)
{ {
int i; int i, j;
bool found = false; bool found = false;
int field = s->regs[R_CONFIG] >> CS_SHIFT; int field = s->regs[R_CONFIG] >> CS_SHIFT;
for (i = 0; i < NUM_CS_LINES; i++) { for (i = 0; i < s->num_cs; i++) {
if (~field & (1 << i) && !found) { for (j = 0; j < num_effective_busses(s); j++) {
found = true; int upage = !!(s->regs[R_LQSPI_STS] & LQSPI_CFG_U_PAGE);
DB_PRINT("selecting slave %d\n", i); int cs_to_set = (j * s->num_cs + i + upage) %
qemu_set_irq(s->cs_lines[i], 0); (s->num_cs * s->num_busses);
} else {
qemu_set_irq(s->cs_lines[i], 1); if (~field & (1 << i) && !found) {
DB_PRINT("selecting slave %d\n", i);
qemu_set_irq(s->cs_lines[cs_to_set], 0);
} else {
qemu_set_irq(s->cs_lines[cs_to_set], 1);
}
} }
} if (~field & (1 << i)) {
found = true;
}
}
if (!found) {
s->snoop_state = SNOOP_CHECKING;
}
} }
static void xilinx_spips_update_ixr(XilinxSPIPS *s) static void xilinx_spips_update_ixr(XilinxSPIPS *s)
@ -154,6 +213,8 @@ static void xilinx_spips_reset(DeviceState *d)
s->regs[R_RX_THRES] = 1; s->regs[R_RX_THRES] = 1;
/* FIXME: move magic number definition somewhere sensible */ /* FIXME: move magic number definition somewhere sensible */
s->regs[R_MOD_ID] = 0x01090106; s->regs[R_MOD_ID] = 0x01090106;
s->regs[R_LQSPI_CFG] = R_LQSPI_CFG_RESET;
s->snoop_state = SNOOP_CHECKING;
xilinx_spips_update_ixr(s); xilinx_spips_update_ixr(s);
xilinx_spips_update_cs_lines(s); xilinx_spips_update_cs_lines(s);
} }
@ -161,26 +222,68 @@ static void xilinx_spips_reset(DeviceState *d)
static void xilinx_spips_flush_txfifo(XilinxSPIPS *s) static void xilinx_spips_flush_txfifo(XilinxSPIPS *s)
{ {
for (;;) { for (;;) {
uint32_t r; int i;
uint8_t value; uint8_t rx;
uint8_t tx = 0;
if (fifo8_is_empty(&s->tx_fifo)) { for (i = 0; i < num_effective_busses(s); ++i) {
s->regs[R_INTR_STATUS] |= IXR_TX_FIFO_UNDERFLOW; if (!i || s->snoop_state == SNOOP_STRIPING) {
break; if (fifo8_is_empty(&s->tx_fifo)) {
} else { s->regs[R_INTR_STATUS] |= IXR_TX_FIFO_UNDERFLOW;
value = fifo8_pop(&s->tx_fifo); xilinx_spips_update_ixr(s);
return;
} else {
tx = fifo8_pop(&s->tx_fifo);
}
}
rx = ssi_transfer(s->spi[i], (uint32_t)tx);
DB_PRINT("tx = %02x rx = %02x\n", tx, rx);
if (!i || s->snoop_state == SNOOP_STRIPING) {
if (fifo8_is_full(&s->rx_fifo)) {
s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW;
DB_PRINT("rx FIFO overflow");
} else {
fifo8_push(&s->rx_fifo, (uint8_t)rx);
}
}
} }
r = ssi_transfer(s->spi, (uint32_t)value); switch (s->snoop_state) {
DB_PRINT("tx = %02x rx = %02x\n", value, r); case (SNOOP_CHECKING):
if (fifo8_is_full(&s->rx_fifo)) { switch (tx) { /* new instruction code */
s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW; case 0x0b: /* dual/quad output read DOR/QOR */
DB_PRINT("rx FIFO overflow"); case 0x6b:
} else { s->snoop_state = 4;
fifo8_push(&s->rx_fifo, (uint8_t)r); break;
/* FIXME: these vary between vendor - set to spansion */
case 0xbb: /* high performance dual read DIOR */
s->snoop_state = 4;
break;
case 0xeb: /* high performance quad read QIOR */
s->snoop_state = 6;
break;
default:
s->snoop_state = SNOOP_NONE;
}
break;
case (SNOOP_STRIPING):
case (SNOOP_NONE):
break;
default:
s->snoop_state--;
} }
} }
xilinx_spips_update_ixr(s); }
static inline void rx_data_bytes(XilinxSPIPS *s, uint32_t *value, int max)
{
int i;
*value = 0;
for (i = 0; i < max && !fifo8_is_empty(&s->rx_fifo); ++i) {
uint32_t next = fifo8_pop(&s->rx_fifo) & 0xFF;
*value |= next << 8 * (s->regs[R_CONFIG] & ENDIAN ? 3-i : i);
}
} }
static uint64_t xilinx_spips_read(void *opaque, hwaddr addr, static uint64_t xilinx_spips_read(void *opaque, hwaddr addr,
@ -214,7 +317,7 @@ static uint64_t xilinx_spips_read(void *opaque, hwaddr addr,
mask = 0; mask = 0;
break; break;
case R_RX_DATA: case R_RX_DATA:
ret = (uint32_t)fifo8_pop(&s->rx_fifo); rx_data_bytes(s, &ret, s->num_txrx_bytes);
DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret); DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
xilinx_spips_update_ixr(s); xilinx_spips_update_ixr(s);
return ret; return ret;
@ -224,6 +327,20 @@ static uint64_t xilinx_spips_read(void *opaque, hwaddr addr,
} }
static inline void tx_data_bytes(XilinxSPIPS *s, uint32_t value, int num)
{
int i;
for (i = 0; i < num && !fifo8_is_full(&s->tx_fifo); ++i) {
if (s->regs[R_CONFIG] & ENDIAN) {
fifo8_push(&s->tx_fifo, (uint8_t)(value >> 24));
value <<= 8;
} else {
fifo8_push(&s->tx_fifo, (uint8_t)value);
value >>= 8;
}
}
}
static void xilinx_spips_write(void *opaque, hwaddr addr, static void xilinx_spips_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size) uint64_t value, unsigned size)
{ {
@ -264,7 +381,16 @@ static void xilinx_spips_write(void *opaque, hwaddr addr,
mask = 0; mask = 0;
break; break;
case R_TX_DATA: case R_TX_DATA:
fifo8_push(&s->tx_fifo, (uint8_t)value); tx_data_bytes(s, (uint32_t)value, s->num_txrx_bytes);
goto no_reg_update;
case R_TXD1:
tx_data_bytes(s, (uint32_t)value, 1);
goto no_reg_update;
case R_TXD2:
tx_data_bytes(s, (uint32_t)value, 2);
goto no_reg_update;
case R_TXD3:
tx_data_bytes(s, (uint32_t)value, 3);
goto no_reg_update; goto no_reg_update;
} }
s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask); s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask);
@ -282,6 +408,81 @@ static const MemoryRegionOps spips_ops = {
.endianness = DEVICE_LITTLE_ENDIAN, .endianness = DEVICE_LITTLE_ENDIAN,
}; };
#define LQSPI_CACHE_SIZE 1024
static uint64_t
lqspi_read(void *opaque, hwaddr addr, unsigned int size)
{
int i;
XilinxSPIPS *s = opaque;
if (addr >= s->lqspi_cached_addr &&
addr <= s->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
return s->lqspi_buf[(addr - s->lqspi_cached_addr) >> 2];
} else {
int flash_addr = (addr / num_effective_busses(s));
int slave = flash_addr >> LQSPI_ADDRESS_BITS;
int cache_entry = 0;
DB_PRINT("config reg status: %08x\n", s->regs[R_LQSPI_CFG]);
fifo8_reset(&s->tx_fifo);
fifo8_reset(&s->rx_fifo);
s->regs[R_CONFIG] &= ~CS;
s->regs[R_CONFIG] |= (~(1 << slave) << CS_SHIFT) & CS;
xilinx_spips_update_cs_lines(s);
/* instruction */
DB_PRINT("pushing read instruction: %02x\n",
(uint8_t)(s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE));
fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE);
/* read address */
DB_PRINT("pushing read address %06x\n", flash_addr);
fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16));
fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8));
fifo8_push(&s->tx_fifo, (uint8_t)flash_addr);
/* mode bits */
if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_MODE_EN) {
fifo8_push(&s->tx_fifo, extract32(s->regs[R_LQSPI_CFG],
LQSPI_CFG_MODE_SHIFT,
LQSPI_CFG_MODE_WIDTH));
}
/* dummy bytes */
for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT,
LQSPI_CFG_DUMMY_WIDTH)); ++i) {
DB_PRINT("pushing dummy byte\n");
fifo8_push(&s->tx_fifo, 0);
}
xilinx_spips_flush_txfifo(s);
fifo8_reset(&s->rx_fifo);
DB_PRINT("starting QSPI data read\n");
for (i = 0; i < LQSPI_CACHE_SIZE / 4; ++i) {
tx_data_bytes(s, 0, 4);
xilinx_spips_flush_txfifo(s);
rx_data_bytes(s, &s->lqspi_buf[cache_entry], 4);
cache_entry++;
}
s->regs[R_CONFIG] |= CS;
xilinx_spips_update_cs_lines(s);
s->lqspi_cached_addr = addr;
return lqspi_read(opaque, addr, size);
}
}
static const MemoryRegionOps lqspi_ops = {
.read = lqspi_read,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4
}
};
static int xilinx_spips_init(SysBusDevice *dev) static int xilinx_spips_init(SysBusDevice *dev)
{ {
XilinxSPIPS *s = FROM_SYSBUS(typeof(*s), dev); XilinxSPIPS *s = FROM_SYSBUS(typeof(*s), dev);
@ -289,18 +490,30 @@ static int xilinx_spips_init(SysBusDevice *dev)
DB_PRINT("inited device model\n"); DB_PRINT("inited device model\n");
s->spi = ssi_create_bus(&dev->qdev, "spi"); s->spi = g_new(SSIBus *, s->num_busses);
for (i = 0; i < s->num_busses; ++i) {
char bus_name[16];
snprintf(bus_name, 16, "spi%d", i);
s->spi[i] = ssi_create_bus(&dev->qdev, bus_name);
}
ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi); s->cs_lines = g_new(qemu_irq, s->num_cs * s->num_busses);
ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi[0]);
ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi[1]);
sysbus_init_irq(dev, &s->irq); sysbus_init_irq(dev, &s->irq);
for (i = 0; i < NUM_CS_LINES; ++i) { for (i = 0; i < s->num_cs * s->num_busses; ++i) {
sysbus_init_irq(dev, &s->cs_lines[i]); sysbus_init_irq(dev, &s->cs_lines[i]);
} }
memory_region_init_io(&s->iomem, &spips_ops, s, "spi", R_MAX*4); memory_region_init_io(&s->iomem, &spips_ops, s, "spi", R_MAX*4);
sysbus_init_mmio(dev, &s->iomem); sysbus_init_mmio(dev, &s->iomem);
memory_region_init_io(&s->mmlqspi, &lqspi_ops, s, "lqspi",
(1 << LQSPI_ADDRESS_BITS) * 2);
sysbus_init_mmio(dev, &s->mmlqspi);
s->irqline = -1; s->irqline = -1;
s->lqspi_cached_addr = ~0ULL;
fifo8_create(&s->rx_fifo, RXFF_A); fifo8_create(&s->rx_fifo, RXFF_A);
fifo8_create(&s->tx_fifo, TXFF_A); fifo8_create(&s->tx_fifo, TXFF_A);
@ -317,18 +530,25 @@ static int xilinx_spips_post_load(void *opaque, int version_id)
static const VMStateDescription vmstate_xilinx_spips = { static const VMStateDescription vmstate_xilinx_spips = {
.name = "xilinx_spips", .name = "xilinx_spips",
.version_id = 1, .version_id = 2,
.minimum_version_id = 1, .minimum_version_id = 2,
.minimum_version_id_old = 1, .minimum_version_id_old = 2,
.post_load = xilinx_spips_post_load, .post_load = xilinx_spips_post_load,
.fields = (VMStateField[]) { .fields = (VMStateField[]) {
VMSTATE_FIFO8(tx_fifo, XilinxSPIPS), VMSTATE_FIFO8(tx_fifo, XilinxSPIPS),
VMSTATE_FIFO8(rx_fifo, XilinxSPIPS), VMSTATE_FIFO8(rx_fifo, XilinxSPIPS),
VMSTATE_UINT32_ARRAY(regs, XilinxSPIPS, R_MAX), VMSTATE_UINT32_ARRAY(regs, XilinxSPIPS, R_MAX),
VMSTATE_UINT8(snoop_state, XilinxSPIPS),
VMSTATE_END_OF_LIST() VMSTATE_END_OF_LIST()
} }
}; };
static Property xilinx_spips_properties[] = {
DEFINE_PROP_UINT8("num-busses", XilinxSPIPS, num_busses, 1),
DEFINE_PROP_UINT8("num-ss-bits", XilinxSPIPS, num_cs, 4),
DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1),
DEFINE_PROP_END_OF_LIST(),
};
static void xilinx_spips_class_init(ObjectClass *klass, void *data) static void xilinx_spips_class_init(ObjectClass *klass, void *data)
{ {
DeviceClass *dc = DEVICE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass);
@ -336,6 +556,7 @@ static void xilinx_spips_class_init(ObjectClass *klass, void *data)
sdc->init = xilinx_spips_init; sdc->init = xilinx_spips_init;
dc->reset = xilinx_spips_reset; dc->reset = xilinx_spips_reset;
dc->props = xilinx_spips_properties;
dc->vmsd = &vmstate_xilinx_spips; dc->vmsd = &vmstate_xilinx_spips;
} }

View File

@ -27,6 +27,8 @@
#include "ssi.h" #include "ssi.h"
#define NUM_SPI_FLASHES 4 #define NUM_SPI_FLASHES 4
#define NUM_QSPI_FLASHES 2
#define NUM_QSPI_BUSSES 2
#define FLASH_SIZE (64 * 1024 * 1024) #define FLASH_SIZE (64 * 1024 * 1024)
#define FLASH_SECTOR_SIZE (128 * 1024) #define FLASH_SECTOR_SIZE (128 * 1024)
@ -49,30 +51,43 @@ static void gem_init(NICInfo *nd, uint32_t base, qemu_irq irq)
sysbus_connect_irq(s, 0, irq); sysbus_connect_irq(s, 0, irq);
} }
static inline void zynq_init_spi_flashes(uint32_t base_addr, qemu_irq irq) static inline void zynq_init_spi_flashes(uint32_t base_addr, qemu_irq irq,
bool is_qspi)
{ {
DeviceState *dev; DeviceState *dev;
SysBusDevice *busdev; SysBusDevice *busdev;
SSIBus *spi; SSIBus *spi;
int i; int i, j;
int num_busses = is_qspi ? NUM_QSPI_BUSSES : 1;
int num_ss = is_qspi ? NUM_QSPI_FLASHES : NUM_SPI_FLASHES;
dev = qdev_create(NULL, "xilinx,spips"); dev = qdev_create(NULL, "xilinx,spips");
qdev_prop_set_uint8(dev, "num-txrx-bytes", is_qspi ? 4 : 1);
qdev_prop_set_uint8(dev, "num-ss-bits", num_ss);
qdev_prop_set_uint8(dev, "num-busses", num_busses);
qdev_init_nofail(dev); qdev_init_nofail(dev);
busdev = sysbus_from_qdev(dev); busdev = sysbus_from_qdev(dev);
sysbus_mmio_map(busdev, 0, base_addr); sysbus_mmio_map(busdev, 0, base_addr);
if (is_qspi) {
sysbus_mmio_map(busdev, 1, 0xFC000000);
}
sysbus_connect_irq(busdev, 0, irq); sysbus_connect_irq(busdev, 0, irq);
spi = (SSIBus *)qdev_get_child_bus(dev, "spi"); for (i = 0; i < num_busses; ++i) {
char bus_name[16];
for (i = 0; i < NUM_SPI_FLASHES; ++i) {
qemu_irq cs_line; qemu_irq cs_line;
dev = ssi_create_slave_no_init(spi, "m25p80"); snprintf(bus_name, 16, "spi%d", i);
qdev_prop_set_string(dev, "partname", "n25q128"); spi = (SSIBus *)qdev_get_child_bus(dev, bus_name);
qdev_init_nofail(dev);
cs_line = qdev_get_gpio_in(dev, 0); for (j = 0; j < num_ss; ++j) {
sysbus_connect_irq(busdev, i+1, cs_line); dev = ssi_create_slave_no_init(spi, "m25p80");
qdev_prop_set_string(dev, "partname", "n25q128");
qdev_init_nofail(dev);
cs_line = qdev_get_gpio_in(dev, 0);
sysbus_connect_irq(busdev, i * num_ss + j + 1, cs_line);
}
} }
} }
@ -147,8 +162,9 @@ static void zynq_init(QEMUMachineInitArgs *args)
pic[n] = qdev_get_gpio_in(dev, n); pic[n] = qdev_get_gpio_in(dev, n);
} }
zynq_init_spi_flashes(0xE0006000, pic[58-IRQ_OFFSET]); zynq_init_spi_flashes(0xE0006000, pic[58-IRQ_OFFSET], false);
zynq_init_spi_flashes(0xE0007000, pic[81-IRQ_OFFSET]); zynq_init_spi_flashes(0xE0007000, pic[81-IRQ_OFFSET], false);
zynq_init_spi_flashes(0xE000D000, pic[51-IRQ_OFFSET], true);
sysbus_create_simple("cadence_uart", 0xE0000000, pic[59-IRQ_OFFSET]); sysbus_create_simple("cadence_uart", 0xE0000000, pic[59-IRQ_OFFSET]);
sysbus_create_simple("cadence_uart", 0xE0001000, pic[82-IRQ_OFFSET]); sysbus_create_simple("cadence_uart", 0xE0001000, pic[82-IRQ_OFFSET]);