ETRAX: Simplify serport control logic.

Signed-off-by: Edgar E. Iglesias <edgar.iglesias@gmail.com>
This commit is contained in:
Edgar E. Iglesias 2009-05-05 13:13:18 +02:00
parent f296426006
commit 72af917088

View File

@ -30,16 +30,17 @@
#define D(x) #define D(x)
#define RW_TR_CTRL 0x00 #define RW_TR_CTRL (0x00 / 4)
#define RW_TR_DMA_EN 0x04 #define RW_TR_DMA_EN (0x04 / 4)
#define RW_REC_CTRL 0x08 #define RW_REC_CTRL (0x08 / 4)
#define RW_DOUT 0x1c #define RW_DOUT (0x1c / 4)
#define RS_STAT_DIN 0x20 #define RS_STAT_DIN (0x20 / 4)
#define R_STAT_DIN 0x24 #define R_STAT_DIN (0x24 / 4)
#define RW_INTR_MASK 0x2c #define RW_INTR_MASK (0x2c / 4)
#define RW_ACK_INTR 0x30 #define RW_ACK_INTR (0x30 / 4)
#define R_INTR 0x34 #define R_INTR (0x34 / 4)
#define R_MASKED_INTR 0x38 #define R_MASKED_INTR (0x38 / 4)
#define R_MAX (0x3c / 4)
#define STAT_DAV 16 #define STAT_DAV 16
#define STAT_TR_IDLE 22 #define STAT_TR_IDLE 22
@ -51,30 +52,20 @@ struct etrax_serial
CharDriverState *chr; CharDriverState *chr;
qemu_irq *irq; qemu_irq *irq;
/* This pending thing is a hack. */
int pending_tx; int pending_tx;
/* Control registers. */ /* Control registers. */
uint32_t rw_tr_ctrl; uint32_t regs[R_MAX];
uint32_t rw_tr_dma_en;
uint32_t rw_rec_ctrl;
uint32_t rs_stat_din;
uint32_t r_stat_din;
uint32_t rw_intr_mask;
uint32_t rw_ack_intr;
uint32_t r_intr;
uint32_t r_masked_intr;
}; };
static void ser_update_irq(struct etrax_serial *s) static void ser_update_irq(struct etrax_serial *s)
{ {
s->r_intr &= ~(s->rw_ack_intr); s->regs[R_INTR] &= ~(s->regs[RW_ACK_INTR]);
s->r_masked_intr = s->r_intr & s->rw_intr_mask; s->regs[R_MASKED_INTR] = s->regs[R_INTR] & s->regs[RW_INTR_MASK];
D(printf("irq_mask=%x r_intr=%x rmi=%x airq=%x \n", qemu_set_irq(s->irq[0], !!s->regs[R_MASKED_INTR]);
s->rw_intr_mask, s->r_intr, s->regs[RW_ACK_INTR] = 0;
s->r_masked_intr, s->rw_ack_intr));
qemu_set_irq(s->irq[0], !!s->r_masked_intr);
s->rw_ack_intr = 0;
} }
static uint32_t ser_readl (void *opaque, target_phys_addr_t addr) static uint32_t ser_readl (void *opaque, target_phys_addr_t addr)
@ -83,40 +74,20 @@ static uint32_t ser_readl (void *opaque, target_phys_addr_t addr)
D(CPUState *env = s->env); D(CPUState *env = s->env);
uint32_t r = 0; uint32_t r = 0;
addr >>= 2;
switch (addr) switch (addr)
{ {
case RW_TR_CTRL: case R_STAT_DIN:
r = s->rw_tr_ctrl; r = s->regs[RS_STAT_DIN];
break;
case RW_TR_DMA_EN:
r = s->rw_tr_dma_en;
break; break;
case RS_STAT_DIN: case RS_STAT_DIN:
r = s->rs_stat_din; r = s->regs[addr];
/* clear dav. */ /* Read side-effect: clear dav. */
s->rs_stat_din &= ~(1 << STAT_DAV); s->regs[addr] &= ~(1 << STAT_DAV);
break; break;
case R_STAT_DIN:
r = s->rs_stat_din;
break;
case RW_ACK_INTR:
D(printf("load rw_ack_intr=%x\n", s->rw_ack_intr));
r = s->rw_ack_intr;
break;
case RW_INTR_MASK:
r = s->rw_intr_mask;
break;
case R_INTR:
D(printf("load r_intr=%x\n", s->r_intr));
r = s->r_intr;
break;
case R_MASKED_INTR:
D(printf("load r_maked_intr=%x\n", s->r_masked_intr));
r = s->r_masked_intr;
break;
default: default:
D(printf ("%s %x\n", __func__, addr)); r = s->regs[addr];
D(printf ("%s %x=%x\n", __func__, addr, r));
break; break;
} }
return r; return r;
@ -129,36 +100,26 @@ ser_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
unsigned char ch = value; unsigned char ch = value;
D(CPUState *env = s->env); D(CPUState *env = s->env);
D(printf ("%s %x %x\n", __func__, addr, value));
addr >>= 2;
switch (addr) switch (addr)
{ {
case RW_TR_CTRL:
D(printf("rw_tr_ctrl=%x\n", value));
s->rw_tr_ctrl = value;
break;
case RW_TR_DMA_EN:
D(printf("rw_tr_dma_en=%x\n", value));
s->rw_tr_dma_en = value;
break;
case RW_DOUT: case RW_DOUT:
qemu_chr_write(s->chr, &ch, 1); qemu_chr_write(s->chr, &ch, 1);
s->r_intr |= 1; s->regs[R_INTR] |= 1;
s->pending_tx = 1; s->pending_tx = 1;
s->regs[addr] = value;
break; break;
case RW_ACK_INTR: case RW_ACK_INTR:
D(printf("rw_ack_intr=%x\n", value)); s->regs[addr] = value;
s->rw_ack_intr = value; if (s->pending_tx && (s->regs[addr] & 1)) {
if (s->pending_tx && (s->rw_ack_intr & 1)) { s->regs[R_INTR] |= 1;
s->r_intr |= 1;
s->pending_tx = 0; s->pending_tx = 0;
s->rw_ack_intr &= ~1; s->regs[addr] &= ~1;
} }
break; break;
case RW_INTR_MASK:
D(printf("r_intr_mask=%x\n", value));
s->rw_intr_mask = value;
break;
default: default:
D(printf ("%s %x %x\n", __func__, addr, value)); s->regs[addr] = value;
break; break;
} }
ser_update_irq(s); ser_update_irq(s);
@ -178,10 +139,10 @@ static void serial_receive(void *opaque, const uint8_t *buf, int size)
{ {
struct etrax_serial *s = opaque; struct etrax_serial *s = opaque;
s->r_intr |= 8; s->regs[R_INTR] |= 8;
s->rs_stat_din &= ~0xff; s->regs[RS_STAT_DIN] &= ~0xff;
s->rs_stat_din |= (buf[0] & 0xff); s->regs[RS_STAT_DIN] |= (buf[0] & 0xff);
s->rs_stat_din |= (1 << STAT_DAV); /* dav. */ s->regs[RS_STAT_DIN] |= (1 << STAT_DAV); /* dav. */
ser_update_irq(s); ser_update_irq(s);
} }
@ -191,10 +152,10 @@ static int serial_can_receive(void *opaque)
int r; int r;
/* Is the receiver enabled? */ /* Is the receiver enabled? */
r = s->rw_rec_ctrl & 1; r = s->regs[RW_REC_CTRL] & 1;
/* Pending rx data? */ /* Pending rx data? */
r |= !(s->r_intr & 8); r |= !(s->regs[R_INTR] & 8);
return r; return r;
} }
@ -216,12 +177,12 @@ void etraxfs_ser_init(CPUState *env, qemu_irq *irq, CharDriverState *chr,
s->chr = chr; s->chr = chr;
/* transmitter begins ready and idle. */ /* transmitter begins ready and idle. */
s->rs_stat_din |= (1 << STAT_TR_RDY); s->regs[RS_STAT_DIN] |= (1 << STAT_TR_RDY);
s->rs_stat_din |= (1 << STAT_TR_IDLE); s->regs[RS_STAT_DIN] |= (1 << STAT_TR_IDLE);
qemu_chr_add_handlers(chr, serial_can_receive, serial_receive, qemu_chr_add_handlers(chr, serial_can_receive, serial_receive,
serial_event, s); serial_event, s);
ser_regs = cpu_register_io_memory(0, ser_read, ser_write, s); ser_regs = cpu_register_io_memory(0, ser_read, ser_write, s);
cpu_register_physical_memory (base, 0x3c, ser_regs); cpu_register_physical_memory (base, R_MAX * 4, ser_regs);
} }