mirror of
https://git.proxmox.com/git/qemu
synced 2025-08-11 15:14:50 +00:00
use the generic soft float code
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1333 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
parent
158142c2c2
commit
2049521883
@ -1,120 +0,0 @@
|
|||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
The macro `BITS64' can be defined to indicate that 64-bit integer types are
|
|
||||||
supported by the compiler.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
#define BITS64
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Each of the following `typedef's defines the most convenient type that holds
|
|
||||||
integers of at least as many bits as specified. For example, `uint8' should
|
|
||||||
be the most convenient type that can hold unsigned integers of as many as
|
|
||||||
8 bits. The `flag' type must be able to hold either a 0 or 1. For most
|
|
||||||
implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
|
|
||||||
to the same as `int'.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
typedef char flag;
|
|
||||||
typedef unsigned char uint8;
|
|
||||||
typedef signed char int8;
|
|
||||||
typedef int uint16;
|
|
||||||
typedef int int16;
|
|
||||||
typedef unsigned int uint32;
|
|
||||||
typedef signed int int32;
|
|
||||||
#ifdef BITS64
|
|
||||||
typedef unsigned long long int bits64;
|
|
||||||
typedef signed long long int sbits64;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Each of the following `typedef's defines a type that holds integers
|
|
||||||
of _exactly_ the number of bits specified. For instance, for most
|
|
||||||
implementation of C, `bits16' and `sbits16' should be `typedef'ed to
|
|
||||||
`unsigned short int' and `signed short int' (or `short int'), respectively.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
typedef unsigned char bits8;
|
|
||||||
typedef signed char sbits8;
|
|
||||||
typedef unsigned short int bits16;
|
|
||||||
typedef signed short int sbits16;
|
|
||||||
typedef unsigned int bits32;
|
|
||||||
typedef signed int sbits32;
|
|
||||||
#ifdef BITS64
|
|
||||||
typedef unsigned long long int uint64;
|
|
||||||
typedef signed long long int int64;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef BITS64
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
The `LIT64' macro takes as its argument a textual integer literal and if
|
|
||||||
necessary ``marks'' the literal as having a 64-bit integer type. For
|
|
||||||
example, the Gnu C Compiler (`gcc') requires that 64-bit literals be
|
|
||||||
appended with the letters `LL' standing for `long long', which is `gcc's
|
|
||||||
name for the 64-bit integer type. Some compilers may allow `LIT64' to be
|
|
||||||
defined as the identity macro: `#define LIT64( a ) a'.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
#define LIT64( a ) a##LL
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
The macro `INLINE' can be used before functions that should be inlined. If
|
|
||||||
a compiler does not support explicit inlining, this macro should be defined
|
|
||||||
to be `static'.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
#define INLINE extern __inline__
|
|
||||||
|
|
||||||
|
|
||||||
/* For use as a GCC soft-float library we need some special function names. */
|
|
||||||
|
|
||||||
#ifdef __LIBFLOAT__
|
|
||||||
|
|
||||||
/* Some 32-bit ops can be mapped straight across by just changing the name. */
|
|
||||||
#define float32_add __addsf3
|
|
||||||
#define float32_sub __subsf3
|
|
||||||
#define float32_mul __mulsf3
|
|
||||||
#define float32_div __divsf3
|
|
||||||
#define int32_to_float32 __floatsisf
|
|
||||||
#define float32_to_int32_round_to_zero __fixsfsi
|
|
||||||
#define float32_to_uint32_round_to_zero __fixunssfsi
|
|
||||||
|
|
||||||
/* These ones go through the glue code. To avoid namespace pollution
|
|
||||||
we rename the internal functions too. */
|
|
||||||
#define float32_eq ___float32_eq
|
|
||||||
#define float32_le ___float32_le
|
|
||||||
#define float32_lt ___float32_lt
|
|
||||||
|
|
||||||
/* All the 64-bit ops have to go through the glue, so we pull the same
|
|
||||||
trick. */
|
|
||||||
#define float64_add ___float64_add
|
|
||||||
#define float64_sub ___float64_sub
|
|
||||||
#define float64_mul ___float64_mul
|
|
||||||
#define float64_div ___float64_div
|
|
||||||
#define int32_to_float64 ___int32_to_float64
|
|
||||||
#define float64_to_int32_round_to_zero ___float64_to_int32_round_to_zero
|
|
||||||
#define float64_to_uint32_round_to_zero ___float64_to_uint32_round_to_zero
|
|
||||||
#define float64_to_float32 ___float64_to_float32
|
|
||||||
#define float32_to_float64 ___float32_to_float64
|
|
||||||
#define float64_eq ___float64_eq
|
|
||||||
#define float64_le ___float64_le
|
|
||||||
#define float64_lt ___float64_lt
|
|
||||||
|
|
||||||
#if 0
|
|
||||||
#define float64_add __adddf3
|
|
||||||
#define float64_sub __subdf3
|
|
||||||
#define float64_mul __muldf3
|
|
||||||
#define float64_div __divdf3
|
|
||||||
#define int32_to_float64 __floatsidf
|
|
||||||
#define float64_to_int32_round_to_zero __fixdfsi
|
|
||||||
#define float64_to_uint32_round_to_zero __fixunsdfsi
|
|
||||||
#define float64_to_float32 __truncdfsf2
|
|
||||||
#define float32_to_float64 __extendsfdf2
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#endif
|
|
@ -53,7 +53,7 @@ unsigned int DoubleCPDO(const unsigned int opcode)
|
|||||||
switch (fpa11->fType[Fm])
|
switch (fpa11->fType[Fm])
|
||||||
{
|
{
|
||||||
case typeSingle:
|
case typeSingle:
|
||||||
rFm = float32_to_float64(fpa11->fpreg[Fm].fSingle);
|
rFm = float32_to_float64(fpa11->fpreg[Fm].fSingle, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case typeDouble:
|
case typeDouble:
|
||||||
@ -79,7 +79,7 @@ unsigned int DoubleCPDO(const unsigned int opcode)
|
|||||||
switch (fpa11->fType[Fn])
|
switch (fpa11->fType[Fn])
|
||||||
{
|
{
|
||||||
case typeSingle:
|
case typeSingle:
|
||||||
rFn = float32_to_float64(fpa11->fpreg[Fn].fSingle);
|
rFn = float32_to_float64(fpa11->fpreg[Fn].fSingle, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case typeDouble:
|
case typeDouble:
|
||||||
@ -96,30 +96,30 @@ unsigned int DoubleCPDO(const unsigned int opcode)
|
|||||||
{
|
{
|
||||||
/* dyadic opcodes */
|
/* dyadic opcodes */
|
||||||
case ADF_CODE:
|
case ADF_CODE:
|
||||||
fpa11->fpreg[Fd].fDouble = float64_add(rFn,rFm);
|
fpa11->fpreg[Fd].fDouble = float64_add(rFn,rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case MUF_CODE:
|
case MUF_CODE:
|
||||||
case FML_CODE:
|
case FML_CODE:
|
||||||
fpa11->fpreg[Fd].fDouble = float64_mul(rFn,rFm);
|
fpa11->fpreg[Fd].fDouble = float64_mul(rFn,rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case SUF_CODE:
|
case SUF_CODE:
|
||||||
fpa11->fpreg[Fd].fDouble = float64_sub(rFn,rFm);
|
fpa11->fpreg[Fd].fDouble = float64_sub(rFn,rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case RSF_CODE:
|
case RSF_CODE:
|
||||||
fpa11->fpreg[Fd].fDouble = float64_sub(rFm,rFn);
|
fpa11->fpreg[Fd].fDouble = float64_sub(rFm,rFn, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case DVF_CODE:
|
case DVF_CODE:
|
||||||
case FDV_CODE:
|
case FDV_CODE:
|
||||||
fpa11->fpreg[Fd].fDouble = float64_div(rFn,rFm);
|
fpa11->fpreg[Fd].fDouble = float64_div(rFn,rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case RDF_CODE:
|
case RDF_CODE:
|
||||||
case FRD_CODE:
|
case FRD_CODE:
|
||||||
fpa11->fpreg[Fd].fDouble = float64_div(rFm,rFn);
|
fpa11->fpreg[Fd].fDouble = float64_div(rFm,rFn, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
#if 0
|
#if 0
|
||||||
@ -133,7 +133,7 @@ unsigned int DoubleCPDO(const unsigned int opcode)
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
case RMF_CODE:
|
case RMF_CODE:
|
||||||
fpa11->fpreg[Fd].fDouble = float64_rem(rFn,rFm);
|
fpa11->fpreg[Fd].fDouble = float64_rem(rFn,rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
#if 0
|
#if 0
|
||||||
@ -173,11 +173,11 @@ unsigned int DoubleCPDO(const unsigned int opcode)
|
|||||||
|
|
||||||
case RND_CODE:
|
case RND_CODE:
|
||||||
case URD_CODE:
|
case URD_CODE:
|
||||||
fpa11->fpreg[Fd].fDouble = float64_round_to_int(rFm);
|
fpa11->fpreg[Fd].fDouble = float64_round_to_int(rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case SQT_CODE:
|
case SQT_CODE:
|
||||||
fpa11->fpreg[Fd].fDouble = float64_sqrt(rFm);
|
fpa11->fpreg[Fd].fDouble = float64_sqrt(rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
#if 0
|
#if 0
|
||||||
|
@ -53,11 +53,11 @@ unsigned int ExtendedCPDO(const unsigned int opcode)
|
|||||||
switch (fpa11->fType[Fm])
|
switch (fpa11->fType[Fm])
|
||||||
{
|
{
|
||||||
case typeSingle:
|
case typeSingle:
|
||||||
rFm = float32_to_floatx80(fpa11->fpreg[Fm].fSingle);
|
rFm = float32_to_floatx80(fpa11->fpreg[Fm].fSingle, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case typeDouble:
|
case typeDouble:
|
||||||
rFm = float64_to_floatx80(fpa11->fpreg[Fm].fDouble);
|
rFm = float64_to_floatx80(fpa11->fpreg[Fm].fDouble, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case typeExtended:
|
case typeExtended:
|
||||||
@ -74,11 +74,11 @@ unsigned int ExtendedCPDO(const unsigned int opcode)
|
|||||||
switch (fpa11->fType[Fn])
|
switch (fpa11->fType[Fn])
|
||||||
{
|
{
|
||||||
case typeSingle:
|
case typeSingle:
|
||||||
rFn = float32_to_floatx80(fpa11->fpreg[Fn].fSingle);
|
rFn = float32_to_floatx80(fpa11->fpreg[Fn].fSingle, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case typeDouble:
|
case typeDouble:
|
||||||
rFn = float64_to_floatx80(fpa11->fpreg[Fn].fDouble);
|
rFn = float64_to_floatx80(fpa11->fpreg[Fn].fDouble, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case typeExtended:
|
case typeExtended:
|
||||||
@ -94,30 +94,30 @@ unsigned int ExtendedCPDO(const unsigned int opcode)
|
|||||||
{
|
{
|
||||||
/* dyadic opcodes */
|
/* dyadic opcodes */
|
||||||
case ADF_CODE:
|
case ADF_CODE:
|
||||||
fpa11->fpreg[Fd].fExtended = floatx80_add(rFn,rFm);
|
fpa11->fpreg[Fd].fExtended = floatx80_add(rFn,rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case MUF_CODE:
|
case MUF_CODE:
|
||||||
case FML_CODE:
|
case FML_CODE:
|
||||||
fpa11->fpreg[Fd].fExtended = floatx80_mul(rFn,rFm);
|
fpa11->fpreg[Fd].fExtended = floatx80_mul(rFn,rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case SUF_CODE:
|
case SUF_CODE:
|
||||||
fpa11->fpreg[Fd].fExtended = floatx80_sub(rFn,rFm);
|
fpa11->fpreg[Fd].fExtended = floatx80_sub(rFn,rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case RSF_CODE:
|
case RSF_CODE:
|
||||||
fpa11->fpreg[Fd].fExtended = floatx80_sub(rFm,rFn);
|
fpa11->fpreg[Fd].fExtended = floatx80_sub(rFm,rFn, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case DVF_CODE:
|
case DVF_CODE:
|
||||||
case FDV_CODE:
|
case FDV_CODE:
|
||||||
fpa11->fpreg[Fd].fExtended = floatx80_div(rFn,rFm);
|
fpa11->fpreg[Fd].fExtended = floatx80_div(rFn,rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case RDF_CODE:
|
case RDF_CODE:
|
||||||
case FRD_CODE:
|
case FRD_CODE:
|
||||||
fpa11->fpreg[Fd].fExtended = floatx80_div(rFm,rFn);
|
fpa11->fpreg[Fd].fExtended = floatx80_div(rFm,rFn, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
#if 0
|
#if 0
|
||||||
@ -131,7 +131,7 @@ unsigned int ExtendedCPDO(const unsigned int opcode)
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
case RMF_CODE:
|
case RMF_CODE:
|
||||||
fpa11->fpreg[Fd].fExtended = floatx80_rem(rFn,rFm);
|
fpa11->fpreg[Fd].fExtended = floatx80_rem(rFn,rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
#if 0
|
#if 0
|
||||||
@ -157,11 +157,11 @@ unsigned int ExtendedCPDO(const unsigned int opcode)
|
|||||||
|
|
||||||
case RND_CODE:
|
case RND_CODE:
|
||||||
case URD_CODE:
|
case URD_CODE:
|
||||||
fpa11->fpreg[Fd].fExtended = floatx80_round_to_int(rFm);
|
fpa11->fpreg[Fd].fExtended = floatx80_round_to_int(rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case SQT_CODE:
|
case SQT_CODE:
|
||||||
fpa11->fpreg[Fd].fExtended = floatx80_sqrt(rFm);
|
fpa11->fpreg[Fd].fExtended = floatx80_sqrt(rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
#if 0
|
#if 0
|
||||||
|
@ -61,74 +61,79 @@ void resetFPA11(void)
|
|||||||
|
|
||||||
void SetRoundingMode(const unsigned int opcode)
|
void SetRoundingMode(const unsigned int opcode)
|
||||||
{
|
{
|
||||||
#if MAINTAIN_FPCR
|
int rounding_mode;
|
||||||
FPA11 *fpa11 = GET_FPA11();
|
FPA11 *fpa11 = GET_FPA11();
|
||||||
|
|
||||||
|
#if MAINTAIN_FPCR
|
||||||
fpa11->fpcr &= ~MASK_ROUNDING_MODE;
|
fpa11->fpcr &= ~MASK_ROUNDING_MODE;
|
||||||
#endif
|
#endif
|
||||||
switch (opcode & MASK_ROUNDING_MODE)
|
switch (opcode & MASK_ROUNDING_MODE)
|
||||||
{
|
{
|
||||||
default:
|
default:
|
||||||
case ROUND_TO_NEAREST:
|
case ROUND_TO_NEAREST:
|
||||||
float_rounding_mode = float_round_nearest_even;
|
rounding_mode = float_round_nearest_even;
|
||||||
#if MAINTAIN_FPCR
|
#if MAINTAIN_FPCR
|
||||||
fpa11->fpcr |= ROUND_TO_NEAREST;
|
fpa11->fpcr |= ROUND_TO_NEAREST;
|
||||||
#endif
|
#endif
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case ROUND_TO_PLUS_INFINITY:
|
case ROUND_TO_PLUS_INFINITY:
|
||||||
float_rounding_mode = float_round_up;
|
rounding_mode = float_round_up;
|
||||||
#if MAINTAIN_FPCR
|
#if MAINTAIN_FPCR
|
||||||
fpa11->fpcr |= ROUND_TO_PLUS_INFINITY;
|
fpa11->fpcr |= ROUND_TO_PLUS_INFINITY;
|
||||||
#endif
|
#endif
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case ROUND_TO_MINUS_INFINITY:
|
case ROUND_TO_MINUS_INFINITY:
|
||||||
float_rounding_mode = float_round_down;
|
rounding_mode = float_round_down;
|
||||||
#if MAINTAIN_FPCR
|
#if MAINTAIN_FPCR
|
||||||
fpa11->fpcr |= ROUND_TO_MINUS_INFINITY;
|
fpa11->fpcr |= ROUND_TO_MINUS_INFINITY;
|
||||||
#endif
|
#endif
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case ROUND_TO_ZERO:
|
case ROUND_TO_ZERO:
|
||||||
float_rounding_mode = float_round_to_zero;
|
rounding_mode = float_round_to_zero;
|
||||||
#if MAINTAIN_FPCR
|
#if MAINTAIN_FPCR
|
||||||
fpa11->fpcr |= ROUND_TO_ZERO;
|
fpa11->fpcr |= ROUND_TO_ZERO;
|
||||||
#endif
|
#endif
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
set_float_rounding_mode(rounding_mode, &fpa11->fp_status);
|
||||||
}
|
}
|
||||||
|
|
||||||
void SetRoundingPrecision(const unsigned int opcode)
|
void SetRoundingPrecision(const unsigned int opcode)
|
||||||
{
|
{
|
||||||
#if MAINTAIN_FPCR
|
int rounding_precision;
|
||||||
FPA11 *fpa11 = GET_FPA11();
|
FPA11 *fpa11 = GET_FPA11();
|
||||||
|
#if MAINTAIN_FPCR
|
||||||
fpa11->fpcr &= ~MASK_ROUNDING_PRECISION;
|
fpa11->fpcr &= ~MASK_ROUNDING_PRECISION;
|
||||||
#endif
|
#endif
|
||||||
switch (opcode & MASK_ROUNDING_PRECISION)
|
switch (opcode & MASK_ROUNDING_PRECISION)
|
||||||
{
|
{
|
||||||
case ROUND_SINGLE:
|
case ROUND_SINGLE:
|
||||||
floatx80_rounding_precision = 32;
|
rounding_precision = 32;
|
||||||
#if MAINTAIN_FPCR
|
#if MAINTAIN_FPCR
|
||||||
fpa11->fpcr |= ROUND_SINGLE;
|
fpa11->fpcr |= ROUND_SINGLE;
|
||||||
#endif
|
#endif
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case ROUND_DOUBLE:
|
case ROUND_DOUBLE:
|
||||||
floatx80_rounding_precision = 64;
|
rounding_precision = 64;
|
||||||
#if MAINTAIN_FPCR
|
#if MAINTAIN_FPCR
|
||||||
fpa11->fpcr |= ROUND_DOUBLE;
|
fpa11->fpcr |= ROUND_DOUBLE;
|
||||||
#endif
|
#endif
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case ROUND_EXTENDED:
|
case ROUND_EXTENDED:
|
||||||
floatx80_rounding_precision = 80;
|
rounding_precision = 80;
|
||||||
#if MAINTAIN_FPCR
|
#if MAINTAIN_FPCR
|
||||||
fpa11->fpcr |= ROUND_EXTENDED;
|
fpa11->fpcr |= ROUND_EXTENDED;
|
||||||
#endif
|
#endif
|
||||||
break;
|
break;
|
||||||
|
|
||||||
default: floatx80_rounding_precision = 80;
|
default: rounding_precision = 80;
|
||||||
}
|
}
|
||||||
|
set_floatx80_rounding_precision(rounding_precision, &fpa11->fp_status);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Emulate the instruction in the opcode. */
|
/* Emulate the instruction in the opcode. */
|
||||||
|
@ -83,6 +83,7 @@ typedef struct tagFPA11 {
|
|||||||
so we can use it to detect whether this
|
so we can use it to detect whether this
|
||||||
instance of the emulator needs to be
|
instance of the emulator needs to be
|
||||||
initialised. */
|
initialised. */
|
||||||
|
float_status fp_status; /* QEMU float emulator status */
|
||||||
} FPA11;
|
} FPA11;
|
||||||
|
|
||||||
extern FPA11* qemufpa;
|
extern FPA11* qemufpa;
|
||||||
|
@ -80,10 +80,10 @@ unsigned int EmulateCPDO(const unsigned int opcode)
|
|||||||
{
|
{
|
||||||
if (typeDouble == nType)
|
if (typeDouble == nType)
|
||||||
fpa11->fpreg[Fd].fSingle =
|
fpa11->fpreg[Fd].fSingle =
|
||||||
float64_to_float32(fpa11->fpreg[Fd].fDouble);
|
float64_to_float32(fpa11->fpreg[Fd].fDouble, &fpa11->fp_status);
|
||||||
else
|
else
|
||||||
fpa11->fpreg[Fd].fSingle =
|
fpa11->fpreg[Fd].fSingle =
|
||||||
floatx80_to_float32(fpa11->fpreg[Fd].fExtended);
|
floatx80_to_float32(fpa11->fpreg[Fd].fExtended, &fpa11->fp_status);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
|
|
||||||
@ -91,10 +91,10 @@ unsigned int EmulateCPDO(const unsigned int opcode)
|
|||||||
{
|
{
|
||||||
if (typeSingle == nType)
|
if (typeSingle == nType)
|
||||||
fpa11->fpreg[Fd].fDouble =
|
fpa11->fpreg[Fd].fDouble =
|
||||||
float32_to_float64(fpa11->fpreg[Fd].fSingle);
|
float32_to_float64(fpa11->fpreg[Fd].fSingle, &fpa11->fp_status);
|
||||||
else
|
else
|
||||||
fpa11->fpreg[Fd].fDouble =
|
fpa11->fpreg[Fd].fDouble =
|
||||||
floatx80_to_float64(fpa11->fpreg[Fd].fExtended);
|
floatx80_to_float64(fpa11->fpreg[Fd].fExtended, &fpa11->fp_status);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
|
|
||||||
@ -102,10 +102,10 @@ unsigned int EmulateCPDO(const unsigned int opcode)
|
|||||||
{
|
{
|
||||||
if (typeSingle == nType)
|
if (typeSingle == nType)
|
||||||
fpa11->fpreg[Fd].fExtended =
|
fpa11->fpreg[Fd].fExtended =
|
||||||
float32_to_floatx80(fpa11->fpreg[Fd].fSingle);
|
float32_to_floatx80(fpa11->fpreg[Fd].fSingle, &fpa11->fp_status);
|
||||||
else
|
else
|
||||||
fpa11->fpreg[Fd].fExtended =
|
fpa11->fpreg[Fd].fExtended =
|
||||||
float64_to_floatx80(fpa11->fpreg[Fd].fDouble);
|
float64_to_floatx80(fpa11->fpreg[Fd].fDouble, &fpa11->fp_status);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
@ -106,11 +106,11 @@ void storeSingle(const unsigned int Fn,unsigned int *pMem)
|
|||||||
switch (fpa11->fType[Fn])
|
switch (fpa11->fType[Fn])
|
||||||
{
|
{
|
||||||
case typeDouble:
|
case typeDouble:
|
||||||
val = float64_to_float32(fpa11->fpreg[Fn].fDouble);
|
val = float64_to_float32(fpa11->fpreg[Fn].fDouble, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case typeExtended:
|
case typeExtended:
|
||||||
val = floatx80_to_float32(fpa11->fpreg[Fn].fExtended);
|
val = floatx80_to_float32(fpa11->fpreg[Fn].fExtended, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
default: val = fpa11->fpreg[Fn].fSingle;
|
default: val = fpa11->fpreg[Fn].fSingle;
|
||||||
@ -129,11 +129,11 @@ void storeDouble(const unsigned int Fn,unsigned int *pMem)
|
|||||||
switch (fpa11->fType[Fn])
|
switch (fpa11->fType[Fn])
|
||||||
{
|
{
|
||||||
case typeSingle:
|
case typeSingle:
|
||||||
val = float32_to_float64(fpa11->fpreg[Fn].fSingle);
|
val = float32_to_float64(fpa11->fpreg[Fn].fSingle, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case typeExtended:
|
case typeExtended:
|
||||||
val = floatx80_to_float64(fpa11->fpreg[Fn].fExtended);
|
val = floatx80_to_float64(fpa11->fpreg[Fn].fExtended, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
default: val = fpa11->fpreg[Fn].fDouble;
|
default: val = fpa11->fpreg[Fn].fDouble;
|
||||||
@ -157,11 +157,11 @@ void storeExtended(const unsigned int Fn,unsigned int *pMem)
|
|||||||
switch (fpa11->fType[Fn])
|
switch (fpa11->fType[Fn])
|
||||||
{
|
{
|
||||||
case typeSingle:
|
case typeSingle:
|
||||||
val = float32_to_floatx80(fpa11->fpreg[Fn].fSingle);
|
val = float32_to_floatx80(fpa11->fpreg[Fn].fSingle, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case typeDouble:
|
case typeDouble:
|
||||||
val = float64_to_floatx80(fpa11->fpreg[Fn].fDouble);
|
val = float64_to_floatx80(fpa11->fpreg[Fn].fDouble, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
default: val = fpa11->fpreg[Fn].fExtended;
|
default: val = fpa11->fpreg[Fn].fExtended;
|
||||||
|
@ -21,7 +21,6 @@
|
|||||||
*/
|
*/
|
||||||
|
|
||||||
#include "fpa11.h"
|
#include "fpa11.h"
|
||||||
#include "milieu.h"
|
|
||||||
#include "softfloat.h"
|
#include "softfloat.h"
|
||||||
#include "fpopcode.h"
|
#include "fpopcode.h"
|
||||||
#include "fpa11.inl"
|
#include "fpa11.inl"
|
||||||
@ -89,7 +88,7 @@ unsigned int PerformFLT(const unsigned int opcode)
|
|||||||
{
|
{
|
||||||
fpa11->fType[getFn(opcode)] = typeSingle;
|
fpa11->fType[getFn(opcode)] = typeSingle;
|
||||||
fpa11->fpreg[getFn(opcode)].fSingle =
|
fpa11->fpreg[getFn(opcode)].fSingle =
|
||||||
int32_to_float32(readRegister(getRd(opcode)));
|
int32_to_float32(readRegister(getRd(opcode)), &fpa11->fp_status);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
|
|
||||||
@ -97,7 +96,7 @@ unsigned int PerformFLT(const unsigned int opcode)
|
|||||||
{
|
{
|
||||||
fpa11->fType[getFn(opcode)] = typeDouble;
|
fpa11->fType[getFn(opcode)] = typeDouble;
|
||||||
fpa11->fpreg[getFn(opcode)].fDouble =
|
fpa11->fpreg[getFn(opcode)].fDouble =
|
||||||
int32_to_float64(readRegister(getRd(opcode)));
|
int32_to_float64(readRegister(getRd(opcode)), &fpa11->fp_status);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
|
|
||||||
@ -105,7 +104,7 @@ unsigned int PerformFLT(const unsigned int opcode)
|
|||||||
{
|
{
|
||||||
fpa11->fType[getFn(opcode)] = typeExtended;
|
fpa11->fType[getFn(opcode)] = typeExtended;
|
||||||
fpa11->fpreg[getFn(opcode)].fExtended =
|
fpa11->fpreg[getFn(opcode)].fExtended =
|
||||||
int32_to_floatx80(readRegister(getRd(opcode)));
|
int32_to_floatx80(readRegister(getRd(opcode)), &fpa11->fp_status);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
|
|
||||||
@ -128,7 +127,7 @@ unsigned int PerformFIX(const unsigned int opcode)
|
|||||||
case typeSingle:
|
case typeSingle:
|
||||||
{
|
{
|
||||||
writeRegister(getRd(opcode),
|
writeRegister(getRd(opcode),
|
||||||
float32_to_int32(fpa11->fpreg[Fn].fSingle));
|
float32_to_int32(fpa11->fpreg[Fn].fSingle, &fpa11->fp_status));
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
|
|
||||||
@ -136,14 +135,14 @@ unsigned int PerformFIX(const unsigned int opcode)
|
|||||||
{
|
{
|
||||||
//printf("F%d is 0x%llx\n",Fn,fpa11->fpreg[Fn].fDouble);
|
//printf("F%d is 0x%llx\n",Fn,fpa11->fpreg[Fn].fDouble);
|
||||||
writeRegister(getRd(opcode),
|
writeRegister(getRd(opcode),
|
||||||
float64_to_int32(fpa11->fpreg[Fn].fDouble));
|
float64_to_int32(fpa11->fpreg[Fn].fDouble, &fpa11->fp_status));
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case typeExtended:
|
case typeExtended:
|
||||||
{
|
{
|
||||||
writeRegister(getRd(opcode),
|
writeRegister(getRd(opcode),
|
||||||
floatx80_to_int32(fpa11->fpreg[Fn].fExtended));
|
floatx80_to_int32(fpa11->fpreg[Fn].fExtended, &fpa11->fp_status));
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
|
|
||||||
@ -157,22 +156,23 @@ unsigned int PerformFIX(const unsigned int opcode)
|
|||||||
static unsigned int __inline__
|
static unsigned int __inline__
|
||||||
PerformComparisonOperation(floatx80 Fn, floatx80 Fm)
|
PerformComparisonOperation(floatx80 Fn, floatx80 Fm)
|
||||||
{
|
{
|
||||||
|
FPA11 *fpa11 = GET_FPA11();
|
||||||
unsigned int flags = 0;
|
unsigned int flags = 0;
|
||||||
|
|
||||||
/* test for less than condition */
|
/* test for less than condition */
|
||||||
if (floatx80_lt(Fn,Fm))
|
if (floatx80_lt(Fn,Fm, &fpa11->fp_status))
|
||||||
{
|
{
|
||||||
flags |= CC_NEGATIVE;
|
flags |= CC_NEGATIVE;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* test for equal condition */
|
/* test for equal condition */
|
||||||
if (floatx80_eq(Fn,Fm))
|
if (floatx80_eq(Fn,Fm, &fpa11->fp_status))
|
||||||
{
|
{
|
||||||
flags |= CC_ZERO;
|
flags |= CC_ZERO;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* test for greater than or equal condition */
|
/* test for greater than or equal condition */
|
||||||
if (floatx80_lt(Fm,Fn))
|
if (floatx80_lt(Fm,Fn, &fpa11->fp_status))
|
||||||
{
|
{
|
||||||
flags |= CC_CARRY;
|
flags |= CC_CARRY;
|
||||||
}
|
}
|
||||||
@ -208,14 +208,14 @@ static unsigned int PerformComparison(const unsigned int opcode)
|
|||||||
//printk("single.\n");
|
//printk("single.\n");
|
||||||
if (float32_is_nan(fpa11->fpreg[Fn].fSingle))
|
if (float32_is_nan(fpa11->fpreg[Fn].fSingle))
|
||||||
goto unordered;
|
goto unordered;
|
||||||
rFn = float32_to_floatx80(fpa11->fpreg[Fn].fSingle);
|
rFn = float32_to_floatx80(fpa11->fpreg[Fn].fSingle, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case typeDouble:
|
case typeDouble:
|
||||||
//printk("double.\n");
|
//printk("double.\n");
|
||||||
if (float64_is_nan(fpa11->fpreg[Fn].fDouble))
|
if (float64_is_nan(fpa11->fpreg[Fn].fDouble))
|
||||||
goto unordered;
|
goto unordered;
|
||||||
rFn = float64_to_floatx80(fpa11->fpreg[Fn].fDouble);
|
rFn = float64_to_floatx80(fpa11->fpreg[Fn].fDouble, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case typeExtended:
|
case typeExtended:
|
||||||
@ -244,14 +244,14 @@ static unsigned int PerformComparison(const unsigned int opcode)
|
|||||||
//printk("single.\n");
|
//printk("single.\n");
|
||||||
if (float32_is_nan(fpa11->fpreg[Fm].fSingle))
|
if (float32_is_nan(fpa11->fpreg[Fm].fSingle))
|
||||||
goto unordered;
|
goto unordered;
|
||||||
rFm = float32_to_floatx80(fpa11->fpreg[Fm].fSingle);
|
rFm = float32_to_floatx80(fpa11->fpreg[Fm].fSingle, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case typeDouble:
|
case typeDouble:
|
||||||
//printk("double.\n");
|
//printk("double.\n");
|
||||||
if (float64_is_nan(fpa11->fpreg[Fm].fDouble))
|
if (float64_is_nan(fpa11->fpreg[Fm].fDouble))
|
||||||
goto unordered;
|
goto unordered;
|
||||||
rFm = float64_to_floatx80(fpa11->fpreg[Fm].fDouble);
|
rFm = float64_to_floatx80(fpa11->fpreg[Fm].fDouble, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case typeExtended:
|
case typeExtended:
|
||||||
@ -283,7 +283,7 @@ static unsigned int PerformComparison(const unsigned int opcode)
|
|||||||
|
|
||||||
if (BIT_AC & readFPSR()) flags |= CC_CARRY;
|
if (BIT_AC & readFPSR()) flags |= CC_CARRY;
|
||||||
|
|
||||||
if (e_flag) float_raise(float_flag_invalid);
|
if (e_flag) float_raise(float_flag_invalid, &fpa11->fp_status);
|
||||||
|
|
||||||
writeConditionCodes(flags);
|
writeConditionCodes(flags);
|
||||||
return 1;
|
return 1;
|
||||||
|
@ -27,14 +27,14 @@
|
|||||||
//#include "fpmodule.inl"
|
//#include "fpmodule.inl"
|
||||||
|
|
||||||
const floatx80 floatx80Constant[] = {
|
const floatx80 floatx80Constant[] = {
|
||||||
{ 0x0000, 0x0000000000000000ULL}, /* extended 0.0 */
|
{ 0x0000000000000000ULL, 0x0000}, /* extended 0.0 */
|
||||||
{ 0x3fff, 0x8000000000000000ULL}, /* extended 1.0 */
|
{ 0x8000000000000000ULL, 0x3fff}, /* extended 1.0 */
|
||||||
{ 0x4000, 0x8000000000000000ULL}, /* extended 2.0 */
|
{ 0x8000000000000000ULL, 0x4000}, /* extended 2.0 */
|
||||||
{ 0x4000, 0xc000000000000000ULL}, /* extended 3.0 */
|
{ 0xc000000000000000ULL, 0x4000}, /* extended 3.0 */
|
||||||
{ 0x4001, 0x8000000000000000ULL}, /* extended 4.0 */
|
{ 0x8000000000000000ULL, 0x4001}, /* extended 4.0 */
|
||||||
{ 0x4001, 0xa000000000000000ULL}, /* extended 5.0 */
|
{ 0xa000000000000000ULL, 0x4001}, /* extended 5.0 */
|
||||||
{ 0x3ffe, 0x8000000000000000ULL}, /* extended 0.5 */
|
{ 0x8000000000000000ULL, 0x3ffe}, /* extended 0.5 */
|
||||||
{ 0x4002, 0xa000000000000000ULL} /* extended 10.0 */
|
{ 0xa000000000000000ULL, 0x4002} /* extended 10.0 */
|
||||||
};
|
};
|
||||||
|
|
||||||
const float64 float64Constant[] = {
|
const float64 float64Constant[] = {
|
||||||
|
@ -1,48 +0,0 @@
|
|||||||
|
|
||||||
/*
|
|
||||||
===============================================================================
|
|
||||||
|
|
||||||
This C header file is part of the SoftFloat IEC/IEEE Floating-point
|
|
||||||
Arithmetic Package, Release 2.
|
|
||||||
|
|
||||||
Written by John R. Hauser. This work was made possible in part by the
|
|
||||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
|
||||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
|
||||||
National Science Foundation under grant MIP-9311980. The original version
|
|
||||||
of this code was written as part of a project to build a fixed-point vector
|
|
||||||
processor in collaboration with the University of California at Berkeley,
|
|
||||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
|
||||||
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
|
||||||
arithmetic/softfloat.html'.
|
|
||||||
|
|
||||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
|
||||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
|
||||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
|
||||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
|
||||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
|
||||||
|
|
||||||
Derivative works are acceptable, even for commercial purposes, so long as
|
|
||||||
(1) they include prominent notice that the work is derivative, and (2) they
|
|
||||||
include prominent notice akin to these three paragraphs for those parts of
|
|
||||||
this code that are retained.
|
|
||||||
|
|
||||||
===============================================================================
|
|
||||||
*/
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Include common integer types and flags.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
#include "ARM-gcc.h"
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Symbolic Boolean literals.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
enum {
|
|
||||||
FALSE = 0,
|
|
||||||
TRUE = 1
|
|
||||||
};
|
|
||||||
|
|
@ -76,30 +76,30 @@ unsigned int SingleCPDO(const unsigned int opcode)
|
|||||||
{
|
{
|
||||||
/* dyadic opcodes */
|
/* dyadic opcodes */
|
||||||
case ADF_CODE:
|
case ADF_CODE:
|
||||||
fpa11->fpreg[Fd].fSingle = float32_add(rFn,rFm);
|
fpa11->fpreg[Fd].fSingle = float32_add(rFn,rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case MUF_CODE:
|
case MUF_CODE:
|
||||||
case FML_CODE:
|
case FML_CODE:
|
||||||
fpa11->fpreg[Fd].fSingle = float32_mul(rFn,rFm);
|
fpa11->fpreg[Fd].fSingle = float32_mul(rFn,rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case SUF_CODE:
|
case SUF_CODE:
|
||||||
fpa11->fpreg[Fd].fSingle = float32_sub(rFn,rFm);
|
fpa11->fpreg[Fd].fSingle = float32_sub(rFn,rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case RSF_CODE:
|
case RSF_CODE:
|
||||||
fpa11->fpreg[Fd].fSingle = float32_sub(rFm,rFn);
|
fpa11->fpreg[Fd].fSingle = float32_sub(rFm,rFn, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case DVF_CODE:
|
case DVF_CODE:
|
||||||
case FDV_CODE:
|
case FDV_CODE:
|
||||||
fpa11->fpreg[Fd].fSingle = float32_div(rFn,rFm);
|
fpa11->fpreg[Fd].fSingle = float32_div(rFn,rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case RDF_CODE:
|
case RDF_CODE:
|
||||||
case FRD_CODE:
|
case FRD_CODE:
|
||||||
fpa11->fpreg[Fd].fSingle = float32_div(rFm,rFn);
|
fpa11->fpreg[Fd].fSingle = float32_div(rFm,rFn, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
#if 0
|
#if 0
|
||||||
@ -113,7 +113,7 @@ unsigned int SingleCPDO(const unsigned int opcode)
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
case RMF_CODE:
|
case RMF_CODE:
|
||||||
fpa11->fpreg[Fd].fSingle = float32_rem(rFn,rFm);
|
fpa11->fpreg[Fd].fSingle = float32_rem(rFn,rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
#if 0
|
#if 0
|
||||||
@ -139,11 +139,11 @@ unsigned int SingleCPDO(const unsigned int opcode)
|
|||||||
|
|
||||||
case RND_CODE:
|
case RND_CODE:
|
||||||
case URD_CODE:
|
case URD_CODE:
|
||||||
fpa11->fpreg[Fd].fSingle = float32_round_to_int(rFm);
|
fpa11->fpreg[Fd].fSingle = float32_round_to_int(rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case SQT_CODE:
|
case SQT_CODE:
|
||||||
fpa11->fpreg[Fd].fSingle = float32_sqrt(rFm);
|
fpa11->fpreg[Fd].fSingle = float32_sqrt(rFm, &fpa11->fp_status);
|
||||||
break;
|
break;
|
||||||
|
|
||||||
#if 0
|
#if 0
|
||||||
|
@ -1,740 +0,0 @@
|
|||||||
|
|
||||||
/*
|
|
||||||
===============================================================================
|
|
||||||
|
|
||||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
|
||||||
Arithmetic Package, Release 2.
|
|
||||||
|
|
||||||
Written by John R. Hauser. This work was made possible in part by the
|
|
||||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
|
||||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
|
||||||
National Science Foundation under grant MIP-9311980. The original version
|
|
||||||
of this code was written as part of a project to build a fixed-point vector
|
|
||||||
processor in collaboration with the University of California at Berkeley,
|
|
||||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
|
||||||
is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
|
||||||
arithmetic/softfloat.html'.
|
|
||||||
|
|
||||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
|
||||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
|
||||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
|
||||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
|
||||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
|
||||||
|
|
||||||
Derivative works are acceptable, even for commercial purposes, so long as
|
|
||||||
(1) they include prominent notice that the work is derivative, and (2) they
|
|
||||||
include prominent notice akin to these three paragraphs for those parts of
|
|
||||||
this code that are retained.
|
|
||||||
|
|
||||||
===============================================================================
|
|
||||||
*/
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Shifts `a' right by the number of bits given in `count'. If any nonzero
|
|
||||||
bits are shifted off, they are ``jammed'' into the least significant bit of
|
|
||||||
the result by setting the least significant bit to 1. The value of `count'
|
|
||||||
can be arbitrarily large; in particular, if `count' is greater than 32, the
|
|
||||||
result will be either 0 or 1, depending on whether `a' is zero or nonzero.
|
|
||||||
The result is stored in the location pointed to by `zPtr'.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
|
|
||||||
{
|
|
||||||
bits32 z;
|
|
||||||
if ( count == 0 ) {
|
|
||||||
z = a;
|
|
||||||
}
|
|
||||||
else if ( count < 32 ) {
|
|
||||||
z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
z = ( a != 0 );
|
|
||||||
}
|
|
||||||
*zPtr = z;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Shifts `a' right by the number of bits given in `count'. If any nonzero
|
|
||||||
bits are shifted off, they are ``jammed'' into the least significant bit of
|
|
||||||
the result by setting the least significant bit to 1. The value of `count'
|
|
||||||
can be arbitrarily large; in particular, if `count' is greater than 64, the
|
|
||||||
result will be either 0 or 1, depending on whether `a' is zero or nonzero.
|
|
||||||
The result is stored in the location pointed to by `zPtr'.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr )
|
|
||||||
{
|
|
||||||
bits64 z;
|
|
||||||
|
|
||||||
// __asm__("@shift64RightJamming -- start");
|
|
||||||
if ( count == 0 ) {
|
|
||||||
z = a;
|
|
||||||
}
|
|
||||||
else if ( count < 64 ) {
|
|
||||||
z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 );
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
z = ( a != 0 );
|
|
||||||
}
|
|
||||||
// __asm__("@shift64RightJamming -- end");
|
|
||||||
*zPtr = z;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64
|
|
||||||
_plus_ the number of bits given in `count'. The shifted result is at most
|
|
||||||
64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The
|
|
||||||
bits shifted off form a second 64-bit result as follows: The _last_ bit
|
|
||||||
shifted off is the most-significant bit of the extra result, and the other
|
|
||||||
63 bits of the extra result are all zero if and only if _all_but_the_last_
|
|
||||||
bits shifted off were all zero. This extra result is stored in the location
|
|
||||||
pointed to by `z1Ptr'. The value of `count' can be arbitrarily large.
|
|
||||||
(This routine makes more sense if `a0' and `a1' are considered to form a
|
|
||||||
fixed-point value with binary point between `a0' and `a1'. This fixed-point
|
|
||||||
value is shifted right by the number of bits given in `count', and the
|
|
||||||
integer part of the result is returned at the location pointed to by
|
|
||||||
`z0Ptr'. The fractional part of the result may be slightly corrupted as
|
|
||||||
described above, and is returned at the location pointed to by `z1Ptr'.)
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
INLINE void
|
|
||||||
shift64ExtraRightJamming(
|
|
||||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
|
||||||
{
|
|
||||||
bits64 z0, z1;
|
|
||||||
int8 negCount = ( - count ) & 63;
|
|
||||||
|
|
||||||
if ( count == 0 ) {
|
|
||||||
z1 = a1;
|
|
||||||
z0 = a0;
|
|
||||||
}
|
|
||||||
else if ( count < 64 ) {
|
|
||||||
z1 = ( a0<<negCount ) | ( a1 != 0 );
|
|
||||||
z0 = a0>>count;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
if ( count == 64 ) {
|
|
||||||
z1 = a0 | ( a1 != 0 );
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
z1 = ( ( a0 | a1 ) != 0 );
|
|
||||||
}
|
|
||||||
z0 = 0;
|
|
||||||
}
|
|
||||||
*z1Ptr = z1;
|
|
||||||
*z0Ptr = z0;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
|
|
||||||
number of bits given in `count'. Any bits shifted off are lost. The value
|
|
||||||
of `count' can be arbitrarily large; in particular, if `count' is greater
|
|
||||||
than 128, the result will be 0. The result is broken into two 64-bit pieces
|
|
||||||
which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
INLINE void
|
|
||||||
shift128Right(
|
|
||||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
|
||||||
{
|
|
||||||
bits64 z0, z1;
|
|
||||||
int8 negCount = ( - count ) & 63;
|
|
||||||
|
|
||||||
if ( count == 0 ) {
|
|
||||||
z1 = a1;
|
|
||||||
z0 = a0;
|
|
||||||
}
|
|
||||||
else if ( count < 64 ) {
|
|
||||||
z1 = ( a0<<negCount ) | ( a1>>count );
|
|
||||||
z0 = a0>>count;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0;
|
|
||||||
z0 = 0;
|
|
||||||
}
|
|
||||||
*z1Ptr = z1;
|
|
||||||
*z0Ptr = z0;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
|
|
||||||
number of bits given in `count'. If any nonzero bits are shifted off, they
|
|
||||||
are ``jammed'' into the least significant bit of the result by setting the
|
|
||||||
least significant bit to 1. The value of `count' can be arbitrarily large;
|
|
||||||
in particular, if `count' is greater than 128, the result will be either 0
|
|
||||||
or 1, depending on whether the concatenation of `a0' and `a1' is zero or
|
|
||||||
nonzero. The result is broken into two 64-bit pieces which are stored at
|
|
||||||
the locations pointed to by `z0Ptr' and `z1Ptr'.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
INLINE void
|
|
||||||
shift128RightJamming(
|
|
||||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
|
||||||
{
|
|
||||||
bits64 z0, z1;
|
|
||||||
int8 negCount = ( - count ) & 63;
|
|
||||||
|
|
||||||
if ( count == 0 ) {
|
|
||||||
z1 = a1;
|
|
||||||
z0 = a0;
|
|
||||||
}
|
|
||||||
else if ( count < 64 ) {
|
|
||||||
z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
|
|
||||||
z0 = a0>>count;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
if ( count == 64 ) {
|
|
||||||
z1 = a0 | ( a1 != 0 );
|
|
||||||
}
|
|
||||||
else if ( count < 128 ) {
|
|
||||||
z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
z1 = ( ( a0 | a1 ) != 0 );
|
|
||||||
}
|
|
||||||
z0 = 0;
|
|
||||||
}
|
|
||||||
*z1Ptr = z1;
|
|
||||||
*z0Ptr = z0;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right
|
|
||||||
by 64 _plus_ the number of bits given in `count'. The shifted result is
|
|
||||||
at most 128 nonzero bits; these are broken into two 64-bit pieces which are
|
|
||||||
stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
|
|
||||||
off form a third 64-bit result as follows: The _last_ bit shifted off is
|
|
||||||
the most-significant bit of the extra result, and the other 63 bits of the
|
|
||||||
extra result are all zero if and only if _all_but_the_last_ bits shifted off
|
|
||||||
were all zero. This extra result is stored in the location pointed to by
|
|
||||||
`z2Ptr'. The value of `count' can be arbitrarily large.
|
|
||||||
(This routine makes more sense if `a0', `a1', and `a2' are considered
|
|
||||||
to form a fixed-point value with binary point between `a1' and `a2'. This
|
|
||||||
fixed-point value is shifted right by the number of bits given in `count',
|
|
||||||
and the integer part of the result is returned at the locations pointed to
|
|
||||||
by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
|
|
||||||
corrupted as described above, and is returned at the location pointed to by
|
|
||||||
`z2Ptr'.)
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
INLINE void
|
|
||||||
shift128ExtraRightJamming(
|
|
||||||
bits64 a0,
|
|
||||||
bits64 a1,
|
|
||||||
bits64 a2,
|
|
||||||
int16 count,
|
|
||||||
bits64 *z0Ptr,
|
|
||||||
bits64 *z1Ptr,
|
|
||||||
bits64 *z2Ptr
|
|
||||||
)
|
|
||||||
{
|
|
||||||
bits64 z0, z1, z2;
|
|
||||||
int8 negCount = ( - count ) & 63;
|
|
||||||
|
|
||||||
if ( count == 0 ) {
|
|
||||||
z2 = a2;
|
|
||||||
z1 = a1;
|
|
||||||
z0 = a0;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
if ( count < 64 ) {
|
|
||||||
z2 = a1<<negCount;
|
|
||||||
z1 = ( a0<<negCount ) | ( a1>>count );
|
|
||||||
z0 = a0>>count;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
if ( count == 64 ) {
|
|
||||||
z2 = a1;
|
|
||||||
z1 = a0;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
a2 |= a1;
|
|
||||||
if ( count < 128 ) {
|
|
||||||
z2 = a0<<negCount;
|
|
||||||
z1 = a0>>( count & 63 );
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
z2 = ( count == 128 ) ? a0 : ( a0 != 0 );
|
|
||||||
z1 = 0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
z0 = 0;
|
|
||||||
}
|
|
||||||
z2 |= ( a2 != 0 );
|
|
||||||
}
|
|
||||||
*z2Ptr = z2;
|
|
||||||
*z1Ptr = z1;
|
|
||||||
*z0Ptr = z0;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the
|
|
||||||
number of bits given in `count'. Any bits shifted off are lost. The value
|
|
||||||
of `count' must be less than 64. The result is broken into two 64-bit
|
|
||||||
pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
INLINE void
|
|
||||||
shortShift128Left(
|
|
||||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
|
||||||
{
|
|
||||||
|
|
||||||
*z1Ptr = a1<<count;
|
|
||||||
*z0Ptr =
|
|
||||||
( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left
|
|
||||||
by the number of bits given in `count'. Any bits shifted off are lost.
|
|
||||||
The value of `count' must be less than 64. The result is broken into three
|
|
||||||
64-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
|
||||||
`z1Ptr', and `z2Ptr'.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
INLINE void
|
|
||||||
shortShift192Left(
|
|
||||||
bits64 a0,
|
|
||||||
bits64 a1,
|
|
||||||
bits64 a2,
|
|
||||||
int16 count,
|
|
||||||
bits64 *z0Ptr,
|
|
||||||
bits64 *z1Ptr,
|
|
||||||
bits64 *z2Ptr
|
|
||||||
)
|
|
||||||
{
|
|
||||||
bits64 z0, z1, z2;
|
|
||||||
int8 negCount;
|
|
||||||
|
|
||||||
z2 = a2<<count;
|
|
||||||
z1 = a1<<count;
|
|
||||||
z0 = a0<<count;
|
|
||||||
if ( 0 < count ) {
|
|
||||||
negCount = ( ( - count ) & 63 );
|
|
||||||
z1 |= a2>>negCount;
|
|
||||||
z0 |= a1>>negCount;
|
|
||||||
}
|
|
||||||
*z2Ptr = z2;
|
|
||||||
*z1Ptr = z1;
|
|
||||||
*z0Ptr = z0;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit
|
|
||||||
value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so
|
|
||||||
any carry out is lost. The result is broken into two 64-bit pieces which
|
|
||||||
are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
INLINE void
|
|
||||||
add128(
|
|
||||||
bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
|
|
||||||
{
|
|
||||||
bits64 z1;
|
|
||||||
|
|
||||||
z1 = a1 + b1;
|
|
||||||
*z1Ptr = z1;
|
|
||||||
*z0Ptr = a0 + b0 + ( z1 < a1 );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the
|
|
||||||
192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
|
|
||||||
modulo 2^192, so any carry out is lost. The result is broken into three
|
|
||||||
64-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
|
||||||
`z1Ptr', and `z2Ptr'.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
INLINE void
|
|
||||||
add192(
|
|
||||||
bits64 a0,
|
|
||||||
bits64 a1,
|
|
||||||
bits64 a2,
|
|
||||||
bits64 b0,
|
|
||||||
bits64 b1,
|
|
||||||
bits64 b2,
|
|
||||||
bits64 *z0Ptr,
|
|
||||||
bits64 *z1Ptr,
|
|
||||||
bits64 *z2Ptr
|
|
||||||
)
|
|
||||||
{
|
|
||||||
bits64 z0, z1, z2;
|
|
||||||
int8 carry0, carry1;
|
|
||||||
|
|
||||||
z2 = a2 + b2;
|
|
||||||
carry1 = ( z2 < a2 );
|
|
||||||
z1 = a1 + b1;
|
|
||||||
carry0 = ( z1 < a1 );
|
|
||||||
z0 = a0 + b0;
|
|
||||||
z1 += carry1;
|
|
||||||
z0 += ( z1 < carry1 );
|
|
||||||
z0 += carry0;
|
|
||||||
*z2Ptr = z2;
|
|
||||||
*z1Ptr = z1;
|
|
||||||
*z0Ptr = z0;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the
|
|
||||||
128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
|
|
||||||
2^128, so any borrow out (carry out) is lost. The result is broken into two
|
|
||||||
64-bit pieces which are stored at the locations pointed to by `z0Ptr' and
|
|
||||||
`z1Ptr'.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
INLINE void
|
|
||||||
sub128(
|
|
||||||
bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
|
|
||||||
{
|
|
||||||
|
|
||||||
*z1Ptr = a1 - b1;
|
|
||||||
*z0Ptr = a0 - b0 - ( a1 < b1 );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2'
|
|
||||||
from the 192-bit value formed by concatenating `a0', `a1', and `a2'.
|
|
||||||
Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The
|
|
||||||
result is broken into three 64-bit pieces which are stored at the locations
|
|
||||||
pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
INLINE void
|
|
||||||
sub192(
|
|
||||||
bits64 a0,
|
|
||||||
bits64 a1,
|
|
||||||
bits64 a2,
|
|
||||||
bits64 b0,
|
|
||||||
bits64 b1,
|
|
||||||
bits64 b2,
|
|
||||||
bits64 *z0Ptr,
|
|
||||||
bits64 *z1Ptr,
|
|
||||||
bits64 *z2Ptr
|
|
||||||
)
|
|
||||||
{
|
|
||||||
bits64 z0, z1, z2;
|
|
||||||
int8 borrow0, borrow1;
|
|
||||||
|
|
||||||
z2 = a2 - b2;
|
|
||||||
borrow1 = ( a2 < b2 );
|
|
||||||
z1 = a1 - b1;
|
|
||||||
borrow0 = ( a1 < b1 );
|
|
||||||
z0 = a0 - b0;
|
|
||||||
z0 -= ( z1 < borrow1 );
|
|
||||||
z1 -= borrow1;
|
|
||||||
z0 -= borrow0;
|
|
||||||
*z2Ptr = z2;
|
|
||||||
*z1Ptr = z1;
|
|
||||||
*z0Ptr = z0;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Multiplies `a' by `b' to obtain a 128-bit product. The product is broken
|
|
||||||
into two 64-bit pieces which are stored at the locations pointed to by
|
|
||||||
`z0Ptr' and `z1Ptr'.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr )
|
|
||||||
{
|
|
||||||
bits32 aHigh, aLow, bHigh, bLow;
|
|
||||||
bits64 z0, zMiddleA, zMiddleB, z1;
|
|
||||||
|
|
||||||
aLow = a;
|
|
||||||
aHigh = a>>32;
|
|
||||||
bLow = b;
|
|
||||||
bHigh = b>>32;
|
|
||||||
z1 = ( (bits64) aLow ) * bLow;
|
|
||||||
zMiddleA = ( (bits64) aLow ) * bHigh;
|
|
||||||
zMiddleB = ( (bits64) aHigh ) * bLow;
|
|
||||||
z0 = ( (bits64) aHigh ) * bHigh;
|
|
||||||
zMiddleA += zMiddleB;
|
|
||||||
z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 );
|
|
||||||
zMiddleA <<= 32;
|
|
||||||
z1 += zMiddleA;
|
|
||||||
z0 += ( z1 < zMiddleA );
|
|
||||||
*z1Ptr = z1;
|
|
||||||
*z0Ptr = z0;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Multiplies the 128-bit value formed by concatenating `a0' and `a1' by `b' to
|
|
||||||
obtain a 192-bit product. The product is broken into three 64-bit pieces
|
|
||||||
which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
|
|
||||||
`z2Ptr'.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
INLINE void
|
|
||||||
mul128By64To192(
|
|
||||||
bits64 a0,
|
|
||||||
bits64 a1,
|
|
||||||
bits64 b,
|
|
||||||
bits64 *z0Ptr,
|
|
||||||
bits64 *z1Ptr,
|
|
||||||
bits64 *z2Ptr
|
|
||||||
)
|
|
||||||
{
|
|
||||||
bits64 z0, z1, z2, more1;
|
|
||||||
|
|
||||||
mul64To128( a1, b, &z1, &z2 );
|
|
||||||
mul64To128( a0, b, &z0, &more1 );
|
|
||||||
add128( z0, more1, 0, z1, &z0, &z1 );
|
|
||||||
*z2Ptr = z2;
|
|
||||||
*z1Ptr = z1;
|
|
||||||
*z0Ptr = z0;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the
|
|
||||||
128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit
|
|
||||||
product. The product is broken into four 64-bit pieces which are stored at
|
|
||||||
the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
INLINE void
|
|
||||||
mul128To256(
|
|
||||||
bits64 a0,
|
|
||||||
bits64 a1,
|
|
||||||
bits64 b0,
|
|
||||||
bits64 b1,
|
|
||||||
bits64 *z0Ptr,
|
|
||||||
bits64 *z1Ptr,
|
|
||||||
bits64 *z2Ptr,
|
|
||||||
bits64 *z3Ptr
|
|
||||||
)
|
|
||||||
{
|
|
||||||
bits64 z0, z1, z2, z3;
|
|
||||||
bits64 more1, more2;
|
|
||||||
|
|
||||||
mul64To128( a1, b1, &z2, &z3 );
|
|
||||||
mul64To128( a1, b0, &z1, &more2 );
|
|
||||||
add128( z1, more2, 0, z2, &z1, &z2 );
|
|
||||||
mul64To128( a0, b0, &z0, &more1 );
|
|
||||||
add128( z0, more1, 0, z1, &z0, &z1 );
|
|
||||||
mul64To128( a0, b1, &more1, &more2 );
|
|
||||||
add128( more1, more2, 0, z2, &more1, &z2 );
|
|
||||||
add128( z0, z1, 0, more1, &z0, &z1 );
|
|
||||||
*z3Ptr = z3;
|
|
||||||
*z2Ptr = z2;
|
|
||||||
*z1Ptr = z1;
|
|
||||||
*z0Ptr = z0;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns an approximation to the 64-bit integer quotient obtained by dividing
|
|
||||||
`b' into the 128-bit value formed by concatenating `a0' and `a1'. The
|
|
||||||
divisor `b' must be at least 2^63. If q is the exact quotient truncated
|
|
||||||
toward zero, the approximation returned lies between q and q + 2 inclusive.
|
|
||||||
If the exact quotient q is larger than 64 bits, the maximum positive 64-bit
|
|
||||||
unsigned integer is returned.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b )
|
|
||||||
{
|
|
||||||
bits64 b0, b1;
|
|
||||||
bits64 rem0, rem1, term0, term1;
|
|
||||||
bits64 z;
|
|
||||||
if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF );
|
|
||||||
b0 = b>>32;
|
|
||||||
z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32;
|
|
||||||
mul64To128( b, z, &term0, &term1 );
|
|
||||||
sub128( a0, a1, term0, term1, &rem0, &rem1 );
|
|
||||||
while ( ( (sbits64) rem0 ) < 0 ) {
|
|
||||||
z -= LIT64( 0x100000000 );
|
|
||||||
b1 = b<<32;
|
|
||||||
add128( rem0, rem1, b0, b1, &rem0, &rem1 );
|
|
||||||
}
|
|
||||||
rem0 = ( rem0<<32 ) | ( rem1>>32 );
|
|
||||||
z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0;
|
|
||||||
return z;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns an approximation to the square root of the 32-bit significand given
|
|
||||||
by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
|
|
||||||
`aExp' (the least significant bit) is 1, the integer returned approximates
|
|
||||||
2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
|
|
||||||
is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
|
|
||||||
case, the approximation returned lies strictly within +/-2 of the exact
|
|
||||||
value.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
static bits32 estimateSqrt32( int16 aExp, bits32 a )
|
|
||||||
{
|
|
||||||
static const bits16 sqrtOddAdjustments[] = {
|
|
||||||
0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
|
|
||||||
0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
|
|
||||||
};
|
|
||||||
static const bits16 sqrtEvenAdjustments[] = {
|
|
||||||
0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
|
|
||||||
0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
|
|
||||||
};
|
|
||||||
int8 index;
|
|
||||||
bits32 z;
|
|
||||||
|
|
||||||
index = ( a>>27 ) & 15;
|
|
||||||
if ( aExp & 1 ) {
|
|
||||||
z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
|
|
||||||
z = ( ( a / z )<<14 ) + ( z<<15 );
|
|
||||||
a >>= 1;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
|
|
||||||
z = a / z + z;
|
|
||||||
z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
|
|
||||||
if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
|
|
||||||
}
|
|
||||||
return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns the number of leading 0 bits before the most-significant 1 bit
|
|
||||||
of `a'. If `a' is zero, 32 is returned.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
static int8 countLeadingZeros32( bits32 a )
|
|
||||||
{
|
|
||||||
static const int8 countLeadingZerosHigh[] = {
|
|
||||||
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
||||||
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
|
||||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
||||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
||||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
||||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
||||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
||||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
||||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
||||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
||||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
||||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
||||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
||||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
||||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
||||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
||||||
};
|
|
||||||
int8 shiftCount;
|
|
||||||
|
|
||||||
shiftCount = 0;
|
|
||||||
if ( a < 0x10000 ) {
|
|
||||||
shiftCount += 16;
|
|
||||||
a <<= 16;
|
|
||||||
}
|
|
||||||
if ( a < 0x1000000 ) {
|
|
||||||
shiftCount += 8;
|
|
||||||
a <<= 8;
|
|
||||||
}
|
|
||||||
shiftCount += countLeadingZerosHigh[ a>>24 ];
|
|
||||||
return shiftCount;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns the number of leading 0 bits before the most-significant 1 bit
|
|
||||||
of `a'. If `a' is zero, 64 is returned.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
static int8 countLeadingZeros64( bits64 a )
|
|
||||||
{
|
|
||||||
int8 shiftCount;
|
|
||||||
|
|
||||||
shiftCount = 0;
|
|
||||||
if ( a < ( (bits64) 1 )<<32 ) {
|
|
||||||
shiftCount += 32;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
a >>= 32;
|
|
||||||
}
|
|
||||||
shiftCount += countLeadingZeros32( a );
|
|
||||||
return shiftCount;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns 1 if the 128-bit value formed by concatenating `a0' and `a1'
|
|
||||||
is equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
|
||||||
Otherwise, returns 0.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
|
||||||
{
|
|
||||||
|
|
||||||
return ( a0 == b0 ) && ( a1 == b1 );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
|
|
||||||
than or equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
|
||||||
Otherwise, returns 0.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
|
||||||
{
|
|
||||||
|
|
||||||
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
|
|
||||||
than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise,
|
|
||||||
returns 0.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
|
||||||
{
|
|
||||||
|
|
||||||
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is
|
|
||||||
not equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
|
||||||
Otherwise, returns 0.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
|
||||||
{
|
|
||||||
|
|
||||||
return ( a0 != b0 ) || ( a1 != b1 );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
@ -1,366 +0,0 @@
|
|||||||
|
|
||||||
/*
|
|
||||||
===============================================================================
|
|
||||||
|
|
||||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
|
||||||
Arithmetic Package, Release 2.
|
|
||||||
|
|
||||||
Written by John R. Hauser. This work was made possible in part by the
|
|
||||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
|
||||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
|
||||||
National Science Foundation under grant MIP-9311980. The original version
|
|
||||||
of this code was written as part of a project to build a fixed-point vector
|
|
||||||
processor in collaboration with the University of California at Berkeley,
|
|
||||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
|
||||||
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
|
||||||
arithmetic/softfloat.html'.
|
|
||||||
|
|
||||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
|
||||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
|
||||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
|
||||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
|
||||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
|
||||||
|
|
||||||
Derivative works are acceptable, even for commercial purposes, so long as
|
|
||||||
(1) they include prominent notice that the work is derivative, and (2) they
|
|
||||||
include prominent notice akin to these three paragraphs for those parts of
|
|
||||||
this code that are retained.
|
|
||||||
|
|
||||||
===============================================================================
|
|
||||||
*/
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Underflow tininess-detection mode, statically initialized to default value.
|
|
||||||
(The declaration in `softfloat.h' must match the `int8' type here.)
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
int8 float_detect_tininess = float_tininess_after_rounding;
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Raises the exceptions specified by `flags'. Floating-point traps can be
|
|
||||||
defined here if desired. It is currently not possible for such a trap to
|
|
||||||
substitute a result value. If traps are not implemented, this routine
|
|
||||||
should be simply `float_exception_flags |= flags;'.
|
|
||||||
|
|
||||||
ScottB: November 4, 1998
|
|
||||||
Moved this function out of softfloat-specialize into fpmodule.c.
|
|
||||||
This effectively isolates all the changes required for integrating with the
|
|
||||||
Linux kernel into fpmodule.c. Porting to NetBSD should only require modifying
|
|
||||||
fpmodule.c to integrate with the NetBSD kernel (I hope!).
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
void float_raise( int8 flags )
|
|
||||||
{
|
|
||||||
float_exception_flags |= flags;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Internal canonical NaN format.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
typedef struct {
|
|
||||||
flag sign;
|
|
||||||
bits64 high, low;
|
|
||||||
} commonNaNT;
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
The pattern for a default generated single-precision NaN.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
#define float32_default_nan 0xFFFFFFFF
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns 1 if the single-precision floating-point value `a' is a NaN;
|
|
||||||
otherwise returns 0.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
flag float32_is_nan( float32 a )
|
|
||||||
{
|
|
||||||
|
|
||||||
return ( 0xFF000000 < (bits32) ( a<<1 ) );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns 1 if the single-precision floating-point value `a' is a signaling
|
|
||||||
NaN; otherwise returns 0.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
flag float32_is_signaling_nan( float32 a )
|
|
||||||
{
|
|
||||||
|
|
||||||
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns the result of converting the single-precision floating-point NaN
|
|
||||||
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
|
||||||
exception is raised.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
static commonNaNT float32ToCommonNaN( float32 a )
|
|
||||||
{
|
|
||||||
commonNaNT z;
|
|
||||||
|
|
||||||
if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
|
||||||
z.sign = a>>31;
|
|
||||||
z.low = 0;
|
|
||||||
z.high = ( (bits64) a )<<41;
|
|
||||||
return z;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns the result of converting the canonical NaN `a' to the single-
|
|
||||||
precision floating-point format.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
static float32 commonNaNToFloat32( commonNaNT a )
|
|
||||||
{
|
|
||||||
|
|
||||||
return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Takes two single-precision floating-point values `a' and `b', one of which
|
|
||||||
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
|
||||||
signaling NaN, the invalid exception is raised.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
static float32 propagateFloat32NaN( float32 a, float32 b )
|
|
||||||
{
|
|
||||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
|
||||||
|
|
||||||
aIsNaN = float32_is_nan( a );
|
|
||||||
aIsSignalingNaN = float32_is_signaling_nan( a );
|
|
||||||
bIsNaN = float32_is_nan( b );
|
|
||||||
bIsSignalingNaN = float32_is_signaling_nan( b );
|
|
||||||
a |= 0x00400000;
|
|
||||||
b |= 0x00400000;
|
|
||||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
|
||||||
if ( aIsNaN ) {
|
|
||||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
return b;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
The pattern for a default generated double-precision NaN.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns 1 if the double-precision floating-point value `a' is a NaN;
|
|
||||||
otherwise returns 0.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
flag float64_is_nan( float64 a )
|
|
||||||
{
|
|
||||||
|
|
||||||
return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns 1 if the double-precision floating-point value `a' is a signaling
|
|
||||||
NaN; otherwise returns 0.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
flag float64_is_signaling_nan( float64 a )
|
|
||||||
{
|
|
||||||
|
|
||||||
return
|
|
||||||
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
|
|
||||||
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns the result of converting the double-precision floating-point NaN
|
|
||||||
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
|
||||||
exception is raised.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
static commonNaNT float64ToCommonNaN( float64 a )
|
|
||||||
{
|
|
||||||
commonNaNT z;
|
|
||||||
|
|
||||||
if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
|
||||||
z.sign = a>>63;
|
|
||||||
z.low = 0;
|
|
||||||
z.high = a<<12;
|
|
||||||
return z;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns the result of converting the canonical NaN `a' to the double-
|
|
||||||
precision floating-point format.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
static float64 commonNaNToFloat64( commonNaNT a )
|
|
||||||
{
|
|
||||||
|
|
||||||
return
|
|
||||||
( ( (bits64) a.sign )<<63 )
|
|
||||||
| LIT64( 0x7FF8000000000000 )
|
|
||||||
| ( a.high>>12 );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Takes two double-precision floating-point values `a' and `b', one of which
|
|
||||||
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
|
||||||
signaling NaN, the invalid exception is raised.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
static float64 propagateFloat64NaN( float64 a, float64 b )
|
|
||||||
{
|
|
||||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
|
||||||
|
|
||||||
aIsNaN = float64_is_nan( a );
|
|
||||||
aIsSignalingNaN = float64_is_signaling_nan( a );
|
|
||||||
bIsNaN = float64_is_nan( b );
|
|
||||||
bIsSignalingNaN = float64_is_signaling_nan( b );
|
|
||||||
a |= LIT64( 0x0008000000000000 );
|
|
||||||
b |= LIT64( 0x0008000000000000 );
|
|
||||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
|
||||||
if ( aIsNaN ) {
|
|
||||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
return b;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
#ifdef FLOATX80
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
The pattern for a default generated extended double-precision NaN. The
|
|
||||||
`high' and `low' values hold the most- and least-significant bits,
|
|
||||||
respectively.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
#define floatx80_default_nan_high 0xFFFF
|
|
||||||
#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns 1 if the extended double-precision floating-point value `a' is a
|
|
||||||
NaN; otherwise returns 0.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
flag floatx80_is_nan( floatx80 a )
|
|
||||||
{
|
|
||||||
|
|
||||||
return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns 1 if the extended double-precision floating-point value `a' is a
|
|
||||||
signaling NaN; otherwise returns 0.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
flag floatx80_is_signaling_nan( floatx80 a )
|
|
||||||
{
|
|
||||||
//register int lr;
|
|
||||||
bits64 aLow;
|
|
||||||
|
|
||||||
//__asm__("mov %0, lr" : : "g" (lr));
|
|
||||||
//fp_printk("floatx80_is_signalling_nan() called from 0x%08x\n",lr);
|
|
||||||
aLow = a.low & ~ LIT64( 0x4000000000000000 );
|
|
||||||
return
|
|
||||||
( ( a.high & 0x7FFF ) == 0x7FFF )
|
|
||||||
&& (bits64) ( aLow<<1 )
|
|
||||||
&& ( a.low == aLow );
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns the result of converting the extended double-precision floating-
|
|
||||||
point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
|
|
||||||
invalid exception is raised.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
static commonNaNT floatx80ToCommonNaN( floatx80 a )
|
|
||||||
{
|
|
||||||
commonNaNT z;
|
|
||||||
|
|
||||||
if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
|
||||||
z.sign = a.high>>15;
|
|
||||||
z.low = 0;
|
|
||||||
z.high = a.low<<1;
|
|
||||||
return z;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Returns the result of converting the canonical NaN `a' to the extended
|
|
||||||
double-precision floating-point format.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
static floatx80 commonNaNToFloatx80( commonNaNT a )
|
|
||||||
{
|
|
||||||
floatx80 z;
|
|
||||||
|
|
||||||
z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
|
|
||||||
z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
|
|
||||||
return z;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Takes two extended double-precision floating-point values `a' and `b', one
|
|
||||||
of which is a NaN, and returns the appropriate NaN result. If either `a' or
|
|
||||||
`b' is a signaling NaN, the invalid exception is raised.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
|
|
||||||
{
|
|
||||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
|
||||||
|
|
||||||
aIsNaN = floatx80_is_nan( a );
|
|
||||||
aIsSignalingNaN = floatx80_is_signaling_nan( a );
|
|
||||||
bIsNaN = floatx80_is_nan( b );
|
|
||||||
bIsSignalingNaN = floatx80_is_signaling_nan( b );
|
|
||||||
a.low |= LIT64( 0xC000000000000000 );
|
|
||||||
b.low |= LIT64( 0xC000000000000000 );
|
|
||||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
|
||||||
if ( aIsNaN ) {
|
|
||||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
return b;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif
|
|
File diff suppressed because it is too large
Load Diff
@ -1,232 +0,0 @@
|
|||||||
|
|
||||||
/*
|
|
||||||
===============================================================================
|
|
||||||
|
|
||||||
This C header file is part of the SoftFloat IEC/IEEE Floating-point
|
|
||||||
Arithmetic Package, Release 2.
|
|
||||||
|
|
||||||
Written by John R. Hauser. This work was made possible in part by the
|
|
||||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
|
||||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
|
||||||
National Science Foundation under grant MIP-9311980. The original version
|
|
||||||
of this code was written as part of a project to build a fixed-point vector
|
|
||||||
processor in collaboration with the University of California at Berkeley,
|
|
||||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
|
||||||
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
|
||||||
arithmetic/softfloat.html'.
|
|
||||||
|
|
||||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
|
||||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
|
||||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
|
||||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
|
||||||
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
|
||||||
|
|
||||||
Derivative works are acceptable, even for commercial purposes, so long as
|
|
||||||
(1) they include prominent notice that the work is derivative, and (2) they
|
|
||||||
include prominent notice akin to these three paragraphs for those parts of
|
|
||||||
this code that are retained.
|
|
||||||
|
|
||||||
===============================================================================
|
|
||||||
*/
|
|
||||||
|
|
||||||
#ifndef __SOFTFLOAT_H__
|
|
||||||
#define __SOFTFLOAT_H__
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
The macro `FLOATX80' must be defined to enable the extended double-precision
|
|
||||||
floating-point format `floatx80'. If this macro is not defined, the
|
|
||||||
`floatx80' type will not be defined, and none of the functions that either
|
|
||||||
input or output the `floatx80' type will be defined.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
#define FLOATX80
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Software IEC/IEEE floating-point types.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
typedef unsigned long int float32;
|
|
||||||
typedef unsigned long long float64;
|
|
||||||
typedef struct {
|
|
||||||
unsigned short high;
|
|
||||||
unsigned long long low;
|
|
||||||
} floatx80;
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Software IEC/IEEE floating-point underflow tininess-detection mode.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
extern signed char float_detect_tininess;
|
|
||||||
enum {
|
|
||||||
float_tininess_after_rounding = 0,
|
|
||||||
float_tininess_before_rounding = 1
|
|
||||||
};
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Software IEC/IEEE floating-point rounding mode.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
extern signed char float_rounding_mode;
|
|
||||||
enum {
|
|
||||||
float_round_nearest_even = 0,
|
|
||||||
float_round_to_zero = 1,
|
|
||||||
float_round_down = 2,
|
|
||||||
float_round_up = 3
|
|
||||||
};
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Software IEC/IEEE floating-point exception flags.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
extern signed char float_exception_flags;
|
|
||||||
enum {
|
|
||||||
float_flag_inexact = 1,
|
|
||||||
float_flag_underflow = 2,
|
|
||||||
float_flag_overflow = 4,
|
|
||||||
float_flag_divbyzero = 8,
|
|
||||||
float_flag_invalid = 16
|
|
||||||
};
|
|
||||||
|
|
||||||
ScottB: November 4, 1998
|
|
||||||
Changed the enumeration to match the bit order in the FPA11.
|
|
||||||
*/
|
|
||||||
|
|
||||||
extern signed char float_exception_flags;
|
|
||||||
enum {
|
|
||||||
float_flag_invalid = 1,
|
|
||||||
float_flag_divbyzero = 2,
|
|
||||||
float_flag_overflow = 4,
|
|
||||||
float_flag_underflow = 8,
|
|
||||||
float_flag_inexact = 16
|
|
||||||
};
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Routine to raise any or all of the software IEC/IEEE floating-point
|
|
||||||
exception flags.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
void float_raise( signed char );
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Software IEC/IEEE integer-to-floating-point conversion routines.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
float32 int32_to_float32( signed int );
|
|
||||||
float64 int32_to_float64( signed int );
|
|
||||||
#ifdef FLOATX80
|
|
||||||
floatx80 int32_to_floatx80( signed int );
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Software IEC/IEEE single-precision conversion routines.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
signed int float32_to_int32( float32 );
|
|
||||||
signed int float32_to_int32_round_to_zero( float32 );
|
|
||||||
float64 float32_to_float64( float32 );
|
|
||||||
#ifdef FLOATX80
|
|
||||||
floatx80 float32_to_floatx80( float32 );
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Software IEC/IEEE single-precision operations.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
float32 float32_round_to_int( float32 );
|
|
||||||
float32 float32_add( float32, float32 );
|
|
||||||
float32 float32_sub( float32, float32 );
|
|
||||||
float32 float32_mul( float32, float32 );
|
|
||||||
float32 float32_div( float32, float32 );
|
|
||||||
float32 float32_rem( float32, float32 );
|
|
||||||
float32 float32_sqrt( float32 );
|
|
||||||
char float32_eq( float32, float32 );
|
|
||||||
char float32_le( float32, float32 );
|
|
||||||
char float32_lt( float32, float32 );
|
|
||||||
char float32_eq_signaling( float32, float32 );
|
|
||||||
char float32_le_quiet( float32, float32 );
|
|
||||||
char float32_lt_quiet( float32, float32 );
|
|
||||||
char float32_is_signaling_nan( float32 );
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Software IEC/IEEE double-precision conversion routines.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
signed int float64_to_int32( float64 );
|
|
||||||
signed int float64_to_int32_round_to_zero( float64 );
|
|
||||||
float32 float64_to_float32( float64 );
|
|
||||||
#ifdef FLOATX80
|
|
||||||
floatx80 float64_to_floatx80( float64 );
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Software IEC/IEEE double-precision operations.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
float64 float64_round_to_int( float64 );
|
|
||||||
float64 float64_add( float64, float64 );
|
|
||||||
float64 float64_sub( float64, float64 );
|
|
||||||
float64 float64_mul( float64, float64 );
|
|
||||||
float64 float64_div( float64, float64 );
|
|
||||||
float64 float64_rem( float64, float64 );
|
|
||||||
float64 float64_sqrt( float64 );
|
|
||||||
char float64_eq( float64, float64 );
|
|
||||||
char float64_le( float64, float64 );
|
|
||||||
char float64_lt( float64, float64 );
|
|
||||||
char float64_eq_signaling( float64, float64 );
|
|
||||||
char float64_le_quiet( float64, float64 );
|
|
||||||
char float64_lt_quiet( float64, float64 );
|
|
||||||
char float64_is_signaling_nan( float64 );
|
|
||||||
|
|
||||||
#ifdef FLOATX80
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Software IEC/IEEE extended double-precision conversion routines.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
signed int floatx80_to_int32( floatx80 );
|
|
||||||
signed int floatx80_to_int32_round_to_zero( floatx80 );
|
|
||||||
float32 floatx80_to_float32( floatx80 );
|
|
||||||
float64 floatx80_to_float64( floatx80 );
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Software IEC/IEEE extended double-precision rounding precision. Valid
|
|
||||||
values are 32, 64, and 80.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
extern signed char floatx80_rounding_precision;
|
|
||||||
|
|
||||||
/*
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
Software IEC/IEEE extended double-precision operations.
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
*/
|
|
||||||
floatx80 floatx80_round_to_int( floatx80 );
|
|
||||||
floatx80 floatx80_add( floatx80, floatx80 );
|
|
||||||
floatx80 floatx80_sub( floatx80, floatx80 );
|
|
||||||
floatx80 floatx80_mul( floatx80, floatx80 );
|
|
||||||
floatx80 floatx80_div( floatx80, floatx80 );
|
|
||||||
floatx80 floatx80_rem( floatx80, floatx80 );
|
|
||||||
floatx80 floatx80_sqrt( floatx80 );
|
|
||||||
char floatx80_eq( floatx80, floatx80 );
|
|
||||||
char floatx80_le( floatx80, floatx80 );
|
|
||||||
char floatx80_lt( floatx80, floatx80 );
|
|
||||||
char floatx80_eq_signaling( floatx80, floatx80 );
|
|
||||||
char floatx80_le_quiet( floatx80, floatx80 );
|
|
||||||
char floatx80_lt_quiet( floatx80, floatx80 );
|
|
||||||
char floatx80_is_signaling_nan( floatx80 );
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#endif
|
|
Loading…
Reference in New Issue
Block a user