mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-11-04 01:41:27 +00:00 
			
		
		
		
	This change introduces a new weighting algorithm to improve metaslab selection. The new weighting algorithm relies on the SPACEMAP_HISTOGRAM feature. As a result, the metaslab weight now encodes the type of weighting algorithm used (size-based vs segment-based). Porting Notes: The metaslab allocation tracing code is conditionally removed on linux (dependent on mdb debugger). Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Alex Reece <alex@delphix.com> Reviewed by: Chris Siden <christopher.siden@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com> Reviewed by: Pavel Zakharov pavel.zakharov@delphix.com Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Don Brady <don.brady@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Don Brady <don.brady@intel.com> OpenZFS-issue: https://www.illumos.org/issues/7303 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/d5190931bd Closes #5404
		
			
				
	
	
		
			551 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			551 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * CDDL HEADER START
 | 
						|
 *
 | 
						|
 * The contents of this file are subject to the terms of the
 | 
						|
 * Common Development and Distribution License (the "License").
 | 
						|
 * You may not use this file except in compliance with the License.
 | 
						|
 *
 | 
						|
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | 
						|
 * or http://www.opensolaris.org/os/licensing.
 | 
						|
 * See the License for the specific language governing permissions
 | 
						|
 * and limitations under the License.
 | 
						|
 *
 | 
						|
 * When distributing Covered Code, include this CDDL HEADER in each
 | 
						|
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | 
						|
 * If applicable, add the following below this CDDL HEADER, with the
 | 
						|
 * fields enclosed by brackets "[]" replaced with your own identifying
 | 
						|
 * information: Portions Copyright [yyyy] [name of copyright owner]
 | 
						|
 *
 | 
						|
 * CDDL HEADER END
 | 
						|
 */
 | 
						|
/*
 | 
						|
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 | 
						|
 * Use is subject to license terms.
 | 
						|
 */
 | 
						|
/*
 | 
						|
 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
 | 
						|
 */
 | 
						|
 | 
						|
#include <sys/zfs_context.h>
 | 
						|
#include <sys/spa.h>
 | 
						|
#include <sys/dmu.h>
 | 
						|
#include <sys/dmu_tx.h>
 | 
						|
#include <sys/dnode.h>
 | 
						|
#include <sys/dsl_pool.h>
 | 
						|
#include <sys/zio.h>
 | 
						|
#include <sys/space_map.h>
 | 
						|
#include <sys/refcount.h>
 | 
						|
#include <sys/zfeature.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * The data for a given space map can be kept on blocks of any size.
 | 
						|
 * Larger blocks entail fewer i/o operations, but they also cause the
 | 
						|
 * DMU to keep more data in-core, and also to waste more i/o bandwidth
 | 
						|
 * when only a few blocks have changed since the last transaction group.
 | 
						|
 */
 | 
						|
int space_map_blksz = (1 << 12);
 | 
						|
 | 
						|
/*
 | 
						|
 * Load the space map disk into the specified range tree. Segments of maptype
 | 
						|
 * are added to the range tree, other segment types are removed.
 | 
						|
 *
 | 
						|
 * Note: space_map_load() will drop sm_lock across dmu_read() calls.
 | 
						|
 * The caller must be OK with this.
 | 
						|
 */
 | 
						|
int
 | 
						|
space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
 | 
						|
{
 | 
						|
	uint64_t *entry, *entry_map, *entry_map_end;
 | 
						|
	uint64_t bufsize, size, offset, end, space;
 | 
						|
	int error = 0;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(sm->sm_lock));
 | 
						|
 | 
						|
	end = space_map_length(sm);
 | 
						|
	space = space_map_allocated(sm);
 | 
						|
 | 
						|
	VERIFY0(range_tree_space(rt));
 | 
						|
 | 
						|
	if (maptype == SM_FREE) {
 | 
						|
		range_tree_add(rt, sm->sm_start, sm->sm_size);
 | 
						|
		space = sm->sm_size - space;
 | 
						|
	}
 | 
						|
 | 
						|
	bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
 | 
						|
	entry_map = vmem_alloc(bufsize, KM_SLEEP);
 | 
						|
 | 
						|
	mutex_exit(sm->sm_lock);
 | 
						|
	if (end > bufsize) {
 | 
						|
		dmu_prefetch(sm->sm_os, space_map_object(sm), 0, bufsize,
 | 
						|
		    end - bufsize, ZIO_PRIORITY_SYNC_READ);
 | 
						|
	}
 | 
						|
	mutex_enter(sm->sm_lock);
 | 
						|
 | 
						|
	for (offset = 0; offset < end; offset += bufsize) {
 | 
						|
		size = MIN(end - offset, bufsize);
 | 
						|
		VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
 | 
						|
		VERIFY(size != 0);
 | 
						|
		ASSERT3U(sm->sm_blksz, !=, 0);
 | 
						|
 | 
						|
		dprintf("object=%llu  offset=%llx  size=%llx\n",
 | 
						|
		    space_map_object(sm), offset, size);
 | 
						|
 | 
						|
		mutex_exit(sm->sm_lock);
 | 
						|
		error = dmu_read(sm->sm_os, space_map_object(sm), offset, size,
 | 
						|
		    entry_map, DMU_READ_PREFETCH);
 | 
						|
		mutex_enter(sm->sm_lock);
 | 
						|
		if (error != 0)
 | 
						|
			break;
 | 
						|
 | 
						|
		entry_map_end = entry_map + (size / sizeof (uint64_t));
 | 
						|
		for (entry = entry_map; entry < entry_map_end; entry++) {
 | 
						|
			uint64_t e = *entry;
 | 
						|
			uint64_t offset, size;
 | 
						|
 | 
						|
			if (SM_DEBUG_DECODE(e))		/* Skip debug entries */
 | 
						|
				continue;
 | 
						|
 | 
						|
			offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) +
 | 
						|
			    sm->sm_start;
 | 
						|
			size = SM_RUN_DECODE(e) << sm->sm_shift;
 | 
						|
 | 
						|
			VERIFY0(P2PHASE(offset, 1ULL << sm->sm_shift));
 | 
						|
			VERIFY0(P2PHASE(size, 1ULL << sm->sm_shift));
 | 
						|
			VERIFY3U(offset, >=, sm->sm_start);
 | 
						|
			VERIFY3U(offset + size, <=, sm->sm_start + sm->sm_size);
 | 
						|
			if (SM_TYPE_DECODE(e) == maptype) {
 | 
						|
				VERIFY3U(range_tree_space(rt) + size, <=,
 | 
						|
				    sm->sm_size);
 | 
						|
				range_tree_add(rt, offset, size);
 | 
						|
			} else {
 | 
						|
				range_tree_remove(rt, offset, size);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (error == 0)
 | 
						|
		VERIFY3U(range_tree_space(rt), ==, space);
 | 
						|
	else
 | 
						|
		range_tree_vacate(rt, NULL, NULL);
 | 
						|
 | 
						|
	vmem_free(entry_map, bufsize);
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
space_map_histogram_clear(space_map_t *sm)
 | 
						|
{
 | 
						|
	if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
 | 
						|
		return;
 | 
						|
 | 
						|
	bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Verify that the in-core range tree does not have any
 | 
						|
	 * ranges smaller than our sm_shift size.
 | 
						|
	 */
 | 
						|
	for (i = 0; i < sm->sm_shift; i++) {
 | 
						|
		if (rt->rt_histogram[i] != 0)
 | 
						|
			return (B_FALSE);
 | 
						|
	}
 | 
						|
	return (B_TRUE);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	int idx = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(rt->rt_lock));
 | 
						|
	ASSERT(dmu_tx_is_syncing(tx));
 | 
						|
	VERIFY3U(space_map_object(sm), !=, 0);
 | 
						|
 | 
						|
	if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
 | 
						|
		return;
 | 
						|
 | 
						|
	dmu_buf_will_dirty(sm->sm_dbuf, tx);
 | 
						|
 | 
						|
	ASSERT(space_map_histogram_verify(sm, rt));
 | 
						|
	/*
 | 
						|
	 * Transfer the content of the range tree histogram to the space
 | 
						|
	 * map histogram. The space map histogram contains 32 buckets ranging
 | 
						|
	 * between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
 | 
						|
	 * however, can represent ranges from 2^0 to 2^63. Since the space
 | 
						|
	 * map only cares about allocatable blocks (minimum of sm_shift) we
 | 
						|
	 * can safely ignore all ranges in the range tree smaller than sm_shift.
 | 
						|
	 */
 | 
						|
	for (i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Since the largest histogram bucket in the space map is
 | 
						|
		 * 2^(32+sm_shift-1), we need to normalize the values in
 | 
						|
		 * the range tree for any bucket larger than that size. For
 | 
						|
		 * example given an sm_shift of 9, ranges larger than 2^40
 | 
						|
		 * would get normalized as if they were 1TB ranges. Assume
 | 
						|
		 * the range tree had a count of 5 in the 2^44 (16TB) bucket,
 | 
						|
		 * the calculation below would normalize this to 5 * 2^4 (16).
 | 
						|
		 */
 | 
						|
		ASSERT3U(i, >=, idx + sm->sm_shift);
 | 
						|
		sm->sm_phys->smp_histogram[idx] +=
 | 
						|
		    rt->rt_histogram[i] << (i - idx - sm->sm_shift);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Increment the space map's index as long as we haven't
 | 
						|
		 * reached the maximum bucket size. Accumulate all ranges
 | 
						|
		 * larger than the max bucket size into the last bucket.
 | 
						|
		 */
 | 
						|
		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
 | 
						|
			ASSERT3U(idx + sm->sm_shift, ==, i);
 | 
						|
			idx++;
 | 
						|
			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
space_map_entries(space_map_t *sm, range_tree_t *rt)
 | 
						|
{
 | 
						|
	avl_tree_t *t = &rt->rt_root;
 | 
						|
	range_seg_t *rs;
 | 
						|
	uint64_t size, entries;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * All space_maps always have a debug entry so account for it here.
 | 
						|
	 */
 | 
						|
	entries = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Traverse the range tree and calculate the number of space map
 | 
						|
	 * entries that would be required to write out the range tree.
 | 
						|
	 */
 | 
						|
	for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
 | 
						|
		size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
 | 
						|
		entries += howmany(size, SM_RUN_MAX);
 | 
						|
	}
 | 
						|
	return (entries);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Note: space_map_write() will drop sm_lock across dmu_write() calls.
 | 
						|
 */
 | 
						|
void
 | 
						|
space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
 | 
						|
    dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	objset_t *os = sm->sm_os;
 | 
						|
	spa_t *spa = dmu_objset_spa(os);
 | 
						|
	avl_tree_t *t = &rt->rt_root;
 | 
						|
	range_seg_t *rs;
 | 
						|
	uint64_t size, total, rt_space, nodes;
 | 
						|
	uint64_t *entry, *entry_map, *entry_map_end;
 | 
						|
	uint64_t expected_entries, actual_entries = 1;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(rt->rt_lock));
 | 
						|
	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
 | 
						|
	VERIFY3U(space_map_object(sm), !=, 0);
 | 
						|
	dmu_buf_will_dirty(sm->sm_dbuf, tx);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This field is no longer necessary since the in-core space map
 | 
						|
	 * now contains the object number but is maintained for backwards
 | 
						|
	 * compatibility.
 | 
						|
	 */
 | 
						|
	sm->sm_phys->smp_object = sm->sm_object;
 | 
						|
 | 
						|
	if (range_tree_space(rt) == 0) {
 | 
						|
		VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (maptype == SM_ALLOC)
 | 
						|
		sm->sm_phys->smp_alloc += range_tree_space(rt);
 | 
						|
	else
 | 
						|
		sm->sm_phys->smp_alloc -= range_tree_space(rt);
 | 
						|
 | 
						|
	expected_entries = space_map_entries(sm, rt);
 | 
						|
 | 
						|
	entry_map = vmem_alloc(sm->sm_blksz, KM_SLEEP);
 | 
						|
	entry_map_end = entry_map + (sm->sm_blksz / sizeof (uint64_t));
 | 
						|
	entry = entry_map;
 | 
						|
 | 
						|
	*entry++ = SM_DEBUG_ENCODE(1) |
 | 
						|
	    SM_DEBUG_ACTION_ENCODE(maptype) |
 | 
						|
	    SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
 | 
						|
	    SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
 | 
						|
 | 
						|
	total = 0;
 | 
						|
	nodes = avl_numnodes(&rt->rt_root);
 | 
						|
	rt_space = range_tree_space(rt);
 | 
						|
	for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
 | 
						|
		uint64_t start;
 | 
						|
 | 
						|
		size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
 | 
						|
		start = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
 | 
						|
 | 
						|
		total += size << sm->sm_shift;
 | 
						|
 | 
						|
		while (size != 0) {
 | 
						|
			uint64_t run_len;
 | 
						|
 | 
						|
			run_len = MIN(size, SM_RUN_MAX);
 | 
						|
 | 
						|
			if (entry == entry_map_end) {
 | 
						|
				mutex_exit(rt->rt_lock);
 | 
						|
				dmu_write(os, space_map_object(sm),
 | 
						|
				    sm->sm_phys->smp_objsize, sm->sm_blksz,
 | 
						|
				    entry_map, tx);
 | 
						|
				mutex_enter(rt->rt_lock);
 | 
						|
				sm->sm_phys->smp_objsize += sm->sm_blksz;
 | 
						|
				entry = entry_map;
 | 
						|
			}
 | 
						|
 | 
						|
			*entry++ = SM_OFFSET_ENCODE(start) |
 | 
						|
			    SM_TYPE_ENCODE(maptype) |
 | 
						|
			    SM_RUN_ENCODE(run_len);
 | 
						|
 | 
						|
			start += run_len;
 | 
						|
			size -= run_len;
 | 
						|
			actual_entries++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (entry != entry_map) {
 | 
						|
		size = (entry - entry_map) * sizeof (uint64_t);
 | 
						|
		mutex_exit(rt->rt_lock);
 | 
						|
		dmu_write(os, space_map_object(sm), sm->sm_phys->smp_objsize,
 | 
						|
		    size, entry_map, tx);
 | 
						|
		mutex_enter(rt->rt_lock);
 | 
						|
		sm->sm_phys->smp_objsize += size;
 | 
						|
	}
 | 
						|
	ASSERT3U(expected_entries, ==, actual_entries);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ensure that the space_map's accounting wasn't changed
 | 
						|
	 * while we were in the middle of writing it out.
 | 
						|
	 */
 | 
						|
	VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root));
 | 
						|
	VERIFY3U(range_tree_space(rt), ==, rt_space);
 | 
						|
	VERIFY3U(range_tree_space(rt), ==, total);
 | 
						|
 | 
						|
	vmem_free(entry_map, sm->sm_blksz);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
space_map_open_impl(space_map_t *sm)
 | 
						|
{
 | 
						|
	int error;
 | 
						|
	u_longlong_t blocks;
 | 
						|
 | 
						|
	error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
 | 
						|
	if (error)
 | 
						|
		return (error);
 | 
						|
 | 
						|
	dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
 | 
						|
	sm->sm_phys = sm->sm_dbuf->db_data;
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
 | 
						|
    uint64_t start, uint64_t size, uint8_t shift, kmutex_t *lp)
 | 
						|
{
 | 
						|
	space_map_t *sm;
 | 
						|
	int error;
 | 
						|
 | 
						|
	ASSERT(*smp == NULL);
 | 
						|
	ASSERT(os != NULL);
 | 
						|
	ASSERT(object != 0);
 | 
						|
 | 
						|
	sm = kmem_alloc(sizeof (space_map_t), KM_SLEEP);
 | 
						|
 | 
						|
	sm->sm_start = start;
 | 
						|
	sm->sm_size = size;
 | 
						|
	sm->sm_shift = shift;
 | 
						|
	sm->sm_lock = lp;
 | 
						|
	sm->sm_os = os;
 | 
						|
	sm->sm_object = object;
 | 
						|
	sm->sm_length = 0;
 | 
						|
	sm->sm_alloc = 0;
 | 
						|
	sm->sm_blksz = 0;
 | 
						|
	sm->sm_dbuf = NULL;
 | 
						|
	sm->sm_phys = NULL;
 | 
						|
 | 
						|
	error = space_map_open_impl(sm);
 | 
						|
	if (error != 0) {
 | 
						|
		space_map_close(sm);
 | 
						|
		return (error);
 | 
						|
	}
 | 
						|
 | 
						|
	*smp = sm;
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
space_map_close(space_map_t *sm)
 | 
						|
{
 | 
						|
	if (sm == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (sm->sm_dbuf != NULL)
 | 
						|
		dmu_buf_rele(sm->sm_dbuf, sm);
 | 
						|
	sm->sm_dbuf = NULL;
 | 
						|
	sm->sm_phys = NULL;
 | 
						|
 | 
						|
	kmem_free(sm, sizeof (*sm));
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
space_map_truncate(space_map_t *sm, dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	objset_t *os = sm->sm_os;
 | 
						|
	spa_t *spa = dmu_objset_spa(os);
 | 
						|
	dmu_object_info_t doi;
 | 
						|
 | 
						|
	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
 | 
						|
	ASSERT(dmu_tx_is_syncing(tx));
 | 
						|
 | 
						|
	dmu_object_info_from_db(sm->sm_dbuf, &doi);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the space map has the wrong bonus size (because
 | 
						|
	 * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
 | 
						|
	 * the wrong block size (because space_map_blksz has changed),
 | 
						|
	 * free and re-allocate its object with the updated sizes.
 | 
						|
	 *
 | 
						|
	 * Otherwise, just truncate the current object.
 | 
						|
	 */
 | 
						|
	if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
 | 
						|
	    doi.doi_bonus_size != sizeof (space_map_phys_t)) ||
 | 
						|
	    doi.doi_data_block_size != space_map_blksz) {
 | 
						|
		zfs_dbgmsg("txg %llu, spa %s, reallocating: "
 | 
						|
		    "old bonus %llu, old blocksz %u", dmu_tx_get_txg(tx),
 | 
						|
		    spa_name(spa), doi.doi_bonus_size, doi.doi_data_block_size);
 | 
						|
 | 
						|
		space_map_free(sm, tx);
 | 
						|
		dmu_buf_rele(sm->sm_dbuf, sm);
 | 
						|
 | 
						|
		sm->sm_object = space_map_alloc(sm->sm_os, tx);
 | 
						|
		VERIFY0(space_map_open_impl(sm));
 | 
						|
	} else {
 | 
						|
		VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the spacemap is reallocated, its histogram
 | 
						|
		 * will be reset.  Do the same in the common case so that
 | 
						|
		 * bugs related to the uncommon case do not go unnoticed.
 | 
						|
		 */
 | 
						|
		bzero(sm->sm_phys->smp_histogram,
 | 
						|
		    sizeof (sm->sm_phys->smp_histogram));
 | 
						|
	}
 | 
						|
 | 
						|
	dmu_buf_will_dirty(sm->sm_dbuf, tx);
 | 
						|
	sm->sm_phys->smp_objsize = 0;
 | 
						|
	sm->sm_phys->smp_alloc = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Update the in-core space_map allocation and length values.
 | 
						|
 */
 | 
						|
void
 | 
						|
space_map_update(space_map_t *sm)
 | 
						|
{
 | 
						|
	if (sm == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(sm->sm_lock));
 | 
						|
 | 
						|
	sm->sm_alloc = sm->sm_phys->smp_alloc;
 | 
						|
	sm->sm_length = sm->sm_phys->smp_objsize;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
space_map_alloc(objset_t *os, dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	spa_t *spa = dmu_objset_spa(os);
 | 
						|
	uint64_t object;
 | 
						|
	int bonuslen;
 | 
						|
 | 
						|
	if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
 | 
						|
		spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
 | 
						|
		bonuslen = sizeof (space_map_phys_t);
 | 
						|
		ASSERT3U(bonuslen, <=, dmu_bonus_max());
 | 
						|
	} else {
 | 
						|
		bonuslen = SPACE_MAP_SIZE_V0;
 | 
						|
	}
 | 
						|
 | 
						|
	object = dmu_object_alloc(os,
 | 
						|
	    DMU_OT_SPACE_MAP, space_map_blksz,
 | 
						|
	    DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
 | 
						|
 | 
						|
	return (object);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
space_map_free(space_map_t *sm, dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	spa_t *spa;
 | 
						|
 | 
						|
	if (sm == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	spa = dmu_objset_spa(sm->sm_os);
 | 
						|
	if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
 | 
						|
		dmu_object_info_t doi;
 | 
						|
 | 
						|
		dmu_object_info_from_db(sm->sm_dbuf, &doi);
 | 
						|
		if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
 | 
						|
			VERIFY(spa_feature_is_active(spa,
 | 
						|
			    SPA_FEATURE_SPACEMAP_HISTOGRAM));
 | 
						|
			spa_feature_decr(spa,
 | 
						|
			    SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	VERIFY3U(dmu_object_free(sm->sm_os, space_map_object(sm), tx), ==, 0);
 | 
						|
	sm->sm_object = 0;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
space_map_object(space_map_t *sm)
 | 
						|
{
 | 
						|
	return (sm != NULL ? sm->sm_object : 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the already synced, on-disk allocated space.
 | 
						|
 */
 | 
						|
uint64_t
 | 
						|
space_map_allocated(space_map_t *sm)
 | 
						|
{
 | 
						|
	return (sm != NULL ? sm->sm_alloc : 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the already synced, on-disk length;
 | 
						|
 */
 | 
						|
uint64_t
 | 
						|
space_map_length(space_map_t *sm)
 | 
						|
{
 | 
						|
	return (sm != NULL ? sm->sm_length : 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the allocated space that is currently syncing.
 | 
						|
 */
 | 
						|
int64_t
 | 
						|
space_map_alloc_delta(space_map_t *sm)
 | 
						|
{
 | 
						|
	if (sm == NULL)
 | 
						|
		return (0);
 | 
						|
	ASSERT(sm->sm_dbuf != NULL);
 | 
						|
	return (sm->sm_phys->smp_alloc - space_map_allocated(sm));
 | 
						|
}
 |