mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 19:05:26 +00:00 
			
		
		
		
	 c3f2f1aa2d
			
		
	
	
		c3f2f1aa2d
		
			
		
	
	
	
	
		
			
			Simplify vdev probes in the zio_vdev_io_done context to avoid holding the spa config lock for a long duration. Also allow zpool clear if no evidence of another host is using the pool. Sponsored-by: Klara, Inc. Sponsored-by: Wasabi Technology, Inc. Reviewed-by: Olaf Faaland <faaland1@llnl.gov> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Don Brady <don.brady@klarasystems.com> Closes #15839
		
			
				
	
	
		
			1099 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1099 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or https://opensource.org/licenses/CDDL-1.0.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | |
|  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
 | |
|  * Copyright (c) 2017, Intel Corporation.
 | |
|  * Copyright (c) 2024, Klara Inc.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * ZFS fault injection
 | |
|  *
 | |
|  * To handle fault injection, we keep track of a series of zinject_record_t
 | |
|  * structures which describe which logical block(s) should be injected with a
 | |
|  * fault.  These are kept in a global list.  Each record corresponds to a given
 | |
|  * spa_t and maintains a special hold on the spa_t so that it cannot be deleted
 | |
|  * or exported while the injection record exists.
 | |
|  *
 | |
|  * Device level injection is done using the 'zi_guid' field.  If this is set, it
 | |
|  * means that the error is destined for a particular device, not a piece of
 | |
|  * data.
 | |
|  *
 | |
|  * This is a rather poor data structure and algorithm, but we don't expect more
 | |
|  * than a few faults at any one time, so it should be sufficient for our needs.
 | |
|  */
 | |
| 
 | |
| #include <sys/arc.h>
 | |
| #include <sys/zio.h>
 | |
| #include <sys/zfs_ioctl.h>
 | |
| #include <sys/vdev_impl.h>
 | |
| #include <sys/dmu_objset.h>
 | |
| #include <sys/dsl_dataset.h>
 | |
| #include <sys/fs/zfs.h>
 | |
| 
 | |
| uint32_t zio_injection_enabled = 0;
 | |
| 
 | |
| /*
 | |
|  * Data describing each zinject handler registered on the system, and
 | |
|  * contains the list node linking the handler in the global zinject
 | |
|  * handler list.
 | |
|  */
 | |
| typedef struct inject_handler {
 | |
| 	int			zi_id;
 | |
| 	spa_t			*zi_spa;
 | |
| 	char			*zi_spa_name; /* ZINJECT_DELAY_IMPORT only */
 | |
| 	zinject_record_t	zi_record;
 | |
| 	uint64_t		*zi_lanes;
 | |
| 	int			zi_next_lane;
 | |
| 	list_node_t		zi_link;
 | |
| } inject_handler_t;
 | |
| 
 | |
| /*
 | |
|  * List of all zinject handlers registered on the system, protected by
 | |
|  * the inject_lock defined below.
 | |
|  */
 | |
| static list_t inject_handlers;
 | |
| 
 | |
| /*
 | |
|  * This protects insertion into, and traversal of, the inject handler
 | |
|  * list defined above; as well as the inject_delay_count. Any time a
 | |
|  * handler is inserted or removed from the list, this lock should be
 | |
|  * taken as a RW_WRITER; and any time traversal is done over the list
 | |
|  * (without modification to it) this lock should be taken as a RW_READER.
 | |
|  */
 | |
| static krwlock_t inject_lock;
 | |
| 
 | |
| /*
 | |
|  * This holds the number of zinject delay handlers that have been
 | |
|  * registered on the system. It is protected by the inject_lock defined
 | |
|  * above. Thus modifications to this count must be a RW_WRITER of the
 | |
|  * inject_lock, and reads of this count must be (at least) a RW_READER
 | |
|  * of the lock.
 | |
|  */
 | |
| static int inject_delay_count = 0;
 | |
| 
 | |
| /*
 | |
|  * This lock is used only in zio_handle_io_delay(), refer to the comment
 | |
|  * in that function for more details.
 | |
|  */
 | |
| static kmutex_t inject_delay_mtx;
 | |
| 
 | |
| /*
 | |
|  * Used to assign unique identifying numbers to each new zinject handler.
 | |
|  */
 | |
| static int inject_next_id = 1;
 | |
| 
 | |
| /*
 | |
|  * Test if the requested frequency was triggered
 | |
|  */
 | |
| static boolean_t
 | |
| freq_triggered(uint32_t frequency)
 | |
| {
 | |
| 	/*
 | |
| 	 * zero implies always (100%)
 | |
| 	 */
 | |
| 	if (frequency == 0)
 | |
| 		return (B_TRUE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: we still handle legacy (unscaled) frequency values
 | |
| 	 */
 | |
| 	uint32_t maximum = (frequency <= 100) ? 100 : ZI_PERCENTAGE_MAX;
 | |
| 
 | |
| 	return (random_in_range(maximum) < frequency);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if the given record matches the I/O in progress.
 | |
|  */
 | |
| static boolean_t
 | |
| zio_match_handler(const zbookmark_phys_t *zb, uint64_t type, int dva,
 | |
|     zinject_record_t *record, int error)
 | |
| {
 | |
| 	/*
 | |
| 	 * Check for a match against the MOS, which is based on type
 | |
| 	 */
 | |
| 	if (zb->zb_objset == DMU_META_OBJSET &&
 | |
| 	    record->zi_objset == DMU_META_OBJSET &&
 | |
| 	    record->zi_object == DMU_META_DNODE_OBJECT) {
 | |
| 		if (record->zi_type == DMU_OT_NONE ||
 | |
| 		    type == record->zi_type)
 | |
| 			return (freq_triggered(record->zi_freq));
 | |
| 		else
 | |
| 			return (B_FALSE);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for an exact match.
 | |
| 	 */
 | |
| 	if (zb->zb_objset == record->zi_objset &&
 | |
| 	    zb->zb_object == record->zi_object &&
 | |
| 	    zb->zb_level == record->zi_level &&
 | |
| 	    zb->zb_blkid >= record->zi_start &&
 | |
| 	    zb->zb_blkid <= record->zi_end &&
 | |
| 	    (record->zi_dvas == 0 ||
 | |
| 	    (dva != ZI_NO_DVA && (record->zi_dvas & (1ULL << dva)))) &&
 | |
| 	    error == record->zi_error) {
 | |
| 		return (freq_triggered(record->zi_freq));
 | |
| 	}
 | |
| 
 | |
| 	return (B_FALSE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Panic the system when a config change happens in the function
 | |
|  * specified by tag.
 | |
|  */
 | |
| void
 | |
| zio_handle_panic_injection(spa_t *spa, const char *tag, uint64_t type)
 | |
| {
 | |
| 	inject_handler_t *handler;
 | |
| 
 | |
| 	rw_enter(&inject_lock, RW_READER);
 | |
| 
 | |
| 	for (handler = list_head(&inject_handlers); handler != NULL;
 | |
| 	    handler = list_next(&inject_handlers, handler)) {
 | |
| 
 | |
| 		if (spa != handler->zi_spa)
 | |
| 			continue;
 | |
| 
 | |
| 		if (handler->zi_record.zi_type == type &&
 | |
| 		    strcmp(tag, handler->zi_record.zi_func) == 0)
 | |
| 			panic("Panic requested in function %s\n", tag);
 | |
| 	}
 | |
| 
 | |
| 	rw_exit(&inject_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Inject a decryption failure. Decryption failures can occur in
 | |
|  * both the ARC and the ZIO layers.
 | |
|  */
 | |
| int
 | |
| zio_handle_decrypt_injection(spa_t *spa, const zbookmark_phys_t *zb,
 | |
|     uint64_t type, int error)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	inject_handler_t *handler;
 | |
| 
 | |
| 	rw_enter(&inject_lock, RW_READER);
 | |
| 
 | |
| 	for (handler = list_head(&inject_handlers); handler != NULL;
 | |
| 	    handler = list_next(&inject_handlers, handler)) {
 | |
| 
 | |
| 		if (spa != handler->zi_spa ||
 | |
| 		    handler->zi_record.zi_cmd != ZINJECT_DECRYPT_FAULT)
 | |
| 			continue;
 | |
| 
 | |
| 		if (zio_match_handler(zb, type, ZI_NO_DVA,
 | |
| 		    &handler->zi_record, error)) {
 | |
| 			ret = error;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rw_exit(&inject_lock);
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If this is a physical I/O for a vdev child determine which DVA it is
 | |
|  * for. We iterate backwards through the DVAs matching on the offset so
 | |
|  * that we end up with ZI_NO_DVA (-1) if we don't find a match.
 | |
|  */
 | |
| static int
 | |
| zio_match_dva(zio_t *zio)
 | |
| {
 | |
| 	int i = ZI_NO_DVA;
 | |
| 
 | |
| 	if (zio->io_bp != NULL && zio->io_vd != NULL &&
 | |
| 	    zio->io_child_type == ZIO_CHILD_VDEV) {
 | |
| 		for (i = BP_GET_NDVAS(zio->io_bp) - 1; i >= 0; i--) {
 | |
| 			dva_t *dva = &zio->io_bp->blk_dva[i];
 | |
| 			uint64_t off = DVA_GET_OFFSET(dva);
 | |
| 			vdev_t *vd = vdev_lookup_top(zio->io_spa,
 | |
| 			    DVA_GET_VDEV(dva));
 | |
| 
 | |
| 			/* Compensate for vdev label added to leaves */
 | |
| 			if (zio->io_vd->vdev_ops->vdev_op_leaf)
 | |
| 				off += VDEV_LABEL_START_SIZE;
 | |
| 
 | |
| 			if (zio->io_vd == vd && zio->io_offset == off)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (i);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Determine if the I/O in question should return failure.  Returns the errno
 | |
|  * to be returned to the caller.
 | |
|  */
 | |
| int
 | |
| zio_handle_fault_injection(zio_t *zio, int error)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	inject_handler_t *handler;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ignore I/O not associated with any logical data.
 | |
| 	 */
 | |
| 	if (zio->io_logical == NULL)
 | |
| 		return (0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Currently, we only support fault injection on reads.
 | |
| 	 */
 | |
| 	if (zio->io_type != ZIO_TYPE_READ)
 | |
| 		return (0);
 | |
| 
 | |
| 	/*
 | |
| 	 * A rebuild I/O has no checksum to verify.
 | |
| 	 */
 | |
| 	if (zio->io_priority == ZIO_PRIORITY_REBUILD && error == ECKSUM)
 | |
| 		return (0);
 | |
| 
 | |
| 	rw_enter(&inject_lock, RW_READER);
 | |
| 
 | |
| 	for (handler = list_head(&inject_handlers); handler != NULL;
 | |
| 	    handler = list_next(&inject_handlers, handler)) {
 | |
| 		if (zio->io_spa != handler->zi_spa ||
 | |
| 		    handler->zi_record.zi_cmd != ZINJECT_DATA_FAULT)
 | |
| 			continue;
 | |
| 
 | |
| 		/* If this handler matches, return the specified error */
 | |
| 		if (zio_match_handler(&zio->io_logical->io_bookmark,
 | |
| 		    zio->io_bp ? BP_GET_TYPE(zio->io_bp) : DMU_OT_NONE,
 | |
| 		    zio_match_dva(zio), &handler->zi_record, error)) {
 | |
| 			ret = error;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rw_exit(&inject_lock);
 | |
| 
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine if the zio is part of a label update and has an injection
 | |
|  * handler associated with that portion of the label. Currently, we
 | |
|  * allow error injection in either the nvlist or the uberblock region of
 | |
|  * of the vdev label.
 | |
|  */
 | |
| int
 | |
| zio_handle_label_injection(zio_t *zio, int error)
 | |
| {
 | |
| 	inject_handler_t *handler;
 | |
| 	vdev_t *vd = zio->io_vd;
 | |
| 	uint64_t offset = zio->io_offset;
 | |
| 	int label;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (offset >= VDEV_LABEL_START_SIZE &&
 | |
| 	    offset < vd->vdev_psize - VDEV_LABEL_END_SIZE)
 | |
| 		return (0);
 | |
| 
 | |
| 	rw_enter(&inject_lock, RW_READER);
 | |
| 
 | |
| 	for (handler = list_head(&inject_handlers); handler != NULL;
 | |
| 	    handler = list_next(&inject_handlers, handler)) {
 | |
| 		uint64_t start = handler->zi_record.zi_start;
 | |
| 		uint64_t end = handler->zi_record.zi_end;
 | |
| 
 | |
| 		if (handler->zi_record.zi_cmd != ZINJECT_LABEL_FAULT)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * The injection region is the relative offsets within a
 | |
| 		 * vdev label. We must determine the label which is being
 | |
| 		 * updated and adjust our region accordingly.
 | |
| 		 */
 | |
| 		label = vdev_label_number(vd->vdev_psize, offset);
 | |
| 		start = vdev_label_offset(vd->vdev_psize, label, start);
 | |
| 		end = vdev_label_offset(vd->vdev_psize, label, end);
 | |
| 
 | |
| 		if (zio->io_vd->vdev_guid == handler->zi_record.zi_guid &&
 | |
| 		    (offset >= start && offset <= end)) {
 | |
| 			ret = error;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	rw_exit(&inject_lock);
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zio_inject_bitflip_cb(void *data, size_t len, void *private)
 | |
| {
 | |
| 	zio_t *zio = private;
 | |
| 	uint8_t *buffer = data;
 | |
| 	uint_t byte = random_in_range(len);
 | |
| 
 | |
| 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
 | |
| 
 | |
| 	/* flip a single random bit in an abd data buffer */
 | |
| 	buffer[byte] ^= 1 << random_in_range(8);
 | |
| 
 | |
| 	return (1);	/* stop after first flip */
 | |
| }
 | |
| 
 | |
| static int
 | |
| zio_handle_device_injection_impl(vdev_t *vd, zio_t *zio, int err1, int err2)
 | |
| {
 | |
| 	inject_handler_t *handler;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We skip over faults in the labels unless it's during device open
 | |
| 	 * (i.e. zio == NULL) or a device flush (offset is meaningless)
 | |
| 	 */
 | |
| 	if (zio != NULL && zio->io_type != ZIO_TYPE_FLUSH) {
 | |
| 		uint64_t offset = zio->io_offset;
 | |
| 
 | |
| 		if (offset < VDEV_LABEL_START_SIZE ||
 | |
| 		    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE)
 | |
| 			return (0);
 | |
| 	}
 | |
| 
 | |
| 	rw_enter(&inject_lock, RW_READER);
 | |
| 
 | |
| 	for (handler = list_head(&inject_handlers); handler != NULL;
 | |
| 	    handler = list_next(&inject_handlers, handler)) {
 | |
| 
 | |
| 		if (handler->zi_record.zi_cmd != ZINJECT_DEVICE_FAULT)
 | |
| 			continue;
 | |
| 
 | |
| 		if (vd->vdev_guid == handler->zi_record.zi_guid) {
 | |
| 			if (handler->zi_record.zi_failfast &&
 | |
| 			    (zio == NULL || (zio->io_flags &
 | |
| 			    (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))) {
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/* Handle type specific I/O failures */
 | |
| 			if (zio != NULL &&
 | |
| 			    handler->zi_record.zi_iotype != ZIO_TYPES &&
 | |
| 			    handler->zi_record.zi_iotype != zio->io_type)
 | |
| 				continue;
 | |
| 
 | |
| 			if (handler->zi_record.zi_error == err1 ||
 | |
| 			    handler->zi_record.zi_error == err2) {
 | |
| 				/*
 | |
| 				 * limit error injection if requested
 | |
| 				 */
 | |
| 				if (!freq_triggered(handler->zi_record.zi_freq))
 | |
| 					continue;
 | |
| 
 | |
| 				/*
 | |
| 				 * For a failed open, pretend like the device
 | |
| 				 * has gone away.
 | |
| 				 */
 | |
| 				if (err1 == ENXIO)
 | |
| 					vd->vdev_stat.vs_aux =
 | |
| 					    VDEV_AUX_OPEN_FAILED;
 | |
| 
 | |
| 				/*
 | |
| 				 * Treat these errors as if they had been
 | |
| 				 * retried so that all the appropriate stats
 | |
| 				 * and FMA events are generated.
 | |
| 				 */
 | |
| 				if (!handler->zi_record.zi_failfast &&
 | |
| 				    zio != NULL)
 | |
| 					zio->io_flags |= ZIO_FLAG_IO_RETRY;
 | |
| 
 | |
| 				/*
 | |
| 				 * EILSEQ means flip a bit after a read
 | |
| 				 */
 | |
| 				if (handler->zi_record.zi_error == EILSEQ) {
 | |
| 					if (zio == NULL)
 | |
| 						break;
 | |
| 
 | |
| 					/* locate buffer data and flip a bit */
 | |
| 					(void) abd_iterate_func(zio->io_abd, 0,
 | |
| 					    zio->io_size, zio_inject_bitflip_cb,
 | |
| 					    zio);
 | |
| 					break;
 | |
| 				}
 | |
| 
 | |
| 				ret = handler->zi_record.zi_error;
 | |
| 				break;
 | |
| 			}
 | |
| 			if (handler->zi_record.zi_error == ENXIO) {
 | |
| 				ret = SET_ERROR(EIO);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rw_exit(&inject_lock);
 | |
| 
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| int
 | |
| zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error)
 | |
| {
 | |
| 	return (zio_handle_device_injection_impl(vd, zio, error, INT_MAX));
 | |
| }
 | |
| 
 | |
| int
 | |
| zio_handle_device_injections(vdev_t *vd, zio_t *zio, int err1, int err2)
 | |
| {
 | |
| 	return (zio_handle_device_injection_impl(vd, zio, err1, err2));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Simulate hardware that ignores cache flushes.  For requested number
 | |
|  * of seconds nix the actual writing to disk.
 | |
|  */
 | |
| void
 | |
| zio_handle_ignored_writes(zio_t *zio)
 | |
| {
 | |
| 	inject_handler_t *handler;
 | |
| 
 | |
| 	rw_enter(&inject_lock, RW_READER);
 | |
| 
 | |
| 	for (handler = list_head(&inject_handlers); handler != NULL;
 | |
| 	    handler = list_next(&inject_handlers, handler)) {
 | |
| 
 | |
| 		/* Ignore errors not destined for this pool */
 | |
| 		if (zio->io_spa != handler->zi_spa ||
 | |
| 		    handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Positive duration implies # of seconds, negative
 | |
| 		 * a number of txgs
 | |
| 		 */
 | |
| 		if (handler->zi_record.zi_timer == 0) {
 | |
| 			if (handler->zi_record.zi_duration > 0)
 | |
| 				handler->zi_record.zi_timer = ddi_get_lbolt64();
 | |
| 			else
 | |
| 				handler->zi_record.zi_timer = zio->io_txg;
 | |
| 		}
 | |
| 
 | |
| 		/* Have a "problem" writing 60% of the time */
 | |
| 		if (random_in_range(100) < 60)
 | |
| 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	rw_exit(&inject_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_handle_ignored_writes(spa_t *spa)
 | |
| {
 | |
| 	inject_handler_t *handler;
 | |
| 
 | |
| 	if (zio_injection_enabled == 0)
 | |
| 		return;
 | |
| 
 | |
| 	rw_enter(&inject_lock, RW_READER);
 | |
| 
 | |
| 	for (handler = list_head(&inject_handlers); handler != NULL;
 | |
| 	    handler = list_next(&inject_handlers, handler)) {
 | |
| 
 | |
| 		if (spa != handler->zi_spa ||
 | |
| 		    handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
 | |
| 			continue;
 | |
| 
 | |
| 		if (handler->zi_record.zi_duration > 0) {
 | |
| 			VERIFY(handler->zi_record.zi_timer == 0 ||
 | |
| 			    ddi_time_after64(
 | |
| 			    (int64_t)handler->zi_record.zi_timer +
 | |
| 			    handler->zi_record.zi_duration * hz,
 | |
| 			    ddi_get_lbolt64()));
 | |
| 		} else {
 | |
| 			/* duration is negative so the subtraction here adds */
 | |
| 			VERIFY(handler->zi_record.zi_timer == 0 ||
 | |
| 			    handler->zi_record.zi_timer -
 | |
| 			    handler->zi_record.zi_duration >=
 | |
| 			    spa_syncing_txg(spa));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rw_exit(&inject_lock);
 | |
| }
 | |
| 
 | |
| hrtime_t
 | |
| zio_handle_io_delay(zio_t *zio)
 | |
| {
 | |
| 	vdev_t *vd = zio->io_vd;
 | |
| 	inject_handler_t *min_handler = NULL;
 | |
| 	hrtime_t min_target = 0;
 | |
| 
 | |
| 	rw_enter(&inject_lock, RW_READER);
 | |
| 
 | |
| 	/*
 | |
| 	 * inject_delay_count is a subset of zio_injection_enabled that
 | |
| 	 * is only incremented for delay handlers. These checks are
 | |
| 	 * mainly added to remind the reader why we're not explicitly
 | |
| 	 * checking zio_injection_enabled like the other functions.
 | |
| 	 */
 | |
| 	IMPLY(inject_delay_count > 0, zio_injection_enabled > 0);
 | |
| 	IMPLY(zio_injection_enabled == 0, inject_delay_count == 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * If there aren't any inject delay handlers registered, then we
 | |
| 	 * can short circuit and simply return 0 here. A value of zero
 | |
| 	 * informs zio_delay_interrupt() that this request should not be
 | |
| 	 * delayed. This short circuit keeps us from acquiring the
 | |
| 	 * inject_delay_mutex unnecessarily.
 | |
| 	 */
 | |
| 	if (inject_delay_count == 0) {
 | |
| 		rw_exit(&inject_lock);
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Each inject handler has a number of "lanes" associated with
 | |
| 	 * it. Each lane is able to handle requests independently of one
 | |
| 	 * another, and at a latency defined by the inject handler
 | |
| 	 * record's zi_timer field. Thus if a handler in configured with
 | |
| 	 * a single lane with a 10ms latency, it will delay requests
 | |
| 	 * such that only a single request is completed every 10ms. So,
 | |
| 	 * if more than one request is attempted per each 10ms interval,
 | |
| 	 * the average latency of the requests will be greater than
 | |
| 	 * 10ms; but if only a single request is submitted each 10ms
 | |
| 	 * interval the average latency will be 10ms.
 | |
| 	 *
 | |
| 	 * We need to acquire this mutex to prevent multiple concurrent
 | |
| 	 * threads being assigned to the same lane of a given inject
 | |
| 	 * handler. The mutex allows us to perform the following two
 | |
| 	 * operations atomically:
 | |
| 	 *
 | |
| 	 *	1. determine the minimum handler and minimum target
 | |
| 	 *	   value of all the possible handlers
 | |
| 	 *	2. update that minimum handler's lane array
 | |
| 	 *
 | |
| 	 * Without atomicity, two (or more) threads could pick the same
 | |
| 	 * lane in step (1), and then conflict with each other in step
 | |
| 	 * (2). This could allow a single lane handler to process
 | |
| 	 * multiple requests simultaneously, which shouldn't be possible.
 | |
| 	 */
 | |
| 	mutex_enter(&inject_delay_mtx);
 | |
| 
 | |
| 	for (inject_handler_t *handler = list_head(&inject_handlers);
 | |
| 	    handler != NULL; handler = list_next(&inject_handlers, handler)) {
 | |
| 		if (handler->zi_record.zi_cmd != ZINJECT_DELAY_IO)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!freq_triggered(handler->zi_record.zi_freq))
 | |
| 			continue;
 | |
| 
 | |
| 		if (vd->vdev_guid != handler->zi_record.zi_guid)
 | |
| 			continue;
 | |
| 
 | |
| 		/* also match on I/O type (e.g., -T read) */
 | |
| 		if (handler->zi_record.zi_iotype != ZIO_TYPES &&
 | |
| 		    handler->zi_record.zi_iotype != zio->io_type) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Defensive; should never happen as the array allocation
 | |
| 		 * occurs prior to inserting this handler on the list.
 | |
| 		 */
 | |
| 		ASSERT3P(handler->zi_lanes, !=, NULL);
 | |
| 
 | |
| 		/*
 | |
| 		 * This should never happen, the zinject command should
 | |
| 		 * prevent a user from setting an IO delay with zero lanes.
 | |
| 		 */
 | |
| 		ASSERT3U(handler->zi_record.zi_nlanes, !=, 0);
 | |
| 
 | |
| 		ASSERT3U(handler->zi_record.zi_nlanes, >,
 | |
| 		    handler->zi_next_lane);
 | |
| 
 | |
| 		/*
 | |
| 		 * We want to issue this IO to the lane that will become
 | |
| 		 * idle the soonest, so we compare the soonest this
 | |
| 		 * specific handler can complete the IO with all other
 | |
| 		 * handlers, to find the lowest value of all possible
 | |
| 		 * lanes. We then use this lane to submit the request.
 | |
| 		 *
 | |
| 		 * Since each handler has a constant value for its
 | |
| 		 * delay, we can just use the "next" lane for that
 | |
| 		 * handler; as it will always be the lane with the
 | |
| 		 * lowest value for that particular handler (i.e. the
 | |
| 		 * lane that will become idle the soonest). This saves a
 | |
| 		 * scan of each handler's lanes array.
 | |
| 		 *
 | |
| 		 * There's two cases to consider when determining when
 | |
| 		 * this specific IO request should complete. If this
 | |
| 		 * lane is idle, we want to "submit" the request now so
 | |
| 		 * it will complete after zi_timer milliseconds. Thus,
 | |
| 		 * we set the target to now + zi_timer.
 | |
| 		 *
 | |
| 		 * If the lane is busy, we want this request to complete
 | |
| 		 * zi_timer milliseconds after the lane becomes idle.
 | |
| 		 * Since the 'zi_lanes' array holds the time at which
 | |
| 		 * each lane will become idle, we use that value to
 | |
| 		 * determine when this request should complete.
 | |
| 		 */
 | |
| 		hrtime_t idle = handler->zi_record.zi_timer + gethrtime();
 | |
| 		hrtime_t busy = handler->zi_record.zi_timer +
 | |
| 		    handler->zi_lanes[handler->zi_next_lane];
 | |
| 		hrtime_t target = MAX(idle, busy);
 | |
| 
 | |
| 		if (min_handler == NULL) {
 | |
| 			min_handler = handler;
 | |
| 			min_target = target;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ASSERT3P(min_handler, !=, NULL);
 | |
| 		ASSERT3U(min_target, !=, 0);
 | |
| 
 | |
| 		/*
 | |
| 		 * We don't yet increment the "next lane" variable since
 | |
| 		 * we still might find a lower value lane in another
 | |
| 		 * handler during any remaining iterations. Once we're
 | |
| 		 * sure we've selected the absolute minimum, we'll claim
 | |
| 		 * the lane and increment the handler's "next lane"
 | |
| 		 * field below.
 | |
| 		 */
 | |
| 
 | |
| 		if (target < min_target) {
 | |
| 			min_handler = handler;
 | |
| 			min_target = target;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * 'min_handler' will be NULL if no IO delays are registered for
 | |
| 	 * this vdev, otherwise it will point to the handler containing
 | |
| 	 * the lane that will become idle the soonest.
 | |
| 	 */
 | |
| 	if (min_handler != NULL) {
 | |
| 		ASSERT3U(min_target, !=, 0);
 | |
| 		min_handler->zi_lanes[min_handler->zi_next_lane] = min_target;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we've used all possible lanes for this handler,
 | |
| 		 * loop back and start using the first lane again;
 | |
| 		 * otherwise, just increment the lane index.
 | |
| 		 */
 | |
| 		min_handler->zi_next_lane = (min_handler->zi_next_lane + 1) %
 | |
| 		    min_handler->zi_record.zi_nlanes;
 | |
| 	}
 | |
| 
 | |
| 	mutex_exit(&inject_delay_mtx);
 | |
| 	rw_exit(&inject_lock);
 | |
| 
 | |
| 	return (min_target);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zio_handle_pool_delay(spa_t *spa, hrtime_t elapsed, zinject_type_t command)
 | |
| {
 | |
| 	inject_handler_t *handler;
 | |
| 	hrtime_t delay = 0;
 | |
| 	int id = 0;
 | |
| 
 | |
| 	rw_enter(&inject_lock, RW_READER);
 | |
| 
 | |
| 	for (handler = list_head(&inject_handlers);
 | |
| 	    handler != NULL && handler->zi_record.zi_cmd == command;
 | |
| 	    handler = list_next(&inject_handlers, handler)) {
 | |
| 		ASSERT3P(handler->zi_spa_name, !=, NULL);
 | |
| 		if (strcmp(spa_name(spa), handler->zi_spa_name) == 0) {
 | |
| 			uint64_t pause =
 | |
| 			    SEC2NSEC(handler->zi_record.zi_duration);
 | |
| 			if (pause > elapsed) {
 | |
| 				delay = pause - elapsed;
 | |
| 			}
 | |
| 			id = handler->zi_id;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rw_exit(&inject_lock);
 | |
| 
 | |
| 	if (delay) {
 | |
| 		if (command == ZINJECT_DELAY_IMPORT) {
 | |
| 			spa_import_progress_set_notes(spa, "injecting %llu "
 | |
| 			    "sec delay", (u_longlong_t)NSEC2SEC(delay));
 | |
| 		}
 | |
| 		zfs_sleep_until(gethrtime() + delay);
 | |
| 	}
 | |
| 	if (id) {
 | |
| 		/* all done with this one-shot handler */
 | |
| 		zio_clear_fault(id);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For testing, inject a delay during an import
 | |
|  */
 | |
| void
 | |
| zio_handle_import_delay(spa_t *spa, hrtime_t elapsed)
 | |
| {
 | |
| 	zio_handle_pool_delay(spa, elapsed, ZINJECT_DELAY_IMPORT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For testing, inject a delay during an export
 | |
|  */
 | |
| void
 | |
| zio_handle_export_delay(spa_t *spa, hrtime_t elapsed)
 | |
| {
 | |
| 	zio_handle_pool_delay(spa, elapsed, ZINJECT_DELAY_EXPORT);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zio_calculate_range(const char *pool, zinject_record_t *record)
 | |
| {
 | |
| 	dsl_pool_t *dp;
 | |
| 	dsl_dataset_t *ds;
 | |
| 	objset_t *os = NULL;
 | |
| 	dnode_t *dn = NULL;
 | |
| 	int error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Obtain the dnode for object using pool, objset, and object
 | |
| 	 */
 | |
| 	error = dsl_pool_hold(pool, FTAG, &dp);
 | |
| 	if (error)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = dsl_dataset_hold_obj(dp, record->zi_objset, FTAG, &ds);
 | |
| 	dsl_pool_rele(dp, FTAG);
 | |
| 	if (error)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = dmu_objset_from_ds(ds, &os);
 | |
| 	dsl_dataset_rele(ds, FTAG);
 | |
| 	if (error)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = dnode_hold(os, record->zi_object, FTAG, &dn);
 | |
| 	if (error)
 | |
| 		return (error);
 | |
| 
 | |
| 	/*
 | |
| 	 * Translate the range into block IDs
 | |
| 	 */
 | |
| 	if (record->zi_start != 0 || record->zi_end != -1ULL) {
 | |
| 		record->zi_start >>= dn->dn_datablkshift;
 | |
| 		record->zi_end >>= dn->dn_datablkshift;
 | |
| 	}
 | |
| 	if (record->zi_level > 0) {
 | |
| 		if (record->zi_level >= dn->dn_nlevels) {
 | |
| 			dnode_rele(dn, FTAG);
 | |
| 			return (SET_ERROR(EDOM));
 | |
| 		}
 | |
| 
 | |
| 		if (record->zi_start != 0 || record->zi_end != 0) {
 | |
| 			int shift = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
 | |
| 
 | |
| 			for (int level = record->zi_level; level > 0; level--) {
 | |
| 				record->zi_start >>= shift;
 | |
| 				record->zi_end >>= shift;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	dnode_rele(dn, FTAG);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static boolean_t
 | |
| zio_pool_handler_exists(const char *name, zinject_type_t command)
 | |
| {
 | |
| 	boolean_t exists = B_FALSE;
 | |
| 
 | |
| 	rw_enter(&inject_lock, RW_READER);
 | |
| 	for (inject_handler_t *handler = list_head(&inject_handlers);
 | |
| 	    handler != NULL; handler = list_next(&inject_handlers, handler)) {
 | |
| 		if (command != handler->zi_record.zi_cmd)
 | |
| 			continue;
 | |
| 
 | |
| 		const char *pool = (handler->zi_spa_name != NULL) ?
 | |
| 		    handler->zi_spa_name : spa_name(handler->zi_spa);
 | |
| 		if (strcmp(name, pool) == 0) {
 | |
| 			exists = B_TRUE;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	rw_exit(&inject_lock);
 | |
| 
 | |
| 	return (exists);
 | |
| }
 | |
| /*
 | |
|  * Create a new handler for the given record.  We add it to the list, adding
 | |
|  * a reference to the spa_t in the process.  We increment zio_injection_enabled,
 | |
|  * which is the switch to trigger all fault injection.
 | |
|  */
 | |
| int
 | |
| zio_inject_fault(char *name, int flags, int *id, zinject_record_t *record)
 | |
| {
 | |
| 	inject_handler_t *handler;
 | |
| 	int error;
 | |
| 	spa_t *spa;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is pool-wide metadata, make sure we unload the corresponding
 | |
| 	 * spa_t, so that the next attempt to load it will trigger the fault.
 | |
| 	 * We call spa_reset() to unload the pool appropriately.
 | |
| 	 */
 | |
| 	if (flags & ZINJECT_UNLOAD_SPA)
 | |
| 		if ((error = spa_reset(name)) != 0)
 | |
| 			return (error);
 | |
| 
 | |
| 	if (record->zi_cmd == ZINJECT_DELAY_IO) {
 | |
| 		/*
 | |
| 		 * A value of zero for the number of lanes or for the
 | |
| 		 * delay time doesn't make sense.
 | |
| 		 */
 | |
| 		if (record->zi_timer == 0 || record->zi_nlanes == 0)
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 		/*
 | |
| 		 * The number of lanes is directly mapped to the size of
 | |
| 		 * an array used by the handler. Thus, to ensure the
 | |
| 		 * user doesn't trigger an allocation that's "too large"
 | |
| 		 * we cap the number of lanes here.
 | |
| 		 */
 | |
| 		if (record->zi_nlanes >= UINT16_MAX)
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the supplied range was in bytes -- calculate the actual blkid
 | |
| 	 */
 | |
| 	if (flags & ZINJECT_CALC_RANGE) {
 | |
| 		error = zio_calculate_range(name, record);
 | |
| 		if (error != 0)
 | |
| 			return (error);
 | |
| 	}
 | |
| 
 | |
| 	if (!(flags & ZINJECT_NULL)) {
 | |
| 		/*
 | |
| 		 * Pool delays for import or export don't take an
 | |
| 		 * injection reference on the spa. Instead they
 | |
| 		 * rely on matching by name.
 | |
| 		 */
 | |
| 		if (record->zi_cmd == ZINJECT_DELAY_IMPORT ||
 | |
| 		    record->zi_cmd == ZINJECT_DELAY_EXPORT) {
 | |
| 			if (record->zi_duration <= 0)
 | |
| 				return (SET_ERROR(EINVAL));
 | |
| 			/*
 | |
| 			 * Only one import | export delay handler per pool.
 | |
| 			 */
 | |
| 			if (zio_pool_handler_exists(name, record->zi_cmd))
 | |
| 				return (SET_ERROR(EEXIST));
 | |
| 
 | |
| 			mutex_enter(&spa_namespace_lock);
 | |
| 			boolean_t has_spa = spa_lookup(name) != NULL;
 | |
| 			mutex_exit(&spa_namespace_lock);
 | |
| 
 | |
| 			if (record->zi_cmd == ZINJECT_DELAY_IMPORT && has_spa)
 | |
| 				return (SET_ERROR(EEXIST));
 | |
| 			if (record->zi_cmd == ZINJECT_DELAY_EXPORT && !has_spa)
 | |
| 				return (SET_ERROR(ENOENT));
 | |
| 			spa = NULL;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * spa_inject_ref() will add an injection reference,
 | |
| 			 * which will prevent the pool from being removed
 | |
| 			 * from the namespace while still allowing it to be
 | |
| 			 * unloaded.
 | |
| 			 */
 | |
| 			if ((spa = spa_inject_addref(name)) == NULL)
 | |
| 				return (SET_ERROR(ENOENT));
 | |
| 		}
 | |
| 
 | |
| 		handler = kmem_alloc(sizeof (inject_handler_t), KM_SLEEP);
 | |
| 		handler->zi_spa = spa;	/* note: can be NULL */
 | |
| 		handler->zi_record = *record;
 | |
| 
 | |
| 		if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
 | |
| 			handler->zi_lanes = kmem_zalloc(
 | |
| 			    sizeof (*handler->zi_lanes) *
 | |
| 			    handler->zi_record.zi_nlanes, KM_SLEEP);
 | |
| 			handler->zi_next_lane = 0;
 | |
| 		} else {
 | |
| 			handler->zi_lanes = NULL;
 | |
| 			handler->zi_next_lane = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (handler->zi_spa == NULL)
 | |
| 			handler->zi_spa_name = spa_strdup(name);
 | |
| 		else
 | |
| 			handler->zi_spa_name = NULL;
 | |
| 
 | |
| 		rw_enter(&inject_lock, RW_WRITER);
 | |
| 
 | |
| 		/*
 | |
| 		 * We can't move this increment into the conditional
 | |
| 		 * above because we need to hold the RW_WRITER lock of
 | |
| 		 * inject_lock, and we don't want to hold that while
 | |
| 		 * allocating the handler's zi_lanes array.
 | |
| 		 */
 | |
| 		if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
 | |
| 			ASSERT3S(inject_delay_count, >=, 0);
 | |
| 			inject_delay_count++;
 | |
| 			ASSERT3S(inject_delay_count, >, 0);
 | |
| 		}
 | |
| 
 | |
| 		*id = handler->zi_id = inject_next_id++;
 | |
| 		list_insert_tail(&inject_handlers, handler);
 | |
| 		atomic_inc_32(&zio_injection_enabled);
 | |
| 
 | |
| 		rw_exit(&inject_lock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush the ARC, so that any attempts to read this data will end up
 | |
| 	 * going to the ZIO layer.  Note that this is a little overkill, but
 | |
| 	 * we don't have the necessary ARC interfaces to do anything else, and
 | |
| 	 * fault injection isn't a performance critical path.
 | |
| 	 */
 | |
| 	if (flags & ZINJECT_FLUSH_ARC)
 | |
| 		/*
 | |
| 		 * We must use FALSE to ensure arc_flush returns, since
 | |
| 		 * we're not preventing concurrent ARC insertions.
 | |
| 		 */
 | |
| 		arc_flush(NULL, FALSE);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the next record with an ID greater than that supplied to the
 | |
|  * function.  Used to iterate over all handlers in the system.
 | |
|  */
 | |
| int
 | |
| zio_inject_list_next(int *id, char *name, size_t buflen,
 | |
|     zinject_record_t *record)
 | |
| {
 | |
| 	inject_handler_t *handler;
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_enter(&spa_namespace_lock);
 | |
| 	rw_enter(&inject_lock, RW_READER);
 | |
| 
 | |
| 	for (handler = list_head(&inject_handlers); handler != NULL;
 | |
| 	    handler = list_next(&inject_handlers, handler))
 | |
| 		if (handler->zi_id > *id)
 | |
| 			break;
 | |
| 
 | |
| 	if (handler) {
 | |
| 		*record = handler->zi_record;
 | |
| 		*id = handler->zi_id;
 | |
| 		ASSERT(handler->zi_spa || handler->zi_spa_name);
 | |
| 		if (handler->zi_spa != NULL)
 | |
| 			(void) strlcpy(name, spa_name(handler->zi_spa), buflen);
 | |
| 		else
 | |
| 			(void) strlcpy(name, handler->zi_spa_name, buflen);
 | |
| 		ret = 0;
 | |
| 	} else {
 | |
| 		ret = SET_ERROR(ENOENT);
 | |
| 	}
 | |
| 
 | |
| 	rw_exit(&inject_lock);
 | |
| 	mutex_exit(&spa_namespace_lock);
 | |
| 
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear the fault handler with the given identifier, or return ENOENT if none
 | |
|  * exists.
 | |
|  */
 | |
| int
 | |
| zio_clear_fault(int id)
 | |
| {
 | |
| 	inject_handler_t *handler;
 | |
| 
 | |
| 	rw_enter(&inject_lock, RW_WRITER);
 | |
| 
 | |
| 	for (handler = list_head(&inject_handlers); handler != NULL;
 | |
| 	    handler = list_next(&inject_handlers, handler))
 | |
| 		if (handler->zi_id == id)
 | |
| 			break;
 | |
| 
 | |
| 	if (handler == NULL) {
 | |
| 		rw_exit(&inject_lock);
 | |
| 		return (SET_ERROR(ENOENT));
 | |
| 	}
 | |
| 
 | |
| 	if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
 | |
| 		ASSERT3S(inject_delay_count, >, 0);
 | |
| 		inject_delay_count--;
 | |
| 		ASSERT3S(inject_delay_count, >=, 0);
 | |
| 	}
 | |
| 
 | |
| 	list_remove(&inject_handlers, handler);
 | |
| 	rw_exit(&inject_lock);
 | |
| 
 | |
| 	if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
 | |
| 		ASSERT3P(handler->zi_lanes, !=, NULL);
 | |
| 		kmem_free(handler->zi_lanes, sizeof (*handler->zi_lanes) *
 | |
| 		    handler->zi_record.zi_nlanes);
 | |
| 	} else {
 | |
| 		ASSERT3P(handler->zi_lanes, ==, NULL);
 | |
| 	}
 | |
| 
 | |
| 	if (handler->zi_spa_name != NULL)
 | |
| 		spa_strfree(handler->zi_spa_name);
 | |
| 
 | |
| 	if (handler->zi_spa != NULL)
 | |
| 		spa_inject_delref(handler->zi_spa);
 | |
| 	kmem_free(handler, sizeof (inject_handler_t));
 | |
| 	atomic_dec_32(&zio_injection_enabled);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| void
 | |
| zio_inject_init(void)
 | |
| {
 | |
| 	rw_init(&inject_lock, NULL, RW_DEFAULT, NULL);
 | |
| 	mutex_init(&inject_delay_mtx, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	list_create(&inject_handlers, sizeof (inject_handler_t),
 | |
| 	    offsetof(inject_handler_t, zi_link));
 | |
| }
 | |
| 
 | |
| void
 | |
| zio_inject_fini(void)
 | |
| {
 | |
| 	list_destroy(&inject_handlers);
 | |
| 	mutex_destroy(&inject_delay_mtx);
 | |
| 	rw_destroy(&inject_lock);
 | |
| }
 | |
| 
 | |
| #if defined(_KERNEL)
 | |
| EXPORT_SYMBOL(zio_injection_enabled);
 | |
| EXPORT_SYMBOL(zio_inject_fault);
 | |
| EXPORT_SYMBOL(zio_inject_list_next);
 | |
| EXPORT_SYMBOL(zio_clear_fault);
 | |
| EXPORT_SYMBOL(zio_handle_fault_injection);
 | |
| EXPORT_SYMBOL(zio_handle_device_injection);
 | |
| EXPORT_SYMBOL(zio_handle_label_injection);
 | |
| #endif
 |