mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 20:33:04 +00:00 
			
		
		
		
	 c28f94f32e
			
		
	
	
		c28f94f32e
		
			
		
	
	
	
	
		
			
			- Remove custom zap_memset(), use regular memset(). - Use PANIC() instead of opaque cmn_err(CE_PANIC). - Provide entry parameter to zap_leaf_rehash_entry(). - Reduce branching in zap_leaf_array_create() inner loop. - Remove signedness where it should not be. Should be no function changes. Reviewed-by: Brian Atkinson <batkinson@lanl.gov> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Alexander Motin <mav@FreeBSD.org> Sponsored by: iXsystems, Inc. Closes #15976
		
			
				
	
	
		
			840 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			840 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or https://opensource.org/licenses/CDDL-1.0.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | |
|  * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
 | |
|  * Copyright 2017 Nexenta Systems, Inc.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The 512-byte leaf is broken into 32 16-byte chunks.
 | |
|  * chunk number n means l_chunk[n], even though the header precedes it.
 | |
|  * the names are stored null-terminated.
 | |
|  */
 | |
| 
 | |
| #include <sys/zio.h>
 | |
| #include <sys/spa.h>
 | |
| #include <sys/dmu.h>
 | |
| #include <sys/zfs_context.h>
 | |
| #include <sys/fs/zfs.h>
 | |
| #include <sys/zap.h>
 | |
| #include <sys/zap_impl.h>
 | |
| #include <sys/zap_leaf.h>
 | |
| #include <sys/arc.h>
 | |
| 
 | |
| static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, struct zap_leaf_entry *le,
 | |
|     uint16_t entry);
 | |
| 
 | |
| #define	CHAIN_END 0xffff /* end of the chunk chain */
 | |
| 
 | |
| #define	LEAF_HASH(l, h) \
 | |
| 	((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
 | |
| 	((h) >> \
 | |
| 	(64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len)))
 | |
| 
 | |
| #define	LEAF_HASH_ENTPTR(l, h)	(&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)])
 | |
| 
 | |
| static void
 | |
| stv(int len, void *addr, uint64_t value)
 | |
| {
 | |
| 	switch (len) {
 | |
| 	case 1:
 | |
| 		*(uint8_t *)addr = value;
 | |
| 		return;
 | |
| 	case 2:
 | |
| 		*(uint16_t *)addr = value;
 | |
| 		return;
 | |
| 	case 4:
 | |
| 		*(uint32_t *)addr = value;
 | |
| 		return;
 | |
| 	case 8:
 | |
| 		*(uint64_t *)addr = value;
 | |
| 		return;
 | |
| 	default:
 | |
| 		PANIC("bad int len %d", len);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static uint64_t
 | |
| ldv(int len, const void *addr)
 | |
| {
 | |
| 	switch (len) {
 | |
| 	case 1:
 | |
| 		return (*(uint8_t *)addr);
 | |
| 	case 2:
 | |
| 		return (*(uint16_t *)addr);
 | |
| 	case 4:
 | |
| 		return (*(uint32_t *)addr);
 | |
| 	case 8:
 | |
| 		return (*(uint64_t *)addr);
 | |
| 	default:
 | |
| 		PANIC("bad int len %d", len);
 | |
| 	}
 | |
| 	return (0xFEEDFACEDEADBEEFULL);
 | |
| }
 | |
| 
 | |
| void
 | |
| zap_leaf_byteswap(zap_leaf_phys_t *buf, size_t size)
 | |
| {
 | |
| 	zap_leaf_t l;
 | |
| 	dmu_buf_t l_dbuf;
 | |
| 
 | |
| 	l_dbuf.db_data = buf;
 | |
| 	l.l_bs = highbit64(size) - 1;
 | |
| 	l.l_dbuf = &l_dbuf;
 | |
| 
 | |
| 	buf->l_hdr.lh_block_type =	BSWAP_64(buf->l_hdr.lh_block_type);
 | |
| 	buf->l_hdr.lh_prefix =		BSWAP_64(buf->l_hdr.lh_prefix);
 | |
| 	buf->l_hdr.lh_magic =		BSWAP_32(buf->l_hdr.lh_magic);
 | |
| 	buf->l_hdr.lh_nfree =		BSWAP_16(buf->l_hdr.lh_nfree);
 | |
| 	buf->l_hdr.lh_nentries =	BSWAP_16(buf->l_hdr.lh_nentries);
 | |
| 	buf->l_hdr.lh_prefix_len =	BSWAP_16(buf->l_hdr.lh_prefix_len);
 | |
| 	buf->l_hdr.lh_freelist =	BSWAP_16(buf->l_hdr.lh_freelist);
 | |
| 
 | |
| 	for (uint_t i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++)
 | |
| 		buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);
 | |
| 
 | |
| 	for (uint_t i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
 | |
| 		zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i);
 | |
| 		struct zap_leaf_entry *le;
 | |
| 
 | |
| 		switch (lc->l_free.lf_type) {
 | |
| 		case ZAP_CHUNK_ENTRY:
 | |
| 			le = &lc->l_entry;
 | |
| 
 | |
| 			le->le_type =		BSWAP_8(le->le_type);
 | |
| 			le->le_value_intlen =	BSWAP_8(le->le_value_intlen);
 | |
| 			le->le_next =		BSWAP_16(le->le_next);
 | |
| 			le->le_name_chunk =	BSWAP_16(le->le_name_chunk);
 | |
| 			le->le_name_numints =	BSWAP_16(le->le_name_numints);
 | |
| 			le->le_value_chunk =	BSWAP_16(le->le_value_chunk);
 | |
| 			le->le_value_numints =	BSWAP_16(le->le_value_numints);
 | |
| 			le->le_cd =		BSWAP_32(le->le_cd);
 | |
| 			le->le_hash =		BSWAP_64(le->le_hash);
 | |
| 			break;
 | |
| 		case ZAP_CHUNK_FREE:
 | |
| 			lc->l_free.lf_type =	BSWAP_8(lc->l_free.lf_type);
 | |
| 			lc->l_free.lf_next =	BSWAP_16(lc->l_free.lf_next);
 | |
| 			break;
 | |
| 		case ZAP_CHUNK_ARRAY:
 | |
| 			lc->l_array.la_type =	BSWAP_8(lc->l_array.la_type);
 | |
| 			lc->l_array.la_next =	BSWAP_16(lc->l_array.la_next);
 | |
| 			/* la_array doesn't need swapping */
 | |
| 			break;
 | |
| 		default:
 | |
| 			cmn_err(CE_PANIC, "bad leaf type %d",
 | |
| 			    lc->l_free.lf_type);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| zap_leaf_init(zap_leaf_t *l, boolean_t sort)
 | |
| {
 | |
| 	l->l_bs = highbit64(l->l_dbuf->db_size) - 1;
 | |
| 	memset(&zap_leaf_phys(l)->l_hdr, 0,
 | |
| 	    sizeof (struct zap_leaf_header));
 | |
| 	memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
 | |
| 	    2*ZAP_LEAF_HASH_NUMENTRIES(l));
 | |
| 	for (uint_t i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
 | |
| 		ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE;
 | |
| 		ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1;
 | |
| 	}
 | |
| 	ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END;
 | |
| 	zap_leaf_phys(l)->l_hdr.lh_block_type = ZBT_LEAF;
 | |
| 	zap_leaf_phys(l)->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
 | |
| 	zap_leaf_phys(l)->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
 | |
| 	if (sort)
 | |
| 		zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Routines which manipulate leaf chunks (l_chunk[]).
 | |
|  */
 | |
| 
 | |
| static uint16_t
 | |
| zap_leaf_chunk_alloc(zap_leaf_t *l)
 | |
| {
 | |
| 	ASSERT(zap_leaf_phys(l)->l_hdr.lh_nfree > 0);
 | |
| 
 | |
| 	uint_t chunk = zap_leaf_phys(l)->l_hdr.lh_freelist;
 | |
| 	ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
 | |
| 	ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE);
 | |
| 
 | |
| 	zap_leaf_phys(l)->l_hdr.lh_freelist =
 | |
| 	    ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next;
 | |
| 
 | |
| 	zap_leaf_phys(l)->l_hdr.lh_nfree--;
 | |
| 
 | |
| 	return (chunk);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
 | |
| {
 | |
| 	struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free;
 | |
| 	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l));
 | |
| 	ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
 | |
| 	ASSERT(zlf->lf_type != ZAP_CHUNK_FREE);
 | |
| 
 | |
| 	zlf->lf_type = ZAP_CHUNK_FREE;
 | |
| 	zlf->lf_next = zap_leaf_phys(l)->l_hdr.lh_freelist;
 | |
| 	memset(zlf->lf_pad, 0, sizeof (zlf->lf_pad)); /* help it to compress */
 | |
| 	zap_leaf_phys(l)->l_hdr.lh_freelist = chunk;
 | |
| 
 | |
| 	zap_leaf_phys(l)->l_hdr.lh_nfree++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Routines which manipulate leaf arrays (zap_leaf_array type chunks).
 | |
|  */
 | |
| 
 | |
| static uint16_t
 | |
| zap_leaf_array_create(zap_leaf_t *l, const char *buf,
 | |
|     int integer_size, int num_integers)
 | |
| {
 | |
| 	uint16_t chunk_head;
 | |
| 	uint16_t *chunkp = &chunk_head;
 | |
| 	int byten = integer_size;
 | |
| 	uint64_t value = 0;
 | |
| 	int shift = (integer_size - 1) * 8;
 | |
| 	int len = num_integers;
 | |
| 
 | |
| 	ASSERT3U(num_integers * integer_size, <=, ZAP_MAXVALUELEN);
 | |
| 
 | |
| 	if (len > 0)
 | |
| 		value = ldv(integer_size, buf);
 | |
| 	while (len > 0) {
 | |
| 		uint16_t chunk = zap_leaf_chunk_alloc(l);
 | |
| 		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
 | |
| 
 | |
| 		la->la_type = ZAP_CHUNK_ARRAY;
 | |
| 		for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
 | |
| 			la->la_array[i] = value >> shift;
 | |
| 			value <<= 8;
 | |
| 			if (--byten == 0) {
 | |
| 				if (--len == 0)
 | |
| 					break;
 | |
| 				byten = integer_size;
 | |
| 				buf += integer_size;
 | |
| 				value = ldv(integer_size, buf);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		*chunkp = chunk;
 | |
| 		chunkp = &la->la_next;
 | |
| 	}
 | |
| 	*chunkp = CHAIN_END;
 | |
| 
 | |
| 	return (chunk_head);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp)
 | |
| {
 | |
| 	uint16_t chunk = *chunkp;
 | |
| 
 | |
| 	*chunkp = CHAIN_END;
 | |
| 
 | |
| 	while (chunk != CHAIN_END) {
 | |
| 		uint_t nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next;
 | |
| 		ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==,
 | |
| 		    ZAP_CHUNK_ARRAY);
 | |
| 		zap_leaf_chunk_free(l, chunk);
 | |
| 		chunk = nextchunk;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* array_len and buf_len are in integers, not bytes */
 | |
| static void
 | |
| zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk,
 | |
|     int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
 | |
|     void *buf)
 | |
| {
 | |
| 	int len = MIN(array_len, buf_len);
 | |
| 	int byten = 0;
 | |
| 	uint64_t value = 0;
 | |
| 	char *p = buf;
 | |
| 
 | |
| 	ASSERT3U(array_int_len, <=, buf_int_len);
 | |
| 
 | |
| 	/* Fast path for one 8-byte integer */
 | |
| 	if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
 | |
| 		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
 | |
| 		uint8_t *ip = la->la_array;
 | |
| 		uint64_t *buf64 = buf;
 | |
| 
 | |
| 		*buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
 | |
| 		    (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
 | |
| 		    (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
 | |
| 		    (uint64_t)ip[6] << 8 | (uint64_t)ip[7];
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Fast path for an array of 1-byte integers (eg. the entry name) */
 | |
| 	if (array_int_len == 1 && buf_int_len == 1 &&
 | |
| 	    buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
 | |
| 		while (chunk != CHAIN_END) {
 | |
| 			struct zap_leaf_array *la =
 | |
| 			    &ZAP_LEAF_CHUNK(l, chunk).l_array;
 | |
| 			memcpy(p, la->la_array, ZAP_LEAF_ARRAY_BYTES);
 | |
| 			p += ZAP_LEAF_ARRAY_BYTES;
 | |
| 			chunk = la->la_next;
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
 | |
| 
 | |
| 		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
 | |
| 		for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
 | |
| 			value = (value << 8) | la->la_array[i];
 | |
| 			byten++;
 | |
| 			if (byten == array_int_len) {
 | |
| 				stv(buf_int_len, p, value);
 | |
| 				byten = 0;
 | |
| 				len--;
 | |
| 				if (len == 0)
 | |
| 					return;
 | |
| 				p += buf_int_len;
 | |
| 			}
 | |
| 		}
 | |
| 		chunk = la->la_next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static boolean_t
 | |
| zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn,
 | |
|     uint_t chunk, int array_numints)
 | |
| {
 | |
| 	int bseen = 0;
 | |
| 
 | |
| 	if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) {
 | |
| 		uint64_t *thiskey =
 | |
| 		    kmem_alloc(array_numints * sizeof (*thiskey), KM_SLEEP);
 | |
| 		ASSERT(zn->zn_key_intlen == sizeof (*thiskey));
 | |
| 
 | |
| 		zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints,
 | |
| 		    sizeof (*thiskey), array_numints, thiskey);
 | |
| 		boolean_t match = memcmp(thiskey, zn->zn_key_orig,
 | |
| 		    array_numints * sizeof (*thiskey)) == 0;
 | |
| 		kmem_free(thiskey, array_numints * sizeof (*thiskey));
 | |
| 		return (match);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(zn->zn_key_intlen == 1);
 | |
| 	if (zn->zn_matchtype & MT_NORMALIZE) {
 | |
| 		char *thisname = kmem_alloc(array_numints, KM_SLEEP);
 | |
| 
 | |
| 		zap_leaf_array_read(l, chunk, sizeof (char), array_numints,
 | |
| 		    sizeof (char), array_numints, thisname);
 | |
| 		boolean_t match = zap_match(zn, thisname);
 | |
| 		kmem_free(thisname, array_numints);
 | |
| 		return (match);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Fast path for exact matching.
 | |
| 	 * First check that the lengths match, so that we don't read
 | |
| 	 * past the end of the zn_key_orig array.
 | |
| 	 */
 | |
| 	if (array_numints != zn->zn_key_orig_numints)
 | |
| 		return (B_FALSE);
 | |
| 	while (bseen < array_numints) {
 | |
| 		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
 | |
| 		int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES);
 | |
| 		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
 | |
| 		if (memcmp(la->la_array, (char *)zn->zn_key_orig + bseen,
 | |
| 		    toread))
 | |
| 			break;
 | |
| 		chunk = la->la_next;
 | |
| 		bseen += toread;
 | |
| 	}
 | |
| 	return (bseen == array_numints);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Routines which manipulate leaf entries.
 | |
|  */
 | |
| 
 | |
| int
 | |
| zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh)
 | |
| {
 | |
| 	struct zap_leaf_entry *le;
 | |
| 
 | |
| 	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
 | |
| 
 | |
| 	for (uint16_t *chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash);
 | |
| 	    *chunkp != CHAIN_END; chunkp = &le->le_next) {
 | |
| 		uint16_t chunk = *chunkp;
 | |
| 		le = ZAP_LEAF_ENTRY(l, chunk);
 | |
| 
 | |
| 		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
 | |
| 		ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
 | |
| 
 | |
| 		if (le->le_hash != zn->zn_hash)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * NB: the entry chain is always sorted by cd on
 | |
| 		 * normalized zap objects, so this will find the
 | |
| 		 * lowest-cd match for MT_NORMALIZE.
 | |
| 		 */
 | |
| 		ASSERT((zn->zn_matchtype == 0) ||
 | |
| 		    (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED));
 | |
| 		if (zap_leaf_array_match(l, zn, le->le_name_chunk,
 | |
| 		    le->le_name_numints)) {
 | |
| 			zeh->zeh_num_integers = le->le_value_numints;
 | |
| 			zeh->zeh_integer_size = le->le_value_intlen;
 | |
| 			zeh->zeh_cd = le->le_cd;
 | |
| 			zeh->zeh_hash = le->le_hash;
 | |
| 			zeh->zeh_chunkp = chunkp;
 | |
| 			zeh->zeh_leaf = l;
 | |
| 			return (0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (SET_ERROR(ENOENT));
 | |
| }
 | |
| 
 | |
| /* Return (h1,cd1 >= h2,cd2) */
 | |
| #define	HCD_GTEQ(h1, cd1, h2, cd2) \
 | |
| 	((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
 | |
| 
 | |
| int
 | |
| zap_leaf_lookup_closest(zap_leaf_t *l,
 | |
|     uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
 | |
| {
 | |
| 	uint64_t besth = -1ULL;
 | |
| 	uint32_t bestcd = -1U;
 | |
| 	uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1;
 | |
| 	struct zap_leaf_entry *le;
 | |
| 
 | |
| 	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
 | |
| 
 | |
| 	for (uint16_t lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
 | |
| 		for (uint16_t chunk = zap_leaf_phys(l)->l_hash[lh];
 | |
| 		    chunk != CHAIN_END; chunk = le->le_next) {
 | |
| 			le = ZAP_LEAF_ENTRY(l, chunk);
 | |
| 
 | |
| 			ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
 | |
| 			ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
 | |
| 
 | |
| 			if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
 | |
| 			    HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
 | |
| 				ASSERT3U(bestlh, >=, lh);
 | |
| 				bestlh = lh;
 | |
| 				besth = le->le_hash;
 | |
| 				bestcd = le->le_cd;
 | |
| 
 | |
| 				zeh->zeh_num_integers = le->le_value_numints;
 | |
| 				zeh->zeh_integer_size = le->le_value_intlen;
 | |
| 				zeh->zeh_cd = le->le_cd;
 | |
| 				zeh->zeh_hash = le->le_hash;
 | |
| 				zeh->zeh_fakechunk = chunk;
 | |
| 				zeh->zeh_chunkp = &zeh->zeh_fakechunk;
 | |
| 				zeh->zeh_leaf = l;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (bestcd == -1U ? SET_ERROR(ENOENT) : 0);
 | |
| }
 | |
| 
 | |
| int
 | |
| zap_entry_read(const zap_entry_handle_t *zeh,
 | |
|     uint8_t integer_size, uint64_t num_integers, void *buf)
 | |
| {
 | |
| 	struct zap_leaf_entry *le =
 | |
| 	    ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
 | |
| 	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
 | |
| 
 | |
| 	if (le->le_value_intlen > integer_size)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk,
 | |
| 	    le->le_value_intlen, le->le_value_numints,
 | |
| 	    integer_size, num_integers, buf);
 | |
| 
 | |
| 	if (zeh->zeh_num_integers > num_integers)
 | |
| 		return (SET_ERROR(EOVERFLOW));
 | |
| 	return (0);
 | |
| 
 | |
| }
 | |
| 
 | |
| int
 | |
| zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen,
 | |
|     char *buf)
 | |
| {
 | |
| 	struct zap_leaf_entry *le =
 | |
| 	    ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
 | |
| 	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
 | |
| 
 | |
| 	if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
 | |
| 		zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8,
 | |
| 		    le->le_name_numints, 8, buflen / 8, buf);
 | |
| 	} else {
 | |
| 		zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1,
 | |
| 		    le->le_name_numints, 1, buflen, buf);
 | |
| 	}
 | |
| 	if (le->le_name_numints > buflen)
 | |
| 		return (SET_ERROR(EOVERFLOW));
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| int
 | |
| zap_entry_update(zap_entry_handle_t *zeh,
 | |
|     uint8_t integer_size, uint64_t num_integers, const void *buf)
 | |
| {
 | |
| 	zap_leaf_t *l = zeh->zeh_leaf;
 | |
| 	struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp);
 | |
| 
 | |
| 	int delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) -
 | |
| 	    ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen);
 | |
| 
 | |
| 	if ((int)zap_leaf_phys(l)->l_hdr.lh_nfree < delta_chunks)
 | |
| 		return (SET_ERROR(EAGAIN));
 | |
| 
 | |
| 	zap_leaf_array_free(l, &le->le_value_chunk);
 | |
| 	le->le_value_chunk =
 | |
| 	    zap_leaf_array_create(l, buf, integer_size, num_integers);
 | |
| 	le->le_value_numints = num_integers;
 | |
| 	le->le_value_intlen = integer_size;
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| void
 | |
| zap_entry_remove(zap_entry_handle_t *zeh)
 | |
| {
 | |
| 	zap_leaf_t *l = zeh->zeh_leaf;
 | |
| 
 | |
| 	ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);
 | |
| 
 | |
| 	uint16_t entry_chunk = *zeh->zeh_chunkp;
 | |
| 	struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry_chunk);
 | |
| 	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
 | |
| 
 | |
| 	zap_leaf_array_free(l, &le->le_name_chunk);
 | |
| 	zap_leaf_array_free(l, &le->le_value_chunk);
 | |
| 
 | |
| 	*zeh->zeh_chunkp = le->le_next;
 | |
| 	zap_leaf_chunk_free(l, entry_chunk);
 | |
| 
 | |
| 	zap_leaf_phys(l)->l_hdr.lh_nentries--;
 | |
| }
 | |
| 
 | |
| int
 | |
| zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd,
 | |
|     uint8_t integer_size, uint64_t num_integers, const void *buf,
 | |
|     zap_entry_handle_t *zeh)
 | |
| {
 | |
| 	uint16_t chunk;
 | |
| 	struct zap_leaf_entry *le;
 | |
| 	uint64_t h = zn->zn_hash;
 | |
| 
 | |
| 	uint64_t valuelen = integer_size * num_integers;
 | |
| 
 | |
| 	uint_t numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints *
 | |
| 	    zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen);
 | |
| 	if (numchunks > ZAP_LEAF_NUMCHUNKS(l))
 | |
| 		return (SET_ERROR(E2BIG));
 | |
| 
 | |
| 	if (cd == ZAP_NEED_CD) {
 | |
| 		/* find the lowest unused cd */
 | |
| 		if (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) {
 | |
| 			cd = 0;
 | |
| 
 | |
| 			for (chunk = *LEAF_HASH_ENTPTR(l, h);
 | |
| 			    chunk != CHAIN_END; chunk = le->le_next) {
 | |
| 				le = ZAP_LEAF_ENTRY(l, chunk);
 | |
| 				if (le->le_cd > cd)
 | |
| 					break;
 | |
| 				if (le->le_hash == h) {
 | |
| 					ASSERT3U(cd, ==, le->le_cd);
 | |
| 					cd++;
 | |
| 				}
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* old unsorted format; do it the O(n^2) way */
 | |
| 			for (cd = 0; ; cd++) {
 | |
| 				for (chunk = *LEAF_HASH_ENTPTR(l, h);
 | |
| 				    chunk != CHAIN_END; chunk = le->le_next) {
 | |
| 					le = ZAP_LEAF_ENTRY(l, chunk);
 | |
| 					if (le->le_hash == h &&
 | |
| 					    le->le_cd == cd) {
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 				/* If this cd is not in use, we are good. */
 | |
| 				if (chunk == CHAIN_END)
 | |
| 					break;
 | |
| 			}
 | |
| 		}
 | |
| 		/*
 | |
| 		 * We would run out of space in a block before we could
 | |
| 		 * store enough entries to run out of CD values.
 | |
| 		 */
 | |
| 		ASSERT3U(cd, <, zap_maxcd(zn->zn_zap));
 | |
| 	}
 | |
| 
 | |
| 	if (zap_leaf_phys(l)->l_hdr.lh_nfree < numchunks)
 | |
| 		return (SET_ERROR(EAGAIN));
 | |
| 
 | |
| 	/* make the entry */
 | |
| 	chunk = zap_leaf_chunk_alloc(l);
 | |
| 	le = ZAP_LEAF_ENTRY(l, chunk);
 | |
| 	le->le_type = ZAP_CHUNK_ENTRY;
 | |
| 	le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig,
 | |
| 	    zn->zn_key_intlen, zn->zn_key_orig_numints);
 | |
| 	le->le_name_numints = zn->zn_key_orig_numints;
 | |
| 	le->le_value_chunk =
 | |
| 	    zap_leaf_array_create(l, buf, integer_size, num_integers);
 | |
| 	le->le_value_numints = num_integers;
 | |
| 	le->le_value_intlen = integer_size;
 | |
| 	le->le_hash = h;
 | |
| 	le->le_cd = cd;
 | |
| 
 | |
| 	/* link it into the hash chain */
 | |
| 	/* XXX if we did the search above, we could just use that */
 | |
| 	uint16_t *chunkp = zap_leaf_rehash_entry(l, le, chunk);
 | |
| 
 | |
| 	zap_leaf_phys(l)->l_hdr.lh_nentries++;
 | |
| 
 | |
| 	zeh->zeh_leaf = l;
 | |
| 	zeh->zeh_num_integers = num_integers;
 | |
| 	zeh->zeh_integer_size = le->le_value_intlen;
 | |
| 	zeh->zeh_cd = le->le_cd;
 | |
| 	zeh->zeh_hash = le->le_hash;
 | |
| 	zeh->zeh_chunkp = chunkp;
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine if there is another entry with the same normalized form.
 | |
|  * For performance purposes, either zn or name must be provided (the
 | |
|  * other can be NULL).  Note, there usually won't be any hash
 | |
|  * conflicts, in which case we don't need the concatenated/normalized
 | |
|  * form of the name.  But all callers have one of these on hand anyway,
 | |
|  * so might as well take advantage.  A cleaner but slower interface
 | |
|  * would accept neither argument, and compute the normalized name as
 | |
|  * needed (using zap_name_alloc_str(zap_entry_read_name(zeh))).
 | |
|  */
 | |
| boolean_t
 | |
| zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn,
 | |
|     const char *name, zap_t *zap)
 | |
| {
 | |
| 	struct zap_leaf_entry *le;
 | |
| 	boolean_t allocdzn = B_FALSE;
 | |
| 
 | |
| 	if (zap->zap_normflags == 0)
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	for (uint16_t chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash);
 | |
| 	    chunk != CHAIN_END; chunk = le->le_next) {
 | |
| 		le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk);
 | |
| 		if (le->le_hash != zeh->zeh_hash)
 | |
| 			continue;
 | |
| 		if (le->le_cd == zeh->zeh_cd)
 | |
| 			continue;
 | |
| 
 | |
| 		if (zn == NULL) {
 | |
| 			zn = zap_name_alloc_str(zap, name, MT_NORMALIZE);
 | |
| 			allocdzn = B_TRUE;
 | |
| 		}
 | |
| 		if (zap_leaf_array_match(zeh->zeh_leaf, zn,
 | |
| 		    le->le_name_chunk, le->le_name_numints)) {
 | |
| 			if (allocdzn)
 | |
| 				zap_name_free(zn);
 | |
| 			return (B_TRUE);
 | |
| 		}
 | |
| 	}
 | |
| 	if (allocdzn)
 | |
| 		zap_name_free(zn);
 | |
| 	return (B_FALSE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Routines for transferring entries between leafs.
 | |
|  */
 | |
| 
 | |
| static uint16_t *
 | |
| zap_leaf_rehash_entry(zap_leaf_t *l, struct zap_leaf_entry *le, uint16_t entry)
 | |
| {
 | |
| 	struct zap_leaf_entry *le2;
 | |
| 	uint16_t *chunkp;
 | |
| 
 | |
| 	/*
 | |
| 	 * keep the entry chain sorted by cd
 | |
| 	 * NB: this will not cause problems for unsorted leafs, though
 | |
| 	 * it is unnecessary there.
 | |
| 	 */
 | |
| 	for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash);
 | |
| 	    *chunkp != CHAIN_END; chunkp = &le2->le_next) {
 | |
| 		le2 = ZAP_LEAF_ENTRY(l, *chunkp);
 | |
| 		if (le2->le_cd > le->le_cd)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	le->le_next = *chunkp;
 | |
| 	*chunkp = entry;
 | |
| 	return (chunkp);
 | |
| }
 | |
| 
 | |
| static uint16_t
 | |
| zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
 | |
| {
 | |
| 	uint16_t new_chunk;
 | |
| 	uint16_t *nchunkp = &new_chunk;
 | |
| 
 | |
| 	while (chunk != CHAIN_END) {
 | |
| 		uint16_t nchunk = zap_leaf_chunk_alloc(nl);
 | |
| 		struct zap_leaf_array *nla =
 | |
| 		    &ZAP_LEAF_CHUNK(nl, nchunk).l_array;
 | |
| 		struct zap_leaf_array *la =
 | |
| 		    &ZAP_LEAF_CHUNK(l, chunk).l_array;
 | |
| 		uint_t nextchunk = la->la_next;
 | |
| 
 | |
| 		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
 | |
| 		ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l));
 | |
| 
 | |
| 		*nla = *la; /* structure assignment */
 | |
| 
 | |
| 		zap_leaf_chunk_free(l, chunk);
 | |
| 		chunk = nextchunk;
 | |
| 		*nchunkp = nchunk;
 | |
| 		nchunkp = &nla->la_next;
 | |
| 	}
 | |
| 	*nchunkp = CHAIN_END;
 | |
| 	return (new_chunk);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zap_leaf_transfer_entry(zap_leaf_t *l, uint_t entry, zap_leaf_t *nl)
 | |
| {
 | |
| 	struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
 | |
| 	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
 | |
| 
 | |
| 	uint16_t chunk = zap_leaf_chunk_alloc(nl);
 | |
| 	struct zap_leaf_entry *nle = ZAP_LEAF_ENTRY(nl, chunk);
 | |
| 	*nle = *le; /* structure assignment */
 | |
| 
 | |
| 	(void) zap_leaf_rehash_entry(nl, nle, chunk);
 | |
| 
 | |
| 	nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
 | |
| 	nle->le_value_chunk =
 | |
| 	    zap_leaf_transfer_array(l, le->le_value_chunk, nl);
 | |
| 
 | |
| 	zap_leaf_chunk_free(l, entry);
 | |
| 
 | |
| 	zap_leaf_phys(l)->l_hdr.lh_nentries--;
 | |
| 	zap_leaf_phys(nl)->l_hdr.lh_nentries++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Transfer the entries whose hash prefix ends in 1 to the new leaf.
 | |
|  */
 | |
| void
 | |
| zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort)
 | |
| {
 | |
| 	uint_t bit = 64 - 1 - zap_leaf_phys(l)->l_hdr.lh_prefix_len;
 | |
| 
 | |
| 	/* set new prefix and prefix_len */
 | |
| 	zap_leaf_phys(l)->l_hdr.lh_prefix <<= 1;
 | |
| 	zap_leaf_phys(l)->l_hdr.lh_prefix_len++;
 | |
| 	zap_leaf_phys(nl)->l_hdr.lh_prefix =
 | |
| 	    zap_leaf_phys(l)->l_hdr.lh_prefix | 1;
 | |
| 	zap_leaf_phys(nl)->l_hdr.lh_prefix_len =
 | |
| 	    zap_leaf_phys(l)->l_hdr.lh_prefix_len;
 | |
| 
 | |
| 	/* break existing hash chains */
 | |
| 	memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
 | |
| 	    2*ZAP_LEAF_HASH_NUMENTRIES(l));
 | |
| 
 | |
| 	if (sort)
 | |
| 		zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
 | |
| 
 | |
| 	/*
 | |
| 	 * Transfer entries whose hash bit 'bit' is set to nl; rehash
 | |
| 	 * the remaining entries
 | |
| 	 *
 | |
| 	 * NB: We could find entries via the hashtable instead. That
 | |
| 	 * would be O(hashents+numents) rather than O(numblks+numents),
 | |
| 	 * but this accesses memory more sequentially, and when we're
 | |
| 	 * called, the block is usually pretty full.
 | |
| 	 */
 | |
| 	for (uint_t i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
 | |
| 		struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i);
 | |
| 		if (le->le_type != ZAP_CHUNK_ENTRY)
 | |
| 			continue;
 | |
| 
 | |
| 		if (le->le_hash & (1ULL << bit))
 | |
| 			zap_leaf_transfer_entry(l, i, nl);
 | |
| 		else
 | |
| 			(void) zap_leaf_rehash_entry(l, le, i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
 | |
| {
 | |
| 	uint_t n = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
 | |
| 	    zap_leaf_phys(l)->l_hdr.lh_prefix_len;
 | |
| 	n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
 | |
| 	zs->zs_leafs_with_2n_pointers[n]++;
 | |
| 
 | |
| 
 | |
| 	n = zap_leaf_phys(l)->l_hdr.lh_nentries/5;
 | |
| 	n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
 | |
| 	zs->zs_blocks_with_n5_entries[n]++;
 | |
| 
 | |
| 	n = ((1<<FZAP_BLOCK_SHIFT(zap)) -
 | |
| 	    zap_leaf_phys(l)->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
 | |
| 	    (1<<FZAP_BLOCK_SHIFT(zap));
 | |
| 	n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
 | |
| 	zs->zs_blocks_n_tenths_full[n]++;
 | |
| 
 | |
| 	for (uint_t i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) {
 | |
| 		uint_t nentries = 0;
 | |
| 		uint_t chunk = zap_leaf_phys(l)->l_hash[i];
 | |
| 
 | |
| 		while (chunk != CHAIN_END) {
 | |
| 			struct zap_leaf_entry *le =
 | |
| 			    ZAP_LEAF_ENTRY(l, chunk);
 | |
| 
 | |
| 			n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) +
 | |
| 			    ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints *
 | |
| 			    le->le_value_intlen);
 | |
| 			n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
 | |
| 			zs->zs_entries_using_n_chunks[n]++;
 | |
| 
 | |
| 			chunk = le->le_next;
 | |
| 			nentries++;
 | |
| 		}
 | |
| 
 | |
| 		n = nentries;
 | |
| 		n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
 | |
| 		zs->zs_buckets_with_n_entries[n]++;
 | |
| 	}
 | |
| }
 |