mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-11-04 01:41:27 +00:00 
			
		
		
		
	Porting Notes: * Not required for Linux since the zone is always global. But we'll want this change if we start using the zones code. Authored by: Andy Fiddaman <omnios@citrus-it.co.uk> Reviewed by: Jason King <jason.king@joyent.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Reviewed by: Tom Caputi <tcaputi@datto.com> Approved by: Joshua M. Clulow <josh@sysmgr.org> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/9880 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/bc4c0ff134 Closes #8189
		
			
				
	
	
		
			1738 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1738 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * CDDL HEADER START
 | 
						|
 *
 | 
						|
 * The contents of this file are subject to the terms of the
 | 
						|
 * Common Development and Distribution License (the "License").
 | 
						|
 * You may not use this file except in compliance with the License.
 | 
						|
 *
 | 
						|
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | 
						|
 * or http://www.opensolaris.org/os/licensing.
 | 
						|
 * See the License for the specific language governing permissions
 | 
						|
 * and limitations under the License.
 | 
						|
 *
 | 
						|
 * When distributing Covered Code, include this CDDL HEADER in each
 | 
						|
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | 
						|
 * If applicable, add the following below this CDDL HEADER, with the
 | 
						|
 * fields enclosed by brackets "[]" replaced with your own identifying
 | 
						|
 * information: Portions Copyright [yyyy] [name of copyright owner]
 | 
						|
 *
 | 
						|
 * CDDL HEADER END
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
 | 
						|
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | 
						|
 * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
 | 
						|
 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
 | 
						|
 * Copyright 2017 RackTop Systems.
 | 
						|
 * Copyright (c) 2018 Datto Inc.
 | 
						|
 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Routines to manage ZFS mounts.  We separate all the nasty routines that have
 | 
						|
 * to deal with the OS.  The following functions are the main entry points --
 | 
						|
 * they are used by mount and unmount and when changing a filesystem's
 | 
						|
 * mountpoint.
 | 
						|
 *
 | 
						|
 *	zfs_is_mounted()
 | 
						|
 *	zfs_mount()
 | 
						|
 *	zfs_unmount()
 | 
						|
 *	zfs_unmountall()
 | 
						|
 *
 | 
						|
 * This file also contains the functions used to manage sharing filesystems via
 | 
						|
 * NFS and iSCSI:
 | 
						|
 *
 | 
						|
 *	zfs_is_shared()
 | 
						|
 *	zfs_share()
 | 
						|
 *	zfs_unshare()
 | 
						|
 *
 | 
						|
 *	zfs_is_shared_nfs()
 | 
						|
 *	zfs_is_shared_smb()
 | 
						|
 *	zfs_share_proto()
 | 
						|
 *	zfs_shareall();
 | 
						|
 *	zfs_unshare_nfs()
 | 
						|
 *	zfs_unshare_smb()
 | 
						|
 *	zfs_unshareall_nfs()
 | 
						|
 *	zfs_unshareall_smb()
 | 
						|
 *	zfs_unshareall()
 | 
						|
 *	zfs_unshareall_bypath()
 | 
						|
 *
 | 
						|
 * The following functions are available for pool consumers, and will
 | 
						|
 * mount/unmount and share/unshare all datasets within pool:
 | 
						|
 *
 | 
						|
 *	zpool_enable_datasets()
 | 
						|
 *	zpool_disable_datasets()
 | 
						|
 */
 | 
						|
 | 
						|
#include <dirent.h>
 | 
						|
#include <dlfcn.h>
 | 
						|
#include <errno.h>
 | 
						|
#include <fcntl.h>
 | 
						|
#include <libgen.h>
 | 
						|
#include <libintl.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <strings.h>
 | 
						|
#include <unistd.h>
 | 
						|
#include <zone.h>
 | 
						|
#include <sys/mntent.h>
 | 
						|
#include <sys/mount.h>
 | 
						|
#include <sys/stat.h>
 | 
						|
#include <sys/vfs.h>
 | 
						|
#include <sys/dsl_crypt.h>
 | 
						|
 | 
						|
#include <libzfs.h>
 | 
						|
 | 
						|
#include "libzfs_impl.h"
 | 
						|
#include <thread_pool.h>
 | 
						|
 | 
						|
#include <libshare.h>
 | 
						|
#include <sys/systeminfo.h>
 | 
						|
#define	MAXISALEN	257	/* based on sysinfo(2) man page */
 | 
						|
 | 
						|
static int mount_tp_nthr = 512;	/* tpool threads for multi-threaded mounting */
 | 
						|
 | 
						|
static void zfs_mount_task(void *);
 | 
						|
static int zfs_share_proto(zfs_handle_t *, zfs_share_proto_t *);
 | 
						|
zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **,
 | 
						|
    zfs_share_proto_t);
 | 
						|
 | 
						|
/*
 | 
						|
 * The share protocols table must be in the same order as the zfs_share_proto_t
 | 
						|
 * enum in libzfs_impl.h
 | 
						|
 */
 | 
						|
typedef struct {
 | 
						|
	zfs_prop_t p_prop;
 | 
						|
	char *p_name;
 | 
						|
	int p_share_err;
 | 
						|
	int p_unshare_err;
 | 
						|
} proto_table_t;
 | 
						|
 | 
						|
proto_table_t proto_table[PROTO_END] = {
 | 
						|
	{ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
 | 
						|
	{ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
 | 
						|
};
 | 
						|
 | 
						|
zfs_share_proto_t nfs_only[] = {
 | 
						|
	PROTO_NFS,
 | 
						|
	PROTO_END
 | 
						|
};
 | 
						|
 | 
						|
zfs_share_proto_t smb_only[] = {
 | 
						|
	PROTO_SMB,
 | 
						|
	PROTO_END
 | 
						|
};
 | 
						|
zfs_share_proto_t share_all_proto[] = {
 | 
						|
	PROTO_NFS,
 | 
						|
	PROTO_SMB,
 | 
						|
	PROTO_END
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Search the sharetab for the given mountpoint and protocol, returning
 | 
						|
 * a zfs_share_type_t value.
 | 
						|
 */
 | 
						|
static zfs_share_type_t
 | 
						|
is_shared(libzfs_handle_t *hdl, const char *mountpoint, zfs_share_proto_t proto)
 | 
						|
{
 | 
						|
	char buf[MAXPATHLEN], *tab;
 | 
						|
	char *ptr;
 | 
						|
 | 
						|
	if (hdl->libzfs_sharetab == NULL)
 | 
						|
		return (SHARED_NOT_SHARED);
 | 
						|
 | 
						|
	/* Reopen ZFS_SHARETAB to prevent reading stale data from open file */
 | 
						|
	if (freopen(ZFS_SHARETAB, "r", hdl->libzfs_sharetab) == NULL)
 | 
						|
		return (SHARED_NOT_SHARED);
 | 
						|
 | 
						|
	(void) fseek(hdl->libzfs_sharetab, 0, SEEK_SET);
 | 
						|
 | 
						|
	while (fgets(buf, sizeof (buf), hdl->libzfs_sharetab) != NULL) {
 | 
						|
 | 
						|
		/* the mountpoint is the first entry on each line */
 | 
						|
		if ((tab = strchr(buf, '\t')) == NULL)
 | 
						|
			continue;
 | 
						|
 | 
						|
		*tab = '\0';
 | 
						|
		if (strcmp(buf, mountpoint) == 0) {
 | 
						|
			/*
 | 
						|
			 * the protocol field is the third field
 | 
						|
			 * skip over second field
 | 
						|
			 */
 | 
						|
			ptr = ++tab;
 | 
						|
			if ((tab = strchr(ptr, '\t')) == NULL)
 | 
						|
				continue;
 | 
						|
			ptr = ++tab;
 | 
						|
			if ((tab = strchr(ptr, '\t')) == NULL)
 | 
						|
				continue;
 | 
						|
			*tab = '\0';
 | 
						|
			if (strcmp(ptr,
 | 
						|
			    proto_table[proto].p_name) == 0) {
 | 
						|
				switch (proto) {
 | 
						|
				case PROTO_NFS:
 | 
						|
					return (SHARED_NFS);
 | 
						|
				case PROTO_SMB:
 | 
						|
					return (SHARED_SMB);
 | 
						|
				default:
 | 
						|
					return (0);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return (SHARED_NOT_SHARED);
 | 
						|
}
 | 
						|
 | 
						|
static boolean_t
 | 
						|
dir_is_empty_stat(const char *dirname)
 | 
						|
{
 | 
						|
	struct stat st;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We only want to return false if the given path is a non empty
 | 
						|
	 * directory, all other errors are handled elsewhere.
 | 
						|
	 */
 | 
						|
	if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
 | 
						|
		return (B_TRUE);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * An empty directory will still have two entries in it, one
 | 
						|
	 * entry for each of "." and "..".
 | 
						|
	 */
 | 
						|
	if (st.st_size > 2) {
 | 
						|
		return (B_FALSE);
 | 
						|
	}
 | 
						|
 | 
						|
	return (B_TRUE);
 | 
						|
}
 | 
						|
 | 
						|
static boolean_t
 | 
						|
dir_is_empty_readdir(const char *dirname)
 | 
						|
{
 | 
						|
	DIR *dirp;
 | 
						|
	struct dirent64 *dp;
 | 
						|
	int dirfd;
 | 
						|
 | 
						|
	if ((dirfd = openat(AT_FDCWD, dirname,
 | 
						|
	    O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
 | 
						|
		return (B_TRUE);
 | 
						|
	}
 | 
						|
 | 
						|
	if ((dirp = fdopendir(dirfd)) == NULL) {
 | 
						|
		(void) close(dirfd);
 | 
						|
		return (B_TRUE);
 | 
						|
	}
 | 
						|
 | 
						|
	while ((dp = readdir64(dirp)) != NULL) {
 | 
						|
 | 
						|
		if (strcmp(dp->d_name, ".") == 0 ||
 | 
						|
		    strcmp(dp->d_name, "..") == 0)
 | 
						|
			continue;
 | 
						|
 | 
						|
		(void) closedir(dirp);
 | 
						|
		return (B_FALSE);
 | 
						|
	}
 | 
						|
 | 
						|
	(void) closedir(dirp);
 | 
						|
	return (B_TRUE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns true if the specified directory is empty.  If we can't open the
 | 
						|
 * directory at all, return true so that the mount can fail with a more
 | 
						|
 * informative error message.
 | 
						|
 */
 | 
						|
static boolean_t
 | 
						|
dir_is_empty(const char *dirname)
 | 
						|
{
 | 
						|
	struct statfs64 st;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the statvfs call fails or the filesystem is not a ZFS
 | 
						|
	 * filesystem, fall back to the slow path which uses readdir.
 | 
						|
	 */
 | 
						|
	if ((statfs64(dirname, &st) != 0) ||
 | 
						|
	    (st.f_type != ZFS_SUPER_MAGIC)) {
 | 
						|
		return (dir_is_empty_readdir(dirname));
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * At this point, we know the provided path is on a ZFS
 | 
						|
	 * filesystem, so we can use stat instead of readdir to
 | 
						|
	 * determine if the directory is empty or not. We try to avoid
 | 
						|
	 * using readdir because that requires opening "dirname"; this
 | 
						|
	 * open file descriptor can potentially end up in a child
 | 
						|
	 * process if there's a concurrent fork, thus preventing the
 | 
						|
	 * zfs_mount() from otherwise succeeding (the open file
 | 
						|
	 * descriptor inherited by the child process will cause the
 | 
						|
	 * parent's mount to fail with EBUSY). The performance
 | 
						|
	 * implications of replacing the open, read, and close with a
 | 
						|
	 * single stat is nice; but is not the main motivation for the
 | 
						|
	 * added complexity.
 | 
						|
	 */
 | 
						|
	return (dir_is_empty_stat(dirname));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Checks to see if the mount is active.  If the filesystem is mounted, we fill
 | 
						|
 * in 'where' with the current mountpoint, and return 1.  Otherwise, we return
 | 
						|
 * 0.
 | 
						|
 */
 | 
						|
boolean_t
 | 
						|
is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
 | 
						|
{
 | 
						|
	struct mnttab entry;
 | 
						|
 | 
						|
	if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	if (where != NULL)
 | 
						|
		*where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
 | 
						|
 | 
						|
	return (B_TRUE);
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
zfs_is_mounted(zfs_handle_t *zhp, char **where)
 | 
						|
{
 | 
						|
	return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns true if the given dataset is mountable, false otherwise.  Returns the
 | 
						|
 * mountpoint in 'buf'.
 | 
						|
 */
 | 
						|
static boolean_t
 | 
						|
zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
 | 
						|
    zprop_source_t *source)
 | 
						|
{
 | 
						|
	char sourceloc[MAXNAMELEN];
 | 
						|
	zprop_source_t sourcetype;
 | 
						|
 | 
						|
	if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type,
 | 
						|
	    B_FALSE))
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
 | 
						|
	    &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
 | 
						|
 | 
						|
	if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
 | 
						|
	    strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
 | 
						|
	    getzoneid() == GLOBAL_ZONEID)
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	if (source)
 | 
						|
		*source = sourcetype;
 | 
						|
 | 
						|
	return (B_TRUE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The filesystem is mounted by invoking the system mount utility rather
 | 
						|
 * than by the system call mount(2).  This ensures that the /etc/mtab
 | 
						|
 * file is correctly locked for the update.  Performing our own locking
 | 
						|
 * and /etc/mtab update requires making an unsafe assumption about how
 | 
						|
 * the mount utility performs its locking.  Unfortunately, this also means
 | 
						|
 * in the case of a mount failure we do not have the exact errno.  We must
 | 
						|
 * make due with return value from the mount process.
 | 
						|
 *
 | 
						|
 * In the long term a shared library called libmount is under development
 | 
						|
 * which provides a common API to address the locking and errno issues.
 | 
						|
 * Once the standard mount utility has been updated to use this library
 | 
						|
 * we can add an autoconf check to conditionally use it.
 | 
						|
 *
 | 
						|
 * http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html
 | 
						|
 */
 | 
						|
 | 
						|
static int
 | 
						|
do_mount(const char *src, const char *mntpt, char *opts)
 | 
						|
{
 | 
						|
	char *argv[9] = {
 | 
						|
	    "/bin/mount",
 | 
						|
	    "--no-canonicalize",
 | 
						|
	    "-t", MNTTYPE_ZFS,
 | 
						|
	    "-o", opts,
 | 
						|
	    (char *)src,
 | 
						|
	    (char *)mntpt,
 | 
						|
	    (char *)NULL };
 | 
						|
	int rc;
 | 
						|
 | 
						|
	/* Return only the most critical mount error */
 | 
						|
	rc = libzfs_run_process(argv[0], argv, STDOUT_VERBOSE|STDERR_VERBOSE);
 | 
						|
	if (rc) {
 | 
						|
		if (rc & MOUNT_FILEIO)
 | 
						|
			return (EIO);
 | 
						|
		if (rc & MOUNT_USER)
 | 
						|
			return (EINTR);
 | 
						|
		if (rc & MOUNT_SOFTWARE)
 | 
						|
			return (EPIPE);
 | 
						|
		if (rc & MOUNT_BUSY)
 | 
						|
			return (EBUSY);
 | 
						|
		if (rc & MOUNT_SYSERR)
 | 
						|
			return (EAGAIN);
 | 
						|
		if (rc & MOUNT_USAGE)
 | 
						|
			return (EINVAL);
 | 
						|
 | 
						|
		return (ENXIO); /* Generic error */
 | 
						|
	}
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
do_unmount(const char *mntpt, int flags)
 | 
						|
{
 | 
						|
	char force_opt[] = "-f";
 | 
						|
	char lazy_opt[] = "-l";
 | 
						|
	char *argv[7] = {
 | 
						|
	    "/bin/umount",
 | 
						|
	    "-t", MNTTYPE_ZFS,
 | 
						|
	    NULL, NULL, NULL, NULL };
 | 
						|
	int rc, count = 3;
 | 
						|
 | 
						|
	if (flags & MS_FORCE) {
 | 
						|
		argv[count] = force_opt;
 | 
						|
		count++;
 | 
						|
	}
 | 
						|
 | 
						|
	if (flags & MS_DETACH) {
 | 
						|
		argv[count] = lazy_opt;
 | 
						|
		count++;
 | 
						|
	}
 | 
						|
 | 
						|
	argv[count] = (char *)mntpt;
 | 
						|
	rc = libzfs_run_process(argv[0], argv, STDOUT_VERBOSE|STDERR_VERBOSE);
 | 
						|
 | 
						|
	return (rc ? EINVAL : 0);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
zfs_add_option(zfs_handle_t *zhp, char *options, int len,
 | 
						|
    zfs_prop_t prop, char *on, char *off)
 | 
						|
{
 | 
						|
	char *source;
 | 
						|
	uint64_t value;
 | 
						|
 | 
						|
	/* Skip adding duplicate default options */
 | 
						|
	if ((strstr(options, on) != NULL) || (strstr(options, off) != NULL))
 | 
						|
		return (0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * zfs_prop_get_int() is not used to ensure our mount options
 | 
						|
	 * are not influenced by the current /proc/self/mounts contents.
 | 
						|
	 */
 | 
						|
	value = getprop_uint64(zhp, prop, &source);
 | 
						|
 | 
						|
	(void) strlcat(options, ",", len);
 | 
						|
	(void) strlcat(options, value ? on : off, len);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
zfs_add_options(zfs_handle_t *zhp, char *options, int len)
 | 
						|
{
 | 
						|
	int error = 0;
 | 
						|
 | 
						|
	error = zfs_add_option(zhp, options, len,
 | 
						|
	    ZFS_PROP_ATIME, MNTOPT_ATIME, MNTOPT_NOATIME);
 | 
						|
	/*
 | 
						|
	 * don't add relatime/strictatime when atime=off, otherwise strictatime
 | 
						|
	 * will force atime=on
 | 
						|
	 */
 | 
						|
	if (strstr(options, MNTOPT_NOATIME) == NULL) {
 | 
						|
		error = zfs_add_option(zhp, options, len,
 | 
						|
		    ZFS_PROP_RELATIME, MNTOPT_RELATIME, MNTOPT_STRICTATIME);
 | 
						|
	}
 | 
						|
	error = error ? error : zfs_add_option(zhp, options, len,
 | 
						|
	    ZFS_PROP_DEVICES, MNTOPT_DEVICES, MNTOPT_NODEVICES);
 | 
						|
	error = error ? error : zfs_add_option(zhp, options, len,
 | 
						|
	    ZFS_PROP_EXEC, MNTOPT_EXEC, MNTOPT_NOEXEC);
 | 
						|
	error = error ? error : zfs_add_option(zhp, options, len,
 | 
						|
	    ZFS_PROP_READONLY, MNTOPT_RO, MNTOPT_RW);
 | 
						|
	error = error ? error : zfs_add_option(zhp, options, len,
 | 
						|
	    ZFS_PROP_SETUID, MNTOPT_SETUID, MNTOPT_NOSETUID);
 | 
						|
	error = error ? error : zfs_add_option(zhp, options, len,
 | 
						|
	    ZFS_PROP_NBMAND, MNTOPT_NBMAND, MNTOPT_NONBMAND);
 | 
						|
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Mount the given filesystem.
 | 
						|
 */
 | 
						|
int
 | 
						|
zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
 | 
						|
{
 | 
						|
	struct stat buf;
 | 
						|
	char mountpoint[ZFS_MAXPROPLEN];
 | 
						|
	char mntopts[MNT_LINE_MAX];
 | 
						|
	char overlay[ZFS_MAXPROPLEN];
 | 
						|
	libzfs_handle_t *hdl = zhp->zfs_hdl;
 | 
						|
	uint64_t keystatus;
 | 
						|
	int remount = 0, rc;
 | 
						|
 | 
						|
	if (options == NULL) {
 | 
						|
		(void) strlcpy(mntopts, MNTOPT_DEFAULTS, sizeof (mntopts));
 | 
						|
	} else {
 | 
						|
		(void) strlcpy(mntopts, options, sizeof (mntopts));
 | 
						|
	}
 | 
						|
 | 
						|
	if (strstr(mntopts, MNTOPT_REMOUNT) != NULL)
 | 
						|
		remount = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the pool is imported read-only then all mounts must be read-only
 | 
						|
	 */
 | 
						|
	if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
 | 
						|
		(void) strlcat(mntopts, "," MNTOPT_RO, sizeof (mntopts));
 | 
						|
 | 
						|
	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL))
 | 
						|
		return (0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Append default mount options which apply to the mount point.
 | 
						|
	 * This is done because under Linux (unlike Solaris) multiple mount
 | 
						|
	 * points may reference a single super block.  This means that just
 | 
						|
	 * given a super block there is no back reference to update the per
 | 
						|
	 * mount point options.
 | 
						|
	 */
 | 
						|
	rc = zfs_add_options(zhp, mntopts, sizeof (mntopts));
 | 
						|
	if (rc) {
 | 
						|
		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 | 
						|
		    "default options unavailable"));
 | 
						|
		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
 | 
						|
		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
 | 
						|
		    mountpoint));
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the filesystem is encrypted the key must be loaded  in order to
 | 
						|
	 * mount. If the key isn't loaded, the MS_CRYPT flag decides whether
 | 
						|
	 * or not we attempt to load the keys. Note: we must call
 | 
						|
	 * zfs_refresh_properties() here since some callers of this function
 | 
						|
	 * (most notably zpool_enable_datasets()) may implicitly load our key
 | 
						|
	 * by loading the parent's key first.
 | 
						|
	 */
 | 
						|
	if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
 | 
						|
		zfs_refresh_properties(zhp);
 | 
						|
		keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the key is unavailable and MS_CRYPT is set give the
 | 
						|
		 * user a chance to enter the key. Otherwise just fail
 | 
						|
		 * immediately.
 | 
						|
		 */
 | 
						|
		if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
 | 
						|
			if (flags & MS_CRYPT) {
 | 
						|
				rc = zfs_crypto_load_key(zhp, B_FALSE, NULL);
 | 
						|
				if (rc)
 | 
						|
					return (rc);
 | 
						|
			} else {
 | 
						|
				zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 | 
						|
				    "encryption key not loaded"));
 | 
						|
				return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
 | 
						|
				    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
 | 
						|
				    mountpoint));
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Append zfsutil option so the mount helper allow the mount
 | 
						|
	 */
 | 
						|
	strlcat(mntopts, "," MNTOPT_ZFSUTIL, sizeof (mntopts));
 | 
						|
 | 
						|
	/* Create the directory if it doesn't already exist */
 | 
						|
	if (lstat(mountpoint, &buf) != 0) {
 | 
						|
		if (mkdirp(mountpoint, 0755) != 0) {
 | 
						|
			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 | 
						|
			    "failed to create mountpoint"));
 | 
						|
			return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
 | 
						|
			    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
 | 
						|
			    mountpoint));
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Overlay mounts are disabled by default but may be enabled
 | 
						|
	 * via the 'overlay' property or the 'zfs mount -O' option.
 | 
						|
	 */
 | 
						|
	if (!(flags & MS_OVERLAY)) {
 | 
						|
		if (zfs_prop_get(zhp, ZFS_PROP_OVERLAY, overlay,
 | 
						|
		    sizeof (overlay), NULL, NULL, 0, B_FALSE) == 0) {
 | 
						|
			if (strcmp(overlay, "on") == 0) {
 | 
						|
				flags |= MS_OVERLAY;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Determine if the mountpoint is empty.  If so, refuse to perform the
 | 
						|
	 * mount.  We don't perform this check if 'remount' is
 | 
						|
	 * specified or if overlay option(-O) is given
 | 
						|
	 */
 | 
						|
	if ((flags & MS_OVERLAY) == 0 && !remount &&
 | 
						|
	    !dir_is_empty(mountpoint)) {
 | 
						|
		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 | 
						|
		    "directory is not empty"));
 | 
						|
		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
 | 
						|
		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
 | 
						|
	}
 | 
						|
 | 
						|
	/* perform the mount */
 | 
						|
	rc = do_mount(zfs_get_name(zhp), mountpoint, mntopts);
 | 
						|
	if (rc) {
 | 
						|
		/*
 | 
						|
		 * Generic errors are nasty, but there are just way too many
 | 
						|
		 * from mount(), and they're well-understood.  We pick a few
 | 
						|
		 * common ones to improve upon.
 | 
						|
		 */
 | 
						|
		if (rc == EBUSY) {
 | 
						|
			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 | 
						|
			    "mountpoint or dataset is busy"));
 | 
						|
		} else if (rc == EPERM) {
 | 
						|
			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 | 
						|
			    "Insufficient privileges"));
 | 
						|
		} else if (rc == ENOTSUP) {
 | 
						|
			char buf[256];
 | 
						|
			int spa_version;
 | 
						|
 | 
						|
			VERIFY(zfs_spa_version(zhp, &spa_version) == 0);
 | 
						|
			(void) snprintf(buf, sizeof (buf),
 | 
						|
			    dgettext(TEXT_DOMAIN, "Can't mount a version %lld "
 | 
						|
			    "file system on a version %d pool. Pool must be"
 | 
						|
			    " upgraded to mount this file system."),
 | 
						|
			    (u_longlong_t)zfs_prop_get_int(zhp,
 | 
						|
			    ZFS_PROP_VERSION), spa_version);
 | 
						|
			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf));
 | 
						|
		} else {
 | 
						|
			zfs_error_aux(hdl, strerror(rc));
 | 
						|
		}
 | 
						|
		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
 | 
						|
		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
 | 
						|
		    zhp->zfs_name));
 | 
						|
	}
 | 
						|
 | 
						|
	/* remove the mounted entry before re-adding on remount */
 | 
						|
	if (remount)
 | 
						|
		libzfs_mnttab_remove(hdl, zhp->zfs_name);
 | 
						|
 | 
						|
	/* add the mounted entry into our cache */
 | 
						|
	libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, mntopts);
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unmount a single filesystem.
 | 
						|
 */
 | 
						|
static int
 | 
						|
unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags)
 | 
						|
{
 | 
						|
	int error;
 | 
						|
 | 
						|
	error = do_unmount(mountpoint, flags);
 | 
						|
	if (error != 0) {
 | 
						|
		return (zfs_error_fmt(hdl, EZFS_UMOUNTFAILED,
 | 
						|
		    dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
 | 
						|
		    mountpoint));
 | 
						|
	}
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unmount the given filesystem.
 | 
						|
 */
 | 
						|
int
 | 
						|
zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
 | 
						|
{
 | 
						|
	libzfs_handle_t *hdl = zhp->zfs_hdl;
 | 
						|
	struct mnttab entry;
 | 
						|
	char *mntpt = NULL;
 | 
						|
 | 
						|
	/* check to see if we need to unmount the filesystem */
 | 
						|
	if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
 | 
						|
	    libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
 | 
						|
		/*
 | 
						|
		 * mountpoint may have come from a call to
 | 
						|
		 * getmnt/getmntany if it isn't NULL. If it is NULL,
 | 
						|
		 * we know it comes from libzfs_mnttab_find which can
 | 
						|
		 * then get freed later. We strdup it to play it safe.
 | 
						|
		 */
 | 
						|
		if (mountpoint == NULL)
 | 
						|
			mntpt = zfs_strdup(hdl, entry.mnt_mountp);
 | 
						|
		else
 | 
						|
			mntpt = zfs_strdup(hdl, mountpoint);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Unshare and unmount the filesystem
 | 
						|
		 */
 | 
						|
		if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0) {
 | 
						|
			free(mntpt);
 | 
						|
			return (-1);
 | 
						|
		}
 | 
						|
 | 
						|
		if (unmount_one(hdl, mntpt, flags) != 0) {
 | 
						|
			free(mntpt);
 | 
						|
			(void) zfs_shareall(zhp);
 | 
						|
			return (-1);
 | 
						|
		}
 | 
						|
		libzfs_mnttab_remove(hdl, zhp->zfs_name);
 | 
						|
		free(mntpt);
 | 
						|
	}
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unmount this filesystem and any children inheriting the mountpoint property.
 | 
						|
 * To do this, just act like we're changing the mountpoint property, but don't
 | 
						|
 * remount the filesystems afterwards.
 | 
						|
 */
 | 
						|
int
 | 
						|
zfs_unmountall(zfs_handle_t *zhp, int flags)
 | 
						|
{
 | 
						|
	prop_changelist_t *clp;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT,
 | 
						|
	    CL_GATHER_ITER_MOUNTED, 0);
 | 
						|
	if (clp == NULL)
 | 
						|
		return (-1);
 | 
						|
 | 
						|
	ret = changelist_prefix(clp);
 | 
						|
	changelist_free(clp);
 | 
						|
 | 
						|
	return (ret);
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
zfs_is_shared(zfs_handle_t *zhp)
 | 
						|
{
 | 
						|
	zfs_share_type_t rc = 0;
 | 
						|
	zfs_share_proto_t *curr_proto;
 | 
						|
 | 
						|
	if (ZFS_IS_VOLUME(zhp))
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
 | 
						|
	    curr_proto++)
 | 
						|
		rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto);
 | 
						|
 | 
						|
	return (rc ? B_TRUE : B_FALSE);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zfs_share(zfs_handle_t *zhp)
 | 
						|
{
 | 
						|
	assert(!ZFS_IS_VOLUME(zhp));
 | 
						|
	return (zfs_share_proto(zhp, share_all_proto));
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zfs_unshare(zfs_handle_t *zhp)
 | 
						|
{
 | 
						|
	assert(!ZFS_IS_VOLUME(zhp));
 | 
						|
	return (zfs_unshareall(zhp));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check to see if the filesystem is currently shared.
 | 
						|
 */
 | 
						|
zfs_share_type_t
 | 
						|
zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto)
 | 
						|
{
 | 
						|
	char *mountpoint;
 | 
						|
	zfs_share_type_t rc;
 | 
						|
 | 
						|
	if (!zfs_is_mounted(zhp, &mountpoint))
 | 
						|
		return (SHARED_NOT_SHARED);
 | 
						|
 | 
						|
	if ((rc = is_shared(zhp->zfs_hdl, mountpoint, proto))
 | 
						|
	    != SHARED_NOT_SHARED) {
 | 
						|
		if (where != NULL)
 | 
						|
			*where = mountpoint;
 | 
						|
		else
 | 
						|
			free(mountpoint);
 | 
						|
		return (rc);
 | 
						|
	} else {
 | 
						|
		free(mountpoint);
 | 
						|
		return (SHARED_NOT_SHARED);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
zfs_is_shared_nfs(zfs_handle_t *zhp, char **where)
 | 
						|
{
 | 
						|
	return (zfs_is_shared_proto(zhp, where,
 | 
						|
	    PROTO_NFS) != SHARED_NOT_SHARED);
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
zfs_is_shared_smb(zfs_handle_t *zhp, char **where)
 | 
						|
{
 | 
						|
	return (zfs_is_shared_proto(zhp, where,
 | 
						|
	    PROTO_SMB) != SHARED_NOT_SHARED);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * zfs_init_libshare(zhandle, service)
 | 
						|
 *
 | 
						|
 * Initialize the libshare API if it hasn't already been initialized.
 | 
						|
 * In all cases it returns 0 if it succeeded and an error if not. The
 | 
						|
 * service value is which part(s) of the API to initialize and is a
 | 
						|
 * direct map to the libshare sa_init(service) interface.
 | 
						|
 */
 | 
						|
int
 | 
						|
zfs_init_libshare(libzfs_handle_t *zhandle, int service)
 | 
						|
{
 | 
						|
	int ret = SA_OK;
 | 
						|
 | 
						|
	if (ret == SA_OK && zhandle->libzfs_shareflags & ZFSSHARE_MISS) {
 | 
						|
		/*
 | 
						|
		 * We had a cache miss. Most likely it is a new ZFS
 | 
						|
		 * dataset that was just created. We want to make sure
 | 
						|
		 * so check timestamps to see if a different process
 | 
						|
		 * has updated any of the configuration. If there was
 | 
						|
		 * some non-ZFS change, we need to re-initialize the
 | 
						|
		 * internal cache.
 | 
						|
		 */
 | 
						|
		zhandle->libzfs_shareflags &= ~ZFSSHARE_MISS;
 | 
						|
		if (sa_needs_refresh(zhandle->libzfs_sharehdl)) {
 | 
						|
			zfs_uninit_libshare(zhandle);
 | 
						|
			zhandle->libzfs_sharehdl = sa_init(service);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (ret == SA_OK && zhandle && zhandle->libzfs_sharehdl == NULL)
 | 
						|
		zhandle->libzfs_sharehdl = sa_init(service);
 | 
						|
 | 
						|
	if (ret == SA_OK && zhandle->libzfs_sharehdl == NULL)
 | 
						|
		ret = SA_NO_MEMORY;
 | 
						|
 | 
						|
	return (ret);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * zfs_uninit_libshare(zhandle)
 | 
						|
 *
 | 
						|
 * Uninitialize the libshare API if it hasn't already been
 | 
						|
 * uninitialized. It is OK to call multiple times.
 | 
						|
 */
 | 
						|
void
 | 
						|
zfs_uninit_libshare(libzfs_handle_t *zhandle)
 | 
						|
{
 | 
						|
	if (zhandle != NULL && zhandle->libzfs_sharehdl != NULL) {
 | 
						|
		sa_fini(zhandle->libzfs_sharehdl);
 | 
						|
		zhandle->libzfs_sharehdl = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * zfs_parse_options(options, proto)
 | 
						|
 *
 | 
						|
 * Call the legacy parse interface to get the protocol specific
 | 
						|
 * options using the NULL arg to indicate that this is a "parse" only.
 | 
						|
 */
 | 
						|
int
 | 
						|
zfs_parse_options(char *options, zfs_share_proto_t proto)
 | 
						|
{
 | 
						|
	return (sa_parse_legacy_options(NULL, options,
 | 
						|
	    proto_table[proto].p_name));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Share the given filesystem according to the options in the specified
 | 
						|
 * protocol specific properties (sharenfs, sharesmb).  We rely
 | 
						|
 * on "libshare" to do the dirty work for us.
 | 
						|
 */
 | 
						|
static int
 | 
						|
zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
 | 
						|
{
 | 
						|
	char mountpoint[ZFS_MAXPROPLEN];
 | 
						|
	char shareopts[ZFS_MAXPROPLEN];
 | 
						|
	char sourcestr[ZFS_MAXPROPLEN];
 | 
						|
	libzfs_handle_t *hdl = zhp->zfs_hdl;
 | 
						|
	sa_share_t share;
 | 
						|
	zfs_share_proto_t *curr_proto;
 | 
						|
	zprop_source_t sourcetype;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL))
 | 
						|
		return (0);
 | 
						|
 | 
						|
	for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) {
 | 
						|
		/*
 | 
						|
		 * Return success if there are no share options.
 | 
						|
		 */
 | 
						|
		if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
 | 
						|
		    shareopts, sizeof (shareopts), &sourcetype, sourcestr,
 | 
						|
		    ZFS_MAXPROPLEN, B_FALSE) != 0 ||
 | 
						|
		    strcmp(shareopts, "off") == 0)
 | 
						|
			continue;
 | 
						|
 | 
						|
		ret = zfs_init_libshare(hdl, SA_INIT_SHARE_API);
 | 
						|
		if (ret != SA_OK) {
 | 
						|
			(void) zfs_error_fmt(hdl, EZFS_SHARENFSFAILED,
 | 
						|
			    dgettext(TEXT_DOMAIN, "cannot share '%s': %s"),
 | 
						|
			    zfs_get_name(zhp), sa_errorstr(ret));
 | 
						|
			return (-1);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the 'zoned' property is set, then zfs_is_mountable()
 | 
						|
		 * will have already bailed out if we are in the global zone.
 | 
						|
		 * But local zones cannot be NFS servers, so we ignore it for
 | 
						|
		 * local zones as well.
 | 
						|
		 */
 | 
						|
		if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
 | 
						|
			continue;
 | 
						|
 | 
						|
		share = sa_find_share(hdl->libzfs_sharehdl, mountpoint);
 | 
						|
		if (share == NULL) {
 | 
						|
			/*
 | 
						|
			 * This may be a new file system that was just
 | 
						|
			 * created so isn't in the internal cache
 | 
						|
			 * (second time through). Rather than
 | 
						|
			 * reloading the entire configuration, we can
 | 
						|
			 * assume ZFS has done the checking and it is
 | 
						|
			 * safe to add this to the internal
 | 
						|
			 * configuration.
 | 
						|
			 */
 | 
						|
			if (sa_zfs_process_share(hdl->libzfs_sharehdl,
 | 
						|
			    NULL, NULL, mountpoint,
 | 
						|
			    proto_table[*curr_proto].p_name, sourcetype,
 | 
						|
			    shareopts, sourcestr, zhp->zfs_name) != SA_OK) {
 | 
						|
				(void) zfs_error_fmt(hdl,
 | 
						|
				    proto_table[*curr_proto].p_share_err,
 | 
						|
				    dgettext(TEXT_DOMAIN, "cannot share '%s'"),
 | 
						|
				    zfs_get_name(zhp));
 | 
						|
				return (-1);
 | 
						|
			}
 | 
						|
			hdl->libzfs_shareflags |= ZFSSHARE_MISS;
 | 
						|
			share = sa_find_share(hdl->libzfs_sharehdl,
 | 
						|
			    mountpoint);
 | 
						|
		}
 | 
						|
		if (share != NULL) {
 | 
						|
			int err;
 | 
						|
			err = sa_enable_share(share,
 | 
						|
			    proto_table[*curr_proto].p_name);
 | 
						|
			if (err != SA_OK) {
 | 
						|
				(void) zfs_error_fmt(hdl,
 | 
						|
				    proto_table[*curr_proto].p_share_err,
 | 
						|
				    dgettext(TEXT_DOMAIN, "cannot share '%s'"),
 | 
						|
				    zfs_get_name(zhp));
 | 
						|
				return (-1);
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			(void) zfs_error_fmt(hdl,
 | 
						|
			    proto_table[*curr_proto].p_share_err,
 | 
						|
			    dgettext(TEXT_DOMAIN, "cannot share '%s'"),
 | 
						|
			    zfs_get_name(zhp));
 | 
						|
			return (-1);
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int
 | 
						|
zfs_share_nfs(zfs_handle_t *zhp)
 | 
						|
{
 | 
						|
	return (zfs_share_proto(zhp, nfs_only));
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zfs_share_smb(zfs_handle_t *zhp)
 | 
						|
{
 | 
						|
	return (zfs_share_proto(zhp, smb_only));
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zfs_shareall(zfs_handle_t *zhp)
 | 
						|
{
 | 
						|
	return (zfs_share_proto(zhp, share_all_proto));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unshare a filesystem by mountpoint.
 | 
						|
 */
 | 
						|
static int
 | 
						|
unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
 | 
						|
    zfs_share_proto_t proto)
 | 
						|
{
 | 
						|
	sa_share_t share;
 | 
						|
	int err;
 | 
						|
	char *mntpt;
 | 
						|
	/*
 | 
						|
	 * Mountpoint could get trashed if libshare calls getmntany
 | 
						|
	 * which it does during API initialization, so strdup the
 | 
						|
	 * value.
 | 
						|
	 */
 | 
						|
	mntpt = zfs_strdup(hdl, mountpoint);
 | 
						|
 | 
						|
	/* make sure libshare initialized */
 | 
						|
	if ((err = zfs_init_libshare(hdl, SA_INIT_SHARE_API)) != SA_OK) {
 | 
						|
		free(mntpt);	/* don't need the copy anymore */
 | 
						|
		return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
 | 
						|
		    dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
 | 
						|
		    name, sa_errorstr(err)));
 | 
						|
	}
 | 
						|
 | 
						|
	share = sa_find_share(hdl->libzfs_sharehdl, mntpt);
 | 
						|
	free(mntpt);	/* don't need the copy anymore */
 | 
						|
 | 
						|
	if (share != NULL) {
 | 
						|
		err = sa_disable_share(share, proto_table[proto].p_name);
 | 
						|
		if (err != SA_OK) {
 | 
						|
			return (zfs_error_fmt(hdl,
 | 
						|
			    proto_table[proto].p_unshare_err,
 | 
						|
			    dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
 | 
						|
			    name, sa_errorstr(err)));
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
 | 
						|
		    dgettext(TEXT_DOMAIN, "cannot unshare '%s': not found"),
 | 
						|
		    name));
 | 
						|
	}
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unshare the given filesystem.
 | 
						|
 */
 | 
						|
int
 | 
						|
zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint,
 | 
						|
    zfs_share_proto_t *proto)
 | 
						|
{
 | 
						|
	libzfs_handle_t *hdl = zhp->zfs_hdl;
 | 
						|
	struct mnttab entry;
 | 
						|
	char *mntpt = NULL;
 | 
						|
 | 
						|
	/* check to see if need to unmount the filesystem */
 | 
						|
	if (mountpoint != NULL)
 | 
						|
		mntpt = zfs_strdup(hdl, mountpoint);
 | 
						|
 | 
						|
	if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
 | 
						|
	    libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
 | 
						|
		zfs_share_proto_t *curr_proto;
 | 
						|
 | 
						|
		if (mountpoint == NULL)
 | 
						|
			mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp);
 | 
						|
 | 
						|
		for (curr_proto = proto; *curr_proto != PROTO_END;
 | 
						|
		    curr_proto++) {
 | 
						|
 | 
						|
			if (is_shared(hdl, mntpt, *curr_proto) &&
 | 
						|
			    unshare_one(hdl, zhp->zfs_name,
 | 
						|
			    mntpt, *curr_proto) != 0) {
 | 
						|
				if (mntpt != NULL)
 | 
						|
					free(mntpt);
 | 
						|
				return (-1);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (mntpt != NULL)
 | 
						|
		free(mntpt);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint)
 | 
						|
{
 | 
						|
	return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint)
 | 
						|
{
 | 
						|
	return (zfs_unshare_proto(zhp, mountpoint, smb_only));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Same as zfs_unmountall(), but for NFS and SMB unshares.
 | 
						|
 */
 | 
						|
int
 | 
						|
zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
 | 
						|
{
 | 
						|
	prop_changelist_t *clp;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
 | 
						|
	if (clp == NULL)
 | 
						|
		return (-1);
 | 
						|
 | 
						|
	ret = changelist_unshare(clp, proto);
 | 
						|
	changelist_free(clp);
 | 
						|
 | 
						|
	return (ret);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zfs_unshareall_nfs(zfs_handle_t *zhp)
 | 
						|
{
 | 
						|
	return (zfs_unshareall_proto(zhp, nfs_only));
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zfs_unshareall_smb(zfs_handle_t *zhp)
 | 
						|
{
 | 
						|
	return (zfs_unshareall_proto(zhp, smb_only));
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zfs_unshareall(zfs_handle_t *zhp)
 | 
						|
{
 | 
						|
	return (zfs_unshareall_proto(zhp, share_all_proto));
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint)
 | 
						|
{
 | 
						|
	return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zfs_unshareall_bytype(zfs_handle_t *zhp, const char *mountpoint,
 | 
						|
    const char *proto)
 | 
						|
{
 | 
						|
	if (proto == NULL)
 | 
						|
		return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
 | 
						|
	if (strcmp(proto, "nfs") == 0)
 | 
						|
		return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
 | 
						|
	else if (strcmp(proto, "smb") == 0)
 | 
						|
		return (zfs_unshare_proto(zhp, mountpoint, smb_only));
 | 
						|
	else
 | 
						|
		return (1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Remove the mountpoint associated with the current dataset, if necessary.
 | 
						|
 * We only remove the underlying directory if:
 | 
						|
 *
 | 
						|
 *	- The mountpoint is not 'none' or 'legacy'
 | 
						|
 *	- The mountpoint is non-empty
 | 
						|
 *	- The mountpoint is the default or inherited
 | 
						|
 *	- The 'zoned' property is set, or we're in a local zone
 | 
						|
 *
 | 
						|
 * Any other directories we leave alone.
 | 
						|
 */
 | 
						|
void
 | 
						|
remove_mountpoint(zfs_handle_t *zhp)
 | 
						|
{
 | 
						|
	char mountpoint[ZFS_MAXPROPLEN];
 | 
						|
	zprop_source_t source;
 | 
						|
 | 
						|
	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
 | 
						|
	    &source))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (source == ZPROP_SRC_DEFAULT ||
 | 
						|
	    source == ZPROP_SRC_INHERITED) {
 | 
						|
		/*
 | 
						|
		 * Try to remove the directory, silently ignoring any errors.
 | 
						|
		 * The filesystem may have since been removed or moved around,
 | 
						|
		 * and this error isn't really useful to the administrator in
 | 
						|
		 * any way.
 | 
						|
		 */
 | 
						|
		(void) rmdir(mountpoint);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add the given zfs handle to the cb_handles array, dynamically reallocating
 | 
						|
 * the array if it is out of space.
 | 
						|
 */
 | 
						|
void
 | 
						|
libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
 | 
						|
{
 | 
						|
	if (cbp->cb_alloc == cbp->cb_used) {
 | 
						|
		size_t newsz;
 | 
						|
		zfs_handle_t **newhandles;
 | 
						|
 | 
						|
		newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64;
 | 
						|
		newhandles = zfs_realloc(zhp->zfs_hdl,
 | 
						|
		    cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *),
 | 
						|
		    newsz * sizeof (zfs_handle_t *));
 | 
						|
		cbp->cb_handles = newhandles;
 | 
						|
		cbp->cb_alloc = newsz;
 | 
						|
	}
 | 
						|
	cbp->cb_handles[cbp->cb_used++] = zhp;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Recursive helper function used during file system enumeration
 | 
						|
 */
 | 
						|
static int
 | 
						|
zfs_iter_cb(zfs_handle_t *zhp, void *data)
 | 
						|
{
 | 
						|
	get_all_cb_t *cbp = data;
 | 
						|
 | 
						|
	if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
 | 
						|
		zfs_close(zhp);
 | 
						|
		return (0);
 | 
						|
	}
 | 
						|
 | 
						|
	if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
 | 
						|
		zfs_close(zhp);
 | 
						|
		return (0);
 | 
						|
	}
 | 
						|
 | 
						|
	if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
 | 
						|
	    ZFS_KEYSTATUS_UNAVAILABLE) {
 | 
						|
		zfs_close(zhp);
 | 
						|
		return (0);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this filesystem is inconsistent and has a receive resume
 | 
						|
	 * token, we can not mount it.
 | 
						|
	 */
 | 
						|
	if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
 | 
						|
	    zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
 | 
						|
	    NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
 | 
						|
		zfs_close(zhp);
 | 
						|
		return (0);
 | 
						|
	}
 | 
						|
 | 
						|
	libzfs_add_handle(cbp, zhp);
 | 
						|
	if (zfs_iter_filesystems(zhp, zfs_iter_cb, cbp) != 0) {
 | 
						|
		zfs_close(zhp);
 | 
						|
		return (-1);
 | 
						|
	}
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Sort comparator that compares two mountpoint paths. We sort these paths so
 | 
						|
 * that subdirectories immediately follow their parents. This means that we
 | 
						|
 * effectively treat the '/' character as the lowest value non-nul char.
 | 
						|
 * Since filesystems from non-global zones can have the same mountpoint
 | 
						|
 * as other filesystems, the comparator sorts global zone filesystems to
 | 
						|
 * the top of the list. This means that the global zone will traverse the
 | 
						|
 * filesystem list in the correct order and can stop when it sees the
 | 
						|
 * first zoned filesystem. In a non-global zone, only the delegated
 | 
						|
 * filesystems are seen.
 | 
						|
 *
 | 
						|
 * An example sorted list using this comparator would look like:
 | 
						|
 *
 | 
						|
 * /foo
 | 
						|
 * /foo/bar
 | 
						|
 * /foo/bar/baz
 | 
						|
 * /foo/baz
 | 
						|
 * /foo.bar
 | 
						|
 * /foo (NGZ1)
 | 
						|
 * /foo (NGZ2)
 | 
						|
 *
 | 
						|
 * The mounting code depends on this ordering to deterministically iterate
 | 
						|
 * over filesystems in order to spawn parallel mount tasks.
 | 
						|
 */
 | 
						|
static int
 | 
						|
mountpoint_cmp(const void *arga, const void *argb)
 | 
						|
{
 | 
						|
	zfs_handle_t *const *zap = arga;
 | 
						|
	zfs_handle_t *za = *zap;
 | 
						|
	zfs_handle_t *const *zbp = argb;
 | 
						|
	zfs_handle_t *zb = *zbp;
 | 
						|
	char mounta[MAXPATHLEN];
 | 
						|
	char mountb[MAXPATHLEN];
 | 
						|
	const char *a = mounta;
 | 
						|
	const char *b = mountb;
 | 
						|
	boolean_t gota, gotb;
 | 
						|
	uint64_t zoneda, zonedb;
 | 
						|
 | 
						|
	zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED);
 | 
						|
	zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED);
 | 
						|
	if (zoneda && !zonedb)
 | 
						|
		return (1);
 | 
						|
	if (!zoneda && zonedb)
 | 
						|
		return (-1);
 | 
						|
 | 
						|
	gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM);
 | 
						|
	if (gota) {
 | 
						|
		verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta,
 | 
						|
		    sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
 | 
						|
	}
 | 
						|
	gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM);
 | 
						|
	if (gotb) {
 | 
						|
		verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb,
 | 
						|
		    sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
 | 
						|
	}
 | 
						|
 | 
						|
	if (gota && gotb) {
 | 
						|
		while (*a != '\0' && (*a == *b)) {
 | 
						|
			a++;
 | 
						|
			b++;
 | 
						|
		}
 | 
						|
		if (*a == *b)
 | 
						|
			return (0);
 | 
						|
		if (*a == '\0')
 | 
						|
			return (-1);
 | 
						|
		if (*b == '\0')
 | 
						|
			return (1);
 | 
						|
		if (*a == '/')
 | 
						|
			return (-1);
 | 
						|
		if (*b == '/')
 | 
						|
			return (1);
 | 
						|
		return (*a < *b ? -1 : *a > *b);
 | 
						|
	}
 | 
						|
 | 
						|
	if (gota)
 | 
						|
		return (-1);
 | 
						|
	if (gotb)
 | 
						|
		return (1);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If neither filesystem has a mountpoint, revert to sorting by
 | 
						|
	 * dataset name.
 | 
						|
	 */
 | 
						|
	return (strcmp(zfs_get_name(za), zfs_get_name(zb)));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return true if path2 is a child of path1.
 | 
						|
 */
 | 
						|
static boolean_t
 | 
						|
libzfs_path_contains(const char *path1, const char *path2)
 | 
						|
{
 | 
						|
	return (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/');
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Given a mountpoint specified by idx in the handles array, find the first
 | 
						|
 * non-descendent of that mountpoint and return its index. Descendant paths
 | 
						|
 * start with the parent's path. This function relies on the ordering
 | 
						|
 * enforced by mountpoint_cmp().
 | 
						|
 */
 | 
						|
static int
 | 
						|
non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx)
 | 
						|
{
 | 
						|
	char parent[ZFS_MAXPROPLEN];
 | 
						|
	char child[ZFS_MAXPROPLEN];
 | 
						|
	int i;
 | 
						|
 | 
						|
	verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent,
 | 
						|
	    sizeof (parent), NULL, NULL, 0, B_FALSE) == 0);
 | 
						|
 | 
						|
	for (i = idx + 1; i < num_handles; i++) {
 | 
						|
		verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child,
 | 
						|
		    sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
 | 
						|
		if (!libzfs_path_contains(parent, child))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	return (i);
 | 
						|
}
 | 
						|
 | 
						|
typedef struct mnt_param {
 | 
						|
	libzfs_handle_t	*mnt_hdl;
 | 
						|
	tpool_t		*mnt_tp;
 | 
						|
	zfs_handle_t	**mnt_zhps; /* filesystems to mount */
 | 
						|
	size_t		mnt_num_handles;
 | 
						|
	int		mnt_idx;	/* Index of selected entry to mount */
 | 
						|
	zfs_iter_f	mnt_func;
 | 
						|
	void		*mnt_data;
 | 
						|
} mnt_param_t;
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate and populate the parameter struct for mount function, and
 | 
						|
 * schedule mounting of the entry selected by idx.
 | 
						|
 */
 | 
						|
static void
 | 
						|
zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles,
 | 
						|
    size_t num_handles, int idx, zfs_iter_f func, void *data, tpool_t *tp)
 | 
						|
{
 | 
						|
	mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t));
 | 
						|
 | 
						|
	mnt_param->mnt_hdl = hdl;
 | 
						|
	mnt_param->mnt_tp = tp;
 | 
						|
	mnt_param->mnt_zhps = handles;
 | 
						|
	mnt_param->mnt_num_handles = num_handles;
 | 
						|
	mnt_param->mnt_idx = idx;
 | 
						|
	mnt_param->mnt_func = func;
 | 
						|
	mnt_param->mnt_data = data;
 | 
						|
 | 
						|
	(void) tpool_dispatch(tp, zfs_mount_task, (void*)mnt_param);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is the structure used to keep state of mounting or sharing operations
 | 
						|
 * during a call to zpool_enable_datasets().
 | 
						|
 */
 | 
						|
typedef struct mount_state {
 | 
						|
	/*
 | 
						|
	 * ms_mntstatus is set to -1 if any mount fails. While multiple threads
 | 
						|
	 * could update this variable concurrently, no synchronization is
 | 
						|
	 * needed as it's only ever set to -1.
 | 
						|
	 */
 | 
						|
	int		ms_mntstatus;
 | 
						|
	int		ms_mntflags;
 | 
						|
	const char	*ms_mntopts;
 | 
						|
} mount_state_t;
 | 
						|
 | 
						|
static int
 | 
						|
zfs_mount_one(zfs_handle_t *zhp, void *arg)
 | 
						|
{
 | 
						|
	mount_state_t *ms = arg;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * don't attempt to mount encrypted datasets with
 | 
						|
	 * unloaded keys
 | 
						|
	 */
 | 
						|
	if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
 | 
						|
	    ZFS_KEYSTATUS_UNAVAILABLE)
 | 
						|
		return (0);
 | 
						|
 | 
						|
	if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0)
 | 
						|
		ret = ms->ms_mntstatus = -1;
 | 
						|
	return (ret);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
zfs_share_one(zfs_handle_t *zhp, void *arg)
 | 
						|
{
 | 
						|
	mount_state_t *ms = arg;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (zfs_share(zhp) != 0)
 | 
						|
		ret = ms->ms_mntstatus = -1;
 | 
						|
	return (ret);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Thread pool function to mount one file system. On completion, it finds and
 | 
						|
 * schedules its children to be mounted. This depends on the sorting done in
 | 
						|
 * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
 | 
						|
 * each descending from the previous) will have no parallelism since we always
 | 
						|
 * have to wait for the parent to finish mounting before we can schedule
 | 
						|
 * its children.
 | 
						|
 */
 | 
						|
static void
 | 
						|
zfs_mount_task(void *arg)
 | 
						|
{
 | 
						|
	mnt_param_t *mp = arg;
 | 
						|
	int idx = mp->mnt_idx;
 | 
						|
	zfs_handle_t **handles = mp->mnt_zhps;
 | 
						|
	size_t num_handles = mp->mnt_num_handles;
 | 
						|
	char mountpoint[ZFS_MAXPROPLEN];
 | 
						|
 | 
						|
	verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint,
 | 
						|
	    sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
 | 
						|
 | 
						|
	if (mp->mnt_func(handles[idx], mp->mnt_data) != 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We dispatch tasks to mount filesystems with mountpoints underneath
 | 
						|
	 * this one. We do this by dispatching the next filesystem with a
 | 
						|
	 * descendant mountpoint of the one we just mounted, then skip all of
 | 
						|
	 * its descendants, dispatch the next descendant mountpoint, and so on.
 | 
						|
	 * The non_descendant_idx() function skips over filesystems that are
 | 
						|
	 * descendants of the filesystem we just dispatched.
 | 
						|
	 */
 | 
						|
	for (int i = idx + 1; i < num_handles;
 | 
						|
	    i = non_descendant_idx(handles, num_handles, i)) {
 | 
						|
		char child[ZFS_MAXPROPLEN];
 | 
						|
		verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT,
 | 
						|
		    child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
 | 
						|
 | 
						|
		if (!libzfs_path_contains(mountpoint, child))
 | 
						|
			break; /* not a descendant, return */
 | 
						|
		zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i,
 | 
						|
		    mp->mnt_func, mp->mnt_data, mp->mnt_tp);
 | 
						|
	}
 | 
						|
	free(mp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Issue the func callback for each ZFS handle contained in the handles
 | 
						|
 * array. This function is used to mount all datasets, and so this function
 | 
						|
 * guarantees that filesystems for parent mountpoints are called before their
 | 
						|
 * children. As such, before issuing any callbacks, we first sort the array
 | 
						|
 * of handles by mountpoint.
 | 
						|
 *
 | 
						|
 * Callbacks are issued in one of two ways:
 | 
						|
 *
 | 
						|
 * 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT
 | 
						|
 *    environment variable is set, then we issue callbacks sequentially.
 | 
						|
 *
 | 
						|
 * 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT
 | 
						|
 *    environment variable is not set, then we use a tpool to dispatch threads
 | 
						|
 *    to mount filesystems in parallel. This function dispatches tasks to mount
 | 
						|
 *    the filesystems at the top-level mountpoints, and these tasks in turn
 | 
						|
 *    are responsible for recursively mounting filesystems in their children
 | 
						|
 *    mountpoints.
 | 
						|
 */
 | 
						|
void
 | 
						|
zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles,
 | 
						|
    size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel)
 | 
						|
{
 | 
						|
	zoneid_t zoneid = getzoneid();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The ZFS_SERIAL_MOUNT environment variable is an undocumented
 | 
						|
	 * variable that can be used as a convenience to do a/b comparison
 | 
						|
	 * of serial vs. parallel mounting.
 | 
						|
	 */
 | 
						|
	boolean_t serial_mount = !parallel ||
 | 
						|
	    (getenv("ZFS_SERIAL_MOUNT") != NULL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Sort the datasets by mountpoint. See mountpoint_cmp for details
 | 
						|
	 * of how these are sorted.
 | 
						|
	 */
 | 
						|
	qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp);
 | 
						|
 | 
						|
	if (serial_mount) {
 | 
						|
		for (int i = 0; i < num_handles; i++) {
 | 
						|
			func(handles[i], data);
 | 
						|
		}
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Issue the callback function for each dataset using a parallel
 | 
						|
	 * algorithm that uses a thread pool to manage threads.
 | 
						|
	 */
 | 
						|
	tpool_t *tp = tpool_create(1, mount_tp_nthr, 0, NULL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * There may be multiple "top level" mountpoints outside of the pool's
 | 
						|
	 * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
 | 
						|
	 * these.
 | 
						|
	 */
 | 
						|
	for (int i = 0; i < num_handles;
 | 
						|
	    i = non_descendant_idx(handles, num_handles, i)) {
 | 
						|
		/*
 | 
						|
		 * Since the mountpoints have been sorted so that the zoned
 | 
						|
		 * filesystems are at the end, a zoned filesystem seen from
 | 
						|
		 * the global zone means that we're done.
 | 
						|
		 */
 | 
						|
		if (zoneid == GLOBAL_ZONEID &&
 | 
						|
		    zfs_prop_get_int(handles[i], ZFS_PROP_ZONED))
 | 
						|
			break;
 | 
						|
		zfs_dispatch_mount(hdl, handles, num_handles, i, func, data,
 | 
						|
		    tp);
 | 
						|
	}
 | 
						|
 | 
						|
	tpool_wait(tp);	/* wait for all scheduled mounts to complete */
 | 
						|
	tpool_destroy(tp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Mount and share all datasets within the given pool.  This assumes that no
 | 
						|
 * datasets within the pool are currently mounted.
 | 
						|
 */
 | 
						|
#pragma weak zpool_mount_datasets = zpool_enable_datasets
 | 
						|
int
 | 
						|
zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
 | 
						|
{
 | 
						|
	get_all_cb_t cb = { 0 };
 | 
						|
	mount_state_t ms = { 0 };
 | 
						|
	zfs_handle_t *zfsp;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name,
 | 
						|
	    ZFS_TYPE_DATASET)) == NULL)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Gather all non-snapshot datasets within the pool. Start by adding
 | 
						|
	 * the root filesystem for this pool to the list, and then iterate
 | 
						|
	 * over all child filesystems.
 | 
						|
	 */
 | 
						|
	libzfs_add_handle(&cb, zfsp);
 | 
						|
	if (zfs_iter_filesystems(zfsp, zfs_iter_cb, &cb) != 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Mount all filesystems
 | 
						|
	 */
 | 
						|
	ms.ms_mntopts = mntopts;
 | 
						|
	ms.ms_mntflags = flags;
 | 
						|
	zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
 | 
						|
	    zfs_mount_one, &ms, B_TRUE);
 | 
						|
	if (ms.ms_mntstatus != 0)
 | 
						|
		ret = ms.ms_mntstatus;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Share all filesystems that need to be shared. This needs to be
 | 
						|
	 * a separate pass because libshare is not mt-safe, and so we need
 | 
						|
	 * to share serially.
 | 
						|
	 */
 | 
						|
	ms.ms_mntstatus = 0;
 | 
						|
	zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
 | 
						|
	    zfs_share_one, &ms, B_FALSE);
 | 
						|
	if (ms.ms_mntstatus != 0)
 | 
						|
		ret = ms.ms_mntstatus;
 | 
						|
 | 
						|
out:
 | 
						|
	for (int i = 0; i < cb.cb_used; i++)
 | 
						|
		zfs_close(cb.cb_handles[i]);
 | 
						|
	free(cb.cb_handles);
 | 
						|
 | 
						|
	return (ret);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
mountpoint_compare(const void *a, const void *b)
 | 
						|
{
 | 
						|
	const char *mounta = *((char **)a);
 | 
						|
	const char *mountb = *((char **)b);
 | 
						|
 | 
						|
	return (strcmp(mountb, mounta));
 | 
						|
}
 | 
						|
 | 
						|
/* alias for 2002/240 */
 | 
						|
#pragma weak zpool_unmount_datasets = zpool_disable_datasets
 | 
						|
/*
 | 
						|
 * Unshare and unmount all datasets within the given pool.  We don't want to
 | 
						|
 * rely on traversing the DSL to discover the filesystems within the pool,
 | 
						|
 * because this may be expensive (if not all of them are mounted), and can fail
 | 
						|
 * arbitrarily (on I/O error, for example).  Instead, we walk /proc/self/mounts
 | 
						|
 * and gather all the filesystems that are currently mounted.
 | 
						|
 */
 | 
						|
int
 | 
						|
zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
 | 
						|
{
 | 
						|
	int used, alloc;
 | 
						|
	struct mnttab entry;
 | 
						|
	size_t namelen;
 | 
						|
	char **mountpoints = NULL;
 | 
						|
	zfs_handle_t **datasets = NULL;
 | 
						|
	libzfs_handle_t *hdl = zhp->zpool_hdl;
 | 
						|
	int i;
 | 
						|
	int ret = -1;
 | 
						|
	int flags = (force ? MS_FORCE : 0);
 | 
						|
 | 
						|
	namelen = strlen(zhp->zpool_name);
 | 
						|
 | 
						|
	/* Reopen MNTTAB to prevent reading stale data from open file */
 | 
						|
	if (freopen(MNTTAB, "r", hdl->libzfs_mnttab) == NULL)
 | 
						|
		return (ENOENT);
 | 
						|
 | 
						|
	used = alloc = 0;
 | 
						|
	while (getmntent(hdl->libzfs_mnttab, &entry) == 0) {
 | 
						|
		/*
 | 
						|
		 * Ignore non-ZFS entries.
 | 
						|
		 */
 | 
						|
		if (entry.mnt_fstype == NULL ||
 | 
						|
		    strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Ignore filesystems not within this pool.
 | 
						|
		 */
 | 
						|
		if (entry.mnt_mountp == NULL ||
 | 
						|
		    strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
 | 
						|
		    (entry.mnt_special[namelen] != '/' &&
 | 
						|
		    entry.mnt_special[namelen] != '\0'))
 | 
						|
			continue;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * At this point we've found a filesystem within our pool.  Add
 | 
						|
		 * it to our growing list.
 | 
						|
		 */
 | 
						|
		if (used == alloc) {
 | 
						|
			if (alloc == 0) {
 | 
						|
				if ((mountpoints = zfs_alloc(hdl,
 | 
						|
				    8 * sizeof (void *))) == NULL)
 | 
						|
					goto out;
 | 
						|
 | 
						|
				if ((datasets = zfs_alloc(hdl,
 | 
						|
				    8 * sizeof (void *))) == NULL)
 | 
						|
					goto out;
 | 
						|
 | 
						|
				alloc = 8;
 | 
						|
			} else {
 | 
						|
				void *ptr;
 | 
						|
 | 
						|
				if ((ptr = zfs_realloc(hdl, mountpoints,
 | 
						|
				    alloc * sizeof (void *),
 | 
						|
				    alloc * 2 * sizeof (void *))) == NULL)
 | 
						|
					goto out;
 | 
						|
				mountpoints = ptr;
 | 
						|
 | 
						|
				if ((ptr = zfs_realloc(hdl, datasets,
 | 
						|
				    alloc * sizeof (void *),
 | 
						|
				    alloc * 2 * sizeof (void *))) == NULL)
 | 
						|
					goto out;
 | 
						|
				datasets = ptr;
 | 
						|
 | 
						|
				alloc *= 2;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if ((mountpoints[used] = zfs_strdup(hdl,
 | 
						|
		    entry.mnt_mountp)) == NULL)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * This is allowed to fail, in case there is some I/O error.  It
 | 
						|
		 * is only used to determine if we need to remove the underlying
 | 
						|
		 * mountpoint, so failure is not fatal.
 | 
						|
		 */
 | 
						|
		datasets[used] = make_dataset_handle(hdl, entry.mnt_special);
 | 
						|
 | 
						|
		used++;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * At this point, we have the entire list of filesystems, so sort it by
 | 
						|
	 * mountpoint.
 | 
						|
	 */
 | 
						|
	qsort(mountpoints, used, sizeof (char *), mountpoint_compare);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Walk through and first unshare everything.
 | 
						|
	 */
 | 
						|
	for (i = 0; i < used; i++) {
 | 
						|
		zfs_share_proto_t *curr_proto;
 | 
						|
		for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
 | 
						|
		    curr_proto++) {
 | 
						|
			if (is_shared(hdl, mountpoints[i], *curr_proto) &&
 | 
						|
			    unshare_one(hdl, mountpoints[i],
 | 
						|
			    mountpoints[i], *curr_proto) != 0)
 | 
						|
				goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now unmount everything, removing the underlying directories as
 | 
						|
	 * appropriate.
 | 
						|
	 */
 | 
						|
	for (i = 0; i < used; i++) {
 | 
						|
		if (unmount_one(hdl, mountpoints[i], flags) != 0)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < used; i++) {
 | 
						|
		if (datasets[i])
 | 
						|
			remove_mountpoint(datasets[i]);
 | 
						|
	}
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
out:
 | 
						|
	for (i = 0; i < used; i++) {
 | 
						|
		if (datasets[i])
 | 
						|
			zfs_close(datasets[i]);
 | 
						|
		free(mountpoints[i]);
 | 
						|
	}
 | 
						|
	free(datasets);
 | 
						|
	free(mountpoints);
 | 
						|
 | 
						|
	return (ret);
 | 
						|
}
 |